1
|
Li Y, He C, Ahamed Younis D, Ni C, Liu R, Sun Z, Lin H, Wang Y, Zhu P, Xiao Z, Sun B. Engineered promoter-free insulin-secreting cells provide closed-loop glycemic control. Life Sci 2025; 371:123587. [PMID: 40147530 DOI: 10.1016/j.lfs.2025.123587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Diabetes mellitus is currently a priority health issue worldwide, but existing therapies suffer from insufficient donors, inability to provide glucose-dependent endogenous insulin secretion, transplantation risks, and immune rejection. Especially, reported engineered cells are mostly promoter-induced glucose-independent insulin producing cells. Here we constructed a closed-loop of insulin secretion with glucose-dependent IRES to achieve glucose-sensitive endogenous insulin secretion. Those cells successfully reversed hyperglycemia in diabetic mice for at least 60 days after transplantation without any significant immune rejection, demonstrating that our constructed engineered cellular grafts have good biocompatibility. Our findings hold great promise in the field of diabetes treatment and provide a new, glucose-dependent genetic engineering approach to insulin production, which is expected to solve many of the current problems faced in the clinical treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Yumin Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Cong He
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China.
| | - Doulathunnisa Ahamed Younis
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Chengming Ni
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, Jiangsu 210008, China
| | - Rui Liu
- Department of Genetic Engineering, College of Natural Science, University of Suwon, Kyunggi-Do 445-743, Republic of Korea.
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, Jiangsu 210008, China
| | - Hao Lin
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Yuxin Wang
- Key Laboratory of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Pengyu Zhu
- Key Laboratory of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Zhongdang Xiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Bo Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
2
|
Kumar ARK, Low J, Lim J, Myint B, Sun X, Wu L, Cheng HS, Yip S, Ming Cheng CZ, Manoharan T, Quek YJ, Shou Y, Tian JS, Ng YY, Gascoigne NRJ, Tan NS, Sugimura R, Chia G, Sze Cheung AM, Yawata M, Tay A. Non-viral, high throughput genetic engineering of primary immune cells using nanostraw-mediated transfection. Biomaterials 2025; 317:123079. [PMID: 39842078 DOI: 10.1016/j.biomaterials.2024.123079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025]
Abstract
Transfection of proteins, mRNA, and chimeric antigen receptor (CAR) transgenes into immune cells remains a critical bottleneck in cell manufacturing. Current methods, such as viruses and bulk electroporation, are hampered by low transfection efficiency, unintended transgene integration, and significant cell perturbation. The Nanostraw Electro-actuated Transfection (NExT) technology offers a solution by using high aspect-ratio nanostraws and localized electric fields to precisely deliver biomolecules into cells with minimal disruption. We demonstrate that NExT can deliver proteins, polysaccharides, and mRNA into primary human CD8+ and CD4+ T cells, and achieve CRISPR/Cas9 gene knockout of CXCR4 and TRAC in CD8+ T cells. We showcase NExT's versatility across a range of primary human immune cells, including CD4+ T cells, γδ-T cells, dendritic cells, NK cells, Treg cells, macrophages, and neutrophils. Finally, we developed a scalable, high-throughput multiwell NExT system capable of transfecting over 14 million cells and delivering diverse cargoes into multiple cell types from various donors simultaneously. This technology holds promise for streamlining high-throughput screening of allogeneic donors and reducing optimization costs for large-scale CAR-immune cell transfection.
Collapse
Affiliation(s)
- Arun R K Kumar
- Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Jessalyn Low
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Jet Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Ba Myint
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Xinhong Sun
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Ling Wu
- Immunology Translational Research Programme and Department of Microbiology and Immunology, National University of Singapore, Singapore, 117545, Singapore
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Sophronia Yip
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Cyrus Zai Ming Cheng
- Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacy, National University of Singapore, Singapore, 117559, Singapore
| | - Thamizhanban Manoharan
- Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacy, National University of Singapore, Singapore, 117559, Singapore
| | - Ying Jie Quek
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Johann Shane Tian
- Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Yu Yang Ng
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Nicholas R J Gascoigne
- Immunology Translational Research Programme and Department of Microbiology and Immunology, National University of Singapore, Singapore, 117545, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Rio Sugimura
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Gloryn Chia
- Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacy, National University of Singapore, Singapore, 117559, Singapore
| | - Alice Man Sze Cheung
- Department of Haematology, Singapore General Hospital, Singapore, 169608, Singapore; SingHealth Duke-NUS Medicine Academic Clinical Program, Duke-NUS Medical School, Singapore, 168753, Singapore
| | - Makoto Yawata
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 119077, Singapore
| | - Andy Tay
- Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore; NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore.
| |
Collapse
|
3
|
Osborn MJ, Panda S, Reineke TM, Tolar J, Nyström A. Progress in skin gene therapy: From the inside and out. Mol Ther 2025; 33:2065-2081. [PMID: 40077969 DOI: 10.1016/j.ymthe.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
The skin is the largest organ of the body and forms and serves as the barrier for preventing external material from accessing and damaging internal organs. As the outward interface to the environment, it is accessible for the application of therapeutic agents and cellular and gene therapy represent attractive and promising options to treat severe genetic conditions for which palliation has long been the main stay. However, because of its barrier function, transit across and to the subdermal compartment can be challenging. This commentary examines the current approaches of cell and gene therapies for genetic skin disorders. We write this from a local and systemic "outside and inside." perspective. Delivery from the outside encompasses topical, intradermal, and transdermal strategies for cell and vector delivery and ex vivo cell expansion and grafting. The inside approach details systemic delivery via infusion of cells or agents toward providing benefit to the skin. We use recessive dystrophic epidermolysis bullosa (RDEB) as a representative and paradigmatic disease to showcase these approaches as a means to highlight potential broader applicability to other conditions.
Collapse
Affiliation(s)
- Mark J Osborn
- Medical School, Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular and Gene Therapy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Sidharth Panda
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jakub Tolar
- Medical School, Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular and Gene Therapy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
4
|
Wang D, Stevens G, Flotte TR. Gene therapy then and now: A look back at changes in the field over the past 25 years. Mol Ther 2025; 33:1889-1902. [PMID: 40022444 DOI: 10.1016/j.ymthe.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025] Open
Abstract
Since the inception of Molecular Therapy in 2000, the field of gene therapy has made remarkable progress, evolving from no approved clinical products to 23 clinical gene therapy products today. In this review, we aim to capture the transformative changes in the field by surveying the literature over this period, with a particular focus on advancements in gene delivery vector technology, disease and tissue targeting, and the revolutionary molecular tools that have become central to the field. We also discuss the current challenges facing gene therapy and the need for greater collaboration to ensure its accessibility worldwide.
Collapse
Affiliation(s)
- Dan Wang
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Gregg Stevens
- Lamar Soutter Library, UMass Chan Medical School, Worcester, MA, USA
| | - Terence R Flotte
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
5
|
Montini E, Naldini L, Booth C, Kohn DB, Aiuti A. Response to: Safety and efficacy considerations of HSC-based gene therapy for RAG1-deficient SCID. Mol Ther 2025; 33:1871. [PMID: 40233756 DOI: 10.1016/j.ymthe.2025.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025] Open
Affiliation(s)
- Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita - Salute San Raffaele University Medical School, Milan, Italy
| | - Claire Booth
- UCL Great Ormond Street Institute of Child Health, London, UK; Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Donald B Kohn
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita - Salute San Raffaele University Medical School, Milan, Italy; Pediatric Immunohematology and BMT, San Raffaele Hospital, Milan, Italy
| |
Collapse
|
6
|
Lenders M, Menke ER, Brand E. Progress and Challenges in the Treatment of Fabry Disease. BioDrugs 2025:10.1007/s40259-025-00723-3. [PMID: 40310476 DOI: 10.1007/s40259-025-00723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 05/02/2025]
Abstract
Fabry disease is a rare but life-threatening, X-linked, inherited lysosomal storage disorder in which globotriaosylceramide is insufficiently metabolized because of reduced α-galactosidase A activity. Cellular globotriaosylceramide accumulation causes a multisystemic disease, which, if left untreated, reduces life expectancy in female and male individuals by around 10 and 20 years, respectively, leading to progressive renal failure, hypertrophic cardiomyopathy, cardiac arrhythmia, and premature cerebral infarction. The method of choice for confirming the diagnosis is the determination of reduced α-galactosidase A activity in leukocytes in male individuals and the molecular genetic detection of a disease-causing mutation in female individuals. Current approved treatment includes enzyme replacement therapy (agalsidase alfa [0.2 mg/kg body weight], agalsidase beta or pegunigalsidase alfa [both 1.0 mg/kg body weight]) every other week intravenously or, if a responding ('amenable') α-galactosidase A mutation is present, oral pharmacological chaperone therapy (migalastat 123 mg, every other day). Future therapeutic options may include substrate reduction therapy, gene therapy, messenger RNA therapy, and/or vesicle-packaged enzyme replacement therapy. This review presents current and future treatment options with advantages and disadvantages of the different treatment options.
Collapse
Affiliation(s)
- Malte Lenders
- Internal Medicine D (Nephrology, Hypertension and Rheumatology), and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Elise Raphaela Menke
- Internal Medicine D (Nephrology, Hypertension and Rheumatology), and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Eva Brand
- Internal Medicine D (Nephrology, Hypertension and Rheumatology), and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.
| |
Collapse
|
7
|
Ay C, Reinisch A. Gene therapy: principles, challenges and use in clinical practice. Wien Klin Wochenschr 2025; 137:261-271. [PMID: 38713227 PMCID: PMC12081535 DOI: 10.1007/s00508-024-02368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Gene therapy is an emerging topic in medicine. The first products have already been licensed in the European Union for the treatment of immune deficiency, spinal muscular atrophy, hemophilia, retinal dystrophy, a rare neurotransmitter disorder and some hematological cancers, while many more are being assessed in preclinical and clinical trials. OBJECTIVE The purpose of this review is to provide an overview of the core principles of gene therapy along with information on challenges and risks. Benefits, adverse effects and potential risks are illustrated based on the examples of hemophilia and spinal muscular atrophy. RESULTS At present, in-vitro and in-vivo gene addition or gene augmentation is the most commonly established type of gene therapy. More recently, more sophisticated and precise approaches such as in situ gene editing have moved into focus. However, all types of gene therapy require long-term observation of treated patients to ensure safety, efficacy, predictability and durability. Important safety concerns include immune reactions to the vector, the foreign DNA or the new protein resulting from gene therapy, and a remaining low cancer risk based on insertional mutagenesis. Ethical and regulatory issues need to be addressed, and new reimbursement models are called for to ease the financial burden that this new treatment poses for the health care system. CONCLUSION Gene therapy holds great promise for considerable improvement or even cure of genetic diseases with serious clinical consequences. However, a number of questions and issues need to be clarified to ensure broad accessibility of safe and efficacious products.
Collapse
Affiliation(s)
- Cihan Ay
- Department of Medicine I, Clinical Division of Haematology and Haemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Andreas Reinisch
- Department of Medicine, Division of Hematology & Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria.
| |
Collapse
|
8
|
Bhutani B, Sharma V, Ganguly NK, Rana R. Unravelling the modified T cell receptor through Gen-Next CAR T cell therapy in Glioblastoma: Current status and future challenges. Biomed Pharmacother 2025; 186:117987. [PMID: 40117901 DOI: 10.1016/j.biopha.2025.117987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Despite current technological advancements in the treatment of glioma, immediate alleviation of symptoms can be catered by therapeutic modalities, including surgery, chemotherapy, and combinatorial radiotherapy that exploit aberrations of glioma. Additionally, a small number of target antigens, their heterogeneity, and immune evasion are the potential reasons for developing targeted therapies. This oncologic milestone has catalyzed interest in developing immunotherapies against Glioblastoma to improve overall survival and cure patients with high-grade glioma. The next-gen CAR-T Cell therapy is one of the effective immunotherapeutic strategies in which autologous T cells have been modified to express receptors against GBM and it modulates cytotoxicity. METHODS In this review article, we examine preclinical and clinical outcomes, and limitations as well as present cutting-edge techniques to improve the function of CAR-T cell therapy and explore the possibility of combination therapy. FINDINGS To date, several CAR T-cell therapies are being evaluated in clinical trials for GBM and other brain malignancies and multiple preclinical studies have demonstrated encouraging outcomes. IMPLICATIONS CAR-T cell therapy represents a promising therapeutic paradigm in the treatment of solid tumors but a few limitations include, the blood-brain barrier (BBB), antigen escape, tumor microenvironment (TME), tumor heterogeneity, and its plasticity that suppresses immune responses weakens the ability of this therapy. Additional investigation is required that can accurately identify the targets and reflect the similar architecture of glioblastoma, thus optimizing the efficiency of CAR-T cell therapy; allowing for the selection of patients most likely to benefit from immuno-based treatments.
