1
|
Steiner BM, Benvie AM, Lee D, Jiang Y, Berry DC. Cxcr4 regulates a pool of adipocyte progenitors and contributes to adiposity in a sex-dependent manner. Nat Commun 2024; 15:6622. [PMID: 39103342 PMCID: PMC11300861 DOI: 10.1038/s41467-024-50985-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
Sex steroids modulate the distribution of mammalian white adipose tissues. Moreover, WAT remodeling requires adipocyte progenitor cells. Nevertheless, the sex-dependent mechanisms regulating adipocyte progenitors remain undetermined. Here, we uncover Cxcr4 acting in a sexually dimorphic manner to affect a pool of proliferating cells leading to restriction of female fat mass. We find that deletion of Cxcr4 in Pparγ-expressing cells results in female, not male, lipodystrophy, which cannot be restored by high-fat diet consumption. Additionally, Cxcr4 deletion is associated with a loss of a pool of proliferating adipocyte progenitors. Cxcr4 loss is accompanied by the upregulation of estrogen receptor alpha in adipose-derived PPARγ-labelled cells related to estradiol hypersensitivity and stalled adipogenesis. Estrogen removal or administration of antiestrogens restores WAT accumulation and dynamics of adipose-derived cells in Cxcr4-deficient mice. These findings implicate Cxcr4 as a female adipogenic rheostat, which may inform strategies to target female adiposity.
Collapse
Affiliation(s)
- Benjamin M Steiner
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Abigail M Benvie
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Derek Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Daniel C Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
2
|
Engin A. Endothelial Dysfunction in Obesity and Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:489-538. [PMID: 39287863 DOI: 10.1007/978-3-031-63657-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Parallel to the increasing prevalence of obesity in the world, the mortality from cardiovascular disease has also increased. Low-grade chronic inflammation in obesity disrupts vascular homeostasis, and the dysregulation of adipocyte-derived endocrine and paracrine effects contributes to endothelial dysfunction. Besides the adipose tissue inflammation, decreased nitric oxide (NO)-bioavailability, insulin resistance (IR), and oxidized low-density lipoproteins (oxLDLs) are the main factors contributing to endothelial dysfunction in obesity and the development of cardiorenal metabolic syndrome. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in the profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Higher stiffness parameter β, increased oxidative stress, upregulation of pro-inflammatory cytokines, and nicotinamide adenine dinucleotide phosphate (NADP) oxidase in PVAT turn the macrophages into pro-atherogenic phenotypes by oxLDL-induced adipocyte-derived exosome-macrophage crosstalk and contribute to the endothelial dysfunction. In clinical practice, carotid ultrasound, higher leptin levels correlate with irisin over-secretion by human visceral and subcutaneous adipose tissues, and remnant cholesterol (RC) levels predict atherosclerotic disease in obesity. As a novel therapeutic strategy for cardiovascular protection, liraglutide improves vascular dysfunction by modulating a cyclic adenosine monophosphate (cAMP)-independent protein kinase A (PKA)-AMP-activated protein kinase (AMPK) pathway in PVAT in obese individuals. Because the renin-angiotensin-aldosterone system (RAAS) activity, hyperinsulinemia, and the resultant IR play key roles in the progression of cardiovascular disease in obesity, RAAS-targeted therapies contribute to improving endothelial dysfunction. By contrast, arginase reciprocally inhibits NO formation and promotes oxidative stress. Thus, targeting arginase activity as a key mediator in endothelial dysfunction has therapeutic potential in obesity-related vascular comorbidities. Obesity-related endothelial dysfunction plays a pivotal role in the progression of type 2 diabetes (T2D). The peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone (thiazolidinedione), is a popular drug for treating diabetes; however, it leads to increased cardiovascular risk. Selective sodium-glucose co-transporter-2 (SGLT-2) inhibitor empagliflozin (EMPA) significantly improves endothelial dysfunction and mortality occurring through redox-dependent mechanisms. Although endothelial dysfunction and oxidative stress are alleviated by either metformin or EMPA, currently used drugs to treat obesity-related diabetes neither possess the same anti-inflammatory potential nor simultaneously target endothelial cell dysfunction and obesity equally. While therapeutic interventions with glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide or bariatric surgery reverse regenerative cell exhaustion, support vascular repair mechanisms, and improve cardiometabolic risk in individuals with T2D and obesity, the GLP-1 analog exendin-4 attenuates endothelial endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
3
|
AlZaim I, de Rooij LPMH, Sheikh BN, Börgeson E, Kalucka J. The evolving functions of the vasculature in regulating adipose tissue biology in health and obesity. Nat Rev Endocrinol 2023; 19:691-707. [PMID: 37749386 DOI: 10.1038/s41574-023-00893-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/27/2023]
Abstract
Adipose tissue is an endocrine organ and a crucial regulator of energy storage and systemic metabolic homeostasis. Additionally, adipose tissue is a pivotal regulator of cardiovascular health and disease, mediated in part by the endocrine and paracrine secretion of several bioactive products, such as adipokines. Adipose vasculature has an instrumental role in the modulation of adipose tissue expansion, homeostasis and metabolism. The role of the adipose vasculature has been extensively explored in the context of obesity, which is recognized as a global health problem. Obesity-induced accumulation of fat, in combination with vascular rarefaction, promotes adipocyte dysfunction and induces oxidative stress, hypoxia and inflammation. It is now recognized that obesity-associated endothelial dysfunction often precedes the development of cardiovascular diseases. Investigations have revealed heterogeneity within the vascular niche and dynamic reciprocity between vascular and adipose cells, which can become dysregulated in obesity. Here we provide a comprehensive overview of the evolving functions of the vasculature in regulating adipose tissue biology in health and obesity.
Collapse
Affiliation(s)
- Ibrahim AlZaim
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Laura P M H de Rooij
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bilal N Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Emma Börgeson
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
4
|
Peche VS, Pietka TA, Jacome-Sosa M, Samovski D, Palacios H, Chatterjee-Basu G, Dudley AC, Beatty W, Meyer GA, Goldberg IJ, Abumrad NA. Endothelial cell CD36 regulates membrane ceramide formation, exosome fatty acid transfer and circulating fatty acid levels. Nat Commun 2023; 14:4029. [PMID: 37419919 PMCID: PMC10329018 DOI: 10.1038/s41467-023-39752-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
Endothelial cell (EC) CD36 controls tissue fatty acid (FA) uptake. Here we examine how ECs transfer FAs. FA interaction with apical membrane CD36 induces Src phosphorylation of caveolin-1 tyrosine-14 (Cav-1Y14) and ceramide generation in caveolae. Ensuing fission of caveolae yields vesicles containing FAs, CD36 and ceramide that are secreted basolaterally as small (80-100 nm) exosome-like extracellular vesicles (sEVs). We visualize in transwells EC transfer of FAs in sEVs to underlying myotubes. In mice with EC-expression of the exosome marker emeraldGFP-CD63, muscle fibers accumulate circulating FAs in emGFP-labeled puncta. The FA-sEV pathway is mapped through its suppression by CD36 depletion, blocking actin-remodeling, Src inhibition, Cav-1Y14 mutation, and neutral sphingomyelinase 2 inhibition. Suppression of sEV formation in mice reduces muscle FA uptake, raises circulating FAs, which remain in blood vessels, and lowers glucose, mimicking prominent Cd36-/- mice phenotypes. The findings show that FA uptake influences membrane ceramide, endocytosis, and EC communication with parenchymal cells.
Collapse
Affiliation(s)
- V S Peche
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - T A Pietka
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - M Jacome-Sosa
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - D Samovski
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - H Palacios
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - G Chatterjee-Basu
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - A C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - W Beatty
- Department of Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - G A Meyer
- Departments of Physical Therapy, Neurology and Orthopedic Surgery, Washington University School of Medicine, St. Louis, 63110, USA
| | - I J Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - N A Abumrad
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Luo B, Feng L, Bi Q, Shi R, Cao H, Zhang Y. Fasting Plasma Glucose and Glycated Hemoglobin Levels as Risk Factors for the Development of Hypertension: A Retrospective Cohort Study. Diabetes Metab Syndr Obes 2023; 16:1791-1798. [PMID: 37351279 PMCID: PMC10284168 DOI: 10.2147/dmso.s410670] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction Hypertension (HTN) is a significant risk factor for cardiovascular disease. Identifying new risk factors for hypertension is crucial. This study aims to determine the predictive value of fasting plasma glucose (FPG) and glycated hemoglobin (HbA1c) in the development of hypertension. Methods In this study, we examined 16,026 individuals without diabetes and other cardiovascular risk factors who were underwent annual screening at the People's Hospital of Yuxi, Yunnan, China from 2013 to 2016. The participants were divided into two groups: normoglycemic and prediabetic. Normoglycemia was defined as having an HbA1c level of less than 5.7% and an FPG level of less than 5.6 mmol/ L. Prediabetes was defined according to the ADA criteria, which includes having an HbA1c level between 5.7% and 6.5%, or an impaired fasting glucose level between 5.6 mmol/L and 7.0 mmol/L. The participants were further divided into four subgroups based on their FPG and HbA1c levels: normoglycemia, impaired HbA1c only, FPG only, and both parameters impaired. Results The cohort study was conducted on 16,026 participants from Yunnan, China, consisting of 60.6% males and 39.4% females, with a mean age of 44.6 ± 12.5 years. The study revealed that prediabetes was independently associated with an increased risk for HTN (OR 1.53, 95% CI 1.41~1.67, P < 0.001). The analysis of different subgroups of HbA1c and FPG showed that FPG was a better predictor of HTN than HbA1c, regardless of the group. Conclusion FPG and HbA1c were significantly associated with the future development of HTN in individuals with prediabetes.
Collapse
Affiliation(s)
- Beibei Luo
- Department of Laboratory, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, 653100, People’s Republic of China
| | - Lei Feng
- Intensive Care Unit, People’s Hospital of Yuxi City, Yuxi City, Yunnan Province, 653100, People’s Republic of China
| | - Qianye Bi
- Department of Laboratory, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, 653100, People’s Republic of China
| | - Rui Shi
- Department of Laboratory, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, 653100, People’s Republic of China
| | - Huiying Cao
- Department of Laboratory, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, 653100, People’s Republic of China
| | - Yanbi Zhang
- Department of Laboratory, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, 653100, People’s Republic of China
| |
Collapse
|
6
|
Cahyadi DD, Warita K, Takeda-Okuda N, Tamura JI, Hosaka YZ. Qualitative and quantitative analyses in sulfated glycosaminoglycans, chondroitin sulfate/dermatan sulfate, during 3 T3-L1 adipocytes differentiation. Anim Sci J 2023; 94:e13894. [PMID: 38054387 DOI: 10.1111/asj.13894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
Chondroitin sulfate/dermatan sulfate (CS/DS) is a member of glycosaminoglycans (GAGs) found in animal tissues. Major CS/DS subclasses, O, A, C, D, and E units, exist based on the sulfation pattern in d-glucuronic acid (GlcA) and N-acetyl-d-galactosamine repeating units. DS is formed when GlcA is epimerized into l-iduronic acid. Our study aimed to analyze the CS/DS profile in 3 T3-L1 cells before and after adipogenic induction. CS/DS contents, molecular weight (Mw), and sulfation pattern were analyzed by using high-performance liquid chromatography. CS/DS synthesis- and sulfotransferase-related genes were analyzed by reverse transcription real-time PCR. CS/DS amount was significantly decreased in the differentiated (DI) group compared to the non-differentiated (ND) group, along with a lower expression of CS biosynthesis-related genes, chondroitin sulfate N-acetylgalactosaminyltransferase 1 and 2, as well as chondroitin polymerizing factor. GAGs in the DI group also showed lower Mw than those of ND. Furthermore, the A unit was the major CS/DS in both groups, with a proportionally higher CS-A in the DI group. This was consistent with the expression of carbohydrate sulfotransferase 12 that encodes chondroitin 4-O-sulfotransferase, for CS-A formation. These qualitative and quantitative changes in CS/DS and CS/DS-synthases before and after adipocyte differentiation reveal valuable insights into adipocyte development.
Collapse
Affiliation(s)
- Danang Dwi Cahyadi
- Joint Graduate School of Veterinary Sciences, Tottori University, Tottori, Japan
- Division of Anatomy Histology and Embryology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Katsuhiko Warita
- Joint Graduate School of Veterinary Sciences, Tottori University, Tottori, Japan
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Naoko Takeda-Okuda
- Department of Life and Environmental Agricultural Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Jun-Ichi Tamura
- Department of Life and Environmental Agricultural Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yoshinao Z Hosaka
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Scamfer SR, Lee MD, Hilgendorf KI. Ciliary control of adipocyte progenitor cell fate regulates energy storage. Front Cell Dev Biol 2022; 10:1083372. [PMID: 36561368 PMCID: PMC9763467 DOI: 10.3389/fcell.2022.1083372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The primary cilium is a cellular sensory organelle found in most cells in our body. This includes adipocyte progenitor cells in our adipose tissue, a complex organ involved in energy storage, endocrine signaling, and thermogenesis. Numerous studies have shown that the primary cilium plays a critical role in directing the cell fate of adipocyte progenitor cells in multiple adipose tissue types. Accordingly, diseases with dysfunctional cilia called ciliopathies have a broad range of clinical manifestations, including obesity and diabetes. This review summarizes our current understanding of how the primary cilium regulates adipocyte progenitor cell fate in multiple contexts and illustrates the importance of the primary cilium in regulating energy storage and adipose tissue function.
