1
|
Binish F, Xiao J. Deciphering the role of sphingosine 1-phosphate in central nervous system myelination and repair. J Neurochem 2025; 169:e16228. [PMID: 39290063 DOI: 10.1111/jnc.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid of the sphingolipid family and plays a pivotal role in the mammalian nervous system. Indeed, S1P is a therapeutic target for treating demyelinating diseases such as multiple sclerosis. Being part of an interconnected sphingolipid metabolic network, the amount of S1P available for signalling is equilibrated between its synthetic (sphingosine kinases 1 and 2) and degradative (sphingosine 1-phosphate lyase) enzymes. Once produced, S1P exerts its biological roles via signalling to a family of five G protein-coupled S1P receptors 1-5 (S1PR1-5). Despite significant progress, the precise roles that S1P metabolism and downstream signalling play in regulating myelin formation and repair remain largely opaque and somewhat controversial. Genetic or pharmacological studies adopting various model systems identify that stimulating S1P-S1PR signalling protects myelin-forming oligodendrocytes after central nervous system (CNS) injury and attenuates demyelination in vivo. However, evidence to support its role in remyelination of the mammalian CNS is limited, although blocking S1P synthesis sheds light on the role of endogenous S1P in promoting CNS remyelination. This review focuses on summarising the current understanding of S1P in CNS myelin formation and repair, discussing the complexity of S1P-S1PR interaction and the underlying mechanism by which S1P biosynthesis and signalling regulates oligodendrocyte myelination in the healthy and injured mammalian CNS, raising new questions for future investigation.
Collapse
Affiliation(s)
- Fatima Binish
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Junhua Xiao
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| |
Collapse
|
2
|
Virupakshaiah A, Schoeps VA, Race J, Waltz M, Sharayah S, Nasr Z, Moseley CE, Zamvil SS, Gaudioso C, Schuette A, Casper TC, Rose J, Flanagan EP, Rodriguez M, Tillema JM, Chitnis T, Gorman MP, Graves JS, Benson LA, Rensel M, Abrams A, Krupp L, Lotze TE, Aaen G, Wheeler Y, Schreiner T, Waldman A, Chong J, Mar S, Waubant E. Predictors of a relapsing course in myelin oligodendrocyte glycoprotein antibody-associated disease. J Neurol Neurosurg Psychiatry 2024; 96:68-75. [PMID: 38964848 PMCID: PMC11652255 DOI: 10.1136/jnnp-2024-333464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/23/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a recently described demyelinating disorder, and children represent about 50% of all cases. Almost half of the patients experience relapses, but very few studies have evaluated predictors of relapse risk, challenging clinical management. The study aimed to identify predictors at MOGAD onset that are associated with a relapsing course. METHODS Prospectively collected data from paediatric patients with MOGAD seen by the US Network of Paediatric MS Centres were leveraged. Univariable and adjusted multivariable models were used to predict recurrent disease. RESULTS We identified 326 MOGAD cases (mean age at first event 8.9 years [SD 4.3], 57% female, 77% white and 74% non-Hispanic) and 46% relapsed during a mean follow-up of 3.9 years (SD 4.1). In the adjusted multivariable model, female sex (HR 1.66, 95% CI 1.17 to 2.36, p=0.004) and Hispanic/Latino ethnicity (HR 1.77, 95% CI 1.19 to 2.64, p=0.005) were associated with a higher risk of relapsing MOGAD. Maintenance treatment initiated before a second event with rituximab (HR 0.25, 95% CI 0.07 to 0.92, p=0.037) or intravenous immunoglobulin (IVIG) (HR 0.35, 95% CI 0.14 to 0.88, p=0.026) was associated with lower risk of a second event in multivariable analyses. Conversely, maintenance steroids were associated with a higher estimated relapse risk (HR 1.76, 95% CI 0.90 to 3.45, p=0.097). CONCLUSION Sex and ethnicity are associated with relapsing MOGAD. Use of rituximab or IVIG therapy shortly after onset is associated with a lower risk of the second event. Preventive treatment after a first event could be considered for those with a higher relapse risk.