Collapse
Affiliation(s)
- Bhavya Bhutani
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Vyoma Sharma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| |
Collapse
|
9
|
Golmohammadi M, Noorbakhsh N, Kavianpour M. CAR-T Cell Therapy: Managing Side Effects and Overcoming Challenges. Adv Biomed Res 2025; 14:38. [PMID: 40390814 PMCID: PMC12087935 DOI: 10.4103/abr.abr_531_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 09/06/2024] [Accepted: 09/25/2024] [Indexed: 05/21/2025] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy is an innovative and promising approach to treat cancer. Clinical trials have demonstrated remarkable results, providing hope for patients who have exhausted more traditional therapies. However, this new therapy is not without challenges, as significant side effects have been associated with it. Cytokine release syndrome (CRS) is a widely recognized and consequential side effect of CAR-T cell therapy. Neurological toxicity is another potential side effect that can cause confusion and seizures in some patients. Hematologic toxicities, such as anemia and thrombocytopenia, can increase the risk of bleeding or infection. B-cell aplasia can also occur, leading to increased vulnerability to infections. Strategies to reduce the incidence and severity of toxicities include suicide, endogenous, and exogenous switches to modulate the activity of the immune system toward cancer while minimizing toxicity. Despite the obstacles faced by CAR-T cell therapy, continuous research and development in this area offer considerable potential for improving this treatment as a more reliable and efficient method for treating cancer.
Collapse
Affiliation(s)
- Maryam Golmohammadi
- Department of Applied Cell Sciences and Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Negar Noorbakhsh
- Department of Medical Biology, Université du Québec À Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Maria Kavianpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
10
|
John T, Czechowicz A. Clinical hematopoietic stem cell-based gene therapy. Mol Ther 2025:S1525-0016(25)00308-9. [PMID: 40285354 DOI: 10.1016/j.ymthe.2025.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/04/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
Hematopoietic stem cell (HSC)-based gene therapies have seen extraordinary progress since their initial conception, now fundamentally transforming the treatment paradigms for various inherited hematologic, immunologic, and metabolic conditions-with additional use cases under exploration. Decades worth of work with advances in viral vector technologies and cell manufacturing have paved the way for HSC gene therapy with marked improvement in the safety and efficiency of gene delivery into HSCs. These have been augmented by the recent rise of innovative genome-editing techniques, particularly using clustered regularly interspaced short palindromic repeats CRISPR-associated proteins (CRISPR-Cas)-based technologies, which have enabled more precise and reproducible genome alterations in HSCs and fostered opportunities for targeted gene modification or gene correction. These breakthroughs have led to the development of many active clinical trials and culminated in the recent federal regulatory-agency approvals of multiple clinical HSC gene therapies for various indications that are now becoming available across different geographies. These treatments aim to offer significant, long-lasting benefits to patients worldwide without the toxicities of alternative treatment approaches. This review explores the history and advancements in HSC gene therapies and provides a comprehensive overview of the latest clinical innovations and cell-therapy products. Further, it concludes with a discussion of the persistent challenges that have limited adoption and potential future opportunities that aspire to enable curative treatment of many different patients through such personalized medicines.
Collapse
Affiliation(s)
- Tami John
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, and Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Agnieszka Czechowicz
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, and Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Bastone AL, John-Neek P, Dziadek V, Mansel F, Hagedorn M, Fleischauer J, Weigel B, Paul G, Schambach A, Rothe M. Meta-Analysis and Optimization of the In Vitro Immortalization Assay for Safety Assessment of Retroviral Vectors in Gene Therapy. Hum Gene Ther 2025. [PMID: 40200886 DOI: 10.1089/hum.2024.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
The underlying risk of retroviral vector-induced insertional oncogenesis in gene therapies requires a reliable preclinical safety assessment. Dysregulation of genes neighboring the vector's integration sites has triggered hematopoietic malignancies in patients treated with different vector genera and designs. With ca. 18 years in practical use, the in vitro immortalization (IVIM) assay can quantify this mutagenic potential and is actively requested by regulatory authorities during preclinical stages. Here, we present a thorough meta-analysis of IVIM data alongside a step-by-step cell culture protocol. On this basis, we propose clonal outgrowth as the single indicator of mutagenicity, simplifying the IVIM assay cost- and time-wise.
Collapse
Affiliation(s)
- Antonella L Bastone
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Violetta Dziadek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Friederike Mansel
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Maike Hagedorn
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jenni Fleischauer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Bettina Weigel
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Gabi Paul
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
12
|
Baatz F, Ghosh A, Herbst J, Polten S, Meyer J, Rhiel M, Maetzig T, Geffers R, Rothe M, Bastone AL, John-Neek P, Frühauf J, Eiz-Vesper B, Bonifacius A, Falk CS, Kaisenberg CV, Cathomen T, Schambach A, van den Brink MRM, Hust M, Sauer MG. Targeting BCL11B in CAR-engineered lymphoid progenitors drives NK-like cell development with prolonged anti-leukemic activity. Mol Ther 2025; 33:1584-1607. [PMID: 39955618 PMCID: PMC11997514 DOI: 10.1016/j.ymthe.2025.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/26/2024] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
Chimeric antigen receptor (CAR)-induced suppression of the transcription factor B cell CLL/lymphoma 11B (BCL11B) propagates CAR-induced killer (CARiK) cell development from lymphoid progenitors. Here, we show that CRISPR-Cas9-mediated Bcl11b knockout in human and murine early lymphoid progenitors distinctively modulates this process either alone or in combination with a CAR. Upon adoptive transfer into hematopoietic stem cell recipients, Bcl11b-edited progenitors mediated innate-like antigen-independent anti-leukemic immune responses. With CAR expression allowing for additional antigen-specific responses, the progeny of double-edited lymphoid progenitors acquired prolonged anti-leukemic activity in vivo. These findings give important insights into how Bcl11b targeting can be used to tailor anti-leukemia functionality of CAR-engineered lymphoid progenitor cells.
Collapse
Affiliation(s)
- Franziska Baatz
- Department of Pediatric Hematology, Department of Oncology and Blood Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Arnab Ghosh
- Adult BMT Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jessica Herbst
- Department of Pediatric Hematology, Department of Oncology and Blood Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Saskia Polten
- Department of Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Manuel Rhiel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
| | - Tobias Maetzig
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany; REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jörg Frühauf
- Clinic for Radiation Therapy and special Oncology, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Agnes Bonifacius
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Constantin V Kaisenberg
- Department of Obstetrics, Clinic of Gynecology and Reproductive Medicine, and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Michael Hust
- Department of Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Martin G Sauer
- Department of Pediatric Hematology, Department of Oncology and Blood Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
13
|
Jadlowsky JK, Hexner EO, Marshall A, Grupp SA, Frey NV, Riley JL, Veloso E, McConville H, Rogal W, Czuczman C, Hwang WT, Li Y, Leskowitz RM, Farrelly O, Karar J, Christensen S, Barber-Rotenberg J, Gaymon A, Aronson N, Bernstein W, Melenhorst JJ, Roche AM, Everett JK, Zolnoski SA, McFarland AG, Reddy S, Petrichenko A, Cook EJ, Lee C, Gonzalez VE, Alexander K, Kulikovskaya I, Ramírez-Fernández Á, Minehart JC, Ruella M, Gill SI, Schuster SJ, Cohen AD, Garfall AL, Shah PD, Porter DL, Maude SL, Levine BL, Siegel DL, Chew A, McKenna S, Lledo L, Davis MM, Plesa G, Herbst F, Stadtmauer EA, Tebas P, DiNofia A, Haas A, Haas NB, Myers R, O'Rourke DM, Svoboda J, Tanyi JL, Aplenc R, Jacobson JM, Ko AH, Cohen RB, June CH, Bushman FD, Fraietta JA. Long-term safety of lentiviral or gammaretroviral gene-modified T cell therapies. Nat Med 2025; 31:1134-1144. [PMID: 39833408 DOI: 10.1038/s41591-024-03478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Long-term risks of gene therapy are not fully understood. In this study, we evaluated safety outcomes in 783 patients over more than 2,200 total patient-years of observation from 38 T cell therapy trials. The trials employed integrating gammaretroviral or lentiviral vectors to deliver engineered receptors to target HIV-1 infection or cancer. Eighteen patients (2.3%) developed secondary malignancies after treatment, with a median onset of 1.94 years (range: 51 d to 14 years). Where possible, incident tumor samples were analyzed for vector copy number, revealing no evidence of high-level marking or other indications of insertional mutagenesis. One T cell lymphoma was detected, but malignant T cells were not marked by vector integration. Analysis of vector integration sites in 176 patients revealed no pathological insertions linked to secondary malignancies, although, in some cases, integration in or near specific genes, including tumor suppressor genes, was associated with modest clonal expansion and sustained T cell persistence. These findings highlight the safety of engineered T cell therapies.
Collapse
Affiliation(s)
- Julie K Jadlowsky
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth O Hexner
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Marshall
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephan A Grupp
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Noelle V Frey
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James L Riley
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Veloso
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Holly McConville
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter Rogal
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cory Czuczman
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei-Ting Hwang
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yimei Li
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel M Leskowitz
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olivia Farrelly
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jayashree Karar
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shannon Christensen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julie Barber-Rotenberg
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Avery Gaymon
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Naomi Aronson
- Department of Medicine, Division of Infectious Diseases, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Wendy Bernstein
- Department of Medicine, Division of Infectious Diseases, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jan Joseph Melenhorst
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aoife M Roche
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John K Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sonja A Zolnoski
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander G McFarland
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shantan Reddy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Angelina Petrichenko
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emma J Cook
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carole Lee
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vanessa E Gonzalez
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen Alexander
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Irina Kulikovskaya
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ángel Ramírez-Fernández
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Janna C Minehart
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Saar I Gill
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen J Schuster
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam D Cohen
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alfred L Garfall
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Payal D Shah
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David L Porter
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shannon L Maude
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bruce L Levine
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald L Siegel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anne Chew
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen McKenna
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lester Lledo
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan M Davis
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Friederike Herbst
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward A Stadtmauer
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pablo Tebas
- Department of Medicine, Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda DiNofia
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andrew Haas
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Naomi B Haas
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Regina Myers
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Donald M O'Rourke
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jakub Svoboda
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Janos L Tanyi
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard Aplenc
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey M Jacobson
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew H Ko
- Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Roger B Cohen
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Guiraud V, Denis JA, Benhafoun G, Ablin E, Sayon S, Souchet L, Azar N, Grenier A, Metz C, Legrand R, Marcelin A, Choquet S, Calvez V, Todesco E. Longitudinal analysis of lentiviral and retroviral chimeric antigen receptors' integration sites reveals distinct clonal evolutionary patterns. Br J Haematol 2025; 206:1173-1177. [PMID: 39972592 PMCID: PMC11985369 DOI: 10.1111/bjh.20020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
T-cell malignancies following chimeric antigen receptor (CAR) therapies are partly related to insertional mutagenesis, but the longitudinal evolution of CAR-integration sites (IS) remains understudied. We performed an IS analysis in blood from three tisagenlecleucel (lentiviral), one axicabtagene-ciloleucel and one brexucabtagene-autoleucel (gammaretrovirals) patient at peak expansion and 1-year follow-up. All were complete responders. Peak expansion IS patterns were vector dependent: lentiviral CAR integrated mostly in introns and gammaretrovirals in intergenic regions, closer to transcription start sites. At 1-year post-infusion, lentiviral CAR showed no major clonal proliferation. Gammaretroviral CARs had divergent outcomes: no detectable CAR (axicabtagene-ciloleucel) or low-level oligoclonal persistence (brexucabtagene-autoleucel). Whether this latter evolution is at risk of further CAR malignancies needs further investigations.