Collapse
Affiliation(s)
| | | | - Keren I. Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
8
|
Wu X, Liu H, Brooks A, Xu S, Luo J, Steiner R, Mickelsen DM, Moravec CS, Jeffrey AD, Small EM, Jin ZG. SIRT6 Mitigates Heart Failure With Preserved Ejection Fraction in Diabetes. Circ Res 2022; 131:926-943. [PMID: 36278398 PMCID: PMC9669223 DOI: 10.1161/circresaha.121.318988] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/13/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a growing health problem without effective therapies. Epidemiological studies indicate that diabetes is a strong risk factor for HFpEF, and about 45% of patients with HFpEF are suffering from diabetes, yet the underlying mechanisms remain elusive. METHODS Using a combination of echocardiography, hemodynamics, RNA-sequencing, molecular biology, in vitro and in vivo approaches, we investigated the roles of SIRT6 (sirtuin 6) in regulation of endothelial fatty acid (FA) transport and HFpEF in diabetes. RESULTS We first observed that endothelial SIRT6 expression was markedly diminished in cardiac tissues from heart failure patients with diabetes. We then established an experimental mouse model of HFpEF in diabetes induced by a combination of the long-term high-fat diet feeding and a low-dose streptozocin challenge. We also generated a unique humanized SIRT6 transgenic mouse model, in which a single copy of human SIRT6 transgene was engineered at mouse Rosa26 locus and conditionally induced with the Cre-loxP technology. We found that genetically restoring endothelial SIRT6 expression in the diabetic mice ameliorated diastolic dysfunction concurrently with decreased cardiac lipid accumulation. SIRT6 gain- or loss-of-function studies showed that SIRT6 downregulated endothelial FA uptake. Mechanistically, SIRT6 suppressed endothelial expression of PPARγ through SIRT6-dependent deacetylation of histone H3 lysine 9 around PPARγ promoter region; and PPARγ reduction mediated SIRT6-dependent inhibition of endothelial FA uptake. Importantly, oral administration of small molecule SIRT6 activator MDL-800 to diabetic mice mitigated cardiac lipid accumulation and diastolic dysfunction. CONCLUSIONS The impairment of endothelial SIRT6 expression links diabetes to HFpEF through the alteration of FA transport across the endothelial barrier. Genetic and pharmacological strategies that restored endothelial SIRT6 function in mice with diabetes alleviated experimental HFpEF by limiting FA uptake and improving cardiac metabolism, thus warranting further clinical evaluation.
Collapse
Affiliation(s)
- Xiaoqian Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Huan Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Alan Brooks
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jinque Luo
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Rebbeca Steiner
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Deanne M. Mickelsen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Christine S. Moravec
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Alexis D. Jeffrey
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Eric M. Small
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
9
|
He L, Lu H, Ji X, Chu J, Qin X, Chen M, Weinstein LS, Gao J, Yang J, Zhang Q, Zhang C, Zhang W. Stimulatory G-Protein α Subunit Modulates Endothelial Cell Permeability Through Regulation of Plasmalemma Vesicle-Associated Protein. Front Pharmacol 2022; 13:941064. [PMID: 35721211 PMCID: PMC9204201 DOI: 10.3389/fphar.2022.941064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Endothelial cell leakage occurs in several diseases. Intracellular junctions and transcellular fashion are involved. The definite regulatory mechanism is complicated and not fully elucidated. The alpha subunit of the heterotrimeric G-stimulatory protein (Gsα) mediates receptor-stimulated production of cyclic adenosine monophosphate (cAMP). However, the role of Gsα in the endothelial barrier remains unclear. In this study, mice with knockout of endothelial-specific Gsα (GsαECKO) were generated by crossbreeding Gsαflox/flox mice with Cdh5-CreERT2 transgenic mice, induced in adult mice by tamoxifen treatment. GsαECKO mice displayed phenotypes of edema, anemia, hypoproteinemia and hyperlipoproteinemia, which indicates impaired microvascular permeability. Mechanistically, Gsα deficiency reduces the level of endothelial plasmalemma vesicle-associated protein (PLVAP). In addition, overexpression of Gsα increased phosphorylation of cAMP response element-binding protein (CREB) as well as the mRNA and protein levels of PLVAP. CREB could bind to the CRE site of PLVAP promoter and regulate its expression. Thus, Gsα might regulate endothelial permeability via cAMP/CREB-mediated PLVAP expression.
Collapse
Affiliation(s)
- Lifan He
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hanlin Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuyang Ji
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianying Chu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaoteng Qin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lee S. Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Jianmin Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qunye Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wencheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Wencheng Zhang,
| |
Collapse
|
10
|
Abstract
Obesity has reached epidemic proportions and is a major contributor to insulin resistance (IR) and type 2 diabetes (T2D). Importantly, IR and T2D substantially increase the risk of cardiovascular (CV) disease. Although there are successful approaches to maintain glycemic control, there continue to be increased CV morbidity and mortality associated with metabolic disease. Therefore, there is an urgent need to understand the cellular and molecular processes that underlie cardiometabolic changes that occur during obesity so that optimal medical therapies can be designed to attenuate or prevent the sequelae of this disease. The vascular endothelium is in constant contact with the circulating milieu; thus, it is not surprising that obesity-driven elevations in lipids, glucose, and proinflammatory mediators induce endothelial dysfunction, vascular inflammation, and vascular remodeling in all segments of the vasculature. As cardiometabolic disease progresses, so do pathological changes in the entire vascular network, which can feed forward to exacerbate disease progression. Recent cellular and molecular data have implicated the vasculature as an initiating and instigating factor in the development of several cardiometabolic diseases. This Review discusses these findings in the context of atherosclerosis, IR and T2D, and heart failure with preserved ejection fraction. In addition, novel strategies to therapeutically target the vasculature to lessen cardiometabolic disease burden are introduced.
Collapse
|
11
|
Iso T, Kurabayashi M. Cardiac Metabolism and Contractile Function in Mice with Reduced Trans-Endothelial Fatty Acid Transport. Metabolites 2021; 11:metabo11120889. [PMID: 34940647 PMCID: PMC8706312 DOI: 10.3390/metabo11120889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 01/15/2023] Open
Abstract
The heart is a metabolic omnivore that combusts a considerable amount of energy substrates, mainly long-chain fatty acids (FAs) and others such as glucose, lactate, ketone bodies, and amino acids. There is emerging evidence that muscle-type continuous capillaries comprise the rate-limiting barrier that regulates FA uptake into cardiomyocytes. The transport of FAs across the capillary endothelium is composed of three major steps-the lipolysis of triglyceride on the luminal side of the endothelium, FA uptake by the plasma membrane, and intracellular FA transport by cytosolic proteins. In the heart, impaired trans-endothelial FA (TEFA) transport causes reduced FA uptake, with a compensatory increase in glucose use. In most cases, mice with reduced FA uptake exhibit preserved cardiac function under unstressed conditions. When the workload is increased, however, the total energy supply relative to its demand (estimated with pool size in the tricarboxylic acid (TCA) cycle) is significantly diminished, resulting in contractile dysfunction. The supplementation of alternative fuels, such as medium-chain FAs and ketone bodies, at least partially restores contractile dysfunction, indicating that energy insufficiency due to reduced FA supply is the predominant cause of cardiac dysfunction. Based on recent in vivo findings, this review provides the following information related to TEFA transport: (1) the mechanisms of FA uptake by the heart, including TEFA transport; (2) the molecular mechanisms underlying the induction of genes associated with TEFA transport; (3) in vivo cardiac metabolism and contractile function in mice with reduced TEFA transport under unstressed conditions; and (4) in vivo contractile dysfunction in mice with reduced TEFA transport under diseased conditions, including an increased afterload and streptozotocin-induced diabetes.
Collapse
Affiliation(s)
- Tatsuya Iso
- Department of Medical Technology and Clinical Engineering, Faculty of Medical Technology and Clinical Engineering, Gunma University of Health and Welfare, 191-1 Kawamagari-Machi, Maebashi 371-0823, Gunma, Japan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
- Correspondence:
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| |
Collapse
|
12
|
Rekhi UR, Omar M, Alexiou M, Delyea C, Immaraj L, Elahi S, Febbraio M. Endothelial Cell CD36 Reduces Atherosclerosis and Controls Systemic Metabolism. Front Cardiovasc Med 2021; 8:768481. [PMID: 34888367 PMCID: PMC8650007 DOI: 10.3389/fcvm.2021.768481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 01/08/2023] Open
Abstract
High-fat Western diets contribute to tissue dysregulation of fatty acid and glucose intake, resulting in obesity and insulin resistance and their sequelae, including atherosclerosis. New therapies are desperately needed to interrupt this epidemic. The significant idea driving this research is that the understudied regulation of fatty acid entry into tissues at the endothelial cell (EC) interface can provide novel therapeutic targets that will greatly modify health outcomes and advance health-related knowledge. Dysfunctional endothelium, defined as activated, pro-inflammatory, and pro-thrombotic, is critical in atherosclerosis initiation, in modulating thrombotic events that could result in myocardial infarction and stroke, and is a hallmark of insulin resistance. Dyslipidemia from high-fat diets overwhelmingly contributes to the development of dysfunctional endothelium. CD36 acts as a receptor for pathological ligands generated by high-fat diets and in fatty acid uptake, and therefore, it may additionally contribute to EC dysfunction. We created EC CD36 knockout (CD36°) mice using cre-lox technology and a cre-promoter that does not eliminate CD36 in hematopoietic cells (Tie2e cre). These mice were studied on different diets, and crossed to the low density lipoprotein receptor (LDLR) knockout for atherosclerosis assessment. Our data show that EC CD36° and EC CD36°/LDLR° mice have metabolic changes suggestive of an uncompensated role for EC CD36 in fatty acid uptake. The mice lacking expression of EC CD36 had increased glucose clearance compared with controls when fed with multiple diets. EC CD36° male mice showed increased carbohydrate utilization and decreased energy expenditure by indirect calorimetry. Female EC CD36°/LDLR° mice have reduced atherosclerosis. Taken together, these data support a significant role for EC CD36 in systemic metabolism and reveal sex-specific impact on atherosclerosis and energy substrate use.
Collapse
Affiliation(s)
- Umar R Rekhi
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mohamed Omar
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Maria Alexiou
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cole Delyea
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Linnet Immaraj
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Maria Febbraio
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Zhao G, Lu H, Liu Y, Zhao Y, Zhu T, Garcia-Barrio MT, Chen YE, Zhang J. Single-Cell Transcriptomics Reveals Endothelial Plasticity During Diabetic Atherogenesis. Front Cell Dev Biol 2021; 9:689469. [PMID: 34095155 PMCID: PMC8170046 DOI: 10.3389/fcell.2021.689469] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 01/22/2023] Open
Abstract
Atherosclerosis is the leading cause of cardiovascular diseases, which is also the primary cause of mortality among diabetic patients. Endothelial cell (EC) dysfunction is a critical early step in the development of atherosclerosis and aggravated in the presence of concurrent diabetes. Although the heterogeneity of the organ-specific ECs has been systematically analyzed at the single-cell level in healthy conditions, their transcriptomic changes in diabetic atherosclerosis remain largely unexplored. Here, we carried out a single-cell RNA sequencing (scRNA-seq) study using EC-enriched single cells from mouse heart and aorta after 12 weeks feeding of a standard chow or a diabetogenic high-fat diet with cholesterol. We identified eight EC clusters, three of which expressed mesenchymal markers, indicative of an endothelial-to-mesenchymal transition (EndMT). Analyses of the marker genes, pathways, and biological functions revealed that ECs are highly heterogeneous and plastic both in normal and atherosclerotic conditions. The metabolic transcriptomic analysis further confirmed that EndMT-derived fibroblast-like cells are prominent in atherosclerosis, with diminished fatty acid oxidation and enhanced biological functions, including regulation of extracellular-matrix organization and apoptosis. In summary, our data characterized the phenotypic and metabolic heterogeneity of ECs in diabetes-associated atherogenesis at the single-cell level and paves the way for a deeper understanding of endothelial cell biology and EC-related cardiovascular diseases.
Collapse
Affiliation(s)
- Guizhen Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Haocheng Lu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Yuhao Liu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, United States.,Department of Internal Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Tianqing Zhu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Minerva T Garcia-Barrio
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Y Eugene Chen
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Jifeng Zhang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Cellular senescence and its role in white adipose tissue. Int J Obes (Lond) 2021; 45:934-943. [PMID: 33510393 DOI: 10.1038/s41366-021-00757-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/19/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023]
Abstract
Cell senescence is defined as a state of irreversible cell cycle arrest combined with DNA damage and the induction of a senescence-associated secretory phenotype (SASP). This includes increased secretion of many inflammatory agents, proteases, miRNA's, and others. Cell senescence has been widely studied in oncogenesis and has generally been considered to be protective, due to cell cycle arrest and the inhibition of proliferation. Cell senescence is also associated with ageing and extensive experimental data support its role in generating the ageing-associated phenotype. Senescent cells can also influence proximal "healthy" cells through SASPs and, e.g., inhibit normal development of progenitor/stem cells, thereby preventing tissue replacement of dying cells and reducing organ functions. Recent evidence demonstrates that SASPs may also play important roles in several chronic diseases including diabetes and cardiovascular disease. White adipose tissue (WAT) cells are highly susceptible to becoming senescent both with ageing but also with obesity and type 2 diabetes, independently of chronological age. WAT senescence is associated with inappropriate expansion (hypertrophy) of adipocytes, insulin resistance, and dyslipidemia. Major efforts have been made to identify approaches to delete senescent cells including the use of "senolytic" compounds. The most established senolytic treatment to date is the combination of dasatinib, an antagonist of the SRC family of kinases, and the antioxidant quercetin. This combination reduces cell senescence and improves chronic disorders in experimental animal models. Although only small and short-term studies have been performed in man, no severe adverse effects have been reported. Hopefully, these or other senolytic agents may provide novel ways to prevent and treat different chronic diseases in man. Here we review the current knowledge on cellular senescence in both murine and human studies. We also discuss the pathophysiological role of this process and the potential therapeutic relevance of targeting senescence selectively in WAT.
