1
|
Simon L, Lin HY, Poret J, Stouwe CV, Ferguson TF, Welsh DA, Molina PE. Association of circulating adipokines with metabolic measures among people with HIV: Moderating effects of alcohol use. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024. [PMID: 39424415 DOI: 10.1111/acer.15464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/27/2024] [Accepted: 09/25/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND People with HIV (PWH) are at increased risk for cardiometabolic comorbidities. We have reported that lifetime alcohol use among people with HIV (PWH) is associated with increased risk for metabolic syndrome. Dysfunctional adipose tissue and altered circulating adipokines mediate metabolic dysregulation. The objective of this study was to determine the associations of circulating adipokine concentration with metabolic measures, and the moderating effects of lifetime and recent alcohol use in PWH. METHODS This is a cross-sectional analysis of data from 357 PWH at their baseline visit of the longitudinal New Orleans Alcohol and HIV (NOAH) study. The concentrations of four circulating adipokines (adiponectin, leptin, resistin, and fatty acid-binding protein 4 [FABP4]) and their associations with five metabolic measures (triglycerides, cholesterol, Hemoglobin A1c, Homeostatic Model Assessment for Insulin Resistance, and metabolic syndrome) were examined. RESULTS Higher circulating adiponectin was associated with increased odds of normal triglyceride, cholesterol, and Hemoglobin A1c levels. Increased leptin and FABP4 concentrations were associated with decreased odds of normal triglyceride and cholesterol levels. Increased leptin and FABP4 concentrations were associated with increased odds of insulin resistance and meeting criteria for metabolic syndrome. Increased circulating resistin concentration was associated with decreased odds of normal triglyceride levels and increased odds of meeting criteria for metabolic syndrome. Additionally, among PWH with increased lifetime alcohol use, higher adiponectin concentration was associated with decreased odds of meeting criteria for metabolic syndrome. CONCLUSIONS These data suggest the interplay between adiponectin, leptin, FABP4, and resistin may contribute to metabolic stability among PWH. Moreover, lifetime, but not recent, alcohol use moderates the relationship between adipokines and metabolic measures. These data highlight the relevance of functional adipose tissue mass and associated circulating adipokine levels in maintaining metabolic homeostasis, and its moderation by lifetime alcohol consumption.
Collapse
Affiliation(s)
- Liz Simon
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Hui-Yi Lin
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Jonquil Poret
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Curtis Vande Stouwe
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Tekeda F Ferguson
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Epidemiology Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - David A Welsh
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Section of Pulmonary/Critical Care, Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E Molina
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
2
|
Nhoek P, Hwang S, Huh J, Pel P, Park CW, Khiev P, Kim HW, Noh M, Chin YW. Butanolides and clerodane diterpenes from the twigs of Casearia grewiifolia and their effects on adiponectin secretion. Bioorg Chem 2024; 153:107890. [PMID: 39427630 DOI: 10.1016/j.bioorg.2024.107890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Three butanolides derivatives, grewiifolides A-C, and nine clerodane diterpenes, grewiifolins M-U, as well as a known sterol were isolated from the twigs of Casearia grewiifolia. The chemical structures and configurations of all isolates were established by various spectroscopic means and chemical derivatization. In a cell-based phenotypic assay using the adipogenesis model of human bone marrow mesenchymal stem cells (hBM-MSCs), grewiifolide B significantly promoted adiponectin-secretion with EC50 value of 24.8 µM. In target identification studies, butanolide derivatives were selectively bound to PPARγ with Ki values of 4.65, 0.55, and 17.8 µM, respectively. Further functional analysis and molecular modeling revealed that grewiifolide B promotes adiponectin-secretion through PPARγ full agonism.
Collapse
Affiliation(s)
- Piseth Nhoek
- Natural Product Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seokyoung Hwang
- Natural Product Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jungmoo Huh
- Natural Product Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Pisey Pel
- Natural Product Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Chan-Woong Park
- Natural Product Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Piseth Khiev
- Royal University of Phnom Penh, Department of Biology, Russian Federation Boulevard, Khan Toul Kork, Phnom Penh 12156, Cambodia
| | - Hyun Woo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do 04620, Republic of Korea
| | - Minsoo Noh
- Natural Product Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Young-Won Chin
- Natural Product Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Dusilová T, Kovář J, Laňková I, Thieme L, Hubáčková M, Šedivý P, Pajuelo D, Burian M, Dezortová M, Miklánková D, Malínská H, Svobodová Šťastná P, Poledne R, Hájek M, Haluzík M. Semaglutide Treatment Effects on Liver Fat Content in Obese Subjects with Metabolic-Associated Steatotic Liver Disease (MASLD). J Clin Med 2024; 13:6100. [PMID: 39458050 PMCID: PMC11508983 DOI: 10.3390/jcm13206100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Metabolic-dysfunction-associated steatotic liver disease (MASLD) represents a major clinical complication of obesity. Methods: In this study, we used magnetic resonance (MR) methods to determine the effect of obesity treatment with semaglutide, a GLP-1 receptor agonist, on the liver fat content and selected metabolic variables. We investigated whether treatment would affect the acute response of liver fat to glucose and fructose administration and whether it would affect the fatty acid profile of VLDL-triglycerides. Sixteen obese non-diabetic men underwent a 16-week dietary intervention and 16-week treatment with subcutaneous semaglutide in a crossover design without a washout period. The order of the interventions was randomized. Results: After treatment, body weight of the subjects decreased by 5% and liver fat by a third, whereas dietary intervention had no impact on these parameters. The decrease in liver fat with semaglutide did not correlate with changes in body weight and other measures of adiposity and was unrelated to improved insulin sensitivity. Conclusions: The proportion of palmitic and palmitoleic acids in VLDL-triglycerides decreased after treatment, suggesting that the beneficial effects of semaglutide on liver fat are mediated by the suppression of de novo lipogenesis.
Collapse
Affiliation(s)
- Tereza Dusilová
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
- Department of Physiology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Jan Kovář
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Ivana Laňková
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Lenka Thieme
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Monika Hubáčková
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Petr Šedivý
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Dita Pajuelo
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Martin Burian
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Monika Dezortová
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Denisa Miklánková
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Hana Malínská
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Petra Svobodová Šťastná
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Rudolf Poledne
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Milan Hájek
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Martin Haluzík
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| |
Collapse
|
4
|
Kim MH, Kim SJ, Park WJ, Lee DH, Kim KK. GR113808, a serotonin receptor 4 antagonist, prevents high-fat-diet-induced obesity, fatty liver formation, and insulin resistance in C57BL/6J mice. BMC Pharmacol Toxicol 2024; 25:76. [PMID: 39394150 PMCID: PMC11470721 DOI: 10.1186/s40360-024-00800-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND The burden of nonalcoholic fatty liver disease is increasing, and limited therapeutic drugs are available for its treatment. Serotonin binds to approximately 14 serotonin receptors (HTR) and plays diverse roles in obesity and metabolic complications. In this study, we focused on the function of HTR4 on nonalcoholic fatty liver disease using GR113808, a selective HTR4 antagonist. METHODS Male C57BL/6J mice were fed high-fat diet for 12 weeks with intraperitoneal GR113808 injection, and HTR expression, weight changes, glucose and lipid metabolism, hepatic fat accumulation, changes in adipose tissue, the changes in transcriptional factors of signaling pathways, and inflammations were assessed. Hep3B cells and 3T3-L1 cells were treated with siRNA targeting HTR4 to downregulate its expression and then cultured with palmitate to mimic a high-fat diet. The changes in transcriptional factors of signaling pathways, and inflammations were assessed in those cells. RESULTS After feeding a high-fat diet to male C57BL/6J mice, HTR4 expression in the liver and adipose tissues decreased. GR113808 suppressed body weight gain and improved glucose intolerance. Furthermore, GR113808 not only decreased fatty liver formation but also reduced adipose tissue size. Additionally, GR113808 reduced inflammatory cytokine serum levels and inflammasome complex formation in both tissues. Palmitate treatment in HTR4-downregulated Hep3B cells, also reduced peroxisome proliferator-activated receptor γ and sterol regulatory element-binding protein-1 pathway induction as well as inflammasome complex formation, thus decreasing inflammatory cytokine levels. HTR4 downregulation in 3T3-L1 cells also reduced palmitate-induced inflammasome complex formation and inflammatory cytokine production. Palmitate-induced insulin resistance in Hep3B cells, but not in 3T3-L1 cells, was improved by HTR4 downregulation. CONCLUSIONS In summary, GR113808 protected against fatty liver formation and improved inflammation in the liver and adipose tissue. Downregulation of HTR4 ameliorated insulin resistance in the liver. These results suggest that HTR4 could serve as a promising therapeutic target for metabolic diseases.
Collapse
Affiliation(s)
- Min Hee Kim
- Department of Biochemistry, Ewha Womans University College of Medicine, Seoul, 07084, Republic of Korea
- Department of Biochemistry, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Su-Jeong Kim
- Department of Biochemistry, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Woo-Jae Park
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul, 06974, Republic of Korea.
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Kyoung-Kon Kim
- Department of Family Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea.
| |
Collapse
|
5
|
Yaqoob MU, Qi Y, Hou J, Zhe L, Zhu X, Wu P, Li Z, Wang M, Li Y, Yue M. Coated cysteamine and choline chloride could be potential feed additives to mitigate the harmful effects of fatty liver hemorrhagic syndrome in laying hens caused by high-energy low-protein diet. Poult Sci 2024; 103:104296. [PMID: 39305615 PMCID: PMC11437759 DOI: 10.1016/j.psj.2024.104296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 10/01/2024] Open
Abstract
The research aimed to examine the impact of coated cysteamine (CS) and choline chloride (CC) on relieving the pathological effects of fatty liver hemorrhagic syndrome (FLHS) in laying hens. FLHS was induced by a high-energy low-protein (HELP) diet. Ninety laying hens were equally divided into 5 treatments with 6 replicates per treatment (3 hens/replicate). The control treatment (Cont) was fed a basal diet, while the remaining treatments were fed a HELP diet. Under the HELP dietary plan, 4 treatments were set by a 2 × 2 factorial design. Two levels of CS (CS-: 0.00 mg/kg CS; CS+: 100 mg/kg diet) and 2 levels of choline (CC-: 1,182 mg/kg; CC+: 4,124 mg/kg) were set and named CS-CC- (HELP), CS+CC-, CS-CC+ and CS+CC+. The liver of the CS-CC- (HELP) group became yellowish-brown and greasy, with hemorrhages and bleeding spots. Elevated (P < 0.05) plasma and hepatic ALT and AST and hepatic MDA levels, combined with reduced (P < 0.05) plasma and hepatic SOD and GSH-Px activities in the CS-CC- (HELP) group proved that FLHS was successfully induced. Dietary supplementation of CS, CC, or both (CS+CC+) in HELP diets relieved the pathological changes, significantly (P < 0.05) reduced the AST and ALT levels, and strengthened the antioxidant potential in laying hens under FLHS. The highest (P < 0.001) plasma adiponectin concentration was observed in the CS+CC- and lowest in the CS-CC- (HELP) group. In addition, CS and CC supplementation lowers the elevated levels of hepatic T-CHO and TG by increasing the HDL-C and reducing LDL-C levels (P < 0.05) than CS-CC- (HELP) group. CS supplementation, either alone or with CC, helps laying hens restore their egg production. It could be stated that CS and CC supplements could ameliorate the adverse effects of FLHS by regulating antioxidant enzymes activities, modulating the hepatic lipid metabolism, and restoring the production performance in laying hens. Hence, adding CS and CC could be an effective way to reduce FLHS in laying hens.
Collapse
Affiliation(s)
- Muhammad Umar Yaqoob
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd. Zhejiang Hangzhou 311107, China
| | - Yingying Qi
- Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd. Zhejiang Hangzhou 311107, China
| | - Jia Hou
- Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd. Zhejiang Hangzhou 311107, China
| | - Li Zhe
- Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd. Zhejiang Hangzhou 311107, China
| | - Xiangde Zhu
- Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd. Zhejiang Hangzhou 311107, China
| | - Peng Wu
- Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd. Zhejiang Hangzhou 311107, China
| | - Zhefeng Li
- Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd. Zhejiang Hangzhou 311107, China
| | - Minqi Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yan Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Min Yue
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
6
|
Varmazyar I, Monazzami AA, Moradi M, McAinch AJ. Effects of 12-weeks resistance training and vitamin E supplementation on aminotransferases, CTRP-2, and CTRP-9 levels in males with nonalcoholic fatty liver disease: a double-blind, randomized trial. BMC Sports Sci Med Rehabil 2024; 16:185. [PMID: 39232815 PMCID: PMC11373101 DOI: 10.1186/s13102-024-00972-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) involves excessive liver fat accumulation and is closely linked to oxidative stress, which contributes to liver inflammation and damage. This study aimed to evaluate how interventions such as resistance training (RT) and vitamin E supplementation (VES) can modulate markers of NAFLD and key proteins regulating glucose and lipid metabolism, such as C1Q/TNF-related proteins (CTRPs). METHODS Forty participants with NAFLD (mean age: 32.4 ± 8.2 years) were randomly assigned to one of four groups for 12 weeks: placebo (PLB), VES, PLB + RT, and VES + RT. VES was administered at 800 IU/day in a double-blind manner. The RT regimen included eight exercises at 60-80% of one-repetition maximum (1RM), with three sets of 8-12 repetitions, performed three times per week. Pre- and post-intervention assessments included body composition, aspartate aminotransferase (AST), alanine aminotransferase (ALT), lipid profile, glycemic control, CTRP-2, CTRP-9, and 1RM evaluations. RESULTS Following the interventions, there was a significant improvement in body composition, lipid profile, glycemic control, and 1RM indices in the exercise groups compared to non-exercise groups (p < 0.05). AST and ALT levels decreased in all groups (p < 0.05) compared to the PLB group. There was also a significant difference between the VES + RT group and both the VES and PLB + RT groups (p < 0.05). CTRP-2 and CTRP-9 levels decreased in the exercise groups compared to non-exercise groups (p < 0.05), and their changes showed a marked correlation with body composition, lipid profile, and glycemic control indices (p < 0.05). CONCLUSIONS This study highlights the benefits of RT on various health parameters among NAFLD patients. While adding VES to RT resulted in greater decreases in aminotransferases, it did not provide further improvements in other variables. Additionally, enhancements in body composition, lipid profile, and glycemic control indices were possibly associated with decreased levels of CTRPs. TRIAL REGISTRATION Registered retrospectively in the Iranian Registry of Clinical Trials (IRCT20220601055056N1) on December 21, 2023. Access at https://irct.behdasht.gov.ir/trial/69231 .
