1
|
Gaetano C, Atlante S, Gottardi Zamperla M, Barbi V, Gentilini D, Illi B, Malavolta M, Martelli F, Farsetti A. The COVID-19 legacy: consequences for the human DNA methylome and therapeutic perspectives. GeroScience 2024:10.1007/s11357-024-01406-7. [PMID: 39497009 DOI: 10.1007/s11357-024-01406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/18/2024] [Indexed: 11/06/2024] Open
Abstract
The COVID-19 pandemic has left a lasting legacy on human health, extending beyond the acute phase of infection. This article explores the evidence suggesting that SARS-CoV-2 infection can induce persistent epigenetic modifications, particularly in DNA methylation patterns, with potential long-term consequences for individuals' health and aging trajectories. The review discusses the potential of DNA methylation-based biomarkers, such as epigenetic clocks, to identify individuals at risk for accelerated aging and tailor personalized interventions. Integrating epigenetic clock analysis into clinical management could mark a new era of personalized treatment for COVID-19, possibly helping clinicians to understand patient susceptibility to severe outcomes and establish preventive strategies. Several valuable reviews address the role of epigenetics in infectious diseases, including the Sars-CoV-2 infection. However, this article provides an original overview of the current understanding of the epigenetic dimensions of COVID-19, offering insights into the long-term health implications of the pandemic. While acknowledging the limitations of current data, we emphasize the need for future research to unravel the precise mechanisms underlying COVID-19-induced epigenetic changes and to explore potential approaches to target these modifications.
Collapse
Affiliation(s)
- Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| | - Sandra Atlante
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| | | | - Veronica Barbi
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, 20095, Cusano Milanino, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185, Rome, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
| | - Fabio Martelli
- Laboratory of Molecular Cardiology, IRCCS Policlinico San Donato, 20097, Milan, Italy
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy.
| |
Collapse
|
2
|
Shijimaya T, Tahara T, Shimogama T, Yamazaki J, Kobayashi S, Nakamura N, Takahashi Y, Tomiyama T, Fukui T, Naganuma M. Gastric microbiome composition accompanied with the Helicobacter pylori related DNA methylation anomaly. Epigenomics 2024:1-8. [PMID: 39492780 DOI: 10.1080/17501911.2024.2418803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024] Open
Abstract
Aim: DNA methylation is associated with gastric cancer and Helicobacter pylori (H. pylori) infection, while increasing evidence indicated involvement of other microbes reside in gastric mucosa during gastric tumorigenesis. We investigated bacterial communities in the gastric mucosa accompanied with H. pylori related methylation anomaly.Materials & methods: Gastric mucosa samples from antrum were obtained from 182 cancer-free patients. Bacterial communities were evaluated using 16S rRNA sequencing. The result was correlated with H. pylori related promoter CpG island (CGI) methylation of five genes (IGF2, SLC16A12, SOX11, P2RX7 and MYOD1), LINE1 hypomethylation and telomere length.Results & conclusion: We showed correlation between lower bacterial alpha diversity and higher CGI methylation. Multivariate analysis demonstrated older age (t = 3.46, p = 0.0007), H. pylori infection (t = 9.99, p < 0.0001) and lower bacterial alfa diversity (Shannon index: t = -2.34, p = 0.02) were significantly associated with CGI hypermethylation. In genus or family levels, increased abundance of Helicobacter was associated with hyper CGI methylation with strongest correlation, while decreased abundance of four bacteria (Intrasporangiaceae family, Macellibacteroides, Peptostreptococcus and Dietziaceae family) was also associated with hyper CGI methylation. Our findings suggest the potential correlation between CGI methylation induction and lower bacterial alpha diversity in the gastric mucosa accompanied by H. pylori infection.
Collapse
Affiliation(s)
- Takuya Shijimaya
- Third department of internal medicine, Kansai Medical University, Hirakata, Japan
| | - Tomomitsu Tahara
- Third department of internal medicine, Kansai Medical University, Hirakata, Japan
| | - Tsubasa Shimogama
- Third department of internal medicine, Kansai Medical University, Hirakata, Japan
| | - Jumpei Yamazaki
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Sanshiro Kobayashi
- Third department of internal medicine, Kansai Medical University, Hirakata, Japan
| | - Naohiro Nakamura
- Third department of internal medicine, Kansai Medical University, Hirakata, Japan
| | - Yu Takahashi
- Third department of internal medicine, Kansai Medical University, Hirakata, Japan
| | - Takashi Tomiyama
- Third department of internal medicine, Kansai Medical University, Hirakata, Japan
| | - Toshiro Fukui
- Third department of internal medicine, Kansai Medical University, Hirakata, Japan
| | - Makoto Naganuma
- Third department of internal medicine, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
3
|
Moinova HR, Verma S, Dumot J, Faulx A, Iyer PG, Canto MI, Wang JS, Shaheen NJ, Thota PN, Aklog L, Willis JE, Markowitz SD, Chak A. Multicenter, Prospective Trial of Nonendoscopic Biomarker-Driven Detection of Barrett's Esophagus and Esophageal Adenocarcinoma. Am J Gastroenterol 2024; 119:2206-2214. [PMID: 38686933 PMCID: PMC11534537 DOI: 10.14309/ajg.0000000000002850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Preliminary data suggest that an encapsulated balloon (EsoCheck), coupled with a 2 methylated DNA biomarker panel (EsoGuard), detects Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC) with high accuracy. The initial assay requires sample freezing upon collection. The purpose of this study was to assess a next-generation EsoCheck sampling device and EsoGuard assay in a much-enlarged multicenter study clinically enhanced by using a Clinical Laboratory Improvement Amendments of 1988-compliant assay and samples maintained at room temperature. METHODS Cases with nondysplastic BE (NDBE), dysplastic BE (indefinite for dysplasia, low-grade dysplasia, high-grade dysplasia), EAC, junctional adenocarcinoma, plus endoscopy controls without esophageal intestinal metaplasia, were prospectively enrolled. Medical assistants at 6 institutions delivered the encapsulated balloon per orally with inflation in the stomach. The inflated balloon sampled the distal 5 cm of the esophagus and then was deflated and retracted into the capsule, preventing sample contamination. EsoGuard bisulfite sequencing assayed levels of methylated vimentin and methylated cyclin A1. RESULTS A total of 243 evaluable patients-88 cases (median age 68 years, 78% men, 92% White) and 155 controls (median age 57 years, 41% men, 88% White)-underwent adequate EsoCheck sampling. The mean procedural time was approximately 3 minutes. Cases included 31 with NDBE, 16 with indefinite for dysplasia/low-grade dysplasia, 23 with high-grade dysplasia, and 18 with EAC/junctional adenocarcinoma. Thirty-seven NDBE and dysplastic BE cases (53%) were short-segment BE (<3 cm). Overall sensitivity was 85% (95% confidence interval 0.78-0.93) and specificity was 85% (95% confidence interval 0.79-0.90). Sensitivity for NDBE was 84%. EsoCheck/EsoGuard detected 100% of cancers (n = 18). DISCUSSION EsoCheck/EsoGuard demonstrated high sensitivity and specificity in detecting BE and BE-related neoplasia.
Collapse
Affiliation(s)
- Helen R. Moinova
- Department of Medicine, Case Western Reserve University, and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Suman Verma
- Lucid Diagnostics Inc., 360 Madison Avenue 25th Floor NY, NY 10017
| | - John Dumot
- Department of Medicine, Case Western Reserve University, and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Ashley Faulx
- Department of Medicine, Case Western Reserve University, and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Prasad G Iyer
- Barrett’s Esophagus Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN-55905
| | - Marcia Irene Canto
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD-21205
| | - Jean S. Wang
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO-63110
| | - Nicholas J. Shaheen
- Center for Esophageal Diseases and Swallowing, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC-27599
| | - Prashanthi N. Thota
- Center for Esophageal Diseases and Swallowing, Division of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Lishan Aklog
- Lucid Diagnostics Inc., 360 Madison Avenue 25th Floor NY, NY 10017
| | - Joseph E. Willis
- Department of Pathology, Case Western Reserve University, and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
- Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Sanford D. Markowitz
- Department of Medicine, Case Western Reserve University, and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
- Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Amitabh Chak
- Department of Medicine, Case Western Reserve University, and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
- Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| |
Collapse
|
4
|
Okada D. The opposite aging effect to single cell transcriptome profile among cell subsets. Biogerontology 2024; 25:1253-1262. [PMID: 39261411 DOI: 10.1007/s10522-024-10138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Comparing transcriptome profiling between younger and older samples reveals genes related to aging and provides insight into the biological functions affected by aging. Recent research has identified sex, tissue, and cell type-specific age-related changes in gene expression. This study reports the overall picture of the opposite aging effect, in which aging increases gene expression in one cell subset and decreases it in another cell subset. Using the Tabula Muris Senis dataset, a large public single-cell RNA sequencing dataset from mice, we compared the effects of aging in different cell subsets. As a result, the opposite aging effect was observed widely in the genes, particularly enriched in genes related to ribosomal function and translation. The opposite aging effect was observed in the known aging-related genes. Furthermore, the opposite aging effect was observed in the transcriptome diversity quantified by the number of expressed genes and the Shannon entropy. This study highlights the importance of considering the cell subset when intervening with aging-related genes.
Collapse
Affiliation(s)
- Daigo Okada
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, 53 Syogoin-Kawaramachi, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
5
|
Alsfouk AA, Faris A, Cacciatore I, Alnajjar R. Development of novel CDK9 and CYP3A4 inhibitors for cancer therapy through field and computational approaches. Front Chem 2024; 12:1473398. [PMID: 39498375 PMCID: PMC11532072 DOI: 10.3389/fchem.2024.1473398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 11/07/2024] Open
Abstract
Cyclin-dependent kinase 9 (CDK9) and cytochrome P450 3A4 (CYP3A4) have emerged as promising targets in the development of anticancer drugs, presenting a consistent challenge in the quest for potent inhibitors. CDK9 inhibitors can selectively target fast-growing cancer cells by disrupting transcription elongation, which in turn hinders the production of proteins essential for cell cycle progression and survivaŚ. Understanding how CYP3A4 metabolizes specific chemotherapy drugs allows for personalized treatment plans, optimizing drug dosages according to a patient's metabolic profile. Since many cancer patients undergo combination therapies, and CYP3A4 is vital in drug metabolism, its inhibition or induction by one drug can alter the plasma levels of others, potentially leading to treatment failure or increased toxicity. Therefore, managing CYP3A4 activity is critical for effective cancer treatment. Employing a range of computational methodologies, this study systematically investigated the binding mechanisms of pyrimidine derivatives against CDK9 and CYP3A4. The field-based model demonstrated high R 2 values (0.99), with Q2 (0.66), demonstrating its ability to predict in silico inhibitory activity against the target of this study. The screening process followed in this work led to the discovery of powerful new inhibitor compounds. Of the 15 new compounds designed, three have a high affinity with the target (ranging from -8 to -9 kcal/mol kcal/mol) and were singled out through docking filtration for more detailed investigation. As well as, a reference compound with a substantial pIC50 value of 8.4, serving as the foundation for the development of the new compounds, was included for comparative analysis. To elucidate the essential features of CDK9 and CYP3A4 inhibitor design, a comparative analysis was conducted between 3D-QSAR-generated contours and molecular docking conformations of ligands. Molecular dynamics simulations were carried out for a duration of 100 ns on selected docked complexes, specifically those involving novel compounds with CDK9 and CYP3A4 enzymes. Additionally, the binding free energy for these complexes was assessed using the MM/PBSA method, which evaluates the free energy landscape of protein-ligand interactions. The results of MM/PBSA highlighted the strength of the new compounds in enhancing interactions with the target protein, which favors the results of molecular docking and MD simulation. These insights contribute to a deeper understanding of the mechanisms underlying CDK9 and CYP3A4 inhibition, offering potential avenues for the development of innovative and effective CDK9 inhibitors.