Collapse
|
15
|
Trans-endothelial trafficking of metabolic substrates and its importance in cardio-metabolic disease. Biochem Soc Trans 2021; 49:507-517. [PMID: 33616631 DOI: 10.1042/bst20200991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022]
Abstract
The endothelium acts as a gatekeeper, controlling the movement of biomolecules between the circulation and underlying tissues. Although conditions of metabolic stress are traditionally considered as causes of endothelial dysfunction, a principal driver of cardiovascular disease, accumulating evidence suggests that endothelial cells are also active players in maintaining local metabolic homeostasis, in part, through regulating the supply of metabolic substrates, including lipids and glucose, to energy-demanding organs. Therefore, endothelial dysfunction, in terms of altered trans-endothelial trafficking of these substrates, may in fact be an early contributor towards the establishment of metabolic dysfunction and subsequent cardiovascular disease. Understanding the molecular mechanisms that underpin substrate trafficking through the endothelium represents an important area within the vascular and metabolism fields that may offer an opportunity for identifying novel therapeutic targets. This mini-review summarises the emerging mechanisms regulating the trafficking of lipids and glucose through the endothelial barrier and how this may impact on the development of cardio-metabolic disease.
Collapse
|
16
|
Herold J, Kalucka J. Angiogenesis in Adipose Tissue: The Interplay Between Adipose and Endothelial Cells. Front Physiol 2021; 11:624903. [PMID: 33633579 PMCID: PMC7900516 DOI: 10.3389/fphys.2020.624903] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a worldwide health problem, and as its prevalence increases, so does the burden of obesity-associated co-morbidities like type 2 diabetes or cardiovascular diseases (CVDs). Adipose tissue (AT) is an endocrine organ embedded in a dense vascular network. AT regulates the production of hormones, angiogenic factors, and cytokines. During the development of obesity, AT expands through the increase in fat cell size (hypertrophy) and/or fat cell number (hyperplasia). The plasticity and expansion of AT is related to its angiogenic capacities. Angiogenesis is a tightly orchestrated process, which involves endothelial cell (EC) proliferation, migration, invasion, and new tube formation. The expansion of AT is accelerated by hypoxia, inflammation, and structural remodeling of blood vessels. The paracrine signaling regulates the functional link between ECs and adipocytes. Adipocytes can secrete both pro-angiogenic molecules, e.g., tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), or vascular endothelial growth factor (VEGF), and anti-angiogenic factors, e.g., serpins. If the pro-angiogenic molecules dominate, the angiogenesis is dysregulated and the endothelium becomes dysfunctional. However, if anti-angiogenic molecules are overexpressed relative to the angiogenic regulators, the angiogenesis is repressed, and AT becomes hypoxic. Furthermore, in the presence of chronic nutritional excess, endothelium loses its primary function and contributes to the inflammation and fibrosis of AT, which increases the risk for CVDs. This review discusses the current understanding of ECs function in AT, the cross-talk between adipose and ECs, and how obesity can lead to its dysfunction. Understanding the interplay of angiogenesis with AT can be an approach to therapy obesity and obesity-related diseases such as CVDs.
Collapse
Affiliation(s)
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Abumrad NA, Cabodevilla AG, Samovski D, Pietka T, Basu D, Goldberg IJ. Endothelial Cell Receptors in Tissue Lipid Uptake and Metabolism. Circ Res 2021; 128:433-450. [PMID: 33539224 DOI: 10.1161/circresaha.120.318003] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipid uptake and metabolism are central to the function of organs such as heart, skeletal muscle, and adipose tissue. Although most heart energy derives from fatty acids (FAs), excess lipid accumulation can cause cardiomyopathy. Similarly, high delivery of cholesterol can initiate coronary artery atherosclerosis. Hearts and arteries-unlike liver and adrenals-have nonfenestrated capillaries and lipid accumulation in both health and disease requires lipid movement from the circulation across the endothelial barrier. This review summarizes recent in vitro and in vivo findings on the importance of endothelial cell receptors and uptake pathways in regulating FAs and cholesterol uptake in normal physiology and cardiovascular disease. We highlight clinical and experimental data on the roles of ECs in lipid supply to tissues, heart, and arterial wall in particular, and how this affects organ metabolism and function. Models of FA uptake into ECs suggest that receptor-mediated uptake predominates at low FA concentrations, such as during fasting, whereas FA uptake during lipolysis of chylomicrons may involve paracellular movement. Similarly, in the setting of an intact arterial endothelial layer, recent and historic data support a role for receptor-mediated processes in the movement of lipoproteins into the subarterial space. We conclude with thoughts on the need to better understand endothelial lipid transfer for fuller comprehension of the pathophysiology of hyperlipidemia, and lipotoxic diseases such as some forms of cardiomyopathy and atherosclerosis.
Collapse
Affiliation(s)
- Nada A Abumrad
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| | - Dmitri Samovski
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Terri Pietka
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| |
Collapse
|
18
|
Du W, Ren L, Hamblin MH, Fan Y. Endothelial Cell Glucose Metabolism and Angiogenesis. Biomedicines 2021; 9:biomedicines9020147. [PMID: 33546224 PMCID: PMC7913320 DOI: 10.3390/biomedicines9020147] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/31/2021] [Accepted: 01/31/2021] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis, a process of new blood vessel formation from the pre-existing vascular bed, is a critical event in various physiological and pathological settings. Over the last few years, the role of endothelial cell (EC) metabolism in angiogenesis has received considerable attention. Accumulating studies suggest that ECs rely on aerobic glycolysis, rather than the oxidative phosphorylation pathway, to produce ATP during angiogenesis. To date, numerous critical regulators of glucose metabolism, fatty acid oxidation, and glutamine metabolism have been identified to modulate the EC angiogenic switch and pathological angiogenesis. The unique glycolytic feature of ECs is critical for cell proliferation, migration, and responses to environmental changes. In this review, we provide an overview of recent EC glucose metabolism studies, particularly glycolysis, in quiescent and angiogenic ECs. We also summarize and discuss potential therapeutic strategies that take advantage of EC metabolism. The elucidation of metabolic regulation and the precise underlying mechanisms could facilitate drug development targeting EC metabolism to treat angiogenesis-related diseases.
Collapse
Affiliation(s)
- Wa Du
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (W.D.); (L.R.)
| | - Lu Ren
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (W.D.); (L.R.)
| | - Milton H. Hamblin
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (W.D.); (L.R.)
- Department of Internal Medicine, Division of Cardiovascular Health and Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
19
|
Sun J, Lu H, Liang W, Zhao G, Ren L, Hu D, Chang Z, Liu Y, Garcia-Barrio MT, Zhang J, Chen YE, Fan Y. Endothelial TFEB (Transcription Factor EB) Improves Glucose Tolerance via Upregulation of IRS (Insulin Receptor Substrate) 1 and IRS2. Arterioscler Thromb Vasc Biol 2021; 41:783-795. [PMID: 33297755 PMCID: PMC8105265 DOI: 10.1161/atvbaha.120.315310] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Vascular endothelial cells (ECs) play a critical role in maintaining vascular homeostasis. Aberrant EC metabolism leads to vascular dysfunction and metabolic diseases. TFEB (transcription factor EB), a master regulator of lysosome biogenesis and autophagy, has protective effects on vascular inflammation and atherosclerosis. However, the role of endothelial TFEB in metabolism remains to be explored. In this study, we sought to investigate the role of endothelial TFEB in glucose metabolism and underlying molecular mechanisms. Approach and Results: To determine whether endothelial TFEB is critical for glucose metabolism in vivo, we utilized EC-selective TFEB knockout and EC-selective TFEB transgenic mice fed a high-fat diet. EC-selective TFEB knockout mice exhibited significantly impaired glucose tolerance compared with control mice. Consistently, EC-selective TFEB transgenic mice showed improved glucose tolerance. In primary human ECs, small interfering RNA-mediated TFEB knockdown blunts Akt (AKT serine/threonine kinase) signaling. Adenovirus-mediated overexpression of TFEB consistently activates Akt and significantly increases glucose uptake in ECs. Mechanistically, TFEB upregulates IRS1 and IRS2 (insulin receptor substrate 1 and 2). TFEB increases IRS2 transcription measured by reporter gene and chromatin immunoprecipitation assays. Furthermore, we found that TFEB increases IRS1 protein via downregulation of microRNAs (miR-335, miR-495, and miR-548o). In vivo, Akt signaling in the skeletal muscle and adipose tissue was significantly impaired in EC-selective TFEB knockout mice and consistently improved in EC-selective TFEB transgenic mice on high-fat diet. CONCLUSIONS Our data revealed a critical role of TFEB in endothelial metabolism and suggest that TFEB constitutes a potential molecular target for the treatment of vascular and metabolic diseases.
Collapse
Affiliation(s)
- Jinjian Sun
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Haocheng Lu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Wenying Liang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Guizhen Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Lu Ren
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Die Hu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Ziyi Chang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yuhao Liu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Minerva T. Garcia-Barrio
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yanbo Fan
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
20
|
Locatelli L, Fedele G, Castiglioni S, Maier JA. Magnesium Deficiency Induces Lipid Accumulation in Vascular Endothelial Cells via Oxidative Stress-The Potential Contribution of EDF-1 and PPARγ. Int J Mol Sci 2021; 22:ijms22031050. [PMID: 33494333 PMCID: PMC7865876 DOI: 10.3390/ijms22031050] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Magnesium deficiency contributes to atherogenesis partly by promoting the dysfunction of endothelial cells, which are critical in vascular homeostasis and diseases. Since EDF-1 and PPARγ regulate crucial endothelial activities, we investigated the modulation of these proteins involved in lipogenesis as well the deposition of lipids in human endothelial cells cultured in different concentrations of magnesium. Methods: Human endothelial cells from the umbilical vein were cultured in medium containing from 0.1 to 5 mM magnesium for 24 h. The levels of EDF-1 and PPARγ were visualized by Western blot. Reactive oxygen species (ROS) were measured by DCFDA. Lipids were detected after O Red Oil staining. Results: Magnesium deficiency leads to the accumulation of ROS which upregulate EDF-1. Further, PPARγ is increased after culture in low magnesium, but independently from ROS. Moreover, lipids accumulate in magnesium-deficient cells. Conclusions: Our results suggest that magnesium deficiency leads to the deposition of lipids by inducing EDF-1 and PPARγ. The increase in intracellular lipids might be interpreted as an adaptive response of endothelial cells to magnesium deficiency.
Collapse
Affiliation(s)
- Laura Locatelli
- Department Biomedical and Clinical Sciences L. Sacco, Università di Milano, Via GB Grassi 74, 20157 Milano, Italy; (L.L.); (G.F.); (S.C.)
| | - Giorgia Fedele
- Department Biomedical and Clinical Sciences L. Sacco, Università di Milano, Via GB Grassi 74, 20157 Milano, Italy; (L.L.); (G.F.); (S.C.)
| | - Sara Castiglioni
- Department Biomedical and Clinical Sciences L. Sacco, Università di Milano, Via GB Grassi 74, 20157 Milano, Italy; (L.L.); (G.F.); (S.C.)
| | - Jeanette A. Maier
- Department Biomedical and Clinical Sciences L. Sacco, Università di Milano, Via GB Grassi 74, 20157 Milano, Italy; (L.L.); (G.F.); (S.C.)
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Università di Milano, 20133 Milano, Italy
- Correspondence:
| |
Collapse
|
21
|
O'Connell TD, Mason RP, Budoff MJ, Navar AM, Shearer GC. Mechanistic insights into cardiovascular protection for omega-3 fatty acids and their bioactive lipid metabolites. Eur Heart J Suppl 2020; 22:J3-J20. [PMID: 33061864 PMCID: PMC7537803 DOI: 10.1093/eurheartj/suaa115] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with well-controlled low-density lipoprotein cholesterol levels, but persistent high triglycerides, remain at increased risk for cardiovascular events as evidenced by multiple genetic and epidemiologic studies, as well as recent clinical outcome trials. While many trials of low-dose ω3-polyunsaturated fatty acids (ω3-PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have shown mixed results to reduce cardiovascular events, recent trials with high-dose ω3-PUFAs have reignited interest in ω3-PUFAs, particularly EPA, in cardiovascular disease (CVD). REDUCE-IT demonstrated that high-dose EPA (4 g/day icosapent-ethyl) reduced a composite of clinical events by 25% in statin-treated patients with established CVD or diabetes and other cardiovascular risk factors. Outcome trials in similar statin-treated patients using DHA-containing high-dose ω3 formulations have not yet shown the benefits of EPA alone. However, there are data to show that high-dose ω3-PUFAs in patients with acute myocardial infarction had reduced left ventricular remodelling, non-infarct myocardial fibrosis, and systemic inflammation. ω3-polyunsaturated fatty acids, along with their metabolites, such as oxylipins and other lipid mediators, have complex effects on the cardiovascular system. Together they target free fatty acid receptors and peroxisome proliferator-activated receptors in various tissues to modulate inflammation and lipid metabolism. Here, we review these multifactorial mechanisms of ω3-PUFAs in view of recent clinical findings. These findings indicate physico-chemical and biological diversity among ω3-PUFAs that influence tissue distributions as well as disparate effects on membrane organization, rates of lipid oxidation, as well as various receptor-mediated signal transduction pathways and effects on gene expression.
