1
|
Niu Y, Yu W, Kou X, Wu S, Liu M, Chen C, Ji J, Shao Y, Xue Z. Bioactive compounds regulate appetite through the melanocortin system: a review. Food Funct 2024. [PMID: 39506527 DOI: 10.1039/d4fo04024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Obesity, a significant health crisis, arises from an imbalance between energy intake and expenditure. Enhancing appetite regulation has garnered substantial attention from researchers as a novel and effective strategy for weight management. The melanocortin system, situated in the hypothalamus, is recognized as a critical node in the regulation of appetite. It integrates long-term and short-term hormone signals from the periphery as well as nutrients, forming a complex network of interacting feedback mechanisms with the gut-brain axis, significantly contributing to the regulation of energy homeostasis. Appetite regulation by bioactive compounds has been a focus of intensive research due to their favorable safety profiles and easy accessibility. These bioactive compounds, derived from a variety of plant and animal sources, modulate the melanocortin system and influence appetite and energy homeostasis through multiple pathways: central nervous system, peripheral hormones, and intestinal microbiota. Here, we review the anatomy, function, and receptors of the melanocortin system, outline the long-term and short-term regulatory hormones that act on the melanocortin system, and discuss the bioactive compounds and their mechanisms of action that exert a regulatory effect on appetite by targeting the melanocortin system. This review contributes to a better understanding of how bioactive compounds regulate appetite via the melanocortin system, thereby providing nutritional references for citizens' dietary preferences.
Collapse
Affiliation(s)
- Yujia Niu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Shuqi Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Chenlong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jiaxin Ji
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Ying Shao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
2
|
Felicianna, Lo EKK, Chen C, Ismaiah MJ, Zhang F, Leung HKM, El-Nezami H. Low-dose valine attenuates diet-induced metabolic dysfunction-associated steatotic liver disease (MASLD) in mice by enhancing leptin sensitivity and modulating the gut microbiome. Mol Metab 2024:102059. [PMID: 39489290 DOI: 10.1016/j.molmet.2024.102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Elevated circulating branched-chain amino acids (BCAAs) have been associated with obesity, insulin resistance, and MASLD, yet BCAA supplementation has been shown to provide protective outcomes towards the intervention of MASLD. Currently, there is a lack of study towards the contribution of the BCAA: valine on MASLD. This study investigates the effects of low-dose valine supplementation on MASLD in a high-fat/high-cholesterol diet (HFD) model. Low-dose valine was found to attenuate the progression of MASLD, significantly reducing body weight, liver weight, and eWAT weight, attenuating hyperglycemia and improving serum lipid profiles. It also decreased hyperleptinemia and enhanced hypothalamic leptin sensitivity, leading to reduced food intake. In the eWAT, metabolic flexibility was improved, as indicated by upregulated adipogenesis-related gene expressions and suppressed leptin expression. In the liver, valine improved hepatic leptin sensitivity, alleviated hepatic steatosis, and reduced triglycerides, cholesterol, TNFα, and IL-6 levels. Mechanistically, valine increased hepatic antioxidant capacity and modulated lipid metabolism and antioxidant pathways, downregulating de novo lipogenesis and cholesterol synthesis while increasing fatty acid oxidation, autophagy-related gene expressions. Moreover, hepatic AMPK pathway activity was enhanced, contributing to improved leptin sensitivity and signalling. Additionally, low-dose valine supplementation also modulated the gut microbiome, suggesting a multifaceted approach to managing MASLD.
Collapse
Affiliation(s)
- Felicianna
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Emily K K Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Marsena J Ismaiah
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Fangfei Zhang
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Hoi Kit Matthew Leung
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China; Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland.
| |
Collapse
|
3
|
Liu H, Liu C, Wang T, Fang D. Association of METS-IR index with psoriasis in US adults: a cross-sectional study. Sci Rep 2024; 14:26123. [PMID: 39478034 PMCID: PMC11525547 DOI: 10.1038/s41598-024-77784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024] Open
Abstract
Psoriasis is linked to insulin resistance (IR). Nevertheless, the applicability of the METS-IR index, a new IR evaluation tool, for evaluating changes in insulin sensitivity in psoriasis populations is currently unknown. This study aimed to investigate the relationship between the METS-IR index and psoriasis in a US adult population. This cross-sectional study utilized data from adults aged 20 to 80 years from the U.S. National Health and Nutrition Examination Survey (NHANES) spanning 2003-2006 and 2009-2014. The associations between the METS-IR index and psoriasis were examined using multivariate logistic regression and smoothed curve fitting. Subgroup analyses and interaction tests were conducted to verify the stability of the association within the population. This study included 5,966 participants, of whom 182 had psoriasis. In the fully adjusted model, the METS-IR index was positively associated with psoriasis, showing a 1.7% increase in psoriasis prevalence for each one-unit increase in the METS-IR index (Model 2: OR 1.017, 95% CI 1.006-1.028). Participants in the highest quartile group were 91.9% more likely to develop psoriasis compared to those in the lowest quartile group (OR = 1.919, 95% CI 1.180-3.118). Smooth curve fitting revealed a nonlinear association between the METS-IR index and psoriasis, with an inflection point of 41.675. This positive association was more pronounced in females, non-obese individuals, those with light alcohol consumption, comorbid coronary heart disease and hyperlipidemia, non-hypertensive and non-diabetic individuals. The results of the study suggest that higher METS-IR scores are associated with an increased likelihood of psoriasis among U.S. adults. The METS-IR index is specifically recommended as a clinical indicator for the management and treatment of psoriasis in women, non-obese individuals, light alcohol consumers, individuals with comorbid coronary artery disease andhyperlipidemia, non-hypertensive and non-diabetic individuals. However, Considering the many known and unknown covariates that may be associated with psoriasis and influence theresults of the study, we remain cautious about the results obtained and look forward to the addition of subsequent studies.
Collapse
Affiliation(s)
- Hongwei Liu
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Changxing Liu
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Tianyi Wang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Dianwei Fang
- Beijing Fengtai Hospital of Integrated Chinese and Western Medicine, No. 60, Sanli Jia, Dongshanpo, Fengtai District, Beijing, 100072, China.
| |
Collapse
|
4
|
Stefanakis K, Upadhyay J, Ramirez-Cisneros A, Patel N, Sahai A, Mantzoros CS. Leptin physiology and pathophysiology in energy homeostasis, immune function, neuroendocrine regulation and bone health. Metabolism 2024; 161:156056. [PMID: 39481533 DOI: 10.1016/j.metabol.2024.156056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Since its discovery and over the past thirty years, extensive research has significantly expanded our understanding of leptin and its diverse roles in human physiology, pathophysiology and therapeutics. A prototypical adipokine initially identified for its critical function in appetite regulation and energy homeostasis, leptin has been revealed to also exert profound effects on the hypothalamic-pituitary-gonadal, thyroid, adrenal and growth hormone axis, differentially between animals and humans, as well as in regulating immune function. Beyond these roles, leptin plays a pivotal role in significantly affecting bone health by promoting bone formation and regulating bone metabolism both directly and indirectly through its neuroendocrine actions. The diverse actions of leptin are particularly notable in leptin-deficient animal models and in conditions characterized by low circulating leptin levels, such as lipodystrophies and relative energy deficiency. Conversely, the effectiveness of leptin is attenuated in leptin-sufficient states, such as obesity and other high-adiposity conditions associated with hyperleptinemia and leptin tolerance. This review attempts to consolidate 30 years of leptin research with an emphasis on its physiology and pathophysiology in humans, including its promising therapeutic potential. We discuss preclinical and human studies describing the pathophysiology of energy deficiency across organ systems and the significant role of leptin in regulating neuroendocrine, immune, reproductive and bone health. We finally present past proof of concept clinical trials of leptin administration in leptin-deficient subjects that have demonstrated positive neuroendocrine, reproductive, and bone health outcomes, setting the stage for future phase IIb and III randomized clinical trials in these conditions.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jagriti Upadhyay
- Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Arantxa Ramirez-Cisneros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nihar Patel
- Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Akshat Sahai
- Vassar Brothers Medical Center, Poughkeepsie, NY, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA.
| |
Collapse
|
5
|
Bai Y, Zhao Y, Jin J, Ye Z, Fan H, Zhao D, Gao S. Jiang Tang San Hao Formula exerts its anti-diabetic effect by affecting the gut-microbiota-brain axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156100. [PMID: 39388919 DOI: 10.1016/j.phymed.2024.156100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Type 2 diabetes is a complex metabolic disorder characterized by insulin resistance and impaired insulin secretion, with growing evidence highlighting the critical role of the gut-microbiota-brain axis in modulating glucose and lipid metabolism. OBJECTIVE To evaluate the effects of Jiang Tang San Hao Formula (JTSHF) on blood glucose control in type 2 diabetic mouse model and to explore its mechanism through the gut- microbiota-brain axis. METHODS A type 2 diabetes model was established using six-week-old male C57BL6/J mice, induced by a high-fat diet combined with streptozotocin injection. The diabetic mice then randomly assigned to the model group, metformin (Glucophage) group and JTSHF group, receiving 11 weeks of treatment by gavage. Body weight and fasting blood glucose were monitored biweekly. The oral glucose tolerance test was performed during the fifth and 10th weeks of the intervention. The measurements of body composition were conducted pre- and post-treatment. After the intervention, serum insulin, lipid levels, glucagon like peptide-1 (GLP-1), peptide YY, ghrelin, and leptin were detected. The fresh feces of mice were collected before sacrifice for gut microbiota analysis and short chain fatty acids quantification. The colon tissues of mice in each group were collected to observe the morphological structure and to measure the expression levels of GPR41 and GPR43. The hypothalamus was collected to assess the expression of POMC, AgRP and NPY. RESULTS JTSHF significantly boosted sugar and lipid metabolism and contributed to weight reduction in diabetic mice (p < 0.05). At the genus level, JTSHF increased the relative abundance of Bacteroides, Prevotella, and Parabacteroides, and decreased Clostridium, Lactobacillus, and Oscillibacter in the gut microbiota. JTSHF enhanced the content of short chain fatty acids, improved the expression level of GPR43/41 in colonic tissue (p < 0.05), and increased POMC expression while decreasing AgRP and NPY expression in the hypothalamus (p < 0.05). Serum GLP-1 was increased, and ghrelin was decreased significantly after JTSHF intervention (p < 0.05). CONCLUSION By affecting the composition, relative abundance, and metabolites of gut microbiota, JTSHF regulates various gut brain peptides, affects the hypothalamic feeding center, improves glucose and lipid metabolism, and thus plays the anti-diabetic role. The study provides novel insights into how traditional Chinese medicine modulates the gut-brain connection to exert anti-diabetic effects, highlighting the innovative potential of JTSHF in metabolic disease management.
Collapse
Affiliation(s)
- Ying Bai
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Yi Zhao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jialin Jin
- China Science and Technology Development Center for Chinese Medicine, Beijing, China
| | - Zimengwei Ye
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Fan
- Guangdong Pharmaceutical University, Guangdong, China
| | - Dandan Zhao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Sihua Gao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
6
|
Swan P, Johnson B, le Roux CW, Miras AD. Harnessing the melanocortin system in the control of food intake and glucose homeostasis. Peptides 2024; 179:171255. [PMID: 38834138 DOI: 10.1016/j.peptides.2024.171255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
The central and peripheral melanocortin system, comprising of five receptors and their endogenous ligands, is responsible for a wide array of physiological functions such as skin pigmentation, sexual function and development, and inflammation. A growing body of both clinical and pre-clinical research is demonstrating the relevance of this system in metabolic health. Disruption of hypothalamic melanocortin signalling is the most common cause of monogenic obesity in humans. Setmelanotide, an FDA-approved analogue of alpha-melanocyte stimulating hormone (α-MSH) that functions by restoring central melanocortin signalling, has proven to be a potent pharmacological tool in the treatment of syndromic obesity. As the first effective therapy targeting the melanocortin system to treat metabolic disorders, its approval has sparked research to further harness the links between these melanocortin receptors and metabolic processes. Here, we outline the structure of the central and peripheral melanocortin system, discuss its critical role in the regulation of food intake, and review promising targets that may hold potential to treat metabolic disorders in humans.