Collapse
Affiliation(s)
- Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdelmoujoud Faris
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ivana Cacciatore
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Radwan Alnajjar
- CADD Unit, Faculty of Pharmacy, Libyan International Medical University, Benghazi, Libya
| |
Collapse
|
6
|
Allen LH, Fenech M, LeVatte MA, West KP, Wishart DS. Multiomics: Functional Molecular Biomarkers of Micronutrients for Public Health Application. Annu Rev Nutr 2024; 44:125-153. [PMID: 39207879 DOI: 10.1146/annurev-nutr-062322-022751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Adequate micronutrient intake and status are global public health goals. Vitamin and mineral deficiencies are widespread and known to impair health and survival across the life stages. However, knowledge of molecular effects, metabolic pathways, biological responses to variation in micronutrient nutriture, and abilities to assess populations for micronutrient deficiencies and their pathology remain lacking. Rapidly evolving methodological capabilities in genomics, epigenomics, proteomics, and metabolomics offer unparalleled opportunities for the nutrition research community to link micronutrient exposure to cellular health; discover new, arguably essential micronutrients of microbial origin; and integrate methods of molecular biology, epidemiology, and intervention trials to develop novel approaches to assess and prevent micronutrient deficiencies in populations. In this review article, we offer new terminology to specify nutritional application of multiomic approaches and encourage collaboration across the basic to public health sciences to advance micronutrient deficiency prevention.
Collapse
Affiliation(s)
- Lindsay H Allen
- Western Human Nutrition Research Center, United States Department of Agriculture, Agricultural Research Service, Davis, California, USA
- Department of Nutrition, University of California, Davis, California, USA
| | - Michael Fenech
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Genome Health Foundation, North Brighton, South Australia, Australia
| | - Marcia A LeVatte
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Keith P West
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Kim B, Song A, Son A, Shin Y. Gut microbiota and epigenetic choreography: Implications for human health: A review. Medicine (Baltimore) 2024; 103:e39051. [PMID: 39029010 PMCID: PMC11398772 DOI: 10.1097/md.0000000000039051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
The interwoven relationship between gut microbiota and the epigenetic landscape constitutes a pivotal axis in understanding human health and disease. Governed by a myriad of dietary, genetic, and environmental influences, the gut microbiota orchestrates a sophisticated metabolic interplay, shaping nutrient utilization, immune responses, and defenses against pathogens. Recent strides in genomics and metabolomics have shed light on the intricate connections between these microbial influencers and the host's physiological dynamics, presenting a dynamic panorama across diverse disease spectra. DNA methylation and histone modifications, as key players in epigenetics, intricately align with the dynamic orchestration of the gut microbiota. This seamless collaboration, notably evident in conditions like inflammatory bowel disease and obesity, has captured the attention of researchers, prompting an exploration of its nuanced choreography. Nevertheless, challenges abound. Analyzing data is intricate due to the multifaceted nature of the gut microbiota and the limitations of current analytical methods. This underscores the need for a multidisciplinary approach, where diverse disciplines converge to pave innovative research pathways. The integration of insights from microbiome and epigenome studies assumes paramount importance in unraveling the complexities of this intricate partnership. Deciphering the synchronized interactions within this collaboration offers a deeper understanding of these delicate interplays, potentially heralding revolutionary strides in treatment modalities and strategies for enhancing public health.
Collapse
Affiliation(s)
- Bailee Kim
- Crescenta Valley High School, La Crescenta, CA
| | - Angel Song
- Harvard-Westlake School, Studio City, CA
| | - Andrew Son
- Bellarmine College Preparatory, San Jose, CA
| | - Yonghwan Shin
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| |
Collapse
|
8
|
Yokomizo T, Oshima M, Iwama A. Epigenetics of hematopoietic stem cell aging. Curr Opin Hematol 2024; 31:207-216. [PMID: 38640057 DOI: 10.1097/moh.0000000000000818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
PURPOSE OF REVIEW The development of new antiaging medicines is of great interest to the current elderly and aging population. Aging of the hematopoietic system is attributed to the aging of hematopoietic stem cells (HSCs), and epigenetic alterations are the key effectors driving HSC aging. Understanding the epigenetics of HSC aging holds promise of providing new insights for combating HSC aging and age-related hematological malignancies. RECENT FINDINGS Aging is characterized by the progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. During aging, the HSCs undergo both quantitative and qualitative changes. These functional changes in HSCs cause dysregulated hematopoiesis, resulting in anemia, immune dysfunction, and an increased risk of hematological malignancies. Various cell-intrinsic and cell-extrinsic effectors influencing HSC aging have also been identified. Epigenetic alterations are one such mechanism. SUMMARY Cumulative epigenetic alterations in aged HSCs affect their fate, leading to aberrant self-renewal, differentiation, and function of aged HSCs. In turn, these factors provide an opportunity for aged HSCs to expand by modulating their self-renewal and differentiation balance, thereby contributing to the development of hematological malignancies.
Collapse
Affiliation(s)
- Takako Yokomizo
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
9
|
Meyer DH, Schumacher B. Aging clocks based on accumulating stochastic variation. NATURE AGING 2024; 4:871-885. [PMID: 38724736 PMCID: PMC11186771 DOI: 10.1038/s43587-024-00619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/28/2024] [Indexed: 05/15/2024]
Abstract
Aging clocks have provided one of the most important recent breakthroughs in the biology of aging, and may provide indicators for the effectiveness of interventions in the aging process and preventive treatments for age-related diseases. The reproducibility of accurate aging clocks has reinvigorated the debate on whether a programmed process underlies aging. Here we show that accumulating stochastic variation in purely simulated data is sufficient to build aging clocks, and that first-generation and second-generation aging clocks are compatible with the accumulation of stochastic variation in DNA methylation or transcriptomic data. We find that accumulating stochastic variation is sufficient to predict chronological and biological age, indicated by significant prediction differences in smoking, calorie restriction, heterochronic parabiosis and partial reprogramming. Although our simulations may not explicitly rule out a programmed aging process, our results suggest that stochastically accumulating changes in any set of data that have a ground state at age zero are sufficient for generating aging clocks.
Collapse
Affiliation(s)
- David H Meyer
- Institute for Genome Stability in Aging and Disease, University Hospital and University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, University Hospital and University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
10
|
Bell CG. Quantifying stochasticity in the aging DNA methylome. NATURE AGING 2024; 4:755-758. [PMID: 38755436 DOI: 10.1038/s43587-024-00634-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
11
|
Zhu T, Tong H, Du Z, Beck S, Teschendorff AE. An improved epigenetic counter to track mitotic age in normal and precancerous tissues. Nat Commun 2024; 15:4211. [PMID: 38760334 PMCID: PMC11101651 DOI: 10.1038/s41467-024-48649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
The cumulative number of stem cell divisions in a tissue, known as mitotic age, is thought to be a major determinant of cancer-risk. Somatic mutational and DNA methylation (DNAm) clocks are promising tools to molecularly track mitotic age, yet their relationship is underexplored and their potential for cancer risk prediction in normal tissues remains to be demonstrated. Here we build and validate an improved pan-tissue DNAm counter of total mitotic age called stemTOC. We demonstrate that stemTOC's mitotic age proxy increases with the tumor cell-of-origin fraction in each of 15 cancer-types, in precancerous lesions, and in normal tissues exposed to major cancer risk factors. Extensive benchmarking against 6 other mitotic counters shows that stemTOC compares favorably, specially in the preinvasive and normal-tissue contexts. By cross-correlating stemTOC to two clock-like somatic mutational signatures, we confirm the mitotic-like nature of only one of these. Our data points towards DNAm as a promising molecular substrate for detecting mitotic-age increases in normal tissues and precancerous lesions, and hence for developing cancer-risk prediction strategies.
Collapse
Affiliation(s)
- Tianyu Zhu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Huige Tong
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Zhaozhen Du
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Stephan Beck
- Medical Genomics Group, UCL Cancer Institute, University College London, 72 Huntley Street, WC1E 6BT, London, UK
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| |
Collapse
|
12
|
Teschendorff AE. On epigenetic stochasticity, entropy and cancer risk. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230054. [PMID: 38432318 PMCID: PMC10909509 DOI: 10.1098/rstb.2023.0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/26/2023] [Indexed: 03/05/2024] Open
Abstract
Epigenetic changes are known to accrue in normal cells as a result of ageing and cumulative exposure to cancer risk factors. Increasing evidence points towards age-related epigenetic changes being acquired in a quasi-stochastic manner, and that they may play a causal role in cancer development. Here, I describe the quasi-stochastic nature of DNA methylation (DNAm) changes in ageing cells as well as in normal cells at risk of neoplastic transformation, discussing the implications of this stochasticity for developing cancer risk prediction strategies, and in particular, how it may require a conceptual paradigm shift in how we select cancer risk markers. I also describe the mounting evidence that a significant proportion of DNAm changes in ageing and cancer development are related to cell proliferation, reflecting tissue-turnover and the opportunity this offers for predicting cancer risk via the development of epigenetic mitotic-like clocks. Finally, I describe how age-associated DNAm changes may be causally implicated in cancer development via an irreversible suppression of tissue-specific transcription factors that increases epigenetic and transcriptomic entropy, promoting a more plastic yet aberrant cancer stem-cell state. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Andrew E. Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, People's Republic of China
| |
Collapse
|
13
|
Lv L, Chen Q, Lu J, Zhao Q, Wang H, Li J, Yuan K, Dong Z. Potential regulatory role of epigenetic modifications in aging-related heart failure. Int J Cardiol 2024; 401:131858. [PMID: 38360101 DOI: 10.1016/j.ijcard.2024.131858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/27/2023] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Heart failure (HF) is a serious clinical syndrome and a serious development or advanced stage of various heart diseases. Aging is an independent factor that causes pathological damage in cardiomyopathy and participates in the occurrence of HF at the molecular level by affecting mechanisms such as telomere shortening and mitochondrial dysfunction. Epigenetic changes have a significant impact on the aging process, and there is increasing evidence that genetic and epigenetic changes are key features of aging and aging-related diseases. Epigenetic modifications can affect genetic information by changing the chromatin state without changing the DNA sequence. Most of the genetic loci that are highly associated with cardiovascular diseases (CVD) are located in non-coding regions of the genome; therefore, the epigenetic mechanism of CVD has attracted much attention. In this review, we focus on the molecular mechanisms of HF during aging and epigenetic modifications mediating aging-related HF, emphasizing that epigenetic mechanisms play an important role in the pathogenesis of aging-related CVD and can be used as potential diagnostic and prognostic biomarkers, as well as therapeutic targets.
Collapse
Affiliation(s)
- Lin Lv
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - QiuYu Chen
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Lu
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Zhao
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - HongYan Wang
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - JiaHao Li
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - KeYing Yuan
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - ZengXiang Dong
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Transplantation, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
14
|
Cisterna B, Malatesta M. Molecular and Structural Alterations of Skeletal Muscle Tissue Nuclei during Aging. Int J Mol Sci 2024; 25:1833. [PMID: 38339110 PMCID: PMC10855217 DOI: 10.3390/ijms25031833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Aging is accompanied by a progressive loss of skeletal muscle mass and strength. The mechanisms underlying this phenomenon are certainly multifactorial and still remain to be fully elucidated. Changes in the cell nucleus structure and function have been considered among the possible contributing causes. This review offers an overview of the current knowledge on skeletal muscle nuclei in aging, focusing on the impairment of nuclear pathways potentially involved in age-related muscle decline. In skeletal muscle two types of cells are present: fiber cells, constituting the contractile muscle mass and containing hundreds of myonuclei, and the satellite cells, i.e., the myogenic mononuclear stem cells occurring at the periphery of the fibers and responsible for muscle growth and repair. Research conducted on different experimental models and with different methodological approaches demonstrated that both the myonuclei and satellite cell nuclei of aged skeletal muscles undergo several structural and molecular alterations, affecting chromatin organization, gene expression, and transcriptional and post-transcriptional activities. These alterations play a key role in the impairment of muscle fiber homeostasis and regeneration, thus contributing to the age-related decrease in skeletal muscle mass and function.