Collapse
Affiliation(s)
- Vincent Guiraud
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Sante Publique (IPLESP)Assistance Publique‐Hôpitaux de Paris (AP‐HP), Hôpital Pitié‐Salpêtrière, Service de VirologieParisFrance
| | - Jerome Alexandre Denis
- Sorbonne Université, INSERM U938, Centre de Recherche Saint‐Antoine, Department of Endocrine and Oncological BiochemistryPitié‐Salpêtrière Hospital, Assistance Publique—Hôpitaux de ParisParisFrance
| | - Ghizlane Benhafoun
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Sante Publique (IPLESP)Assistance Publique‐Hôpitaux de Paris (AP‐HP), Hôpital Pitié‐Salpêtrière, Service de VirologieParisFrance
| | - Erwan Ablin
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Sante Publique (IPLESP)Assistance Publique‐Hôpitaux de Paris (AP‐HP), Hôpital Pitié‐Salpêtrière, Service de VirologieParisFrance
| | - Sophie Sayon
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Sante Publique (IPLESP)Assistance Publique‐Hôpitaux de Paris (AP‐HP), Hôpital Pitié‐Salpêtrière, Service de VirologieParisFrance
| | - Laetitia Souchet
- Sorbonne Université, Department of Clinical HematologyHôpital Pitié‐Salpêtrière, Assistance Publique—Hôpitaux de ParisParisFrance
| | - Nabih Azar
- Sorbonne Université, Department of Clinical HematologyHôpital Pitié‐Salpêtrière, Assistance Publique—Hôpitaux de ParisParisFrance
| | - Adrien Grenier
- Sorbonne Université, Department of Clinical HematologyHôpital Pitié‐Salpêtrière, Assistance Publique—Hôpitaux de ParisParisFrance
| | - Carole Metz
- Sorbonne Université, Department of Clinical HematologyHôpital Pitié‐Salpêtrière, Assistance Publique—Hôpitaux de ParisParisFrance
| | - Ronan Legrand
- Sorbonne Université, INSERM U938, Centre de Recherche Saint‐Antoine, Department of Endocrine and Oncological BiochemistryPitié‐Salpêtrière Hospital, Assistance Publique—Hôpitaux de ParisParisFrance
| | - Anne‐Geneviève Marcelin
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Sante Publique (IPLESP)Assistance Publique‐Hôpitaux de Paris (AP‐HP), Hôpital Pitié‐Salpêtrière, Service de VirologieParisFrance
| | - Sylvain Choquet
- Sorbonne Université, Department of Clinical HematologyHôpital Pitié‐Salpêtrière, Assistance Publique—Hôpitaux de ParisParisFrance
| | - Vincent Calvez
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Sante Publique (IPLESP)Assistance Publique‐Hôpitaux de Paris (AP‐HP), Hôpital Pitié‐Salpêtrière, Service de VirologieParisFrance
| | - Eve Todesco
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Sante Publique (IPLESP)Assistance Publique‐Hôpitaux de Paris (AP‐HP), Hôpital Pitié‐Salpêtrière, Service de VirologieParisFrance
| |
Collapse
|
15
|
Mousavi S, Khazaee-Nasirabadi MH, Seyedmehdi MS, Bazi A, Mirzaee Khalilabadi R. Natural killer cells: a new promising source for developing chimeric antigen receptor anti-cancer cells in hematological malignancies. Leuk Lymphoma 2025; 66:594-616. [PMID: 39656564 DOI: 10.1080/10428194.2024.2438802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/18/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
In recent times, the application of CAR-T cell treatment has significantly progressed, showing auspicious treatment outcomes in hematologic malignancies. However, along with these advances, certain limitations and challenges hurdle the widespread utilization of this technology. Recently, CAR-NK cells have gained attention in cancer treatment, as this approach has an important advantage over CART therapy (i.e. no need for HLA matching) for targeting foreign cells. This review aims to explore the benefits of CAR NK cell therapy, and generation strategies, as well as the challenges and limitations hindering the application of CAR NK cells in experimental studies and trials on hematologic malignancies.
Collapse
Affiliation(s)
- Shahrzad Mousavi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Maryam Sadat Seyedmehdi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Islamic Republic of Iran
| | - Ali Bazi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Roohollah Mirzaee Khalilabadi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
16
|
Rist M, Kaku M, Coffin JM. Ex vivo HIV DNA integration in STAT3 drives T cell persistence-A model of HIV-associated T cell lymphoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646272. [PMID: 40236153 PMCID: PMC11996357 DOI: 10.1101/2025.03.31.646272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Oncogenic retroviruses are known for their pathogenesis via insertional mutagenesis, in which the presence of a provirus and its transcriptional control elements alter the expression of a nearby or surrounding host gene. There are reports of proviral integration driving oncogenesis in people with HIV and the use of HIV-derived vectors for gene therapy has raised concern about oncogenic side effects. To study this issue, we used an ex vivo human CD4+ T cell infection model developed in our laboratory to identify HIV-1 integration sites that might influence cell proliferation or survival. Combining integration site analysis and bulk RNA sequencing, we established that an upregulated STAT3 signature due to proviral insertional mutagenesis was associated with persistent HIV-infected CD4+ T cells. HIV+ persistent cells also expressed a STAT3-related anti-apoptotic and cytotoxic phenotype that resembles that of HIV-associated T cell lymphomas. HIV insertional mutagenesis of STAT3 and expression of its downstream targets provides a model of HIV-associated T cell lymphomas that can be used to further determine the oncogenic drivers of HIV-associated lymphomas, both AIDS- and gene therapy-associated, and, potentially, to evaluate therapeutics against these HIV-associated cancers. Author Summary The effects of HIV proviral insertional mutagenesis have been demonstrated in a handful of HIV-associated T cell lymphomas, where integration of an HIV provirus within intron 1 of STAT3 , results in increased expression of the STAT3 protein. To study the effects of HIV insertional mutagenesis, we established an ex vivo culture protocol of primary human CD4+ T cells infected with a replication-incompetent HIV vector with a gfp-reporter. After infection, the HIV/GFP+ cells from all three donors declined, but, over time, 3/6 replicates from one donor populations of infected cells rebounded. The resurgent HIV/GFP+ cells contained a provirus integrated within intron 1 of STAT3 , which led to increases in gene expression, STAT3 activation, and upregulation of a STAT3 -associated anti-apoptotic and cytotoxic phenotype. The STAT3 -associated gene signature shared similarities to the HIV-associated lymphomas with similar integration sites. Additionally, in all 3 replicates, insertional mutagenesis of genes other than STAT3 may have also contributed to clonal expansion of HIV/GFP+ T cells. Overall, we have demonstrated that HIV provirus insertional mutagenesis can influence T cell persistence. Our study provides a primary T cell culture model system that can be used to further study how proviral insertional mutagenesis influences HIV-associated T cell lymphomas and the safety of lentiviral vectors used in gene and cell therapies.
Collapse
|
17
|
Schock Vaiani J, Broekgaarden M, Coll JL, Sancey L, Busser B. In vivo vectorization and delivery systems for gene therapies and RNA-based therapeutics in oncology. NANOSCALE 2025; 17:5501-5525. [PMID: 39927415 DOI: 10.1039/d4nr05371k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Gene and RNA-based therapeutics represent a promising frontier in oncology, enabling targeted modulation of tumor-associated genes and proteins. This review explores the latest advances in payload vectorization and delivery systems developed for in vivo cancer treatments. We discuss viral and non-viral organic particles, including lipid based nanoparticles and polymeric structures, for the effective transport of plasmids, siRNA, and self-amplifying RNA therapeutics. Their physicochemical properties, strategies to overcome intracellular barriers, and innovations in cell-based carriers and engineered extracellular vesicles are highlighted. Moreover, we consider oncolytic viruses, novel viral capsid modifications, and approaches that refine tumor targeting and immunomodulation. Ongoing clinical trials and regulatory frameworks guide future directions and emphasize the need for safe, scalable production. The potential convergence of these systems with combination therapies paves the way toward personalized cancer medicine.
Collapse
Affiliation(s)
- Julie Schock Vaiani
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Mans Broekgaarden
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Jean-Luc Coll
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Lucie Sancey
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Benoit Busser
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
- Grenoble Alpes Univ. Hospital (CHUGA), 38043 Grenoble, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
18
|
Shankar K, Zingler-Hoslet I, Tabima DM, Zima S, Shi L, Gimse K, Forsberg MH, Katta V, Davis SZ, Maldonado D, Russell BE, Murtaza M, Tsai SQ, Ayuso JM, Capitini CM, Saha K. Virus-free CRISPR knockin of a chimeric antigen receptor into KLRC1 generates potent GD2-specific natural killer cells. Mol Ther 2025; 33:1014-1030. [PMID: 39815622 PMCID: PMC11897758 DOI: 10.1016/j.ymthe.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/09/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025] Open
Abstract
Natural killer (NK) cells are an appealing off-the-shelf, allogeneic cellular therapy due to their cytotoxic profile. However, their activity against solid tumors remains suboptimal in part due to the upregulation of NK-inhibitory ligands, such as HLA-E, within the tumor microenvironment. Here, we utilize CRISPR-Cas9 to disrupt the KLRC1 gene (encoding the HLA-E-binding NKG2A receptor) and perform non-viral insertion of a GD2-targeting chimeric antigen receptor (CAR) within NK cells isolated from human peripheral blood. Genome editing with CRISPR-Cas9 ribonucleoprotein complexes yields efficient genomic disruption of the KLRC1 gene with 98% knockout efficiency and specific knockin of the GD2 CAR transgene as high as 23%, with minimal off-target activity as shown by CHANGE-seq, in-out PCR, amplicon sequencing, and long-read whole-genome sequencing. KLRC1-GD2 CAR NK cells display high viability and proliferation, as well as precise cellular targeting and potency against GD2+ human tumor cells. Notably, KLRC1-GD2 CAR NK cells overcome HLA-E-based inhibition in vitro against HLA-E-expressing, GD2+ melanoma cells. Using a single-step, virus-free genome editing workflow, this study demonstrates the feasibility of precisely disrupting inhibitory signaling within NK cells via CRISPR-Cas9 while expressing a CAR to generate potent allogeneic cell therapies against HLA-E+ solid tumors.
Collapse
Affiliation(s)
- Keerthana Shankar
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Isabelle Zingler-Hoslet
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Diana M Tabima
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Seth Zima
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53715, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Lei Shi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53715, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Kirstan Gimse
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Matthew H Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53715, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Varun Katta
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sage Z Davis
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Daniel Maldonado
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brittany E Russell
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Muhammed Murtaza
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Shengdar Q Tsai
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jose M Ayuso
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53715, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Christian M Capitini
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53715, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53715, USA.
| |
Collapse
|
19
|
Baker DJ, Levine BL, June CH. Assessing the oncogenic risk: the long-term safety of autologous chimeric antigen receptor T cells. Lancet 2025; 405:751-754. [PMID: 40023653 DOI: 10.1016/s0140-6736(25)00039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 03/04/2025]
Affiliation(s)
- Daniel J Baker
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA; Cardiovascular Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, PA, USA.
| | - Bruce L Levine
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Yang Y, Meng Y, Chen D, Hou P, Zhang Z, Cao W, Meng Y, Zhang Q, Tu R, Hao X, Qin A, Shang S, Yang Z. Lysozyme/Tracheal Antimicrobial Peptide-Based Tissue-Specific Expression Antimicrobial Plasmids Show Broad-Spectrum Antibacterial Activities in the Treatment of Mastitis in Mice. Adv Biol (Weinh) 2025; 9:e2400132. [PMID: 39740033 DOI: 10.1002/adbi.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/29/2024] [Indexed: 01/02/2025]
Abstract
The use of antibiotics is the preferred therapy for bacterial diseases. However, overusing antibiotics has led to the development of antibiotic resistance in bacteria, which is now a major public health concern. Therefore, in this study, the performance of lysozyme (LYZ)/tracheal antimicrobial peptide (TAP)-based tissue-specific expression antimicrobial plasmids (TSEAP) have been evaluated in the treatment of mastitis in mice. The results show that LYZ/ and TAP-based TSEAP could effectively reduce the clinical symptoms caused by Staphylococcus sciuri, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa-induced mastitis. In addition, the studies of behavioral tests, parameters of weight growth, blood biochemistry, and organ coefficients comprehensively indicate that the transfection of LYZ/TAP-based TSEAP is safe in mice. Taken together, LYZ/TAP-based TSEAP have broad-spectrum antibacterial activity and may provide new insight for the non-antibiotic treatment of bacterial diseases.