Collapse
Affiliation(s)
- Patrick Swan
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom; Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland.
| | - Brett Johnson
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, United Kingdom
| | - Carel W le Roux
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom; Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | - Alexander D Miras
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom; Division of Diabetes, Endocrinology and Metabolism, Imperial College London, United Kingdom
| |
Collapse
|
7
|
Sáenz de Miera C, Bellefontaine N, Allen SJ, Myers MG, Elias CF. Glutamate neurotransmission from leptin receptor cells is required for typical puberty and reproductive function in female mice. eLife 2024; 13:RP93204. [PMID: 39007235 PMCID: PMC11249761 DOI: 10.7554/elife.93204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
The hypothalamic ventral premammillary nucleus (PMv) is a glutamatergic nucleus essential for the metabolic control of reproduction. However, conditional deletion of leptin receptor long form (LepRb) in vesicular glutamate transporter 2 (Vglut2) expressing neurons results in virtually no reproductive deficits. In this study, we determined the role of glutamatergic neurotransmission from leptin responsive PMv neurons on puberty and fertility. We first assessed if stimulation of PMv neurons induces luteinizing hormone (LH) release in fed adult females. We used the stimulatory form of designer receptor exclusively activated by designer drugs (DREADDs) in LeprCre (LepRb-Cre) mice. We collected blood sequentially before and for 1 hr after intravenous clozapine-N-oxide injection. LH level increased in animals correctly targeted to the PMv, and LH level was correlated to the number of Fos immunoreactive neurons in the PMv. Next, females with deletion of Slc17a6 (Vglut2) in LepRb neurons (LeprΔVGlut2) showed delayed age of puberty, disrupted estrous cycles, increased gonadotropin-releasing hormone (GnRH) concentration in the axon terminals, and disrupted LH secretion, suggesting impaired GnRH release. To assess if glutamate is required for PMv actions in pubertal development, we generated a Cre-induced reexpression of endogenous LepRb (LeprloxTB) with concomitant deletion of Slc17a6 (Vglut2flox) mice. Rescue of Lepr and deletion of Slc17a6 in the PMv was obtained by stereotaxic injection of an adeno-associated virus vector expressing Cre recombinase. Control LeprloxTB mice with PMv LepRb rescue showed vaginal opening, follicle maturation, and became pregnant, while LeprloxTB;Vglut2flox mice showed no pubertal development. Our results indicate that glutamatergic neurotransmission from leptin sensitive neurons regulates the reproductive axis, and that leptin action on pubertal development via PMv neurons requires Vglut2.
Collapse
Affiliation(s)
- Cristina Sáenz de Miera
- Department of Molecular and Integrative Physiology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Nicole Bellefontaine
- Department of Molecular and Integrative Physiology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Susan J Allen
- Department of Molecular and Integrative Physiology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Martin G Myers
- Department of Molecular and Integrative Physiology, University of Michigan–Ann ArborAnn ArborUnited States
- Elizabeth W. Caswell Diabetes Institute, University of Michigan–Ann ArborAnn ArborUnited States
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan–Ann ArborAnn ArborUnited States
| | - Carol F Elias
- Department of Molecular and Integrative Physiology, University of Michigan–Ann ArborAnn ArborUnited States
- Elizabeth W. Caswell Diabetes Institute, University of Michigan–Ann ArborAnn ArborUnited States
- Department of Obstetrics and Gynecology, University of Michigan–Ann ArborAnn ArborUnited States
| |
Collapse
|
8
|
Perez-Leighton C, Kerr B, Scherer PE, Baudrand R, Cortés V. The interplay between leptin, glucocorticoids, and GLP1 regulates food intake and feeding behaviour. Biol Rev Camb Philos Soc 2024; 99:653-674. [PMID: 38072002 DOI: 10.1111/brv.13039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 05/09/2024]
Abstract
Nutritional, endocrine, and neurological signals converge in multiple brain centres to control feeding behaviour and food intake as part of the allostatic regulation of energy balance. Among the several neuroendocrine systems involved, the leptin, glucocorticoid, and glucagon-like peptide 1 (GLP1) systems have been extensively researched. Leptin is at the top hierarchical level since its complete absence is sufficient to trigger severe hyperphagia. Glucocorticoids are key regulators of the energy balance adaptation to stress and their sustained excess leads to excessive adiposity and metabolic perturbations. GLP1 participates in metabolic adaptation to food intake, regulating insulin secretion and satiety by parallel central and peripheral signalling systems. Herein, we review the brain and peripheral targets of these three hormone systems that integrate to regulate food intake, feeding behaviour, and metabolic homeostasis. We examine the functional relationships between leptin, glucocorticoids, and GLP1 at the central and peripheral levels, including the cross-regulation of their circulating levels and their cooperative or antagonistic actions at different brain centres. The pathophysiological roles of these neuroendocrine systems in dysregulated intake are explored in the two extremes of body adiposity - obesity and lipodystrophy - and eating behaviour disorders.
Collapse
Affiliation(s)
- Claudio Perez-Leighton
- Departmento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina-CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Carmen Sylva 2444, Providencia, Santiago, Chile
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - René Baudrand
- Departmento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
- Centro Translacional de Endocrinología (CETREN), Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| | - Víctor Cortés
- Departmento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| |
Collapse
|
9
|
Henschke S, Nolte H, Magoley J, Kleele T, Brandt C, Hausen AC, Wunderlich CM, Bauder CA, Aschauer P, Manley S, Langer T, Wunderlich FT, Brüning JC. Food perception promotes phosphorylation of MFFS131 and mitochondrial fragmentation in liver. Science 2024; 384:438-446. [PMID: 38662831 DOI: 10.1126/science.adk1005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/21/2024] [Indexed: 05/03/2024]
Abstract
Liver mitochondria play a central role in metabolic adaptations to changing nutritional states, yet their dynamic regulation upon anticipated changes in nutrient availability has remained unaddressed. Here, we found that sensory food perception rapidly induced mitochondrial fragmentation in the liver through protein kinase B/AKT (AKT)-dependent phosphorylation of serine 131 of the mitochondrial fission factor (MFFS131). This response was mediated by activation of hypothalamic pro-opiomelanocortin (POMC)-expressing neurons. A nonphosphorylatable MFFS131G knock-in mutation abrogated AKT-induced mitochondrial fragmentation in vitro. In vivo, MFFS131G knock-in mice displayed altered liver mitochondrial dynamics and impaired insulin-stimulated suppression of hepatic glucose production. Thus, rapid activation of a hypothalamus-liver axis can adapt mitochondrial function to anticipated changes of nutritional state in control of hepatic glucose metabolism.
Collapse
Affiliation(s)
- Sinika Henschke
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hendrik Nolte
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Judith Magoley
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Tatjana Kleele
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Claus Brandt
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - A Christine Hausen
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Claudia M Wunderlich
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Corinna A Bauder
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Philipp Aschauer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Suliana Manley
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Thomas Langer
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- National Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
10
|
Manglani K, Anika NN, Patel D, Jhaveri S, Avanthika C, Sudan S, Alimohamed Z, Tiwari K. Correlation of Leptin in Patients With Type 2 Diabetes Mellitus. Cureus 2024; 16:e57667. [PMID: 38707092 PMCID: PMC11070180 DOI: 10.7759/cureus.57667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
The exponential increase in diabetes mellitus (DM) poses serious public health concerns. In this review, we focus on the role of leptin in type 2 DM. The peripheral actions of leptin consist of upregulating proinflammatory cytokines which play an important role in the pathogenesis of type 2 DM and insulin resistance. Moreover, leptin is known to inhibit insulin secretion and plays a significant role in insulin resistance in obesity and type 2 DM. A literature search was conducted on Medline, Cochrane, Embase, and Google Scholar for relevant articles published until December 2023. The following search strings and Medical Subject Headings (MeSH terms) were used: "Diabetes Mellitus," "Leptin," "NPY," and "Biomarker." This article aims to discuss the physiology of leptin in type 2 DM, its glucoregulatory actions, its relationship with appetite, the impact that various lifestyle modifications can have on leptin levels, and, finally, explore leptin as a potential target for various treatment strategies.
Collapse
Affiliation(s)
- Kajol Manglani
- Internal Medicine, MedStar Washington Hospital Center, Washington, USA
| | | | - Dhriti Patel
- Medicine and Surgery, B.J. Medical College and Civil Hospital, Ahmedabad, IND
| | - Sharan Jhaveri
- Medicine and Surgery, Smt. Nathiba Hargovandas Lakhmichand Municipal Medical College, Gujarat University, Ahmedabad, IND
| | - Chaithanya Avanthika
- Pediatrics, Icahn School of Medicine at Mount Sinai, Elmhurst Hospital Center, New York, USA
- Medicine and Surgery, Karnataka Institute of Medical Sciences, Hubballi, IND
| | - Sourav Sudan
- Internal Medicine, Government Medical College, Rajouri, Rajouri, IND
| | - Zainab Alimohamed
- Division of Research & Academic Affairs, Larkin Health System, South Miami, USA
| | - Kripa Tiwari
- Internal Medicine, Maimonides Medical Center, New York, USA
| |
Collapse
|
11
|
de Miera CS, Bellefontaine N, Allen SJ, Myers MG, Elias CF. Glutamate neurotransmission from leptin receptor cells is required for typical puberty and reproductive function in female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558865. [PMID: 37790549 PMCID: PMC10542178 DOI: 10.1101/2023.09.21.558865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The hypothalamic ventral premammillary nucleus (PMv) is a glutamatergic nucleus essential for the metabolic control of reproduction. However, conditional deletion of leptin receptor (LepRb) in vesicular glutamate transporter 2 (Vglut2) expressing neurons results in virtually no reproductive deficits. In this study, we determine the role of glutamatergic signaling from leptin responsive PMv neurons on puberty and fertility. We first assessed if stimulation of PMv neurons induces LH release in fed adult females. We used the stimulatory form of designer receptor exclusively activated by designer drugs (DREADDs) in LepRb-Cre mice. We collected blood sequentially before and for 1h after iv. clozapine-N-oxide injection. LH level increased in animals correctly targeted to the PMv, and LH level was correlated to the number of cFos immunoreactive neurons in the PMv. Next, females with deletion of Vglut2 in LepRb neurons (LepR∆VGlut2) showed delayed age of puberty, disrupted estrous cycles, increased GnRH concentration in the axon terminals and disrupted LH responses, suggesting impaired GnRH release. To assess if glutamate is required for PMv actions in pubertal development, we generated a Cre-induced reexpression of endogenous LepRb (LepRloxTB) with concomitant deletion of Vglut2 (Vglut2-floxed) mice. Rescue of Lepr and deletion of Vglut2 in the PMv was obtained by stereotaxic injection of an adeno-associated virus vector expressing Cre recombinase. Control LepRloxTB mice with PMv LepRb rescue showed vaginal opening, follicle maturation and became pregnant, while LepRloxTB;Vglut2flox mice showed no pubertal development. Our results indicate that glutamatergic signaling from leptin sensitive neurons regulates the reproductive axis, and that leptin action on pubertal development via PMv neurons requires Vglut2.