Collapse
Affiliation(s)
- Irfan Varmazyar
- Department of Sport Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Amir Abbas Monazzami
- Department of Sport Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran.
| | - Mozhgan Moradi
- Department of Internal Medicine, Faculty of Medicine, University of Medical Sciences, Kermanshah, Iran
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| |
Collapse
|
7
|
Rehman IU, Park JS, Choe K, Park HY, Park TJ, Kim MO. Overview of a novel osmotin abolishes abnormal metabolic-associated adiponectin mechanism in Alzheimer's disease: Peripheral and CNS insights. Ageing Res Rev 2024; 100:102447. [PMID: 39111409 DOI: 10.1016/j.arr.2024.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/19/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024]
Abstract
Alzheimer's disease (AD) is a degenerative brain disease that affects millions of people worldwide. It is caused by abnormalities in cholinergic neurons, oxidative stress, and inflammatory cascades. The illness is accompanied by personality changes, memory issues, and dementia. Metabolic signaling pathways help with fundamental processes like DNA replication and RNA transcription. Being adaptable is essential for both surviving and treating illness. The body's metabolic signaling depends on adipokines, including adiponectin (APN) and other adipokines secreted by adipose tissues. Energy homeostasis is balanced by adipokines, and nutrients. Overconsumption of nutrients messes with irregular signaling of adipokines, such as APN in both peripheral and brain which leads to neurodegeneration, such as AD. Despite the failure of traditional treatments like memantine and cholinesterase inhibitors, natural plant bioactive substances like Osmotin (OSM) have been given a focus as potential therapeutics due to their antioxidant properties, better blood brain barrier (BBB) permeability, excellent cell viability, and especially nanoparticle approaches. The review highlights the published preclinical literature regarding the role of OSM in AD pathology while there is a need for more research to investigate the hidden therapeutic potential of OSM which may open a new gateway and further strengthen its healing role in the pathogenesis of neurodegeneration, especially AD.
Collapse
Affiliation(s)
- Inayat Ur Rehman
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht 6229 ER, the Netherlands.
| | - Hyun Young Park
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht 6229 ER, the Netherlands; Department of Pediatrics, Maastricht University Medical Center (MUMC+), Maastricht 6202 AZ, the Netherlands.
| | - Tae Ju Park
- Haemato-oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences (MVLS), University of Glasgow, Glasgow G12 0ZD, United Kingdom.
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Alz-Dementia Korea Co., Jinju 52828, Republic of Korea.
| |
Collapse
|
8
|
Corrao S, Calvo L, Granà W, Scibetta S, Mirarchi L, Amodeo S, Falcone F, Argano C. Metabolic dysfunction-associated steatotic liver disease: A pathophysiology and clinical framework to face the present and the future. Nutr Metab Cardiovasc Dis 2024:S0939-4753(24)00293-X. [PMID: 39358105 DOI: 10.1016/j.numecd.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024]
Abstract
AIMS This review aims to provide a straightforward conceptual framework for the knowledge and understanding of Metabolic dysfunction-associated steatotic liver disease (MASLD) in the broad spectrum of steatotic liver disease and to point out the need to consider metabolic dysfunction and comorbidities as interrelated factors for a holistic approach to fatty liver disease. DATA SYNTHESIS MASLD is the new proposed term for steatotic liver disease that replaces the old terminology of non-alcoholic fatty liver disease. This term focused on the relationship between metabolic alteration and hepatic steatosis, reflecting a growing comprehension of the association between metabolic dysfunction and hepatic steatosis. Numerous factors and conditions contribute to the underlying mechanisms, including central obesity, insulin resistance, adiponectin, lipid metabolism, liver function, dietary influences, the composition of intestinal microbiota, and genetic factors. The development of the condition, however, involves a more intricate network of components, such as neurotensin and Advanced Glycation End Products, highlighting the complexity of its pathogenesis. CONCLUSIONS MASLD must be regarded as a complex clinical problem in which only a holistic approach can win through the coordination of multi-professional and multi-speciality interventions.
Collapse
Affiliation(s)
- Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy; Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties [PROMISE], University of Palermo, Italy.
| | - Luigi Calvo
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Walter Granà
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Salvatore Scibetta
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Luigi Mirarchi
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Simona Amodeo
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Fabio Falcone
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy; Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties [PROMISE], University of Palermo, Italy
| | - Christiano Argano
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| |
Collapse
|
9
|
Henin G, Loumaye A, Deldicque L, Leclercq IA, Lanthier N. Unlocking liver health: Can tackling myosteatosis spark remission in metabolic dysfunction-associated steatotic liver disease? Liver Int 2024; 44:1781-1796. [PMID: 38623714 DOI: 10.1111/liv.15938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Myosteatosis is highly prevalent in metabolic dysfunction-associated steatotic liver disease (MASLD) and could reciprocally impact liver function. Decreasing muscle fat could be indirectly hepatoprotective in MASLD. We conducted a review to identify interventions reducing myosteatosis and their impact on liver function. Non-pharmacological interventions included diet (caloric restriction or lipid enrichment), bariatric surgery and physical activity. Caloric restriction in humans achieving a mean weight loss of 3% only reduces muscle fat. Lipid-enriched diet increases liver fat in human with no impact on muscle fat, except sphingomyelin-enriched diet which reduces both lipid contents exclusively in pre-clinical studies. Bariatric surgery, hybrid training (resistance exercise and electric stimulation) or whole-body vibration in human decrease both liver and muscle fat. Physical activity impacts both phenotypes by reducing local and systemic inflammation, enhancing insulin sensitivity and modulating the expression of key mediators of the muscle-liver-adipose tissue axis. The combination of diet and physical activity acts synergistically in liver, muscle and white adipose tissue, and further decrease muscle and liver fat. Several pharmacological interventions (patchouli alcohol, KBP-089, 2,4-dinitrophenol methyl ether, adipoRon and atglistatin) and food supplementation (vitamin D or resveratrol) improve liver and muscle phenotypes in pre-clinical studies by increasing fatty acid oxidation and anti-inflammatory properties. These interventions are effective in reducing myosteatosis in MASLD while addressing the liver disease itself. This review supports that disturbances in inter-organ crosstalk are key pathophysiological mechanisms involved in MASLD and myosteatosis pathogenesis. Focusing on the skeletal muscle might offer new therapeutic strategies to treat MASLD by modulating the interactions between liver and muscles.
Collapse
Affiliation(s)
- Guillaume Henin
- Service d'Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Audrey Loumaye
- Service d'Endocrinologie, Diabétologie et Nutrition, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | | | - Isabelle A Leclercq
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Nicolas Lanthier
- Service d'Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
10
|
Huang Y, Yu F, Ding Y, Zhang H, Li X, Wang X, Wu X, Xu J, Wang L, Tian C, Jiang M, Zhang R, Yan C, Song Y, Huang H, Xu G, Ding Q, Ye X, Lu Y, Hu C. Hepatic IL22RA1 deficiency promotes hepatic steatosis by modulating oxysterol in the liver. Hepatology 2024:01515467-990000000-00951. [PMID: 38985984 DOI: 10.1097/hep.0000000000000998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND AND AIMS An imbalance in lipid metabolism is the main cause of NAFLD. While the pathogenesis of lipid accumulation mediated by extrahepatic regulators has been extensively studied, the intrahepatic regulators modulating lipid homeostasis remain unclear. Previous studies have shown that systemic administration of IL-22 protects against NAFLD; however, the role of IL-22/IL22RA1 signaling in modulating hepatic lipid metabolism remains uncertain. APPROACH AND RESULTS This study shows that hepatic IL22RA1 is vital in hepatic lipid regulation. IL22RA1 is downregulated in palmitic acid-treated mouse primary hepatocytes, as well as in the livers of NAFLD model mice and patients. Hepatocyte-specific Il22ra1 knockout mice display diet-induced hepatic steatosis, insulin resistance, impaired glucose tolerance, increased inflammation, and fibrosis compared with flox/flox mice. This is attributed to increased lipogenesis mediated by the accumulation of hepatic oxysterols, particularly 3 beta-hydroxy-5-cholestenoic acid (3β HCA). Mechanistically, hepatic IL22RA1 deficiency facilitates 3β HCA deposition through the activating transcription factor 3/oxysterol 7 alpha-hydroxylase axis. Notably, 3β HCA facilitates lipogenesis in mouse primary hepatocytes and human liver organoids by activating liver X receptor-alpha signaling, but IL-22 treatment attenuates this effect. Additionally, restoring oxysterol 7 alpha-hydroxylase or silencing hepatic activating transcription factor 3 reduces both hepatic 3β HCA and lipid contents in hepatocyte-specific Il22ra1 knockout mice. CONCLUSIONS These findings indicate that IL22RA1 plays a crucial role in maintaining hepatic lipid homeostasis in an activating transcription factor 3/oxysterol 7 alpha-hydroxylase-dependent manner and establish a link between 3β HCA and hepatic lipid homeostasis.
Collapse
Affiliation(s)
- Yeping Huang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Yu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue Li
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Wang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoshan Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jie Xu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Wang
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
| | - Chenxu Tian
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
| | - Min Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyan Yan
- Department of Endocrinology, Center for General Practice Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College. Hangzhou, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yingxiang Song
- Department of Endocrinology, Center for General Practice Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College. Hangzhou, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Haijun Huang
- Department of Infectious Diseases, Center for General Practice Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guangzhong Xu
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Ye
- Department of Endocrinology, Center for General Practice Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College. Hangzhou, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yan Lu
- Institute of Metabolism and Regenerative Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China
| |
Collapse
|
11
|
Staller DW, Bennett RG, Mahato RI. Therapeutic perspectives on PDE4B inhibition in adipose tissue dysfunction and chronic liver injury. Expert Opin Ther Targets 2024; 28:545-573. [PMID: 38878273 PMCID: PMC11305103 DOI: 10.1080/14728222.2024.2369590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Chronic liver disease (CLD) is a complex disease associated with profound dysfunction. Despite an incredible burden, the first and only pharmacotherapy for metabolic-associated steatohepatitis was only approved in March of this year, indicating a gap in the translation of preclinical studies. There is a body of preclinical work on the application of phosphodiesterase 4 inhibitors in CLD, none of these molecules have been successfully translated into clinical use. AREAS COVERED To design therapies to combat CLD, it is essential to consider the dysregulation of other tissues that contribute to its development and progression. As such, proper therapies must combat this throughout the body rather than focusing only on the liver. To detail this, literature characterizing the pathogenesis of CLD was pulled from PubMed, with a particular focus placed on the role of PDE4 in inflammation and metabolism. Then, the focus is shifted to detailing the available information on existing PDE4 inhibitors. EXPERT OPINION This review gives a brief overview of some of the pathologies of organ systems that are distinct from the liver but contribute to disease progression. The demonstrated efficacy of PDE4 inhibitors in other human inflammatory diseases should earn them further examination for the treatment of CLD.
Collapse
Affiliation(s)
- Dalton W. Staller
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Robert G. Bennett
- Department of Internal Medicine, Division of Diabetes Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Ram I. Mahato
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
12
|
Wen W, Fan H, Zhang S, Hu S, Chen C, Tang J, You Y, Wang C, Li J, Luo L, Cheng Y, Zhou M, Zhao X, Tan T, Xu F, Fu X, Chen J, Dong P, Zhang X, Wang M, Feng Y. Associations between metabolic dysfunction-associated fatty liver disease and atherosclerotic cardiovascular disease. Am J Med Sci 2024:S0002-9629(24)01323-5. [PMID: 38944203 DOI: 10.1016/j.amjms.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely related to metabolic syndrome and remains a major global health burden. The increased prevalence of obesity and type 2 diabetes mellitus (T2DM) worldwide has contributed to the rising incidence of NAFLD. It is widely believed that atherosclerotic cardiovascular disease (ASCVD) is associated with NAFLD. In the past decade, the clinical implications of NAFLD have gone beyond liver-related morbidity and mortality, with a majority of patient deaths attributed to malignancy, coronary heart disease (CHD), and other cardiovascular (CVD) complications. To better define fatty liver disease associated with metabolic disorders, experts proposed a new term in 2020 - metabolic dysfunction associated with fatty liver disease (MAFLD). Along with this new designation, updated diagnostic criteria were introduced, resulting in some differentiation between NAFLD and MAFLD patient populations, although there is overlap. The aim of this review is to explore the relationship between MAFLD and ASCVD based on the new definitions and diagnostic criteria, while briefly discussing potential mechanisms underlying cardiovascular disease in patients with MAFLD.