Collapse
Affiliation(s)
- Timothy D O'Connell
- Department of Integrative Biology and Physiology, University of Minnesota, 3-141 CCRB, 2231 6th Street SE, Minneapolis, MN 55414, USA
| | - Richard Preston Mason
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Matthew J Budoff
- Cardiovascular Division, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ann Marie Navar
- Cardiovascular Division, Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, 110 Chandlee Laboratory, University Park, PA 16802, USA
| |
Collapse
|
22
|
Liu L, Fan L, Chan M, Kraakman MJ, Yang J, Fan Y, Aaron N, Wan Q, Carrillo-Sepulveda MA, Tall AR, Tabas I, Accili D, Qiang L. PPARγ Deacetylation Confers the Antiatherogenic Effect and Improves Endothelial Function in Diabetes Treatment. Diabetes 2020; 69:1793-1803. [PMID: 32409492 PMCID: PMC7372079 DOI: 10.2337/db20-0217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in patients with diabetes, and tight glycemic control fails to reduce the risk of developing CVD. Thiazolidinediones (TZDs), a class of peroxisome proliferator-activated receptor γ (PPARγ) agonists, are potent insulin sensitizers with antiatherogenic properties, but their clinical use is limited by side effects. PPARγ deacetylation on two lysine residues (K268 and K293) induces brown remodeling of white adipose tissue and uncouples the adverse effects of TZDs from insulin sensitization. Here we show that PPARγ deacetylation confers antiatherogenic properties and retains the insulin-sensitizing effects of TZD while circumventing its detriments. We generated mice homozygous with mice with deacetylation-mimetic PPARγ mutations K268R/K293R (2KR) on an LDL-receptor knockout (Ldlr -/- ) background. 2KR:Ldlr -/- mice showed smaller atherosclerotic lesion areas than Ldlr -/- mice, particularly in aortic arches. With rosiglitazone treatment, 2KR:Ldlr -/- mice demonstrated a residual antiatherogenic response and substantial protection against bone loss and fluid retention. The antiatherosclerotic effect of 2KR was attributed to the protection of endothelium, indicated by improved endothelium-dependent vasorelaxation and repressed expression of proatherogenic factors including inducible nitric oxide synthase, interleukin-6, and NADPH oxidase 2. Therefore, manipulating PPARγ acetylation is a promising therapeutic strategy to control risk of CVD in diabetes treatment.
Collapse
Affiliation(s)
- Longhua Liu
- Naomi Berrie Diabetes Center, Columbia University, New York, NY
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Lihong Fan
- Naomi Berrie Diabetes Center, Columbia University, New York, NY
- Department of Pathology and Cell Biology, Columbia University, New York, NY
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shanxi, China
| | - Michelle Chan
- Department of Biological Sciences, Columbia University, New York, NY
| | - Michael J Kraakman
- Naomi Berrie Diabetes Center, Columbia University, New York, NY
- Department of Medicine, Columbia University, New York, NY
| | - Jing Yang
- Naomi Berrie Diabetes Center, Columbia University, New York, NY
- Department of Pathology and Cell Biology, Columbia University, New York, NY
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shanxi, China
| | - Yong Fan
- Naomi Berrie Diabetes Center, Columbia University, New York, NY
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Nicole Aaron
- Naomi Berrie Diabetes Center, Columbia University, New York, NY
- Department of Pharmacology, Columbia University, New York, NY
| | - Qianfen Wan
- Naomi Berrie Diabetes Center, Columbia University, New York, NY
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | | | - Alan R Tall
- Department of Medicine, Columbia University, New York, NY
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, NY
| | - Domenico Accili
- Naomi Berrie Diabetes Center, Columbia University, New York, NY
- Department of Medicine, Columbia University, New York, NY
| | - Li Qiang
- Naomi Berrie Diabetes Center, Columbia University, New York, NY
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| |
Collapse
|
23
|
Abstract
Endothelial cells line all blood vessels in vertebrates. These cells contribute to whole-body nutrient distribution in a variety of ways, including regulation of local blood flow, regulation of trans-endothelial nutrient transport, and paracrine effects. Obesity elicits dramatic whole-body nutrient redistribution, in particular of fat. We briefly review here recent progress on understanding endothelial fat transport; the impact of obesity on the endothelium; and, conversely, how endothelial function can modulate obesity.
Collapse
Affiliation(s)
- Nora Yucel
- Perelman School of Medicine, University of Pennsylvania
| | - Zolt Arany
- Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
24
|
Krüger N, Biwer LA, Good ME, Ruddiman CA, Wolpe AG, DeLalio LJ, Murphy S, Macal EH, Ragolia L, Serbulea V, Best AK, Leitinger N, Harris TE, Sonkusare SK, Gödecke A, Isakson BE. Loss of Endothelial FTO Antagonizes Obesity-Induced Metabolic and Vascular Dysfunction. Circ Res 2019; 126:232-242. [PMID: 31801409 PMCID: PMC7007767 DOI: 10.1161/circresaha.119.315531] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Increasing prevalence of obesity and its associated risk with cardiovascular diseases demands a better understanding of the contribution of different cell types within this complex disease for developing new treatment options. Previous studies could prove a fundamental role of FTO (fat mass and obesity-associated protein) within obesity; however, its functional role within different cell types is less understood. OBJECTIVES We identify endothelial FTO as a previously unknown central regulator of both obesity-induced metabolic and vascular alterations. METHODS AND RESULTS We generated endothelial Fto-deficient mice and analyzed the impact of obesity on those mice. While the loss of endothelial FTO did not influence the development of obesity and dyslipidemia, it protected mice from high-fat diet-induced glucose intolerance and insulin resistance by increasing AKT (protein kinase B) phosphorylation in endothelial cells and skeletal muscle. Furthermore, loss of endothelial FTO prevented the development of obesity-induced hypertension by preserving myogenic tone in resistance arteries. In Fto-deficient arteries, microarray analysis identified upregulation of L-Pgds with significant increases in prostaglandin D2 levels. Blockade of prostaglandin D2 synthesis inhibited the myogenic tone protection in resistance arteries of endothelial Fto-deficient mice on high-fat diet; conversely, direct addition of prostaglandin D2 rescued myogenic tone in high-fat diet-fed control mice. Myogenic tone was increased in obese human arteries with FTO inhibitors or prostaglandin D2 application. CONCLUSIONS These data identify endothelial FTO as a previously unknown regulator in the development of obesity-induced metabolic and vascular changes, which is independent of its known function in regulation of obesity.
Collapse
Affiliation(s)
- Nenja Krüger
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Institute of Animal Developmental and Molecular Biology, Heinrich Heine University Düsseldorf, Germany
| | - Lauren A Biwer
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22908 USA
| | - Miranda E Good
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Claire A. Ruddiman
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Pharmacology, University of Virginia School of Medicine
| | - Abigail G. Wolpe
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Cell Biology, University of Virginia School of Medicine
| | - Leon J DeLalio
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Pharmacology, University of Virginia School of Medicine
| | - Sara Murphy
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Edgar H. Macal
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Louis Ragolia
- Department of Biomedical Research, NYU Winthrop University Hospital, NYU Long Island School of Medicine
| | - Vlad Serbulea
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22908 USA
| | - Angela K Best
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Norbert Leitinger
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Pharmacology, University of Virginia School of Medicine
| | - Thurl E. Harris
- Department of Pharmacology, University of Virginia School of Medicine
| | - Swapnil K Sonkusare
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22908 USA
| | - Axel Gödecke
- Institute of Cardiovascular Physiology, Heinrich Heine University Düsseldorf, Germany
| | - Brant E Isakson
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22908 USA
| |
Collapse
|
25
|
Bruder-Nascimento T, Faulkner JL, Haigh S, Kennard S, Antonova G, Patel VS, Fulton DJR, Chen W, Belin de Chantemèle EJ. Leptin Restores Endothelial Function via Endothelial PPARγ-Nox1-Mediated Mechanisms in a Mouse Model of Congenital Generalized Lipodystrophy. Hypertension 2019; 74:1399-1408. [PMID: 31656096 DOI: 10.1161/hypertensionaha.119.13398] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leptin is the current treatment for metabolic disorders associated with acquired and congenital generalized lipodystrophy (CGL). Although excess leptin levels have been associated with vascular inflammation and cardiovascular disease in the context of obesity, the effects of chronic leptin treatment on vascular function remain unknown in CGL. Here, we hypothesized that leptin treatment will improve endothelial function via direct vascular mechanisms. We investigated the cardiovascular consequences of leptin deficiency and supplementation in male gBscl2-/- (Berardinelli-Seip 2 gene-deficient) mice-a mouse model of CGL. CGL mice exhibited reduced adipose mass and leptin levels, as well as impaired endothelium-dependent relaxation. Blood vessels from CGL mice had increased NADPH Oxidase 1 (Nox1) expression and reactive oxygen species production, and selective Nox1 inhibition restored endothelial function. Remarkably, chronic and acute leptin supplementation restored endothelial function via a PPARγ-dependent mechanism that decreased Nox1 expression and reactive oxygen species production. Selective ablation of leptin receptors in endothelial cells promoted endothelial dysfunction, which was restored by Nox1 inhibition. Lastly, we confirmed in aortic tissue from older patients undergoing cardiac bypass surgery that acute leptin can promote signaling in human blood vessels. In conclusion, in gBscl2-/- mice, leptin restores endothelial function via peroxisome proliferator activated receptor gamma-dependent decreases in Nox1. Furthermore, we provide the first evidence that vessels from aged patients remain leptin sensitive. These data reveal a new direct role of leptin receptors in the control of vascular homeostasis and present leptin as a potential therapy for the treatment of vascular disease associated with low leptin levels.
Collapse
Affiliation(s)
- Thiago Bruder-Nascimento
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University.,Department of Pediatrics, Division of Endocrinology, University of Pittsburgh, PA (T.B.-N.)
| | - Jessica L Faulkner
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University
| | - Stephen Haigh
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University
| | - Simone Kennard
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University
| | - Galina Antonova
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University
| | - Vijay S Patel
- Section of Cardiothoracic Surgery, Department of Surgery (V.S.P.), Medical College of Georgia, Augusta University
| | - David J R Fulton
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University
| | - Weiqin Chen
- Department of Physiology (W.C.), Medical College of Georgia, Augusta University
| | - Eric J Belin de Chantemèle
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University.,Department of Medicine, Division of Cardiology (E.J.B.), Medical College of Georgia, Augusta University
| |
Collapse
|
26
|
Abstract
Our understanding of the role of the vascular endothelium has evolved over the past 2 decades, with the recognition that it is a dynamically regulated organ and that it plays a nodal role in a variety of physiological and pathological processes. Endothelial cells (ECs) are not only a barrier between the circulation and peripheral tissues, but also actively regulate vascular tone, blood flow, and platelet function. Dysregulation of ECs contributes to pathological conditions such as vascular inflammation, atherosclerosis, hypertension, cardiomyopathy, retinopathy, neuropathy, and cancer. The close anatomic relationship between vascular endothelium and highly vascularized metabolic organs/tissues suggests that the crosstalk between ECs and these organs is vital for both vascular and metabolic homeostasis. Numerous reports support that hyperlipidemia, hyperglycemia, and other metabolic stresses result in endothelial dysfunction and vascular complications. However, how ECs may regulate metabolic homeostasis remains poorly understood. Emerging data suggest that the vascular endothelium plays an unexpected role in the regulation of metabolic homeostasis and that endothelial dysregulation directly contributes to the development of metabolic disorders. Here, we review recent studies about the pivotal role of ECs in glucose and lipid homeostasis. In particular, we introduce the concept that the endothelium adjusts its barrier function to control the transendothelial transport of fatty acids, lipoproteins, LPLs (lipoprotein lipases), glucose, and insulin. In addition, we summarize reports that ECs communicate with metabolic cells through EC-secreted factors and we discuss how endothelial dysregulation contributes directly to the development of obesity, insulin resistance, dyslipidemia, diabetes mellitus, cognitive defects, and fatty liver disease.
