1
|
Ruiz Peláez E, Hurtado Algar EM, Martínez la Torre T, Sánchez-Romero J, Hernández-Caravaca I. Impact of the COVID-19 lockdown on the O'Sullivan test and gestational diabetes mellitus diagnosis in pregnant Spanish women. Aten Primaria 2024; 56:103006. [PMID: 38889596 PMCID: PMC11231550 DOI: 10.1016/j.aprim.2024.103006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE To analyze the impact of COVID-19 lockdown on serum glucose levels of pregnant women. DESIGN A retrospective analysis of O'Sullivan test in pregnant women who underwent COVID-19 lockdown compared to controls. SITE: Poniente Primary Health Care center in Córdoba (Spain). PARTICIPANTS 235 pregnant women from 23+0 to 25+0 weeks of gestation without diabetes mellitus. INTERVENTIONS Gestational diabetes mellitus screening with O'Sullivan test and 3-h oral glucose tolerance test. MAIN MEASUREMENTS Pregnant women who underwent gestational diabetes mellitus screening with O'Sullivan test before (control group) and during COVID-19 Lockdown (Lockdown group) in Córdoba (Spain) were investigated. Lockdown group was divided in early and late lockdown. An additional, control group from data of the same months of the Lockdown in the previous year were recorded to discarded seasonally (adjusted seasonally control) this group was also divided in early and late seasonally adjusted. A logistic regression model for O'Sullivan test has been performed to analyze potential cofounders. Kolgomorov-Smirnov and Kruskal-Wallis test comparing pregnant women who underwent COVID-19 lockdown with the two types of controls. RESULTS Statistically significant differences were found in serum glucose after O'Sullivan test between lockdown group and control group (123.51±26.02mg/dL and 112.86±31.28mg/dL; p=0.017). When early lockdown group and control group were compared no differences were found (119.64±26.18mg/dL vs. 112.86±31.28mg/dL; p>0.05) whereas differences were observed in late lockdown group and control group (127.22±25.59mg/dL vs. 112.86±31.28mg/dL; p=0.009). Statistical trends were also found between lockdown group and seasonally adjusted group and between lockdown and late seasonally adjusted group (p=0.089). A higher proportion of positive O'Suvillan pregnant women who were subsequently diagnosed with GDM were found in lockdown group compared to the seasonally adjusted control group (60% vs. 26.06% respectively; p<0.05). CONCLUSIONS The COVID-19 lockdown was associated with an increase in serum glucose levels after the O'Sullivan test as well as a higher GDM diagnosis risk in pregnant women. The findings of our study emphasize the essential requirement for comprehensive maternal services and the accessibility to community's health assets during future lockdown scenarios to pregnant women.
Collapse
Affiliation(s)
| | | | | | - Javier Sánchez-Romero
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Campus de Ciencias de la Salud, Murcia, Spain; Department of Obstetrics and Gynecology, 'Virgen de la Arrixaca' University Hospital, Murcia, Spain
| | - Iván Hernández-Caravaca
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Campus de Ciencias de la Salud, Murcia, Spain; Department of Community Nursing, Preventive Medicine and Public Health and History of Science, Alicante, Comunidad Valenciana, Spain.
| |
Collapse
|
2
|
Bronowicka-Szydełko A, Gostomska-Pampuch K, Kuzan A, Pietkiewicz J, Krzystek-Korpacka M, Gamian A. Effect of advanced glycation end-products in a wide range of medical problems including COVID-19. Adv Med Sci 2024; 69:36-50. [PMID: 38335908 DOI: 10.1016/j.advms.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/07/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Glycation is a physiological process that determines the aging of the organism, while in states of metabolic disorders it is significantly intensified. High concentrations of compounds such as reducing sugars or reactive aldehydes derived from lipid oxidation, occurring for example in diabetes, atherosclerosis, dyslipidemia, obesity or metabolic syndrome, lead to increased glycation of proteins, lipids and nucleic acids. The level of advanced glycation end-products (AGEs) in the body depends on rapidity of their production and the rate of their removal by the urinary system. AGEs, accumulated in the extracellular matrix of the blood vessels and other organs, cause irreversible changes in the biochemical and biomechanical properties of tissues. As a consequence, micro- and macroangiopathies appear in the system, and may contribute to the organ failure, like kidneys and heart. Elevated levels of AGEs also increase the risk of Alzheimer's disease and various cancers. In this paper, we propose a new classification due to modified amino acid residues: arginyl-AGEs, monolysyl-AGEs and lysyl-arginyl-AGEs and dilysyl-AGEs. Furthermore, we describe in detail the effect of AGEs on the pathogenesis of metabolic and old age diseases, such as diabetic complications, atherosclerosis and neurodegenerative diseases. We summarize the currently available data on the diagnostic value of AGEs and present the AGEs as a therapeutic goal in a wide range of medical problems, including SARS-CoV-2 infection and so-called long COVID.
Collapse
Affiliation(s)
| | | | - Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland.
| | - Jadwiga Pietkiewicz
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
3
|
Garza-Campos A, Prieto-Correa JR, Domínguez-Rosales JA, Hernández-Nazará ZH. Implications of receptor for advanced glycation end products for progression from obesity to diabetes and from diabetes to cancer. World J Diabetes 2023; 14:977-994. [PMID: 37547586 PMCID: PMC10401444 DOI: 10.4239/wjd.v14.i7.977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 07/12/2023] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are chronic pathologies with a high incidence worldwide. They share some pathological mechanisms, including hyperinsulinemia, the production and release of hormones, and hyperglycemia. The above, over time, affects other systems of the human body by causing tissue hypoxia, low-grade inflammation, and oxidative stress, which lay the pathophysiological groundwork for cancer. The leading causes of death globally are T2DM and cancer. Other main alterations of this pathological triad include the accumulation of advanced glycation end products and the release of endogenous alarmins due to cell death (i.e., damage-associated molecular patterns) such as the intracellular proteins high-mobility group box protein 1 and protein S100 that bind to the receptor for advanced glycation products (RAGE) - a multiligand receptor involved in inflammatory and metabolic and neoplastic processes. This review analyzes the latest advanced reports on the role of RAGE in the development of obesity, T2DM, and cancer, with an aim to understand the intracellular signaling mechanisms linked with cancer initiation. This review also explores inflammation, oxidative stress, hypoxia, cellular senescence, RAGE ligands, tumor microenvironment changes, and the “cancer hallmarks” of the leading tumors associated with T2DM. The assimilation of this information could aid in the development of diagnostic and therapeutic approaches to lower the morbidity and mortality associated with these diseases.
Collapse
Affiliation(s)
- Andrea Garza-Campos
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Roberto Prieto-Correa
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Alfredo Domínguez-Rosales
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Zamira Helena Hernández-Nazará
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
4
|
Duan J, Li H, Wang Y, Ji Y, Chen C, Feng C, Zhang W. Benzo[a]pyrene and a high-fat diet induce aortic injury and promote. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115011. [PMID: 37196526 DOI: 10.1016/j.ecoenv.2023.115011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant which mainly exposed though diet. High-fat diet (HFD) can induce atherosclerosis, as can BaP. Unhealthy dietary habits lead to high intake of both BaP and lipids. However, the combined effect of BaP and HFD on atherosclerosis and lipid accumulation in the arterial wall, the initial stage of atherosclerosis, is unclear. In this study, C57BL/6 J mice were subchronically exposed to BaP and a HFD, and the mechanism of lipid accumulation was investigated in EA.hy926 and HEK293 cells. Results showed that BaP and HFD increased blood lipids and damaged aortic wall synergistically. Meanwhile, LDL enhanced the toxicity of BaP, and BaP promoted the production of reactive oxygen species and malonaldehyde in EA.hy926 cells, which aggravated LDL-induced cell injury. Moreover, BaP and HFD/LDL induced LDL accumulation in the aortic wall of C57BL/6 J mice/EA.hy926, and the mechanism was by activating AHR/ARNT heterodimer to combine with the scavenger receptor BⅠ (SR-BⅠ) and activin receptor-like kinase 1 (ALK1) promoter regions to transcriptional upregulate its expression, which enhanced the uptake of LDL, and promoting the production of AGEs to inhibit reverse cholesterol transport by SR-BI. BaP and lipid synergistically promoted aortic and endothelial damage, and the health risk of their combined intake should be paid attention to.
Collapse
Affiliation(s)
- Juanjuan Duan
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University at Zhuhai 519087, China; Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai 519087, China; Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Hong Li
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University at Zhuhai 519087, China; Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai 519087, China; Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yu Wang
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University at Zhuhai 519087, China; Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai 519087, China; Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yongchao Ji
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University at Zhuhai 519087, China; Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai 519087, China; Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Chao Chen
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University at Zhuhai 519087, China; Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai 519087, China
| | - Chengqiang Feng
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University at Zhuhai 519087, China; Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai 519087, China; Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Wensheng Zhang
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University at Zhuhai 519087, China; Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai 519087, China; Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
5
|
Su Z, Li H, Ye Z, Zhu Y, Feng B, Tang L, Zheng G. Qidan Tiaozhi capsule attenuates metabolic syndrome via activating AMPK/PINK1-Parkin-mediated mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116091. [PMID: 36592823 DOI: 10.1016/j.jep.2022.116091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qidan Tiaozhi capsule (QD), a traditional Chinese medicine, has been used to treat metabolic syndrome for over a decade. However, the mechanism of QD in the treatment of metabolic syndrome is still unknown. AIM OF THE STUDY Growing studies demonstrate that impaired mitophagy is one of the important causes of metabolic syndrome. Thus, this research aims to investigate the mechanism of mitophagy in the QD treatment of metabolic syndrome. MATERIALS AND METHODS Network pharmacology and molecular docking were used to probe the mechanism of QD treatment of metabolic syndrome. In an oleic acid-induced cell model, glucose consumption and uptake capacity, triglyceride (TG), total cholesterol (TC), malonaldehyde (MDA), superoxide dismutase (SOD) and ROS levels, and mitochondrial membrane potential (MMP) were examined. mRFP-GFP-LC3 adenovirus and GFP-LC3 lentivirus were used to examine the effect of QD on mitophagy. The IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were also determined. What's more, the PINK1 gene was silenced to verify the above findings. In a high-fat diet-fed mouse model, body weight, organ indexes, OGTT, ITT, HOMA-IR, insulin sensitivity, serum MDA, SOD, TC, TG, LDL-C and HDL-C, hepatic TC, TG, LDL-C and HDL-C levels, hepatic steatosis, and IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were investigated. RESULTS Results from network pharmacology and molecular docking suggested that QD might suppress oxidative stress to improve metabolic syndrome. In an oleic acid-induced cell model, compared with the model group, enhanced glucose consumption and uptake ability, inhibited intracellular lipid accumulation, TC, TG, MDA and ROS levels, and increased SOD level and MMP were found in QD groups. And mitophagy levels, IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were promoted. Interestingly, PINK1 silencing reversed the therapeutic action of QD on oleic acid-induced cells. In high-fat diet-fed mice, inhibited body weight, abdominal fat indexes, liver indexes, HOMA-IR, serum and hepatic TC, TG and LDL-C, serum MDA and hepatic steatosis, and increased insulin sensitivity, serum and hepatic HDL-C, serum SOD, and activated IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were found in QD groups. CONCLUSION QD activates AMPK/PINK1-Parkin-mediated mitophagy to suppress oxidative stress to treat metabolic syndrome.
Collapse
Affiliation(s)
- Zuqing Su
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongxia Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zeting Ye
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Zhu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bing Feng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lipeng Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
6
|
Senatus L, Egaña-Gorroño L, López-Díez R, Bergaya S, Aranda JF, Amengual J, Arivazhagan L, Manigrasso MB, Yepuri G, Nimma R, Mangar KN, Bernadin R, Zhou B, Gugger PF, Li H, Friedman RA, Theise ND, Shekhtman A, Fisher EA, Ramasamy R, Schmidt AM. DIAPH1 mediates progression of atherosclerosis and regulates hepatic lipid metabolism in mice. Commun Biol 2023; 6:280. [PMID: 36932214 PMCID: PMC10023694 DOI: 10.1038/s42003-023-04643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Atherosclerosis evolves through dysregulated lipid metabolism interwoven with exaggerated inflammation. Previous work implicating the receptor for advanced glycation end products (RAGE) in atherosclerosis prompted us to explore if Diaphanous 1 (DIAPH1), which binds to the RAGE cytoplasmic domain and is important for RAGE signaling, contributes to these processes. We intercrossed atherosclerosis-prone Ldlr-/- mice with mice devoid of Diaph1 and fed them Western diet for 16 weeks. Compared to male Ldlr-/- mice, male Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis, in parallel with lower plasma concentrations of cholesterol and triglycerides. Female Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis compared to Ldlr-/- mice and demonstrated lower plasma concentrations of cholesterol, but not plasma triglycerides. Deletion of Diaph1 attenuated expression of genes regulating hepatic lipid metabolism, Acaca, Acacb, Gpat2, Lpin1, Lpin2 and Fasn, without effect on mRNA expression of upstream transcription factors Srebf1, Srebf2 or Mxlipl in male mice. We traced DIAPH1-dependent mechanisms to nuclear translocation of SREBP1 in a manner independent of carbohydrate- or insulin-regulated cues but, at least in part, through the actin cytoskeleton. This work unveils new regulators of atherosclerosis and lipid metabolism through DIAPH1.