Collapse
Affiliation(s)
- Wen Wen
- Department of Cardiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, 313000, Zhejiang, China
| | - Hua Fan
- School of Clinical Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Shenghui Zhang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Siqi Hu
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Chen Chen
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Jiake Tang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Yao You
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Chunyi Wang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Jie Li
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Lin Luo
- Hangzhou Ruolin Hospital Management Co. Ltd, Hangzhou, 310007, China
| | - Yongran Cheng
- School of Public Health, Hangzhou Medical College, Hangzhou, 311300, China
| | - Mengyun Zhou
- Department of Molecular & Cellular Physiology, Shinshu University School of Medicine, 3900803, Japan
| | - Xuezhi Zhao
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China
| | - Tao Tan
- Faculty of Applied Science, Macao Polytechnic University, Macao SAR, 999078, China
| | - Fangfang Xu
- Strategy Research and Knowledge Information Center, SAIC Motor Group, 200030, Shanghai, China
| | - Xinyan Fu
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Juan Chen
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Peng Dong
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Xingwei Zhang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Mingwei Wang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China.
| | - Yan Feng
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China.
| |
Collapse
|
13
|
Zhuge H, Pan Y, Lai S, Chang K, Ding Q, Cao W, Song Q, Li S, Dou X, Ding B. Penthorum chinense Pursh extract ameliorates alcohol-related fatty liver disease in mice via the SIRT1/AMPK signaling axis. Heliyon 2024; 10:e31195. [PMID: 38832279 PMCID: PMC11145240 DOI: 10.1016/j.heliyon.2024.e31195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
Penthorum chinense Pursh (P. chinense), a functional food, has been applied to protect the liver against alcohol-related fatty liver disease (ALD) for a long history in China. This study was designed to evaluate the ameliorative activity of the polyphenolic fraction in P. chinense (PGF) depending on the relief of ALD. The ALD mouse model was established by exposing the mice to a Lieber-DeCarli alcohol liquid diet. We found that PGF administration significantly ameliorated alcohol-induced liver injury, steatosis, oxidative stress, and inflammation in mice. Furthermore, alcohol-increased levels of the critical hepatic lipid synthesis proteins sterol regulatory element binding transcription factor (SREBP-1) and diacylglycerol o-acyltransferase 2 (DGAT2) were attenuated by PGF. Similarly, PGF inhibited the expression of the lipid transport protein very low-density lipoprotein receptor (VLDLR). Interestingly, PGF restored alcohol-inhibited expression of carnitine palmitoyltransferase 1 (CPT1) and peroxisome proliferator-activated receptor alpha (PPARα), essential fatty acid β-oxidation proteins. Mechanistic studies revealed that PGF protects against alcohol-induced hepatocyte injury and lipid deposition via the SIRT1/AMPK signaling pathway. In sum, this research clearly demonstrated the protective effects of PGF against ALD, which was mediated by activating SIRT1/AMPK pathways in hepatocytes. We provide a new theoretical basis for using P. chinense as a functional food in ALD.
Collapse
Affiliation(s)
- Hui Zhuge
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Pan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shanglei Lai
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Kaixin Chang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qinchao Ding
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wenjing Cao
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qing Song
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Songtao Li
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaobing Dou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bin Ding
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
14
|
Huang Z, Sung HK, Yan X, He S, Jin L, Wang Q, Wu X, Hsu HH, Pignalosa A, Crawford K, Sweeney G, Xu A. The adiponectin-derived peptide ALY688 protects against the development of metabolic dysfunction-associated steatohepatitis. Clin Transl Sci 2024; 17:e13760. [PMID: 38847320 PMCID: PMC11157418 DOI: 10.1111/cts.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 06/10/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is the severe form of non-alcoholic fatty liver disease which has a high potential to progress to cirrhosis and hepatocellular carcinoma, yet adequate effective therapies are lacking. Hypoadiponectinemia is causally involved in the pathogenesis of MASH. This study investigated the pharmacological effects of adiponectin replacement therapy with the adiponectin-derived peptide ALY688 (ALY688-SR) in a mouse model of MASH. Human induced pluripotent stem (iPS) cell-derived hepatocytes were used to test cytotoxicity and signaling of unmodified ALY688 in vitro. High-fat diet with low methionine and no added choline (CDAHF) was used to induce MASH and test the effects of ALY688-SR in vivo. Histological MASH activity score (NAS) and fibrosis score were determined to assess the effect of ALY688-SR. Transcriptional characterization of mice through RNA sequencing was performed to indicate potential molecular mechanisms involved. In cultured hepatocytes, ALY688 efficiently induced adiponectin-like signaling, including the AMP-activated protein kinase and p38 mitogen-activated protein kinase pathways, and did not elicit cytotoxicity. Administration of ALY688-SR in mice did not influence body weight but significantly ameliorated CDAHF-induced hepatic steatosis, inflammation, and fibrosis, therefore effectively preventing the development and progression of MASH. Mechanistically, ALY688-SR treatment markedly induced hepatic expression of genes involved in fatty acid oxidation, whereas it significantly suppressed the expression of pro-inflammatory and pro-fibrotic genes as demonstrated by transcriptomic analysis. ALY688-SR may represent an effective approach in MASH treatment. Its mode of action involves inhibition of hepatic steatosis, inflammation, and fibrosis, possibly via canonical adiponectin-mediated signaling.
Collapse
Affiliation(s)
- Zhe Huang
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of MedicineThe University of Hong KongHong KongChina
- Department of Genetics and Developmental Science, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | | | - Xingqun Yan
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of MedicineThe University of Hong KongHong KongChina
| | - Shiyu He
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of MedicineThe University of Hong KongHong KongChina
| | - Leigang Jin
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of MedicineThe University of Hong KongHong KongChina
| | - Qin Wang
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of MedicineThe University of Hong KongHong KongChina
| | - Xuerui Wu
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of MedicineThe University of Hong KongHong KongChina
| | | | | | | | - Gary Sweeney
- Department of BiologyYork UniversityTorontoOntarioCanada
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of MedicineThe University of Hong KongHong KongChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong KongChina
| |
Collapse
|
15
|
Gan J, Shi Y, Zhao R, Li D, Jin H, Wu M, Liu Z, Li X, Xu A, Li Y, Lin Z, Wu F. Adipose c-Jun NH2-terminal kinase promotes angiotensin II-induced and deoxycorticosterone acetate salt-induced hypertension and vascular dysfunction by inhibition of adiponectin production and activation of SGK1 in mice. J Hypertens 2024; 42:856-872. [PMID: 38164960 DOI: 10.1097/hjh.0000000000003649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND Adipose c-Jun NH2-terminal kinase 1/2 (JNK1/2) is a central mediator involved in the development of obesity and its complications. However, the roles of adipose JNK1/2 in hypertension remain elusive. Here we explored the role of adipose JNK1/2 in hypertension. METHODS AND RESULTS The roles of adipose JNK1/2 in hypertension were investigated by evaluating the impact of adipose JNK1/2 inactivation in both angiotensin II (Ang II)-induced and deoxycorticosterone acetate (DOCA) salt-induced hypertensive mice. Specific inactivation of JNK1/2 in adipocytes significantly alleviates Ang II-induced and DOCA salt-induced hypertension and target organ damage in mice. Interestingly, such beneficial effects are also observed in hypertensive mice after oral administration of JNK1/2 inhibitor SP600125. Mechanistically, adipose JNK1/2 acts on adipocytes to reduce the production of adiponectin (APN), then leads to promote serum and glucocorticoid-regulated kinase 1 (SGK1) phosphorylation and increases epithelial Na + channel α-subunit (ENaCα) expression in both renal cells and adipocytes, respectively, finally exacerbates Na + retention. In addition, chronic treatment of recombinant mouse APN significantly augments the beneficial effects of adipose JNK1/2 inactivation in DOCA salt-induced hypertension. By contrast, the blood pressure-lowering effects of adipose JNK1/2 inactivation are abrogated by adenovirus-mediated SGK1 overexpression in Ang II -treated adipose JNK1/2 inactivation mice. CONCLUSION Adipose JNK1/2 promotes hypertension and targets organ impairment via fine-tuning the multiorgan crosstalk among adipose tissue, kidney, and blood vessels.
Collapse
Affiliation(s)
- Jing Gan
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University
| | - Yaru Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
- Department of Pharmacy, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui
| | - Ruyi Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Dan Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
- Department of clinical pharmacy, the Forth People's Hospital of Liaocheng, Liaocheng
| | - Hua Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Maolan Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Zhen Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong
| | - Yulin Li
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Anzhen Hospital of Capital Medical University, Beijing
| | - Zhuofeng Lin
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University
- The laboratory of Animal Center, Wenzhou Medical University, Wenzhou, China
| | - Fan Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| |
Collapse
|
16
|
Zhu X, Zeng C, Yu B. White adipose tissue in metabolic associated fatty liver disease. Clin Res Hepatol Gastroenterol 2024; 48:102336. [PMID: 38604293 DOI: 10.1016/j.clinre.2024.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Metabolic associated fatty liver disease (MAFLD) is a prevalent chronic liver condition globally, currently lacking universally recognized therapeutic drugs, thereby increasing the risk of cirrhosis and hepatocellular carcinoma. Research has reported an association between white adipose tissue and MAFLD. SCOPE OF REVIEW White adipose tissue (WAT) is involved in lipid metabolism and can contribute to the progression of MAFLD by mediating insulin resistance, inflammation, exosomes, autophagy, and other processes. This review aims to elucidate the mechanisms through which WAT plays a role in the development of MAFLD. MAJOR CONCLUSIONS WAT participates in the occurrence and progression of MAFLD by mediating insulin resistance, inflammation, autophagy, and exosome secretion. Fibrosis and restricted expansion of adipose tissue can lead to the release of more free fatty acids (FFA), exacerbating the progression of MAFLD. WAT-secreted TNF-α and IL-1β, through the promotion of JNK/JKK/p38MAPK expression, interfere with insulin receptor serine and tyrosine phosphorylation, worsening insulin resistance. Adiponectin, by inhibiting the TLR-4-NF-κB pathway and suppressing M2 to M1 transformation, further inhibits the secretion of IL-6, IL-1β, and TNF-α, improving insulin resistance in MAFLD patients. Various gene expressions within WAT, such as MBPAT7, Nrf2, and Ube4A, can ameliorate insulin resistance in MAFLD patients. Autophagy-related gene Atg7 promotes the expression of fibrosis-related genes, worsening MAFLD. Non-pharmacological treatments, including diabetes-related medications and exercise, can improve MAFLD.
Collapse
Affiliation(s)
- Xiaoqin Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China.
| |
Collapse
|
17
|
Scoditti E, Sabatini S, Carli F, Gastaldelli A. Hepatic glucose metabolism in the steatotic liver. Nat Rev Gastroenterol Hepatol 2024; 21:319-334. [PMID: 38308003 DOI: 10.1038/s41575-023-00888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/04/2024]
Abstract
The liver is central in regulating glucose homeostasis, being the major contributor to endogenous glucose production and the greatest reserve of glucose as glycogen. It is both a target and regulator of the action of glucoregulatory hormones. Hepatic metabolic functions are altered in and contribute to the highly prevalent steatotic liver disease (SLD), including metabolic dysfunction-associated SLD (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). In this Review, we describe the dysregulation of hepatic glucose metabolism in MASLD and MASH and associated metabolic comorbidities, and how advances in techniques and models for the assessment of hepatic glucose fluxes in vivo have led to the identification of the mechanisms related to the alterations in glucose metabolism in MASLD and comorbidities. These fluxes can ultimately increase hepatic glucose production concomitantly with fat accumulation and alterations in the secretion and action of glucoregulatory hormones. No pharmacological treatment has yet been approved for MASLD or MASH, but some antihyperglycaemic drugs approved for treating type 2 diabetes have shown positive effects on hepatic glucose metabolism and hepatosteatosis. A deep understanding of how MASLD affects glucose metabolic fluxes and glucoregulatory hormones might assist in the early identification of at-risk individuals and the use or development of targeted therapies.