Collapse
Affiliation(s)
- Xinchun Pi
- From the Section of Athero & Lipo, Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (X.P., L.X.)
| | - Liang Xie
- From the Section of Athero & Lipo, Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (X.P., L.X.)
| | - Cam Patterson
- University of Arkansas for Medical Sciences, Little Rock (C.P.)
| |
Collapse
|
27
|
Li Z, Liu H, Xu B, Wang Y. Enterotoxigenic Escherichia coli Interferes FATP4-Dependent Long-Chain Fatty Acid Uptake of Intestinal Epithelial Enterocytes via Phosphorylation of ERK1/2-PPARγ Pathway. Front Physiol 2019; 10:798. [PMID: 31281267 PMCID: PMC6596317 DOI: 10.3389/fphys.2019.00798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/06/2019] [Indexed: 11/23/2022] Open
Abstract
Sufficient fatty acid (FA) uptake from jejunal lumen is closely associated with pediatric growth. Enterotoxigenic Escherichia coli (ETEC), which poses a big threat to young mammals’ health, is also targeted on the jejunum, however, the effects on FA uptake is not understood yet. To explore the impacts of ETEC on the FA uptake ability of jejunum epithelial enterocytes during early life, we orally gavaged weaning piglets with ETEC K88 and found intestinal inflammation combined with compromised uptake of LCFA (C16:0, C18:0, C20:3, C20:4) except for C14:0 whose chain length is similar to medium chain fatty acid (MCFA). Furthermore, we observed reduced protein expression of TJs, fatty acid transport protein 4 (FATP4), peroxisome proliferator-activated receptor γ (PPARγ), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), and upregulated expression of p-PPARγ. In the in vitro study, we challenged polarized porcine intestine jejunum cell line IPEC-J2 with ETEC K88 and discovered similar results on intestinal barrier and expression of associated genes combined with morphological changes. Based on the constructed cellular model, we then determined lower uptake of BODIPY-labeled C16:0 without any difference in the uptake of BODIPY-labeled C12:0. The content of intracellular triglyceride which was mainly synthesized by LCFA concomitantly lowered down. Using gene knock down and overexpression, FATP4 was confirmed to be responsible for LCFA uptake. Moreover, ERK1/2 inhibitor U0126 and PPARγ antagonist T0070907 revealed ETEC could initiate cascaded phosphorylation of ERK1/2 and PPARγ resulting in hindered expression of FATP4. These results indicate ETEC challenge will cause dysfunction in FATP4-dependent LCFA uptake by phosphorylation of ERK1/2 and PPARγ. Furthermore, intestinal uptake of MCFA is in a FATP4-independent manner which is not easily disturbed by ETEC.
Collapse
Affiliation(s)
- Zhi Li
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Heyuan Liu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Bocheng Xu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Postmus AC, Sturmlechner I, Jonker JW, van Deursen JM, van de Sluis B, Kruit JK. Senescent cells in the development of cardiometabolic disease. Curr Opin Lipidol 2019; 30:177-185. [PMID: 30913069 PMCID: PMC6530963 DOI: 10.1097/mol.0000000000000602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Senescent cells have recently been identified as key players in the development of metabolic dysfunction. In this review, we will highlight recent developments in this field and discuss the concept of targeting these cells to prevent or treat cardiometabolic diseases. RECENT FINDINGS Evidence is accumulating that cellular senescence contributes to adipose tissue dysfunction, presumably through induction of low-grade inflammation and inhibition of adipogenic differentiation leading to insulin resistance and dyslipidaemia. Senescent cells modulate their surroundings through their bioactive secretome and only a relatively small number of senescent cells is sufficient to cause persistent physical dysfunction even in young mice. Proof-of-principle studies showed that selective elimination of senescent cells can prevent or delay the development of cardiometabolic diseases in mice. SUMMARY The metabolic consequences of senescent cell accumulation in various tissues are now unravelling and point to new therapeutic opportunities for the treatment of cardiometabolic diseases.
Collapse
Affiliation(s)
- Andrea C. Postmus
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ines Sturmlechner
- Departments of Pediatrics and Adolescent Medicine
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Johan W. Jonker
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan M. van Deursen
- Departments of Pediatrics and Adolescent Medicine
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Bart van de Sluis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Janine K. Kruit
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
29
|
Iso T, Haruyama H, Sunaga H, Matsui M, Matsui H, Tanaka R, Umbarawan Y, Syamsunarno MRAA, Yokoyama T, Kurabayashi M. Exercise endurance capacity is markedly reduced due to impaired energy homeostasis during prolonged fasting in FABP4/5 deficient mice. BMC PHYSIOLOGY 2019; 19:1. [PMID: 30866899 PMCID: PMC6415495 DOI: 10.1186/s12899-019-0038-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 03/06/2019] [Indexed: 11/25/2022]
Abstract
Background Skeletal muscle prefers carbohydrate use to fatty acid (FA) use as exercise intensity increases. In contrast, skeletal muscle minimizes glucose use and relies more on FA during fasting. In mice deficient for FABP4 and FABP5 (double knockout (DKO) mice), FA utilization by red skeletal muscle and the heart is markedly reduced by the impairment of trans-endothelial FA transport, with an increase in glucose use to compensate for reduced FA uptake even during fasting. We attempted to determine whether prolonged fasting affects exercise performance in DKO mice, where constant glucose utilization occurs. Results A single bout of treadmill exercise was performed in the fed and fasted states. The initial speed was 10 m/min, and gradually increased by 5 m/min every 5 min up to 30 m/min until the mice stopped running. Running distance was significantly reduced by DKO genotype and prior fasting, leading to the shortest distance in fasted DKO mice. Levels of glycogen in skeletal muscle and the liver were nearly depleted in both WT and DKO mice during prolonged fasting prior to exercise. Levels of TG in skeletal muscle were not reduced by exercise in fasted DKO mice, suggesting that intramuscular TG was not utilized during exercise. Hypoglycaemia was accelerated in fasted DKO mice, and this acceleration could be due to constant glucose utilization by red skeletal muscle and the heart where FA uptake is diminished due to defective trans-endothelial FA transport. Taken together, energy supply from serum and storage in skeletal muscle were very low in fasted DKO mice, which could lead to a significant reduction in exercise performance. Conclusions FABP4/5 have crucial roles in nutrient homeostasis during prolonged fasting for maintaining exercise endurance capacity.
Collapse
Affiliation(s)
- Tatsuya Iso
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Hikari Haruyama
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroaki Sunaga
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Miki Matsui
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroki Matsui
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Rina Tanaka
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yogi Umbarawan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Department of Internal Medicine, Faculty of Medicine Universitas Indonesia, Jl. Salemba Raya no. 6, Jakarta, 10430, Indonesia
| | - Mas Rizky A A Syamsunarno
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Department of Biochemistry and Molecular Biology, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Jatinangor, West Java, 45363, Indonesia
| | - Tomoyuki Yokoyama
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
30
|
Gogg S, Nerstedt A, Boren J, Smith U. Human adipose tissue microvascular endothelial cells secrete PPARγ ligands and regulate adipose tissue lipid uptake. JCI Insight 2019; 4:125914. [PMID: 30843883 DOI: 10.1172/jci.insight.125914] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/25/2019] [Indexed: 12/29/2022] Open
Abstract
Human adipose cells cannot secrete endogenous PPARγ ligands and are dependent on unknown exogenous sources. We postulated that the adipose tissue microvascular endothelial cells (aMVECs) cross-talk with the adipose cells for fatty acid (FA) transport and storage and also may secrete PPARγ ligands. We isolated aMVECs from human subcutaneous adipose tissue and showed that in these cells, but not in (pre)adipocytes from the same donors, exogenous FAs increased cellular PPARγ activation and markedly increased FA transport and the transporters FABP4 and CD36. Importantly, aMVECs only accumulated small lipid droplets and could not be differentiated to adipose cells and are not adipose precursor cells. FA exchange between aMVECs and adipose cells was bidirectional, and FA-induced PPARγ activation in aMVECs was dependent on functional adipose triglyceride lipase (ATGL) protein while deleting hormone-sensitive lipase in aMVECs had no effect. aMVECs also released lipids to the medium, which activated PPARγ in reporter cells as well as in adipose cells in coculture experiments, and this positive cross-talk was also dependent on functional ATGL in aMVECs. In sum, aMVECs are highly specialized endothelial cells, cannot be differentiated to adipose cells, are adapted to regulating lipid transport and secreting lipids that activate PPARγ, and thus, regulate adipose cell function.
Collapse
Affiliation(s)
- Silvia Gogg
- Lundberg Laboratory for Diabetes Research and
| | | | - Jan Boren
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research and
| |
Collapse
|
31
|
Son NH, Basu D, Samovski D, Pietka TA, Peche VS, Willecke F, Fang X, Yu SQ, Scerbo D, Chang HR, Sun F, Bagdasarov S, Drosatos K, Yeh ST, Mullick AE, Shoghi KI, Gumaste N, Kim K, Huggins LA, Lhakhang T, Abumrad NA, Goldberg IJ. Endothelial cell CD36 optimizes tissue fatty acid uptake. J Clin Invest 2018; 128:4329-4342. [PMID: 30047927 PMCID: PMC6159965 DOI: 10.1172/jci99315] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/18/2018] [Indexed: 12/30/2022] Open
Abstract
Movement of circulating fatty acids (FAs) to parenchymal cells requires their transfer across the endothelial cell (EC) barrier. The multiligand receptor cluster of differentiation 36 (CD36) facilitates tissue FA uptake and is expressed in ECs and parenchymal cells such as myocytes and adipocytes. Whether tissue uptake of FAs is dependent on EC or parenchymal cell CD36, or both, is unknown. Using a cell-specific deletion approach, we show that EC, but not parenchymal cell, CD36 deletion increased fasting plasma FAs and postprandial triglycerides. EC-Cd36-KO mice had reduced uptake of radiolabeled long-chain FAs into heart, skeletal muscle, and brown adipose tissue; these uptake studies were replicated using [11C]palmitate PET scans. High-fat diet-fed EC-CD36-deficient mice had improved glucose tolerance and insulin sensitivity. Both EC and cardiomyocyte (CM) deletion of CD36 reduced heart lipid droplet accumulation after fasting, but CM deletion did not affect heart glucose or FA uptake. Expression in the heart of several genes modulating glucose metabolism and insulin action increased with EC-CD36 deletion but decreased with CM deletion. In conclusion, EC CD36 acts as a gatekeeper for parenchymal cell FA uptake, with important downstream effects on glucose utilization and insulin action.
Collapse
Affiliation(s)
- Ni-Huiping Son
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - Dmitri Samovski
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Terri A. Pietka
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Vivek S. Peche
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Florian Willecke
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - Xiang Fang
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - Shui-Qing Yu
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - Diego Scerbo
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - Hye Rim Chang
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - Fei Sun
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - Svetlana Bagdasarov
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - Konstantinos Drosatos
- Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Steve T. Yeh
- Ionis Pharmaceuticals Inc., Carlsbad, California, USA
| | | | - Kooresh I. Shoghi
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Namrata Gumaste
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - KyeongJin Kim
- Division of Endocrinology, Columbia University Medical Center, New York, New York, USA
| | - Lesley-Ann Huggins
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| | - Tenzin Lhakhang
- NYU Genome Technology Center, NYU Langone Medical Center, New York, New York, USA
| | - Nada A. Abumrad
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
32
|
Leibing T, Géraud C, Augustin I, Boutros M, Augustin HG, Okun JG, Langhans C, Zierow J, Wohlfeil SA, Olsavszky V, Schledzewski K, Goerdt S, Koch P. Angiocrine Wnt signaling controls liver growth and metabolic maturation in mice. Hepatology 2018; 68:707-722. [PMID: 29059455 PMCID: PMC6099291 DOI: 10.1002/hep.29613] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/08/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022]
Abstract
UNLABELLED Postnatal liver development is characterized by hepatocyte growth, proliferation, and functional maturation. Notably, canonical Wnt signaling in hepatocytes has been identified as an important regulator of final adult liver size and metabolic liver zonation. The cellular origin of Wnt ligands responsible for homeostatic liver/body weight ratio (LW/BW) remained unclear, which was also attributable to a lack of suitable endothelial Cre driver mice. To comprehensively analyze the effects of hepatic angiocrine Wnt signaling on liver development and metabolic functions, we used endothelial subtype-specific Stab2-Cre driver mice to delete Wls from hepatic endothelial cells (HECs). The resultant Stab2-Cretg/wt ;Wlsfl/fl (Wls-HECKO) mice were viable, but showed a significantly reduced LW/BW. Specifically, ablation of angiocrine Wnt signaling impaired metabolic zonation in the liver, as shown by loss of pericentral, β-catenin-dependent target genes such as glutamine synthase (Glul), RhBg, Axin2, and cytochrome P450 2E1, as well as by extended expression of periportal genes such as arginase 1. Furthermore, endothelial subtype-specific expression of a c-terminally YFP-tagged Wls fusion protein in Wls-HECKO mice (Stab2-Cretg/wt ;Wlsfl/fl ;Rosa26:Wls-YFPfl/wt [Wls-rescue]) restored metabolic liver zonation. Interestingly, lipid metabolism was altered in Wls-HECKO mice exhibiting significantly reduced plasma cholesterol levels, while maintaining normal plasma triglyceride and blood glucose concentrations. On the contrary, zonal expression of Endomucin, LYVE1, and other markers of HEC heterogeneity were not altered in Wls-HECKO livers. CONCLUSION Angiocrine Wnt signaling controls liver growth as well as development of metabolic liver zonation in mice, whereas intrahepatic HEC zonation is not affected. (Hepatology 2017).