Collapse
Affiliation(s)
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy;
| |
Collapse
|
15
|
Cui Y, Wang K, Jiang D, Jiang Y, Shi D, DeGregori J, Waxman S, Ren R. Promoting longevity with less cancer: The 2022 International Conference on Aging and Cancer. AGING AND CANCER 2023; 4:111-120. [DOI: 10.1002/aac2.12068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2024]
Abstract
AbstractAging and cancer are increasingly becoming big challenges for public health worldwide due to increased human life expectancy. Meanwhile, aging is one of the major risk factors for cancer. In December 2019, the first International Conference on Aging and Cancer was held in Haikou, Hainan province (island), China, preluding the establishment of the International Center for Aging and Cancer (ICAC) at Hainan, an institute dedicated to the research at the intersection of aging and cancer. Since then, the ICAC has hosted the annual conference each December in Hainan. The 2022 ICAC conference, with the theme of “promoting longevity with less cancer,” invited 17 internationally renowned scientists to share their new research and insights. Topics included DNA methylation in rejuvenation, development, and cellular senescence; lifespan regulation and longevity manipulation; metabolism and aging; cellular senescence and diseases; and novel therapeutics for cancer and antiaging/anticancer drug discovery. The forum highlighted the interconnectedness of aging and senescence with cancer evolution and risk. Although there is hope for preventing diseases like cancer by modulating systems that also control lifespan, attention has to be paid to the conflicting needs and competing demands in human biology.
Collapse
Affiliation(s)
- Yan Cui
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - Kai Wang
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - Danli Jiang
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - Yizhou Jiang
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - Dawei Shi
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora Colorado USA
| | - Samuel Waxman
- Department of Hematology/Oncology Icahn School of Medicine at Mount Sinai New York City New York USA
| | - Ruibao Ren
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| |
Collapse
|
16
|
Sun A, Park P, Cole L, Vaidya H, Maegawa S, Keith K, Calendo G, Madzo J, Jelinek J, Jobin C, Issa JPJ. Non-pathogenic microbiota accelerate age-related CpG Island methylation in colonic mucosa. Epigenetics 2023; 18:2160568. [PMID: 36572998 PMCID: PMC9980687 DOI: 10.1080/15592294.2022.2160568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/11/2022] [Indexed: 12/28/2022] Open
Abstract
DNA methylation is an epigenetic process altered in cancer and ageing. Age-related methylation drift can be used to estimate lifespan and can be influenced by extrinsic factors such as diet. Here, we report that non-pathogenic microbiota accelerate age-related methylation drift in the colon when compared with germ-free mice. DNA methylation analyses showed that microbiota and IL10KO were associated with changes in 5% and 4.1% of CpG sites, while mice with both factors had 18% alterations. Microbiota, IL10KO, and their combination altered 0.4%, 0.4%, and 4% of CpG island methylation, respectively. These are comparable to what is seen in colon cancer. Ageing changes were accelerated in the IL10KO mice with microbiota, and the affected genes were more likely to be altered in colon cancer. Thus, the microbiota affect DNA methylation of the colon in patterns reminiscent of what is observed in ageing and colorectal cancer.
Collapse
Affiliation(s)
- Ang Sun
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
| | - Pyounghwa Park
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Lauren Cole
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
| | - Himani Vaidya
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Shinji Maegawa
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Research Department of Pediatrics, University of Texas, MD Anderson Cancer Center Department of Pediatrics, University of Texas, MD Anderson Cancer CenterHouston, TX, USA
| | - Kelsey Keith
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Gennaro Calendo
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Jozef Madzo
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Jaroslav Jelinek
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Christian Jobin
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jean-Pierre J. Issa
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| |
Collapse
|
17
|
Naue J. Getting the chronological age out of DNA: using insights of age-dependent DNA methylation for forensic DNA applications. Genes Genomics 2023; 45:1239-1261. [PMID: 37253906 PMCID: PMC10504122 DOI: 10.1007/s13258-023-01392-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/15/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND DNA analysis for forensic investigations has a long tradition with important developments and optimizations since its first application. Traditionally, short tandem repeats analysis has been the most powerful method for the identification of individuals. However, in addition, epigenetic changes, i.e., DNA methylation, came into focus of forensic DNA research. Chronological age prediction is one promising application to allow for narrowing the pool of possible individuals who caused a trace, as well as to support the identification of unknown bodies and for age verification of living individuals. OBJECTIVE This review aims to provide an overview of the current knowledge, possibilities, and (current) limitations about DNA methylation-based chronological age prediction with emphasis on forensic application. METHODS The development, implementation and application of age prediction tools requires a deep understanding about the biological background, the analysis methods, the age-dependent DNA methylation markers, as well as the mathematical models for age prediction and their evaluation. Furthermore, additional influences can have an impact. Therefore, the literature was evaluated in respect to these diverse topics. CONCLUSION The numerous research efforts in recent years have led to a rapid change in our understanding of the application of DNA methylation for chronological age prediction, which is now on the way to implementation and validation. Knowledge of the various aspects leads to a better understanding and allows a more informed interpretation of DNAm quantification results, as well as the obtained results by the age prediction tools.
Collapse
Affiliation(s)
- Jana Naue
- Institute of Forensic Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
18
|
Hay AD, Kessler NJ, Gebert D, Takahashi N, Tavares H, Teixeira FK, Ferguson-Smith AC. Epigenetic inheritance is unfaithful at intermediately methylated CpG sites. Nat Commun 2023; 14:5336. [PMID: 37660134 PMCID: PMC10475082 DOI: 10.1038/s41467-023-40845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/12/2023] [Indexed: 09/04/2023] Open
Abstract
DNA methylation at the CpG dinucleotide is considered a stable epigenetic mark due to its presumed long-term inheritance through clonal expansion. Here, we perform high-throughput bisulfite sequencing on clonally derived somatic cell lines to quantitatively measure methylation inheritance at the nucleotide level. We find that although DNA methylation is generally faithfully maintained at hypo- and hypermethylated sites, this is not the case at intermediately methylated CpGs. Low fidelity intermediate methylation is interspersed throughout the genome and within genes with no or low transcriptional activity, and is not coordinately maintained between neighbouring sites. We determine that the probabilistic changes that occur at intermediately methylated sites are likely due to DNMT1 rather than DNMT3A/3B activity. The observed lack of clonal inheritance at intermediately methylated sites challenges the current epigenetic inheritance model and has direct implications for both the functional relevance and general interpretability of DNA methylation as a stable epigenetic mark.
Collapse
Affiliation(s)
- Amir D Hay
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Noah J Kessler
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Daniel Gebert
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Nozomi Takahashi
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Hugo Tavares
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Felipe K Teixeira
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
19
|
Shijimaya T, Tahara T, Yamazaki J, Kobayashi S, Horitani A, Matsumoto Y, Nakamura N, Okazaki T, Takahashi Y, Tomiyama T, Honzawa Y, Fukata N, Fukui T, Naganuma M. Microarchitectures of Barrett's esophagus associated with DNA methylation status. Epigenomics 2023; 15:759-767. [PMID: 37661863 DOI: 10.2217/epi-2023-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Aim: DNA methylation is involved in esophageal adenocarcinoma (EAC) and Barrett's esophagus (BE). Microarchitectures of on-neoplastic BE associated with DNA methylation status were examined using magnifying narrow-band imaging (NBI) endoscopy. Patients and methods: Using biopsies from non-neoplastic BE without cancer (n = 66; N group), with EAC (n = 27; ADJ group) and EAC tissue (n = 22; T group), methylation of N33, DPYS, SLC16A12, miR124a3 and miR34bc genes were quantified. Magnifying NBI features of non-neoplastic BE were classified according to their morphologies. Results: The ADJ and T groups presented higher DNA methylation compared with the N group. Magnifying NBI endoscopic features of non-neoplastic BE also correlated with DNA methylation as an independent factor. Conclusion: Microarchitectures of BE visualized by magnifying NBI endoscopy correlated with DNA methylation.
Collapse
Affiliation(s)
- Takuya Shijimaya
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Tomomitsu Tahara
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Jumpei Yamazaki
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan
- One Health Research Center and Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| | - Sanshiro Kobayashi
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Anna Horitani
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Yasushi Matsumoto
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Naohiro Nakamura
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Takashi Okazaki
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Yu Takahashi
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Takashi Tomiyama
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Yusuke Honzawa
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Norimasa Fukata
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Toshiro Fukui
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Makoto Naganuma
- Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
20
|
Senapati P, Miyano M, Sayaman RW, Basam M, Leung A, LaBarge MA, Schones DE. Loss of epigenetic suppression of retrotransposons with oncogenic potential in aging mammary luminal epithelial cells. Genome Res 2023; 33:1229-1241. [PMID: 37463750 PMCID: PMC10547379 DOI: 10.1101/gr.277511.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
A primary function of DNA methylation in mammalian genomes is to repress transposable elements (TEs). The widespread methylation loss that is commonly observed in cancer cells results in the loss of epigenetic repression of TEs. The aging process is similarly characterized by changes to the methylome. However, the impact of these epigenomic alterations on TE silencing and the functional consequences of this have remained unclear. To assess the epigenetic regulation of TEs in aging, we profiled DNA methylation in human mammary luminal epithelial cells (LEps)-a key cell lineage implicated in age-related breast cancers-from younger and older women. We report here that several TE subfamilies function as regulatory elements in normal LEps, and a subset of these display consistent methylation changes with age. Methylation changes at these TEs occurred at lineage-specific transcription factor binding sites, consistent with loss of lineage specificity. Whereas TEs mainly showed methylation loss, CpG islands (CGIs) that are targets of the Polycomb repressive complex 2 (PRC2) show a gain of methylation in aging cells. Many TEs with methylation loss in aging LEps have evidence of regulatory activity in breast cancer samples. We furthermore show that methylation changes at TEs impact the regulation of genes associated with luminal breast cancers. These results indicate that aging leads to DNA methylation changes at TEs that undermine the maintenance of lineage specificity, potentially increasing susceptibility to breast cancer.
Collapse
Affiliation(s)
- Parijat Senapati
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Masaru Miyano
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Rosalyn W Sayaman
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
- Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143-0981, USA
| | - Mudaser Basam
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Amy Leung
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010, USA
- Center for Cancer Biomarker Research, University of Bergen, 5021 Bergen, Norway
| | - Dustin E Schones
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA;
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010, USA
| |
Collapse
|
21
|
Milicic L, Porter T, Vacher M, Laws SM. Utility of DNA Methylation as a Biomarker in Aging and Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:475-503. [PMID: 37313495 PMCID: PMC10259073 DOI: 10.3233/adr-220109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/23/2023] [Indexed: 06/15/2023] Open
Abstract
Epigenetic mechanisms such as DNA methylation have been implicated in a number of diseases including cancer, heart disease, autoimmune disorders, and neurodegenerative diseases. While it is recognized that DNA methylation is tissue-specific, a limitation for many studies is the ability to sample the tissue of interest, which is why there is a need for a proxy tissue such as blood, that is reflective of the methylation state of the target tissue. In the last decade, DNA methylation has been utilized in the design of epigenetic clocks, which aim to predict an individual's biological age based on an algorithmically defined set of CpGs. A number of studies have found associations between disease and/or disease risk with increased biological age, adding weight to the theory of increased biological age being linked with disease processes. Hence, this review takes a closer look at the utility of DNA methylation as a biomarker in aging and disease, with a particular focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Lidija Milicic
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Michael Vacher
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- CSIRO Health and Biosecurity, Australian e-Health Research Centre, Floreat, Western Australia
| | - Simon M. Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
22
|
Kaushik A, Chaudhary V, Longkumer I, Saraswathy KN, Jain S. Sex-specific variations in global DNA methylation levels with age: a population-based exploratory study from North India. Front Genet 2023; 14:1038529. [PMID: 37255712 PMCID: PMC10225692 DOI: 10.3389/fgene.2023.1038529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Purpose: Aging is one of the most important risk factors for a number of human diseases. Epigenetic alterations, including changes in DNA methylation patterns, have been reported to be one of the hallmarks of aging. Being a malleable process, the role of site-specific DNA methylation in aging is being extensively investigated; however, much less attention has been given to alterations in global DNA methylation with aging at the population level. The present study aims to explore overall and sex-specific variations in global DNA methylation patterns with age. Methods: A total of 1,127 adult individuals (792 females) aged 30-75 years belonging to Haryana, North India, were recruited. Socio-demographic data was collected using a pretested interview schedule. Global DNA methylation analysis, of peripheral blood leucocyte (PBL) DNA, was performed using the ELISA-based colorimetric technique. Results: Though the overall correlation analysis revealed a weak inverse trend between global DNA methylation and age, the adjusted regression model showed no significant association between global DNA methylation and age. In age-stratified analysis, global DNA methylation levels were found to be fairly stable until 60 years of age, followed by a decline in the above-60 age group. Further, no significant difference in DNA patterns methylation pattern was observed between males and females. Conclusion: Overall, the study suggests a lack of association between global DNA methylation and age, especially until 60 years of age, and a similar DNA methylation pattern between males and females with respect to age.