Collapse
Affiliation(s)
- Egeria Scoditti
- Institute of Clinical Physiology, National Research Council, Lecce, Italy
| | - Silvia Sabatini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| |
Collapse
|
18
|
Lei X, Peng Y, Li Y, Chen Q, Shen Z, Yin W, Lemiasheuski V, Xu S, He J. Effects of selenium nanoparticles produced by Lactobacillus acidophilus HN23 on lipid deposition in WRL68 cells. Bioorg Chem 2024; 145:107165. [PMID: 38367427 DOI: 10.1016/j.bioorg.2024.107165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/19/2024]
Abstract
Selenium is an essential trace element for most organisms, protecting cells from oxidative damage caused by free radicals and serving as an adjunctive treatment for non-alcoholic fatty liver disease (NAFLD). In this study, We used the lactic acid bacterium Lactobacillus acidophilus HN23 to reduce tetra-valent sodium selenite into particulate matter, and analyzed it through inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM), X-ray diffraction energy dispersive spectrometry (EDS), and Fourier transform infrared spectroscopy (FTIR). We found that it consisted of selenium nanoparticles (SeNPs) with a mass composition of 65.8 % zero-valent selenium and some polysaccharide and polypeptide compounds, with particle sizes ranging from 60 to 300 nm. We also detected that SeNPs were much less toxic to cells than selenite. We further used free fatty acids (FFA)-induced WRL68 fatty liver cell model to study the therapeutic effect of SeNPs on NAFLD. The results show that SeNPs are more effective than selenite in reducing lipid deposition, increasing mitochondrial membrane potential (MMP) and antioxidant capacity of WRL68 cells, which is attributed to the chemical valence state of selenium and organic composition in SeNPs. In conclusion, SeNPs produced by probiotics L. acidophilus had the potential to alleviate NAFLD by reducing hepatocyte lipid deposition and oxidative damage. This study may open a new avenue for SeNPs drug development to treat NAFLD.
Collapse
Affiliation(s)
- Xianglan Lei
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Tropical Agricultural Technology, Hainan Vocational University, Haikou 570100, China
| | - Yuxuan Peng
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Tropical Agricultural Technology, Hainan Vocational University, Haikou 570100, China; Faculty of Biology, Belarusian State University, 220030 Minsk, Belarus
| | - Yan Li
- International Sakharov Environmental Institute, Belarusian State University, 220030 Minsk, Belarus
| | - Qianyuan Chen
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenguo Shen
- College of Tropical Agricultural Technology, Hainan Vocational University, Haikou 570100, China
| | - Wen Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Indus-trial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Viktar Lemiasheuski
- International Sakharov Environmental Institute, Belarusian State University, 220030 Minsk, Belarus; All-Russian Research Institute of Physiology, Biochemistry and Nutrition of Animals - Branch of the Federal Research Center for Animal Husbandry Named After Academy Member L. K. Ernst, Institute, 249013, Borovsk, Russian Federation
| | - Siyang Xu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
19
|
Jin L, Diaz-Canestro C, Wang Y, Tse MA, Xu A. Exerkines and cardiometabolic benefits of exercise: from bench to clinic. EMBO Mol Med 2024; 16:432-444. [PMID: 38321233 PMCID: PMC10940599 DOI: 10.1038/s44321-024-00027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Regular exercise has both immediate and long-lasting benefits on cardiometabolic health, and has been recommended as a cornerstone of treatment in the management of diabetes and cardiovascular conditions. Exerkines, which are defined as humoral factors responsive to acute or chronic exercise, have emerged as important players conferring some of the multiple cardiometabolic benefits of exercise. Over the past decades, hundreds of exerkines released from skeletal muscle, heart, liver, adipose tissue, brain, and gut have been identified, and several exerkines (such as FGF21, IL-6, and adiponectin) have been exploited therapeutically as exercise mimetics for the treatment of various metabolic and cardiovascular diseases. Recent advances in metagenomics have led to the identification of gut microbiota, a so-called "hidden" metabolic organ, as an additional class of exerkines determining the efficacy of exercise in diabetes prevention, cardiac protection, and exercise performance. Furthermore, multiomics-based studies have shown the feasibility of using baseline exerkine signatures to predict individual responses to exercise with respect to metabolic and cardiorespiratory health. This review aims to explore the molecular pathways whereby exerkine networks mediate the cardiometabolic adaptations to exercise by fine-tuning inter-organ crosstalk, and discuss the roadmaps for translating exerkine-based discovery into the therapeutic application and personalized medicine in the management of the cardiometabolic disease.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Candela Diaz-Canestro
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Michael Andrew Tse
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Centre for Sports and Exercise, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
20
|
Henin G, Loumaye A, Leclercq IA, Lanthier N. Myosteatosis: Diagnosis, pathophysiology and consequences in metabolic dysfunction-associated steatotic liver disease. JHEP Rep 2024; 6:100963. [PMID: 38322420 PMCID: PMC10844870 DOI: 10.1016/j.jhepr.2023.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 02/08/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with an increased risk of multisystemic complications, including muscle changes such as sarcopenia and myosteatosis that can reciprocally affect liver function. We conducted a systematic review to highlight innovative assessment tools, pathophysiological mechanisms and metabolic consequences related to myosteatosis in MASLD, based on original articles screened from PUBMED, EMBASE and COCHRANE databases. Forty-six original manuscripts (14 pre-clinical and 32 clinical studies) were included. Microscopy (8/14) and tissue lipid extraction (8/14) are the two main assessment techniques used to measure muscle lipid content in pre-clinical studies. In clinical studies, imaging is the most used assessment tool and included CT (14/32), MRI (12/32) and ultrasound (4/32). Assessed muscles varied across studies but mainly included paravertebral (4/14 in pre-clinical; 13/32 in clinical studies) and lower limb muscles (10/14 in preclinical; 13/32 in clinical studies). Myosteatosis is already highly prevalent in non-cirrhotic stages of MASLD and correlates with disease activity when using muscle density assessed by CT. Numerous pathophysiological mechanisms were found and included: high-fat and high-fructose diet, dysregulation in fatty acid transport and ketogenesis, endocrine disorders and impaired microRNA122 pathway signalling. In this review we also uncover several potential consequences of myosteatosis in MASLD, such as insulin resistance, MASLD progression from steatosis to metabolic steatohepatitis and loss of muscle strength. In conclusion, data on myosteatosis in MASLD are already available. Screening for myosteatosis could be highly relevant in the context of MASLD, considering its correlation with MASLD activity as well as its related consequences.
Collapse
Affiliation(s)
- Guillaume Henin
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Audrey Loumaye
- Service d’Endocrinologie, Diabétologie et Nutrition, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Isabelle A. Leclercq
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Nicolas Lanthier
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
21
|
Boachie J, Zammit V, Saravanan P, Adaikalakoteswari A. Metformin Inefficiency to Lower Lipids in Vitamin B12 Deficient HepG2 Cells Is Alleviated via Adiponectin-AMPK Axis. Nutrients 2023; 15:5046. [PMID: 38140305 PMCID: PMC10745523 DOI: 10.3390/nu15245046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Background: Prolonged metformin treatment decreases vitamin B12 (B12) levels, whereas low B12 is associated with dyslipidaemia. Some studies have reported that metformin has no effect on intrahepatic triglyceride (TG) levels. Although AMP-activated protein kinase (AMPK) activation via adiponectin lowers hepatic TG content, its role in B12 deficiency and metformin has not been explored. We investigated whether low B12 impairs the beneficial effect of metformin on hepatic lipid metabolism via the AMPK-adiponectin axis. Methods: HepG2 was cultured using custom-made B12-deficient Eagle's Minimal Essential Medium (EMEM) in different B12-medium concentrations, followed by a 24-h metformin/adiponectin treatment. Gene and protein expressions and total intracellular TG were measured, and radiochemical analysis of TG synthesis and seahorse mitochondria stress assay were undertaken. Results: With low B12, total intracellular TG and synthesized radiolabelled TG were increased. Regulators of lipogenesis, cholesterol and genes regulating fatty acids (FAs; TG; and cholesterol biosynthesis were increased. FA oxidation (FAO) and mitochondrial function were decreased, with decreased pAMPKα and pACC levels. Following metformin treatment in hepatocytes with low B12, the gene and protein expression of the above targets were not alleviated. However, in the presence of adiponectin, intrahepatic lipid levels with low B12 decreased via upregulated pAMPKα and pACC levels. Again, combined adiponectin and metformin treatment ameliorated the low B12 effect and resulted in increased pAMPKα and pACC, with a subsequent reduction in lipogenesis, increased FAO and mitochondrion function. Conclusions: Adiponectin co-administration with metformin induced a higher intrahepatic lipid-lowering effect. Overall, we emphasize the potential therapeutic implications for hepatic AMPK activation via adiponectin for a clinical condition associated with B12 deficiency and metformin treatment.
Collapse
Affiliation(s)
- Joseph Boachie
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital-Walsgrave Campus, Coventry CV2 2DX, UK; (J.B.); (V.Z.); (P.S.)
| | - Victor Zammit
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital-Walsgrave Campus, Coventry CV2 2DX, UK; (J.B.); (V.Z.); (P.S.)
| | - Ponnusamy Saravanan
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital-Walsgrave Campus, Coventry CV2 2DX, UK; (J.B.); (V.Z.); (P.S.)
- Diabetes Centre, George Eliot Hospital NHS Trust, College Street, Nuneaton CV10 7DJ, UK
- Populations, Evidence and Technologies, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7HL, UK
| | - Antonysunil Adaikalakoteswari
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital-Walsgrave Campus, Coventry CV2 2DX, UK; (J.B.); (V.Z.); (P.S.)
- Department of Bioscience, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
22
|
Ruck L, Wiegand S, Kühnen P. Relevance and consequence of chronic inflammation for obesity development. Mol Cell Pediatr 2023; 10:16. [PMID: 37957462 PMCID: PMC10643747 DOI: 10.1186/s40348-023-00170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Increasing prevalence of morbid obesity accompanied by comorbidities like type 2 diabetes mellitus (T2DM) led to a demand for improving therapeutic strategies and pharmacological intervention options. Apart from genetics, inflammation processes have been hypothesized to be of importance for the development of obesity and related aspects like insulin resistance. MAIN TEXT Within this review, we provide an overview of the intricate interplay between chronic inflammation of the adipose tissue and the hypothalamus and the development of obesity. Further understanding of this relationship might improve the understanding of the underlying mechanism and may be of relevance for the establishment of new treatment strategies.
Collapse
Affiliation(s)
- Lisa Ruck
- Klinik Für Pädiatrische Endokrinologie und Diabetologie, Charité Universitätsmedizin, Berlin, Germany.
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany.
| | - Susanna Wiegand
- Abteilung Interdisziplinär, Sozial-Pädiatrisches Zentrum, Charité Universitätsmedizin, Berlin, Germany
| | - Peter Kühnen
- Klinik Für Pädiatrische Endokrinologie und Diabetologie, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
23
|
Salem GA, Mohamed AAR, Khater SI, Noreldin AE, Alosaimi M, Alansari WS, Shamlan G, Eskandrani AA, Awad MM, El-Shaer RAA, Nassan MA, Mostafa M, Khamis T. Enhancement of biochemical and genomic pathways through lycopene-loaded nano-liposomes: Alleviating insulin resistance, hepatic steatosis, and autophagy in obese rats with non-alcoholic fatty liver disease: Involvement of SMO, GLI-1, and PTCH-1 genes. Gene 2023; 883:147670. [PMID: 37516284 DOI: 10.1016/j.gene.2023.147670] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Non-alcoholic fatty liver (NAFL) is a prevalent hepatic disorder of global significance that can give rise to severe complications. This research endeavor delves into the potential of nano-liposomal formulated Lycopene (Lip-Lyco) in averting the development of obesity and insulin resistance, both of which are major underlying factors contributing to NAFL. The investigation further scrutinizes the impact of Lip-Lyco on intricate cellular pathways within the liver tissue of rats induced with NAFL, specifically focusing on the progression of steatosis and fibrosis. To establish an obesity-NAFL model, twenty rats were subjected to a high-fat diet (HFD) for a duration of twelve weeks, after which they received an oral treatment of Lip-Lyco (10mg/kg) for an additional eight weeks. Another group of sixteen non-obese rats were subjected to treatment with or without Lip-Lyco, serving as a control for comparison. Results: The rats on a hypercaloric diet had high body mass index (BMI) and insulin resistance, reflected in disturbed serum adipokines and lipid profiles. Oxidative stress, inflammation, and apoptosis were evident in hepatic tissue, and the autophagic process in hepatocytes was inhibited. Additionally, the hedgehog pathway was activated in the liver tissue of NAFL group. Lip-Lyco was found to counteract all these aspects of NAFL pathogenesis. Lip-Lyco exhibited antioxidant, anti-inflammatory, hypoglycemic, antiapoptotic, autophagy-inducing, and Hedgehog signaling inhibitory effects. This study concludes that Lip-Lyco, a natural compound, has promising therapeutic potential in combating NAFLdisease. However, more experimental and clinical studies are required to confirm the effectiveness of lycopene in treating NAFLdisease.
Collapse
Affiliation(s)
- Gamal A Salem
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| | - Safaa I Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Manal Alosaimi
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Wafa S Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Areej A Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Marwa Mahmoud Awad
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | | | - Mohamed A Nassan
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, PO Box 11099, Taif 21944, Saudi Arabia
| | - Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| |
Collapse
|
24
|
Zhao Y, Shen G, Lin X, Zhang L, Fan F, Zhang Y, Li J. Identifying the Relationship between PM 2.5 and Hyperlipidemia Using Mendelian Randomization, RNA-seq Data and Model Mice Subjected to Air Pollution. TOXICS 2023; 11:823. [PMID: 37888673 PMCID: PMC10611378 DOI: 10.3390/toxics11100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Air pollution is an important public health problem that endangers human health. However, the casual association and pathogenesis between particles < 2.5 μm (PM2.5) and hyperlipidemia remains incompletely unknown. Mendelian randomization (MR) and transcriptomic data analysis were performed, and an air pollution model using mice was constructed to investigate the association between PM2.5 and hyperlipidemia. MR analysis demonstrated that PM2.5 is associated with hyperlipidemia and the triglyceride (TG) level in the European population (IVW method of hyperlipidemia: OR: 1.0063, 95%CI: 1.0010-1.0118, p = 0.0210; IVW method of TG level: OR: 1.1004, 95%CI: 1.0067-1.2028, p = 0.0350). Mest, Adipoq, Ccl2, and Pcsk9 emerged in the differentially expressed genes of the liver and plasma of PM2.5 model mice, which might mediate atherosclerosis accelerated by PM2.5. The studied animal model shows that the Paigen Diet (PD)-fed male LDLR-/- mice had higher total cholesterol (TC), TG, and CM/VLDL cholesterol levels than the control group did after 10 times 5 mg/kg PM2.5 intranasal instillation once every three days. Our study revealed that PM2.5 had causality with hyperlipidemia, and PM2.5 might affect liver secretion, which could further regulate atherosclerosis. The lipid profile of PD-fed Familial Hypercholesterolemia (FH) model mice is more likely to be jeopardized by PM2.5 exposure.