Collapse
Affiliation(s)
- Cristina Sáenz de Miera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Nicole Bellefontaine
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Susan J. Allen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Martin G. Myers
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
- Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, 48109-5622, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Carol F. Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
- Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, 48109-5622, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| |
Collapse
|
12
|
Borgmann D, Fenselau H. Vagal pathways for systemic regulation of glucose metabolism. Semin Cell Dev Biol 2024; 156:244-252. [PMID: 37500301 DOI: 10.1016/j.semcdb.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/20/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Maintaining blood glucose at an appropriate physiological level requires precise coordination of multiple organs and tissues. The vagus nerve bidirectionally connects the central nervous system with peripheral organs crucial to glucose mobilization, nutrient storage, and food absorption, thereby presenting a key pathway for the central control of blood glucose levels. However, the precise mechanisms by which vagal populations that target discrete tissues participate in glucoregulation are much less clear. Here we review recent advances unraveling the cellular identity, neuroanatomical organization, and functional contributions of both vagal efferents and vagal afferents in the control of systemic glucose metabolism. We focus on their involvement in relaying glucoregulatory cues from the brain to peripheral tissues, particularly the pancreatic islet, and by sensing and transmitting incoming signals from ingested food to the brain. These recent findings - largely driven by advances in viral approaches, RNA sequencing, and cell-type selective manipulations and tracings - have begun to clarify the precise vagal neuron populations involved in the central coordination of glucose levels, and raise interesting new possibilities for the treatment of glucose metabolism disorders such as diabetes.
Collapse
Affiliation(s)
- Diba Borgmann
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Physical Activity Research (CFAS), Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50937 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne 50931, Germany.
| |
Collapse
|
13
|
Skowronski AA, Leibel RL, LeDuc CA. Neurodevelopmental Programming of Adiposity: Contributions to Obesity Risk. Endocr Rev 2024; 45:253-280. [PMID: 37971140 PMCID: PMC10911958 DOI: 10.1210/endrev/bnad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
This review analyzes the published evidence regarding maternal factors that influence the developmental programming of long-term adiposity in humans and animals via the central nervous system (CNS). We describe the physiological outcomes of perinatal underfeeding and overfeeding and explore potential mechanisms that may mediate the impact of such exposures on the development of feeding circuits within the CNS-including the influences of metabolic hormones and epigenetic changes. The perinatal environment, reflective of maternal nutritional status, contributes to the programming of offspring adiposity. The in utero and early postnatal periods represent critically sensitive developmental windows during which the hormonal and metabolic milieu affects the maturation of the hypothalamus. Maternal hyperglycemia is associated with increased transfer of glucose to the fetus driving fetal hyperinsulinemia. Elevated fetal insulin causes increased adiposity and consequently higher fetal circulating leptin concentration. Mechanistic studies in animal models indicate important roles of leptin and insulin in central and peripheral programming of adiposity, and suggest that optimal concentrations of these hormones are critical during early life. Additionally, the environmental milieu during development may be conveyed to progeny through epigenetic marks and these can potentially be vertically transmitted to subsequent generations. Thus, nutritional and metabolic/endocrine signals during perinatal development can have lifelong (and possibly multigenerational) impacts on offspring body weight regulation.
Collapse
Affiliation(s)
- Alicja A Skowronski
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Charles A LeDuc
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
14
|
Hahn MK, Giacca A, Pereira S. In vivo techniques for assessment of insulin sensitivity and glucose metabolism. J Endocrinol 2024; 260:e230308. [PMID: 38198372 PMCID: PMC10895285 DOI: 10.1530/joe-23-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Metabolic tests are vital to determine in vivo insulin sensitivity and glucose metabolism in preclinical models, usually rodents. Such tests include glucose tolerance tests, insulin tolerance tests, and glucose clamps. Although these tests are not standardized, there are general guidelines for their completion and analysis that are constantly being refined. In this review, we describe metabolic tests in rodents as well as factors to consider when designing and performing these tests.
Collapse
Affiliation(s)
- Margaret K Hahn
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Banting & Best Diabetes Centre, Toronto, Ontario, Canada
| | - Adria Giacca
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Banting & Best Diabetes Centre, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Li AH, Kuo YY, Yang SB, Chen PC. Central Channelopathies in Obesity. CHINESE J PHYSIOL 2024; 67:15-26. [PMID: 38780269 DOI: 10.4103/ejpi.ejpi-d-23-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 05/25/2024] Open
Abstract
As obesity has raised heightening awareness, researchers have attempted to identify potential targets that can be treated for therapeutic intervention. Focusing on the central nervous system (CNS), the key organ in maintaining energy balance, a plethora of ion channels that are expressed in the CNS have been inspected and determined through manipulation in different hypothalamic neural subpopulations for their roles in fine-tuning neuronal activity on energy state alterations, possibly acting as metabolic sensors. However, a remaining gap persists between human clinical investigations and mouse studies. Despite having delineated the pathways and mechanisms of how the mouse study-identified ion channels modulate energy homeostasis, only a few targets overlap with the obesity-related risk genes extracted from human genome-wide association studies. Here, we present the most recently discovered CNS-specific metabolism-correlated ion channels using reverse and forward genetics approaches in mice and humans, respectively, in the hope of illuminating the prospects for future therapeutic development.
Collapse
Affiliation(s)
- Athena Hsu Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ying Kuo
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shi-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei-Chun Chen
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
16
|
Guo DF, Williams PA, Laule C, Seaby C, Zhang Q, Sheffield VC, Rahmouni K. POMC Neuron BBSome Regulation of Body Weight is Independent of its Ciliary Function. FUNCTION 2023; 5:zqad070. [PMID: 38223458 PMCID: PMC10787280 DOI: 10.1093/function/zqad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024] Open
Abstract
The BBSome, a complex of several Bardet-Biedl syndrome (BBS) proteins including BBS1, has emerged as a critical regulator of energy homeostasis. Although the BBSome is best known for its involvement in cilia trafficking, through a process that involve BBS3, it also regulates the localization of cell membrane receptors underlying metabolic regulation. Here, we show that inducible Bbs1 gene deletion selectively in proopiomelanocortin (POMC) neurons cause a gradual increase in body weight, which was associated with higher fat mass. In contrast, inducible deletion of Bbs3 gene in POMC neurons failed to affect body weight and adiposity. Interestingly, loss of BBS1 in POMC neurons led to glucose intolerance and insulin insensitivity, whereas BBS3 deficiency in these neurons is associated with slight impairment in glucose handling, but normal insulin sensitivity. BBS1 deficiency altered the plasma membrane localization of serotonin 5-HT2C receptor (5-HT2CR) and ciliary trafficking of neuropeptide Y2 receptor (NPY2R).In contrast, BBS3 deficiency, which disrupted the ciliary localization of the BBSome, did not interfere with plasma membrane expression of 5-HT2CR, but reduced the trafficking of NPY2R to cilia. We also show that deficiency in BBS1, but not BBS3, alters mitochondria dynamics and decreased total and phosphorylated levels of dynamin-like protein 1 (DRP1) protein. Importantly, rescuing DRP1 activity restored mitochondria dynamics and localization of 5-HT2CR and NPY2R in BBS1-deficient cells. The contrasting effects on energy and glucose homeostasis evoked by POMC neuron deletion of BBS1 versus BBS3 indicate that BBSome regulation of metabolism is not related to its ciliary function in these neurons.
Collapse
Affiliation(s)
- Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Health Care System, Iowa City, IA 52242, USA
| | - Paul A Williams
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Connor Laule
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Charles Seaby
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Qihong Zhang
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Val C Sheffield
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Health Care System, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
17
|
Liu Z, Xiao T, Liu H. Leptin signaling and its central role in energy homeostasis. Front Neurosci 2023; 17:1238528. [PMID: 38027481 PMCID: PMC10644276 DOI: 10.3389/fnins.2023.1238528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Leptin plays a critical role in regulating appetite, energy expenditure and body weight, making it a key factor in maintaining a healthy balance. Despite numerous efforts to develop therapeutic interventions targeting leptin signaling, their effectiveness has been limited, underscoring the importance of gaining a better understanding of the mechanisms through which leptin exerts its functions. While the hypothalamus is widely recognized as the primary site responsible for the appetite-suppressing and weight-reducing effects of leptin, other brain regions have also been increasingly investigated for their involvement in mediating leptin's action. In this review, we summarize leptin signaling pathways and the neural networks that mediate the effects of leptin, with a specific emphasis on energy homeostasis.
Collapse
Affiliation(s)
- Zhaoxun Liu
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Xiao
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hailan Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
18
|
Rupp AC, Tomlinson AJ, Affinati AH, Yacawych WT, Duensing AM, True C, Lindsley SR, Kirigiti MA, MacKenzie A, Polex-Wolf J, Li C, Knudsen LB, Seeley RJ, Olson DP, Kievit P, Myers MG. Suppression of food intake by Glp1r/Lepr-coexpressing neurons prevents obesity in mouse models. J Clin Invest 2023; 133:e157515. [PMID: 37581939 PMCID: PMC10541203 DOI: 10.1172/jci157515] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
The adipose-derived hormone leptin acts via its receptor (LepRb) in the brain to control energy balance. A potentially unidentified population of GABAergic hypothalamic LepRb neurons plays key roles in the restraint of food intake and body weight by leptin. To identify markers for candidate populations of LepRb neurons in an unbiased manner, we performed single-nucleus RNA-Seq of enriched mouse hypothalamic LepRb cells, identifying several previously unrecognized populations of hypothalamic LepRb neurons. Many of these populations displayed strong conservation across species, including GABAergic Glp1r-expressing LepRb (LepRbGlp1r) neurons, which expressed more Lepr than other LepRb cell populations. Ablating Lepr from LepRbGlp1r cells provoked hyperphagic obesity without impairing energy expenditure. Similarly, improvements in energy balance caused by Lepr reactivation in GABA neurons of otherwise Lepr-null mice required Lepr expression in GABAergic Glp1r-expressing neurons. Furthermore, restoration of Glp1r expression in LepRbGlp1r neurons in otherwise Glp1r-null mice enabled food intake suppression by the GLP1R agonist, liraglutide. Thus, the conserved GABAergic LepRbGlp1r neuron population plays crucial roles in the suppression of food intake by leptin and GLP1R agonists.
Collapse
Affiliation(s)
| | | | | | - Warren T. Yacawych
- Department of Internal Medicine and
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Allison M. Duensing
- Department of Internal Medicine and
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cadence True
- Oregon National Primate Research Center, Beaverton, Oregon, USA
| | | | | | | | | | - Chien Li
- Novo Nordisk, Copenhagen, Denmark
| | | | | | - David P. Olson
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul Kievit
- Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Martin G. Myers
- Department of Internal Medicine and
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Roth CL, Zenno A. Treatment of hypothalamic obesity in people with hypothalamic injury: new drugs are on the horizon. Front Endocrinol (Lausanne) 2023; 14:1256514. [PMID: 37780616 PMCID: PMC10533996 DOI: 10.3389/fendo.2023.1256514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Hypothalamic obesity (HO) is a complex and rare disorder affecting multiple regulatory pathways of energy intake and expenditure in the brain as well as the regulation of the autonomic nervous system and peripheral hormonal signaling. It can be related to monogenic obesity syndromes which often affect the central leptin-melanocortin pathways or due to injury of the hypothalamus from pituitary and hypothalamic tumors, such as craniopharyngioma, surgery, trauma, or radiation to the hypothalamus. Traditional treatments of obesity, such as lifestyle intervention and specific diets, are still a therapeutic cornerstone, but often fail to result in meaningful and sustained reduction of body mass index. This review will give an update on pharmacotherapies of HO related to hypothalamic injury. Recent obesity drug developments are promising for successful obesity intervention outcomes.