Collapse
Affiliation(s)
- Anshika Kaushik
- Laboratory of Molecular and Biochemical Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | - Vineet Chaudhary
- Laboratory of Molecular and Biochemical Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | - Imnameren Longkumer
- Laboratory of Molecular and Biochemical Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | | | - Sonal Jain
- Laboratory of Molecular and Biochemical Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| |
Collapse
|
23
|
Tricarico R, Madzo J, Scher G, Cohen M, Jelinek J, Maegawa S, Nagarathinam R, Scher C, Chang WC, Nicolas E, Slifker M, Zhou Y, Devarajan K, Cai KQ, Kwok T, Nakajima P, Xu J, Mancuso P, Doneddu V, Bagella L, Williams R, Balachandran S, Maskalenko N, Campbell K, Ma X, Cañadas I, Viana-Errasti J, Moreno V, Valle L, Grivennikov S, Peshkova I, Kurilenko N, Mazitova A, Koltsova E, Lee H, Walsh M, Duttweiler R, Whetstine JR, Yen TJ, Issa JP, Bellacosa A. TET1 and TDG Suppress Inflammatory Response in Intestinal Tumorigenesis: Implications for Colorectal Tumors With the CpG Island Methylator Phenotype. Gastroenterology 2023; 164:921-936.e1. [PMID: 36764492 PMCID: PMC10586516 DOI: 10.1053/j.gastro.2023.01.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 12/28/2022] [Accepted: 01/14/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND & AIMS Aberrant DNA methylation is frequent in colorectal cancer (CRC), but underlying mechanisms and pathologic consequences are poorly understood. METHODS We disrupted active DNA demethylation genes Tet1 and/or Tdg from ApcMin mice and characterized the methylome and transcriptome of colonic adenomas. Data were compared to human colonic adenocarcinomas (COAD) in The Cancer Genome Atlas. RESULTS There were increased numbers of small intestinal adenomas in ApcMin mice expressing the TdgN151A allele, whereas Tet1-deficient and Tet1/TdgN151A-double heterozygous ApcMin colonic adenomas were larger with features of erosion and invasion. We detected reduction in global DNA hypomethylation in colonic adenomas from Tet1- and Tdg-mutant ApcMin mice and hypermethylation of CpG islands in Tet1-mutant ApcMin adenomas. Up-regulation of inflammatory, immune, and interferon response genes was present in Tet1- and Tdg-mutant colonic adenomas compared to control ApcMin adenomas. This up-regulation was also seen in murine colonic organoids and human CRC lines infected with lentiviruses expressing TET1 or TDG short hairpin RNA. A 127-gene inflammatory signature separated colonic adenocarcinomas into 4 groups, closely aligned with their microsatellite or chromosomal instability and characterized by different levels of DNA methylation and DNMT1 expression that anticorrelated with TET1 expression. Tumors with the CpG island methylator phenotype (CIMP) had concerted high DNMT1/low TET1 expression. TET1 or TDG knockdown in CRC lines enhanced killing by natural killer cells. CONCLUSIONS Our findings reveal a novel epigenetic regulation, linked to the type of genomic instability, by which TET1/TDG-mediated DNA demethylation decreases methylation levels and inflammatory/interferon/immune responses. CIMP in CRC is triggered by an imbalance of methylating activities over demethylating activities. These mice represent a model of CIMP CRC.
Collapse
Affiliation(s)
- Rossella Tricarico
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jozef Madzo
- Coriell Institute for Medical Research, Camden, New Jersey
| | - Gabrielle Scher
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Maya Cohen
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Shinji Maegawa
- University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | | - Carly Scher
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Wen-Chi Chang
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Emmanuelle Nicolas
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Michael Slifker
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yan Zhou
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Karthik Devarajan
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kathy Q Cai
- Experimental Histopathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Tim Kwok
- Cell Culture Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Pamela Nakajima
- Cell Culture Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jinfei Xu
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Pietro Mancuso
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Valentina Doneddu
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Riley Williams
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Siddharth Balachandran
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Nicholas Maskalenko
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kerry Campbell
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Xueying Ma
- Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Israel Cañadas
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Julen Viana-Errasti
- Hereditary Cancer Program Catalan Institute of Oncology, Oncobell Program, Investigación Biomédica de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology, Oncobell Program, Investigación Biomédica de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Laura Valle
- Hereditary Cancer Program Catalan Institute of Oncology, Oncobell Program, Investigación Biomédica de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Sergei Grivennikov
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Iuliia Peshkova
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Natalia Kurilenko
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Aleksandra Mazitova
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ekaterina Koltsova
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hayan Lee
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Martin Walsh
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Reuben Duttweiler
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Timothy J Yen
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Alfonso Bellacosa
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
24
|
Wu Y, Montrose L, Kochmanski JK, Dolinoy DC, Téllez-Rojo MM, Cantoral A, Mercado-García A, Peterson KE, Goodrich JM. Is adiposity related to repeat measures of blood leukocyte DNA methylation across childhood and adolescence? Clin Obes 2023; 13:e12566. [PMID: 36416295 PMCID: PMC9991944 DOI: 10.1111/cob.12566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/24/2022]
Abstract
Epigenetic modifications such as DNA methylation may influence gene expression and phenotypes, including obesity in childhood. The directionality of this relationship is nevertheless unclear, and some evidence suggests that adiposity modifies the epigenome, rather than the other way around. In this pilot study, we utilize data from the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) study to examine whether measures of adiposity in childhood and early adolescence are associated with repeated measures of blood leukocyte DNA methylation at LINE-1 repetitive elements and two genes implicated in growth and adiposity: H19 and HSD11B2. Longitudinal epigenetic data were generated from cord blood and blood from follow-up visits in early and late adolescence. We assessed interactions between age and measures of body mass index (BMI) at 5 years of age and weight, BMI and waist circumference in early adolescence to infer whether adiposity deflects age-related DNA methylation changes throughout childhood. Applying linear mixed-effects models, we found an inverse association between measures of childhood BMI (kg/m2 ) and early-teen weight (kg) with repeat measures of H19 DNA methylation. We did not observe any statistically significant associations (p-value <.05) between any anthropometric measures and DNA methylation at LINE-1 or HSD11B2. We did not demonstrate statistically significant evidence in support of deflection of age-related DNA methylation trajectories by adiposity-related measures (age by adiposity interaction term). Given the pilot nature of this study, the relationships between repeat measures of DNA methylation and adiposity-measures across childhood merit further exploration in larger study populations.
Collapse
Affiliation(s)
- Yue Wu
- Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, CN
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Luke Montrose
- Department of Community and Environmental Health, Boise State University, Boise, ID, USA
| | - Joseph K. Kochmanski
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, MX
| | | | - Adriana Mercado-García
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, MX
| | - Karen E. Peterson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Vaidya H, Jeong HS, Keith K, Maegawa S, Calendo G, Madzo J, Jelinek J, Issa JPJ. DNA methylation entropy as a measure of stem cell replication and aging. Genome Biol 2023; 24:27. [PMID: 36797759 PMCID: PMC9933260 DOI: 10.1186/s13059-023-02866-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 02/05/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Epigenetic marks are encoded by DNA methylation and accumulate errors as organisms age. This drift correlates with lifespan, but the biology of how this occurs is still unexplained. We analyze DNA methylation with age in mouse intestinal stem cells and compare them to nonstem cells. RESULTS Age-related changes in DNA methylation are identical in stem and nonstem cells, affect most prominently CpG islands and correlate weakly with gene expression. Age-related DNA methylation entropy, measured by the Jensen-Shannon Distribution, affects up to 25% of the detectable CpG sites and is a better measure of aging than individual CpG methylation. We analyze this entropy as a function of age in seven other tissues (heart, kidney, skeletal muscle, lung, liver, spleen, and blood) and it correlates strikingly with tissue-specific stem cell division rates. Thus, DNA methylation drift and increased entropy with age are primarily caused by and are sensors for, stem cell replication in adult tissues. CONCLUSIONS These data have implications for the mechanisms of tissue-specific functional declines with aging and for the development of DNA-methylation-based biological clocks.
Collapse
Affiliation(s)
- Himani Vaidya
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ 08013 USA
| | - Hye Seon Jeong
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ 08013 USA ,grid.411665.10000 0004 0647 2279Department of Neurology, Chungnam National University Hospital, Daejeon, South Korea
| | - Kelsey Keith
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ 08013 USA
| | - Shinji Maegawa
- grid.240145.60000 0001 2291 4776Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX USA
| | - Gennaro Calendo
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ 08013 USA
| | - Jozef Madzo
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ 08013 USA
| | - Jaroslav Jelinek
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ 08013 USA
| | - Jean-Pierre J. Issa
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ 08013 USA
| |
Collapse
|
26
|
Davide G, Rebecca C, Irene P, Luciano C, Francesco R, Marta N, Miriam O, Natascia B, Pierluigi P. Epigenetics of Autism Spectrum Disorders: A Multi-level Analysis Combining Epi-signature, Age Acceleration, Epigenetic Drift and Rare Epivariations Using Public Datasets. Curr Neuropharmacol 2023; 21:2362-2373. [PMID: 37489793 PMCID: PMC10556384 DOI: 10.2174/1570159x21666230725142338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Epigenetics of Autism Spectrum Disorders (ASD) is still an understudied field. The majority of the studies on the topic used an approach based on mere classification of cases and controls. OBJECTIVE The present study aimed at providing a multi-level approach in which different types of epigenetic analysis (epigenetic drift, age acceleration) are combined. METHODS We used publicly available datasets from blood (n = 3) and brain tissues (n = 3), separately. Firstly, we evaluated for each dataset and meta-analyzed the differential methylation profile between cases and controls. Secondly, we analyzed age acceleration, epigenetic drift and rare epigenetic variations. RESULTS We observed a significant epi-signature of ASD in blood but not in brain specimens. We did not observe significant age acceleration in ASD, while epigenetic drift was significantly higher compared to controls. We reported the presence of significant rare epigenetic variations in 41 genes, 35 of which were never associated with ASD. Almost all genes were involved in pathways linked to ASD etiopathogenesis (i.e., neuronal development, mitochondrial metabolism, lipid biosynthesis and antigen presentation). CONCLUSION Our data support the hypothesis of the use of blood epi-signature as a potential tool for diagnosis and prognosis of ASD. The presence of an enhanced epigenetic drift, especially in brain, which is linked to cellular replication, may suggest that alteration in epigenetics may occur at a very early developmental stage (i.e., fetal) when neuronal replication is still high.