Collapse
Affiliation(s)
- Yixue Zhao
- Division of Cardiology, Peking University First Hospital, Beijing 100034, China; (Y.Z.); (G.S.); (X.L.); (L.Z.); (F.F.); (Y.Z.)
| | - Geng Shen
- Division of Cardiology, Peking University First Hospital, Beijing 100034, China; (Y.Z.); (G.S.); (X.L.); (L.Z.); (F.F.); (Y.Z.)
| | - Xipeng Lin
- Division of Cardiology, Peking University First Hospital, Beijing 100034, China; (Y.Z.); (G.S.); (X.L.); (L.Z.); (F.F.); (Y.Z.)
| | - Long Zhang
- Division of Cardiology, Peking University First Hospital, Beijing 100034, China; (Y.Z.); (G.S.); (X.L.); (L.Z.); (F.F.); (Y.Z.)
| | - Fangfang Fan
- Division of Cardiology, Peking University First Hospital, Beijing 100034, China; (Y.Z.); (G.S.); (X.L.); (L.Z.); (F.F.); (Y.Z.)
| | - Yan Zhang
- Division of Cardiology, Peking University First Hospital, Beijing 100034, China; (Y.Z.); (G.S.); (X.L.); (L.Z.); (F.F.); (Y.Z.)
| | - Jianping Li
- Division of Cardiology, Peking University First Hospital, Beijing 100034, China; (Y.Z.); (G.S.); (X.L.); (L.Z.); (F.F.); (Y.Z.)
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| |
Collapse
|
25
|
Humbert A, Lefebvre R, Nawrot M, Caussy C, Rieusset J. Calcium signalling in hepatic metabolism: Health and diseases. Cell Calcium 2023; 114:102780. [PMID: 37506596 DOI: 10.1016/j.ceca.2023.102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
The flexibility between the wide array of hepatic functions relies on calcium (Ca2+) signalling. Indeed, Ca2+ is implicated in the control of many intracellular functions as well as intercellular communication. Thus, hepatocytes adapt their Ca2+ signalling depending on their nutritional and hormonal environment, leading to opposite cellular functions, such as glucose storage or synthesis. Interestingly, hepatic metabolic diseases, such as obesity, type 2 diabetes and non-alcoholic fatty liver diseases, are associated with impaired Ca2+ signalling. Here, we present the hepatocytes' toolkit for Ca2+ signalling, complete with regulation systems and signalling pathways activated by nutrients and hormones. We further discuss the current knowledge on the molecular mechanisms leading to alterations of Ca2+ signalling in hepatic metabolic diseases, and review the literature on the clinical impact of Ca2+-targeting therapeutics.
Collapse
Affiliation(s)
- Alexandre Humbert
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Rémy Lefebvre
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Margaux Nawrot
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Cyrielle Caussy
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France; Département Endocrinologie, Diabète et Nutrition, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France
| | - Jennifer Rieusset
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France.
| |
Collapse
|
26
|
He J, Li X. Relationship between chronic obstructive pulmonary disease and adiponectin concentrations: An updated meta-analysis and single-cell RNA sequencing. Medicine (Baltimore) 2023; 102:e34825. [PMID: 37603523 PMCID: PMC10443756 DOI: 10.1097/md.0000000000034825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Adipose tissue, being an organ of the endocrine system, can influence the severity of chronic obstructive pulmonary disease (COPD). Even though several inflammatory markers can potentially significantly influence lung function, the precise function of adipokines, like adiponectin, in COPD is still disputed. To analyze the association of COPD with adiponectin concentrations, a meta-analysis of the most recent literature and single-cell sequencing data were conducted. METHODS Studies in Embase, PubMed, Cochrane Library, and Web of Science were browsed to obtain relevant data, which were then assessed with the aid of R 4.1.3 and STATA 11.0 software. Standardized mean differences and correlation coefficients aided the analysis of effect values. Moreover, a single-cell sequencing GSE136831 dataset was retrieved to ascertain the mRNA expression of adiponectin gene (ADIPOQ) in the lung tissue of COPD patients to confirm the difference in the expression of adiponectin between the case and control groups. RESULTS This meta-analysis comprised 18 publications involving 24 studies. The overall combined data established the concentration of plasma/serum adiponectin as significantly higher in patients with COPD compared to healthy subjects. Subgroup analyses based on disease status, specimen type, ethnicity, study design method, measurement method, and age of COPD patients demonstrated that all patients with COPD had elevated levels of adiponectin compared to healthy controls. When subgroup analysis was performed for gender alone, the results depicted that male COPD patients had significantly higher adiponectin than healthy males, while female patients of COPD had elevated adiponectin compared to healthy females. Furthermore, it was found that plasma/serum adiponectin appeared to be positively correlated with tumor necrosis factor-α, and it was negatively correlated with FEV1% and FEV1/FVC. The results of single-cell sequencing data suggested that ADIPOQ mRNA was mainly expressed in alveolar epithelial cells, and the level of ADIPOQ mRNA was higher in lung tissues of patients with COPD than in lung tissues of healthy subjects. CONCLUSION This meta-analysis suggests that the levels of plasma/serum adiponectin are significantly elevated in patients with COPD versus controls. Tumor necrosis factor-α, FEV1/FVC, and FEV1% may all be associated with the concentrations of adiponectin.
Collapse
Affiliation(s)
- Jie He
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Key Laboratory of Geriatric Respiratory Diseases of Sichuan Higher Education Institutes, Chengdu, China
| | - Xuemei Li
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- Neurosurgery department, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
27
|
Seitz HK, Moreira B, Neuman MG. Pathogenesis of Alcoholic Fatty Liver a Narrative Review. Life (Basel) 2023; 13:1662. [PMID: 37629519 PMCID: PMC10455719 DOI: 10.3390/life13081662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Alcohol effect hepatic lipid metabolism through various mechanisms, leading synergistically to an accumulation of fatty acids (FA) and triglycerides. Obesity, as well as dietary fat (saturated fatty acids (FA) versus poly-unsaturated fatty acids (PUFA)) may modulate the hepatic fat. Alcohol inhibits adenosine monophosphate activated kinase (AMPK). AMPK activates peroxisome proliferator activated receptor a (PPARα) and leads to a decreased activation of sterol regulatory element binding protein 1c (SRABP1c). The inhibition of AMPK, and thus of PPARα, results in an inhibition of FA oxidation. This ß-oxidation is further reduced due to mitochondrial damage induced through cytochrome P4502E1 (CYP2E1)-driven oxidative stress. Furthermore, the synthesis of FAs is stimulated through an activation of SHREP1. In addition, alcohol consumption leads to a reduced production of adiponectin in adipocytes due to oxidative stress and to an increased mobilization of FAs from adipose tissue and from the gut as chylomicrons. On the other side, the secretion of FAs via very-low-density lipoproteins (VLDL) from the liver is inhibited by alcohol. Alcohol also affects signal pathways such as early growth response 1 (Egr-1) associated with the expression of tumour necrosis factor α (TNF α), and the mammalian target of rapamycin (mTOR) a key regulator of autophagy. Both have influence the pathogenesis of alcoholic fatty liver. Alcohol-induced gut dysbiosis contributes to the severity of ALD by increasing the metabolism of ethanol in the gut and promoting intestinal dysfunction. Moreover, pathogen-associated molecular patterns (PAMPS) via specific Toll-like receptor (TLR) bacterial overgrowth leads to the translocation of bacteria. Endotoxins and toxic ethanol metabolites enter the enterohepatic circulation, reaching the liver and inducing the activation of the nuclear factor kappa-B (NFκB) pathway. Pro-inflammatory cytokines released in the process contribute to inflammation and fibrosis. In addition, cellular apoptosis is inhibited in favour of necrosis.
Collapse
Affiliation(s)
- Helmut K. Seitz
- Centre of Liver and Alcohol Associated Diseases, Ethianum Clinic, Faculty of Medicine, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Bernardo Moreira
- Centre of Liver and Alcohol Associated Diseases, Ethianum Clinic, Faculty of Medicine, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Manuela G. Neuman
- In Vitro Drug Safety and Biotechnology, Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Banting Institute, Toronto, ON M5G 1L5, Canada;
| |
Collapse
|
28
|
Nevola R, Tortorella G, Rosato V, Rinaldi L, Imbriani S, Perillo P, Mastrocinque D, La Montagna M, Russo A, Di Lorenzo G, Alfano M, Rocco M, Ricozzi C, Gjeloshi K, Sasso FC, Marfella R, Marrone A, Kondili LA, Esposito N, Claar E, Cozzolino D. Gender Differences in the Pathogenesis and Risk Factors of Hepatocellular Carcinoma. BIOLOGY 2023; 12:984. [PMID: 37508414 PMCID: PMC10376683 DOI: 10.3390/biology12070984] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Several chronic liver diseases are characterized by a clear gender disparity. Among them, hepatocellular carcinoma (HCC) shows significantly higher incidence rates in men than in women. The different epidemiological distribution of risk factors for liver disease and HCC only partially accounts for these gender differences. In fact, the liver is an organ with recognized sexual dysmorphism and is extremely sensitive to the action of androgens and estrogens. Sex hormones act by modulating the risk of developing HCC and influencing its aggressiveness, response to treatments, and prognosis. Furthermore, androgens and estrogens are able to modulate the action of other factors and cofactors of liver damage (e.g., chronic HBV infection, obesity), significantly influencing their carcinogenic power. The purpose of this review is to examine the factors related to the different gender distribution in the incidence of HCC as well as the pathophysiological mechanisms involved, with particular reference to the central role played by sex hormones.
Collapse
Affiliation(s)
- Riccardo Nevola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Valerio Rosato
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | | | - Marco La Montagna
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Antonio Russo
- Department of Mental Health and Public Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giovanni Di Lorenzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carmen Ricozzi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Klodian Gjeloshi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | | | - Ernesto Claar
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Domenico Cozzolino
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
29
|
Sakai E, Imaizumi T, Suzuki R, Taracena-Gándara M, Fujimoto T, Sakurai F, Mizuguchi H. miR-27b targets MAIP1 to mediate lipid accumulation in cultured human and mouse hepatic cells. Commun Biol 2023; 6:669. [PMID: 37355744 PMCID: PMC10290684 DOI: 10.1038/s42003-023-05049-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
Non-alcoholic liver disease (NAFLD) is a condition caused by excessive fat accumulation in the liver and developed via multiple pathways. miR-27b has been suggested to play crucial roles in the development of NAFLD, assuming via targeting genes involved in lipid catabolism and anabolism. However, other pathways regulated by miR-27b are largely unknown. Here we show that lipid accumulation was induced in miR-27b-transfected human and mouse hepatic cells and that knockdowns of three miR-27b-target genes, β-1,4-galactosyltransferase 3 (B4GALT3), matrix AAA peptidase interacting protein 1 (MAIP1) and PH domain and leucine rich repeat protein phosphatase 2 (PHLPP2), induced lipid accumulation. We also show that B4GALT3 and MAIP1 were direct targets of miR-27b and overexpression of MAIP1 ameliorated miR-27b-induced lipid accumulation. In addition, we show that hepatic Maip1 expression declined in mice fed a high-fat diet, suggesting the involvement of decreased Maip1 expression in the condition of fatty liver. Overall, we identified MAIP1/miR-27b axis as a mediator of hepatic lipid accumulation, a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Eiko Sakai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsutomu Imaizumi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ruruka Suzuki
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Marcos Taracena-Gándara
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshiki Fujimoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito, Asagi, Ibaraki, Osaka, 567-0085, Japan.