Collapse
Affiliation(s)
- Yi Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, 225009, China
| | - Yining Meng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Daijie Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Ping Hou
- School of Nursing & School of Public Health, Yangzhou University, Yangzhou, 225009, China
| | - Zhipeng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenqiang Cao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Ye Meng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Qianwen Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Runyan Tu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoli Hao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Aijian Qin
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Shaobin Shang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Zhangping Yang
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
21
|
Sytsma BJ, Allain V, Bourke S, Faizee F, Fathi M, Ferreira LMR, Brewer WJ, Li L, Pan FL, Rothrock AG, Nyberg WA, Li Z, Wilson LH, Berdeaux R, Eyquem J, Pawell RS. Scalable intracellular delivery via microfluidic vortex shedding enhances the function of chimeric antigen receptor T-cells. Sci Rep 2025; 15:5749. [PMID: 39962112 PMCID: PMC11832915 DOI: 10.1038/s41598-025-89070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
Adoptive chimeric antigen receptor T-cell (CAR-T) therapy is transformative and approved for hematologic malignancies. It is also being developed for the treatment of solid tumors, autoimmune disorders, heart disease, and aging. Despite unprecedented clinical outcomes, CAR-T and other engineered cell therapies face a variety of manufacturing and safety challenges. Traditional methods, such as lentivirus transduction and electroporation, result in random integration or cause significant cellular damage, which can limit the safety and efficacy of engineered cell therapies. We present hydroporation as a gentle and effective alternative for intracellular delivery. Hydroporation resulted in 1.7- to 2-fold higher CAR-T yields compared to electroporation with superior cell viability and recovery. Hydroporated cells exhibited rapid proliferation, robust target cell lysis, and increased pro-inflammatory and regulatory cytokine secretion in addition to improved CAR-T yield by day 5 post-transfection. We demonstrate that scaled-up hydroporation can process 5 × 108 cells in less than 10 s, showcasing the platform as a viable solution for high-yield CAR-T manufacturing with the potential for improved therapeutic outcomes.
Collapse
Affiliation(s)
| | - Vincent Allain
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Université Paris Cité, INSERM UMR976, Hôpital Saint-Louis, Paris, France
| | | | | | | | - Leonardo M R Ferreira
- Indee Labs, Berkeley, CA, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | | | - Lian Li
- Indee Labs, Berkeley, CA, USA
| | | | - Allison G Rothrock
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - William A Nyberg
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Zhongmei Li
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Justin Eyquem
- Indee Labs, Berkeley, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
| | | |
Collapse
|
22
|
Ressnerova A, Heger Z, Pumera M. Translational nanorobotics breaking through biological membranes. Chem Soc Rev 2025; 54:1924-1956. [PMID: 39807638 DOI: 10.1039/d4cs00483c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In the dynamic realm of translational nanorobotics, the endeavor to develop nanorobots carrying therapeutics in rational in vivo applications necessitates a profound understanding of the biological landscape of the human body and its complexity. Within this landscape, biological membranes stand as critical barriers to the successful delivery of therapeutic cargo to the target site. Their crossing is not only a challenge for nanorobotics but also a pivotal criterion for the clinical success of therapeutic-carrying nanorobots. Nevertheless, despite their urgency, strategies for membrane crossing in translational nanorobotics remain relatively underrepresented in the scientific literature, signaling an opportunity for further research and innovation. This review focuses on nanorobots with various propulsion mechanisms from chemical and physical to hybrid mechanisms, and it identifies and describes four essential biological membranes that represent the barriers needed to be crossed in the therapeutic journey of nanorobots in in vivo applications. First is the entry point into the blood stream, which is the skin or mucosa or intravenous injection; next is the exit from the bloodstream across the endothelium to the target site; further is the entry to the cell through the plasma membrane and, finally, the escape from the lysosome, which otherwise destroys the cargo. The review also discusses design challenges inherent in translating nanorobot technologies to real-world applications and provides a critical overview of documented membrane crossings. The aim is to underscore the need for further interdisciplinary collaborations between chemists, materials scientists and chemical biologists in this vital domain of translational nanorobotics that has the potential to revolutionize the field of precision medicine.
Collapse
Affiliation(s)
- Alzbeta Ressnerova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
- Research Group for Molecular Biology and Nanomedicine, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Zbynek Heger
- Research Group for Molecular Biology and Nanomedicine, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Center of Advanced Innovation Technologies, Faculty of Materials Science and Technology, VSB - Technical University of Ostrava, 17. Listopadu 2172/15, 70800 Ostrava, Czech Republic
| | - Martin Pumera
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
23
|
Holzwarth D, Calaminus G, Friese J, Sejersen T, Büning H, John-Neek P, Bastone AL, Rothe M, Mansfield K, Libertini S, Dubost V, Kuzmiski B, Alecu I, Labik I, Kirschner J. Pilocytic astrocytoma in a child with spinal muscular atrophy treated with onasemnogene abeparvovec. Mol Ther 2025:S1525-0016(25)00115-7. [PMID: 39955617 DOI: 10.1016/j.ymthe.2025.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/21/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disease, leading to progressive muscle weakness and potentially early mortality if untreated. Onasemnogene abeparvovec is a recombinant adeno-associated virus serotype 9 (rAAV9)-based gene therapy that has demonstrated improvements in survival and motor function for SMA patients. Here, we present a case of a patient diagnosed with a grade 1 pilocytic astrocytoma at the age of 2 years, approximately 8 months after onasemnogene abeparvovec treatment. Although vector genomes delivered by rAAVs persist primarily as episomes, rare integration events have been linked to tumor formation in neonate murine models. Therefore, we investigated the presence and possible integration of onasemnogene abeparvovec in formalin-fixed paraffin embedded (FFPE) and frozen tumor samples. In situ hybridization demonstrated variable transduction levels in individual tumor cells, while droplet digital PCR measured an average vector copy number ranging from 0.7 to 4.9 vector genomes/diploid genome. Integration site analysis identified a low number of integration sites that were not conserved between technical replicates, nor between FFPE and frozen samples, indicating that cells hosting integrating vector genomes represented a minority in the overall cell population. Thus, molecular analysis of the tumor tissue suggests that tumorigenesis was causally independent of the administration of onasemnogene abeparvovec.
Collapse
Affiliation(s)
| | | | | | - Thomas Sejersen
- Pediatric Neurology, Karolinska University Hospital, 171 77 Stockholm, Sweden; Department of Women's and Children's Health, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | | - Iulian Alecu
- Novartis Pharmaceuticals, 4056 Basel, Switzerland
| | - Ivan Labik
- ProtaGene CGT GmbH, 69120 Heidelberg, Germany
| | - Janbernd Kirschner
- Department for Neuropediatrics and Muscle Disease, Medical Center - University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
| |
Collapse
|
24
|
Guthrie OW. Gene Therapy: An Historical Overview for Familial Hearing Loss. Int J Mol Sci 2025; 26:1469. [PMID: 40003934 PMCID: PMC11855000 DOI: 10.3390/ijms26041469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Gene therapy is a promising molecular approach for the management of familial hearing loss. This type of molecular therapy is the physical manifestation of genetic determinism-the notion that individual genes cause individual phenotypes. The current composition weaves through various branches of the biomedical sciences to uncover the molecular biologic premise for genetic determinism and the impetus behind gene therapy. Consequently, it is revealed that the underlying molecular biologic premise was scaffolded on successful observations from simple biologic assays that were devoid of the complexities of human disease biology. Furthermore, modern successful gene therapies are largely driven by commercial and academic incentives at the cost of scientific rigor. This poses several perverse challenges for patients, clinicians and the public at large. Issues concerning safety, efficacy, and ethics are far from resolved despite regulatory agency approvals, the media's bias for gene therapy and the many lucrative investor positions. Lastly, the therapeutic claims regarding gene therapy are the most ambitious claims made within the hearing sciences. Therefore, scientists, clinicians, and patients must be equipped with the tools needed to appropriately consume and appraise such claims. These and other issues are also directly addressed, with the aim of providing a realistic sense of whether current human gene therapies are ready to be positioned within our routine clinical armamentarium against hearing loss.
Collapse
Affiliation(s)
- O'neil W Guthrie
- Cell & Molecular Pathology Laboratory, Department of Communication Sciences and Disorders, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
25
|
Yin H, Wei X. The design of retroviral vectors used in the CAR-T products, risk management, and future perspective. MedComm (Beijing) 2025; 6:e70067. [PMID: 39866836 PMCID: PMC11758153 DOI: 10.1002/mco2.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy is a revolutionary approach in cancer treatment. More than 10 CAR-T products have already approved on market worldly wide, and they use either gamma retroviral vectors or lentiviral vectors to deliver the CAR gene. Both vectors have the ability to effectively and persistently integrate the CAR gene into T cells. Despite the advancements in CAR-T therapy, the potential risks associated with the vectors, particularly the risks of the secondary malignancies, still remain as a concern. This article compares the characteristics of gamma retroviral and lentiviral vectors, discusses the development of vector packaging systems, and examines the design of self-inactivating (SIN) vectors. It also addresses the risks of secondary malignancies that might possibly be associated with the retroviral vectors, and the strategies to decrease the risks and increase the safer clinical use of the vectors. This article also discusses the current regulatory landscape and management approaches aiming to mitigate these risks through stringent safety measures and ongoing monitoring. Future perspectives focus on improving the safety profiles of the vectors and broadening their scope of use. The article provides a thorough overview of the most recent research discoveries and regulatory updates in the field of CAR-T therapy, highlighting the significance of a balanced strategy that strikes a balance between innovation and patient safety in the development and implementation of CAR-T therapy.
Collapse
Affiliation(s)
- Huifang Yin
- Office of Pharmaceutical ScienceYangtze River Delta Center for Drug Evaluation and InspectionNational Medical Products AdministrationShanghaiChina
| | - Xuejing Wei
- Office of Pharmaceutical ScienceYangtze River Delta Center for Drug Evaluation and InspectionNational Medical Products AdministrationShanghaiChina
| |
Collapse
|
26
|
Qiu L, Kumpf SW, Oziolor EM, Sheehan M, Finley JE, Rubitski DM, Qian J, Gosink MM, Kopec AK, Lanz TA, Burdick AD. In vitro NIH3T3 mouse embryonic fibroblast cell model does not predict AAV2 or AAVdj-mediated cell transformation. Toxicol Appl Pharmacol 2025; 495:117229. [PMID: 39809415 DOI: 10.1016/j.taap.2025.117229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
One of the potential risk factors of recombinant adeno-associated virus (rAAV)-based gene therapy is insertional mutagenesis, which has been associated with the development of hepatocellular carcinoma (HCC) in rAAV-treated neonatal mice. The objective of this study was to investigate if well-established in vitro cell transformation assays (CTA) in mouse cell lines can detect AAV2 or AAVdj-mediated cell transformation. Since AAV integration at the Rian locus in neonatal mice has been implicated in AAV-mediated HCC, an rAAV vector specifically targeting the mouse Rian locus and an additional rAAV vector previously shown to cause HCC in neonatal mice were both tested for the induction of cell transformation in NIH3T3 cells. To increase the frequency of AAV DNA integration at the Rian locus in the genome of NIH3T3 cells, double-strand breaks in Rian locus of NIH3T3 cells were created by CRISPR-Cas9 to increase the homologous crossover between viral DNA and the cell genome. When transduced cells were assayed in CTA, the transformation frequency observed in AAV-transduced NIH3T3 cells was not significantly different from that of untreated vehicle cells. The finding that rAAV is unable to transform the NIH3T3 in vitro indicates that either the transformation rate is less than the spontaneous rate of NIH3T3 cellular transformation, or in vitro CTA are not predictive of rAAV-induced HCC in mice.