Collapse
Affiliation(s)
- Akash Virupakshaiah
- Neurology, UCSF Weill Institute for Neurosciences, San Francisco, California, USA
| | - Vinicius A Schoeps
- Neurology, UCSF Weill Institute for Neurosciences, San Francisco, California, USA
| | | | | | - Siefaddeen Sharayah
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
| | - Zahra Nasr
- Neurology, UCSF Weill Institute for Neurosciences, San Francisco, California, USA
| | - Carson E Moseley
- Neurology, UCSF Weill Institute for Neurosciences, San Francisco, California, USA
| | - Scott S Zamvil
- Neurology, UCSF Weill Institute for Neurosciences, San Francisco, California, USA
- Program in Immunology, UCSF, San Francisco, California, USA
| | - Cristina Gaudioso
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
| | | | | | - John Rose
- The University of Utah, Salt Lake City, Utah, USA
| | | | | | | | - Tanuja Chitnis
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark P Gorman
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jennifer S Graves
- Department of Neurology, University of California San Diego, La Jolla, California, USA
| | | | | | | | - Lauren Krupp
- Pediatric MS Center, NYU Langone Health, New York, New York, USA
| | | | - Gregory Aaen
- Loma Linda University Medical Center, Loma Linda, California, USA
| | - Yolanda Wheeler
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Amy Waldman
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Janet Chong
- Neurology, UCSF Weill Institute for Neurosciences, San Francisco, California, USA
| | - Soe Mar
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
| | - Emmanuelle Waubant
- Neurology, UCSF Weill Institute for Neurosciences, San Francisco, California, USA
| |
Collapse
|
3
|
Hua LH, Solomon AJ, Tenembaum S, Scalfari A, Rovira À, Rostasy K, Newsome SD, Marrie RA, Magyari M, Kantarci O, Hemmer B, Hemingway C, Harnegie MP, Graves JS, Cohen JA, Bove R, Banwell B, Corboy JR, Waubant E. Differential Diagnosis of Suspected Multiple Sclerosis in Pediatric and Late-Onset Populations: A Review. JAMA Neurol 2024; 81:2823593. [PMID: 39283621 DOI: 10.1001/jamaneurol.2024.3062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
IMPORTANCE While the typical onset of multiple sclerosis (MS) occurs in early adulthood, 2% to 10% of cases initially present prior to age 18 years, and approximately 5% after age 50 years. Guidance on approaches to differential diagnosis in suspected MS specific to these 2 age groups is needed. OBSERVATIONS There are unique biological factors in children younger than 18 years and in adults older than age 50 years compared to typical adult-onset MS. These biological differences, particularly immunological and hormonal, may influence the clinical presentation of MS, resilience to neuronal injury, and differential diagnosis. While mimics of MS at the typical age at onset have been described, a comprehensive approach focused on the younger and older ends of the age spectrum has not been previously published. CONCLUSIONS AND RELEVANCE An international committee of MS experts in pediatric and adult MS was formed to provide consensus guidance on diagnostic approaches and key clinical and paraclinical red flags for non-MS diagnosis in children and older adults.