- Global Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
30
|
Shin YJ, Bae JM, Cho HR, Mahoro P, Kim SH, Han MJ, Bae MJ. Antiobesity Effects of Lactobacillus paracasei Subsp. paracasei, L. casei 431 on High-Fat Diet-Induced Obese Rats. J Med Food 2023. [PMID: 37311176 DOI: 10.1089/jmf.2022.k.0144] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Obesity is currently regarded as a global concern, and the key objectives of the global health strategy include its prevention and control. Probiotic supplementation can help achieve these objectives. This study aimed to assess whether a probiotic strain Lactobacillus paracasei ssp. paracasei, Lactobacillus casei 431 (henceforth, L. casei 431) possesses antiobesogenic properties. High-fat diet-induced obese Sprague-Dawley rats were treated with L. casei 431 for 10 weeks, and the outcomes were compared with those of rats treated with the antiobesity medication orlistat. Body weights, epididymal fat, and tissues from mice were assessed. Furthermore, serological and histological analyses were performed. Epididymal fat accumulation was significantly reduced in groups administered L. casei 431 and orlistat. Furthermore, L. casei 431 and orlistat treatments lowered serum alanine transaminase, aspartate aminotransferase, and triglyceride (TG) levels. Hematoxylin and eosin staining of the liver and epididymal adipose tissues showed that the L. casei 431-treated groups exhibited reduced lipid buildup and adipocyte size. Furthermore, sterol regulatory element-binding protein 1c, adipose TG lipase, and lipoprotein lipase messenger RNA (mRNA) levels were upregulated, leading to lipid oxidation and degradation, in L. casei 431-supplemented groups. Furthermore, carnitine palmitoyltransferase 1, a major factor in lipolysis, was consistently upregulated at the protein level after L. casei 431 administration. Collectively, these results demonstrate the potential of L. casei 431 in alleviating obesity in rats through optimizing lipid metabolism and some related biomarkers.
Collapse
Affiliation(s)
- Yun Jeong Shin
- Functional Food Evaluation Team, Technical Assistance Department, The Food Industry Promotional Agency of Korea, Iksan, Korea
| | - Jung-Min Bae
- Functional Food Evaluation Team, Technical Assistance Department, The Food Industry Promotional Agency of Korea, Iksan, Korea
| | - Hye-Rin Cho
- Functional Food Evaluation Team, Technical Assistance Department, The Food Industry Promotional Agency of Korea, Iksan, Korea
| | - Patience Mahoro
- Functional Food Evaluation Team, Technical Assistance Department, The Food Industry Promotional Agency of Korea, Iksan, Korea
- Department of Food Science, Human Nutrition and Obesity Research Center, Jeonbuk National University, Jeonju, Korea
| | | | | | - Min-Jung Bae
- Functional Food Evaluation Team, Technical Assistance Department, The Food Industry Promotional Agency of Korea, Iksan, Korea
| |
Collapse
|
31
|
Torosian K, Lal E, Kavanaugh A, Loomba R, Ajmera V, Guma M. Psoriatic disease and non-alcoholic fatty liver disease shared pathogenesis review. Semin Arthritis Rheum 2023; 59:152165. [PMID: 36716599 PMCID: PMC9992353 DOI: 10.1016/j.semarthrit.2023.152165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/03/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023]
Abstract
Psoriatic disease (PD) and non-alcoholic fatty liver disease (NAFLD) potentially share disease pathways given the numerous inflammatory pathways involved in both diseases and a higher prevalence of NAFLD in PD patients. Metabolic syndrome and obesity are a key link between the two diseases, but even when controlling for this, associations between both diseases are still seen. Therapeutics that impact metabolic or inflammatory pathways may be impactful in both PD and NAFLD. In this review, we describe common inflammatory pathways contributing to both PD and NAFLD and critically review the potential impact of treatments for and on both diseases.
Collapse
Affiliation(s)
- Kelly Torosian
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Esha Lal
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Arthur Kavanaugh
- Department of Rheumatology, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; NAFLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, USA; Division of Epidemiology, Department of Family and Preventative Medicine, University of California at San Diego, La Jolla, USA
| | - Veeral Ajmera
- Division of Gastroenterology and Hepatology, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; NAFLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, USA.
| | - Monica Guma
- Department of Rheumatology, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain; San Diego VA Healthcare Service, San Diego, CA, 92161, USA.
| |
Collapse
|
32
|
Yu Q, Dai Q, Huang Z, Li C, Yan L, Fu X, Wang Q, Zhang Y, Cai L, Yang Z, Xiao R. Microfat exerts an anti-fibrotic effect on human hypertrophic scar via fetuin-A/ETV4 axis. J Transl Med 2023; 21:231. [PMID: 37004048 PMCID: PMC10064544 DOI: 10.1186/s12967-023-04065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Hypertrophic scar is a fibrotic disease following wound healing and is characterized by excessive extracellular matrix deposition. Autologous microfat grafting proves an effective strategy for the treatment thereof as it could improve the texture of scars and relieve relevant symptoms. This study aims to explore the potential mechanisms underlying the anti-fibrotic effect of microfat on hypertrophic scars. METHODS In this study, we injected microfat into transplanted hypertrophic scars in mouse models and investigated the subsequent histological changes and differential expression of mRNAs therein. As for in vitro studies, we co-cultured microfat and hypertrophic scar fibroblasts (HSFs) and analyzed molecular profile changes in HSFs co-cultured with microfat by RNA sequencing. Moreover, to identify the key transcription factors (TFs) which might be responsible for the anti-fibrotic function of microfat, we screened the differentially expressed TFs and transfected HSFs with lentivirus to overexpress or knockdown certain differentially expressed TFs. Furthermore, comparative secretome analyses were conducted to investigate the proteins secreted by co-cultured microfat; changes in gene expression of HSFs were examined after the administration of the potential anti-fibrotic protein. Finally, the relationship between the key TF in HSFs and the microfat-secreted anti-fibrotic adipokine was analyzed. RESULTS The anti-fibrotic effect of microfat was confirmed by in vivo transplanted hypertrophic scar models, as the number of α-SMA-positive myofibroblasts was decreased and the expression of fibrosis-related genes downregulated. Co-cultured microfat suppressed the extracellular matrix production of HSFs in in vitro experiment, and the transcription factor ETV4 was primarily differentially expressed in HSFs when compared with normal skin fibroblasts. Overexpression of ETV4 significantly decreased the expression of fibrosis-related genes in HSFs at both mRNA and protein levels. Fetuin-A secreted by microfat could also downregulate the expression of fibrosis-related genes in HSFs, partially through upregulating ETV4 expression. CONCLUSIONS Our results demonstrated that transcription factor ETV4 is essential for the anti-fibrotic effect of microfat on hypertrophic scars, and that fetuin-A secreted by microfat could suppress the fibrotic characteristic of HSFs through upregulating ETV4 expression. Microfat wields an alleviative influence over hypertrophic scars via fetuin-A/ETV4 axis.
Collapse
Affiliation(s)
- Qian Yu
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qiang Dai
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Beijing, People's Republic of China
| | - Zonglin Huang
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chen Li
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Li Yan
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xin Fu
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qian Wang
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yi Zhang
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Lei Cai
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China.
| | - Zhigang Yang
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China.
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | - Ran Xiao
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China.
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
33
|
Pan J, Ding Y, Sun Y, Li Q, Wei T, Gu Y, Zhou Y, Pang N, Pei L, Ma S, Gao M, Xiao Y, Hu D, Wu F, Yang L. Associations between Adipokines and Metabolic Dysfunction-Associated Fatty Liver Disease Using Three Different Diagnostic Criteria. J Clin Med 2023; 12:jcm12062126. [PMID: 36983127 PMCID: PMC10051925 DOI: 10.3390/jcm12062126] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Background: A panel of experts proposed a new definition of metabolic dysfunction-associated fatty liver disease (MAFLD) in 2020. To date, the associations between adipokines, such as adiponectin, adipsin, and visfatin and MAFLD remain unclear. Therefore, we aimed to evaluate the associations between each of these three adipokines and MAFLD using different diagnostic criteria. Methods: In total, 221 participants were included in our study based on medical examination. Detailed questionnaire information, physical examination, abdominal ultrasound, and blood-biochemical-test indexes were collected. The levels of adipokines were tested by using an enzyme immunoassay. Logistic regression models were used to assess the associations of the adipokines with MAFLD. Results: In total, 122 of the participants were diagnosed with MAFLD. Higher levels of adipsin and lower levels of adiponectin were found in the MAFLD group than in the non-MAFLD group (all p < 0.05). According to the logistic regression analysis, the ORs were 0.11 (95% CI: 0.05–0.23) for adiponectin, 4.46 (95% CI: 2.19–9.12) for adipsin, and 0.51 (95% CI: 0.27–0.99) for visfatin when comparing the highest tertile with the lowest tertile (all p-trend < 0.05). The inverse association between adiponectin and MAFLD was strongest when T2DM was used as the diagnostic criterion alone, and the positive association between adipsin and MAFLD was strongest when BMI was used as the diagnostic criterion alone. There was no significant association between visfatin and MAFLD, regardless of whether each of BMI, T2DM, or metabolic dysregulation (MD) was used as the diagnostic criterion for MAFLD alone. Conclusion: Adipsin levels were positively associated with MAFLD and adiponectin levels were inversely associated with MAFLD. The strength of these associations varied according to the different diagnostic criteria for MAFLD.
Collapse
Affiliation(s)
- Jie Pan
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yijie Ding
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yan Sun
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiuyan Li
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Tianyi Wei
- Department of Obstetrics, The First Women and Children’s Hospital of Huizhou, Huizhou 516000, China
| | - Yingying Gu
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yujia Zhou
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Nengzhi Pang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lei Pei
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Sixi Ma
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengqi Gao
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Xiao
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - De Hu
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Feilong Wu
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lili Yang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Correspondence: ; Tel.: +86-20-87330625
| |
Collapse
|
34
|
Iwaki M, Kobayashi T, Nogami A, Saito S, Nakajima A, Yoneda M. Impact of Sarcopenia on Non-Alcoholic Fatty Liver Disease. Nutrients 2023; 15:nu15040891. [PMID: 36839249 PMCID: PMC9965462 DOI: 10.3390/nu15040891] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
With the increasing incidence of non-alcoholic fatty liver disease (NAFLD) and the aging of the population, sarcopenia is attracting attention as one of the pathological conditions involved in the development and progression of NAFLD. In NAFLD, sarcopenia is closely associated with insulin resistance and results from the atrophy of skeletal muscle, an insulin target organ. In addition, inflammatory cytokines that promote skeletal muscle protein breakdown, low adiponectin levels leading to decreased insulin sensitivity, and hyperleptinemia are also involved in NAFLD pathogenesis. The presence of sarcopenia is a prognostic factor and increases the risk of mortality in patients with cirrhosis and post-treatment liver cancer. Sarcopenia, the presence of which mainly occurs due to decreased muscle mass, combined with increased visceral fat, can lead to sarcopenia-associated obesity, which increases the risk of NASH, liver fibrosis, and cardiovascular disease. In order to treat sarcopenia, it is necessary to properly evaluate sarcopenia status. Patients with high BMI, as in sarcopenic obesity, may improve with caloric restriction. However, inadequate oral intake may lead to further loss of muscle mass. Aerobic and resistance exercise should also be used appropriately.
Collapse
|
35
|
Relationship of Helicobacter pylori Infection with Nonalcoholic Fatty Liver Disease: A Meta-Analysis. Can J Gastroenterol Hepatol 2023; 2023:5521239. [PMID: 36742347 PMCID: PMC9891807 DOI: 10.1155/2023/5521239] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 01/27/2023] Open
Abstract
Background and Aims Helicobacter pylori (H. pylori) and nonalcoholic fatty liver disease (NAFLD) have become increasingly recognized, both of which affect human health globally. The association of H. pylori infection with NAFLD remains unclear. Methods PubMed, EMBASE, and Cochrane Library databases were searched. Only a random-effects model was used. Odds ratios (ORs) and risk ratios (RRs) with 95% confidence intervals (CIs) were calculated for the combined estimates of raw data. Adjusted ORs (aORs) and hazard ratios (aHRs) with 95% CIs were calculated for the combined estimates of data adjusted for confounders. Results Thirty-four studies with 218573 participants were included. Based on unadjusted data from 26 cross-sectional studies and 3 case-control studies, H. pylori infection was significantly associated with the presence of NAFLD (OR = 1.26, 95% CI = 1.17-1.36, P < 0.001). Based on adjusted data from 15 cross-sectional studies and 1 case-control study, H. pylori infection was significantly associated with the presence of NAFLD (aOR = 1.25, 95% CI = 1.08-1.44, P < 0.001). Compared with control subjects without NAFLD, patients with moderate (OR = 1.67, 95% CI = 1.17-2.39, P = 0.005) and severe (OR = 1.71, 95% CI = 1.30-2.24, P < 0.001) NAFLD, but not those with mild NAFLD (OR = 1.14, 95% CI = 0.9-1.45, P = 0.286), had significantly higher proportions of H. pylori infection. The association of H. pylori infection with the occurrence of NAFLD was statistically significant based on adjusted data from 3 cohort studies (aHR = 1.18, 95% CI = 1.05-1.34, P = 0.007), but not based on unadjusted data from 3 cohort studies (RR = 1.41, 95% CI = 0.80-2.48, P = 0.237). Conclusion H. pylori infection is associated with NAFLD, especially moderate and severe NAFLD. The impact of H. pylori eradication on the prevention of NAFLD should be further explored.