Collapse
Affiliation(s)
- Luping Qiu
- Drug Safety Research & Development, Pfizer, Inc., Groton, CT 06340, USA
| | - Steven W Kumpf
- Drug Safety Research & Development, Pfizer, Inc., Groton, CT 06340, USA
| | - Elias M Oziolor
- Drug Safety Research & Development, Pfizer, Inc., Groton, CT 06340, USA
| | - Mark Sheehan
- Drug Safety Research & Development, Pfizer, Inc., Groton, CT 06340, USA
| | - James E Finley
- Drug Safety Research & Development, Pfizer, Inc., Groton, CT 06340, USA
| | - David M Rubitski
- Drug Safety Research & Development, Pfizer, Inc., Groton, CT 06340, USA
| | - Jessie Qian
- Drug Safety Research & Development, Pfizer, Inc., Groton, CT 06340, USA
| | - Mark M Gosink
- Drug Safety Research & Development, Pfizer, Inc., Groton, CT 06340, USA
| | - Anna K Kopec
- Drug Safety Research & Development, Pfizer, Inc., Groton, CT 06340, USA
| | - Thomas A Lanz
- Drug Safety Research & Development, Pfizer, Inc., Groton, CT 06340, USA.
| | - Andrew D Burdick
- Drug Safety Research & Development, Pfizer, Inc., Groton, CT 06340, USA
| |
Collapse
|
27
|
Gallo MC, Elias A, Reynolds J, Ball JR, Lieberman JR. Regional Gene Therapy for Bone Tissue Engineering: A Current Concepts Review. Bioengineering (Basel) 2025; 12:120. [PMID: 40001640 PMCID: PMC11852166 DOI: 10.3390/bioengineering12020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
The management of segmental bone defects presents a complex reconstruction challenge for orthopedic surgeons. Current treatment options are limited by efficacy across the spectrum of injury, morbidity, and cost. Regional gene therapy is a promising tissue engineering strategy for bone repair, as it allows for local implantation of nucleic acids or genetically modified cells to direct specific protein expression. In cell-based gene therapy approaches, a variety of different cell types have been described including mesenchymal stem cells (MSCs) derived from multiple sources-bone marrow, adipose, skeletal muscle, and umbilical cord tissue, among others. MSCs, in particular, have been well studied, as they serve as a source of osteoprogenitor cells in addition to providing a vehicle for transgene delivery. Furthermore, MSCs possess immunomodulatory properties, which may support the development of an allogeneic "off-the-shelf" gene therapy product. Identifying an optimal cell type is paramount to the successful clinical translation of cell-based gene therapy approaches. Here, we review current strategies for the management of segmental bone loss in orthopedic surgery, including bone grafting, bone graft substitutes, and operative techniques. We also highlight regional gene therapy as a tissue engineering strategy for bone repair, with a focus on cell types and cell sources suitable for this application.
Collapse
Affiliation(s)
- Matthew C. Gallo
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Aura Elias
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Julius Reynolds
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Jacob R. Ball
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Jay R. Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
28
|
Oliveira BC, Bari S, Melenhorst JJ. Leveraging Vector-Based Gene Disruptions to Enhance CAR T-Cell Effectiveness. Cancers (Basel) 2025; 17:383. [PMID: 39941752 PMCID: PMC11815729 DOI: 10.3390/cancers17030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Anti-CD19 chimeric antigen receptor (CAR) T-cell therapy represents a breakthrough in the treatment of relapsed and refractory B-cell malignancies, such as chronic lymphocytic leukemia (CLL), inducing long-term, sometimes curative, responses. However, fewer than 30% of CLL patients achieve such outcomes. It has been shown that a smaller subset of T cells capable of expansion and persistence is crucial for treatment effectiveness. Notably, a pre-existing mutation in the epigenetic regulator TET2, combined with CAR vector-induced disruption of the other intact allele, significantly enhanced the potency of the CAR-engineered T-cell clone in one CLL patient. This finding aligns with independent research, suggesting that the CAR gene's genomic insertion site influences tumor-targeting capability. Thus, it is plausible that vector-induced gene disruptions affect CAR T-cell function. This review synthesizes existing knowledge on vector integration into the host genome and its impact on clinical outcomes in CAR T-cell therapy patients. Our aim is to inform the development of improved therapies and enhance their overall efficacy.
Collapse
Affiliation(s)
| | | | - J. Joseph Melenhorst
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44016, USA; (B.C.O.); (S.B.)
| |
Collapse
|
29
|
Allisha J, Das J, Dunnigan T, Sharfstein ST, Datta P. Stipulations of cell and gene therapy and the ties to biomanufacturing. Biotechnol Prog 2025:e3521. [PMID: 39846483 DOI: 10.1002/btpr.3521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/24/2025]
Abstract
Cell and gene therapy (CGT) products are emerging and innovative biopharmaceuticals that hold promise for treating diseases that are otherwise beyond the scope of conventional medicines. The evolution of CGT from a research idea to a promising therapeutic product is due to the complementary advancements across various scientific disciplines. First, the innovations and advancements in gene editing and delivery technology have provided fundamental tools to manipulate genes and cells for therapeutic pursuits. Second, advancements in applied and translational research, including how clinical trials are designed, performed, evaluated, and analyzed, have transformed the technology into a potential therapeutic product. Third, advancements in scaling up the production of CGT products have been critical in delivering the product for preclinical studies, clinical trials, and approved treatments. In parallel, regulatory requirements have continuously evolved, with lessons learned from translational studies and biomanufacturing. These combined efforts have transformed CGT products from a promising concept into a reality with the potential to treat a wide range of diseases. However, continued R&D and regulatory oversight are crucial to further improve the safety, efficacy, and accessibility of CGT products.
Collapse
Affiliation(s)
- Justin Allisha
- Department of Life Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Juthika Das
- Department of Life Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Thomas Dunnigan
- Department of Life Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Susan T Sharfstein
- Department of Nanoscale Science and Engineering and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
| | - Payel Datta
- Department of Life Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| |
Collapse
|
30
|
Moiseenko A, Sinadinos A, Sergijenko A, Pineault K, Saleh A, Nekola K, Strang N, Eleftheraki A, Boyd AC, Davies JC, Gill DR, Hyde SC, McLachlan G, Rath T, Rothe M, Schambach A, Hobbie S, Schuler M, Maier U, Thomas MJ, Mennerich D, Schmidt M, Griesenbach U, Alton EWFW, Kreuz S. Pharmacological and pre-clinical safety profile of rSIV.F/HN, a hybrid lentiviral vector for cystic fibrosis gene therapy. Eur Respir J 2025; 65:2301683. [PMID: 39174284 PMCID: PMC11780724 DOI: 10.1183/13993003.01683-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 08/02/2024] [Indexed: 08/24/2024]
Abstract
RATIONALE AND OBJECTIVE Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. CFTR modulators offer significant improvements, but ∼10% of patients remain nonresponsive or are intolerant. This study provides an analysis of rSIV.F/HN, a lentiviral vector optimised for lung delivery, including CFTR protein expression, functional correction of CFTR defects and genomic integration site analysis in preparation for a first-in-human clinical trial. METHODS Air-liquid interface cultures of primary human bronchial epithelial cells (HBECs) from CF patients (F508del/F508del), as well as a CFTR-deficient immortalised human lung epithelial cell line mimicking class I (CFTR-null) homozygous mutations, were used to assess transduction efficiency. Quantification methods included a novel proximity ligation assay for CFTR protein expression. For assessment of CFTR channel activity, Ussing chamber studies were conducted. The safety profile was assessed using integration site analysis and in vitro insertional mutagenesis studies. RESULTS rSIV.F/HN expressed CFTR and restored CFTR-mediated chloride currents to physiological levels in primary F508del/F508del HBECs as well as in a class I cells. In contrast, the latter could not be achieved by small-molecule CFTR modulators, underscoring the potential of gene therapy for this mutation class. Combination of rSIV.F/HN-CFTR with the potentiator ivacaftor showed a greater than additive effect. The genomic integration pattern showed no site predominance (frequency of occurrence ≤10%), and a low risk of insertional mutagenesis was observed in an in vitro immortalisation assay. CONCLUSIONS The results underscore rSIV.F/HN as a promising gene therapy vector for CF, providing a mutation-agnostic treatment option.
Collapse
Affiliation(s)
- Alena Moiseenko
- Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | - Anthony Sinadinos
- UK Respiratory Gene Therapy Consortium, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ana Sergijenko
- UK Respiratory Gene Therapy Consortium, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kyriel Pineault
- UK Respiratory Gene Therapy Consortium, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Aarash Saleh
- UK Respiratory Gene Therapy Consortium, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Konradin Nekola
- Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | - Nathalie Strang
- Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | | | - A Christopher Boyd
- UK Respiratory Gene Therapy Consortium, London, UK
- Centre of Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jane C Davies
- UK Respiratory Gene Therapy Consortium, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- Depts of Respiratory Medicine and Paediatric Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas' Trust, London, UK
| | - Deborah R Gill
- UK Respiratory Gene Therapy Consortium, London, UK
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen C Hyde
- UK Respiratory Gene Therapy Consortium, London, UK
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Gerry McLachlan
- UK Respiratory Gene Therapy Consortium, London, UK
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - Tim Rath
- ProtaGene CGT (former GeneWerk GmbH), Heidelberg, Germany
| | | | - Axel Schambach
- Medizinische Hochschule Hannover, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Silke Hobbie
- Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | - Michael Schuler
- Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | - Udo Maier
- Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | | | | | - Manfred Schmidt
- ProtaGene CGT (former GeneWerk GmbH), Heidelberg, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Deceased
| | - Uta Griesenbach
- UK Respiratory Gene Therapy Consortium, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- U. Griesenbach, E.W.F.W. Alton and S. Kreuz are joint senior authors
| | - Eric W F W Alton
- UK Respiratory Gene Therapy Consortium, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- Depts of Respiratory Medicine and Paediatric Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas' Trust, London, UK
- U. Griesenbach, E.W.F.W. Alton and S. Kreuz are joint senior authors
| | - Sebastian Kreuz
- Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
- U. Griesenbach, E.W.F.W. Alton and S. Kreuz are joint senior authors
| |
Collapse
|
31
|
Oved JH, Russell A, DeZern A, Prockop SE, Bonfim C, Sharma A, Purtill D, Lakkaraja M, Bidgoli A, Bhoopalan SV, Soni S, Boelens JJ, Abraham A. The role of the conditioning regimen for autologous and ex vivo genetically modified hematopoietic stem cell-based therapies: recommendations from the ISCT stem cell engineering committee. Cytotherapy 2025; 27:78-84. [PMID: 39320295 DOI: 10.1016/j.jcyt.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND The advent of autologous gene modified cell therapies to treat monogenic disorders has been a major step forward for the field of hematopoietic stem cell transplantation (HCT) and cellular therapies. The need for disease-specific conditioning to enable these products to provide a potential cure has required extrapolation from experience in myeloablative and non-myeloablative HCT for these disorders. METHODS In this manuscript, we review the current datasets and clinical experience using different conditioning regimens for autologous gene therapies in hemoglobinopathies, metabolic and lysosomal disorders, inborn errors of immunity (IEI) and bone marrow failure (BMF) syndromes. RESULTS The disease specific and unique conditioning requirements of each disorder are considered in order to achieve maximal benefit while minimizing associated toxicities. CONCLUSIONS Standardized recommendations based on these data are made for each set of disorders to harmonize treatment. Future directions and the possibility of non-genotoxic conditioning regimens for autologous gene therapies are also discussed. Ethical Statement: The authors followed all relevant ethical considerations in writing this manuscript.