Collapse
Affiliation(s)
- Thomas Leibing
- Department of Dermatology, Venereology, and AllergologyUniversity Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in DermatologyMannheimGermany
| | - Cyrill Géraud
- Department of Dermatology, Venereology, and AllergologyUniversity Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in DermatologyMannheimGermany
| | - Iris Augustin
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, Faculty of Medicine Mannheim, Department of Cell and Molecular BiologyHeidelbergGermany,Molecular Cell Biology and Plant Cell TechnologyUniversity of Applied Sciences Weihenstephan‐TriesdorfFreisingGermany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, Faculty of Medicine Mannheim, Department of Cell and Molecular BiologyHeidelbergGermany
| | - Hellmut G. Augustin
- Division of Vascular Oncology and Metastasis (DKFZ‐ZMBH Alliance)DKFZHeidelbergGermany,Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Jürgen G. Okun
- Department of General Pediatrics, Division of Inherited Metabolic DiseasesUniversity Children's HospitalHeidelbergGermany
| | - Claus‐Dieter Langhans
- Department of General Pediatrics, Division of Inherited Metabolic DiseasesUniversity Children's HospitalHeidelbergGermany
| | - Johanna Zierow
- Department of Dermatology, Venereology, and AllergologyUniversity Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in DermatologyMannheimGermany
| | - Sebastian A. Wohlfeil
- Department of Dermatology, Venereology, and AllergologyUniversity Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in DermatologyMannheimGermany
| | - Victor Olsavszky
- Department of Dermatology, Venereology, and AllergologyUniversity Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in DermatologyMannheimGermany
| | - Kai Schledzewski
- Department of Dermatology, Venereology, and AllergologyUniversity Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in DermatologyMannheimGermany
| | - Sergij Goerdt
- Department of Dermatology, Venereology, and AllergologyUniversity Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in DermatologyMannheimGermany,European Center for AngioscienceMedical Faculty Mannheim, University of HeidelbergMannheimGermany
| | - Philipp‐Sebastian Koch
- Department of Dermatology, Venereology, and AllergologyUniversity Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in DermatologyMannheimGermany
| |
Collapse
|
33
|
Komatsu M, Kanda T, Urai H, Kurokochi A, Kitahama R, Shigaki S, Ono T, Yukioka H, Hasegawa K, Tokuyama H, Kawabe H, Wakino S, Itoh H. NNMT activation can contribute to the development of fatty liver disease by modulating the NAD + metabolism. Sci Rep 2018; 8:8637. [PMID: 29872122 PMCID: PMC5988709 DOI: 10.1038/s41598-018-26882-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Nicotinamide N-methyltransferase (NNMT) catalyses the reaction between nicotinamide (NAM) and S-adenosylmethionine to produce 1-methylnicotinamide and S-adenosylhomocysteine. Recently, this enzyme has also been reported to modulate hepatic nutrient metabolism, but its role in the liver has not been fully elucidated. We developed transgenic mice overexpressing NNMT to elucidate its role in hepatic nutrient metabolism. When fed a high fat diet containing NAM, a precursor for nicotinamide adenine dinucleotide (NAD)+, these NNMT-overexpressing mice exhibit fatty liver deterioration following increased expression of the genes mediating fatty acid uptake and decreased very low-density lipoprotein secretion. NNMT overactivation decreased the NAD+ content in the liver and also decreased gene activity related to fatty acid oxidation by inhibiting NAD+-dependent deacetylase Sirt3 function. Moreover, the transgenic mice showed liver fibrosis, with the induction of inflammatory and fibrosis genes. Induced NNMT expression decreased the tissue methylation capacity, thereby reducing methylation of the connective tissue growth factor (CTGF) gene promoter, resulting in increased CTGF expression. These data indicate that NNMT links the NAD+ and methionine metabolic pathways and promotes liver steatosis and fibrosis. Therefore, targeting NNMT may serve as a therapeutic strategy for treating fatty liver and fibrosis.
Collapse
Affiliation(s)
- Motoaki Komatsu
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Takeshi Kanda
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Hidenori Urai
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Arata Kurokochi
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Rina Kitahama
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | | | | | | | - Kazuhiro Hasegawa
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Hirobumi Tokuyama
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | | | - Shu Wakino
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan.
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
34
|
Hwangbo C, Wu J, Papangeli I, Adachi T, Sharma B, Park S, Zhao L, Ju H, Go GW, Cui G, Inayathullah M, Job JK, Rajadas J, Kwei SL, Li MO, Morrison AR, Quertermous T, Mani A, Red-Horse K, Chun HJ. Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects. Sci Transl Med 2018; 9:9/407/eaad4000. [PMID: 28904225 DOI: 10.1126/scitranslmed.aad4000] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 01/30/2017] [Accepted: 08/10/2017] [Indexed: 12/15/2022]
Abstract
Treatment of type 2 diabetes mellitus continues to pose an important clinical challenge, with most existing therapies lacking demonstrable ability to improve cardiovascular outcomes. The atheroprotective peptide apelin (APLN) enhances glucose utilization and improves insulin sensitivity. However, the mechanism of these effects remains poorly defined. We demonstrate that the expression of APLNR (APJ/AGTRL1), the only known receptor for apelin, is predominantly restricted to the endothelial cells (ECs) of multiple adult metabolic organs, including skeletal muscle and adipose tissue. Conditional endothelial-specific deletion of Aplnr (AplnrECKO ) resulted in markedly impaired glucose utilization and abrogation of apelin-induced glucose lowering. Furthermore, we identified inactivation of Forkhead box protein O1 (FOXO1) and inhibition of endothelial expression of fatty acid (FA) binding protein 4 (FABP4) as key downstream signaling targets of apelin/APLNR signaling. Both the Apln-/- and AplnrECKO mice demonstrated increased endothelial FABP4 expression and excess tissue FA accumulation, whereas concurrent endothelial Foxo1 deletion or pharmacologic FABP4 inhibition rescued the excess FA accumulation phenotype of the Apln-/- mice. The impaired glucose utilization in the AplnrECKO mice was associated with excess FA accumulation in the skeletal muscle. Treatment of these mice with an FABP4 inhibitor abrogated these metabolic phenotypes. These findings provide mechanistic insights that could greatly expand the therapeutic repertoire for type 2 diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Cheol Hwangbo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Jingxia Wu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Irinna Papangeli
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Takaomi Adachi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Bikram Sharma
- Department of Biology, Stanford University, Stanford, CA 94304, USA
| | - Saejeong Park
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Lina Zhao
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Hyekyung Ju
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Gwang-Woong Go
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Guoliang Cui
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Mohammed Inayathullah
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Stanford, CA 94304, USA
| | - Judith K Job
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Stanford, CA 94304, USA
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Stanford, CA 94304, USA
| | - Stephanie L Kwei
- Section of Plastic and Reconstructive Surgery, Yale School of Medicine, New Haven, CT 06511, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alan R Morrison
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94304, USA
| | - Arya Mani
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA 94304, USA
| | - Hyung J Chun
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
35
|
Salusin- β Is Involved in Diabetes Mellitus-Induced Endothelial Dysfunction via Degradation of Peroxisome Proliferator-Activated Receptor Gamma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6905217. [PMID: 29359008 PMCID: PMC5735326 DOI: 10.1155/2017/6905217] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/08/2017] [Indexed: 12/18/2022]
Abstract
The pathophysiological mechanisms for vascular lesions in diabetes mellitus (DM) are complex, among which endothelial dysfunction plays a vital role. Therapeutic target against endothelial injury may provide critical venues for treatment of diabetic vascular diseases. We recently identified that salusin-β contributed to high glucose-induced endothelial cell apoptosis. However, the roles of salusin-β in DM-induced endothelial dysfunction remain largely elusive. Male C57BL/6J mice were used to induce type 2 diabetes mellitus (T2DM) model. Human umbilical vein endothelial cells (HUVECs) were cultured in high glucose/high fat (HG/HF) medium. We demonstrated increased expression of salusin-β in diabetic aortic tissues and high-glucose/high-fat- (HG/HF-) incubated HUVECs. Disruption of salusin-β by shRNA abrogated the reactive oxygen species (ROS) production, inflammation, and nitrotyrosine content of HUVECs cultured in HG/HF medium. The HG/HF-mediated decrease in peroxisome proliferator-activated receptor γ (PPARγ) expression was restored by salusin-β shRNA, and PPARγ inhibitor T0070907 abolished the protective actions of salusin-β shRNA on endothelial injury in HG/HF-treated HUVECs. Salusin-β silencing obviously improved endothelium-dependent vasorelaxation, oxidative stress, inflammatory response, and nitrative stress in diabetic aorta. Taken together, our results highlighted the essential role of salusin-β in pathological endothelial dysfunction, and salusin-β may be a promising target in treatment of vascular complications of DM.
Collapse
|
36
|
Woll AW, Quelle FW, Sigmund CD. PPARγ and retinol binding protein 7 form a regulatory hub promoting antioxidant properties of the endothelium. Physiol Genomics 2017; 49:653-658. [PMID: 28916634 DOI: 10.1152/physiolgenomics.00055.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of conserved ligand-activated nuclear receptor transcription factors heterogeneously expressed in mammalian tissues. PPARγ is recognized as a master regulator of adipogenesis, fatty acid metabolism, and glucose homeostasis, but genetic evidence also supports the concept that PPARγ regulates the cardiovascular system, particularly vascular function and blood pressure. There is now compelling evidence that the beneficial blood pressure-lowering effects of PPARγ activation are due to its activity in vascular smooth muscle and endothelium, through its modulation of nitric oxide-dependent vasomotor function. Endothelial PPARγ regulates the production and bioavailability of nitric oxide, while PPARγ in the smooth muscle regulates the vasomotor response to nitric oxide. We recently identified retinol binding protein 7 (RBP7) as a PPARγ target gene that is specifically and selectively expressed in the endothelium. In this review, we will discuss the evidence that RBP7 is required to mediate the antioxidant effects of PPARγ and mediate PPARγ target gene selectivity in the endothelium.
Collapse
Affiliation(s)
- Addison W Woll
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Interdisciplinary Program in Molecular Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Frederick W Quelle
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; .,UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| |
Collapse
|
37
|
Bae CR, Hino J, Hosoda H, Arai Y, Son C, Makino H, Tokudome T, Tomita T, Kimura T, Nojiri T, Hosoda K, Miyazato M, Kangawa K. Overexpression of C-type Natriuretic Peptide in Endothelial Cells Protects against Insulin Resistance and Inflammation during Diet-induced Obesity. Sci Rep 2017; 7:9807. [PMID: 28852070 PMCID: PMC5574992 DOI: 10.1038/s41598-017-10240-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/02/2017] [Indexed: 02/08/2023] Open
Abstract
The endogenous peptide C-type natriuretic peptide (CNP) binds its receptor, guanylyl cyclase B (GCB), and is expressed by endothelial cells in diverse tissues. Because the endothelial cells of visceral adipose tissue have recently been reported to play a role in lipid metabolism and inflammation, we investigated the effects of CNP on features of obesity by using transgenic (Tg) mice in which CNP was placed under the control of the Tie2 promoter and was thus overexpressed in endothelial cells (E-CNP). Here we show that increased brown adipose tissue thermogenesis in E-CNP Tg mice increased energy expenditure, decreased mesenteric white adipose tissue (MesWAT) fat weight and adipocyte hypertrophy, and prevented the development of fatty liver. Furthermore, CNP overexpression improved glucose tolerance, decreased insulin resistance, and inhibited macrophage infiltration in MesWAT, thus suppressing pro-inflammation during high-fat diet–induced obesity. Our findings indicate an important role for the CNP produced by the endothelial cells in the regulation of MesWAT hypertrophy, insulin resistance, and inflammation during high-fat diet–induced obesity.
Collapse
Affiliation(s)
- Cho-Rong Bae
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Jun Hino
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | - Hiroshi Hosoda
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Yuji Arai
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Cheol Son
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.,Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hisashi Makino
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Takeshi Tokudome
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Tsutomu Tomita
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.,Biobank, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Toru Kimura
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Takashi Nojiri
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Kiminori Hosoda
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| |
Collapse
|
38
|
Endothelial LRP1 regulates metabolic responses by acting as a co-activator of PPARγ. Nat Commun 2017; 8:14960. [PMID: 28393867 PMCID: PMC5394236 DOI: 10.1038/ncomms14960] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 02/16/2017] [Indexed: 01/04/2023] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) regulates lipid and glucose metabolism in liver and adipose tissue. It is also involved in central nervous system regulation of food intake and leptin signalling. Here we demonstrate that endothelial Lrp1 regulates systemic energy homeostasis. Mice with endothelial-specific Lrp1 deletion display improved glucose sensitivity and lipid profiles combined with increased oxygen consumption during high-fat-diet-induced obesity. We show that the intracellular domain of Lrp1 interacts with the nuclear receptor Pparγ, a central regulator of lipid and glucose metabolism, acting as its transcriptional co-activator in endothelial cells. Therefore, Lrp1 not only acts as an endocytic receptor but also directly participates in gene transcription. Our findings indicate an underappreciated functional role of endothelium in maintaining systemic energy homeostasis.