Collapse
Affiliation(s)
- Laura Senatus
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Lander Egaña-Gorroño
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Raquel López-Díez
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Sonia Bergaya
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Juan Francisco Aranda
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Jaume Amengual
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Lakshmi Arivazhagan
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Michaele B Manigrasso
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Gautham Yepuri
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ramesh Nimma
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Kaamashri N Mangar
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Rollanda Bernadin
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Boyan Zhou
- Department of Population Health, Division of Biostatistics, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Paul F Gugger
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Huilin Li
- Department of Population Health, Division of Biostatistics, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Neil D Theise
- Department of Pathology, NYU Grossman School of Medicine, NYU Langone Health, New York, USA
| | - Alexander Shekhtman
- Department of Chemistry, The State University of New York at Albany, Albany, NY, USA
| | - Edward A Fisher
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
7
|
Wismans LV, Lopuhaä B, de Koning W, Moeniralam H, van Oosterhout M, Ambarus C, Hofman FN, Kuiken T, Endeman H, Mustafa DAM, von der Thüsen JH. Increase of mast cells in COVID-19 pneumonia may contribute to pulmonary fibrosis and thrombosis. Histopathology 2023; 82:407-419. [PMID: 36366933 PMCID: PMC9877713 DOI: 10.1111/his.14838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/10/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
AIMS Lung tissue from COVID-19 patients shares similar histomorphological features with chronic lung allograft disease, also suggesting activation of autoimmune-related pathways in COVID-19. To more clearly understand the underlying spectrum of pathophysiology in COVID-19 pneumonia, we analysed mRNA expression of autoimmune-related genes in post-mortem lung tissue from COVID-19 patients. METHODS AND RESULTS Formalin-fixed, paraffin-embedded lung tissue samples of 18 COVID-19 patients and eight influenza patients were used for targeted gene expression profiling using NanoString technology. Multiplex immunofluorescence for tryptase and chymase was applied for validation. Genes related to mast cells were significantly increased in COVID-19. This finding was strengthened by multiplex immunofluorescence also showing a significant increase of tryptase- and chymase-positive cells in COVID-19. Furthermore, receptors for advanced glycation end-products (RAGE) and pro-platelet basic protein (PPBP) were up-regulated in COVID-19 compared to influenza. Genes associated with Type I interferon signalling showed a significant correlation to detected SARS-CoV2 pathway-related genes. The comparison of lung tissue samples from both groups based on the presence of histomorphological features indicative of acute respiratory distress syndrome did not result in finding any specific gene or pathways. CONCLUSION Two separate means of measuring show a significant increase of mast cells in SARS-CoV-2-infected lung tissue compared to influenza. Additionally, several genes involved in fibrosis and thrombosis, among which are RAGE and PPBP, are up-regulated in COVID-19. As mast cells are able to induce thrombosis and fibrosis, they may play an important role in the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Leonoor V Wismans
- Present address:
Department of SurgeryErasmus Medical CenterRotterdamthe Netherlands,The Tumor Immuno‐Pathology Laboratory, Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands
| | - Boaz Lopuhaä
- Present address:
Department of SurgeryErasmus Medical CenterRotterdamthe Netherlands,Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands
| | - Willem de Koning
- The Tumor Immuno‐Pathology Laboratory, Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands,Clinical Bioinformatics Unit, Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| | - Hazra Moeniralam
- Department of Internal Medicine and Intensive CareSt. Antonius HospitalNieuwegeinthe Netherlands
| | | | - Carmen Ambarus
- Department of Pathology DNASt. Antonius HospitalNieuwegeinthe Netherlands
| | - Frederik N Hofman
- Department of Cardiothoracic SurgerySt. Antonius HospitalNieuwegeinthe Netherlands
| | - Thijs Kuiken
- Department of ViroscienceErasmus Medical CenterRotterdamthe Netherlands
| | - Henrik Endeman
- Department of Adult Intensive CareErasmus Medical CenterRotterdamthe Netherlands
| | - Dana A M Mustafa
- The Tumor Immuno‐Pathology Laboratory, Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands,Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands
| | - Jan H von der Thüsen
- Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands
| |
Collapse
|
8
|
Singh P, Salman KA, Shameem M, Warsi MS. Withania somnifera (L.) Dunal as Add-On Therapy for COPD Patients: A Randomized, Placebo-Controlled, Double-Blind Study. Front Pharmacol 2022; 13:901710. [PMID: 35784687 PMCID: PMC9243480 DOI: 10.3389/fphar.2022.901710] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background: The current gold-standard therapies for chronic obstructive pulmonary disease (COPD) lack disease-modifying potential and exert adverse side effects. Moreover, COPD patients are at a higher risk of severe outcomes if they get infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, the cause of the current epidemic. This is the first study to document clinical research on an adaptogenic and steroidal activity–containing herb as a complementary medicine for COPD treatment. Objective: We aimed to evaluate the efficacy of Withania somnifera (L.) Dunal [Solanaceae] (WS) as an add-on therapy for COPD patients. Methods: A randomized, placebo-controlled, and double-blind clinical study was conducted. A total of 150 patients were randomly assigned to three groups: control, placebo, and WS group. In addition to conventional medicines, WS root capsules or starch capsules were given twice a day to the WS group and the placebo group, respectively. Their lung functioning, quality of life, exercise tolerance, systemic oxidative stress (OS), and systemic inflammation were assessed before and after 12 weeks of intervention. WS root phytochemicals were identified by LC-ESI-MS. The inhibitory activity of these phytochemicals against angiotensin-converting enzyme 2 (ACE-2); the SARS-CoV-2 receptor; myeloperoxidase (MPO); and interleukin-6 (IL-6) was evaluated by in silico docking to investigate the mechanism of action of WS. Results: The pulmonary functioning, quality of life, and exercise tolerance improved, and inflammation reduced notably the most in the WS group. Systemic oxidative stress subsided significantly only in the WS group. Although a minor placebo effect was observed in the SGRQ test, but it was not present in other tests. Withanolides found in the WS roots demonstrated substantial inhibitory activity against the proteins ACE-2, MPO, and IL-6, compared to that of a standard drug or known inhibitor. Moreover, FEV1% predicted had significant correlation with systemic antioxidative status (positive correlation) and malondialdehyde (MDA, negative correlation), suggesting that the antioxidative potential of WS has significant contribution to improving lung functioning. Conclusion: Our study clinically demonstrated that WS root when given along with conventional drugs ameliorated COPD significantly more in comparison to the conventional drugs alone, in GOLD 2 and 3 categories of COPD patients. In silico, it has potent inhibitory activity against SARS-CoV-2 receptor, ACE-2, MPO, and IL-6.
Collapse
Affiliation(s)
- Priyam Singh
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
- *Correspondence: Priyam Singh,
| | - Khushtar Anwar Salman
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Mohammad Shameem
- Department of Tuberculosis and Respiratory Diseases, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Mohd Sharib Warsi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
9
|
Bacterial hydrophilins promote pathogen desiccation tolerance. Cell Host Microbe 2022; 30:975-987.e7. [PMID: 35413266 DOI: 10.1016/j.chom.2022.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/14/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022]
Abstract
Acinetobacter baumannii is a leading cause of hospital-acquired infections, where outbreaks are driven by its ability to persist on surfaces in a desiccated state. Here, we show that A. baumannii causes more virulent pneumonia following desiccation and profile the genetic requirements for desiccation. We find that desiccation tolerance is enhanced upon the disruption of Lon protease, which targets unfolded and aggregated proteins for degradation. Notably, two bacterial hydrophilins, DtpA and DtpB, are transcriptionally upregulated in Δlon via the two-component regulator, BfmR. These proteins, both hydrophilic and intrinsically disordered, promote desiccation tolerance in A. baumannii. Additionally, recombinant DtpA protects purified enzymes from inactivation and improves the desiccation tolerance of a probiotic bacterium when heterologously expressed. These results demonstrate a connection between environmental persistence and pathogenicity in A. baumannii, provide insight into the mechanisms of extreme desiccation tolerance, and reveal potential applications for bacterial hydrophilins in the preservation of protein- and live bacteria-based pharmaceuticals.
Collapse
|
10
|
Steenbeke M, Speeckaert R, Desmedt S, Glorieux G, Delanghe JR, Speeckaert MM. The Role of Advanced Glycation End Products and Its Soluble Receptor in Kidney Diseases. Int J Mol Sci 2022; 23:ijms23073439. [PMID: 35408796 PMCID: PMC8998875 DOI: 10.3390/ijms23073439] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with chronic kidney disease (CKD) are more prone to oxidative stress and chronic inflammation, which may lead to an increase in the synthesis of advanced glycation end products (AGEs). Because AGEs are mostly removed by healthy kidneys, AGE accumulation is a result of both increased production and decreased kidney clearance. On the other hand, AGEs may potentially hasten decreasing kidney function in CKD patients, and are independently related to all-cause mortality. They are one of the non-traditional risk factors that play a significant role in the underlying processes that lead to excessive cardiovascular disease in CKD patients. When AGEs interact with their cell-bound receptor (RAGE), cell dysfunction is initiated by activating nuclear factor kappa-B (NF-κB), increasing the production and release of inflammatory cytokines. Alterations in the AGE-RAGE system have been related to the development of several chronic kidney diseases. Soluble RAGE (sRAGE) is a decoy receptor that suppresses membrane-bound RAGE activation and AGE-RAGE-related toxicity. sRAGE, and more specifically, the AGE/sRAGE ratio, may be promising tools for predicting the prognosis of kidney diseases. In the present review, we discuss the potential role of AGEs and sRAGE as biomarkers in different kidney pathologies.
Collapse
Affiliation(s)
- Mieke Steenbeke
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (M.S.); (S.D.); (G.G.)
| | - Reinhart Speeckaert
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium;
- Research Foundation Flanders, 1000 Brussels, Belgium
| | - Stéphanie Desmedt
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (M.S.); (S.D.); (G.G.)
| | - Griet Glorieux
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (M.S.); (S.D.); (G.G.)
| | - Joris R. Delanghe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Marijn M. Speeckaert
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (M.S.); (S.D.); (G.G.)
- Research Foundation Flanders, 1000 Brussels, Belgium
- Correspondence:
| |
Collapse
|
11
|
Heslinga M, Teunissen C, Agca R, van der Woude D, Huizinga T, van Laar J, den Broeder A, Lems W, Nurmohamed M. NT-proBNP and sRAGE levels in early rheumatoid arthritis. Scand J Rheumatol 2022; 52:243-249. [PMID: 35274588 DOI: 10.1080/03009742.2022.2042975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Several biomarkers of cardiovascular function are found to be increased in rheumatoid arthritis (RA), with some suggesting a relationship with disease activity and improvement with adequate anti-rheumatic treatment. Promising biomarkers include N-terminal pro-brain natriuretic peptide (NT-proBNP) and the soluble receptor form of advanced glycation end-products (sRAGE). The objective of this study was to investigate associations between NT-proBNP and sRAGE levels and markers of inflammation and disease activity in early RA patients and their changes during (effective) anti-rheumatic treatment. METHOD Data from 342 consecutive early RA patients participating in the 'Parelsnoer' cohort were used. At baseline and after 6 months' disease activity, NT-proBNP and sRAGE levels were assessed. RESULTS After 6 months, NT-proBNP decreased from 83 pmol/L (mean) at baseline to 69 pmol/L at follow-up (p < 0.001), while sRAGE increased from 997 pg/mL to 1125 pg/mL (p < 0.001). A larger decrease in erythrocyte sedimentation rate (ESR) or C-reactive protein (CRP) was associated with larger changes in NT-proBNP and sRAGE. For every point decrease in ESR, there was a 1.7-point decrease in NT-proBNP and a 2.2-point increase in sRAGE. For CRP, these values were 1.7 and 2.7, respectively (p < 0.001). CONCLUSION Suppressing inflammation, independently of achieving remission, increases sRAGE levels and decreases NT-proBNP levels significantly. Whether this translates into a decrease in incident cardiovascular disease remains to be elucidated.
Collapse
Affiliation(s)
- M Heslinga
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center
- Reade, Amsterdam, The Netherlands
| | - C Teunissen
- Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands
| | - R Agca
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center
- Reade, Amsterdam, The Netherlands
| | - D van der Woude
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Twj Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - J van Laar
- Department of Rheumatology, UMC Utrecht, Utrecht, The Netherlands
| | - A den Broeder
- Department of Rheumatology, Radboudumc, Nijmegen, The Netherlands
| | - W Lems
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - M Nurmohamed
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center
- Reade, Amsterdam, The Netherlands.,Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Duan J, Chen C, Li H, Ju G, Gao A, Sun Y, Zhang W. Multifaceted Protective Effects of Hesperidin by Aromatic Hydrocarbon Receptor in Endothelial Cell Injury Induced by Benzo[a]Pyrene. Nutrients 2022; 14:nu14030574. [PMID: 35276933 PMCID: PMC8838654 DOI: 10.3390/nu14030574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Benzo[a]pyrene (BaP) causes atherosclerosis by activating the aromatic hydrocarbon receptor (AHR) signaling pathway to trigger lipid peroxidation and inflammation, thereby promoting the development of atherosclerosis. Hesperidin (Hsd), one of the 60 flavonoids of citrus, exhibits therapeutic effects on atherosclerosis. However, its antagonistic function for BaP remains unclear. In this study, the EA.hy926 cell model was used to systematically examine the antagonistic effect of Hsd with BaP, especially in low-density lipoprotein (LDL) oxidation and transport. Results showed that Hsd could reduce BaP-induced AHR activation in mRNA and protein expression level, and reduce LDL accumulation by decreasing the BaP-induced expression of advanced glycation end products and enhancing the BaP-inhibited Adenosine Triphosphate-binding cassette transporter A1 (ABCA1) protein and mRNA expression in EA.hy926 cells. In addition, Hsd could antagonize BaP-induced interaction of reactive oxygen species and the subsequent generation of oxidized LDL and malondialdehyde. Finally, Hsd could alleviate BaP-induced inflammatory response by decreasing IL-1β and TNF-α expression. All these results suggest that Hsd suppresses LDL accumulation, oxidation, and inflammatory response, and thus strongly impedes the AHR pathway activated by BaP.