Collapse
Affiliation(s)
- Joseph H Oved
- Transplant and Cellular Therapies, MSK Kids, Department of Pediatrics, Memorial Sloan Kettering Cancer Center New York, New York, USA.
| | - Athena Russell
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy DeZern
- Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | - Susan E Prockop
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Carmem Bonfim
- Pediatric Blood and Marrow Transplantation Division and Pelé Pequeno Príncipe Research Institute, Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital and PathWest Laboratory Medicine, Perth, Western Australia, Australia
| | - Madhavi Lakkaraja
- Fred Hutchinson Cancer Center, Seattle, Washington, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Alan Bidgoli
- Division of Blood and Marrow Transplantation, Children's Healthcare of Atlanta, Aflac Blood and Cancer Disorders Center, Emory University, Atlanta, Georgia, USA
| | - Senthil Velan Bhoopalan
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sandeep Soni
- Pediatrics, University of California, San Francisco, California, USA; Crispr Therapeutics AG, Boston, Massachusetts, USA; ISCT Immune-Gene Therapy Committee, ISCT, Vancouver, California, USA
| | - Jaap Jan Boelens
- Transplant and Cellular Therapies, MSK Kids, Department of Pediatrics, Memorial Sloan Kettering Cancer Center New York, New York, USA
| | - Allistair Abraham
- Center for Cancer and Immunology Research, CETI, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
32
|
Brusson M, Miccio A. [A CRISPR/Cas approach to β-haemoglobinopathies]. Med Sci (Paris) 2025; 41:33-39. [PMID: 39887096 DOI: 10.1051/medsci/2024191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Beta-haemoglobinopathies are severe genetic anemias caused by mutations that affect adult haemoglobin production. Many therapeutic approaches aim to reactivate the expression of the fetal hemoglobin genes. To this end, the CRISPR/Cas9 system has recently been used to genetically modify patients' hematopoietic stem/progenitor cells ex vivo and reactivate fetal hemoglobin expression in their erythroid progeny. More than 70 patients with severe β-thalassemia and sickle cell disease have been treated with the Casgevy® therapy. Most have achieved a significant improvement of clinical phenotype, with high editing efficiency in hematopoietic cells associated with normal or near normal hemoglobin levels. While the long-term safety and efficacy of this powerful approach still need to be evaluated, new strategies are being developed to further improve therapeutic outcomes, reduce potential genotoxicity and lower the costs of therapy.
Collapse
Affiliation(s)
- Megane Brusson
- Institut Imagine, Inserm UMR1163, université Paris Cité, Paris, France
| | - Annarita Miccio
- Institut Imagine, Inserm UMR1163, université Paris Cité, Paris, France
| |
Collapse
|
33
|
Cho SY, Kim KD, Shin CG. Advances in foamy virus vector systems: Development and applications. Virology 2025; 601:110270. [PMID: 39509861 DOI: 10.1016/j.virol.2024.110270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
Foamy virus (FV) is a retrovirus with a safer integration profile than other retroviruses, rendering it appealing for gene therapy. Prototype FV (PFV) vector systems have been devised to yield high-titer vectors carrying large transgenes. Subsequent iterations of PFV vectors have been engineered to be replication-incompetent, enhancing their safety. A third generation PFV vector system, composed of four plasmids, has been adapted to accommodate large transgenes. Additionally, a novel dual-vector system shows promise for convenient and efficient gene delivery, particularly with the forthcoming development of stable producer cell lines expressing PFV Env. FVs exhibit a broad host spectrum due to the ubiquitous presence of the host factor, heparan sulfate (HS), on their surface. The receptor-binding domain (RBD) of FV Env proteins plays a crucial role in binding to the host cell HS. The FV vector system has been employed in hematopoietic stem cell (HSC) gene therapy to address monogenic diseases in dog and mouse models. In addition, FV vectors safely and efficiently deliver anti-HIV transgenes to HSCs, and vectors carrying HIV epitopes successfully induce antibodies against HIV, offering the promise of anti-HIV gene therapy and vaccine development. In this review, we delve into the development and utilization of FV vector systems, emphasizing their unique advantages in gene therapy, including their non-pathogenic nature, broad host tropism, large transgene capacity, and persistence in resting cells. Furthermore, we discuss the potential of FV vectors in tackling current challenges in gene therapy and their viability as valuable tools for treating genetic diseases.
Collapse
Affiliation(s)
- Soo-Yeon Cho
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17456, Republic of Korea
| | - Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17456, Republic of Korea.
| | - Cha-Gyun Shin
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17456, Republic of Korea.
| |
Collapse
|
34
|
Beeraka NM, Basappa B, Nikolenko VN, Mahesh PA. Role of Neurotransmitters in Steady State Hematopoiesis, Aging, and Leukemia. Stem Cell Rev Rep 2025; 21:2-27. [PMID: 38976142 DOI: 10.1007/s12015-024-10761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Haematopoiesis within the bone marrow (BM) represents a complex and dynamic process intricately regulated by neural signaling pathways. This delicate orchestration is susceptible to disruption by factors such as aging, diabetes, and obesity, which can impair the BM niche and consequently affect haematopoiesis. Genetic mutations in Tet2, Dnmt3a, Asxl1, and Jak2 are known to give rise to clonal haematopoiesis of intermediate potential (CHIP), a condition linked to age-related haematological malignancies. Despite these insights, the exact roles of circadian rhythms, sphingosine-1-phosphate (S1P), stromal cell-derived factor-1 (SDF-1), sterile inflammation, and the complement cascade on various BM niche cells remain inadequately understood. Further research is needed to elucidate how BM niche cells contribute to these malignancies through neural regulation and their potential in the development of gene-corrected stem cells. This literature review describes the updated functional aspects of BM niche cells in haematopoiesis within the context of haematological malignancies, with a particular focus on neural signaling and the potential of radiomitigators in acute radiation syndrome. Additionally, it underscores the pressing need for technological advancements in stem cell-based therapies to alleviate the impacts of immunological stressors. Recent studies have illuminated the microheterogeneity and temporal stochasticity of niche cells within the BM during haematopoiesis, emphasizing the updated roles of neural signaling and immunosurveillance. The development of gene-corrected stem cells capable of producing blood, immune cells, and tissue-resident progeny is essential for combating age-related haematological malignancies and overcoming immunological challenges. This review aims to provide a comprehensive overview of these evolving insights and their implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA.
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia.
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India.
| | - Basappa Basappa
- Department of Studies in Organic Chemistry, Laboratory of Chemical Biology, University of Mysore, Mysore, Karnataka, 570006, India
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia
| | - P A Mahesh
- Department of Pulmonary Medicine, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| |
Collapse
|
35
|
Karamivandishi A, Hatami A, Eslami MM, Soleimani M, Izadi N. Chimeric antigen receptor natural killer cell therapy: A systematic review of preclinical studies for hematologic and solid malignancies. Hum Immunol 2025; 86:111207. [PMID: 39667204 DOI: 10.1016/j.humimm.2024.111207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Advancements in the field of CAR-T therapy have brought about a revolution in the treatment of numerous types of cancer in the past ten years. However, despite the remarkable success achieved thus far, certain barriers impede the widespread implementation of this therapy such as intricate manufacturing processes and treatment-associated toxicities. As an alternative, chimeric antigen receptor-engineered natural killer cell (CAR-NK) therapy presents a viable opportunity for a simpler and more cost-effective "off-the-shelf" treatment option, which is likely to result in fewer adverse reactions. A total of 71 studies were included in this review. Eligible studies were searched and reviewed from the databases of PubMed, Web of Science and Scopus. Based on data extracted from articles, we concluded that CAR-NK cell efficiency can vary considerably depending on factors such as tumor model, dosage, CAR generation and expansion method. Furthermore, investigating consequences of utilizing various constructs and generations of CAR-NK cells on their anti-tumor activity examined in this review.
Collapse
Affiliation(s)
- Arezoo Karamivandishi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Hatami
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Masoud Eslami
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Neda Izadi
- Research Center for Social Determinants of Health,Research institute for metabolic and obesity disorders, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Gehrke L, Gonçalves VDR, Andrae D, Rasko T, Ho P, Einsele H, Hudecek M, Friedel SR. Current Non-Viral-Based Strategies to Manufacture CAR-T Cells. Int J Mol Sci 2024; 25:13685. [PMID: 39769449 PMCID: PMC11728233 DOI: 10.3390/ijms252413685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
The successful application of CAR-T cells in the treatment of hematologic malignancies has fundamentally changed cancer therapy. With increasing numbers of registered CAR-T cell clinical trials, efforts are being made to streamline and reduce the costs of CAR-T cell manufacturing while improving their safety. To date, all approved CAR-T cell products have relied on viral-based gene delivery and genomic integration methods. While viral vectors offer high transfection efficiencies, concerns regarding potential malignant transformation coupled with costly and time-consuming vector manufacturing are constant drivers in the search for cheaper, easier-to-use, safer, and more efficient alternatives. In this review, we examine different non-viral gene transfer methods as alternatives for CAR-T cell production, their advantages and disadvantages, and examples of their applications. Transposon-based gene transfer methods lead to stable but non-targeted gene integration, are easy to handle, and achieve high gene transfer rates. Programmable endonucleases allow targeted integration, reducing the potential risk of integration-mediated malignant transformation of CAR-T cells. Non-integrating CAR-encoding vectors avoid this risk completely and achieve only transient CAR expression. With these promising alternative techniques for gene transfer, all avenues are open to fully exploiting the potential of next-generation CAR-T cell therapy and applying it in a wide range of applications.
Collapse
Affiliation(s)
- Leon Gehrke
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Vasco Dos Reis Gonçalves
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Dominik Andrae
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Tamas Rasko
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Patrick Ho
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
- Fraunhofer-Institut für Zelltherapie und Immunologie, Außenstelle Zelluläre Immuntherapie, 97070 Würzburg, Germany
| | - Sabrina R. Friedel
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
37
|
Tavakolidakhrabadi N, Ding WY, Saleem MA, Welsh GI, May C. Gene therapy and kidney diseases. Mol Ther Methods Clin Dev 2024; 32:101333. [PMID: 39434922 PMCID: PMC11492605 DOI: 10.1016/j.omtm.2024.101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Chronic kidney disease (CKD) poses a significant global health challenge, projected to become one of the leading causes of death by 2040. Current treatments primarily manage complications and slow progression, highlighting the urgent need for personalized therapies targeting the disease-causing genes. Our increased understanding of the underlying genomic changes that lead to kidney diseases coupled with recent successful gene therapies targeting specific kidney cells have turned gene therapy and genome editing into a promising therapeutic approach for treating kidney disease. This review paper reflects on different delivery routes and systems that can be exploited to target specific kidney cells and the ways that gene therapy can be used to improve kidney health.
Collapse
Affiliation(s)
- Nadia Tavakolidakhrabadi
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Wen Y. Ding
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Moin A. Saleem
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
- Department of Paediatric Nephrology, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
| | - Gavin I. Welsh
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Carl May
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| |
Collapse
|
38
|
Westhaus A, Barba-Sarasua E, Chen Y, Hsu K, Scott S, Knight M, Haase F, Mesa Mora S, Houghton BC, Roca-Pinilla R, Kalajdzic P, O'Neill G, Thrasher AJ, Santilli G, Lisowski L. Tailoring capsid-directed evolution technology for improved AAV-mediated CAR-T generation. Mol Ther 2024:S1525-0016(24)00811-6. [PMID: 39673125 DOI: 10.1016/j.ymthe.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/31/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell (CAR-T) therapies present options for patients diagnosed with certain leukemias. Recent advances of the technology included a method to integrate the CAR into the T cell receptor alpha constant (TRAC) locus to take advantage of the endogenous promoter and regulatory elements for CAR expression. This method used adeno-associated viral (AAV) vectors based on AAV6 to deliver the donor template encoding the CAR construct. Since the original publication, improvements have been made to this targeted CAR integration technique; however, none of those techniques focused on improving the AAV vector used to deliver the therapeutic cargo. The herein presented study developed a novel AAV capsid directed evolution platform that allows for specifically selecting for novel AAV capsid variants that enable more efficient targeted gene editing-mediated CAR construct integration into the TRAC locus in primary T cells. Using this new platform, we selected several novel AAVs that enable more efficient editing in T cells than AAV6. Two novel capsids, AAV-T1 and AAV-T2, were able to mediate 5-fold improvement for on-target knockin, which resulted in 5-fold reduction of the vector dose to produce highly cytolytic T cells against a brain tumor cell line.