Collapse
Affiliation(s)
- Christian L. Roth
- Seattle Children’s Research Institute, Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, United States
- Division of Endocrinology, Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Anna Zenno
- Division of Endocrinology, Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
20
|
Oh Y, Yoo ES, Ju SH, Kim E, Lee S, Kim S, Wickman K, Sohn JW. GIRK2 potassium channels expressed by the AgRP neurons decrease adiposity and body weight in mice. PLoS Biol 2023; 21:e3002252. [PMID: 37594983 PMCID: PMC10468093 DOI: 10.1371/journal.pbio.3002252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 08/30/2023] [Accepted: 07/12/2023] [Indexed: 08/20/2023] Open
Abstract
It is well known that the neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons increase appetite and decrease thermogenesis. Previous studies demonstrated that optogenetic and/or chemogenetic manipulations of NPY/AgRP neuronal activity alter food intake and/or energy expenditure (EE). However, little is known about intrinsic molecules regulating NPY/AgRP neuronal excitability to affect long-term metabolic function. Here, we found that the G protein-gated inwardly rectifying K+ (GIRK) channels are key to stabilize NPY/AgRP neurons and that NPY/AgRP neuron-selective deletion of the GIRK2 subunit results in a persistently increased excitability of the NPY/AgRP neurons. Interestingly, increased body weight and adiposity observed in the NPY/AgRP neuron-selective GIRK2 knockout mice were due to decreased sympathetic activity and EE, while food intake remained unchanged. The conditional knockout mice also showed compromised adaptation to coldness. In summary, our study identified GIRK2 as a key determinant of NPY/AgRP neuronal excitability and driver of EE in physiological and stress conditions.
Collapse
Affiliation(s)
- Youjin Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Eun-Seon Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sang Hyeon Ju
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, South Korea
| | - Eunha Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seulgi Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
21
|
Haspula D, Cui Z. Neurochemical Basis of Inter-Organ Crosstalk in Health and Obesity: Focus on the Hypothalamus and the Brainstem. Cells 2023; 12:1801. [PMID: 37443835 PMCID: PMC10341274 DOI: 10.3390/cells12131801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Precise neural regulation is required for maintenance of energy homeostasis. Essential to this are the hypothalamic and brainstem nuclei which are located adjacent and supra-adjacent to the circumventricular organs. They comprise multiple distinct neuronal populations which receive inputs not only from other brain regions, but also from circulating signals such as hormones, nutrients, metabolites and postprandial signals. Hence, they are ideally placed to exert a multi-tier control over metabolism. The neuronal sub-populations present in these key metabolically relevant nuclei regulate various facets of energy balance which includes appetite/satiety control, substrate utilization by peripheral organs and glucose homeostasis. In situations of heightened energy demand or excess, they maintain energy homeostasis by restoring the balance between energy intake and expenditure. While research on the metabolic role of the central nervous system has progressed rapidly, the neural circuitry and molecular mechanisms involved in regulating distinct metabolic functions have only gained traction in the last few decades. The focus of this review is to provide an updated summary of the mechanisms by which the various neuronal subpopulations, mainly located in the hypothalamus and the brainstem, regulate key metabolic functions.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Zhenzhong Cui
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| |
Collapse
|
22
|
Li H, Xu Y, Jiang Y, Jiang Z, Otiz-Guzman J, Morrill JC, Cai J, Mao Z, Xu Y, Arenkiel BR, Huang C, Tong Q. The melanocortin action is biased toward protection from weight loss in mice. Nat Commun 2023; 14:2200. [PMID: 37069175 PMCID: PMC10110624 DOI: 10.1038/s41467-023-37912-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/05/2023] [Indexed: 04/19/2023] Open
Abstract
The melanocortin action is well perceived for its ability to regulate body weight bidirectionally with its gain of function reducing body weight and loss of function promoting obesity. However, this notion cannot explain the difficulty in identifying effective therapeutics toward treating general obesity via activation of the melanocortin action. Here, we provide evidence that altered melanocortin action is only able to cause one-directional obesity development. We demonstrate that chronic inhibition of arcuate neurons expressing proopiomelanocortin (POMC) or paraventricular hypothalamic neurons expressing melanocortin receptor 4 (MC4R) causes massive obesity. However, chronic activation of these neuronal populations failed to reduce body weight. Furthermore, gain of function of the melanocortin action through overexpression of MC4R, POMC or its derived peptides had little effect on obesity prevention or reversal. These results reveal a bias of the melanocortin action towards protection of weight loss and provide a neural basis behind the well-known, but mechanistically ill-defined, predisposition to obesity development.
Collapse
Affiliation(s)
- Hongli Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yuanzhong Xu
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yanyan Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhiying Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Joshua Otiz-Guzman
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jessie C Morrill
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, 77030, Houston, TX, USA
| | - Jing Cai
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, 77030, Houston, TX, USA
| | - Zhengmei Mao
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Qingchun Tong
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, 77030, Houston, TX, USA.
- Department of Neurobiology and Anatomy of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Han Y, He Y, Harris L, Xu Y, Wu Q. Identification of a GABAergic neural circuit governing leptin signaling deficiency-induced obesity. eLife 2023; 12:e82649. [PMID: 37043384 PMCID: PMC10097419 DOI: 10.7554/elife.82649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
The hormone leptin is known to robustly suppress food intake by acting upon the leptin receptor (LepR) signaling system residing within the agouti-related protein (AgRP) neurons of the hypothalamus. However, clinical studies indicate that leptin is undesirable as a therapeutic regiment for obesity, which is at least partly attributed to the poorly understood complex secondary structure and key signaling mechanism of the leptin-responsive neural circuit. Here, we show that the LepR-expressing portal neurons send GABAergic projections to a cohort of α3-GABAA receptor expressing neurons within the dorsomedial hypothalamic nucleus (DMH) for the control of leptin-mediated obesity phenotype. We identified the DMH as a key brain region that contributes to the regulation of leptin-mediated feeding. Acute activation of the GABAergic AgRP-DMH circuit promoted food intake and glucose intolerance, while activation of post-synaptic MC4R neurons in the DMH elicited exactly opposite phenotypes. Rapid deletion of LepR from AgRP neurons caused an obesity phenotype which can be rescued by blockage of GABAA receptor in the DMH. Consistent with behavioral results, these DMH neurons displayed suppressed neural activities in response to hunger or hyperglycemia. Furthermore, we identified that α3-GABAA receptor signaling within the DMH exerts potent bi-directional regulation of the central effects of leptin on feeding and body weight. Together, our results demonstrate a novel GABAergic neural circuit governing leptin-mediated feeding and energy balance via a unique α3-GABAA signaling within the secondary leptin-responsive neural circuit, constituting a new avenue for therapeutic interventions in the treatment of obesity and associated comorbidities.
Collapse
Affiliation(s)
- Yong Han
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Yang He
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Lauren Harris
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Yong Xu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Qi Wu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
24
|
Yu Q, Gamayun I, Wartenberg P, Zhang Q, Qiao S, Kusumakshi S, Candlish S, Götz V, Wen S, Das D, Wyatt A, Wahl V, Ectors F, Kattler K, Yildiz D, Prevot V, Schwaninger M, Ternier G, Giacobini P, Ciofi P, Müller TD, Boehm U. Bitter taste cells in the ventricular walls of the murine brain regulate glucose homeostasis. Nat Commun 2023; 14:1588. [PMID: 36949050 PMCID: PMC10033832 DOI: 10.1038/s41467-023-37099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/02/2023] [Indexed: 03/24/2023] Open
Abstract
The median eminence (ME) is a circumventricular organ at the base of the brain that controls body homeostasis. Tanycytes are its specialized glial cells that constitute the ventricular walls and regulate different physiological states, however individual signaling pathways in these cells are incompletely understood. Here, we identify a functional tanycyte subpopulation that expresses key taste transduction genes including bitter taste receptors, the G protein gustducin and the gustatory ion channel TRPM5 (M5). M5 tanycytes have access to blood-borne cues via processes extended towards diaphragmed endothelial fenestrations in the ME and mediate bidirectional communication between the cerebrospinal fluid and blood. This subpopulation responds to metabolic signals including leptin and other hormonal cues and is transcriptionally reprogrammed upon fasting. Acute M5 tanycyte activation induces insulin secretion and acute diphtheria toxin-mediated M5 tanycyte depletion results in impaired glucose tolerance in diet-induced obese mice. We provide a cellular and molecular framework that defines how bitter taste cells in the ME integrate chemosensation with metabolism.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Igor Gamayun
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Philipp Wartenberg
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Qian Zhang
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Soumya Kusumakshi
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Sarah Candlish
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Viktoria Götz
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Shuping Wen
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Debajyoti Das
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Amanda Wyatt
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Vanessa Wahl
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Fabien Ectors
- FARAH Mammalian Transgenics Platform, Liège University, Liège, Belgium
| | - Kathrin Kattler
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Daniela Yildiz
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Gaetan Ternier
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Philippe Ciofi
- Neurocentre Magendie - INSERM Unit 1215, University of Bordeaux, Bordeaux, France
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ulrich Boehm
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany.
| |
Collapse
|
25
|
Badran S, Doi SA, Hamdi M, Hammouda A, Alharami S, Clark J, H Musa OA, Abou-Samra AB, M Habib A. Metabolic aspects of surgical subcutaneous fat removal: An umbrella review and implications for future research. BIOMOLECULES & BIOMEDICINE 2023; 23:235-247. [PMID: 36200436 PMCID: PMC10113936 DOI: 10.17305/bjbms.2022.8175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
Although obesity is a preventable disease, maintaining a normal body weight can be very challenging and difficult, which has led to a significant increase in the demand for surgical subcutaneous fat removal (SSFR) to improve physical appearance. The need for SSFR is further exacerbated because of the global rise in the number of bariatric surgeries, which is currently the single most durable intervention for mitigating obesity. Fat tissue is now recognized as a vital endocrine organ that produces several bioactive proteins. Thus, SSFR-mediated weight (fat) loss can potentially have significant metabolic effects; however, currently, there is no consensus on this issue. This review focuses on the metabolic sequelae after SSFR interventions for dealing with cosmetic body appearance. Data was extracted from existing systematic reviews and the diversity of possible metabolic changes after SSFR are reported along with gaps in the knowledge and future directions for research and practice. We conclude that there is a potential for metabolic sequelae after SSFR interventions and their clinical implications for the safety of the procedures as well as for our understanding of subcutaneous adipose tissue biology and insulin resistance are discussed.
Collapse
Affiliation(s)
- Saif Badran
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Suhail A Doi
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Moustapha Hamdi
- Department of Plastic and Reconstructive Surgery, Brussels University Hospital, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Atalla Hammouda
- Department of Plastic Surgery, Hamad General Hospital, Doha, Qatar
| | - Sara Alharami
- Department of Plastic Surgery, Hamad General Hospital, Doha, Qatar
| | - Justin Clark
- Institute for Evidence-Based Healthcare, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Omran A H Musa
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation, Doha, Qatar
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
26
|
Lavoie O, Michael NJ, Caron A. A critical update on the leptin-melanocortin system. J Neurochem 2023; 165:467-486. [PMID: 36648204 DOI: 10.1111/jnc.15765] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
The discovery of leptin in 1994 was an "eureka moment" in the field of neurometabolism that provided new opportunities to better understand the central control of energy balance and glucose metabolism. Rapidly, a prevalent model in the field emerged that pro-opiomelanocortin (POMC) neurons were key in promoting leptin's anorexigenic effects and that the arcuate nucleus of the hypothalamus (ARC) was a key region for the regulation of energy homeostasis. While this model inspired many important discoveries, a growing body of literature indicates that this model is now outdated. In this review, we re-evaluate the hypothalamic leptin-melanocortin model in light of recent advances that directly tackle previous assumptions, with a particular focus on the ARC. We discuss how segregated and heterogeneous these neurons are, and examine how the development of modern approaches allowing spatiotemporal, intersectional, and chemogenetic manipulations of melanocortin neurons has allowed a better definition of the complexity of the leptin-melanocortin system. We review the importance of leptin in regulating glucose homeostasis, but not food intake, through direct actions on ARC POMC neurons. We further highlight how non-POMC, GABAergic neurons mediate leptin's direct effects on energy balance and influence POMC neurons.