Collapse
Affiliation(s)
- Gentilini Davide
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Milan, 20090, Italy
| | - Cavagnola Rebecca
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Possenti Irene
- Department of Statistical Sciences Paolo Fortunati, University of Bologna, Bologna, Italy
| | - Calzari Luciano
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Milan, 20090, Italy
| | - Ranucci Francesco
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Nola Marta
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Olivola Miriam
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Brondino Natascia
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Politi Pierluigi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| |
Collapse
|
27
|
Lai CQ, Parnell LD, Lee YC, Zeng H, Smith CE, McKeown NM, Arnett DK, Ordovás JM. The impact of alcoholic drinks and dietary factors on epigenetic markers associated with triglyceride levels. Front Genet 2023; 14:1117778. [PMID: 36873949 PMCID: PMC9975169 DOI: 10.3389/fgene.2023.1117778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Background: Many epigenetic loci have been associated with plasma triglyceride (TG) levels, but epigenetic connections between those loci and dietary exposures are largely unknown. This study aimed to characterize the epigenetic links between diet, lifestyle, and TG. Methods: We first conducted an epigenome-wide association study (EWAS) for TG in the Framingham Heart Study Offspring population (FHS, n = 2,264). We then examined relationships between dietary and lifestyle-related variables, collected four times in 13 years, and differential DNA methylation sites (DMSs) associated with the last TG measures. Third, we conducted a mediation analysis to evaluate the causal relationships between diet-related variables and TG. Finally, we replicated three steps to validate identified DMSs associated with alcohol and carbohydrate intake in the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN) study (n = 993). Results: In the FHS, the EWAS revealed 28 TG-associated DMSs at 19 gene regions. We identified 102 unique associations between these DMSs and one or more dietary and lifestyle-related variables. Alcohol and carbohydrate intake showed the most significant and consistent associations with 11 TG-associated DMSs. Mediation analyses demonstrated that alcohol and carbohydrate intake independently affect TG via DMSs as mediators. Higher alcohol intake was associated with lower methylation at seven DMSs and higher TG. In contrast, increased carbohydrate intake was associated with higher DNA methylation at two DMSs (CPT1A and SLC7A11) and lower TG. Validation in the GOLDN further supports the findings. Conclusion: Our findings imply that TG-associated DMSs reflect dietary intakes, particularly alcoholic drinks, which could affect the current cardiometabolic risk via epigenetic changes. This study illustrates a new method to map epigenetic signatures of environmental factors for disease risk. Identification of epigenetic markers of dietary intake can provide insight into an individual's risk of cardiovascular disease and support the application of precision nutrition. Clinical Trial Registration: www.ClinicalTrials.gov, the Framingham Heart Study (FHS), NCT00005121; the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN), NCT01023750.
Collapse
Affiliation(s)
- Chao-Qiang Lai
- USDA ARS, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Laurence D Parnell
- USDA ARS, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Yu-Chi Lee
- USDA ARS, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Haihan Zeng
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Caren E Smith
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Nicola M McKeown
- Programs of Nutrition, Department of Health Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, United States.,Nutrition Epidemiology and Data Science Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Donna K Arnett
- Office of the Provost, University of South Carolina, Columbia, SC, United States
| | - José M Ordovás
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States.,IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
28
|
Wang Z, Liu H, Gong Y, Cheng Y. Establishment and validation of an aging-related risk signature associated with prognosis and tumor immune microenvironment in breast cancer. Eur J Med Res 2022; 27:317. [PMID: 36581948 PMCID: PMC9798726 DOI: 10.1186/s40001-022-00924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/01/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is a highly malignant and heterogeneous tumor which is currently the cancer with the highest incidence and seriously endangers the survival and prognosis of patients. Aging, as a research hotspot in recent years, is widely considered to be involved in the occurrence and development of a variety of tumors. However, the relationship between aging-related genes (ARGs) and BC has not yet been fully elucidated. MATERIALS AND METHODS The expression profiles and clinicopathological data were acquired in the Cancer Genome Atlas (TCGA) and the gene expression omnibus (GEO) database. Firstly, the differentially expressed ARGs in BC and normal breast tissues were investigated. Based on these differential genes, a risk model was constructed composed of 11 ARGs via univariate and multivariate Cox analysis. Subsequently, survival analysis, independent prognostic analysis, time-dependent receiver operating characteristic (ROC) analysis and nomogram were performed to assess its ability to sensitively and specifically predict the survival and prognosis of patients, which was also verified in the validation set. In addition, functional enrichment analysis and immune infiltration analysis were applied to reveal the relationship between the risk scores and tumor immune microenvironment, immune status and immunotherapy. Finally, multiple datasets and real-time polymerase chain reaction (RT-PCR) were utilized to verify the expression level of the key genes. RESULTS An 11-gene signature (including FABP7, IGHD, SPIB, CTSW, IGKC, SEZ6, S100B, CXCL1, IGLV6-57, CPLX2 and CCL19) was established to predict the survival of BC patients, which was validated by the GEO cohort. Based on the risk model, the BC patients were divided into high- and low-risk groups, and the high-risk patients showed worse survival. Stepwise ROC analysis and Cox analyses demonstrated the good performance and independence of the model. Moreover, a nomogram combined with the risk score and clinical parameters was built for prognostic prediction. Functional enrichment analysis revealed the robust relationship between the risk model with immune-related functions and pathways. Subsequent immune microenvironment analysis, immunotherapy, etc., indicated that the immune status of patients in the high-risk group decreased, and the anti-tumor immune function was impaired, which was significantly different with those in the low-risk group. Eventually, the expression level of FABP7, IGHD, SPIB, CTSW, IGKC, SEZ6, S100B, CXCL1, IGLV6-57 and CCL19 was identified as down-regulated in tumor cell line, while CPLX2 up-regulated, which was mostly similar with the results in TCGA and Human Protein Atlas (HPA) via RT-PCR. CONCLUSIONS In summary, our study constructed a risk model composed of ARGs, which could be used as a solid model for predicting the survival and prognosis of BC patients. Moreover, this model also played an important role in tumor immunity, providing a new direction for patient immune status assessment and immunotherapy selection.
Collapse
Affiliation(s)
- Zitao Wang
- grid.412632.00000 0004 1758 2270Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| | - Hua Liu
- grid.412632.00000 0004 1758 2270Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| | - Yiping Gong
- grid.412632.00000 0004 1758 2270Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| | - Yanxiang Cheng
- grid.412632.00000 0004 1758 2270Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| |
Collapse
|
29
|
Aberrant Methylation of Somatostatin Receptor 2 Gene Is Initiated in Aged Gastric Mucosa Infected with Helicobacter pylori and Consequential Gene Silencing Is Associated with Establishment of Inflammatory Microenvironment In Vitro Study. Cancers (Basel) 2022; 14:cancers14246183. [PMID: 36551669 PMCID: PMC9777158 DOI: 10.3390/cancers14246183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The loss-of-function variants are thought to be associated with inflammation in the stomach. We here aimed to evaluate the extent and role of methylation at the SSTR2 promoter in inflammation and gastric tumor formation. A whole-genome bisulfite sequencing analysis revealed that the SSTR2 promoter was significantly hypermethylated in gastric tumors, dysplasia, and intestinal metaplasia compared to non-tumor tissues from patients with gastric cancer. Using public data, we confirmed SSTR2 promoter methylation in primary gastric tumors and intestinal metaplasia, and even aged gastric mucosae infected with Helicobacter pylori, suggesting that aberrant methylation is initiated in normal gastric mucosa. The loss-of-function of SSTR2 in SNU638 cell-induced cell proliferation in vitro, while stable transfection of SSTR2 in AGS and MKN74 cells inhibited cell proliferation and tumorigenesis in vitro and in vivo. As revealed by a comparison of target genes differentially expressed in these cells with hallmark molecular signatures, inflammation-related pathways were distinctly induced in SSTR2-KO SNU638 cell. By contrast, inflammation-related pathways were inhibited in AGS and MKN74 cells ectopically expressing SSTR2. Collectively, we propose that SSTR2 silencing upon promoter methylation is initiated in aged gastric mucosae infected with H. pylori and promotes the establishment of an inflammatory microenvironment via the intrinsic pathway. These findings provide novel insights into the initiation of gastric carcinogenesis.
Collapse
|
30
|
Juříčková I, Hudec M, Votava F, Vosáhlo J, Ovsepian SV, Černá M, O’Leary VB. The Immunological Epigenetic Landscape of the Human Life Trajectory. Biomedicines 2022; 10:biomedicines10112894. [PMID: 36428462 PMCID: PMC9687906 DOI: 10.3390/biomedicines10112894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Adaptive immunity changes over an individual’s lifetime, maturing by adulthood and diminishing with old age. Epigenetic mechanisms involving DNA and histone methylation form the molecular basis of immunological memory during lymphocyte development. Monocytes alter their function to convey immune tolerance, yet the epigenetic influences at play remain to be fully understood in the context of lifespan. This study of a healthy genetically homogenous cohort of children, adults and seniors sought to decipher the epigenetic dynamics in B-lymphocytes and monocytes. Variable global cytosine methylation within retro-transposable LINE-1 repeats was noted in monocytes compared to B-lymphocytes across age groups. The expression of the human leukocyte antigen (HLA)-DQ alpha chain gene HLA-DQA1*01 revealed significantly reduced levels in monocytes in all ages relative to B-lymphocytes, as well as between lifespan groups. High melting point analysis and bisulfite sequencing of the HLA-DQA1*01 promoter in monocytes highlighted variable cytosine methylation in children and seniors but greater stability at this locus in adults. Further epigenetic evaluation revealed higher histone lysine 27 trimethylation in monocytes from this adult group. Chromatin immunoprecipitation and RNA pulldown demonstrated association with a novel lncRNA TINA with structurally conserved similarities to the previously recognized epigenetic modifier PARTICLE. Seeking to interpret the epigenetic immunological landscape across three representative age groups, this study focused on HLA-DQA1*01 to expose cytosine and histone methylation alterations and their association with the non-coding transcriptome. Such insights unveil previously unknown complex epigenetic layers, orchestrating the strength and weakening of adaptive immunity with the progression of life.
Collapse
Affiliation(s)
- Iva Juříčková
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Vinohrady, 10000 Prague, Czech Republic
- Correspondence: (I.J.); (V.B.O.)
| | - Michael Hudec
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Vinohrady, 10000 Prague, Czech Republic
| | - Felix Votava
- Department of Children and Adolescents, Third Faculty of Medicine, Charles University, Vinohrady, 10000 Prague, Czech Republic
- Královské Vinohrady University Hospital, Vinohrady, 10034 Prague, Czech Republic
| | - Jan Vosáhlo
- Department of Children and Adolescents, Third Faculty of Medicine, Charles University, Vinohrady, 10000 Prague, Czech Republic
- Královské Vinohrady University Hospital, Vinohrady, 10034 Prague, Czech Republic
| | - Saak Victor Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent ME4 4TB, UK
| | - Marie Černá
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Vinohrady, 10000 Prague, Czech Republic
| | - Valerie Bríd O’Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Vinohrady, 10000 Prague, Czech Republic
- Correspondence: (I.J.); (V.B.O.)
| |
Collapse
|
31
|
Fuggle NR, Laskou F, Harvey NC, Dennison EM. A review of epigenetics and its association with ageing of muscle and bone. Maturitas 2022; 165:12-17. [PMID: 35841774 DOI: 10.1016/j.maturitas.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 10/31/2022]
Abstract
Ageing is defined as the 'increasing frailty of an organism with time that reduces the ability of that organism to deal with stress'. It has been suggested that epigenetics may underlie the observation that some individuals appear to age faster than others. Epigenetics is the study of changes which occur in an organism due to changes in expression of the genetic code rather than changes to the genetic code itself; that is, epigenetic mechanisms impact upon the function of DNA without changing the DNA sequence. It is important to recognise that epigenetic changes, in contrast to genetic changes, can vary according to different cell types and therefore can demonstrate significant tissue-specificity. There are different types of epigenetic mechanisms: histone modification, non-coding RNAs and DNA methylation. Epigenetic clocks have been developed using statistical techniques to identify the optimal combination of CpG sites (from methylation arrays) to correlate with chronological age. This review considers how epigenetic factors may affect rates of ageing of muscle and bone and provides an overview of current understanding in this area. We discuss studies using first-generation epigenetic clocks, as well as the second-generation iterations, which appear to show stronger associations with the ageing muscle phenotype. We also review epigenome-wide association studies that have been performed in various tissues examining relationships with osteoporosis and fracture. It is hoped that an understanding of this area will lead to interventions that might prevent or reduce rates of musculoskeletal ageing in later life.