Collapse
Affiliation(s)
- Adrian Westhaus
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia; Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College, London, UK
| | - Elena Barba-Sarasua
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Yuyan Chen
- Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Kenneth Hsu
- Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Suzanne Scott
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia; Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW, Australia
| | - Maddison Knight
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Florencia Haase
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Santiago Mesa Mora
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Benjamin C Houghton
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College, London, UK
| | - Ramon Roca-Pinilla
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Predrag Kalajdzic
- Vector and Genome Engineering Facility, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Geraldine O'Neill
- Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College, London, UK
| | - Giorgia Santilli
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College, London, UK
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia; Australian Genome Therapeutics Centre, Children's Medical Research Institute and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia; Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warsaw, Poland.
| |
Collapse
|
39
|
Bhoopalan SV, Mayuranathan T, Liu N, Mayberry K, Yao Y, Zhang J, Métais JY, Yan KK, Throm RE, Ellis SR, Ju Y, Han L, Suryaprakash S, Palmer LE, Zhou S, Yu J, Cheng Y, Yen JS, Gottschalk S, Weiss MJ. Preclinical development of lentiviral vector gene therapy for Diamond-Blackfan anemia syndrome. Mol Ther 2024:S1525-0016(24)00819-0. [PMID: 39673126 DOI: 10.1016/j.ymthe.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/19/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024] Open
Abstract
Diamond-Blackfan anemia syndrome (DBAS) is an inherited bone marrow failure disorder caused by haploinsufficiency of ribosomal protein genes, most commonly RPS19. Limited access to patient hematopoietic stem and progenitor cells (HSPCs) is a major roadblock to developing novel therapies for DBAS. We developed a self-inactivating third-generation RPS19-encoding lentiviral vector (LV) called SJEFS-S19 for DBAS gene therapy. To facilitate LV design, optimize transduction, and assess potential therapeutic efficacy, we leveraged a human cellular model of DBAS based on heterozygous disruption of RPS19 in healthy donor CD34+ HSPCs. We show that SJEFS-S19 LV can rescue DBAS-associated defects in ribosomal RNA processing, erythropoiesis, and competitive bone marrow repopulation. Transduction of RPS19+/- CD34+ HSPCs with SJEFS-S19 LV followed by xenotransplantation into immunodeficient mice generated a polyclonal HSPC population with normal multilineage differentiation and a diverse integration site profile resembling that of clinically proven LVs. Overall, these preclinical studies demonstrate the safety and efficacy of SJEFS-S19, a novel LV for future DBAS gene therapy.
Collapse
Affiliation(s)
- Senthil Velan Bhoopalan
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | | - Nana Liu
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kalin Mayberry
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yu Yao
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jingjing Zhang
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jean-Yves Métais
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Koon-Kiu Yan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robert E Throm
- St. Jude Vector Laboratory, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Steven R Ellis
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Yan Ju
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lei Han
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shruthi Suryaprakash
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lance E Palmer
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sheng Zhou
- Experimental Cellular Therapeutics Lab, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yong Cheng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jonathan S Yen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
40
|
Chen YH, Mirza M, Jiang R, Lee AP. Titrating chimeric antigen receptors on CAR T cells enabled by a microfluidic-based dosage-controlled intracellular mRNA delivery platform. BIOMICROFLUIDICS 2024; 18:064105. [PMID: 39713739 PMCID: PMC11658821 DOI: 10.1063/5.0231595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/08/2024] [Indexed: 12/24/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy shows unprecedented efficacy for cancer treatment, particularly in treating patients with various blood cancers, most notably B-cell acute lymphoblastic leukemia. In recent years, CAR T-cell therapies have been investigated for treating other hematologic malignancies and solid tumors. Despite the remarkable success of CAR T-cell therapy, cytokine release syndrome (CRS) is an unexpected side effect that is potentially life-threatening. Our aim is to reduce pro-inflammatory cytokine release associated with CRS by controlling CAR surface density on CAR T cells. We show that CAR expression density can be titrated on the surface of primary T cells using an acoustic-electric microfluidic platform. The platform performs dosage-controlled delivery by uniformly mixing and shearing cells, delivering approximately the same amount of CAR gene coding mRNA into each T cell.
Collapse
Affiliation(s)
- Yu-Hsi Chen
- Department of Biomedical Engineering, University of California, Irvine, California 92697, USA
| | - Mahnoor Mirza
- Department of Biomedical Engineering, University of California, Irvine, California 92697, USA
| | - Ruoyu Jiang
- Department of Biomedical Engineering, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
41
|
Hosuru RV, Yang J, Zhou Y, Gin A, Hayal TB, Hong SG, Dunbar CE, Wu C. Long-term tracking of haematopoietic clonal dynamics and mutations in non-human primate undergoing transplantation of lentivirally barcoded haematopoietic stem and progenitor cells. Br J Haematol 2024; 205:2487-2497. [PMID: 39523608 PMCID: PMC11637732 DOI: 10.1111/bjh.19889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Haematopoietic stem and progenitor cell (HSPC) autologous gene therapies are promising treatment for a variety of blood disorders. Investigation of the long-term HSPC clonal dynamics and other measures of safety and durability following lentiviral-mediated gene therapies in predictive models are crucial for assessing risks and benefits in order to inform decisions regarding wider utilization. We established an autologous lentivirally barcoded HSPC transplantation model in rhesus macaque (RM), a model offering insights into haematopoiesis and gene therapies with direct relevance to human. Healthy young adult RMs underwent total body irradiation, followed by transplantation of autologous HSPCs transduced with a lentiviral vector containing a diverse genetic barcode library, uniquely labelling individual HSPCs and their progeny. With up to 131 months of follow-up, we now report quantitative clonal dynamics, characterizing the number, diversity, stability and lineage bias of hundreds of thousands of HSPC clones tracked in five RMs. We documented long-term stable and multi-lineage output from a highly polyclonal pool of HSPCs. Clonal succession after stable haematopoietic reconstitution was minimal. There was no evidence for accelerated acquisition of acquired somatic mutations following autologous lentivirally transduced HSPC transplantation. Our results provide relevant insights into long-term HSPC behaviours in vivo following transplantation and gene therapies.
Collapse
Affiliation(s)
- Rohan V. Hosuru
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Jack Yang
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Yifan Zhou
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Haematological Cancer GeneticsWellcome Trust Sanger InstituteCambridgeUK
| | - Ashley Gin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Taha B. Hayal
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
42
|
Luna SE, Camarena J, Hampton JP, Majeti KR, Charlesworth CT, Soupene E, Selvaraj S, Jia K, Sheehan VA, Cromer MK, Porteus MH. Enhancement of erythropoietic output by Cas9-mediated insertion of a natural variant in haematopoietic stem and progenitor cells. Nat Biomed Eng 2024; 8:1540-1552. [PMID: 38886504 PMCID: PMC11668683 DOI: 10.1038/s41551-024-01222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/02/2024] [Indexed: 06/20/2024]
Abstract
Some gene polymorphisms can lead to monogenic diseases, whereas other polymorphisms may confer beneficial traits. A well-characterized example is congenital erythrocytosis-the non-pathogenic hyper-production of red blood cells-that is caused by a truncated erythropoietin receptor. Here we show that Cas9-mediated genome editing in CD34+ human haematopoietic stem and progenitor cells (HSPCs) can recreate the truncated form of the erythropoietin receptor, leading to substantial increases in erythropoietic output. We also show that combining the expression of the cDNA of a truncated erythropoietin receptor with a previously reported genome-editing strategy to fully replace the HBA1 gene with an HBB transgene in HSPCs (to restore normal haemoglobin production in cells with a β-thalassaemia phenotype) gives the edited HSPCs and the healthy red blood cell phenotype a proliferative advantage. Combining knowledge of human genetics with precise genome editing to insert natural human variants into therapeutic cells may facilitate safer and more effective genome-editing therapies for patients with genetic diseases.
Collapse
Affiliation(s)
- Sofia E Luna
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Joab Camarena
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Jessica P Hampton
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Kiran R Majeti
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Carsten T Charlesworth
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Eric Soupene
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, USA
| | - Sridhar Selvaraj
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Kun Jia
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Vivien A Sheehan
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - M Kyle Cromer
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center for Regeneration Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
43
|
Persaud Y, Leonard A, Rai P. Current and emerging drug treatment strategies to tackle sickle cell anemia. Expert Opin Emerg Drugs 2024; 29:327-346. [PMID: 38988318 DOI: 10.1080/14728214.2024.2379260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION Since its discovery in the early 1900s, sickle cell disease (SCD) has contributed significantly to the scientific understanding of hemoglobin and hemoglobinopathies. Despite this, now almost a century later, optimal medical management and even curative options remain limited. Encouragingly, in the last decade, there has been a push toward advancing the care for individuals with SCD and a diversifying interest in options to manage this disorder. AREAS COVERED Here, we review the current state of disease modifying therapies for SCD including fetal hemoglobin inducers, monoclonal antibodies, anti-inflammatory modulators, and enzyme activators. We also discuss current curative strategies with specific interest in transformative gene therapies. EXPERT OPINION SCD is a chronic, progressive disease that despite a century of clinical description, only now is seeing a growth and advance in therapeutic options to improve the lifespan and quality of life for individuals with SCD. We anticipate newly designed and even repurposed therapies that may work as a single agent or combination agents to tackle the progression of SCD. The vast majority of individuals living with SCD are unlikely to receive gene therapy, therefore improved disease management is critical even for those that may ultimately chose to pursue a potentially curative strategy.
Collapse
Affiliation(s)
- Yogindra Persaud
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alexis Leonard
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Parul Rai
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
44
|
Evans CH, Ghivizzani SC, Robbins PD. The 2024 OREF Clinical Research Award: Progress Toward a Gene Therapy for Arthritis. J Am Acad Orthop Surg 2024; 32:1052-1060. [PMID: 39284030 DOI: 10.5435/jaaos-d-24-00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Indexed: 10/20/2024] Open
Abstract
Osteoarthritis (OA) is a highly prevalent, disabling, incurable, and expensive disease that is difficult to treat nonsurgically. The pharmacokinetics of drug delivery to joints are such that it is not possible to target antiarthritic agents, especially biologics, to individual joints with OA at sustained, therapeutic concentrations. More than 30 years ago, we proposed that local, intra-articular gene transfer can overcome this barrier to therapy by engineering articular cells to synthesize antiarthritic gene products endogenously. This article summarizes the progress toward this goal. Initially, a retroviral vector was used to deliver cDNA encoding the interleukin-1 receptor antagonist (IL-1Ra) to the joints of experimental animals. Using an ex vivo strategy, cultures of autologous synovial fibroblasts were genetically modified in cell culture and introduced into joints by means of intra-articular injection. Successful development of this technology led to the first-in-human gene therapy trial for arthritis. This Phase I study targeted metacarpophalangeal joints with rheumatoid arthritis. Although successful, for various reasons, subsequent research targeted OA and used adeno-associated virus as a vector to deliver IL-1Ra by direct in vivo injection into the joint. A Phase I human clinical trial has just been completed successfully in subjects with mid-stage OA of the knee, leading to a Phase Ib study that is in progress.