Collapse
Affiliation(s)
- Juanjuan Duan
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (J.D.); (C.C.); (H.L.); (G.J.); (A.G.); (Y.S.)
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai, Zhuhai 519087, China
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Chao Chen
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (J.D.); (C.C.); (H.L.); (G.J.); (A.G.); (Y.S.)
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| | - Hong Li
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (J.D.); (C.C.); (H.L.); (G.J.); (A.G.); (Y.S.)
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai, Zhuhai 519087, China
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Gaoyan Ju
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (J.D.); (C.C.); (H.L.); (G.J.); (A.G.); (Y.S.)
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai, Zhuhai 519087, China
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Ai Gao
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (J.D.); (C.C.); (H.L.); (G.J.); (A.G.); (Y.S.)
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai, Zhuhai 519087, China
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yinghao Sun
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (J.D.); (C.C.); (H.L.); (G.J.); (A.G.); (Y.S.)
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai, Zhuhai 519087, China
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Wensheng Zhang
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (J.D.); (C.C.); (H.L.); (G.J.); (A.G.); (Y.S.)
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai, Zhuhai 519087, China
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
- Correspondence:
| |
Collapse
|
13
|
Manigrasso MB, Rabbani P, Egaña-Gorroño L, Quadri N, Frye L, Zhou B, Reverdatto S, Ramirez LS, Dansereau S, Pan J, Li H, D’Agati VD, Ramasamy R, DeVita RJ, Shekhtman A, Schmidt AM. Small-molecule antagonism of the interaction of the RAGE cytoplasmic domain with DIAPH1 reduces diabetic complications in mice. Sci Transl Med 2021; 13:eabf7084. [PMID: 34818060 PMCID: PMC8669775 DOI: 10.1126/scitranslmed.abf7084] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The macro- and microvascular complications of type 1 and 2 diabetes lead to increased disease severity and mortality. The receptor for advanced glycation end products (RAGE) can bind AGEs and multiple proinflammatory ligands that accumulate in diabetic tissues. Preclinical studies indicate that RAGE antagonists have beneficial effects on numerous complications of diabetes. However, these antagonists target the extracellular domains of RAGE, which bind distinct RAGE ligands at diverse sites in the immunoglobulin-like variable domain and two constant domains. The cytoplasmic tail of RAGE (ctRAGE) binds to the formin, Diaphanous-1 (DIAPH1), and this interaction is important for RAGE signaling. To comprehensively capture the breadth of RAGE signaling, we developed small-molecule antagonists of ctRAGE-DIAPH1 interaction, termed RAGE229. We demonstrated that RAGE229 is effective in suppressing RAGE-DIAPH1 binding, Förster resonance energy transfer, and biological activities in cellular assays. Using solution nuclear magnetic resonance spectroscopy, we defined the molecular underpinnings of the interaction of RAGE229 with RAGE. Through in vivo experimentation, we showed that RAGE229 assuaged short- and long-term complications of diabetes in both male and female mice, without lowering blood glucose concentrations. Last, the treatment with RAGE229 reduced plasma concentrations of TNF-α, IL-6, and CCL2/JE-MCP1 in diabetic mice, in parallel with reduced pathological and functional indices of diabetes-like kidney disease. Targeting ctRAGE-DIAPH1 interaction with RAGE229 mitigated diabetic complications in rodents by attenuating inflammatory signaling.
Collapse
Affiliation(s)
- Michaele B. Manigrasso
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health, New York, NY 10016, USA
| | - Piul Rabbani
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY 10016, USA
| | - Lander Egaña-Gorroño
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health, New York, NY 10016, USA
| | - Nosirudeen Quadri
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health, New York, NY 10016, USA
| | - Laura Frye
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health, New York, NY 10016, USA
| | - Boyan Zhou
- Departments of Population Health (Biostatistics) and Environmental Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Sergey Reverdatto
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA
| | - Lisa S. Ramirez
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA
| | - Stephen Dansereau
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA
| | - Jinhong Pan
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA
| | - Huilin Li
- Departments of Population Health (Biostatistics) and Environmental Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Vivette D. D’Agati
- Department of Pathology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health, New York, NY 10016, USA
| | - Robert J. DeVita
- RJD Medicinal Chemistry and Drug Discovery Consulting LLC, Westfield, NJ 07091, USA
| | - Alexander Shekhtman
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
14
|
Beavers WN, DuMont AL, Monteith AJ, Maloney KN, Tallman KA, Weiss A, Christian AH, Toste FD, Chang CJ, Porter NA, Torres VJ, Skaar EP. Staphylococcus aureus Peptide Methionine Sulfoxide Reductases Protect from Human Whole-Blood Killing. Infect Immun 2021; 89:e0014621. [PMID: 34001560 PMCID: PMC8281210 DOI: 10.1128/iai.00146-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022] Open
Abstract
The generation of oxidative stress is a host strategy used to control Staphylococcus aureus infections. Sulfur-containing amino acids, cysteine and methionine, are particularly susceptible to oxidation because of the inherent reactivity of sulfur. Due to the constant threat of protein oxidation, many systems evolved to protect S. aureus from protein oxidation or to repair protein oxidation after it occurs. The S. aureus peptide methionine sulfoxide reductase (Msr) system reduces methionine sulfoxide to methionine. Staphylococci have four Msr enzymes, which all perform this reaction. Deleting all four msr genes in USA300 LAC (Δmsr) sensitizes S. aureus to hypochlorous acid (HOCl) killing; however, the Δmsr strain does not exhibit increased sensitivity to H2O2 stress or superoxide anion stress generated by paraquat or pyocyanin. Consistent with increased susceptibility to HOCl killing, the Δmsr strain is slower to recover following coculture with both murine and human neutrophils than USA300 wild type. The Δmsr strain is attenuated for dissemination to the spleen following murine intraperitoneal infection and exhibits reduced bacterial burdens in a murine skin infection model. Notably, no differences in bacterial burdens were observed in any organ following murine intravenous infection. Consistent with these observations, USA300 wild-type and Δmsr strains have similar survival phenotypes when incubated with murine whole blood. However, the Δmsr strain is killed more efficiently by human whole blood. These findings indicate that species-specific immune cell composition of the blood may influence the importance of Msr enzymes during S. aureus infection of the human host.
Collapse
Affiliation(s)
- William N. Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ashley L. DuMont
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Andrew J. Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - K. Nichole Maloney
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keri A. Tallman
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Andy Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alec H. Christian
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - F. Dean Toste
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Ned A. Porter
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med 2021; 169:317-342. [PMID: 33910093 PMCID: PMC8285002 DOI: 10.1016/j.freeradbiomed.2021.03.046] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Even in the absence of coronary artery disease and hypertension, diabetes mellitus (DM) may increase the risk for heart failure development. This risk evolves from functional and structural alterations induced by diabetes in the heart, a cardiac entity termed diabetic cardiomyopathy (DbCM). Oxidative stress, defined as the imbalance of reactive oxygen species (ROS) has been increasingly proposed to contribute to the development of DbCM. There are several sources of ROS production including the mitochondria, NAD(P)H oxidase, xanthine oxidase, and uncoupled nitric oxide synthase. Overproduction of ROS in DbCM is thought to be counterbalanced by elevated antioxidant defense enzymes such as catalase and superoxide dismutase. Excess ROS in the cardiomyocyte results in further ROS production, mitochondrial DNA damage, lipid peroxidation, post-translational modifications of proteins and ultimately cell death and cardiac dysfunction. Furthermore, ROS modulates transcription factors responsible for expression of antioxidant enzymes. Lastly, evidence exists that several pharmacological agents may convey cardiovascular benefit by antioxidant mechanisms. As such, increasing our understanding of the pathways that lead to increased ROS production and impaired antioxidant defense may enable the development of therapeutic strategies against the progression of DbCM. Herein, we review the current knowledge about causes and consequences of ROS in DbCM, as well as the therapeutic potential and strategies of targeting oxidative stress in the diabetic heart.
Collapse
Affiliation(s)
- Nikole J Byrne
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
16
|
Iacobini C, Vitale M, Pesce C, Pugliese G, Menini S. Diabetic Complications and Oxidative Stress: A 20-Year Voyage Back in Time and Back to the Future. Antioxidants (Basel) 2021; 10:727. [PMID: 34063078 PMCID: PMC8147954 DOI: 10.3390/antiox10050727] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Twenty years have passed since Brownlee and colleagues proposed a single unifying mechanism for diabetic complications, introducing a turning point in this field of research. For the first time, reactive oxygen species (ROS) were identified as the causal link between hyperglycemia and four seemingly independent pathways that are involved in the pathogenesis of diabetes-associated vascular disease. Before and after this milestone in diabetes research, hundreds of articles describe a role for ROS, but the failure of clinical trials to demonstrate antioxidant benefits and some recent experimental studies showing that ROS are dispensable for the pathogenesis of diabetic complications call for time to reflect. This twenty-year journey focuses on the most relevant literature regarding the main sources of ROS generation in diabetes and their role in the pathogenesis of cell dysfunction and diabetic complications. To identify future research directions, this review discusses the evidence in favor and against oxidative stress as an initial event in the cellular biochemical abnormalities induced by hyperglycemia. It also explores possible alternative mechanisms, including carbonyl stress and the Warburg effect, linking glucose and lipid excess, mitochondrial dysfunction, and the activation of alternative pathways of glucose metabolism leading to vascular cell injury and inflammation.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Carlo Pesce
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal Infantile Sciences (DINOGMI), Department of Excellence of MIUR, University of Genoa Medical School, 16132 Genoa, Italy;
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| |
Collapse
|
17
|
Roy D, Ramasamy R, Schmidt AM. Journey to a Receptor for Advanced Glycation End Products Connection in Severe Acute Respiratory Syndrome Coronavirus 2 Infection: With Stops Along the Way in the Lung, Heart, Blood Vessels, and Adipose Tissue. Arterioscler Thromb Vasc Biol 2021; 41:614-627. [PMID: 33327744 PMCID: PMC7837689 DOI: 10.1161/atvbaha.120.315527] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide and the pandemic has yet to wane. Despite its associated significant morbidity and mortality, there are no definitive cures and no fully preventative measures to combat SARS-CoV-2. Hence, the urgency to identify the pathobiological mechanisms underlying increased risk for and the severity of SARS-CoV-2 infection is mounting. One contributing factor, the accumulation of damage-associated molecular pattern molecules, is a leading trigger for the activation of nuclear factor-kB and the IRF (interferon regulatory factors), such as IRF7. Activation of these pathways, particularly in the lung and other organs, such as the heart, contributes to a burst of cytokine release, which predisposes to significant tissue damage, loss of function, and mortality. The receptor for advanced glycation end products (RAGE) binds damage-associated molecular patterns is expressed in the lung and heart, and in priming organs, such as the blood vessels (in diabetes) and adipose tissue (in obesity), and transduces the pathological signals emitted by damage-associated molecular patterns. It is proposed that damage-associated molecular pattern-RAGE enrichment in these priming tissues, and in the lungs and heart during active infection, contributes to the widespread tissue damage induced by SARS-CoV-2. Accordingly, the RAGE axis might play seminal roles in and be a target for therapeutic intervention in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Divya Roy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine (D.R., R.R., A.M.S.)
- New York Institute of Technology College of Osteopathic Medicine, Glen Head (D.R.)
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine (D.R., R.R., A.M.S.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine (D.R., R.R., A.M.S.)
| |
Collapse
|
18
|
Altıngöz SM, Kurgan Ş, Önder C, Serdar MA, Ünlütürk U, Uyanık M, Başkal N, Tatakis DN, Günhan M. Salivary and serum oxidative stress biomarkers and advanced glycation end products in periodontitis patients with or without diabetes: A cross-sectional study. J Periodontol 2021; 92:1274-1285. [PMID: 33277933 DOI: 10.1002/jper.20-0406] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/09/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Non-invasive methods for periodontitis diagnosis would be a clinically important tool. This cross-sectional study aimed to investigate the association between oxidative stress, glycation, and inflammation markers and periodontal clinical parameters in periodontitis and periodontally healthy patients with type 2 diabetes and corresponding systemically healthy controls. METHODS Sixty-seven periodontally healthy (DM-H, n = 32) and periodontitis (DM-P, n = 35) patients with type 2 diabetes, and 54 systemically healthy periodontitis (H-P, n = 26) and periodontally healthy (H-H, n = 28) controls were included. Clinical periodontal parameters, body mass index, fasting glucose, hemoglobin A1c (HbA1c), along with saliva and serum 8-hydroxy-2'-deoxyguanosine (8-OHdG), malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE), advanced glycation end products (AGE), AGE receptor (RAGE) and high sensitivity C-reactive protein (hsCRP) levels were recorded and analyzed. RESULTS Salivary 8-OHdG levels were significantly higher in periodontitis compared to periodontally healthy patients, regardless of systemic status (P < 0.001). Salivary MDA levels were significantly higher in all disease groups compared to H-H group (P ≤ 0.004). Serum AGE levels were significantly higher in diabetic groups than systemically healthy groups (P < 0.001) and in H-P compared to H-H (P < 0.001). Bleeding on probing (BOP) and clinical attachment level (CAL) strongly correlated with salivary 8-OHdG and serum hsCRP (P < 0.001). In systemically healthy patients, salivary 8-OHdG was the most accurate marker to differentiate periodontitis from controls (AUC = 0.84). In diabetics salivary 4-HNE and RAGE were the most accurate (AUC = 0.85 for both). CONCLUSION Salivary 8-OHdG alone or in combination with 4-HNE, AGE and RAGE for diabetics, and salivary 8-OHdG alone or in combination with MDA and hsCRP for systemically healthy persons, could potentially serve as non-invasive screening marker(s) of periodontitis.