Collapse
Affiliation(s)
- N R Fuggle
- MRC Lifecourse Epidemiology Centre, University of Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland
| | - F Laskou
- MRC Lifecourse Epidemiology Centre, University of Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland
| | - N C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland
| | - E M Dennison
- MRC Lifecourse Epidemiology Centre, University of Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
32
|
Sprague AC, Niu L, Jandarov R, Zhang X, Zhang G, Chen A, Šarac J, Čoklo M, Missoni S, Rudan P, Langevin SM, Deka R. Stable methylation loci are associated with systolic blood pressure in a Croatian island population. Epigenomics 2022; 14:1343-1354. [PMID: 36453021 PMCID: PMC9816922 DOI: 10.2217/epi-2022-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
Background: The objective was to identify stable and dynamic DNA methylation loci associated with cardiometabolic traits among an adult population from the Croatian island of Hvar. Materials & methods: An epigenome-wide association study was conducted using peripheral blood longitudinally collected at two time points 10 years apart via Infinium MethylationEPIC beadarray (n = 112). Stable and dynamic loci were identified using linear mixed models. Associations between cardiometabolic traits and loci were assessed using linear models. Results: 22 CpG loci were significantly associated with systolic blood pressure. Twenty were stable and two were dynamic. Conclusion: Multiple genes may be involved in the determination of systolic blood pressure level via stable epigenetic programming, potentially established earlier in life.
Collapse
Affiliation(s)
- Alexander C Sprague
- Division of Epidemiology, Department of Environmental & Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Liang Niu
- Division of Biostatistics & Bioinformatics, Department of Environmental & Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Roman Jandarov
- Division of Biostatistics & Bioinformatics, Department of Environmental & Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiang Zhang
- Division of Environmental Genetics & Molecular Toxicology, Department of Environmental & Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Ge Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jelena Šarac
- Institute for Anthropological Research, Zagreb, Croatia
| | - Miran Čoklo
- Institute for Anthropological Research, Zagreb, Croatia
| | - Sasa Missoni
- Institute for Anthropological Research, Zagreb, Croatia
| | - Pavao Rudan
- Anthropological Center & Scientific Council for Anthropological Research, Croatian Academy of Arts & Sciences, Zagreb, Croatia
| | - Scott M Langevin
- Division of Epidemiology, Department of Environmental & Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- University of Cincinnati Cancer Center, Cincinnati, OH 45267, USA
| | - Ranjan Deka
- Division of Epidemiology, Department of Environmental & Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
33
|
Dolinko AV, Schultz BM, Ghosh J, Kalliora C, Mainigi M, Coutifaris C, Sapienza C, Senapati S. Disrupted methylation patterns at birth persist in early childhood: a prospective cohort analysis. Clin Epigenetics 2022; 14:129. [PMID: 36243864 PMCID: PMC9568969 DOI: 10.1186/s13148-022-01348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alterations in the epigenome are a risk factor in multiple disease states. We have demonstrated in the past that disruption of the epigenome during early pregnancy or periconception, as demonstrated by altered methylation, may be associated with both assisted reproductive technology and undesirable clinical outcomes at birth, such as low birth weight. We have previously defined this altered methylation, calculated based on statistical upper and lower limits of outlier CpGs compared to the population, as an 'outlier methylation phenotype' (OMP). Our aim in this study was to determine whether children thus identified as possessing an OMP at birth by DNA methylation in cord blood persist as outliers in early childhood based on salivary DNA methylation. RESULTS A total of 31 children were included in the analysis. Among 24 children for whom both cord blood DNA and salivary DNA were available, DNA methylation patterns, analyzed using the Illumina Infinium MethylationEPIC BeadChip (850 K), between cord blood at birth and saliva in childhood at age 6-12 years remain stable (R2 range 0.89-0.97). At birth, three out of 28 children demonstrated an OMP in multiple cord blood datasets and hierarchical clustering. Overall DNA methylation among all three OMP children identified as outliers at birth was remarkably stable (individual R2 0.908, 0.92, 0.915), even when only outlier CpG sites were considered (R2 0.694, 0.738, 0.828). CONCLUSIONS DNA methylation signatures in cord blood remain stable over time as demonstrated by a strong correlation with epigenetic salivary signatures in childhood. Future work is planned to identify whether a clinical phenotype is associated with OMP and, if so, could undesirable clinical outcomes in childhood and adulthood be predicted at birth.
Collapse
Affiliation(s)
- Andrey V Dolinko
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Bryant M Schultz
- Fels Cancer Institute for Personalized Medicine, Temple University, Philadelphia, PA, USA
| | - Jayashri Ghosh
- Fels Cancer Institute for Personalized Medicine, Temple University, Philadelphia, PA, USA
| | - Charikleia Kalliora
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica Mainigi
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Coutifaris
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Carmen Sapienza
- Fels Cancer Institute for Personalized Medicine, Temple University, Philadelphia, PA, USA
| | - Suneeta Senapati
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Erichsen L, Adjaye J. Crosstalk between age accumulated DNA-damage and the SIRT1-AKT-GSK3ß axis in urine derived renal progenitor cells. Aging (Albany NY) 2022; 14:8179-8204. [PMID: 36170022 PMCID: PMC9648809 DOI: 10.18632/aging.204300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022]
Abstract
The aging process is manifested by a multitude of inter-linked biological processes. These processes contribute to genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, de-regulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. The mammalian ortholog of the yeast silent information regulator (Sir2) SIRT1 is a NAD+-dependent class III histone deacetylase and has been recognized to be involved in many of the forementioned processes. Furthermore, the physiological activity of several Sirtuin family members has been connected to the regulation of life span of lower organisms (Caenorhabditis elegans and Drosophila melanogaster) as well as mammals. In the present study, we provide evidence that SIX2-positive urine derived renal progenitor cells-UdRPCs isolated directly from human urine show typical hallmarks of aging. This includes the subsequent transcriptional downregulation of SIRT1 and its downstream targets AKT and GSK3ß with increased donor age. This transcriptional downregulation is accompanied by an increase in DNA damage and transcriptional levels of several cell cycle inhibitors such as P16. We provide evidence that the renal progenitor transcription factor SIX2 binds to the coding sequence of SIRT1. Furthermore, we show that the SIRT1 promoter region is methylation sensitive and becomes methylated during aging, dividing them into SIRT1-high and -low expressing UdRPCs. Our results highlight the importance of SIRT1 in DNA damage repair recognition in UdRPCs and the control of differentiation by regulating the activation of GSK3β through AKT.
Collapse
Affiliation(s)
- Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine- University Düsseldorf, Düsseldorf 40225, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine- University Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
35
|
Alimohammadi M, Makaremi S, Rahimi A, Asghariazar V, Taghadosi M, Safarzadeh E. DNA methylation changes and inflammaging in aging-associated diseases. Epigenomics 2022; 14:965-986. [PMID: 36043685 DOI: 10.2217/epi-2022-0143] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aging as an inevitable phenomenon is associated with pervasive changes in physiological functions. There is a relationship between aging and the increase of several chronic diseases. Most age-related disorders are accompanied by an underlying chronic inflammatory state, as demonstrated by local infiltration of inflammatory cells and greater levels of proinflammatory cytokines in the bloodstream. Within inflammaging, many epigenetic events, especially DNA methylation, change. During the aging process, due to aberrations of DNA methylation, biological processes are disrupted, leading to the emergence or progression of a variety of human diseases, including cancer, neurodegenerative disorders, cardiovascular disease and diabetes. The focus of this review is on DNA methylation, which is involved in inflammaging-related activities, and how its dysregulation leads to human disorders.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1983969411, Iran
| | - Shima Makaremi
- School of Medicine & Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, 5618985991, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, 5618985991, Iran
| | - Vahid Asghariazar
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, 5618985991, Iran
| | - Mahdi Taghadosi
- Department of Immunology, Kermanshah University of Medical Sciences, Kermanshah, 6714869914, Iran
| | - Elham Safarzadeh
- Department of Microbiology, Parasitology, & Immunology, Ardabil University of Medical Sciences, Ardabil, 5618985991, Iran
| |
Collapse
|
36
|
Espín-Pérez A, Brennan K, Ediriwickrema AS, Gevaert O, Lossos IS, Gentles AJ. Peripheral blood DNA methylation profiles predict future development of B-cell Non-Hodgkin Lymphoma. NPJ Precis Oncol 2022; 6:53. [PMID: 35864305 PMCID: PMC9304422 DOI: 10.1038/s41698-022-00295-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 06/28/2022] [Indexed: 11/09/2022] Open
Abstract
Lack of accurate methods for early lymphoma detection limits the ability to cure patients. Since patients with Non-Hodgkin lymphomas (NHL) who present with advanced disease have worse outcomes, accurate and sensitive methods for early detection are needed to improve patient care. We developed a DNA methylation-based prediction tool for NHL, based on blood samples collected prospectively from 278 apparently healthy patients who were followed for up to 16 years to monitor for NHL development. A predictive score was developed using machine learning methods in a robust training/validation framework. Our predictive score incorporates CpG DNA methylation at 135 genomic positions, with higher scores predicting higher risk. It was 85% and 78% accurate for identifying patients at risk of developing future NHL, in patients with high or low epigenetic mitotic clock respectively, in a validation cohort. It was also sensitive at detecting active NHL (96.3% accuracy) and healthy status (95.6% accuracy) in additional independent cohorts. Scores optimized for specific NHL subtypes showed significant but lower accuracy for predicting other subtypes. Our score incorporates hyper-methylation of Polycomb and HOX genes, which have roles in NHL development, as well as PAX5 - a master transcriptional regulator of B-cell fate. Subjects with higher risk scores showed higher regulatory T-cells, memory B-cells, but lower naïve T helper lymphocytes fractions in the blood. Future prospective studies will be required to confirm the utility of our signature for managing patients who are at high risk for developing future NHL.
Collapse
Affiliation(s)
- Almudena Espín-Pérez
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA, 94035, USA.
| | - Kevin Brennan
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA, 94035, USA
| | | | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA, 94035, USA
| | - Izidore S Lossos
- Department of Medicine, Division of Hematology, Miller School of Medicine, University of Miami, 1600 NW 10th Avenue/1475 NW 12th Avenue (D8-4), Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.,Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Andrew J Gentles
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA, 94035, USA. .,Department of Biomedical Data Science, Stanford University, Stanford, CA, 94035, USA. .,Cancer Institute, Stanford University, Stanford, CA, 94035, USA.
| |
Collapse
|
37
|
Epigenetic Memories in Hematopoietic Stem and Progenitor Cells. Cells 2022; 11:cells11142187. [PMID: 35883630 PMCID: PMC9324604 DOI: 10.3390/cells11142187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
The recent development of next-generation sequencing (NGS) technologies has contributed to research into various biological processes. These novel NGS technologies have revealed the involvement of epigenetic memories in trained immunity, which are responses to transient stimulation and result in better responses to secondary challenges. Not only innate system cells, such as macrophages, monocytes, and natural killer cells, but also bone marrow hematopoietic stem cells (HSCs) have been found to gain memories upon transient stimulation, leading to the enhancement of responses to secondary challenges. Various stimuli, including microbial infection, can induce the epigenetic reprogramming of innate immune cells and HSCs, which can result in an augmented response to secondary stimulation. In this review, we introduce novel NGS technologies and their application to unraveling epigenetic memories that are key in trained immunity and summarize the recent findings in trained immunity. We also discuss our most recent finding regarding epigenetic memory in aged HSCs, which may be associated with the exposure of HSCs to aging-related stresses.
Collapse
|
38
|
Harrison MC, Dohmen E, George S, Sillam-Dussès D, Séité S, Vasseur-Cognet M. Complex regulatory role of DNA methylation in caste- and age-specific expression of a termite. Open Biol 2022; 12:220047. [PMID: 35857972 PMCID: PMC9256085 DOI: 10.1098/rsob.220047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The reproductive castes of eusocial insects are often characterized by extreme lifespans and reproductive output, indicating an absence of the fecundity/longevity trade-off. The role of DNA methylation in the regulation of caste- and age-specific gene expression in eusocial insects is controversial. While some studies find a clear link to caste formation in honeybees and ants, others find no correlation when replication is increased across independent colonies. Although recent studies have identified transcription patterns involved in the maintenance of high reproduction throughout the long lives of queens, the role of DNA methylation in the regulation of these genes is unknown. We carried out a comparative analysis of DNA methylation in the regulation of caste-specific transcription and its importance for the regulation of fertility and longevity in queens of the higher termite Macrotermes natalensis. We found evidence for significant, well-regulated changes in DNA methylation in mature compared to young queens, especially in several genes related to ageing and fecundity in mature queens. We also found a strong link between methylation and caste-specific alternative splicing. This study reveals a complex regulatory role of fat body DNA methylation both in the division of labour in termites, and during the reproductive maturation of queens.