Collapse
Affiliation(s)
- Olivier Lavoie
- Faculty of Pharmacy, Université Laval, Quebec City, Quebec, Canada.,Quebec Heart and Lung Institute, Quebec City, Quebec, Canada
| | - Natalie Jane Michael
- Faculty of Pharmacy, Université Laval, Quebec City, Quebec, Canada.,Quebec Heart and Lung Institute, Quebec City, Quebec, Canada
| | - Alexandre Caron
- Faculty of Pharmacy, Université Laval, Quebec City, Quebec, Canada.,Quebec Heart and Lung Institute, Quebec City, Quebec, Canada.,Montreal Diabetes Research Center, Montreal, Quebec, Canada
| |
Collapse
|
27
|
Saito K, Dickey JE, Rodeghiero SR, Toth BA, Kelly MJ, Deng Y, Singh U, Deng G, Jiang J, Cui H. Hypomorphism of a Novel Long ERα Isoform Causes Severe Reproductive Dysfunctions in Female Mice. Endocrinology 2022; 163:6742225. [PMID: 36181426 DOI: 10.1210/endocr/bqac160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 11/19/2022]
Abstract
Estrogen receptor alpha (ERα)-mediated estrogen signaling plays a pivotal role in both reproductive and nonreproductive functions. Transcriptional regulation of the ERα gene is highly complex, with multiple transcript variants being differentially produced across the tissues. However, tissue-specific variation and physiological specificity of the ERα variants are not yet fully understood. In an attempt to generate a Cre-dependently restorable ERα-null mouse for functional genetic studies, we unexpectedly produced ERα hypomorphic mice with biased downregulation of a previously unappreciated long ERα isoform that is enriched in the female reproductive organs (uterus and ovaries) and the pituitary but minimally expressed in the brain. Female homozygous mutant mice were capable of pregnancy but displayed irregular estrus cycle and rarely kept newborn pups alive. No significant morphological and pathological changes in reproductive system or disruption of body weight homeostasis were seen in female homozygous mutant mice. Collectively, our results define a tissue-specific enriched long ERα isoform and its preferential role in female reproductive function rather than body weight homeostasis.
Collapse
Affiliation(s)
- Kenji Saito
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52241, USA
| | - Jacob E Dickey
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52241, USA
| | - Samuel R Rodeghiero
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52241, USA
| | - Brandon A Toth
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52241, USA
| | - Matthew J Kelly
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52241, USA
| | - Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52241, USA
| | - Uday Singh
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52241, USA
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52241, USA
| | - Jingwei Jiang
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52241, USA
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52241, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52241, USA
- F.O.E. Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52241, USA
| |
Collapse
|
28
|
Claflin KE, Sullivan AI, Naber MC, Flippo KH, Morgan DA, Neff TJ, Jensen-Cody SO, Zhu Z, Zingman LV, Rahmouni K, Potthoff MJ. Pharmacological FGF21 signals to glutamatergic neurons to enhance leptin action and lower body weight during obesity. Mol Metab 2022; 64:101564. [PMID: 35944896 PMCID: PMC9403559 DOI: 10.1016/j.molmet.2022.101564] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Fibroblast growth factor 21 (FGF21) is a peripherally-derived endocrine hormone that acts on the central nervous system (CNS) to regulate whole body energy homeostasis. Pharmacological administration of FGF21 promotes weight loss in obese animal models and human subjects with obesity. However, the central targets mediating these effects are incompletely defined. METHODS To explore the mechanism for FGF21's effects to lower body weight, we pharmacologically administer FGF21 to genetic animal models lacking the obligate FGF21 co-receptor, β-klotho (KLB), in either glutamatergic (Vglut2-Cre) or GABAergic (Vgat-Cre) neurons. In addition, we abolish FGF21 signaling to leptin receptor (LepR-Cre) positive cells. Finally, we examine the synergistic effects of FGF21 and leptin to lower body weight and explore the importance of physiological leptin levels in FGF21-mediated regulation of body weight. RESULTS Here we show that FGF21 signaling to glutamatergic neurons is required for FGF21 to modulate energy expenditure and promote weight loss. In addition, we demonstrate that FGF21 signals to leptin receptor-expressing cells to regulate body weight, and that central leptin signaling is required for FGF21 to fully stimulate body weight loss during obesity. Interestingly, co-administration of FGF21 and leptin synergistically leads to robust weight loss. CONCLUSIONS These data reveal an important endocrine crosstalk between liver- and adipose-derived signals which integrate in the CNS to modulate energy homeostasis and body weight regulation.
Collapse
Affiliation(s)
- Kristin E Claflin
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Andrew I Sullivan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Meghan C Naber
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kyle H Flippo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Tate J Neff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Sharon O Jensen-Cody
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zhiyong Zhu
- Department of Internal Medicine, Iowa City, IA 52242, USA
| | | | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Veterans Affairs Health Care System, Iowa City, IA 52242, USA; Department of Internal Medicine, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Veterans Affairs Health Care System, Iowa City, IA 52242, USA.
| |
Collapse
|
29
|
Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:298. [PMID: 36031641 PMCID: PMC9420733 DOI: 10.1038/s41392-022-01149-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Obesity is a complex, chronic disease and global public health challenge. Characterized by excessive fat accumulation in the body, obesity sharply increases the risk of several diseases, such as type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and is linked to lower life expectancy. Although lifestyle intervention (diet and exercise) has remarkable effects on weight management, achieving long-term success at weight loss is extremely challenging, and the prevalence of obesity continues to rise worldwide. Over the past decades, the pathophysiology of obesity has been extensively investigated, and an increasing number of signal transduction pathways have been implicated in obesity, making it possible to fight obesity in a more effective and precise way. In this review, we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies, focusing on signaling pathways and their roles in the regulation of food intake, glucose homeostasis, adipogenesis, thermogenesis, and chronic inflammation. We also discuss the current anti-obesity drugs, as well as weight loss compounds in clinical trials, that target these signals. The evolving knowledge of signaling transduction may shed light on the future direction of obesity research, as we move into a new era of precision medicine.
Collapse
|
30
|
Xu S, Ye B, Li J, Dou Y, Yu Y, Feng Y, Wang L, Wan DCC, Rong X. Astragalus mongholicus powder, a traditional Chinese medicine formula ameliorate type 2 diabetes by regulating adipoinsular axis in diabetic mice. Front Pharmacol 2022; 13:973927. [PMID: 36046814 PMCID: PMC9420938 DOI: 10.3389/fphar.2022.973927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The global morbidity of obesity and type 2 diabetes mellitus (T2DM) has dramatically increased. Insulin resistance is the most important pathogenesis and therapeutic target of T2DM. The traditional Chinese medicine formula Astragalus mongholicus powder (APF), consists of Astragalus mongholicus Bunge [Fabaceae], Pueraria montana (Lour.) Merr. [Fabaceae], and Morus alba L. [Moraceae] has a long history to be used to treat diabetes in ancient China. This work aims to investigate the effects of APF on diabetic mice and its underlying mechanism. Diabetic mice were induced by High-fat-diet (HFD) and streptozotocin (STZ). The body weight of mice and their plasma levels of glucose, insulin, leptin and lipids were examined. Reverse transcription-polymerase chain reaction, histology, and Western blot analysis were performed to validate the effects of APF on diabetic mice and investigate the underlying mechanism. APF reduced hyperglycemia, hyperinsulinemia, and hyerleptinemia and attenuate the progression of obesity and non-alcoholic fatty liver disease (NAFLD). However, these effects disappeared in leptin deficient ob/ob diabetic mice and STZ-induced insulin deficient type 1 diabetic mice. Destruction of either these hormones would abolish the therapeutic effects of APF. In addition, APF inhibited the protein expression of PTP1B suppressing insulin–leptin sensitivity, the gluconeogenic gene PEPCK, and the adipogenic gene FAS. Therefore, insulin–leptin sensitivity was normalized, and the gluconeogenic and adipogenic genes were suppressed. In conclusion, APF attenuated obesity, NAFLD, and T2DM by regulating the balance of adipoinsular axis in STZ + HFD induced T2DM mice.
Collapse
Affiliation(s)
- Siyuan Xu
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bixian Ye
- Department of Nursing, Medical College of Jiaying University, Meizhou, China
| | - Jinlei Li
- School of Chinese Meteria Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yonghui Dou
- School of Chinese Meteria Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuying Yu
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yifan Feng
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lexun Wang
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - David Chi-Cheong Wan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xianglu Rong
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Xianglu Rong,
| |
Collapse
|
31
|
Huang X, He Q, Zhu H, Fang Z, Che L, Lin Y, Xu S, Zhuo Y, Hua L, Wang J, Zou Y, Huang C, Li L, Xu H, Wu D, Feng B. Hepatic Leptin Signaling Improves Hyperglycemia by Stimulating MAPK Phosphatase-3 Protein Degradation via STAT3. Cell Mol Gastroenterol Hepatol 2022; 14:983-1001. [PMID: 35863745 PMCID: PMC9490031 DOI: 10.1016/j.jcmgh.2022.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Obesity-related hyperglycemia, with hepatic insulin resistance, has become an epidemic disease. Central neural leptin signaling was reported to improve hyperglycemia. The aim of this study was to investigate the effect of hepatic leptin signaling on controlling hyperglycemia. METHODS First, the effect of leptin signaling on gluconeogenesis was investigated in primary mouse hepatocytes and hepatoma cells. Second, glucose tolerance, insulin tolerance, blood glucose levels, and hepatic gluconeogenic gene expression were analyzed in obese mice overexpressing hepatic OBRb. Third, expression of mitogen-activated protein kinase phosphatase (MKP)-3, phosphorylation level of signal transducer and activator of transcription (STAT) 3, and extracellular regulated protein kinase (ERK) were analyzed in hepatocytes and mouse liver. Fourth, the role of MKP-3 in hepatic leptin signaling regulating gluconeogenesis was analyzed. Lastly, the role of ERK and STAT3 in the regulation of MKP-3 protein by leptin signaling was analyzed. RESULTS Activation of hepatic leptin signaling suppressed gluconeogenesis in both hepatocytes and obese mouse liver, and improved hyperglycemia, insulin tolerance, and glucose tolerance in obese mice. The protein level of MKP-3, which can promote gluconeogenesis, was decreased by leptin signaling in both hepatocytes and mouse liver. Mkp-3 deficiency abolished the effect of hepatic leptin signaling on suppressing gluconeogenesis in hepatocytes. STAT3 decreased the MKP-3 protein level, while inactivation of STAT3 abolished the effect of leptin signaling on reducing the MKP-3 protein level in hepatocytes. Moreover, STAT3 could combine with MKP-3 and phospho-ERK1/2, which induced the degradation of MKP-3, and leptin signaling enhanced the combination. CONCLUSIONS Hepatic leptin signaling could suppress gluconeogenesis at least partially by decreasing the MKP-3 protein level via STAT3-enhanced MKP-3 and ERK1/2 combination.