Collapse
Affiliation(s)
- Sema Merve Altıngöz
- Department of Periodontology, Faculty of Dentistry, Lokman Hekim University, Ankara, Turkey
| | - Şivge Kurgan
- Department of Periodontoloy, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Canan Önder
- Department of Periodontoloy, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Muhittin A Serdar
- Department of Medical Biochemistry, School of Medicine, Acıbadem University, Ankara, Turkey
| | - Uğur Ünlütürk
- Department of Endocrinology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Metin Uyanık
- Department of Medical Biochemistry, School of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Nilgün Başkal
- Department of Endocrinology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Dimitris N Tatakis
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Meral Günhan
- Department of Periodontoloy, Faculty of Dentistry, Ankara University, Ankara, Turkey
| |
Collapse
|
19
|
Frolova N, Soboleva A, Nguyen VD, Kim A, Ihling C, Eisenschmidt-Bönn D, Mamontova T, Herfurth UM, Wessjohann LA, Sinz A, Birkemeyer C, Frolov A. Probing glycation potential of dietary sugars in human blood by an integrated in vitro approach. Food Chem 2020; 347:128951. [PMID: 33493836 DOI: 10.1016/j.foodchem.2020.128951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 01/12/2023]
Abstract
Glycation is referred to as the interaction of protein amino and guanidino groups with reducing sugars and carbonyl products of their degradation. Resulting advanced glycation end-products (AGEs) contribute to pathogenesis of diabetes mellitus and neurodegenerative disorders. Upon their intestinal absorption, dietary sugars and α-dicarbonyl compounds interact with blood proteins yielding AGEs. Although the differences in glycation potential of monosaccharides are well characterized, the underlying mechanisms are poorly understood. To address this question, d-glucose, d-fructose and l-ascorbic acid were incubated with human serum albumin (HSA). The sugars and α-dicarbonyl intermediates of their degradation were analyzed in parallel to protein glycation patterns (exemplified with hydroimidazolone modifications of arginine residues and products of their hydrolysis) by bottom-up proteomics and computational chemistry. Glycation of HSA with sugars revealed 9 glyoxal- and 14 methylglyoxal-derived modification sites. Their dynamics was sugar-specific and depended on concentrations of α-dicarbonyls, their formation kinetics, and presence of stabilizing residues in close proximity to the glycation sites.
Collapse
Affiliation(s)
- Nadezhda Frolova
- Institute of Analytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany
| | - Alena Soboleva
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Germany; Department of Biochemistry, St. Petersburg State University, Russia.
| | - Viet Duc Nguyen
- Institute of Analytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany; Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Germany
| | - Ahyoung Kim
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, Germany
| | | | - Tatiana Mamontova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Germany; Department of Biochemistry, St. Petersburg State University, Russia
| | - Uta M Herfurth
- Department of Food Safety, German Federal Institute for Risk Assessment, Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, Germany
| | - Claudia Birkemeyer
- Institute of Analytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Germany; Department of Biochemistry, St. Petersburg State University, Russia.
| |
Collapse
|
20
|
Garay-Sevilla ME, Beeri MS, de la Maza MP, Rojas A, Salazar-Villanea S, Uribarri J. The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: a narrative review. Nutr Res Rev 2020; 33:298-311. [PMID: 32238213 DOI: 10.1017/s0954422420000104] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing clinical and experimental evidence accumulated during the past few decades supports an important role for dietary advanced glycation endproducts (AGE) in the pathogenesis of many chronic non-infectious diseases, such as type 2 diabetes, CVD and others, that are reaching epidemic proportions in the Western world. Although AGE are compounds widely recognised as generated in excess in the body in diabetic patients, the potential importance of exogenous AGE, mostly of dietary origin, has been largely ignored in the general nutrition audience. In the present review we aim to describe dietary AGE, their mechanisms of formation and absorption into the body as well as their main mechanisms of action. We will present in detail current evidence of their potential role in the development of several chronic non-infectious clinical conditions, some general suggestions on how to restrict them in the diet and evidence regarding the potential benefits of lowering their consumption.
Collapse
Affiliation(s)
- M E Garay-Sevilla
- Medical Science Department, University of Guanajuato, Guanajuato, Mexico
| | - M S Beeri
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel
| | - M P de la Maza
- Institute of Nutrition and Food Technology Dr. Fernando Monckeberg Barros, University of Chile, Santiago, Chile
| | - A Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca, Chile
| | - S Salazar-Villanea
- Department of Animal Science, Universidad de Costa Rica, San Pedro Montes de Oca, San José, Costa Rica
| | - J Uribarri
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
21
|
Shigeta T, Sasamoto K, Yamamoto T. A novel crosslinked type of advanced glycation end-product derived from lactaldehyde. Heliyon 2020; 6:e05337. [PMID: 33204871 PMCID: PMC7653286 DOI: 10.1016/j.heliyon.2020.e05337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022] Open
Abstract
Glycation of amino or guanidino groups of proteins with glucose and glucose-derived reactive aldehydes, such as α-hydroxyaldehydes, leads to accumulation of advanced glycation end-products (AGEs) in the body, resulting in diabetic complications and age-related pathology. Although molecular structures of glycolaldehyde- and glyceraldehyde-derived AGEs have been described in previous studies, little is known about lactaldehyde-derived AGEs of α-hydroxyaldehydes. Here, we report a novel crosslinked type of AGE, named as lactaldehyde-derived lysine dimer (LAK2), which is produced due to non-enzymatic glycation of Nα-acetyl-L-lysine with lactaldehyde under physiological conditions. We have identified the molecular structure of LAK2 by extensive mass spectrometry and nuclear magnetic resonance analyses. Furthermore, we propose a reaction pathway to produce LAK2, in which it is formed through an intermediate common with the recently reported lactaldehyde-derived pyridinium-type lysine adduct (LAPL). Since lactaldehyde is known to be produced from L-threonine in a myeloperoxidase (MPO)-mediated reaction at sites of inflammation, LAK2 has the potential to be an oxidative stress marker of MPO-mediated reactions induced in inflammation.
Collapse
Affiliation(s)
- Tomoaki Shigeta
- Bloom Technology Corporation, 3-14-3 Minamikumamoto, Kumamoto 860-0812, Japan
| | - Kazumi Sasamoto
- Bloom Technology Corporation, 3-14-3 Minamikumamoto, Kumamoto 860-0812, Japan
| | - Tetsuro Yamamoto
- Bloom Technology Corporation, 3-14-3 Minamikumamoto, Kumamoto 860-0812, Japan
| |
Collapse
|
22
|
Arakawa S, Suzuki R, Kurosaka D, Ikeda R, Hayashi H, Kayama T, Ohno RI, Nagai R, Marumo K, Saito M. Mass spectrometric quantitation of AGEs and enzymatic crosslinks in human cancellous bone. Sci Rep 2020; 10:18774. [PMID: 33139851 PMCID: PMC7606603 DOI: 10.1038/s41598-020-75923-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Advanced glycation end-products (AGEs) deteriorate bone strength. Among over 40 species identified in vivo, AGEs other than pentosidine were roughly estimated as total fluorescent AGEs (tfAGEs) due to technical difficulties. Using LC-QqTOF-MS, we established a system that enabled the quantitation of five AGEs (CML, CEL, MG-H1, CMA and pentosidine) as well as two mature and three immature enzymatic crosslinks. Human bone samples were collected from 149 patients who underwent total knee arthroplasty. Their clinical parameters were collected to investigate parameters that may be predictive of AGE accumulation. All the analytes were quantitated and showed significant linearity with high sensitivity and precision. The results showed that MG-H1 was the most abundant AGE, whereas pentosidine was 1/200-1/20-fold less abundant than the other four AGEs. The AGEs were significantly and strongly correlated with pentosidine, while showing moderate correlation with tfAGEs. Interestingly, multiple linear regression analysis revealed that gender contributed most to the accumulation of all the AGEs, followed by age, tartrate-resistant acid phosphatase-5b and HbA1c. Furthermore, the AGEs were negatively correlated with immature crosslinks. Mass spectrometric quantitation of AGEs and enzymatic crosslinks is crucial to a better understanding of ageing- and disease-related deterioration of bone strength.
Collapse
Affiliation(s)
- Shoutaro Arakawa
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
- Laboratory of Food and Regulation Biology, School of Agriculture, Tokai University, 9-1-1, Toroku, Higashi-ku, Kumamoto, 862-8652, Japan.
| | - Ryusuke Suzuki
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
- Laboratory of Food and Regulation Biology, School of Agriculture, Tokai University, 9-1-1, Toroku, Higashi-ku, Kumamoto, 862-8652, Japan
| | - Daisaburo Kurosaka
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Ryo Ikeda
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hiroteru Hayashi
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Tomohiro Kayama
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Rei-Ichi Ohno
- Laboratory of Food and Regulation Biology, School of Agriculture, Tokai University, 9-1-1, Toroku, Higashi-ku, Kumamoto, 862-8652, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, School of Agriculture, Tokai University, 9-1-1, Toroku, Higashi-ku, Kumamoto, 862-8652, Japan
| | - Keishi Marumo
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
23
|
Glycation reaction and the role of the receptor for advanced glycation end-products in immunity and social behavior. Glycoconj J 2020; 38:303-310. [PMID: 33108607 DOI: 10.1007/s10719-020-09956-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 08/30/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022]
Abstract
The receptor for advanced glycation end-products (receptor for AGEs, RAGE) is a pattern recognition receptor. The interaction of RAGE with its ligands, such as AGEs, S100 proteins, high mobility group box-1 (HMGB1), and lipopolysaccharides (LPS), is known to play a pivotal role in the propagation of immune responses and inflammatory reactions. The ligand-RAGE interaction elicits cellular responses, for example, in myeloid and lymphoid cells, through distinct pathways by activating NF-κB and Rac1/cdc42, which lead to cytokine production, cell migration, phagocytosis, maturation, and polarization. Recently, oxytocin, a peptide hormone and neuropeptide, was identified as a novel binding molecule for the RAGE; however, it cannot compete with the interaction of RAGE with other ligands or induce RAGE intracellular signaling. The RAGE transports oxytocin from the blood into the brain and regulates brain functions. In this review, we summarize the current understanding of glycation reaction, AGEs, and the RAGE-mediated biological responses as well as the physiological role of RAGE in immunity and social behaviors, particularly, maternal bonding.
Collapse
|
24
|
Heinzel FR, Hegemann N, Hohendanner F, Primessnig U, Grune J, Blaschke F, de Boer RA, Pieske B, Schiattarella GG, Kuebler WM. Left ventricular dysfunction in heart failure with preserved ejection fraction-molecular mechanisms and impact on right ventricular function. Cardiovasc Diagn Ther 2020; 10:1541-1560. [PMID: 33224773 PMCID: PMC7666919 DOI: 10.21037/cdt-20-477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The current classification of heart failure (HF) based on left ventricular (LV) ejection fraction (EF) identifies a large group of patients with preserved ejection fraction (HFpEF) with significant morbidity and mortality but without prognostic benefit from current HF therapy. Co-morbidities and conditions such as arterial hypertension, diabetes mellitus, chronic kidney disease, adiposity and aging shape the clinical phenotype and contribute to mortality. LV diastolic dysfunction and LV structural remodeling are hallmarks of HFpEF, and are linked to remodeling of the cardiomyocyte and extracellular matrix. Pulmonary hypertension (PH) and right ventricular dysfunction (RVD) are particularly common in HFpEF, and mortality is up to 10-fold higher in HFpEF patients with vs. without RV dysfunction. Here, we review alterations in cardiomyocyte function (i.e., ion homeostasis, sarcomere function and cellular metabolism) associated with diastolic dysfunction and summarize the main underlying cellular pathways. The contribution and interaction of systemic and regional upstream signaling such as chronic inflammation, neurohumoral activation, and NO-cGMP-related pathways are outlined in detail, and their diagnostic and therapeutic potential is discussed in the context of preclinical and clinical studies. In addition, we summarize prevalence and pathomechanisms of RV dysfunction in the context of HFpEF and discuss mechanisms connecting LV and RV dysfunction in HFpEF. Dissecting the molecular mechanisms of LV and RV dysfunction in HFpEF may provide a basis for an improved classification of HFpEF and for therapeutic approaches tailored to the molecular phenotype.