Collapse
Affiliation(s)
- Le H Hua
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas, Nevada
| | - Andrew J Solomon
- Larner College of Medicine at the University of Vermont, Burlington
| | - Silvia Tenembaum
- Department of Neurology, National Pediatric Hospital Dr J. P. Garrahan, Buenos Aires, Argentina
| | - Antonio Scalfari
- Centre for Neuroscience, Department of Medicine, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Àlex Rovira
- Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Kevin Rostasy
- Children's Hospital Datteln, University Witten/Herdecke, Witten, Germany
| | - Scott D Newsome
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ruth Ann Marrie
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Melinda Magyari
- Danish Multiple Sclerosis Center, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Orhun Kantarci
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Bernhard Hemmer
- Department of Neurology, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Cheryl Hemingway
- Paediatric Neurology, Great Ormond Street Children's Hospital, London, United Kingdom
- Institute of Neurology, University College London, London, United Kingdom
| | | | | | - Jeffrey A Cohen
- Mellen Center for MS Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Riley Bove
- UCSF Weill Institute for Neurosciences, University of California, San Francisco
| | - Brenda Banwell
- Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - John R Corboy
- Department of Neurology, University of Colorado, School of Medicine, Aurora
| | - Emmanuelle Waubant
- UCSF Weill Institute for Neurosciences, University of California, San Francisco
| |
Collapse
|
4
|
Ahmad D, Linares I, Pietropaoli A, Waugh RE, McGrath JL. Sided Stimulation of Endothelial Cells Modulates Neutrophil Trafficking in an In Vitro Sepsis Model. Adv Healthc Mater 2024; 13:e2304338. [PMID: 38547536 PMCID: PMC11338706 DOI: 10.1002/adhm.202304338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/22/2024] [Indexed: 04/09/2024]
Abstract
While the role of dysregulated polymorphonuclear leukocyte (PMN) transmigration in septic mediated tissue damage is well documented, strategies to mitigate aberrant transmigration across endothelium have yet to yield viable therapeutics. Recently, microphysiological systems (MPS) have emerged as novel in vitro mimetics that facilitate the development of human models of disease. With this advancement, aspects of endothelial physiology that are difficult to assess with other models can be directly probed. In this study, the role of endothelial cell (EC) apicobasal polarity on leukocyte trafficking response is evaluated with the µSiM-MVM (microphysiological system enabled by a silicon membrane - microvascular mimetic). Here, ECs are stimulated either apically or basally with a cytokine cocktail to model a septic-like challenge before introducing healthy donor PMNs into the device. Basally oriented stimulation generated a stronger PMN transmigratory response versus apical stimulation. Importantly, healthy PMNs are unable to migrate towards a bacterial peptide chemoattractant when ECs are apically stimulated, which mimics the attenuated PMN chemotaxis seen in sepsis. Escalating the apical inflammatory stimulus by a factor of five is necessary to elicit high PMN transmigration levels across endothelium. These results demonstrate that EC apicobasal polarity modulates PMN transmigratory behavior and provides insight into the mechanisms underlying sepsis.
Collapse
Affiliation(s)
- Danial Ahmad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Isabelle Linares
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Anthony Pietropaoli
- Department of Medicine, Pulmonary Diseases and Critical Care at the University of Rochester, Rochester, NY, 14627, USA
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
5
|
Fehlhofer J, Ries J, Nickel FT, Rothhammer V, Schwab S, Kesting M, Buchbender M. Expression of Inflammatory Mediators in Biofilm Samples and Clinical Association in Multiple Sclerosis Patients in Remission-A Pilot Study. Life (Basel) 2024; 14:367. [PMID: 38541692 PMCID: PMC10971373 DOI: 10.3390/life14030367] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 08/24/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of unknown etiology that affects the central nervous system and can lead to neurological impairment. Our aim was to determine whether MS patients also show inflammatory changes in the oral cavity more frequently than healthy individuals. For this purpose, we examined plaque samples for various mediators and their correlation with clinical findings. A study group (MS) and a control group were examined and compared. The plaque samples were analyzed for the expression of interleukins (IL-2, -6, -10), matrix metalloproteinases (MMP-7, MMP-9), and a surface antigen CD90 by quantitative real-time PCR. The clinical parameters examined were the Mombelli plaque index; bleeding on probing (BOP) index; periodontal pocket depth; and decayed, missing, and filled tooth (DMFT) index. The expression of MMP9 was significantly (p = 0.035) higher in the control group. The expression of IL-2 was increased four-fold in the MS group; however, this difference was not statistically significant. The mean PD (p < 0.001) and BOP index (p = 0.029) values were increased in the study group. The clinical parameters of the BOP index and PD were significantly amplified in the MS patients. However, no causal relationship between the investigated inflammatory mediators and the clinical findings could be established in this case series.