Collapse
Affiliation(s)
- Xiaohua Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qin He
- Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island,School of international education, Xihua University, Chengdu, Sichuan, China
| | - Heng Zhu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory for Food Science and Human Health, College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haiyan Xu
- Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island,Department of Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China,Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island,Key Laboratory for Food Science and Human Health, College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China,Correspondence Address correspondence to: Bin Feng, PhD, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China. fax: (86) 028-82652669.
| |
Collapse
|
32
|
Kim J, Lee N, Suh SB, Jang S, Kim S, Kim DG, Park JK, Lee KW, Choi SY, Lee CH. Metformin ameliorates olanzapine-induced disturbances in POMC neuron number, axonal projection, and hypothalamic leptin resistance. BMB Rep 2022. [PMID: 35651327 PMCID: PMC9252891 DOI: 10.5483/bmbrep.2022.55.6.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Antipsychotics have been widely accepted as a treatment of choice for psychiatric illnesses such as schizophrenia. While atypical antipsychotics such as aripiprazole are not associated with obesity and diabetes, olanzapine is still widely used based on the anticipation that it is more effective in treating severe schizophrenia than aripiprazole, despite its metabolic side effects. To address metabolic problems, metformin is widely prescribed. Hypothalamic proopiomelanocortin (POMC) neurons have been identified as the main regulator of metabolism and energy expenditure. Although the relation between POMC neurons and metabolic disorders is well established, little is known about the effects of olanzapine and metformin on hypothalamic POMC neurons. In the present study, we investigated the effect of olanzapine and metformin on the hypothalamic POMC neurons in female mice. Olanzapine administration for 5 days significantly decreased Pomc mRNA expression, POMC neuron numbers, POMC projections, and induced leptin resistance before the onset of obesity. It was also observed that coadministration of metformin with olanzapine not only increased POMC neuron numbers and projections but also improved the leptin response of POMC neurons in the olanzapine-treated female mice. These findings suggest that olanzapine-induced hypothalamic POMC neuron abnormality and leptin resistance, which can be ameliorated by metformin administration, are the possible causes of subsequent hyperphagia.
Collapse
Affiliation(s)
- Jaedeok Kim
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Nayoung Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Sang Bum Suh
- University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sooyeon Jang
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Saeha Kim
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Dong-Gyu Kim
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Jong Kook Park
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Keun-Wook Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
33
|
SOCS3 Ablation in Leptin Receptor-Expressing Cells Causes Autonomic and Cardiac Dysfunctions in Middle-Aged Mice despite Improving Energy and Glucose Metabolism. Int J Mol Sci 2022; 23:ijms23126484. [PMID: 35742928 PMCID: PMC9223472 DOI: 10.3390/ijms23126484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Leptin resistance is a hallmark of obesity. Treatments aiming to improve leptin sensitivity are considered a promising therapeutical approach against obesity. However, leptin receptor (LepR) signaling also modulates several neurovegetative aspects, such as the cardiovascular system and hepatic gluconeogenesis. Thus, we investigated the long-term consequences of increased leptin sensitivity, considering the potential beneficial and deleterious effects. To generate a mouse model with increased leptin sensitivity, the suppressor of cytokine signaling 3 (SOCS3) was ablated in LepR-expressing cells (LepR∆SOCS3 mice). LepR∆SOCS3 mice displayed reduced food intake, body adiposity and weight gain, as well as improved glucose tolerance and insulin sensitivity, and were protected against aging-induced leptin resistance. Surprisingly, a very high mortality rate was observed in aging LepR∆SOCS3 mice. LepR∆SOCS3 mice showed cardiomyocyte hypertrophy, increased myocardial fibrosis and reduced cardiovascular capacity. LepR∆SOCS3 mice exhibited impaired post-ischemic cardiac functional recovery and middle-aged LepR∆SOCS3 mice showed substantial arhythmic events during the post-ischemic reperfusion period. Finally, LepR∆SOCS3 mice exhibited fasting-induced hypoglycemia and impaired counterregulatory response to glucopenia associated with reduced gluconeogenesis. In conclusion, although increased sensitivity to leptin improved the energy and glucose homeostasis of aging LepR∆SOCS3 mice, major autonomic/neurovegetative dysfunctions compromised the health and longevity of these animals. Consequently, these potentially negative aspects need to be considered in the therapies that increase leptin sensitivity chronically.
Collapse
|
34
|
Molnár Á, Szentpéteri A, Lőrincz H, Seres I, Harangi M, Balogh Z, Kempler P, Paragh G, Sztanek F. Change of Fibroblast Growth Factor 21 Level Correlates with the Severity of Diabetic Sensory Polyneuropathy after Six-Week Physical Activity. Rev Cardiovasc Med 2022; 23:160. [PMID: 39077619 PMCID: PMC11273855 DOI: 10.31083/j.rcm2305160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 07/31/2024] Open
Abstract
Background Diabetic neuropathy (DN) is a very frequent microvascular complication of type 2 diabetes mellitus (T2DM). Obesity and physical inactivity are well-known risk factors for T2DM. Fibroblast growth factor 21 (FGF21) is a liver-secreted hormone with several beneficial effects on obesity-related metabolic disorders. We aimed to investigate the effect of short-term physical activity on the levels of FGF21, and its correlation with the severity of peripheral sensory polyneuropathy in T2DM patients. Methods Thirty patients with DN were enrolled in the study, compared to age- and gender-matched controls. We conducted a six-week aerobic training program, which meant treadmill and cycle ergometers three times a week. Anthropometric and laboratory parameters were measured for each patient before and after intervention. Serum levels of FGF21, TNF-alpha, irisin, leptin and adiponectin were measured by ELISA. The sensory perception threshold (CPT) was quantitatively measured using Neurometer®. Results We found significant decreases in BMI, waist circumference, HbA1c and TNF-alpha levels. From baseline to six-week follow-up, FGF21 levels were significantly increased in DN patients. Significant negative correlations were shown between the changes in FGF21 levels and BMI, between changes in FGF21 and the improvement of CPT values, and between the changes in FGF21 and TNF-alpha levels. There was no difference in irisin, adiponectin and leptin levels in DN patients after aerobic training program. Conclusions The physical activity may increase the level of FGF21 in T2DM patients with neuropathy. Our results highlight the importance of regular physical activity in the treatment of diabetic neuropathy.
Collapse
Affiliation(s)
- Ágnes Molnár
- Division of Metabolic Disorders, Department of Internal Medicine, University of Debrecen Faculty of Medicine, 4032 Debrecen, Hungary
- Doctoral School of Health Sciences University of Debrecen, 4032 Debrecen, Hungary
| | - Anita Szentpéteri
- Division of Metabolic Disorders, Department of Internal Medicine, University of Debrecen Faculty of Medicine, 4032 Debrecen, Hungary
| | - Hajnalka Lőrincz
- Division of Metabolic Disorders, Department of Internal Medicine, University of Debrecen Faculty of Medicine, 4032 Debrecen, Hungary
| | - Ildikó Seres
- Division of Metabolic Disorders, Department of Internal Medicine, University of Debrecen Faculty of Medicine, 4032 Debrecen, Hungary
| | - Mariann Harangi
- Division of Metabolic Disorders, Department of Internal Medicine, University of Debrecen Faculty of Medicine, 4032 Debrecen, Hungary
| | - Zoltán Balogh
- Division of Metabolic Disorders, Department of Internal Medicine, University of Debrecen Faculty of Medicine, 4032 Debrecen, Hungary
| | - Péter Kempler
- First Department of Internal Medicine, Semmelweis University Faculty of Medicine, 1085 Budapest, Hungary
| | - György Paragh
- Division of Metabolic Disorders, Department of Internal Medicine, University of Debrecen Faculty of Medicine, 4032 Debrecen, Hungary
| | - Ferenc Sztanek
- Division of Metabolic Disorders, Department of Internal Medicine, University of Debrecen Faculty of Medicine, 4032 Debrecen, Hungary
| |
Collapse
|
35
|
Jais A, Brüning JC. Arcuate Nucleus-Dependent Regulation of Metabolism-Pathways to Obesity and Diabetes Mellitus. Endocr Rev 2022; 43:314-328. [PMID: 34490882 PMCID: PMC8905335 DOI: 10.1210/endrev/bnab025] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 01/12/2023]
Abstract
The central nervous system (CNS) receives information from afferent neurons, circulating hormones, and absorbed nutrients and integrates this information to orchestrate the actions of the neuroendocrine and autonomic nervous systems in maintaining systemic metabolic homeostasis. Particularly the arcuate nucleus of the hypothalamus (ARC) is of pivotal importance for primary sensing of adiposity signals, such as leptin and insulin, and circulating nutrients, such as glucose. Importantly, energy state-sensing neurons in the ARC not only regulate feeding but at the same time control multiple physiological functions, such as glucose homeostasis, blood pressure, and innate immune responses. These findings have defined them as master regulators, which adapt integrative physiology to the energy state of the organism. The disruption of this fine-tuned control leads to an imbalance between energy intake and expenditure as well as deregulation of peripheral metabolism. Improving our understanding of the cellular, molecular, and functional basis of this regulatory principle in the CNS could set the stage for developing novel therapeutic strategies for the treatment of obesity and metabolic syndrome. In this review, we summarize novel insights with a particular emphasis on ARC neurocircuitries regulating food intake and glucose homeostasis and sensing factors that inform the brain of the organismal energy status.
Collapse
Affiliation(s)
- Alexander Jais
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,National Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
36
|
Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int J Mol Sci 2022; 23:ijms23020786. [PMID: 35054972 PMCID: PMC8775991 DOI: 10.3390/ijms23020786] [Citation(s) in RCA: 438] [Impact Index Per Article: 219.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic syndrome (MetS) forms a cluster of metabolic dysregulations including insulin resistance, atherogenic dyslipidemia, central obesity, and hypertension. The pathogenesis of MetS encompasses multiple genetic and acquired entities that fall under the umbrella of insulin resistance and chronic low-grade inflammation. If left untreated, MetS is significantly associated with an increased risk of developing diabetes and cardiovascular diseases (CVDs). Given that CVDs constitute by far the leading cause of morbidity and mortality worldwide, it has become essential to investigate the role played by MetS in this context to reduce the heavy burden of the disease. As such, and while MetS relatively constitutes a novel clinical entity, the extent of research about the disease has been exponentially growing in the past few decades. However, many aspects of this clinical entity are still not completely understood, and many questions remain unanswered to date. In this review, we provide a historical background and highlight the epidemiology of MetS. We also discuss the current and latest knowledge about the histopathology and pathophysiology of the disease. Finally, we summarize the most recent updates about the management and the prevention of this clinical syndrome.
Collapse
|
37
|
Zhao YF. Free fatty acid receptors in the endocrine regulation of glucose metabolism: Insight from gastrointestinal-pancreatic-adipose interactions. Front Endocrinol (Lausanne) 2022; 13:956277. [PMID: 36246919 PMCID: PMC9554507 DOI: 10.3389/fendo.2022.956277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Glucose metabolism is primarily controlled by pancreatic hormones, with the coordinated assistance of the hormones from gastrointestine and adipose tissue. Studies have unfolded a sophisticated hormonal gastrointestinal-pancreatic-adipose interaction network, which essentially maintains glucose homeostasis in response to the changes in substrates and nutrients. Free fatty acids (FFAs) are the important substrates that are involved in glucose metabolism. FFAs are able to activate the G-protein coupled membrane receptors including GPR40, GPR120, GPR41 and GPR43, which are specifically expressed in pancreatic islet cells, enteroendocrine cells as well as adipocytes. The activation of FFA receptors regulates the secretion of hormones from pancreas, gastrointestine and adipose tissue to influence glucose metabolism. This review presents the effects of the FFA receptors on glucose metabolism via the hormonal gastrointestinal-pancreatic-adipose interactions and the underlying intracellular mechanisms. Furthermore, the development of therapeutic drugs targeting FFA receptors for the treatment of abnormal glucose metabolism such as type 2 diabetes mellitus is summarized.