Collapse
Affiliation(s)
- Frank R. Heinzel
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Niklas Hegemann
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Hohendanner
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Uwe Primessnig
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Jana Grune
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Blaschke
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Rudolf A. de Boer
- Department of Cardiology, Groningen, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center, Berlin, Germany
| | | | - Wolfgang M. Kuebler
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
25
|
Senatus L, López-Díez R, Egaña-Gorroño L, Liu J, Hu J, Daffu G, Li Q, Rahman K, Vengrenyuk Y, Barrett TJ, Dewan MZ, Guo L, Fuller D, Finn AV, Virmani R, Li H, Friedman RA, Fisher EA, Ramasamy R, Schmidt AM. RAGE impairs murine diabetic atherosclerosis regression and implicates IRF7 in macrophage inflammation and cholesterol metabolism. JCI Insight 2020; 5:137289. [PMID: 32641587 PMCID: PMC7406264 DOI: 10.1172/jci.insight.137289] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/21/2020] [Indexed: 12/27/2022] Open
Abstract
Despite advances in lipid-lowering therapies, people with diabetes continue to experience more limited cardiovascular benefits. In diabetes, hyperglycemia sustains inflammation and preempts vascular repair. We tested the hypothesis that the receptor for advanced glycation end-products (RAGE) contributes to these maladaptive processes. We report that transplantation of aortic arches from diabetic, Western diet-fed Ldlr-/- mice into diabetic Ager-/- (Ager, the gene encoding RAGE) versus WT diabetic recipient mice accelerated regression of atherosclerosis. RNA-sequencing experiments traced RAGE-dependent mechanisms principally to the recipient macrophages and linked RAGE to interferon signaling. Specifically, deletion of Ager in the regressing diabetic plaques downregulated interferon regulatory factor 7 (Irf7) in macrophages. Immunohistochemistry studies colocalized IRF7 and macrophages in both murine and human atherosclerotic plaques. In bone marrow-derived macrophages (BMDMs), RAGE ligands upregulated expression of Irf7, and in BMDMs immersed in a cholesterol-rich environment, knockdown of Irf7 triggered a switch from pro- to antiinflammatory gene expression and regulated a host of genes linked to cholesterol efflux and homeostasis. Collectively, this work adds a new dimension to the immunometabolic sphere of perturbations that impair regression of established diabetic atherosclerosis and suggests that targeting RAGE and IRF7 may facilitate vascular repair in diabetes.
Collapse
Affiliation(s)
- Laura Senatus
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Raquel López-Díez
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Lander Egaña-Gorroño
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Jianhua Liu
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Jiyuan Hu
- Division of Biostatistics, Department of Population Health, and Department of Environmental Medicine, and
| | - Gurdip Daffu
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Qing Li
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Karishma Rahman
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Yuliya Vengrenyuk
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Tessa J. Barrett
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - M. Zahidunnabi Dewan
- Experimental Pathology Research Laboratory, Department of Pathology, New York University (NYU) Langone Medical Center, New York, New York, USA
| | - Liang Guo
- CVPath Institute, Gaithersburg, Maryland, USA
| | | | | | | | - Huilin Li
- Division of Biostatistics, Department of Population Health, and Department of Environmental Medicine, and
| | - Richard A. Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, and Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, New York, USA
| | - Edward A. Fisher
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| |
Collapse
|
26
|
Chikazawa M, Yoshitake J, Lim SY, Iwata S, Negishi L, Shibata T, Uchida K. Glycolaldehyde is an endogenous source of lysine N-pyrrolation. J Biol Chem 2020; 295:7697-7709. [PMID: 32332094 DOI: 10.1074/jbc.ra120.013179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/21/2020] [Indexed: 11/06/2022] Open
Abstract
Lysine N-pyrrolation converts lysine residues to N ϵ-pyrrole-l-lysine (pyrK) in a covalent modification reaction that significantly affects the chemical properties of proteins, causing them to mimic DNA. pyrK in proteins has been detected in vivo, indicating that pyrrolation occurs as an endogenous reaction. However, the source of pyrK remains unknown. In this study, on the basis of our observation in vitro that pyrK is present in oxidized low-density lipoprotein and in modified proteins with oxidized polyunsaturated fatty acids, we used LC-electrospray ionization-MS/MS coupled with a stable isotope dilution method to perform activity-guided separation of active molecules in oxidized lipids and identified glycolaldehyde (GA) as a pyrK source. The results from mechanistic experiments to study GA-mediated lysine N-pyrrolation suggested that the reactions might include GA oxidation, generating the dialdehyde glyoxal, followed by condensation reactions of lysine amino groups with GA and glyoxal. We also studied the functional significance of GA-mediated lysine N-pyrrolation in proteins and found that GA-modified proteins are recognized by apolipoprotein E, a binding target of pyrrolated proteins. Moreover, GA-modified proteins triggered an immune response to pyrrolated proteins, and monoclonal antibodies generated from mice immunized with GA-modified proteins specifically recognized pyrrolated proteins. These findings reveal that GA is an endogenous source of DNA-mimicking pyrrolated proteins and may provide mechanistic insights relevant for innate and autoimmune responses associated with glucose metabolism and oxidative stress.
Collapse
Affiliation(s)
- Miho Chikazawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Jun Yoshitake
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Sei-Young Lim
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shiori Iwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Lumi Negishi
- Central Laboratory, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takahiro Shibata
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan .,Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
27
|
Xu X, Zhao M, Han Q, Wang H, Zhang H, Wang Y. Effects of piceatannol on the structure and activities of bovine serum albumin: A multi-spectral and molecular modeling studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117706. [PMID: 31753657 DOI: 10.1016/j.saa.2019.117706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Piceatannol (PIC) displays a wide spectrum of biological activities, such as antioxidation, antibacterial activity and anti-inflammation, but the biochemical and molecular mechanism is not fully understood. In this study, the interaction of PIC with bovine serum albumin (BSA) was studied by fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, circular dichroism spectroscopy and molecular simulation. The effects of PIC on BSA non-enzymatic glycosylation, fibrillation, thermal stability, and structure information were also studied. The results showed that the formation of PIC-BSA complex by mainly hydrogen-bonding forces resulted in the conformational changes of protein. PIC inhibited the formation of β-sheets structures of BSA. BSA still maintained the esterase-like good activity in the presence of PIC. In addition, PIC significantly reduced the degree of BSA glycosylation. These results provided a basis for the molecular interaction between PIC and protein, and suggested the potential effect of PIC in preventing the progression of diabetes mellitus.
Collapse
Affiliation(s)
- Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, B508, No. 364 Building, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China.
| | - Mengshu Zhao
- Center for Molecular Metabolism, Nanjing University of Science and Technology, B508, No. 364 Building, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China
| | - Qianqian Han
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224002, People's Republic of China
| | - Huijie Wang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224002, People's Republic of China
| | - Hongmei Zhang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224002, People's Republic of China
| | - Yanqing Wang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224002, People's Republic of China.
| |
Collapse
|
28
|
González I, Morales MA, Rojas A. Polyphenols and AGEs/RAGE axis. Trends and challenges. Food Res Int 2020; 129:108843. [PMID: 32036875 DOI: 10.1016/j.foodres.2019.108843] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/07/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
The formation of advanced glycation end-products (AGEs) is a key pathophysiological event linked not only to the onset and progression of diabetic complications, but also to neurodegeneration, cardiovascular diseases, cancer, and others important human diseases. AGEs contributions to pathophysiology are mainly through the formation of cross-links and by engaging the receptor for advanced glycation end-products (RAGE). Polyphenols are secondary metabolites found largely in fruits, vegetables, cereals, and beverages, and during many years, important efforts have been made to elucidate their beneficial effects on human health, mainly ascribed to their antioxidant activities. In the present review, we highlighted the beneficial actions of polyphenols aimed to diminish the harmful consequences of advanced glycation, mainly by the inhibition of ROS formation during glycation, the inhibition of Schiff base, Amadori products, and subsequent dicarbonyls group formation, the activation of the glyoxalase system, as well as by blocking either AGEs-RAGE interaction or cell signaling.
Collapse
Affiliation(s)
- Ileana González
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Miguel A Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chil
| | - Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| |
Collapse
|
29
|
Thornalley PJ. Measurement of Protein Glycation, Glycated Peptides, and Glycation Free Adducts. Perit Dial Int 2020. [DOI: 10.1177/089686080502500603] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein glycation adducts, early glycation adducts, such as N∊-fructosyl-lysine, and advanced glycation end products (AGEs) are uremic toxins. Glycation adducts are found in plasma and tissue proteins (glycation adduct residues), in peptides (glycation adduct peptide residues), and glycated amino acids (glycation free adducts). The latter two analyte groups arise from proteolysis of glycated proteins and glycation of peptides and amino acids. Quantitation of glycation adducts in uremia is difficult because of the presence of many different AGEs at low concentrations in different forms in the presence of many potential interferences. Application of liquid chromatography with tandem mass spectrometric (LC-MS/MS) detection to plasma, urine, and dialysate samples of uremic patients has provided a comprehensive and quantitative analysis of glycation adducts in uremia. Glycation free adducts accumulate markedly in the plasma of uremic patients and are eliminated in the peritoneal dialysate. Multiple glycation adducts, and also protein oxidation and nitration adducts, may be quantified concurrently. Glycation free adducts are the major form of glycation adduct eliminated in dialysate. LC-MS/MS may now be used to quantify concentrations, extents of protein modification, clearances, and excretion rates of glycation adducts in uremia.
Collapse
Affiliation(s)
- Paul J. Thornalley
- Department of Biological Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
30
|
Ruiz HH, Ramasamy R, Schmidt AM. Advanced Glycation End Products: Building on the Concept of the "Common Soil" in Metabolic Disease. Endocrinology 2020; 161:bqz006. [PMID: 31638645 PMCID: PMC7188081 DOI: 10.1210/endocr/bqz006] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 10/01/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
The role of advanced glycation end products (AGEs) in promoting and/or exacerbating metabolic dysregulation is being increasingly recognized. AGEs are formed when reducing sugars nonenzymatically bind to proteins or lipids, a process that is enhanced by hyperglycemic and hyperlipidemic environments characteristic of numerous metabolic disorders including obesity, diabetes, and its complications. In this mini-review, we put forth the notion that AGEs span the spectrum from cause to consequence of insulin resistance and diabetes, and represent a "common soil" underlying the pathophysiology of these metabolic disorders. Collectively, the surveyed literature suggests that AGEs, both those that form endogenously as well as exogenous AGEs derived from environmental factors such as pollution, smoking, and "Western"-style diets, contribute to the pathogenesis of obesity and diabetes. Specifically, AGE accumulation in key metabolically relevant organs induces insulin resistance, inflammation, and oxidative stress, which in turn provide substrates for excess AGE formation, thus creating a feed-forward-fueled pathological loop mediating metabolic dysfunction.
Collapse
Affiliation(s)
- Henry H Ruiz
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
31
|
Yang J, Zhang F, Shi H, Gao Y, Dong Z, Ma L, Sun X, Li X, Chang S, Wang Z, Qu Y, Li H, Hu K, Sun A, Ge J. Neutrophil-derived advanced glycation end products-Nε-(carboxymethyl) lysine promotes RIP3-mediated myocardial necroptosis via RAGE and exacerbates myocardial ischemia/reperfusion injury. FASEB J 2019; 33:14410-14422. [PMID: 31665609 DOI: 10.1096/fj.201900115rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nε-(carboxymethyl) lysine (CML), the major member of advanced glycation end products, was widely studied in diabetic complications and aging-associated diseases. However, the impact of CML on myocardial ischemia/reperfusion injury (MI/RI) was rarely reported. In the present study, CML was increased in both patients with acute myocardial infarction (53.4 ± 7.8 vs. 28.1 ± 4.4 ng; P = 0.017), and mice underwent MI/RI (16.4 ± 1.4 vs. 10.8 ± 0.9 ng; P = 0.006). Depletion of neutrophils reduced CML (17.8 ± 1.0 vs. 9.9 ± 0.3 ng; P < 0.001), indicating neutrophils were the major cells contributing to CML formation during MI/RI. CML treatment exacerbated MI/RI by elevating myocardial injury marker (274.3 ± 18.0 vs. 477.2 ± 34.3 pg; P < 0.001), enlarging myocardial infarct size (32.9 ± 3.6 vs. 45.2 ± 3.8%; P = 0.03), increasing myocardial fibrosis (17.5 ± 1.6 vs. 29.7 ± 2.2%; P < 0.001) and impairing cardiac function (59.4 ± 2.4% vs. 46.0 ± 1.3%; P = 0.001). Further study revealed that CML increased the phosphorylation of receptor interacting protein (RIP) 3, an important initiator of necroptosis, and its downstream proteins. Receptor for advanced glycation end product (RAGE) deficiency effectively blocked RIP3 phosphorylation induced by CML and rescued CML-mediated MI/RI, indicating CML promoted RIP3-mediated necroptosis through RAGE. In addition, glyoxalase-1 overexpression could effectively attenuate MI/RI by reducing CML formation, providing a potential therapeutic target for MI/RI.-Yang, J., Zhang, F., Shi, H., Gao, Y., Dong, Z., Ma, L., Sun, X., Li, X., Chang, S., Wang, Z., Qu, Y., Li, H., Hu, K., Sun, A., Ge, J. Neutrophil-derived advanced glycation end products-Nε-(carboxymethyl) lysine promotes RIP3-mediated myocardial necroptosis via RAGE and exacerbates myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ji'e Yang
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Feng Zhang
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Huairui Shi
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Yang Gao
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Zhen Dong
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Leilei Ma
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Xiaolei Sun
- Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Xiao Li
- Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Suchi Chang
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Zeng Wang
- Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Yanan Qu
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Hua Li
- Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.,Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.,Institute of Biomedical Science, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Fernando DH, Forbes JM, Angus PW, Herath CB. Development and Progression of Non-Alcoholic Fatty Liver Disease: The Role of Advanced Glycation End Products. Int J Mol Sci 2019; 20:E5037. [PMID: 31614491 PMCID: PMC6834322 DOI: 10.3390/ijms20205037] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/19/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects up to 30% of the adult population and is now a major cause of liver disease-related premature illness and deaths in the world. Treatment is largely based on lifestyle modification, which is difficult to achieve in most patients. Progression of simple fatty liver or steatosis to its severe form non-alcoholic steatohepatitis (NASH) and liver fibrosis has been explained by a 'two-hit hypothesis'. Whilst simple steatosis is considered the first hit, its transformation to NASH may be driven by a second hit. Of several factors that constitute the second hit, advanced glycation end products (AGEs), which are formed when reducing-sugars react with proteins or lipids, have been implicated as major candidates that drive steatosis to NASH via the receptor for AGEs (RAGE). Both endogenous and processed food-derived (exogenous) AGEs can activate RAGE, mainly present on Kupffer cells and hepatic stellate cells, thus propagating NAFLD progression. This review focuses on the pathophysiology of NAFLD with special emphasis on the role of food-derived AGEs in NAFLD progression to NASH and liver fibrosis. Moreover, the effect of dietary manipulation to reduce AGE content in food or the therapies targeting AGE/RAGE pathway on disease progression is also discussed.