Collapse
Affiliation(s)
- Jakob Fehlhofer
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.F.); (J.R.); (M.K.)
| | - Jutta Ries
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.F.); (J.R.); (M.K.)
| | - Florian Tobias Nickel
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (F.T.N.); (V.R.); (S.S.)
| | - Veit Rothhammer
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (F.T.N.); (V.R.); (S.S.)
| | - Stefan Schwab
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (F.T.N.); (V.R.); (S.S.)
| | - Marco Kesting
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.F.); (J.R.); (M.K.)
| | - Mayte Buchbender
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.F.); (J.R.); (M.K.)
| |
Collapse
|
6
|
Stanca S, Rossetti M, Bokulic Panichi L, Bongioanni P. The Cellular Dysfunction of the Brain-Blood Barrier from Endothelial Cells to Astrocytes: The Pathway towards Neurotransmitter Impairment in Schizophrenia. Int J Mol Sci 2024; 25:1250. [PMID: 38279249 PMCID: PMC10816922 DOI: 10.3390/ijms25021250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Schizophrenia (SCZ) is an articulated psychiatric syndrome characterized by a combination of genetic, epigenetic, and environmental factors. Our intention is to present a pathogenetic model combining SCZ alterations and the main cellular actors of the blood-brain barrier (BBB): endothelial cells (ECs), pericytes, and astrocytes. The homeostasis of the BBB is preserved by the neurovascular unit which is constituted by ECs, astrocytes and microglia, neurons, and the extracellular matrix. The role of the BBB is strictly linked to its ability to preserve the biochemical integrity of brain parenchyma integrity. In SCZ, there is an increased BBB permeability, demonstrated by elevated levels of albumin and immunoglobulins in the cerebrospinal fluid, and this is the result of an intrinsic endothelial impairment. Increased BBB permeability would lead to enhanced concentrations of neurotoxic and neuroactive molecules in the brain. The pathogenetic involvement of astrocytes in SCZ reverberates its consequences on BBB, together with the impact on its permeability and selectivity represented by the EC and pericyte damage occurring in the psychotic picture. Understanding the strict interaction between ECs and astrocytes, and its consequent impact on cognition, is diriment not only for comprehension of neurotransmitter dyshomeostasis in SCZ, but also for focusing on other potential therapeutic targets.
Collapse
Affiliation(s)
- Stefano Stanca
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Martina Rossetti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Leona Bokulic Panichi
- NeuroCare Onlus, 56100 Pisa, Italy
- Neuroscience Department, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| | - Paolo Bongioanni
- NeuroCare Onlus, 56100 Pisa, Italy
- Neuroscience Department, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| |
Collapse
|
7
|
Kar SS, Gharai SR, Sahu SK, Ravichandiran V, Swain SP. The Current Landscape in the Development of Small-molecule Modulators Targeting Sphingosine-1-phosphate Receptors to Treat Neurodegenerative Diseases. Curr Top Med Chem 2024; 24:2431-2446. [PMID: 38676503 DOI: 10.2174/0115680266288509240422112839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
Sphingosine 1-phosphate (S1P) is extensively researched as a lysophospholipid and is crucial in various physiological and pathological processes. It achieves this via signalling through five different subtypes of G protein-coupled receptors (GPCRs), namely S1PR1 to S1PR5. S1PR modulators possess the ability to traverse the blood-brain barrier, potentially leading to direct actions within the Central Nervous System (CNS). S1PR modulators specifically bind to receptors located on the surface of naive and central memory lymphocytes, causing these cells to be trapped or confined within the lymph node. The investigation of the S1P pathway has resulted in the approval of three S1PR modulators, namely fingolimod, siponimod, and ozanimod, as medications for the treatment of patients suffering from Multiple Sclerosis (MS). Additionally, new S1PR modulators, such as ponesimod and etrasimod, are currently being developed and tested in clinical trials. Research on the creation of S1P modulators in neurodegenerative illnesses is ongoing as scientists continue to explore novel possibilities for selective S1P modulators. This study provides a concise overview of sphingolipid metabolism, the mechanism by which S1P receptors are affected, and the structural characteristics of several small molecule S1P modulators, with a particular focus on their structure-activity connections.