Collapse
Affiliation(s)
- Christopher H Evans
- From the Departments of Physical Medicine & Rehabilitation, Orthopedic Surgery and Molecular Medicine, Mayo Clinic, Rochester, NY (Evans), the Department of Orthopedics and Rehabilitation, University of Florida College of Medicine, Gainesville, FL (Ghivizzani), and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota School of Medicine, Minneapolis, MN (Robbins)
| | | | | |
Collapse
|
45
|
Steinbeck BJ, Gao XD, McElroy AN, Pandey S, Doman JL, Riddle MJ, Xia L, Chen W, Eide CR, Lengert AH, Han SW, Blazar BR, Wandall HH, Dabelsteen S, Liu DR, Tolar J, Osborn MJ. Twin Prime Editing Mediated Exon Skipping/Reinsertion for Restored Collagen VII Expression in Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2024; 144:2764-2777.e9. [PMID: 38763174 PMCID: PMC12050016 DOI: 10.1016/j.jid.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Gene editing nucleases, base editors, and prime editors are potential locus-specific genetic treatment strategies for recessive dystrophic epidermolysis bullosa; however, many recessive dystrophic epidermolysis bullosa COL7A1 pathogenic nucleotide variations (PNVs) are unique, making the development of personalized editing reagents challenging. A total of 270 of the ∼320 COL7A1 epidermolysis bullosa PNVs reside in exons that can be skipped, and antisense oligonucleotides and gene editing nucleases have been used to create in-frame deletions. Antisense oligonucleotides are transient, and nucleases generate deleterious double-stranded DNA breaks and uncontrolled mixtures of allele products. We developed a twin prime editing strategy using the PEmax and recently evolved PE6 prime editors and dual prime editing guide RNAs flanking COL7A1 exon 5. Prime editing-mediated deletion of exon 5 with a homozygous premature stop codon was achieved in recessive dystrophic epidermolysis bullosa fibroblasts, keratinocytes, and induced pluripotent stem cells with minimal double-stranded DNA breaks, and collagen type VII protein was restored. Twin prime editing can replace the target exon with recombinase attachment sequences, and we exploited this to reinsert a normal copy of exon 5 using the Bxb1 recombinase. These findings demonstrate that twin prime editing can facilitate locus-specific, predictable, in-frame deletions and sequence replacement with few double-stranded DNA breaks as a strategy that may enable a single therapeutic agent to treat multiple recessive dystrophic epidermolysis bullosa patient cohorts.
Collapse
Affiliation(s)
- Benjamin J Steinbeck
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xin D Gao
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Amber N McElroy
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Smriti Pandey
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Jordan L Doman
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Megan J Riddle
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lily Xia
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Weili Chen
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cindy R Eide
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andre H Lengert
- Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Sang Won Han
- Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Bruce R Blazar
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sally Dabelsteen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Jakub Tolar
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark J Osborn
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
46
|
Di Minno G, Miesbach W, Castaman G, Peyvandi F. Next-generation strategies to improve safety and efficacy of adeno-associated virus-based gene therapy for hemophilia: lessons from clinical trials in other gene therapies. Haematologica 2024; 109:3879-3891. [PMID: 38450517 PMCID: PMC11609791 DOI: 10.3324/haematol.2023.284622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Three major directions for the global progress of adeno-associated virus (AAV) vectors for gene therapies (GT) are analyzed: 1) engineering vectors to increase transgene expression; 2) aligning interests of the health system with costs and challenges for the pharmaceutical industry; and 3) refining patient eligibility criteria and endpoint definition. Currently employed AAV vectors may cause toxicity and adverse events. Furthermore, studies in animals do not fully predict risks and clinical benefits of AAV-based GT, and animal models reflecting the heterogeneity of certain clinical settings (e.g., congestive heart failure) are not widely available for improving AAV-based GT. Finally, antisense and gene editing approaches will soon complement gene augmentation strategies for the stable solution of unsolved issues of AAV-based GT. While minimizing toxicity, next-generation AAV vectors should decrease the viral load needed to achieve therapeutic efficacy, be functional in a restricted cellular subset, avoid transgene expression in unwanted cells (e.g., hepatocytes), and escape immune oversight in AAV-based GT. The role of stress-induced apoptosis in the loss of transgene expression in GT should also be explored. Aligning the interests and obligations of the pharmaceutical industry with those of the health system is critical for the success of AAV-based GT. Costs and challenges for the pharmaceutical industry include: a) removing impurities from AAV; b) validating tests to measure treatment efficacy; c) promoting training programs to standardize vector genome delivery; d) collecting long-term follow-up data; and e) maintaining sustainability and cost-effectiveness of AAV-based GT. In rare disorders with small patient numbers (e.g., hemophilia), clear-cut outcomes are mandatory as endpoints of unequivocal efficacy data.
Collapse
Affiliation(s)
- Giovanni Di Minno
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, School of Medicine, Napoli.
| | - Wolfgang Miesbach
- The Haemophilia Center of the Medical Clinic, University Hospital Frankfurt/Main
| | - Giancarlo Castaman
- Center for Bleeding Disorders and Coagulation, Department of Oncology, Careggi University Hospital, Florence
| | - Flora Peyvandi
- Angelo Bianchi Bonomi Haemophilia and Thrombosis Center, Fondazione Luigi Villa, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan
| |
Collapse
|
47
|
Gilioli G, Lankester AC, de Kivit S, Staal FJT, Ott de Bruin LM. Gene therapy strategies for RAG1 deficiency: Challenges and breakthroughs. Immunol Lett 2024; 270:106931. [PMID: 39303994 DOI: 10.1016/j.imlet.2024.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Mutations in the recombination activating genes (RAG) cause various forms of immune deficiency. Hematopoietic stem cell transplantation (HSCT) is the only cure for patients with severe manifestations of RAG deficiency; however, outcomes are suboptimal with mismatched donors. Gene therapy aims to correct autologous hematopoietic stem and progenitor cells (HSPC) and is emerging as an alternative to allogeneic HSCT. Gene therapy based on viral gene addition exploits viral vectors to add a correct copy of a mutated gene into the genome of HSPCs. Only recently, after a prolonged phase of development, viral gene addition has been approved for clinical testing in RAG1-SCID patients. In the meantime, a new technology, CRISPR/Cas9, has made its debut to compete with viral gene addition. Gene editing based on CRISPR/Cas9 allows to perform targeted genomic integrations of a correct copy of a mutated gene, circumventing the risk of virus-mediated insertional mutagenesis. In this review, we present the biology of the RAG genes, the challenges faced during the development of viral gene addition for RAG1-SCID, and the current status of gene therapy for RAG1 deficiency. In particular, we highlight the latest advances and challenges in CRISPR/Cas9 gene editing and their potential for the future of gene therapy.
Collapse
Affiliation(s)
- Giorgio Gilioli
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arjan C Lankester
- Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, the Netherlands
| | - Sander de Kivit
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frank J T Staal
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Lisa M Ott de Bruin
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, the Netherlands
| |
Collapse
|
48
|
Sun F, Peers de Nieuwburgh M, Hubinont C, Debiève F, Colson A. Gene therapy in preeclampsia: the dawn of a new era. Hypertens Pregnancy 2024; 43:2358761. [PMID: 38817101 DOI: 10.1080/10641955.2024.2358761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Preeclampsia is a severe complication of pregnancy, affecting an estimated 4 million women annually. It is one of the leading causes of maternal and fetal mortality worldwide, and it has life-long consequences. The maternal multisystemic symptoms are driven by poor placentation, which causes syncytiotrophoblastic stress and the release of factors into the maternal bloodstream. Amongst them, the soluble fms-like tyrosine kinase-1 (sFLT-1) triggers extensive endothelial dysfunction by acting as a decoy receptor for the vascular endothelial growth factor (VEGF) and the placental growth factor (PGF). Current interventions aim to mitigate hypertension and seizures, but the only definite treatment remains induced delivery. Thus, there is a pressing need for novel therapies to remedy this situation. Notably, CBP-4888, a siRNA drug delivered subcutaneously to knock down sFLT1 expression in the placenta, has recently obtained Fast Track approval from the Food and Drug Administration (FDA) and is undergoing a phase 1 clinical trial. Such advance highlights a growing interest and significant potential in gene therapy to manage preeclampsia. This review summarizes the advances and prospects of gene therapy in treating placental dysfunction and illustrates crucial challenges and considerations for these emerging treatments.
Collapse
Affiliation(s)
- Fengxuan Sun
- Department of Reproduction Physiopathology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Maureen Peers de Nieuwburgh
- Department of Reproduction Physiopathology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Neonatology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Corinne Hubinont
- Department of Obstetrics, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Frédéric Debiève
- Department of Reproduction Physiopathology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Arthur Colson
- Department of Reproduction Physiopathology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques universitaires Saint-Luc, Brussels, Belgium
- Department of Pharmacotherapy and Therapeutics, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
49
|
Peng Y, Bai J, Li W, Su Z, Cheng X. Advancements in p53-Based Anti-Tumor Gene Therapy Research. Molecules 2024; 29:5315. [PMID: 39598704 PMCID: PMC11596491 DOI: 10.3390/molecules29225315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
The p53 gene is one of the genes most closely associated with human tumors and has become a popular target for tumor drug design. Currently, p53-based gene therapy techniques have been developed, but these therapies face challenges such as immaturity, high safety hazards, limited efficacy, and low patient acceptance. However, researchers are no less enthusiastic about the treatment because of its theoretical potential to treat cancer. In this paper, the advances in p53-based gene therapy and related nucleic acid delivery technologies were reviewed and prospected in order to support further development in this field.
Collapse
Affiliation(s)
- Yuanwan Peng
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.P.); (J.B.); (W.L.)
| | - Jinping Bai
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.P.); (J.B.); (W.L.)
| | - Wang Li
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.P.); (J.B.); (W.L.)
| | - Zhengding Su
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Xiyao Cheng
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.P.); (J.B.); (W.L.)
| |
Collapse
|
50
|
Inen J, Han CM, Farrel DM, Bilousova G, Kogut I. CIRCLE-Seq for Interrogation of Off-Target Gene Editing. J Vis Exp 2024. [PMID: 39555799 PMCID: PMC11912817 DOI: 10.3791/67069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Circularization for In Vitro Reporting of Cleavage Effects by Sequencing (CIRCLE-seq) is a novel technique developed for the impartial identification of unintended cleavage sites of CRISPR-Cas9 through targeted sequencing of CRISPR-Cas9 cleaved DNA. The protocol involves circularizing genomic DNA (gDNA), which is subsequently treated with the Cas9 protein and a guide RNA (gRNA) of interest. Following treatment, the cleaved DNA is purified and prepared as a library for Illumina sequencing. The sequencing process generates paired-end reads, offering comprehensive data on each cleavage site. CIRCLE-seq provides several advantages over other in vitro methods, including minimal sequencing depth requirements, low background, and high enrichment for Cas9-cleaved gDNA. These advantages enhance sensitivity in identifying both intended and unintended cleavage events. This study provides a comprehensive, step-by-step procedure for examining the off-target activity of CRISPR-Cas9 using CIRCLE-seq. As an example, this protocol is validated by mapping genome-wide unintended cleavage sites of CRISPR-Cas9 during the modification of the AAVS1 locus. The entire CIRCLE-seq process can be completed in two weeks, allowing sufficient time for cell growth, DNA purification, library preparation, and Illumina sequencing. The input of sequencing data into the CIRCLE-seq pipeline facilitates streamlined interpretation and analysis of cleavage sites.
Collapse
Affiliation(s)
- Jeffrey Inen
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus; Gates Institute, University of Colorado School of Medicine, Anschutz Medical Campus
| | - Chann Makara Han
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus; Gates Institute, University of Colorado School of Medicine, Anschutz Medical Campus
| | - David M Farrel
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Anschutz Medical Campus
| | - Ganna Bilousova
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus; Gates Institute, University of Colorado School of Medicine, Anschutz Medical Campus
| | - Igor Kogut
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus; Gates Institute, University of Colorado School of Medicine, Anschutz Medical Campus;
| |
Collapse
|