Collapse
|
38
|
Bansal S, Kharbanda C, Aneja P. Role and significance of ghrelin and leptin in hunger, satiety, and energy homeostasis. JOURNAL OF THE SCIENTIFIC SOCIETY 2022. [DOI: 10.4103/jss.jss_126_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
39
|
Quaresma PGF, Wasinski F, Mansano NS, Furigo IC, Teixeira PDS, Gusmao DO, Frazao R, Donato J. Leptin Receptor Expression in GABAergic Cells is Not Sufficient to Normalize Metabolism and Reproduction in Mice. Endocrinology 2021; 162:6353267. [PMID: 34402859 DOI: 10.1210/endocr/bqab168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Previous studies indicate that leptin receptor (LepR) expression in GABAergic neurons is necessary for the biological effects of leptin. However, it is not clear whether LepR expression only in GABAergic neurons is sufficient to prevent the metabolic and neuroendocrine imbalances caused by LepR deficiency. In the present study, we produced mice that express the LepR exclusively in GABAergic cells (LepRVGAT mice) and compared them with wild-type (LepR+/+) and LepR-deficient (LepRNull/Null) mice. Although LepRVGAT mice showed a pronounced reduction in body weight and fat mass, as compared with LepRNull/Null mice, male and female LepRVGAT mice exhibited an obese phenotype relative to LepR+/+ mice. Food intake was normalized in LepRVGAT mice; however, LepRVGAT mice still exhibited lower energy expenditure in both sexes and reduced ambulatory activity in the females, compared with LepR+/+ mice. The acute anorexigenic effect of leptin and hedonic feeding were normalized in LepRVGAT mice despite the hyperleptinemia they present. Although LepRVGAT mice showed improved glucose homeostasis compared with LepRNull/Null mice, both male and female LepRVGAT mice exhibited insulin resistance. In contrast, LepR expression only in GABAergic cells was sufficient to normalize the density of agouti-related peptide (AgRP) and α-MSH immunoreactive fibers in the paraventricular nucleus of the hypothalamus. However, LepRVGAT mice exhibited reproductive dysfunctions, including subfertility in males and alterations in the estrous cycle of females. Taken together, our findings indicate that LepR expression in GABAergic cells, although critical to the physiology of leptin, is insufficient to normalize several metabolic aspects and the reproductive function in mice.
Collapse
Affiliation(s)
- Paula G F Quaresma
- Universidade de São Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, São Paulo, SP, 05508-000, Brazil
| | - Frederick Wasinski
- Universidade de São Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, São Paulo, SP, 05508-000, Brazil
| | - Naira S Mansano
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Isadora C Furigo
- Universidade de São Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, São Paulo, SP, 05508-000, Brazil
| | - Pryscila D S Teixeira
- Universidade de São Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, São Paulo, SP, 05508-000, Brazil
| | - Daniela O Gusmao
- Universidade de São Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, São Paulo, SP, 05508-000, Brazil
| | - Renata Frazao
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Jose Donato
- Universidade de São Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
40
|
Ashraf R, Khan MS, Bhat MH, Shabir I, Rashid S, Majid S. Leptins: association and clinical correlation in pre-diabetics. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-021-01017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
41
|
Silva SP, Beserra-Filho JIA, Kubota MC, Cardoso GN, Freitas FRS, Gonçalves BSM, Vicente-Silva W, Silva-Martins S, Custódio-Silva AC, Soares-Silva B, Maria-Macêdo A, Santos JR, Estadella D, Ribeiro AM. Palatable high-fat diet intake influences mnemonic and emotional aspects in female rats in an estrous cycle-dependent manner. Metab Brain Dis 2021; 36:1717-1727. [PMID: 34406559 DOI: 10.1007/s11011-021-00812-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/26/2021] [Indexed: 12/24/2022]
Abstract
Worldwide, the excessive consumption of fat and/or sugar has increased considerably. Palatable high-fat diets (HFDs) lead to metabolic disturbances and obesity, and impact emotional and cognitive processes. Previous studies in rodent models suggested that HFDs often cause multiple behavioral alterations, such as learning and memory deficits, and anxiety-like behaviors. Different sexes imply different behavioral and cognitive abilities; yet, most of these studies dealt with male or ovariectomized rats. We evaluated HFD effects in female rats submitted to different behavioral tasks, considering the effects of endogenous hormonal variations throughout estrous cycle. Female Wistar rats in each phase of the estrous cycle using commercial chow (CC) or HFD for 32 days. During treatment, behavioral assessments using sucrose preference (SP), elevated plus-maze (EPM), open field (OF) and novel-object recognition (NOR). At the end of the behavioral tests, animals were euthanized, and performed an immunohistochemical analysis of the brains by brain-derived neurotrophic factor (BDNF) and tyrosine hydroxylase (TH). The main results demonstrated that (1) HFD-fed rats had higher body mass gain and food intake, without altering caloric intake, (2) rats in diestrus had lower sucrose intake, (3) females in metestrus and diestrus showed deficits in the novel-object recognition memory. Furthermore, TH-immunoreactivity decreased in the dorsal striatum and BDNF in the hippocampus in HFD-fed females. These results suggest that HFD alters neurochemical and metabolic aspects that may induce phase-dependent behavioral changes in female rats.
Collapse
Affiliation(s)
- Sara Pereira Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - José Ivo Araújo Beserra-Filho
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - Melina Chiemi Kubota
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - Gabriela Nascimento Cardoso
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - Francisca Rayanne Silva Freitas
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - Bianca Santos Martins Gonçalves
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - Wilson Vicente-Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - Suellen Silva-Martins
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - Ana Claúdia Custódio-Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - Beatriz Soares-Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - Amanda Maria-Macêdo
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - José Ronaldo Santos
- Department of Biosciences, Universidade Federal de Sergipe, Itabaiana, Sergipe, Brazil
| | - Debora Estadella
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - Alessandra Mussi Ribeiro
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil.
| |
Collapse
|
42
|
Cavalcanti-de-Albuquerque JP, Donato J. Rolling out physical exercise and energy homeostasis: Focus on hypothalamic circuitries. Front Neuroendocrinol 2021; 63:100944. [PMID: 34425188 DOI: 10.1016/j.yfrne.2021.100944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 01/17/2023]
Abstract
Energy balance is the fine regulation of energy expenditure and energy intake. Negative energy balance causes body weight loss, while positive energy balance promotes weight gain. Modern societies offer a maladapted way of life, where easy access to palatable foods and the lack of opportunities to perform physical activity are considered the roots of the obesity pandemic. Physical exercise increases energy expenditure and, consequently, is supposed to promote weight loss. Paradoxically, physical exercise acutely drives anorexigenic-like effects, but the mechanisms are still poorly understood. Using an evolutionary background, this review aims to highlight the potential involvement of the melanocortin system and other hypothalamic neural circuitries regulating energy balance during and after physical exercise. The physiological significance of these changes will be explored, and possible signalling agents will be addressed. The knowledge discussed here might be important for clarifying obesity aetiology as well as new therapeutic approaches for body weight loss.
Collapse
Affiliation(s)
| | - José Donato
- Department of Physiology and Biophysics, University of São Paulo, São Paulo 05508-900, Brazil.
| |
Collapse
|
43
|
He Z, Lieu L, Dong Y, Afrin S, Chau D, Kabahizi A, Wallace B, Cao J, Hwang ES, Yao T, Huang Y, Okolo J, Cheng B, Gao Y, Hu L, Williams KW. PERK in POMC neurons connects celastrol with metabolism. JCI Insight 2021; 6:145306. [PMID: 34549728 PMCID: PMC8492333 DOI: 10.1172/jci.insight.145306] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/28/2021] [Indexed: 01/02/2023] Open
Abstract
ER stress and activation of the unfolded protein response in the periphery as well as the central nervous system have been linked to various metabolic abnormalities. Chemically lowering protein kinase R–like ER kinase (PERK) activity within the hypothalamus leads to decreased food intake and body weight. However, the cell populations required in this response remain undefined. In the current study, we investigated the effects of proopiomelanocortin-specific (POMC-specific) PERK deficiency on energy balance and glucose metabolism. Male mice deficient for PERK in POMC neurons exhibited improvements in energy balance on a high-fat diet, showing decreased food intake and body weight, independent of changes in glucose and insulin tolerances. The plant-based inhibitor of PERK, celastrol, increases leptin sensitivity, resulting in decreased food intake and body weight in a murine model of diet-induced obesity (DIO). Our data extend these observations by demonstrating that celastrol-induced improvements in leptin sensitivity and energy balance were attenuated in mice with PERK deficiency in POMC neurons. Altogether, these data suggest that POMC-specific PERK deficiency in male mice confers protection against DIO, possibly providing a new therapeutic target for the treatment of diabetes and metabolic syndrome.
Collapse
Affiliation(s)
- Zhenyan He
- Department of Neurosurgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Linh Lieu
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Yanbin Dong
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA.,Institute of Gastroenterology and.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Sadia Afrin
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Dominic Chau
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Anita Kabahizi
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Briana Wallace
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Jianhong Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Eun-Sang Hwang
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Ting Yao
- Division of Pediatric Endocrinology, Department of Pediatrics, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yiru Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jennifer Okolo
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Bo Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yong Gao
- Laboratory Department, Affiliated Hospital of Binzhou Medical College, Shandong, China
| | - Ling Hu
- Institute of Gastroenterology and.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
44
|
Angelidi AM, Filippaios A, Mantzoros CS. Severe insulin resistance syndromes. J Clin Invest 2021; 131:142245. [PMID: 33586681 DOI: 10.1172/jci142245] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Severe insulin resistance syndromes are a heterogeneous group of rare disorders characterized by profound insulin resistance, substantial metabolic abnormalities, and a variety of clinical manifestations and complications. The etiology of these syndromes may be hereditary or acquired, due to defects in insulin potency and action, cellular responsiveness to insulin, and/or aberrations in adipose tissue function or development. Over the past decades, advances in medical technology, particularly in genomic technologies and genetic analyses, have provided insights into the underlying pathophysiological pathways and facilitated the more precise identification of several of these conditions. However, the exact cellular and molecular mechanisms of insulin resistance have not yet been fully elucidated for all syndromes. Moreover, in clinical practice, many of the syndromes are often misdiagnosed or underdiagnosed. The majority of these disorders associate with an increased risk of severe complications and mortality; thus, early identification and personalized clinical management are of the essence. This Review aims to categorize severe insulin resistance syndromes by disease process, including insulin receptor defects, signaling defects, and lipodystrophies. We also highlight several complex syndromes and emphasize the need to identify patients, investigate underlying disease mechanisms, and develop specific treatment regimens.