Collapse
|
36
|
Wu X, Fan X, Miyata T, Kim A, Cajigas-Du Ross CK, Ray S, Huang E, Taiwo M, Arya R, Wu J, Nagy LE. Recent Advances in Understanding of Pathogenesis of Alcohol-Associated Liver Disease. ANNUAL REVIEW OF PATHOLOGY 2023; 18:411-438. [PMID: 36270295 PMCID: PMC10060166 DOI: 10.1146/annurev-pathmechdis-031521-030435] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alcohol-associated liver disease (ALD) is one of the major diseases arising from chronic alcohol consumption and is one of the most common causes of liver-related morbidity and mortality. ALD includes asymptomatic liver steatosis, fibrosis, cirrhosis, and alcohol-associated hepatitis and its complications. The progression of ALD involves complex cell-cell and organ-organ interactions. We focus on the impact of alcohol on dysregulation of homeostatic mechanisms and regulation of injury and repair in the liver. In particular, we discuss recent advances in understanding the disruption of balance between programmed cell death and prosurvival pathways, such as autophagy and membrane trafficking, in the pathogenesis of ALD. We also summarize current understanding of innate immune responses, liver sinusoidal endothelial cell dysfunction and hepatic stellate cell activation, and gut-liver and adipose-liver cross talk in response to ethanol. In addition,we describe the current potential therapeutic targets and clinical trials aimed at alleviating hepatocyte injury, reducing inflammatory responses, and targeting gut microbiota, for the treatment of ALD.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Xiude Fan
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Tatsunori Miyata
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Adam Kim
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Christina K Cajigas-Du Ross
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Semanti Ray
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Emily Huang
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Moyinoluwa Taiwo
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Rakesh Arya
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Jianguo Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Laura E Nagy
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
37
|
Moyce Gruber BL, Dolinsky VW. The Role of Adiponectin during Pregnancy and Gestational Diabetes. Life (Basel) 2023; 13:301. [PMID: 36836658 PMCID: PMC9958871 DOI: 10.3390/life13020301] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Pregnancy involves a range of metabolic adaptations to supply adequate energy for fetal growth and development. Gestational diabetes (GDM) is defined as hyperglycemia with first onset during pregnancy. GDM is a recognized risk factor for both pregnancy complications and long-term maternal and offspring risk of cardiometabolic disease development. While pregnancy changes maternal metabolism, GDM can be viewed as a maladaptation by maternal systems to pregnancy, which may include mechanisms such as insufficient insulin secretion, dysregulated hepatic glucose output, mitochondrial dysfunction and lipotoxicity. Adiponectin is an adipose-tissue-derived adipokine that circulates in the body and regulates a diverse range of physiologic mechanisms including energy metabolism and insulin sensitivity. In pregnant women, circulating adiponectin levels decrease correspondingly with insulin sensitivity, and adiponectin levels are low in GDM. In this review, we summarize the current state of knowledge about metabolic adaptations to pregnancy and the role of adiponectin in these processes, with a focus on GDM. Recent studies from rodent model systems have clarified that adiponectin deficiency during pregnancy contributes to GDM development. The upregulation of adiponectin alleviates hyperglycemia in pregnant mice, although much remains to be understood for adiponectin to be utilized clinically for GDM.
Collapse
Affiliation(s)
- Brittany L. Moyce Gruber
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Vernon W. Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| |
Collapse
|
38
|
Melatonin alleviates alcoholic liver disease via EGFR-BRG1-TERT axis regulation. Acta Pharm Sin B 2023; 13:100-112. [PMID: 36815038 PMCID: PMC9939303 DOI: 10.1016/j.apsb.2022.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic alcohol consumption causes liver steatosis, cell death, and inflammation. Melatonin (MLT) is reported to alleviate alcoholic liver disease (ALD)-induced injury. However, its direct regulating targets in hepatocytes are not fully understood. In the current study, a cell-based screening model and a chronic ethanol-fed mice ALD model were used to test the protective mechanisms of MLT. MLT ameliorated ethanol-induced hepatocyte injury in both cell and animal models (optimal doses of 10 μmol/L and 5 mg/kg, respectively), including lowered liver steatosis, cell death, and inflammation. RNA-seq analysis and loss-of-function studies in AML-12 cells revealed that telomerase reverse transcriptase (TERT) was a key downstream effector of MLT. Biophysical assay found that epidermal growth factor receptor (EGFR) on the hepatocyte surface was a direct binding and regulating target of MLT. Liver specific knock-down of Tert or Egfr in the ALD mice model impaired MLT-mediated liver protection, partly through the regulation of nuclear brahma-related gene-1 (BRG1). Long-term administration (90 days) of MLT in healthy mice did not cause evident adverse effect. In conclusion, MLT is an efficacious and safe agent for ALD alleviation. Its direct regulating target in hepatocytes is EGFR and downstream BRG1-TERT axis. MLT might be used as a complimentary agent for alcoholics.
Collapse
|
39
|
Sahu B, Bal NC. Adipokines from white adipose tissue in regulation of whole body energy homeostasis. Biochimie 2023; 204:92-107. [PMID: 36084909 DOI: 10.1016/j.biochi.2022.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
Diseases originating from altered energy homeostasis including obesity, and type 2 diabetes are rapidly increasing worldwide. Research in the last few decades on animal models and humans demonstrates that the white adipose tissue (WAT) is critical for energy balance and more than just an energy storage site. WAT orchestrates the whole-body metabolism through inter-organ crosstalk primarily mediated by cytokines named "Adipokines". The adipokines influence metabolism and fuel selection of the skeletal muscle and liver thereby fine-tuning the load on WAT itself in physiological conditions like starvation, exercise and cold. In addition, adipokine secretion is influenced by various pathological conditions like obesity, inflammation and diabetes. In this review, we have surveyed the current state of knowledge on important adipokines and their significance in regulating energy balance and metabolic diseases. Furthermore, we have summarized the interplay of pro-inflammatory and anti-inflammatory adipokines in the modulation of pathological conditions.
Collapse
Affiliation(s)
- Bijayashree Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
40
|
Hindsberger B, Lindegaard B, Rabøl Andersen L, Bastrup Israelsen S, Pedersen L, Bela Szecsi P, Benfield T. Circulating Adiponectin Levels Are Inversely Associated with Mortality and Respiratory Failure in Patients Hospitalized with COVID-19. Int J Endocrinol 2023; 2023:4427873. [PMID: 36960389 PMCID: PMC10030212 DOI: 10.1155/2023/4427873] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Chronic low-grade inflammation associated with a dysregulated adipose tissue might contribute to amplifying the inflammatory response in severe COVID-19. The aim of this study was to examine the association between levels of circulating leptin and adiponectin and the severity and mortality of COVID-19. METHODS Serum levels of leptin and adiponectin were determined at admission in 123 individuals with confirmed COVID-19 and their association with 90-day mortality and respiratory failure was analyzed by logistic regression analysis and expressed as odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS The median values of circulating leptin and adiponectin were 7.2 ng/mL (IQR 3.8-13.4) and 9.0 μg/mL (IQR 5.7-14.6), respectively. After adjustment for age, sex, body mass index, hypertension, diabetes, chronic obstructive pulmonary disease, and oxygen saturation at admission, a doubling of circulating adiponectin was associated with a 38% reduction in odds of 90-day mortality (OR 0.62, CI 0.43-0.89) and a 40% reduction in odds of respiratory failure (OR 0.60, CI 0.42-0.86). The association tended to be strongest in individuals below the median age of 72 years. Circulating leptin was not associated with outcomes. CONCLUSIONS Circulating adiponectin at admission was inversely associated with mortality and respiratory failure in SARS-CoV-2 infection. Further studies are needed to elucidate how exactly adipokines, especially adiponectin, are linked to the progression and prognosis of COVID-19.
Collapse
Affiliation(s)
- Bettina Hindsberger
- Center of Clinical Research and Disruption of Infectious Diseases (CREDID), Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - Birgitte Lindegaard
- Department of Infectious Diseases, Copenhagen University Hospital–North Zealand, 3400 Hilleroed, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Liv Rabøl Andersen
- Center of Clinical Research and Disruption of Infectious Diseases (CREDID), Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - Simone Bastrup Israelsen
- Center of Clinical Research and Disruption of Infectious Diseases (CREDID), Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - Lise Pedersen
- Department of Clinical Biochemistry, Holbaek Hospital, 4300 Holbaek, Denmark
| | - Pal Bela Szecsi
- Department of Clinical Biochemistry, Holbaek Hospital, 4300 Holbaek, Denmark
| | - Thomas Benfield
- Center of Clinical Research and Disruption of Infectious Diseases (CREDID), Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre, 2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
41
|
Shi H, Prough RA, McClain CJ, Song M. Different Types of Dietary Fat and Fructose Interactions Result in Distinct Metabolic Phenotypes in Male Mice. J Nutr Biochem 2023; 111:109189. [PMID: 36272691 DOI: 10.1016/j.jnutbio.2022.109189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
Fat and fructose are the two major components over-represented in the Western diet. The aim of this study was to determine the combined effects of different types of dietary fat and fructose on the development of nonalcoholic fatty liver disease (NAFLD) in a murine model. Eight-week-old male C57BL/6J mice were fed with high-fat diet enriched with saturated fat (HSF), or omega-6 polyunsaturated fat (n6HUSF), or omega-3 polyunsaturated fat (n3HUSF) with 42% of calories derived from the fat. Fructose supplementation was given via 10% fructose (w/v) in the drinking water ad libitum for 20 weeks. While both HSF and n6HUSF fed mice developed obesity, HSF fed mice exhibited severe hepatic steatosis associated with hepatomegaly and liver injury. Fructose feeding promotes the development of liver fibrosis in HSF fed mice. n6HUSF fed mice were characterized with moderate hepatic steatosis, accompanied with hypertriglyceridemia and hyperlipidemia. Notably, fructose supplementation led to remarkable glucose intolerance in n6HUSF fed mice compared to controls. Hepatic lipidomic analysis revealed that the total saturated fatty acids and total monounsaturated fatty acids were significantly increased by fructose in the free fatty acid pool in HSF fed mice. Moreover, fructose supplementation increased hepatic and plasma cholesterol levels in the HSF fed mice. Our data suggest that excess energy from HSF intake results in fat storage in the liver, likely due to impaired triglyceride secretion; whereas excess energy from n6HUSF diet is stored in the periphery. Both effects are exacerbated by fructose supplementation. n3HUSF is beneficial, even consumed with fructose.
Collapse
Affiliation(s)
- Hongxue Shi
- Department of Pharmacology and Toxicology; Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Russell A Prough
- Hepatobiology and Toxicology Center; Department of Biochemistry and Molecular Genetics
| | - Craig J McClain
- Department of Pharmacology and Toxicology; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition; Hepatobiology and Toxicology Center; University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA; Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| | - Ming Song
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition; Hepatobiology and Toxicology Center.
| |
Collapse
|
42
|
Lee KC, Wu PS, Lin HC. Pathogenesis and treatment of non-alcoholic steatohepatitis and its fibrosis. Clin Mol Hepatol 2023; 29:77-98. [PMID: 36226471 PMCID: PMC9845678 DOI: 10.3350/cmh.2022.0237] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/11/2022] [Indexed: 02/02/2023] Open
Abstract
The initial presentation of non-alcoholic steatohepatitis (NASH) is hepatic steatosis. The dysfunction of lipid metabolism within hepatocytes caused by genetic factors, diet, and insulin resistance causes lipid accumulation. Lipotoxicity, oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum stress would further contribute to hepatocyte injury and death, leading to inflammation and immune dysfunction in the liver. During the healing process, the accumulation of an excessive amount of fibrosis might occur while healing. During the development of NASH and liver fibrosis, the gut-liver axis, adipose-liver axis, and renin-angiotensin system (RAS) may be dysregulated and impaired. Translocation of bacteria or its end-products entering the liver could activate hepatocytes, Kupffer cells, and hepatic stellate cells, exacerbating hepatic steatosis, inflammation, and fibrosis. Bile acids regulate glucose and lipid metabolism through Farnesoid X receptors in the liver and intestine. Increased adipose tissue-derived non-esterified fatty acids would aggravate hepatic steatosis. Increased leptin also plays a role in hepatic fibrogenesis, and decreased adiponectin may contribute to hepatic insulin resistance. Moreover, dysregulation of peroxisome proliferator-activated receptors in the liver, adipose, and muscle tissues may impair lipid metabolism. In addition, the RAS may contribute to hepatic fatty acid metabolism, inflammation, and fibrosis. The treatment includes lifestyle modification, pharmacological therapy, and non-pharmacological therapy. Currently, weight reduction by lifestyle modification or surgery is the most effective therapy. However, vitamin E, pioglitazone, and obeticholic acid have also been suggested. In this review, we will introduce some new clinical trials and experimental therapies for the treatment of NASH and related fibrosis.