Collapse
|
39
|
Hu C, Keen HL, Lu KT, Liu X, Wu J, Davis DR, Ibeawuchi SRC, Vogel S, Quelle FW, Sigmund CD. Retinol-binding protein 7 is an endothelium-specific PPAR γ cofactor mediating an antioxidant response through adiponectin. JCI Insight 2017; 2:e91738. [PMID: 28352663 PMCID: PMC5358481 DOI: 10.1172/jci.insight.91738] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Impaired PPARγ activity in endothelial cells causes oxidative stress and endothelial dysfunction which causes a predisposition to hypertension, but the identity of key PPARγ target genes that protect the endothelium remain unclear. Retinol-binding protein 7 (RBP7) is a PPARγ target gene that is essentially endothelium specific. Whereas RBP7-deficient mice exhibit normal endothelial function at baseline, they exhibit severe endothelial dysfunction in response to cardiovascular stressors, including high-fat diet and subpressor angiotensin II. Endothelial dysfunction was not due to differences in weight gain, impaired glucose homeostasis, or hepatosteatosis, but occurred through an oxidative stress-dependent mechanism which can be rescued by scavengers of superoxide. RNA sequencing revealed that RBP7 was required to mediate induction of a subset of PPARγ target genes by rosiglitazone in the endothelium including adiponectin. Adiponectin was selectively induced in the endothelium of control mice by high-fat diet and rosiglitazone, whereas RBP7 deficiency abolished this induction. Adiponectin inhibition caused endothelial dysfunction in control vessels, whereas adiponectin treatment of RBP7-deficient vessels improved endothelium-dependent relaxation and reduced oxidative stress. We conclude that RBP7 is required to mediate the protective effects of PPARγ in the endothelium through adiponectin, and RBP7 is an endothelium-specific PPARγ target and regulator of PPARγ activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Silke Vogel
- Duke-NUS Medical School, Singapore, Singapore
| | | | - Curt D Sigmund
- Department of Pharmacology.,UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
40
|
Wankhade UD, Shen M, Yadav H, Thakali KM. Novel Browning Agents, Mechanisms, and Therapeutic Potentials of Brown Adipose Tissue. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2365609. [PMID: 28105413 PMCID: PMC5220392 DOI: 10.1155/2016/2365609] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 12/23/2022]
Abstract
Nonshivering thermogenesis is the process of biological heat production in mammals and is primarily mediated by brown adipose tissue (BAT). Through ubiquitous expression of uncoupling protein 1 (Ucp1) on the mitochondrial inner membrane, BAT displays uncoupling of fuel combustion and ATP production in order to dissipate energy as heat. Because of its crucial role in regulating energy homeostasis, ongoing exploration of BAT has emphasized its therapeutic potential in addressing the global epidemics of obesity and diabetes. The recent appreciation that adult humans possess functional BAT strengthens this prospect. Furthermore, it has been identified that there are both classical brown adipocytes residing in dedicated BAT depots and "beige" adipocytes residing in white adipose tissue depots that can acquire BAT-like characteristics in response to environmental cues. This review aims to provide a brief overview of BAT research and summarize recent findings concerning the physiological, cellular, and developmental characteristics of brown adipocytes. In addition, some key genetic, molecular, and pharmacologic targets of BAT/Beige cells that have been reported to have therapeutic potential to combat obesity will be discussed.
Collapse
Affiliation(s)
- Umesh D. Wankhade
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Hariom Yadav
- Diabetes, Endocrinology, and Obesity Branch, National Institutes of Health, Bethesda, MD, USA
| | - Keshari M. Thakali
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
41
|
Ni W, Glenn DJ, Gardner DG. Tie-2Cre mediated deletion of the vitamin D receptor gene leads to improved skeletal muscle insulin sensitivity and glucose tolerance. J Steroid Biochem Mol Biol 2016; 164:281-286. [PMID: 26369613 PMCID: PMC4788578 DOI: 10.1016/j.jsbmb.2015.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 02/06/2023]
Abstract
A variety of studies have suggested that vitamin D may play a palliative role in improving insulin secretion and glucose tolerance. Endothelial cells of the microcirculation are thought to play an important role in regulating both insulin secretion and insulin sensitivity in target tissues. We have selectively deleted the vitamin D receptor (VDR) gene in endothelial cells of the murine vasculature. These mice demonstrate improved glucose tolerance, improved insulin sensitivity in skeletal muscle, but not in liver, and a reduction in expression and secretion of insulin in the pancreatic islets. Collectively, these data, taken within the context of recent publications in this field, suggest that the endothelial cell VDR plays a tonic inhibitory role in regulating glucose disposal and could prove to be a factor in controlling glucose homeostasis in the intact organism.
Collapse
Affiliation(s)
- Wei Ni
- Diabetes Center, University of California, San Francisco, CA 94143-0540, United States
| | - Denis J Glenn
- Department of Medicine, University of California, San Francisco, CA 94143-0540, United States
| | - David G Gardner
- Department of Medicine, University of California, San Francisco, CA 94143-0540, United States.
| |
Collapse
|
42
|
O’Donnell PE, Ye XZ, DeChellis MA, Davis VM, Duan SZ, Mortensen RM, Milstone DS. Lipodystrophy, Diabetes and Normal Serum Insulin in PPARγ-Deficient Neonatal Mice. PLoS One 2016; 11:e0160636. [PMID: 27505464 PMCID: PMC4978460 DOI: 10.1371/journal.pone.0160636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/23/2016] [Indexed: 11/19/2022] Open
Abstract
Peroxisome proliferator activated receptor gamma (PPARγ) is a pleiotropic ligand activated transcription factor that acts in several tissues to regulate adipocyte differentiation, lipid metabolism, insulin sensitivity and glucose homeostasis. PPARγ also regulates cardiomyocyte homeostasis and by virtue of its obligate role in placental development is required for embryonic survival. To determine the postnatal functions of PPARγ in vivo we studied globally deficient neonatal mice produced by epiblast-restricted elimination of PPARγ. PPARγ-rescued placentas support development of PPARγ-deficient embryos that are viable and born in near normal numbers. However, PPARγ-deficient neonatal mice show severe lipodystrophy, lipemia, hepatic steatosis with focal hepatitis, relative insulin deficiency and diabetes beginning soon after birth and culminating in failure to thrive and neonatal lethality between 4 and 10 days of age. These abnormalities are not observed with selective PPARγ2 deficiency or with deficiency restricted to hepatocytes, skeletal muscle, adipocytes, cardiomyocytes, endothelium or pancreatic beta cells. These observations suggest important but previously unappreciated functions for PPARγ1 in the neonatal period either alone or in combination with PPARγ2 in lipid metabolism, glucose homeostasis and insulin sensitivity.
Collapse
Affiliation(s)
- Peter E. O’Donnell
- Vascular Research Division, Department of Pathology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Xiu Zhen Ye
- Vascular Research Division, Department of Pathology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Melissa A. DeChellis
- Vascular Research Division, Department of Pathology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Vannessa M. Davis
- Vascular Research Division, Department of Pathology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Sheng Zhong Duan
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Richard M. Mortensen
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - David S. Milstone
- Vascular Research Division, Department of Pathology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
43
|
Abstract
Dysfunction of the endothelial lining of lesion-prone areas of the arterial vasculature is an important contributor to the pathobiology of atherosclerotic cardiovascular disease. Endothelial cell dysfunction, in its broadest sense, encompasses a constellation of various nonadaptive alterations in functional phenotype, which have important implications for the regulation of hemostasis and thrombosis, local vascular tone and redox balance, and the orchestration of acute and chronic inflammatory reactions within the arterial wall. In this review, we trace the evolution of the concept of endothelial cell dysfunction, focusing on recent insights into the cellular and molecular mechanisms that underlie its pivotal roles in atherosclerotic lesion initiation and progression; explore its relationship to classic, as well as more recently defined, clinical risk factors for atherosclerotic cardiovascular disease; consider current approaches to the clinical assessment of endothelial cell dysfunction; and outline some promising new directions for its early detection and treatment.
Collapse
Affiliation(s)
- Michael A Gimbrone
- From the Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
| | - Guillermo García-Cardeña
- From the Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
44
|
Westerterp M, Tsuchiya K, Tattersall IW, Fotakis P, Bochem AE, Molusky MM, Ntonga V, Abramowicz S, Parks JS, Welch CL, Kitajewski J, Accili D, Tall AR. Deficiency of ATP-Binding Cassette Transporters A1 and G1 in Endothelial Cells Accelerates Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol 2016; 36:1328-37. [PMID: 27199450 DOI: 10.1161/atvbaha.115.306670] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 05/10/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Plasma high-density lipoproteins have several putative antiatherogenic effects, including preservation of endothelial functions. This is thought to be mediated, in part, by the ability of high-density lipoproteins to promote cholesterol efflux from endothelial cells (ECs). The ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) interact with high-density lipoproteins to promote cholesterol efflux from ECs. To determine the impact of endothelial cholesterol efflux pathways on atherogenesis, we prepared mice with endothelium-specific knockout of Abca1 and Abcg1. APPROACH AND RESULTS Generation of mice with EC-ABCA1 and ABCG1 deficiency required crossbreeding Abca1(fl/fl)Abcg1(fl/fl)Ldlr(-/-) mice with the Tie2Cre strain, followed by irradiation and transplantation of Abca1(fl/fl)Abcg1(fl/fl) bone marrow to abrogate the effects of macrophage ABCA1 and ABCG1 deficiency induced by Tie2Cre. After 20 to 22 weeks of Western-type diet, both single EC-Abca1 and Abcg1 deficiency increased atherosclerosis in the aortic root and whole aorta. Combined EC-Abca1/g1 deficiency caused a significant further increase in lesion area at both sites. EC-Abca1/g1 deficiency dramatically enhanced macrophage lipid accumulation in the branches of the aorta that are exposed to disturbed blood flow, decreased aortic endothelial NO synthase activity, and increased monocyte infiltration into the atherosclerotic plaque. Abca1/g1 deficiency enhanced lipopolysaccharide-induced inflammatory gene expression in mouse aortic ECs, which was recapitulated by ABCG1 deficiency in human aortic ECs. CONCLUSIONS These studies provide direct evidence that endothelial cholesterol efflux pathways mediated by ABCA1 and ABCG1 are nonredundant and atheroprotective, reflecting preservation of endothelial NO synthase activity and suppression of endothelial inflammation, especially in regions of disturbed arterial blood flow.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1/deficiency
- ATP Binding Cassette Transporter 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 1/deficiency
- ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Bone Marrow Transplantation
- Cholesterol/metabolism
- Diet, High-Fat
- Disease Models, Animal
- Disease Progression
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Genetic Predisposition to Disease
- Inflammation Mediators/metabolism
- Macrophages/metabolism
- Male
- Mice, Knockout
- Monocytes/metabolism
- Neovascularization, Physiologic
- Nitric Oxide Synthase Type III/metabolism
- Phenotype
- Plaque, Atherosclerotic
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Regional Blood Flow
- Retinal Neovascularization/genetics
- Retinal Neovascularization/metabolism
- Time Factors
- Tissue Culture Techniques
- Whole-Body Irradiation
Collapse
Affiliation(s)
- Marit Westerterp
- From the Division of Molecular Medicine, Department of Medicine (M.W., P.F., A.E.B., M.M.M., V.N., S.A., C.L.W., A.R.T.), Naomi Berrie Diabetes Center (K.T., D.A.), and Department of Pathology, Obstetrics, and Gynaecology (I.W.T., J.K.), Columbia University, New York, NY; Section on Molecular Genetics, Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands (M.W.); Department of Diabetes, Endocrinology, and Metabolism, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan (K.T.); and Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.).