Collapse
Affiliation(s)
- Dinali H Fernando
- Department of Medicine, The University of Melbourne, Melbourne 3084, Australia.
| | | | - Peter W Angus
- Liver transplant unit, Austin Health, Heidelberg 3084, Australia.
| | - Chandana B Herath
- Department of Medicine, The University of Melbourne, Melbourne 3084, Australia.
| |
Collapse
|
33
|
Ullah R, Khan M, Shah SA, Saeed K, Kim MO. Natural Antioxidant Anthocyanins-A Hidden Therapeutic Candidate in Metabolic Disorders with Major Focus in Neurodegeneration. Nutrients 2019; 11:E1195. [PMID: 31141884 PMCID: PMC6628002 DOI: 10.3390/nu11061195] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
All over the world, metabolic syndrome constitutes severe health problems. Multiple factors have been reported in the pathogenesis of metabolic syndrome. Metabolic disorders result in reactive oxygen species (ROS) induced oxidative stress, playing a vital role in the development and pathogenesis of major health issues, including neurological disorders Alzheimer's disease (AD) Parkinson's disease (PD). Considerable increasing evidence indicates the substantial contribution of ROS-induced oxidative stress in neurodegenerative diseases. An imbalanced metabolism results in a defective antioxidant defense system, free radicals causing inflammation, cellular apoptosis, and tissue damage. Due to the annual increase in financial and social burdens, in addition to the adverse effects associated with available synthetic agents, treatment diversion from synthetic to natural approaches has occurred. Antioxidants are now being considered as convincing therapeutic agents against various neurodegenerative disorders. Therefore, medicinal herbs and fruits currently receive substantially more attention as commercial sources of antioxidants. In this review, we argue that ROS-targeted therapeutic interventions with naturally occurring antioxidant flavonoid, anthocyanin, and anthocyanin-loaded nanoparticles might be the ultimate treatment against devastating illnesses. Furthermore, we elucidate the hidden potential of the neuroprotective role of anthocyanins and anthocyanin-loaded nanoparticles in AD and PD neuropathies, which lack sufficient attention compared with other polyphenols, despite their strong antioxidant potential. Moreover, we address the need for future research studies of native anthocyanins and nano-based-anthocyanins, which will be helpful in developing anthocyanin treatments as therapeutic mitochondrial antioxidant drug-like regimens to delay or prevent the progression of neurodegenerative diseases, such as AD and PD.
Collapse
Affiliation(s)
- Rahat Ullah
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Mehtab Khan
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Shahid Ali Shah
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
- Department of Chemistry, Sarhad University of Science & Information Technology (SUIT), Peshawar Khyber Pakhtunkhwa 25000, Pakistan.
| | - Kamran Saeed
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
34
|
Shumilina J, Kusnetsova A, Tsarev A, Janse van Rensburg HC, Medvedev S, Demidchik V, Van den Ende W, Frolov A. Glycation of Plant Proteins: Regulatory Roles and Interplay with Sugar Signalling? Int J Mol Sci 2019; 20:E2366. [PMID: 31086058 PMCID: PMC6539852 DOI: 10.3390/ijms20092366] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Glycation can be defined as an array of non-enzymatic post-translational modifications of proteins formed by their interaction with reducing carbohydrates and carbonyl products of their degradation. Initial steps of this process rely on reducing sugars and result in the formation of early glycation products-Amadori and Heyns compounds via Schiff base intermediates, whereas their oxidative degradation or reactions of proteins with α-dicarbonyl compounds yield a heterogeneous group of advanced glycation end products (AGEs). These compounds accompany thermal processing of protein-containing foods and are known to impact on ageing, pathogenesis of diabetes mellitus and Alzheimer's disease in mammals. Surprisingly, despite high tissue carbohydrate contents, glycation of plant proteins was addressed only recently and its physiological role in plants is still not understood. Therefore, here we summarize and critically discuss the first steps done in the field of plant protein glycation during the last decade. We consider the main features of plant glycated proteome and discuss them in the context of characteristic metabolic background. Further, we address the possible role of protein glycation in plants and consider its probable contribution to protein degradation, methylglyoxal and sugar signalling, as well as interplay with antioxidant defense.
Collapse
Affiliation(s)
- Julia Shumilina
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
| | - Alena Kusnetsova
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Biotechnology, St. Petersburg Chemical Pharmaceutical University, Saint Petersburg 197022, Russia.
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| | | | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
| | - Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Belarusian State University, 220030 Minsk, Belarus.
- Department of Horticulture, Foshan University, Foshan 528231, China.
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, 3001 Leuven, Belgium.
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| |
Collapse
|
35
|
Schmidt AM. Diabetes Mellitus and Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:558-568. [PMID: 30786741 PMCID: PMC6532416 DOI: 10.1161/atvbaha.119.310961] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease remains a leading cause of morbidity and mortality in people with types 1 or 2 diabetes mellitus. Although beneficial roles for strict control of hyperglycemia have been suggested, such a strategy is not without liabilities. Specifically, the risk of hypoglycemia and its consequences remain an omnipresent threat with such approaches. The advent of the CVOT (Cardiovascular Outcomes Trials) for new antidiabetes mellitus treatments has uncovered unexpected benefits of cardiovascular protection in some of the new classes of agents, such as the GLP-1 RAs (glucagon-like peptide-1 receptor agonists) and the SGLT-2 (sodium-glucose cotransporter-2) inhibitors. Further, state-of-the-art approaches, such as antibodies to PCKSK9 (proprotein convertase subtilisin-kexin type 9); RNA therapeutics; agents targeting distinct components of the immune/inflammatory response; and novel small molecules that block the actions of RAGE (receptor for advanced glycation end products) signaling, also hold potential as new therapies for diabetes mellitus and cardiovascular disease. Finally, interventions such as weight loss, through bariatric surgery, may hold promise for benefit in diabetes and cardiovascular disease. In this Brief Review, some of the novel approaches and emerging targets for the treatment of diabetes mellitus and cardiovascular disease are discussed. Ultimately, identification of the optimal timing and combinations of such interventions, especially in the context of personalized approaches, together with emerging disease-modifying agents, holds great promise to reduce the burden that diabetes poses to the cardiovascular system.
Collapse
Affiliation(s)
- Ann Marie Schmidt
- From the Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York
| |
Collapse
|
36
|
Fracasso BDM, Rangel JO, Machado AG, Curuja FS, Lopes A, Olsen V, Clausell N, Biolo A, Rohde LE, Andrades M. Characterization of advanced glycation end products and their receptor (RAGE) in an animal model of myocardial infarction. PLoS One 2019; 14:e0209964. [PMID: 30633750 PMCID: PMC6329515 DOI: 10.1371/journal.pone.0209964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
Circulating advanced glycation end products (AGE) and their receptor, RAGE, are increased after a myocardial infarction (MI) episode and seem to be associated with worse prognosis in patients. Despite the increasing importance of these molecules in the course of cardiac diseases, they have never been characterized in an animal model of MI. Thus, the aim of this study was to characterize AGE formation and RAGE expression in plasma and cardiac tissue during cardiac remodeling after MI in rats. Adult male Wistar rats were randomized to receive sham surgery (n = 15) or MI induction (n = 14) by left anterior descending coronary artery ligation. The MI group was stratified into two subgroups based on postoperative left ventricular ejection fraction: low (MIlowEF) and intermediate (MIintermEF). Echocardiography findings and plasma levels of AGEs, protein carbonyl, and free amines were assessed at baseline and 2, 30, and 120 days postoperatively. At the end of follow-up, the heart was harvested for AGE and RAGE evaluation. No differences were observed in AGE formation in plasma, except for a decrease in absorbance in MIlowEF at the end of follow-up. A decrease in yellowish-brown AGEs in heart homogenate was found, which was confirmed by immunodetection of N-ε-carboxymethyl-lysine. No differences could be seen in plasma RAGE levels among the groups, despite an increase in MI groups over the time. However, MI animals presented an increase of 50% in heart RAGE at the end of the follow-up. Despite the inflammatory and oxidative profile of experimental MI in rats, there was no increase in plasma AGE or RAGE levels. However, AGE levels in cardiac tissue declined. Thus, we suggest that the rat MI model should be employed with caution when studying the AGE-RAGE signaling axis or anti-AGE drugs for not reflecting previous clinical findings.
Collapse
Affiliation(s)
- Bianca de Moraes Fracasso
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Post-Graduate Program in Cardiology and Cardiovascular Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Juliana Oliveira Rangel
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Post-Graduate Program in Cardiology and Cardiovascular Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alessandra Gonçalves Machado
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Post-Graduate Program in Cardiology and Cardiovascular Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Severo Curuja
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Amanda Lopes
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Virgílio Olsen
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Nadine Clausell
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Post-Graduate Program in Cardiology and Cardiovascular Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andreia Biolo
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Post-Graduate Program in Cardiology and Cardiovascular Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luis Eduardo Rohde
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Post-Graduate Program in Cardiology and Cardiovascular Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Michael Andrades
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Post-Graduate Program in Cardiology and Cardiovascular Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
37
|
Pérez-Ruiz I, Meijide S, Hérnandez ML, Navarro R, Larreategui Z, Ferrando M, Ruiz-Larrea MB, Ruiz-Sanz JI. Analysis of Protein Oxidative Modifications in Follicular Fluid from Fertile Women: Natural Versus Stimulated Cycles. Antioxidants (Basel) 2018; 7:antiox7120176. [PMID: 30486406 PMCID: PMC6315688 DOI: 10.3390/antiox7120176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress is associated with obstetric complications during ovarian hyperstimulation in women undergoing in vitro fertilization. The follicular fluid contains high levels of proteins, which are the main targets of free radicals. The aim of this work was to determine specific biomarkers of non-enzymatic oxidative modifications of proteins from follicular fluid in vivo, and the effect of ovarian stimulation with gonadotropins on these biomarkers. For this purpose, 27 fertile women underwent both a natural and a stimulated cycle. The biomarkers, glutamic semialdehyde (GSA), aminoadipic semialdehyde (AASA), Nε-(carboxymethyl)lysine (CML), and Nε-(carboxyethyl)lysine (CEL), were measured by gas-liquid chromatography coupled to mass spectrometry. Results showed that follicular fluid contained products of protein modifications by direct metal-catalyzed oxidation (GSA and AASA), glycoxidation (CML and CEL), and lipoxidation (CML). GSA was the most abundant biomarker (91.5%). The levels of CML amounted to 6% of the total lesions and were higher than AASA (1.3%) and CEL (1.2%). In the natural cycle, CEL was significantly lower (p < 0.05) than in the stimulated cycle, suggesting that natural cycles are more protected against protein glycoxidation. These findings are the basis for further research to elucidate the possible relevance of this follicular biomarker of advanced glycation end product in fertility programs.
Collapse
Affiliation(s)
- Irantzu Pérez-Ruiz
- Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
- BioCruces Health Research Institute, Plaza de Cruces s/n, 48903 Barakaldo, Spain.
| | - Susana Meijide
- Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
| | - María-Luisa Hérnandez
- Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
- BioCruces Health Research Institute, Plaza de Cruces s/n, 48903 Barakaldo, Spain.
| | - Rosaura Navarro
- Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
- BioCruces Health Research Institute, Plaza de Cruces s/n, 48903 Barakaldo, Spain.
| | - Zaloa Larreategui
- Valencian Institute of Infertility (IVI-RMA)-Bilbao, 48940 Leioa, Spain.
| | - Marcos Ferrando
- Valencian Institute of Infertility (IVI-RMA)-Bilbao, 48940 Leioa, Spain.
| | - María-Begoña Ruiz-Larrea
- Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
- BioCruces Health Research Institute, Plaza de Cruces s/n, 48903 Barakaldo, Spain.
| | - José-Ignacio Ruiz-Sanz
- Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
- BioCruces Health Research Institute, Plaza de Cruces s/n, 48903 Barakaldo, Spain.
| |
Collapse
|
38
|
Static Magnetic Fields Modulate the Response of Different Oxidative Stress Markers in a Restraint Stress Model Animal. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3960408. [PMID: 29888261 PMCID: PMC5977024 DOI: 10.1155/2018/3960408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/29/2018] [Indexed: 12/13/2022]
Abstract
Stress is a state of vulnerable homeostasis that alters the physiological and behavioral responses. Stress induces oxidative damage in several organs including the brain, liver, kidney, stomach, and heart. Preliminary findings suggested that the magnetic stimulation could accelerate the healing processes and has been an effective complementary therapy in different pathologies. However, the mechanism of action of static magnetic fields (SMFs) is not well understood. In this study, we demonstrated the effects of static magnetic fields (0.8 mT) in a restraint stressed animal model, focusing on changes in different markers of oxidative damage. A significant increase in the plasma levels of nitric oxide (NO), malondialdehyde (MDA), and advanced oxidation protein products (AOPP), and a decrease in superoxide dismutase (SOD), glutathione (GSH), and glycation end products (AGEs) were observed in restraint stress model. Exposure to SMFs over 5 days (30, 60, and 240 min/day) caused a decrease in the NO, MDA, AGEs, and AOPP levels; in contrast, the SOD and GSH levels increased. The response to SMFs was time-dependent. Thus, we proposed that exposure to weak-intensity SMFs could offer a complementary therapy by attenuating oxidative stress. Our results provided a new perspective in health studies, particularly in the context of oxidative stress.