Collapse
Affiliation(s)
- Mark C. Harrison
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Elias Dohmen
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | | | - David Sillam-Dussès
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology (LEEC), UR4443, Villetaneuse, France
| | - Sarah Séité
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRAE 1392, Institute of Ecology and Environmental Sciences of Paris, Paris 7 113, Bondy, France,University of Paris-Est, Créteil, France
| | - Mireille Vasseur-Cognet
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRAE 1392, Institute of Ecology and Environmental Sciences of Paris, Paris 7 113, Bondy, France,University of Paris-Est, Créteil, France,INSERM, Paris, France
| |
Collapse
|
39
|
Czaja AJ. Epigenetic Aspects and Prospects in Autoimmune Hepatitis. Front Immunol 2022; 13:921765. [PMID: 35844554 PMCID: PMC9281562 DOI: 10.3389/fimmu.2022.921765] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
The observed risk of autoimmune hepatitis exceeds its genetic risk, and epigenetic factors that alter gene expression without changing nucleotide sequence may help explain the disparity. Key objectives of this review are to describe the epigenetic modifications that affect gene expression, discuss how they can affect autoimmune hepatitis, and indicate prospects for improved management. Multiple hypo-methylated genes have been described in the CD4+ and CD19+ T lymphocytes of patients with autoimmune hepatitis, and the circulating micro-ribonucleic acids, miR-21 and miR-122, have correlated with laboratory and histological features of liver inflammation. Both epigenetic agents have also correlated inversely with the stage of liver fibrosis. The reduced hepatic concentration of miR-122 in cirrhosis suggests that its deficiency may de-repress the pro-fibrotic prolyl-4-hydroxylase subunit alpha-1 gene. Conversely, miR-155 is over-expressed in the liver tissue of patients with autoimmune hepatitis, and it may signify active immune-mediated liver injury. Different epigenetic findings have been described in diverse autoimmune and non-autoimmune liver diseases, and these changes may have disease-specificity. They may also be responses to environmental cues or heritable adaptations that distinguish the diseases. Advances in epigenetic editing and methods for blocking micro-ribonucleic acids have improved opportunities to prove causality and develop site-specific, therapeutic interventions. In conclusion, the role of epigenetics in affecting the risk, clinical phenotype, and outcome of autoimmune hepatitis is under-evaluated. Full definition of the epigenome of autoimmune hepatitis promises to enhance understanding of pathogenic mechanisms and satisfy the unmet clinical need to improve therapy for refractory disease.
Collapse
Affiliation(s)
- Albert J. Czaja
- *Correspondence: Albert J. Czaja, ; orcid.org/0000-0002-5024-3065
| |
Collapse
|
40
|
Liu S, Tengstedt ANB, Jacobsen MW, Pujolar JM, Jónsson B, Lobón-Cervià J, Bernatchez L, Hansen MM. Genome-wide methylation in the panmictic European eel (Anguilla anguilla). Mol Ecol 2022; 31:4286-4306. [PMID: 35767387 DOI: 10.1111/mec.16586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
The role of methylation in adaptive, developmental and speciation processes has attracted considerable interest, but interpretation of results is complicated by diffuse boundaries between genetic and non-genetic variation. We studied whole genome genetic and methylation variation in the European eel, distributed from subarctic to subtropical environments, but with panmixia precluding genetically based local adaptation beyond single-generation responses. Overall methylation was 70.9%, with hypomethylation predominantly found in promoters and first exons. Redundancy analyses involving juvenile glass eels showed 0.06% and 0.03% of the variance at SNPs to be explained by localities and environmental variables, respectively, with GO terms of genes associated with outliers primarily involving neural system functioning. For CpGs 2.98% and 1.36% of variance was explained by localities and environmental variables. Differentially methylated regions particularly included genes involved in developmental processes, with hox clusters featuring prominently. Life stage (adult versus glass eels) was the most important source of inter-individual variation in methylation, likely reflecting both ageing and developmental processes. Demethylation of transposable elements relative to pure European eel was observed in European X American eel hybrids, possibly representing postzygotic barriers in this system characterized by prolonged speciation and ongoing gene flow. Whereas the genetic data are consistent with a role of single-generation selective responses, the methylation results underpin the importance of epigenetics in the life cycle of eels and suggests interactions between local environments, development and phenotypic variation mediated by methylation variation. Eels are remarkable by having retained eight hox clusters, and the results suggest important roles of methylation at hox genes for adaptive processes.
Collapse
Affiliation(s)
- Shenglin Liu
- Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Magnus W Jacobsen
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Jose Martin Pujolar
- Centre for Gelatinous Plankton Ecology and Evolution, National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bjarni Jónsson
- North West Iceland Nature Center, Iceland.,The Icelandic Parliament, Reykjavík, Iceland
| | | | - Louis Bernatchez
- IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, Canada
| | | |
Collapse
|
41
|
Reale A, Tagliatesta S, Zardo G, Zampieri M. Counteracting aged DNA methylation states to combat ageing and age-related diseases. Mech Ageing Dev 2022; 206:111695. [PMID: 35760211 DOI: 10.1016/j.mad.2022.111695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 12/18/2022]
Abstract
DNA methylation (DNAm) overwrites information about multiple extrinsic factors on the genome. Age is one of these factors. Age causes characteristic DNAm changes that are thought to be not only major drivers of normal ageing but also precursors to diseases, cancer being one of these. Although there is still much to learn about the relationship between ageing, age-related diseases and DNAm, we now know how to interpret some of the effects caused by age in the form of changes in methylation marks at specific loci. In fact, these changes form the basis of the so called "epigenetic clocks", which translate the genomic methylation profile into an "epigenetic age". Epigenetic age does not only estimate chronological age but can also predict the risk of chronic diseases and mortality. Epigenetic age is believed to be one of the most accurate metrics of biological age. Initial evidence has recently been gathered pointing to the possibility that the rate of epigenetic ageing can be slowed down or even reversed. In this review, we discuss some of the most relevant advances in this field. Expected outcome is that this approach can provide insights into how to preserve health and reduce the impact of ageing diseases in humans.
Collapse
Affiliation(s)
- Anna Reale
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Stefano Tagliatesta
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00161 Rome, Italy.
| | - Giuseppe Zardo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
42
|
Itokawa N, Oshima M, Koide S, Takayama N, Kuribayashi W, Nakajima-Takagi Y, Aoyama K, Yamazaki S, Yamaguchi K, Furukawa Y, Eto K, Iwama A. Epigenetic traits inscribed in chromatin accessibility in aged hematopoietic stem cells. Nat Commun 2022; 13:2691. [PMID: 35577813 PMCID: PMC9110722 DOI: 10.1038/s41467-022-30440-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 04/24/2022] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic stem cells (HSCs) exhibit considerable cell-intrinsic changes with age. Here, we present an integrated analysis of transcriptome and chromatin accessibility of aged HSCs and downstream progenitors. Alterations in chromatin accessibility preferentially take place in HSCs with aging, which gradually resolve with differentiation. Differentially open accessible regions (open DARs) in aged HSCs are enriched for enhancers and show enrichment of binding motifs of the STAT, ATF, and CNC family transcription factors that are activated in response to external stresses. Genes linked to open DARs show significantly higher levels of basal expression and their expression reaches significantly higher peaks after cytokine stimulation in aged HSCs than in young HSCs, suggesting that open DARs contribute to augmented transcriptional responses under stress conditions. However, a short-term stress challenge that mimics infection is not sufficient to induce persistent chromatin accessibility changes in young HSCs. These results indicate that the ongoing and/or history of exposure to external stresses may be epigenetically inscribed in HSCs to augment their responses to external stimuli. Haematopoietic stem cells (HSCs) exhibit considerable cell-intrinsic changes with age. Here the authors demonstrate that differentially accessible regions in aged HSC chromatin are enriched for stress-responsive enhancers and act as an epigenetic hub to augment transcriptional responses of aged HSCs to external stimuli.
Collapse
|
43
|
Seale K, Horvath S, Teschendorff A, Eynon N, Voisin S. Making sense of the ageing methylome. Nat Rev Genet 2022; 23:585-605. [PMID: 35501397 DOI: 10.1038/s41576-022-00477-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 12/22/2022]
Abstract
Over time, the human DNA methylation landscape accrues substantial damage, which has been associated with a broad range of age-related diseases, including cardiovascular disease and cancer. Various age-related DNA methylation changes have been described, including at the level of individual CpGs, such as differential and variable methylation, and at the level of the whole methylome, including entropy and correlation networks. Here, we review these changes in the ageing methylome as well as the statistical tools that can be used to quantify them. We detail the evidence linking DNA methylation to ageing phenotypes and the longevity strategies aimed at altering both DNA methylation patterns and machinery to extend healthspan and lifespan. Lastly, we discuss theories on the mechanistic causes of epigenetic ageing.
Collapse
Affiliation(s)
- Kirsten Seale
- Institute for Health and Sport (iHeS), Victoria University, Footscray, Melbourne, Victoria, Australia
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Altos Labs, San Diego, CA, USA
| | - Andrew Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.,UCL Cancer Institute, University College London, London, UK
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Footscray, Melbourne, Victoria, Australia.
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Footscray, Melbourne, Victoria, Australia.
| |
Collapse
|
44
|
Tang H, Ma X, Zhou L, Li W, Shu Y, Xu H, Li J, Wang F, Sun F, Duan Y. Distinct Performance of Methylated SEPT9 in Upper and Lower Gastrointestinal Cancers and Combined Detection with Protein Markers. Genet Test Mol Biomarkers 2022; 26:239-248. [PMID: 35481971 DOI: 10.1089/gtmb.2021.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The performance of methylated SEPT9 (mSEPT9) in lower gastrointestinal (GI) cancer (colorectal cancer) has been extensively investigated; however, its performance in upper GI cancer (esophageal cancer and gastric cancer) and the comparison with lower GI cancer have rarely been studied. Methods: A total of 1854 subjects, including 344 upper GI cancer patients, 459 lower GI cancer patients, and 1051 noncancer subjects, were recruited in this prospective cohort study. A modified single polymerase chain reaction test for detecting mSEPT9 was used for plasma detection. Results: The sensitivity of mSEPT9 for upper and lower GI cancers was 45.3% and 74.8%, and the corresponding specificities were 85.6% and 86.5%, with areas under curve (AUC) of 0.71 and 0.80, respectively. mSEPT9 exhibited lower sensitivity in stage I than stage II-IV cancer, while no difference in sensitivity was observed for different locations in upper or lower GI cancer. No difference in sensitivity was found among gross classifications, pathological classifications, and differentiation in upper GI cancer, but a higher sensitivity in infiltrative cancer and moderate and poorly differentiated cancers was observed in the lower GI. No difference in sensitivity was found between male and female in both cancers, while sensitivity increased with age for both cancers. Cancer antigen 724 (CA724) showed the highest sensitivity for upper GI cancers, and carcinoembryonic antigen (CEA) showed the highest sensitivity for lower GI cancers. The combination of CA724 with mSEPT9 increased the sensitivity to 67.5% in upper GI cancers, and the combination of mSEPT9 with CEA increased the sensitivity to 85.4% in lower GI cancers, with an AUC of 0.90 and 0.95, respectively. Conclusions: mSEPT9 exhibited a higher sensitivity in lower GI cancers than upper GI cancers. The combination of mSEPT9 with protein markers significantly enhanced the detection sensitivity in both cancers.