Collapse
Affiliation(s)
- Angeliki M Angelidi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Andreas Filippaios
- Department of Medicine, Lowell General Hospital, Lowell, Massachusetts, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
45
|
Pereira S, Cline DL, Chan M, Chai K, Yoon JS, O'Dwyer SM, Ellis CE, Glavas MM, Webber TD, Baker RK, Erener S, Covey SD, Kieffer TJ. Role of myeloid cell leptin signaling in the regulation of glucose metabolism. Sci Rep 2021; 11:18394. [PMID: 34526546 PMCID: PMC8443652 DOI: 10.1038/s41598-021-97549-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Although innate immunity is linked to metabolic health, the effect of leptin signaling in cells from the innate immune system on glucose homeostasis has not been thoroughly investigated. We generated two mouse models using Cre-lox methodology to determine the effect of myeloid cell-specific leptin receptor (Lepr) reconstitution and Lepr knockdown on in vivo glucose metabolism. Male mice with myeloid cell-specific Lepr reconstitution (Lyz2Cre+LeprloxTB/loxTB) had better glycemic control as they aged compared to male mice with whole-body transcriptional blockade of Lepr (Lyz2Cre−LeprloxTB/loxTB). In contrast, Lyz2Cre+LeprloxTB/loxTB females only had a trend for diminished hyperglycemia after a prolonged fast. During glucose tolerance tests, Lyz2Cre+LeprloxTB/loxTB males had a mildly improved plasma glucose profile compared to Cre− controls while Lyz2Cre+LeprloxTB/loxTB females had a similar glucose excursion to their Cre− controls. Myeloid cell-specific Lepr knockdown (Lyz2Cre+Leprflox/flox) did not significantly alter body weight, blood glucose, insulin sensitivity, or glucose tolerance in males or females. Expression of the cytokine interleukin 10 (anti-inflammatory) tended to be higher in adipose tissue of male Lyz2Cre+LeprloxTB/loxTB mice (p = 0.0774) while interleukin 6 (pro-inflammatory) was lower in male Lyz2Cre+Leprflox/flox mice (p < 0.05) vs. their respective controls. In conclusion, reconstitution of Lepr in cells of myeloid lineage has beneficial effects on glucose metabolism in male mice.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Daemon L Cline
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Melissa Chan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kalin Chai
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ji Soo Yoon
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Shannon M O'Dwyer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Cara E Ellis
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Travis D Webber
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Robert K Baker
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Suheda Erener
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada. .,Department of Surgery, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada. .,School of Biomedical Engineering, University of British Columbia, 251-2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
46
|
Duquenne M, Folgueira C, Bourouh C, Millet M, Silva A, Clasadonte J, Imbernon M, Fernandois D, Martinez-Corral I, Kusumakshi S, Caron E, Rasika S, Deliglia E, Jouy N, Oishi A, Mazzone M, Trinquet E, Tavernier J, Kim YB, Ory S, Jockers R, Schwaninger M, Boehm U, Nogueiras R, Annicotte JS, Gasman S, Dam J, Prévot V. Leptin brain entry via a tanycytic LepR-EGFR shuttle controls lipid metabolism and pancreas function. Nat Metab 2021; 3:1071-1090. [PMID: 34341568 PMCID: PMC7611554 DOI: 10.1038/s42255-021-00432-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/23/2021] [Indexed: 01/14/2023]
Abstract
Metabolic health depends on the brain's ability to control food intake and nutrient use versus storage, processes that require peripheral signals such as the adipocyte-derived hormone, leptin, to cross brain barriers and mobilize regulatory circuits. We have previously shown that hypothalamic tanycytes shuttle leptin into the brain to reach target neurons. Here, using multiple complementary models, we show that tanycytes express functional leptin receptor (LepR), respond to leptin by triggering Ca2+ waves and target protein phosphorylation, and that their transcytotic transport of leptin requires the activation of a LepR-EGFR complex by leptin and EGF sequentially. Selective deletion of LepR in tanycytes blocks leptin entry into the brain, inducing not only increased food intake and lipogenesis but also glucose intolerance through attenuated insulin secretion by pancreatic β-cells, possibly via altered sympathetic nervous tone. Tanycytic LepRb-EGFR-mediated transport of leptin could thus be crucial to the pathophysiology of diabetes in addition to obesity, with therapeutic implications.
Collapse
Affiliation(s)
- Manon Duquenne
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - Cintia Folgueira
- Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Cyril Bourouh
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283-UMR 8199-EGID, Lille, France
| | - Marion Millet
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Anisia Silva
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jérôme Clasadonte
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - Monica Imbernon
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - Daniela Fernandois
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - Ines Martinez-Corral
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - Soumya Kusumakshi
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Emilie Caron
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - S Rasika
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - Eleonora Deliglia
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - Nathalie Jouy
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
- Flow Cytometry Core Facility, BioImaging Center of Lille, Hospital Campus, UMS2014-US41, Lille, France
| | - Asturo Oishi
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Department of Oncology, Leuven, Belgium
| | - Eric Trinquet
- Cisbio Bioassays, Parc Technologique Marcel Boiteux, Codolet, France
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Stéphane Ory
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ralf Jockers
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Ruben Nogueiras
- Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Jean-Sébastien Annicotte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283-UMR 8199-EGID, Lille, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Julie Dam
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France.
| |
Collapse
|
47
|
Impaired Leptin Signalling in Obesity: Is Leptin a New Thermolipokine? Int J Mol Sci 2021; 22:ijms22126445. [PMID: 34208585 PMCID: PMC8235268 DOI: 10.3390/ijms22126445] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Leptin is a principal adipose-derived hormone mostly implicated in the regulation of energy balance through the activation of anorexigenic neuronal pathways. Comprehensive studies have established that the maintenance of certain concentrations of circulating leptin is essential to avoid an imbalance in nutrient intake. Indeed, genetic modifications of the leptin/leptin receptor axis and the obesogenic environment may induce changes in leptin levels or action in a manner that accelerates metabolic dysfunctions, resulting in a hyperphagic status and adipose tissue expansion. As a result, a vicious cycle begins wherein hyperleptinaemia and leptin resistance occur, in turn leading to increased food intake and fat enlargement, which is followed by leptin overproduction. In addition, in the context of obesity, a defective thermoregulatory response is associated with impaired leptin signalling overall within the ventromedial nucleus of the hypothalamus. These recent findings highlight the role of leptin in the regulation of adaptive thermogenesis, thus suggesting leptin to be potentially considered as a new thermolipokine. This review provides new insight into the link between obesity, hyperleptinaemia, leptin resistance and leptin deficiency, focusing on the ability to restore leptin sensitiveness by way of enhanced thermogenic responses and highlighting novel anti-obesity therapeutic strategies.
Collapse
|
48
|
Yeo GSH, Chao DHM, Siegert AM, Koerperich ZM, Ericson MD, Simonds SE, Larson CM, Luquet S, Clarke I, Sharma S, Clément K, Cowley MA, Haskell-Luevano C, Van Der Ploeg L, Adan RAH. The melanocortin pathway and energy homeostasis: From discovery to obesity therapy. Mol Metab 2021; 48:101206. [PMID: 33684608 PMCID: PMC8050006 DOI: 10.1016/j.molmet.2021.101206] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Over the past 20 years, insights from human and mouse genetics have illuminated the central role of the brain leptin-melanocortin pathway in controlling mammalian food intake, with genetic disruption resulting in extreme obesity, and more subtle polymorphic variations influencing the population distribution of body weight. At the end of 2020, the U.S. Food and Drug Administration (FDA) approved setmelanotide, a melanocortin 4 receptor agonist, for use in individuals with severe obesity due to either pro-opiomelanocortin (POMC), proprotein convertase subtilisin/kexin type 1 (PCSK1), or leptin receptor (LEPR) deficiency. SCOPE OF REVIEW Herein, we chart the melanocortin pathway's history, explore its pharmacology, genetics, and physiology, and describe how a neuropeptidergic circuit became an important druggable obesity target. MAJOR CONCLUSIONS Unravelling the genetics of the subset of severe obesity has revealed the importance of the melanocortin pathway in appetitive control; coupling this with studying the molecular pharmacology of compounds that bind melanocortin receptors has brought a new obesity drug to the market. This process provides a drug discovery template for complex disorders, which for setmelanotide took 25 years to transform from a single gene into an approved drug.
Collapse
Affiliation(s)
- Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | | | - Anna-Maria Siegert
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | - Zoe M Koerperich
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | - Mark D Ericson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | - Stephanie E Simonds
- Metabolism, Diabetes, and Obesity Programme, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Courtney M Larson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France.
| | - Iain Clarke
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| | | | - Karine Clément
- Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France, Sorbonne Université, INSERM, Nutrition and Obesity: Systemic Approaches (NutriOmics) Research Unit, Paris, France.
| | - Michael A Cowley
- Metabolism, Diabetes, and Obesity Programme, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | | | - Roger A H Adan
- Department of Translational Neuroscience, UMCU Brain Centre, University Medical Centre Utrecht, Utrecht University, the Netherlands; Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Sweden.
| |
Collapse
|
49
|
Myers MG, Affinati AH, Richardson N, Schwartz MW. Central nervous system regulation of organismal energy and glucose homeostasis. Nat Metab 2021; 3:737-750. [PMID: 34158655 DOI: 10.1038/s42255-021-00408-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023]
Abstract
Growing evidence implicates the brain in the regulation of both immediate fuel availability (for example, circulating glucose) and long-term energy stores (that is, adipose tissue mass). Rather than viewing the adipose tissue and glucose control systems separately, we suggest that the brain systems that control them are components of a larger, highly integrated, 'fuel homeostasis' control system. This conceptual framework, along with new insights into the organization and function of distinct neuronal systems, provides a context within which to understand how metabolic homeostasis is achieved in both basal and postprandial states. We also review evidence that dysfunction of the central fuel homeostasis system contributes to the close association between obesity and type 2 diabetes, with the goal of identifying more effective treatment options for these common metabolic disorders.
Collapse
Affiliation(s)
- Martin G Myers
- Departments of Medicine and Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Alison H Affinati
- Departments of Medicine and Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Nicole Richardson
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael W Schwartz
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
50
|
Fan S, Xu Y, Lu Y, Jiang Z, Li H, Morrill JC, Cai J, Wu Q, Xu Y, Xue M, Arenkiel BR, Huang C, Tong Q. A neural basis for brain leptin action on reducing type 1 diabetic hyperglycemia. Nat Commun 2021; 12:2662. [PMID: 33976218 PMCID: PMC8113586 DOI: 10.1038/s41467-021-22940-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Central leptin action rescues type 1 diabetic (T1D) hyperglycemia; however, the underlying mechanism and the identity of mediating neurons remain elusive. Here, we show that leptin receptor (LepR)-expressing neurons in arcuate (LepRArc) are selectively activated in T1D. Activation of LepRArc neurons, Arc GABAergic (GABAArc) neurons, or arcuate AgRP neurons, is able to reverse the leptin's rescuing effect. Conversely, inhibition of GABAArc neurons, but not AgRP neurons, produces leptin-mimicking rescuing effects. Further, AgRP neuron function is not required for T1D hyperglycemia or leptin's rescuing effects. Finally, T1D LepRArc neurons show defective nutrient sensing and signs of cellular energy deprivation, which are both restored by leptin, whereas nutrient deprivation reverses the leptin action. Our results identify aberrant activation of LepRArc neurons owing to energy deprivation as the neural basis for T1D hyperglycemia and that leptin action is mediated by inhibiting LepRArc neurons through reversing energy deprivation.
Collapse
Affiliation(s)
- Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yuanzhong Xu
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yungang Lu
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhiying Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hongli Li
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jessie C Morrill
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- MD Anderson Cancer Center & UT Health Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, Houston, TX, USA
| | - Jing Cai
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- MD Anderson Cancer Center & UT Health Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, Houston, TX, USA
| | - Qi Wu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Mingshan Xue
- Department of Neuroscience and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Qingchun Tong
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
- MD Anderson Cancer Center & UT Health Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, Houston, TX, USA.
- Department of Neurobiology and Anatomy of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|