Collapse
|
39
|
Henning C, Liehr K, Girndt M, Ulrich C, Glomb MA. Analysis and Chemistry of Novel Protein Oxidation Markers in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4692-4701. [PMID: 29707946 DOI: 10.1021/acs.jafc.8b00558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Proteins continually undergo spontaneous oxidation reactions, which lead to changes in structure and function. The quantitative assessment of protein oxidation adducts provides information on the level of exposure to reactive precursor compounds with a high oxidizing potential and reactive oxygen species (ROS). In the present work, we introduce N6-(2-hydroxyethyl)lysine as a novel marker based on the ratio of glycolaldehyde and its oxidized form glyoxal. The high analytical potential was proven with a first set of patients undergoing hemodialysis versus healthy controls, in comparison with well-established parameters for oxidative stress. In vitro experiments with N1- t-BOC-lysine and N1- t-BOC-arginine enlightened the mechanistic relationship of glycolaldehyde and glyoxal. Oxidation was strongly dependent on the catalytic action of the ε-amino moiety of lysine. Investigations on the formation of N6-carboxymethyl lysine revealed glycolaldehyde-imine as the more reactive precursor, even though an additional oxidative step is required. As a result, a novel and very effective alternative mechanism was unraveled.
Collapse
Affiliation(s)
- Christian Henning
- Institute of Chemistry, Food Chemistry , Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Str. 2 , 06120 Halle/Saale , Germany
| | - Kristin Liehr
- Institute of Chemistry, Food Chemistry , Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Str. 2 , 06120 Halle/Saale , Germany
| | - Matthias Girndt
- Department of Internal Medicine II , Martin-Luther-University Halle-Wittenberg , Ernst-Grube-Str. 40 , 06120 Halle/Saale , Germany
| | - Christof Ulrich
- Department of Internal Medicine II , Martin-Luther-University Halle-Wittenberg , Ernst-Grube-Str. 40 , 06120 Halle/Saale , Germany
| | - Marcus A Glomb
- Institute of Chemistry, Food Chemistry , Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Str. 2 , 06120 Halle/Saale , Germany
| |
Collapse
|
40
|
Ahmed A, Shamsi A, Khan MS, Husain FM, Bano B. Methylglyoxal induced glycation and aggregation of human serum albumin: Biochemical and biophysical approach. Int J Biol Macromol 2018; 113:269-276. [PMID: 29481950 DOI: 10.1016/j.ijbiomac.2018.02.137] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/15/2018] [Accepted: 02/22/2018] [Indexed: 11/15/2022]
Abstract
Serum protein glycation and formation of advanced glycation end products (AGEs) correlates with many diseases viz. diabetes signifying the importance of studying the glycation pattern of serum proteins. In our present study, methylglyoxal was investigated for its effect on the structure of human serum albumin (HSA); exploring the formation of AGEs and aggregates of HSA. The analytical tools employed includes intrinsic and extrinsic fluorescence, UV spectroscopy, far UV circular dichroism, Thioflavin T fluorescence, congo red binding, polyacrylamide gel electrophoresis (PAGE). UV and fluorescence spectroscopy revealed the structural transition of native HSA evident by new peaks and increased absorbance in UV spectra and quenched fluorescence in the presence of MG. Far UV CD spectroscopy revealed MG induced secondary structural alteration evident by reduced α-helical content. AGEs formation was confirmed by AGEs specific fluorescence. Increased ThT fluorescence and CR absorbance of 10mM MG incubated HSA suggests that glycated HSA results in the formation of aggregates of HSA. SEM and TEM were reported to have an insight of these aggregates. Molecular docking was also utilized to see site specific interaction of MG-HSA. This study is clinically significant as HSA is a clinically relevant protein which plays a crucial role in many diseases.
Collapse
Affiliation(s)
- Azaj Ahmed
- Department of Biochemistry, F/O Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Anas Shamsi
- Department of Biochemistry, F/O Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Bilqees Bano
- Department of Biochemistry, F/O Life Sciences, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
41
|
Klaus A, Baldensperger T, Fiedler R, Girndt M, Glomb MA. Influence of Transketolase-Catalyzed Reactions on the Formation of Glycolaldehyde and Glyoxal Specific Posttranslational Modifications under Physiological Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1498-1508. [PMID: 29400466 DOI: 10.1021/acs.jafc.7b05472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the present study, we investigated the role of transketolase (TK) in the modulation of glycolaldehyde driven Maillard reactions. In vitro experiments with recombinant human TK reduced glycolaldehyde and glyoxal induced carbonyl stress and thereby suppressed the formation of advanced glycation endproducts up to 70% due to the enzyme-catalyzed conversion of glycolaldehyde to erythrulose. This was further substantiated by the use of 13C-labeled compounds. For the first time, glycolaldehyde and other sugars involved in the TK reaction were quantified in vivo and compared to nondiabetic uremic patients undergoing hemodialysis. Quantitation revealed amounts of glycolaldehyde up to 2 μM and highlighted its crucial role in the formation of AGEs in vivo. In this context, a LC-MS2 method for the comprehensive detection of sedoheptulose-7-phosphate, fructose-6-phosphate, ribose-5-phosphate, erythrose-4-phosphate, erythrulose, and glycolaldehyde in whole blood, plasma, and red blood cells was established and validated based on derivatization with 1-naphthylamine and sodium cyanoborohydride.
Collapse
Affiliation(s)
- Alexander Klaus
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Strasse 2, 06120 Halle/Saale, Germany
| | - Tim Baldensperger
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Strasse 2, 06120 Halle/Saale, Germany
| | - Roman Fiedler
- Department of Internal Medicine II, Martin-Luther-University Halle-Wittenberg , Ernst-Grube-Strasse 40, 06120 Halle/Saale, Germany
| | - Matthias Girndt
- Department of Internal Medicine II, Martin-Luther-University Halle-Wittenberg , Ernst-Grube-Strasse 40, 06120 Halle/Saale, Germany
| | - Marcus A Glomb
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Strasse 2, 06120 Halle/Saale, Germany
| |
Collapse
|
42
|
Kheirouri S, Alizadeh M, Maleki V. Zinc against advanced glycation end products. Clin Exp Pharmacol Physiol 2018; 45:491-498. [DOI: 10.1111/1440-1681.12904] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/08/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Sorayya Kheirouri
- Department of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mohammad Alizadeh
- Department of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
| | - Vahid Maleki
- Department of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
43
|
Lu P, Zhang XL, Xue WY, Wu DW, Ding LR, Wen C, Zhou YM. The protein oxidation of soybean meal induced by heating decreases its protein digestion in vitro and impairs growth performance and digestive function in broilers. Br Poult Sci 2017; 58:704-711. [PMID: 28841049 DOI: 10.1080/00071668.2017.1370535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/05/2017] [Indexed: 10/19/2022]
Abstract
1. The soybean meal (SBM) was heated at 100°C for 1, 2, 4 and 8 h, respectively, and their resultant oxidative status was evaluated. 2. A total of 400 one-day-old Arbor Acres broilers were randomly divided into 5 treatments with 8 replicates of 10 birds each, and fed with diets containing non-heated SBM (NHSBM) or 1 of 4 heated SBMs (HSBMs, SBMs heated at 100°C for 1, 2, 4 and 8 h, respectively) for 42 d. 3. The contents of carbonyl in the SBMs were both linearly and quadratically increased, whereas the nitrogen solubility index, and in vitro digestibility of crude protein (CP) and dry matter (DM) in the SBMs were both linearly and quadratically decreased as heating time increased (P < 0.05). The concentrations of sulfhydryl and total sulfhydryl in the SBMs were linearly decreased as heating time increased (P < 0.05). 4. The average daily gain was linearly decreased while the feed conversion ratio (FCR) was linearly increased in broilers as heating time of dietary HSBMs increased during both d 22-42 and d 1-42 of study (P < 0.05), though FCR of broilers during d 22-42 study were unaffected when the heating time of dietary HSBMs was 1 h (P > 0.05). The serum glucose concentration and the activity of trypsin at d 42, and the apparent total digestibility of CP and DM were all linearly reduced in broilers when heating time of dietary HSBMs increased (P < 0.05). However, 1 h HSBM has a numerical higher CP and DM digestibility than NHSBM. The serum urea nitrogen contents were both linearly and quadratically increased at both d 21 and 42 (P < 0.05), and relative pancreas weight was linearly increased at d 42 in broilers as heating time of dietary HSBMs increased (P < 0.05).
Collapse
Affiliation(s)
- P Lu
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , P. R. China
| | - X L Zhang
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , P. R. China
| | - W Y Xue
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , P. R. China
| | - D W Wu
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , P. R. China
| | - L R Ding
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , P. R. China
| | - C Wen
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , P. R. China
| | - Y M Zhou
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , P. R. China
| |
Collapse
|
44
|
Raymond SL, Holden DC, Mira JC, Stortz JA, Loftus TJ, Mohr AM, Moldawer LL, Moore FA, Larson SD, Efron PA. Microbial recognition and danger signals in sepsis and trauma. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2564-2573. [PMID: 28115287 PMCID: PMC5519458 DOI: 10.1016/j.bbadis.2017.01.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/03/2017] [Accepted: 01/16/2017] [Indexed: 12/14/2022]
Abstract
Early host recognition of microbial invasion or damaged host tissues provides an effective warning system by which protective immune and inflammatory processes are initiated. Host tissues responsible for continuous sampling of their local environment employ cell surface and cytosolic pattern recognition receptors (PRRs) that provide redundant and overlapping identification of both microbial and host alarmins. Microbial products containing pathogen-associated molecular patterns (PAMPs), as well as damage-associated molecular patterns (DAMPs) serve as principle ligands for recognition by these PRRs. It is this interaction which plays both an essential survival role in response to infection and injury, as well as the pathologic role in tissue and organ injury associated with severe sepsis and trauma. Elucidating the interaction between ligands and their respective PRRs can provide both a better understanding of the host response, as well as a rational basis for therapeutic intervention. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju.
Collapse
Affiliation(s)
- Steven L Raymond
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - David C Holden
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Juan C Mira
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Julie A Stortz
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Tyler J Loftus
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Alicia M Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Frederick A Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shawn D Larson
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States.
| |
Collapse
|
45
|
Klaus A, Pfirrmann T, Glomb MA. Transketolase A from E. coli Significantly Suppresses Protein Glycation by Glycolaldehyde and Glyoxal in Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8196-8202. [PMID: 28880548 DOI: 10.1021/acs.jafc.7b03183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Short-chained carbonyl species such as glycolaldehyde and its oxidized pendant glyoxal are highly reactive Maillard agents, leading to the formation of protein modifications. These advanced glycation endproducts have gained considerable interest as they have been linked to various pathologies in vivo. The ability of transketolase to use glycolaldehyde as a substrate suggested the possibility to modulate carbonyl-driven Maillard reactions. Model incubations with recombinant transketolase A from Escherichia coli in the presence of bovine serum albumin and glycolaldehyde indeed led to a decrease in glycolaldehyde concentrations paralleled by the enzymatic conversion to erythrulose. As a result, reversibly protein-bound glycolaldehyde and the major final endproduct N6-carboxymethyl lysine were significantly reduced by approximately 50%, respectively. Glycolaldehyde is easily oxidized to glyoxal in the presence of amines and oxygen. In the presence of transketolase, the lower amounts of glycolaldehyde therefore also strongly suppressed the formation of glyoxal specific arginine modifications, measured as 5-(2-imino-5-oxo-1-imidazolidinyl)norvaline after acid hydrolysis.
Collapse
Affiliation(s)
- Alexander Klaus
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Str. 2, 06120 Halle/Saale, Germany
| | - Thorsten Pfirrmann
- Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg , Hollystr. 1, 06114 Halle/Saale, Germany
| | - Marcus A Glomb
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Str. 2, 06120 Halle/Saale, Germany
| |
Collapse
|
46
|
Sinha S, Saxena S, Prasad S, Mahdi AA, Bhasker SK, Das S, Krasnik V, Caprnda M, Opatrilova R, Kruzliak P. Association of serum levels of anti-myeloperoxidase antibody with retinal photoreceptor ellipsoid zone disruption in diabetic retinopathy. J Diabetes Complications 2017; 31:864-868. [PMID: 28279572 DOI: 10.1016/j.jdiacomp.2017.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/01/2016] [Accepted: 02/16/2017] [Indexed: 12/31/2022]
Abstract
AIM To study the association of serum levels of anti-myeloperoxidase (MPO) antibody with retinal photoreceptor ellipsoid zone (EZ) disruption in diabetic retinopathy. METHODS Consecutive patients with type 2 DM [diabetes mellitus with no retinopathy (NODR; n=20); non-proliferative diabetic retinopathy (NPDR; n=18); proliferative diabetic retinopathy (PDR; n=16)] and healthy controls (n=20) between the ages of 40 and 65years were included. Disruption of EZ was graded by spectral domain optical coherence tomography as no disruption of EZ and disrupted EZ. The serum levels of anti-MPO antibody was analyzed using standard protocol. Association between the variables was evaluated using multiple regression analysis. RESULTS A significant difference was found between the serum levels of anti-MPO antibody in various study groups (p<0.001). A positive association was found between EZ disruption and levels of anti-MPO antibody [adjusted odd's ratio (AOR)=1.079, CI 1.010-1.124, p=0.04]. A significant positive correlation was found between logMAR visual acuity and grade of disruption (AOR=1.008, CI 1.006-5.688, p=0.04). CONCLUSIONS An increased serum anti-MPO antibody levels is associated with retinal photoreceptor EZ disruption and decreased visual acuity in diabetic retinopathy.