Collapse
Affiliation(s)
- Haoran Tang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Xudong Ma
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Lin Zhou
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Wei Li
- Blood Transfusion Department, the Second Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Yixiong Shu
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Haichao Xu
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Jiang Li
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Feng Wang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Feng Sun
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Yongqing Duan
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| |
Collapse
|
45
|
Musa J, Kim K, Zheng Y, Qu Y, Joyce BT, Wang J, Nannini DR, Gursel DB, Silas O, Abdulkareem FB, Imade G, Akanmu AS, Wei JJ, Kocherginsky M, Kim KYA, Wehbe F, Achenbach CJ, Anorlu R, Simon MA, Sagay A, Ogunsola FT, Murphy RL, Hou L. Accelerated Epigenetic Age Among Women with Invasive Cervical Cancer and HIV-Infection in Nigeria. Front Public Health 2022; 10:834800. [PMID: 35570901 PMCID: PMC9099239 DOI: 10.3389/fpubh.2022.834800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Invasive cervical cancer (ICC) is a serious public health burden in Nigeria, where human immunodeficiency virus (HIV) remains highly prevalent. Previous research suggested that epigenetic age acceleration (EAA) could play a role in detection of HIV-associated ICC. However, little research has been conducted on this topic in Africa where the population is most severely affected by HIV-associated ICC. Here, we investigated the association between ICC and EAA using cervical tissues of ICC-diagnosed Nigerian women living with HIV. Methods We included 116 cervical tissue samples from three groups of Nigerian women in this study: (1) HIV+/ICC+ (n = 39); (2) HIV+/ICC- (n = 53); and (3) HIV-/ICC + (n = 24). We utilized four DNA methylation-based EAA estimators; IEAA, EEAA, GrimAA, and PhenoAA. We compared EAA measurements across the 3 HIV/ICC groups using multiple linear regression models. We also compared EAA between 26 tumor tissues and their surrounding normal tissues using paired t-tests. We additionally performed a receiver operating characteristics (ROC) curve analysis to illustrate the area under the curve (AUC) of EAA in ICC. Results We found the most striking associations between HIV/ICC status and PhenoAge acceleration (PhenoAA). Among HIV-positive women, PhenoAA was on average 13.4 years higher in women with ICC compared to cancer-free women (P = 0.005). PhenoAA was 20.7 and 7.1 years higher in tumor tissues compared to surrounding normal tissues among HIV-positive women (P = 0.009) and HIV-negative women (P = 0.284), respectively. We did not find substantial differences in PhenoAA between HIV-positive and HIV-negative women with ICC. Conclusion PhenoAA is associated with ICC in HIV-infected women in our study. Our findings suggest that PhenoAA may serve as a potential biomarker for further risk stratification of HIV-associated ICC in Nigeria and similar resource-constrained settings.
Collapse
Affiliation(s)
- Jonah Musa
- Department of Preventive Medicine, Division of Cancer Epidemiology and Prevention, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Obstetrics and Gynecology, College of Health Sciences, University of Jos, Jos, Nigeria
| | - Kyeezu Kim
- Department of Preventive Medicine, Division of Cancer Epidemiology and Prevention, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yinan Zheng
- Department of Preventive Medicine, Division of Cancer Epidemiology and Prevention, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yishu Qu
- Department of Preventive Medicine, Division of Cancer Epidemiology and Prevention, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Brian T. Joyce
- Department of Preventive Medicine, Division of Cancer Epidemiology and Prevention, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jun Wang
- Department of Preventive Medicine, Division of Cancer Epidemiology and Prevention, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Drew R. Nannini
- Department of Preventive Medicine, Division of Cancer Epidemiology and Prevention, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Demirkan B. Gursel
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | | | | | - Godwin Imade
- Department of Obstetrics and Gynecology, College of Health Sciences, University of Jos, Jos, Nigeria
| | - Alani S. Akanmu
- Department of Hematology and Blood Transfusion, Lagos University Teaching Hospital and College of Medicine, University of Lagos, Lagos, Nigeria
| | - Jian-Jun Wei
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Masha Kocherginsky
- Department of Preventive Medicine, Division of Cancer Epidemiology and Prevention, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Kwang-Youn A. Kim
- Department of Preventive Medicine, Division of Cancer Epidemiology and Prevention, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Firas Wehbe
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Preventive Medicine, Division of Health and Biomedical Informatics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Chad J. Achenbach
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Rose Anorlu
- Department of Obstetrics and Gynecology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Melissa A. Simon
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Atiene Sagay
- Department of Obstetrics and Gynecology, College of Health Sciences, University of Jos, Jos, Nigeria
| | - Folasade T. Ogunsola
- Department of Medical Microbiology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Robert L. Murphy
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lifang Hou
- Department of Preventive Medicine, Division of Cancer Epidemiology and Prevention, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
46
|
Lombardo SD, Wangsaputra IF, Menche J, Stevens A. Network Approaches for Charting the Transcriptomic and Epigenetic Landscape of the Developmental Origins of Health and Disease. Genes (Basel) 2022; 13:764. [PMID: 35627149 PMCID: PMC9141211 DOI: 10.3390/genes13050764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
The early developmental phase is of critical importance for human health and disease later in life. To decipher the molecular mechanisms at play, current biomedical research is increasingly relying on large quantities of diverse omics data. The integration and interpretation of the different datasets pose a critical challenge towards the holistic understanding of the complex biological processes that are involved in early development. In this review, we outline the major transcriptomic and epigenetic processes and the respective datasets that are most relevant for studying the periconceptional period. We cover both basic data processing and analysis steps, as well as more advanced data integration methods. A particular focus is given to network-based methods. Finally, we review the medical applications of such integrative analyses.
Collapse
Affiliation(s)
- Salvo Danilo Lombardo
- Max Perutz Labs, Department of Structural and Computational Biology, University of Vienna, 1030 Vienna, Austria;
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Ivan Fernando Wangsaputra
- Maternal and Fetal Health Research Group, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK;
| | - Jörg Menche
- Max Perutz Labs, Department of Structural and Computational Biology, University of Vienna, 1030 Vienna, Austria;
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1030 Vienna, Austria
- Faculty of Mathematics, University of Vienna, 1030 Vienna, Austria
| | - Adam Stevens
- Maternal and Fetal Health Research Group, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK;
| |
Collapse
|
47
|
Alagpulinsa DA, Toribio MP, Alhallak I, Shmookler Reis RJ. Advances in understanding the molecular basis of clonal hematopoiesis. Trends Mol Med 2022; 28:360-377. [PMID: 35341686 DOI: 10.1016/j.molmed.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/28/2022]
Abstract
Hematopoietic stem cells (HSCs) are polyfunctional, regenerating all blood cells via hematopoiesis throughout life. Clonal hematopoiesis (CH) is said to occur when a substantial proportion of mature blood cells is derived from a single dominant HSC lineage, usually because these HSCs have somatic mutations that confer a fitness and expansion advantage. CH strongly associates with aging and enrichment in some diseases irrespective of age, emerging as an independent causal risk factor for hematologic malignancies, cardiovascular disease, adverse disease outcomes, and all-cause mortality. Defining the molecular mechanisms underlying CH will thus provide a framework to develop interventions for healthy aging and disease treatment. Here, we review the most recent advances in understanding the molecular basis of CH in health and disease.
Collapse
Affiliation(s)
- David A Alagpulinsa
- Vaccine & Immunotherapy Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| | - Mabel P Toribio
- Metabolism Unit, Division of Endocrinology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Iad Alhallak
- Metabolism Unit, Division of Endocrinology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Robert J Shmookler Reis
- Central Arkansas Veterans Healthcare System and Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
48
|
Drouilhet L, Moreno C, Plisson-Petit F, Marcon D, Fabre S, Hazard D. Variability in Global DNA Methylation Rate Across Tissues and Over Time in Sheep. Front Genet 2022; 13:791283. [PMID: 35360841 PMCID: PMC8961874 DOI: 10.3389/fgene.2022.791283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Recent studies highlighted the influence of epigenetic marks in the variability of many complex traits, both in plants and animals. These studied focused only on specific sites of the genome having differentially methylated profiles among individuals and/or tissues. In contrast, we recently used the methylation rate of the entire genome as a unique measure considered as a novel quantitative phenotype in sheep. This phenotype named global DNA methylation rate (GDMR), measured by luminometric assay, integrates the methylation level of each CpG dinucleotide within the 6 million of CCGG sites along the ovine genome. GDMR measured in blood previously showed moderate heritability of 0.20 and provided evidence for a genetic determinism. The main objective of the present study was to better characterize the GDMR phenotype in various tissues and investigate its variability in several breeds of sheep reared in the same environment. GDMR was measured on blood samples collected monthly from 59 growing male and female lambs (24 Romane, 23 Blackbelly and 12 Charollais), between birth and 4 months of age. Blood GDMR was on average around 80% and was influenced by the sampling date (p < 0.001), the breed (p = 0.002) and the sex (p = 0.002). In addition, GDMR was determined in 12 somatic (frontal lobe, pituitary gland, heart, lung, sub cutaneous and perirenal adipose tissue, skeletal muscle, liver, spleen, adrenal gland, medulla and cortical kidney) and 6 reproductive tissues (ovary, oviduct, uterus, testis, epididymis and seminal vesicle). GDMR was on average 70% in somatic tissues but marked variation was observed depending on the tissue. The GDMR measured in blood was higher than that measured in other somatic tissues, and is not a good proxy of less accessible tissues. Female reproductive tissues had a 10% higher GDMR than male reproductive tissues. We demonstrated a significant influence of the breed on blood GDMR, certainly reflecting the influence of different genetic backgrounds. The effect of the breed on GDMR may be related to their specific abilities to adapt to and live in different conditions.
Collapse
Affiliation(s)
- Laurence Drouilhet
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
- *Correspondence: Laurence Drouilhet,
| | - Carole Moreno
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | | | - Stéphane Fabre
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Dominique Hazard
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| |
Collapse
|
49
|
Walker RF. A Mechanistic Theory of Development-Aging Continuity in Humans and Other Mammals. Cells 2022; 11:cells11050917. [PMID: 35269539 PMCID: PMC8909351 DOI: 10.3390/cells11050917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/29/2022] Open
Abstract
There is consensus among biogerontologists that aging occurs either as the result of a purposeful genome-based, evolved program or due to spontaneous, randomly occurring, maladaptive events. Neither concept has yet identified a specific mechanism to explain aging’s emergence and acceleration during mid-life and beyond. Presented herein is a novel, unifying mechanism with empirical evidence that describes how aging becomes continuous with development. It assumes that aging emerges from deterioration of a regulatory process that directs morphogenesis and morphostasis. The regulatory system consists of a genome-wide “backbone” within which its specific genes are differentially expressed by the local epigenetic landscapes of cells and tissues within which they reside, thereby explaining its holistic nature. Morphostasis evolved in humans to ensure the nurturing of dependent offspring during the first decade of young adulthood when peak parental vitality prevails in the absence of aging. The strict redundancy of each morphostasis regulatory cycle requires sensitive dependence upon initial conditions to avoid initiating deterministic chaos behavior. However, when natural selection declines as midlife approaches, persistent, progressive, and specific DNA damage and misrepair changes the initial conditions of the regulatory process, thereby compromising morphostasis regulatory redundancy, instigating chaos, initiating senescence, and accelerating aging thereafter.
Collapse
|
50
|
Epigenetic Regulation: A Link between Inflammation and Carcinogenesis. Cancers (Basel) 2022; 14:cancers14051221. [PMID: 35267528 PMCID: PMC8908969 DOI: 10.3390/cancers14051221] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Epigenetics encompasses all the modifications that occur within cells that are independent of gene mutations. The environment is the main influencer of these alterations. It is well known that a proinflammatory environment can promote and sustain the carcinogenic process and that this environment induces epigenetic alterations. In this review, we will report how a proinflammatory microenvironment that encircles the tumor core can be responsible for the induction of epigenetic drift. Abstract Epigenetics encompasses a group of dynamic, reversible, and heritable modifications that occur within cells that are independent of gene mutations. These alterations are highly influenced by the environment, from the environment that surrounds the human being to the internal microenvironments located within tissues and cells. The ways that pigenetic modifications promote the initiation of the tumorigenic process have been widely demonstrated. Similarly, it is well known that carcinogenesis is supported and prompted by a strong proinflammatory environment. In this review, we introduce our report of a proinflammatory microenvironment that encircles the tumor core but can be responsible for the induction of epigenetic drift. At the same time, cancer cells can alter their epigenetic profile to generate a positive loop in the promotion of the inflammatory process. Therefore, an in-depth understanding of the epigenetic networks between the tumor microenvironment and cancer cells might highlight new targetable mechanisms that could prevent tumor progression.
Collapse
|