Collapse
Affiliation(s)
- Sidhartha Sankar Kar
- Faculty of Pharmacy, C. V. Raman Global University, Mahura, Bhubaneswar, 752054, Odisha, India
| | - Soumya Ranjan Gharai
- Department of Pharmaceutical Chemistry, Institute of Pharmacy & Technology, Salipur, Cuttack, 754202, Odisha, India
| | - Sujit Kumar Sahu
- Department of Pharmaceutical Chemistry, Institute of Pharmacy & Technology, Salipur, Cuttack, 754202, Odisha, India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry and Centre for Marine Therapeutics (CMT), National Institute of Pharmaceutical Education and Research, Kolkata, 168, Maniktala Main Road, Kolkata, 700054, India
| | - Sharada Prasanna Swain
- Department of Medicinal Chemistry and Centre for Marine Therapeutics (CMT), National Institute of Pharmaceutical Education and Research, Kolkata, 168, Maniktala Main Road, Kolkata, 700054, India
| |
Collapse
|
8
|
Zhang HR, Ma GQ, Lv HQ, Feng YT, Peng YJ. Electroacupuncture Alleviates Cerebral Ischemia-reperfusion Injury by Regulating the S1PR2/TLR4/NLRP3 Signaling Pathway via m6A Methylation of lncRNA H19. Curr Neurovasc Res 2024; 21:64-73. [PMID: 38409728 DOI: 10.2174/0115672026294183240207115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 02/28/2024]
Abstract
Electroacupuncture (EA) treatment plays a protective role in cerebral ischemiareperfusion (CIR) injury. However, the underlying molecular mechanism is still not fully elucidated. METHODS All rats were randomly divided into five groups: the SHAM group, MCAO group, MCAO+EA (MEA) group, MCAO+METTL3 overexpression+EA (METTL3) group and MCAO+lncRNA H19 overexpression+EA (lncRNA H19) group. The middle cerebral artery occlusion (MCAO) rats were established to mimic CIR injury. The overexpression of lncRNA H19 and METTL3 was induced by stereotactic injection of lentiviruses into the rat lateral ventricles. The rats in the MEA, METTL3, and lncRNA H19 groups were treated with EA therapy on "Renzhong" (DU26) and "Baihui" (DU20) acupoints (3.85/6.25Hz; 1mA). Besides, the neurological deficit scoring, cerebral infarction area, pathological changes in brain tissue, total RNA m6A level, and the expression of METTL3, S1PR2, TLR4, NLRP3 and lncRNA H19 were detected in this experiment. RESULTS EA improved the neurological deficit scoring, cerebral infarction area, and pathological injury in MCAO rats, while these beneficial effects of EA on CIR injury were attenuated by the overexpression of METTL3 or lncRNA H19. More importantly, EA down-regulated the total RNA m6A level and the expression of METTL3, S1PR2, TLR4, NLRP3 and lncRNA H19 in MCAO rats. Instead, the overexpression of METTL3 or lncRNA H19 was found to reverse the EA-induced down-regulation. CONCLUSION The findings indicated that EA might down-regulate the S1PR2/TLR4/NLRP3 signaling pathway via m6A methylation of lncRNA H19 to alleviate CIR injury. Our findings provide a new insight into the molecular mechanism of EA on CIR injury.