| | - Kyoichiro Tsuchiya
- From the Division of Molecular Medicine, Department of Medicine (M.W., P.F., A.E.B., M.M.M., V.N., S.A., C.L.W., A.R.T.), Naomi Berrie Diabetes Center (K.T., D.A.), and Department of Pathology, Obstetrics, and Gynaecology (I.W.T., J.K.), Columbia University, New York, NY; Section on Molecular Genetics, Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands (M.W.); Department of Diabetes, Endocrinology, and Metabolism, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan (K.T.); and Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - Ian W Tattersall
- From the Division of Molecular Medicine, Department of Medicine (M.W., P.F., A.E.B., M.M.M., V.N., S.A., C.L.W., A.R.T.), Naomi Berrie Diabetes Center (K.T., D.A.), and Department of Pathology, Obstetrics, and Gynaecology (I.W.T., J.K.), Columbia University, New York, NY; Section on Molecular Genetics, Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands (M.W.); Department of Diabetes, Endocrinology, and Metabolism, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan (K.T.); and Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - Panagiotis Fotakis
- From the Division of Molecular Medicine, Department of Medicine (M.W., P.F., A.E.B., M.M.M., V.N., S.A., C.L.W., A.R.T.), Naomi Berrie Diabetes Center (K.T., D.A.), and Department of Pathology, Obstetrics, and Gynaecology (I.W.T., J.K.), Columbia University, New York, NY; Section on Molecular Genetics, Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands (M.W.); Department of Diabetes, Endocrinology, and Metabolism, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan (K.T.); and Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - Andrea E Bochem
- From the Division of Molecular Medicine, Department of Medicine (M.W., P.F., A.E.B., M.M.M., V.N., S.A., C.L.W., A.R.T.), Naomi Berrie Diabetes Center (K.T., D.A.), and Department of Pathology, Obstetrics, and Gynaecology (I.W.T., J.K.), Columbia University, New York, NY; Section on Molecular Genetics, Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands (M.W.); Department of Diabetes, Endocrinology, and Metabolism, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan (K.T.); and Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - Matthew M Molusky
- From the Division of Molecular Medicine, Department of Medicine (M.W., P.F., A.E.B., M.M.M., V.N., S.A., C.L.W., A.R.T.), Naomi Berrie Diabetes Center (K.T., D.A.), and Department of Pathology, Obstetrics, and Gynaecology (I.W.T., J.K.), Columbia University, New York, NY; Section on Molecular Genetics, Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands (M.W.); Department of Diabetes, Endocrinology, and Metabolism, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan (K.T.); and Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - Vusisizwe Ntonga
- From the Division of Molecular Medicine, Department of Medicine (M.W., P.F., A.E.B., M.M.M., V.N., S.A., C.L.W., A.R.T.), Naomi Berrie Diabetes Center (K.T., D.A.), and Department of Pathology, Obstetrics, and Gynaecology (I.W.T., J.K.), Columbia University, New York, NY; Section on Molecular Genetics, Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands (M.W.); Department of Diabetes, Endocrinology, and Metabolism, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan (K.T.); and Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - Sandra Abramowicz
- From the Division of Molecular Medicine, Department of Medicine (M.W., P.F., A.E.B., M.M.M., V.N., S.A., C.L.W., A.R.T.), Naomi Berrie Diabetes Center (K.T., D.A.), and Department of Pathology, Obstetrics, and Gynaecology (I.W.T., J.K.), Columbia University, New York, NY; Section on Molecular Genetics, Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands (M.W.); Department of Diabetes, Endocrinology, and Metabolism, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan (K.T.); and Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - John S Parks
- From the Division of Molecular Medicine, Department of Medicine (M.W., P.F., A.E.B., M.M.M., V.N., S.A., C.L.W., A.R.T.), Naomi Berrie Diabetes Center (K.T., D.A.), and Department of Pathology, Obstetrics, and Gynaecology (I.W.T., J.K.), Columbia University, New York, NY; Section on Molecular Genetics, Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands (M.W.); Department of Diabetes, Endocrinology, and Metabolism, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan (K.T.); and Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - Carrie L Welch
- From the Division of Molecular Medicine, Department of Medicine (M.W., P.F., A.E.B., M.M.M., V.N., S.A., C.L.W., A.R.T.), Naomi Berrie Diabetes Center (K.T., D.A.), and Department of Pathology, Obstetrics, and Gynaecology (I.W.T., J.K.), Columbia University, New York, NY; Section on Molecular Genetics, Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands (M.W.); Department of Diabetes, Endocrinology, and Metabolism, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan (K.T.); and Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - Jan Kitajewski
- From the Division of Molecular Medicine, Department of Medicine (M.W., P.F., A.E.B., M.M.M., V.N., S.A., C.L.W., A.R.T.), Naomi Berrie Diabetes Center (K.T., D.A.), and Department of Pathology, Obstetrics, and Gynaecology (I.W.T., J.K.), Columbia University, New York, NY; Section on Molecular Genetics, Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands (M.W.); Department of Diabetes, Endocrinology, and Metabolism, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan (K.T.); and Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - Domenico Accili
- From the Division of Molecular Medicine, Department of Medicine (M.W., P.F., A.E.B., M.M.M., V.N., S.A., C.L.W., A.R.T.), Naomi Berrie Diabetes Center (K.T., D.A.), and Department of Pathology, Obstetrics, and Gynaecology (I.W.T., J.K.), Columbia University, New York, NY; Section on Molecular Genetics, Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands (M.W.); Department of Diabetes, Endocrinology, and Metabolism, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan (K.T.); and Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| | - Alan R Tall
- From the Division of Molecular Medicine, Department of Medicine (M.W., P.F., A.E.B., M.M.M., V.N., S.A., C.L.W., A.R.T.), Naomi Berrie Diabetes Center (K.T., D.A.), and Department of Pathology, Obstetrics, and Gynaecology (I.W.T., J.K.), Columbia University, New York, NY; Section on Molecular Genetics, Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands (M.W.); Department of Diabetes, Endocrinology, and Metabolism, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan (K.T.); and Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC (J.S.P.)
| |
Collapse
|
45
|
Abumrad NA, Goldberg IJ. CD36 actions in the heart: Lipids, calcium, inflammation, repair and more? Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1442-9. [PMID: 27004753 DOI: 10.1016/j.bbalip.2016.03.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/15/2023]
Abstract
CD36 is a multifunctional immuno-metabolic receptor with many ligands. One of its physiological functions in the heart is the high-affinity uptake of long-chain fatty acids (FAs) from albumin and triglyceride rich lipoproteins. CD36 deletion markedly reduces myocardial FA uptake in rodents and humans. The protein is expressed on endothelial cells and cardiomyocytes and at both sites is likely to contribute to FA uptake by the myocardium. CD36 also transduces intracellular signaling events that influence how the FA is utilized and mediate metabolic effects of FA in the heart. CD36 transduced signaling regulates AMPK activation in a way that adjusts oxidation to FA uptake. It also impacts remodeling of myocardial phospholipids and eicosanoid production, effects exerted via influencing intracellular calcium (iCa(2+)) and the activation of phospholipases. Under excessive FA supply CD36 contributes to lipid accumulation, inflammation and dysfunction. However, it is also important for myocardial repair after injury via its contribution to immune cell clearance of apoptotic cells. This review describes recent progress regarding the multiple actions of CD36 in the heart and highlights those areas requiring future investigation. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Nada A Abumrad
- Departments of Medicine and Cell Biology, Washington University, St. Louis, MO, United States..
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
46
|
Abstract
Dysregulation of peroxisome proliferator-activated receptor gamma (PPARγ) activity leads to significant alterations in cardiovascular and metabolic regulation. This is most keenly observed by the metabolic syndrome-like phenotypes exhibited by patients carrying mutations in PPARγ. We will summarize recent findings regarding mechanisms of PPARγ regulation in the cardiovascular and nervous systems focusing largely on PPARγ in the smooth muscle, endothelium, and brain. Canonically, PPARγ exerts its effects by regulating the expression of target genes in these cells, and we will discuss mechanisms by which PPARγ targets in the vasculature regulate cardiovascular function. We will also discuss emerging evidence that PPARγ in the brain is a mediator of appetite and obesity. Finally, we will briefly review how novel PPARγ activators control posttranslational modifications of PPARγ and their prospects to offer new therapeutic options for treatment of metabolic diseases without the adverse side effects of thiazolidinediones which strongly activate transcriptional activity of PPARγ.
Collapse
Affiliation(s)
- Madeliene Stump
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA
- Graduate Program in Neuroscience, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA
| | - Masashi Mukohda
- Department of Pharmacology and Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA
| | - Chunyan Hu
- Department of Pharmacology and Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA
| | - Curt D Sigmund
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA.
- Graduate Program in Neuroscience, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA.
- Department of Pharmacology and Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA.
- UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA.
| |
Collapse
|
47
|
Hu C, Lu KT, Mukohda M, Davis DR, Faraci FM, Sigmund CD. Interference with PPARγ in endothelium accelerates angiotensin II-induced endothelial dysfunction. Physiol Genomics 2015; 48:124-34. [PMID: 26534936 DOI: 10.1152/physiolgenomics.00087.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/02/2015] [Indexed: 02/07/2023] Open
Abstract
The ligand activated nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) in the endothelium regulates vascular function and blood pressure (BP). We previously reported that transgenic mice (E-V290M) with selectively targeted endothelial-specific expression of dominant negative PPARγ exhibited endothelial dysfunction when treated with a high-fat diet, and exhibited an augmented pressor response to angiotensin II (ANG II). We hypothesize that interference with endothelial PPARγ would exacerbate ANG II-induced endothelial dysfunction. Endothelial function was examined in E-V290M mice infused with a subpressor dose of ANG II (120 ng·kg(-1)·min(-1)) or saline for 2 wk. ANG II infusion significantly impaired the responses to the endothelium-dependent agonist acetylcholine both in basilar and carotid arteries from E-V290M but not NT mice. This impairment was not due to increased BP, which was not significantly different in ANG II-infused E-V290M compared with NT mice. Superoxide levels, and expression of the pro-oxidant Nox2 gene was elevated, whereas expression of the anti-oxidant genes Catalase and SOD3 decreased in carotid arteries from ANG II-infused E-V290M mice. Increased p65 and decreased Iκ-Bα suggesting increased NF-κB activity was also observed in aorta from ANG II-infused E-V290M mice. The responses to acetylcholine were significantly improved both in basilar and carotid arteries after treatment with Tempol (1 mmol/l), a scavenger of superoxide. These findings provide evidence that interference with endothelial PPARγ accelerates ANG II-mediated endothelial dysfunction both in cerebral and conduit arteries through an oxidative stress-dependent mechanism, suggesting a role for endothelial PPARγ in protecting against ANG II-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Chunyan Hu
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Ko-Ting Lu
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Masashi Mukohda
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Deborah R Davis
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Frank M Faraci
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| |
Collapse
|
48
|
Molecular mechanisms regulating vascular tone by peroxisome proliferator activated receptor gamma. Curr Opin Nephrol Hypertens 2015; 24:123-30. [PMID: 25587903 DOI: 10.1097/mnh.0000000000000103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW This review summarizes recent findings on the regulation of vascular tone by the nuclear receptor transcription factor, peroxisome proliferator activated receptor (PPAR) γ. Much of the recent work utilizes genetic tools to interrogate the significance of PPARγ in endothelial and smooth muscle cells and novel PPARγ target genes have been identified. RECENT FINDINGS Endothelial PPARγ prevents inflammation and oxidative stress, while promoting vasodilation by controlling the regulation of NADPH oxidase, catalase and superoxide dismutase gene expression. Moreover, the protective functions of endothelial PPARγ appear more prominent during disease conditions. Novel findings also suggest a role for endothelial PPARγ as a mediator of whole body metabolism. In smooth muscle cells, PPARγ regulates vascular tone by targeting genes involved with contraction and relaxation signaling cascades, some of which is via transcriptional activation, and some through novel mechanisms regulating protein turnover. Furthermore, aberrant changes in renin-angiotensin system components and exacerbated responses to angiotensin II induced vascular dysfunction are observed when PPARγ function is lost in smooth muscle cells. SUMMARY With these recent advances based partially on lessons from patients with PPARγ mutants, we conclude that vascular PPARγ is protective and plays an important role in the regulation of vascular tone.
Collapse
|
49
|
Zhou L, Panasiuk A, Downton M, Zhao D, Yang B, Jia Z, Yang T. Systemic PPARγ deletion causes severe disturbance in fluid homeostasis in mice. Physiol Genomics 2015; 47:541-7. [PMID: 26330489 DOI: 10.1152/physiolgenomics.00066.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/27/2015] [Indexed: 01/29/2023] Open
Abstract
The pharmacological action of peroxisome proliferator-activated receptor (PPAR)γ in promoting sodium and water retention is well documented as highlighted by the major side-effect of body weight gain and edema associated with thiazolidinedione use. However, a possible physiological role of PPARγ in regulation of fluid metabolism has not been reported by previous studies. Here we analyzed fluid metabolism in inducible whole-body PPARγ knockout mice. The null mice developed severe polydipsia and polyuria, reduced urine osmolality, and modest hyperphagia. The phenomenon persisted during 3 days of pair feeding and pair drinking, accompanied by progressive weight loss. After 24 h water deprivation, the null mice had a lower urine osmolality, a higher urine volume, a greater weight loss, and a greater rise in hematocrit than the floxed control. Urinary vasopressin (AVP) excretion was not different between the genotypes under basal condition or after WD. The response of urine osmolality to acute and chronic 1-desamino-8-D-arginine vasopressin treatment was attenuated in the null mice, but the total abundance or phosphorylation of aquaporin 2 (AQP2) in the kidney or AVP-induced cAMP production in inner medullary collecting duct suspensions was unaffected. Overall, PPARγ participates in physiological control of fluid homeostasis through an unknown mechanism involving cAMP/AQP2-independent enhancement of AVP response.
Collapse
Affiliation(s)
- Li Zhou
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China; Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and
| | - Alexandra Panasiuk
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and
| | - Maicy Downton
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and
| | - Daqiang Zhao
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhanjun Jia
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and
| | - Tianxin Yang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China; Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and
| |
Collapse
|
50
|
Lillis AP, Muratoglu SC, Au DT, Migliorini M, Lee MJ, Fried SK, Mikhailenko I, Strickland DK. LDL Receptor-Related Protein-1 (LRP1) Regulates Cholesterol Accumulation in Macrophages. PLoS One 2015; 10:e0128903. [PMID: 26061292 PMCID: PMC4463855 DOI: 10.1371/journal.pone.0128903] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 05/03/2015] [Indexed: 11/18/2022] Open
Abstract
Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the in vivo contribution of the LDL receptor-related protein 1 (LRP1) to this process is not known [corrected]. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR)-deficient background (macLRP1-/-). After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis.
Collapse
Affiliation(s)
- Anna P. Lillis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Selen Catania Muratoglu
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Dianaly T. Au
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Mary Migliorini
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Mi-Jeong Lee
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, MA 02118, United States of America
| | - Susan K. Fried
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, MA 02118, United States of America
| | - Irina Mikhailenko
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
- * E-mail:
| |
Collapse
|