Collapse
Affiliation(s)
- Shivani Sinha
- Retina service, Department of Ophthalmology, King George's Medical University, Lucknow, India
| | - Sandeep Saxena
- Retina service, Department of Ophthalmology, King George's Medical University, Lucknow, India.
| | - Senthamizh Prasad
- Department of Preventive and Social Medicine, King George's Medical University, Lucknow, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, India
| | - Shashi Kumar Bhasker
- Retina service, Department of Ophthalmology, King George's Medical University, Lucknow, India
| | - Siddharth Das
- Department of Rheumatology, King George's Medical University, Lucknow, India
| | - Vladimir Krasnik
- Department of Ophthalmology, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Martin Caprnda
- 2nd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Radka Opatrilova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Peter Kruzliak
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| |
Collapse
|
47
|
Mariño L, Maya-Aguirre CA, Pauwels K, Vilanova B, Ortega-Castro J, Frau J, Donoso J, Adrover M. Glycation of Lysozyme by Glycolaldehyde Provides New Mechanistic Insights in Diabetes-Related Protein Aggregation. ACS Chem Biol 2017; 12:1152-1162. [PMID: 28257177 DOI: 10.1021/acschembio.6b01103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glycation occurs in vivo as a result of the nonenzymatic reaction of carbohydrates (and/or their autoxidation products) with proteins, DNA, or lipids. Protein glycation causes loss-of-function and, consequently, the development of diabetic-related diseases. Glycation also boosts protein aggregation, which can be directly related with the higher prevalence of aggregating diseases in diabetic people. However, the molecular mechanism connecting glycation with aggregation still remains unclear. Previously we described mechanistically how glycation of hen egg-white lysozyme (HEWL) with ribose induced its aggregation. Here we address the question of whether the ribose-induced aggregation is a general process or it depends on the chemical nature of the glycating agent. Glycation of HEWL with glycolaldehyde occurs through two different scenarios depending on the HEWL concentration regime (both within the micromolar range). At low HEWL concentration, non-cross-linking fluorescent advanced glycation end-products (AGEs) are formed on Lys side chains, which do not change the protein structure but inhibit its enzymatic activity. These AGEs have little impact on HEWL surface hydrophobicity and, therefore, a negligible effect on its aggregation propensity. Upon increasing HEWL concentration, the glycation mechanism shifts toward the formation of intermolecular cross-links, which triggers a polymerization cascade involving the formation of insoluble spherical-like aggregates. These results notably differ with the aggregation-modulation mechanism of ribosylated HEWL directed by hydrophobic interactions. Additionally, their comparison constitutes the first experimental evidence showing that the mechanism underlying the aggregation of a glycated protein depends on the chemical nature of the glycating agent.
Collapse
Affiliation(s)
- Laura Mariño
- University Institute of Health Sciences (UNICS-IdisPa), Ctra. Valldemossa 79, E-07010, Palma de Mallorca, Spain
- Departament
de Química, Universitat de les Illes Balears, Ctra. Valldemossa
km 7.5, E-07122, Palma de Mallorca, Spain
| | - Carlos Andrés Maya-Aguirre
- Departament
de Química, Universitat de les Illes Balears, Ctra. Valldemossa
km 7.5, E-07122, Palma de Mallorca, Spain
| | - Kris Pauwels
- Structural
Biology Brussels, Vrije Universiteit Brussels, Pleinlaan 2, 1050 Brussels, Belgium
- VIB
Structural Biology Research Centre, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
| | - Bartolomé Vilanova
- University Institute of Health Sciences (UNICS-IdisPa), Ctra. Valldemossa 79, E-07010, Palma de Mallorca, Spain
- Departament
de Química, Universitat de les Illes Balears, Ctra. Valldemossa
km 7.5, E-07122, Palma de Mallorca, Spain
| | - Joaquin Ortega-Castro
- University Institute of Health Sciences (UNICS-IdisPa), Ctra. Valldemossa 79, E-07010, Palma de Mallorca, Spain
- Departament
de Química, Universitat de les Illes Balears, Ctra. Valldemossa
km 7.5, E-07122, Palma de Mallorca, Spain
| | - Juan Frau
- University Institute of Health Sciences (UNICS-IdisPa), Ctra. Valldemossa 79, E-07010, Palma de Mallorca, Spain
- Departament
de Química, Universitat de les Illes Balears, Ctra. Valldemossa
km 7.5, E-07122, Palma de Mallorca, Spain
| | - Josefa Donoso
- University Institute of Health Sciences (UNICS-IdisPa), Ctra. Valldemossa 79, E-07010, Palma de Mallorca, Spain
- Departament
de Química, Universitat de les Illes Balears, Ctra. Valldemossa
km 7.5, E-07122, Palma de Mallorca, Spain
| | - Miquel Adrover
- University Institute of Health Sciences (UNICS-IdisPa), Ctra. Valldemossa 79, E-07010, Palma de Mallorca, Spain
- Departament
de Química, Universitat de les Illes Balears, Ctra. Valldemossa
km 7.5, E-07122, Palma de Mallorca, Spain
| |
Collapse
|
48
|
Eto A, Sakata N, Nagai R, Shirakawa JI, Inoue R, Kiyomi F, Nii K, Aikawa H, Iko M, Tsutsumi M, Sakamoto K, Hiraoka F, Mitsutake T, Hanada H, Kazekawa K. N ε-(carboxymethyl)lysine Concentration in Debris from Carotid Artery Stenting Correlates Independently with Signal Intensity on T1-Weighted Black-Blood Magnetic Resonance Images. J Stroke Cerebrovasc Dis 2017; 26:1341-1348. [PMID: 28314627 DOI: 10.1016/j.jstrokecerebrovasdis.2017.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Because magnetic resonance imaging (MRI) focuses on the morphological characteristics of carotid artery plaques, its diagnostic value with respect to plaque vulnerability is limited. We examined the correlation between Nε-(carboxymethyl)lysine (CML), a main chemical structure of advanced glycation end-products, and the vulnerability of plaques visualized on MRI scans. MATERIALS AND METHODS We enrolled 43 patients who had undergone carotid artery stenting (CAS) for carotid artery stenosis; all underwent MRI studies, including black-blood MRI and diffusion-weighted imaging (DWI). The signal intensity ratio (SIR) of plaques to adjacent sternocleidomastoid muscle (P/M) on T1- and T2-weighted images (T1WI, T2WI) was calculated. Protein samples were extracted from debris trapped by a filter device. The concentrations of CML and myeloperoxidase (MPO) were measured by solid-phase enzyme-linked immunosorbent assay. RESULTS The patients were classified into 2 groups based on their SIR-P/M on T1WI and T2WI scans. We observed a higher incidence of post-CAS DWI lesions in patients with a higher than a lower SIR-P/M on T1WI; the CML and MPO concentrations in their CAS debris were also higher. No such differences were seen in patients with a higher or lower SIR-P/M on T2WI scans. The concentration of CML in CAS debris correlated independently with the SIR-P/M on T1WI of the carotid plaques, and was related to the concentration of MPO in CAS debris. CONCLUSIONS Our findings suggest CML as a candidate molecular imaging probe for the identification of vulnerable plaques.
Collapse
Affiliation(s)
- Ayumu Eto
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Noriyuki Sakata
- General Medical Research Center, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, Department of Bioscience, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Jun-Ichi Shirakawa
- Laboratory of Food and Regulation Biology, Department of Bioscience, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Ritsurou Inoue
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Fumiaki Kiyomi
- Academia, Industry and Government Collaborative Research Institute of Translational Medicine for Life Innovation, Fukuoka University, Fukuoka, Japan
| | - Kouhei Nii
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan.
| | - Hiroshi Aikawa
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Minoru Iko
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Masanori Tsutsumi
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Kimiya Sakamoto
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Fumihiro Hiraoka
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Takahumi Mitsutake
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Hayatsura Hanada
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Kiyoshi Kazekawa
- Department of Neurosurgery, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| |
Collapse
|
49
|
The Course of Skin and Serum Biomarkers of Advanced Glycation Endproducts and Its Association with Oxidative Stress, Inflammation, Disease Severity, and Mortality during ICU Admission in Critically Ill Patients: Results from a Prospective Pilot Study. PLoS One 2016; 11:e0160893. [PMID: 27529340 PMCID: PMC4986948 DOI: 10.1371/journal.pone.0160893] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/26/2016] [Indexed: 12/31/2022] Open
Abstract
Background Advanced glycation end products (AGEs) have been implicated in multiple organ failure, predominantly via their cellular receptor (RAGE) in preclinical studies. Little is known about the time course and prognostic relevance of AGEs in critically ill human patients, including those with severe sepsis. Objective 1) To explore the reliability of Skin Autofluorescence (AF) as an index of tissue AGEs in ICU patients, 2) to compare its levels to healthy controls, 3) to describe the time course of AGEs and influencing factors during ICU admission, and 4) to explore their association with disease severity, outcome, and markers of oxidative stress and inflammation. Methods Skin AF, serum N"-(carboxyethyl)lysine (CEL), N"-(carboxymethyl)lysine (CML), and soluble RAGE (sRAGE) were serially measured for a maximum of 7 days in critically ill ICU patients with multiple organ failure and compared to age-matched healthy controls. Correlations with (changes in) clinical parameters of disease severity, LDL dienes, and CRP were studied and survival analysis for in-hospital mortality was performed. Results Forty-five ICU patients (age: 59±15 years; 60% male), and 37 healthy controls (59±14; 68%) were included. Skin AF measurements in ICU patients were reproducible (CV right-left arm: 13%, day-to-day: 10%), with confounding effects of skin reflectance and plasma bilirubin levels. Skin AF was higher in ICU patients vs healthy controls (2.7±0.7 vs 1.8±0.3 au; p<0.001). Serum CEL (23±10 vs, 16±3 nmol/gr protein; p<0.001), LDL dienes (19 (15–23) vs. 9 (8–11) μmol/mmol cholesterol; <0.001), and sRAGE (1547 (998–2496) vs. 1042 (824–1388) pg/ml; p = 0.003) were significantly higher in ICU patients compared to healthy controls, while CML was not different (27 (20–39) vs 29 (25–33) nmol/gr protein). While CRP and LDL dienes decreased significantly, Skin AF and serum AGEs and sRAGE did not change significantly during the first 7 days of ICU admission. CML and CEL were strongly correlated with SOFA scores and CML above the median at baseline was associated with increased risk for mortality (Hazard ratio 3.3 (1.3–8.3); p = 0.01). All other markers did not correlate with disease severity and did not predict mortality. Conclusions This study demonstrates that markers for the AGE-RAGE axis are elevated in critically ill patients compared to healthy controls but remain stable for at least 7 days despite clearly fading inflammation and oxidative stress. Circulating AGEs may be associated with disease severity and outcome. Further research should be conducted to elucidate the role of the AGE-RAGE axis in the exaggerated inflammatory response leading to multiple organ failure and death, and whether or not this may be a target for treatment.
Collapse
|
50
|
Rabbani N, Ashour A, Thornalley PJ. Mass spectrometric determination of early and advanced glycation in biology. Glycoconj J 2016; 33:553-68. [PMID: 27438287 PMCID: PMC4975772 DOI: 10.1007/s10719-016-9709-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/27/2016] [Accepted: 06/22/2016] [Indexed: 01/30/2023]
Abstract
Protein glycation in biological systems occurs predominantly on lysine, arginine and N-terminal residues of proteins. Major quantitative glycation adducts are found at mean extents of modification of 1-5 mol percent of proteins. These are glucose-derived fructosamine on lysine and N-terminal residues of proteins, methylglyoxal-derived hydroimidazolone on arginine residues and N(ε)-carboxymethyl-lysine residues mainly formed by the oxidative degradation of fructosamine. Total glycation adducts of different types are quantified by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Metabolism of glycated proteins is followed by LC-MS/MS of glycation free adducts as minor components of the amino acid metabolome. Glycated proteins and sites of modification within them - amino acid residues modified by the glycating agent moiety - are identified and quantified by label-free and stable isotope labelling with amino acids in cell culture (SILAC) high resolution mass spectrometry. Sites of glycation by glucose and methylglyoxal in selected proteins are listed. Key issues in applying proteomics techniques to analysis of glycated proteins are: (i) avoiding compromise of analysis by formation, loss and relocation of glycation adducts in pre-analytic processing; (ii) specificity of immunoaffinity enrichment procedures, (iii) maximizing protein sequence coverage in mass spectrometric analysis for detection of glycation sites, and (iv) development of bioinformatics tools for prediction of protein glycation sites. Protein glycation studies have important applications in biology, ageing and translational medicine - particularly on studies of obesity, diabetes, cardiovascular disease, renal failure, neurological disorders and cancer. Mass spectrometric analysis of glycated proteins has yet to find widespread use clinically. Future use in health screening, disease diagnosis and therapeutic monitoring, and drug and functional food development is expected. A protocol for high resolution mass spectrometry proteomics of glycated proteins is given.
Collapse
Affiliation(s)
- Naila Rabbani
- Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry, CV4 7AL, UK.
| | - Amal Ashour
- Clinical Sciences Research Laboratories, Warwick Medical School, University Hospital, University of Warwick, Coventry, CV2 2DX, UK
| | - Paul J Thornalley
- Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry, CV4 7AL, UK
- Clinical Sciences Research Laboratories, Warwick Medical School, University Hospital, University of Warwick, Coventry, CV2 2DX, UK
| |
Collapse
|