Collapse
Affiliation(s)
- Kuei-Chuan Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan,Corresponding author : Kuei-Chuan Lee Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei 11217, Taiwan Tel: +886 2 2871 2121, Fax: +886 2 2873 9318, E-mail:
| | - Pei-Shan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan,Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan,Corresponding author : Kuei-Chuan Lee Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei 11217, Taiwan Tel: +886 2 2871 2121, Fax: +886 2 2873 9318, E-mail:
| |
Collapse
|
43
|
Xu Y, Zhu H, Li W, Chen D, Xu Y, Xu A, Ye D. Targeting adipokines in polycystic ovary syndrome and related metabolic disorders: from experimental insights to clinical studies. Pharmacol Ther 2022; 240:108284. [PMID: 36162728 DOI: 10.1016/j.pharmthera.2022.108284] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022]
Abstract
Polycystic ovary syndrome (PCOS) affects approximately 15% of women of reproductive age worldwide. It is the most prevalent endocrine disorder with marked risks for female infertility, type 2 diabetes mellitus (T2DM), psychiatric disorders and gynecological cancers. Although the pathophysiology of PCOS remains largely elusive, growing evidence suggests a close link with obesity and its related metabolic disorders. As a highly active endocrine cell population, hypertrophic adipocytes in obesity have disturbed production of a vast array of adipokines, biologically active peptides that exert pleiotropic effects on homeostatic regulation of glucose and lipid metabolism. In parallel with their crucial roles in the pathophysiology of obesity-induced metabolic diseases, adipokines have recently been identified as promising targets for novel therapeutic strategies for multiple diseases. Current treatments for PCOS are suboptimal with insufficient alleviation of all symptoms. Novel findings in adipokine-targeted agents may provide important insight into the development of new drugs for PCOS. This Review presents an overview of the current understanding of mechanisms that link PCOS to obesity and highlights emerging evidence of adipose-ovary crosstalk as a pivotal mediator of PCOS pathogenesis. We summarize recent findings of preclinical and clinical studies that reveal the therapeutic potential of adipokine-targeted novel approaches to PCOS and its related metabolic disorders. We also discuss the critical gaps in knowledge that need to be addressed to guide the development of adipokine-based novel therapies for PCOS.
Collapse
Affiliation(s)
- Yidan Xu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huiqiu Zhu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weiwei Li
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Danxia Chen
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Xu
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Dewei Ye
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
44
|
Saponaro C, Sabatini S, Gaggini M, Carli F, Rosso C, Positano V, Armandi A, Caviglia GP, Faletti R, Bugianesi E, Gastaldelli A. Adipose tissue dysfunction and visceral fat are associated with hepatic insulin resistance and severity of NASH even in lean individuals. Liver Int 2022; 42:2418-2427. [PMID: 35900229 DOI: 10.1111/liv.15377] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/01/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is a heterogeneous disorder, but the factors that determine this heterogeneity remain poorly understood. Adipose tissue dysfunction is causally linked to NAFLD since it causes intrahepatic triglyceride (IHTG) accumulation through increased hepatic lipid flow, due to insulin resistance and pro-inflammatory adipokines release. While many studies in NAFLD have looked at total adiposity (i.e. mainly subcutaneous fat, SC-AT), it is still unclear the possible impact of visceral fat (VF). Thus, we investigated how VF versus SC-AT was related to NAFLD severity in lean, overweight and obese individuals versus lean controls. METHODS Thirty-two non-diabetic NAFLD with liver biopsy (BMI 21.4-34.7 kg/m2 ) and eight lean individuals (BMI 19.6-22.8 kg/m2 ) were characterized for fat distribution (VF, SC-AT and IHTG by magnetic resonance imaging), lipolysis and insulin resistance by tracer infusion, free fatty acids (FFAs) and triglyceride (TAG) concentration and composition (by mass spectrometry). RESULTS Intrahepatic triglyceride was positively associated with lipolysis, adipose tissue insulin resistance (Adipo-IR), TAG concentrations, and increased saturated/unsaturated FFA ratio. Compared to controls VF was higher in NAFLD (including lean individuals), increased with fibrosis stage and associated with insulin resistance in liver, muscle and adipose tissue, increased lipolysis and decreased adiponectin levels. Collectively, our results suggest that VF accumulation, given its location close to the liver, is one of the major risk factors for NAFLD. CONCLUSIONS These findings propose VF as an early indicator of NAFLD progression independently of BMI, which may allow for evidence-based prevention and intervention strategies.
Collapse
Affiliation(s)
- Chiara Saponaro
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy.,University of Lille, CHU Lille, Inserm U1190, EGID, Lille, France
| | - Silvia Sabatini
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Melania Gaggini
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Fabrizia Carli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Chiara Rosso
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Angelo Armandi
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Gian Paolo Caviglia
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Riccardo Faletti
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elisabetta Bugianesi
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy
| |
Collapse
|
45
|
Pop TL, Sîrbe C, Benţa G, Mititelu A, Grama A. The Role of Vitamin D and Vitamin D Binding Protein in Chronic Liver Diseases. Int J Mol Sci 2022; 23:ijms231810705. [PMID: 36142636 PMCID: PMC9503777 DOI: 10.3390/ijms231810705] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Vitamin D (calciferol) is a fat-soluble vitamin that has a significant role in phospho-calcium metabolism, maintaining normal calcium levels and bone health development. The most important compounds of vitamin D are cholecalciferol (vitamin D3, or VD3) and ergocalciferol (vitamin D2, or VD2). Besides its major role in maintaining an adequate level of calcium and phosphate concentrations, vitamin D is involved in cell growth and differentiation and immune function. Recently, the association between vitamin D deficiency and the progression of fibrosis in chronic liver disease (CLD) was confirmed, given the hepatic activation process and high prevalence of vitamin D deficiency in these diseases. There are reports of vitamin D deficiency in CLD regardless of the etiology (chronic viral hepatitis, alcoholic cirrhosis, non-alcoholic fatty liver disease, primary biliary cirrhosis, or autoimmune hepatitis). Vitamin D binding protein (VDBP) is synthesized by the liver and has the role of binding and transporting vitamin D and its metabolites to the target organs. VDBP also plays an important role in inflammatory response secondary to tissue damage, being involved in the degradation of actin. As intense research during the last decades revealed the possible role of vitamin D in liver diseases, a deeper understanding of the vitamin D, vitamin D receptors (VDRs), and VDBP involvement in liver inflammation and fibrogenesis could represent the basis for the development of new strategies for diagnosis, prognosis, and treatment of liver diseases. This narrative review presents an overview of the evidence of the role of vitamin D and VDBP in CLD, both at the experimental and clinical levels.
Collapse
Affiliation(s)
- Tudor Lucian Pop
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Claudia Sîrbe
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Gabriel Benţa
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alexandra Mititelu
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alina Grama
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| |
Collapse
|
46
|
Luo L, Liu M. Adiponectin: friend or foe in obesity and inflammation. MEDICAL REVIEW (2021) 2022; 2:349-362. [PMID: 37724325 PMCID: PMC10388816 DOI: 10.1515/mr-2022-0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/27/2022] [Indexed: 09/20/2023]
Abstract
Adiponectin is an adipokine predominantly produced by fat cells, circulates and exerts insulin-sensitizing, cardioprotective and anti-inflammatory effects. Dysregulation of adiponectin and/or adiponectin signaling is implicated in a number of metabolic diseases such as obesity, insulin resistance, diabetes, and cardiovascular diseases. However, while the insulin-sensitizing and cardioprotective effects of adiponectin have been widely appreciated in the field, the obesogenic and anti-inflammatory effects of adiponectin are still of much debate. Understanding the physiological function of adiponectin is critical for adiponectin-based therapeutics for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Liping Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
47
|
Muhammed AA, Eid RMHM, Mohammed WS, Abdel-Fadeil MR. An association between adropin hormone and total testosterone in obese men: a case-control study. BMC Endocr Disord 2022; 22:192. [PMID: 35897011 PMCID: PMC9327160 DOI: 10.1186/s12902-022-01102-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity is associated with low testosterone levels that could be caused by many mechanisms. Adropin, a peptide hormone, its levels are decreased in obesity and its receptors are expressed in the hypothalamus, the pituitary gland, and the testis. Adropin association to total testosterone in obese men is not detected yet. This study tries to find out possible associations between serum levels of adropin, adiponectin, total testosterone, and lipid profile in obese men. METHODS Serum levels of adropin, adiponectin, total testosterone, and lipid profile parameters were measured in 43 obese men and 40 age-matched normal-weight men. RESULTS Adropin, adiponectin, and testosterone levels were significantly lower in obese men versus normal-weight men. In all participants, positive correlations between adropin, adiponectin, and total testosterone were detected. Adropin is considered a predictor risk factor for testosterone. CONCLUSIONS This study suggests a possible causal relationship between adropin and total testosterone which needs further investigation. TRIAL REGISTRATION Clincialtrials.gov NCT03724825 , registered October 30th, 2018.
Collapse
Affiliation(s)
- Asmaa A Muhammed
- Departments of Medical Physiology, Faculty of Medicine, Aswan University, Aswan, 81511, Egypt.
| | - Rania M H M Eid
- Departments of Medical Physiology, Faculty of Medicine, Aswan University, Aswan, 81511, Egypt
| | - Wafaa Salah Mohammed
- Department of Clinical Pathology, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Mahmoud R Abdel-Fadeil
- Departments of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
48
|
Lian B, Cai L, Zhang Z, Lin F, Li Z, Zhang XK, Jiang F. The anti-inflammatory effect of Pien Tze Huang in non-alcoholic fatty liver disease. Biomed Pharmacother 2022; 151:113076. [PMID: 35550529 DOI: 10.1016/j.biopha.2022.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease that may progress to nonalcoholic steatohepatitis (NASH), hepatic tissue fibrosis, liver cirrhosis, and hepatocellular carcinoma. In this study, we investigated the effects of Pien Tze Huang (PTH), a well-known traditional Chinese herbal formula with liver protective effect, in methionine-choline deficient diet (MCD)- and high-fat diet (HFD)-induced NASH mouse models. Our results showed that PTH could exert hepatoprotective effects by improving liver weight and steatosis and reducing the fibrosis and serum levels of alanine transaminase (ALT) and aspartate transaminase (AST) in both animal models. The effects of PTH was accompanied with the reduction of infiltrated macrophages, the inhibition of the expression of cytokines, and the induction of adiponectin expression. Mechanistically, we found that PTH could inhibit the activation of proinflammatory transcription factor nuclear factor-κB (NF-κB) by preventing the degradation of inhibitor of κBα (IκBα). These results demonstrate that PTH can improve NAFLD largely due to its suppression of the NF-κB inflammatory pathway.
Collapse
Affiliation(s)
- Baohuan Lian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.; NucMito Pharmaceuticals Co. Ltd., Xiamen, 361101, China
| | - Lijun Cai
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhaoqiang Zhang
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Fen Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zongxi Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiao-Kun Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China..
| | - Fuquan Jiang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China..
| |
Collapse
|
49
|
Mitsala A, Tsalikidis C, Romanidis K, Pitiakoudis M. Non-Alcoholic Fatty Liver Disease and Extrahepatic Cancers: A Wolf in Sheep’s Clothing? Curr Oncol 2022; 29:4478-4510. [PMID: 35877216 PMCID: PMC9325209 DOI: 10.3390/curroncol29070356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/02/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now considered the main driver and leading cause of chronic liver disease globally. The umbrella term NAFLD describes a range of liver conditions closely related to insulin resistance, metabolic syndrome, diabetes mellitus, obesity, and dyslipidemia. At the same time, several malignancies, including hepatocellular carcinoma and colorectal cancer, are considered to be common causes of death among patients with NAFLD. At first, our review herein aims to investigate the role of NAFLD in developing colorectal neoplasms and adenomatous polyps based on the current literature. We will also explore the connection and the missing links between NAFLD and extrahepatic cancers. Interestingly, any relationship between NAFLD and extrahepatic malignancies could be attributable to several shared metabolic risk factors. Overall, obesity, insulin resistance, metabolic syndrome, and related disorders may increase the risk of developing cancer. Therefore, early diagnosis of NAFLD is essential for preventing the progression of the disease and avoiding its severe complications. In addition, cancer screening and early detection in these patients may improve survival and reduce any delays in treatment.
Collapse
|
50
|
Casana E, Jimenez V, Jambrina C, Sacristan V, Muñoz S, Rodo J, Grass I, Garcia M, Mallol C, León X, Casellas A, Sánchez V, Franckhauser S, Ferré T, Marcó S, Bosch F. AAV-mediated BMP7 gene therapy counteracts insulin resistance and obesity. Mol Ther Methods Clin Dev 2022; 25:190-204. [PMID: 35434177 PMCID: PMC8983313 DOI: 10.1016/j.omtm.2022.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/13/2022] [Indexed: 10/31/2022]
Abstract
Type 2 diabetes, insulin resistance, and obesity are strongly associated and are a major health problem worldwide. Obesity largely results from a sustained imbalance between energy intake and expenditure. Therapeutic approaches targeting metabolic rate may counteract body weight gain and insulin resistance. Bone morphogenic protein 7 (BMP7) has proven to enhance energy expenditure by inducing non-shivering thermogenesis in short-term studies in mice treated with the recombinant protein or adenoviral vectors encoding BMP7. To achieve long-term BMP7 effects, the use of adeno-associated viral (AAV) vectors would provide sustained production of the protein after a single administration. Here, we demonstrated that treatment of high-fat-diet-fed mice and ob/ob mice with liver-directed AAV-BMP7 vectors enabled a long-lasting increase in circulating levels of this factor. This rise in BMP7 concentration induced browning of white adipose tissue (WAT) and activation of brown adipose tissue, which enhanced energy expenditure, and reversed WAT hypertrophy, hepatic steatosis, and WAT and liver inflammation, ultimately resulting in normalization of body weight and insulin resistance. This study highlights the potential of AAV-BMP7-mediated gene therapy for the treatment of insulin resistance, type 2 diabetes, and obesity.
Collapse
Affiliation(s)
- Estefania Casana
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Claudia Jambrina
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Victor Sacristan
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jordi Rodo
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Ignasi Grass
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Miquel Garcia
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Cristina Mallol
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Xavier León
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Alba Casellas
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Víctor Sánchez
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Sylvie Franckhauser
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Tura Ferré
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Sara Marcó
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| |
Collapse
|