Collapse
Affiliation(s)
- Han-Rui Zhang
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Gu-Quan Ma
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - He-Qun Lv
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Yao-Ting Feng
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Yong-Jun Peng
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| |
Collapse
|
9
|
Trevino TN, Fogel AB, Minshall R, Richner JM, Lutz SE. Caveolin-1 mediates neuroinflammation and cognitive impairment in SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.563024. [PMID: 37905019 PMCID: PMC10614946 DOI: 10.1101/2023.10.18.563024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Leukocyte infiltration of the CNS can contribute to neuroinflammation and cognitive impairment. Brain endothelial cells regulate adhesion, activation, and diapedesis of T cells across the blood-brain barrier (BBB) in inflammatory diseases. The integral membrane protein Caveolin-1 (Cav-1) critically regulates BBB permeability, but its influence on T cell CNS infiltration in respiratory viral infections is unknown. In this study, we sought to determine the role of Cav-1 at the BBB in neuroinflammation in a COVID-19 mouse model. We used mice genetically deficient in Cav-1 to test the role of this protein in T cell infiltration and cognitive impairment. We found that SARS-CoV-2 infection upregulated brain endothelial Cav-1. Moreover, SARS-CoV-2 infection increased brain endothelial cell vascular cell adhesion molecule-1 (VCAM-1) and CD3+ T cell infiltration of the hippocampus, a region important for short term learning and memory. Concordantly, we observed learning and memory deficits. Importantly, genetic deficiency in Cav-1 attenuated brain endothelial VCAM-1 expression and T cell infiltration in the hippocampus of mice with SARS-CoV-2 infection. Moreover, Cav-1 KO mice were protected from the learning and memory deficits caused by SARS-CoV-2 infection. These results indicate the importance of BBB permeability in COVID-19 neuroinflammation and suggest potential therapeutic value of targeting Cav-1 to improve disease outcomes.
Collapse
|
10
|
Martín-Hernández D, Muñoz-López M, Tendilla-Beltrán H, Caso JR, García-Bueno B, Menchén L, Leza JC. Immune System and Brain/Intestinal Barrier Functions in Psychiatric Diseases: Is Sphingosine-1-Phosphate at the Helm? Int J Mol Sci 2023; 24:12634. [PMID: 37628815 PMCID: PMC10454107 DOI: 10.3390/ijms241612634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Over the past few decades, extensive research has shed light on immune alterations and the significance of dysfunctional biological barriers in psychiatric disorders. The leaky gut phenomenon, intimately linked to the integrity of both brain and intestinal barriers, may play a crucial role in the origin of peripheral and central inflammation in these pathologies. Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates both the immune response and the permeability of biological barriers. Notably, S1P-based drugs, such as fingolimod and ozanimod, have received approval for treating multiple sclerosis, an autoimmune disease of the central nervous system (CNS), and ulcerative colitis, an inflammatory condition of the colon, respectively. Although the precise mechanisms of action are still under investigation, the effectiveness of S1P-based drugs in treating these pathologies sparks a debate on extending their use in psychiatry. This comprehensive review aims to delve into the molecular mechanisms through which S1P modulates the immune system and brain/intestinal barrier functions. Furthermore, it will specifically focus on psychiatric diseases, with the primary objective of uncovering the potential of innovative therapies based on S1P signaling.
Collapse
Affiliation(s)
- David Martín-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Marina Muñoz-López
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), 72570 Puebla, Mexico;
| | - Javier R. Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Borja García-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Luis Menchén
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Departamento de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III (CIBEREHD, ISCIII), 28029 Madrid, Spain
| | - Juan C. Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| |
Collapse
|
11
|
Kihara Y, Chun J. Molecular and neuroimmune pharmacology of S1P receptor modulators and other disease-modifying therapies for multiple sclerosis. Pharmacol Ther 2023; 246:108432. [PMID: 37149155 DOI: 10.1016/j.pharmthera.2023.108432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Multiple sclerosis (MS) is a neurological, immune-mediated demyelinating disease that affects people in the prime of life. Environmental, infectious, and genetic factors have been implicated in its etiology, although a definitive cause has yet to be determined. Nevertheless, multiple disease-modifying therapies (DMTs: including interferons, glatiramer acetate, fumarates, cladribine, teriflunomide, fingolimod, siponimod, ozanimod, ponesimod, and monoclonal antibodies targeting ITGA4, CD20, and CD52) have been developed and approved for the treatment of MS. All the DMTs approved to date target immunomodulation as their mechanism of action (MOA); however, the direct effects of some DMTs on the central nervous system (CNS), particularly sphingosine 1-phosphate (S1P) receptor (S1PR) modulators, implicate a parallel MOA that may also reduce neurodegenerative sequelae. This review summarizes the currently approved DMTs for the treatment of MS and provides details and recent advances in the molecular pharmacology, immunopharmacology, and neuropharmacology of S1PR modulators, with a special focus on the CNS-oriented, astrocyte-centric MOA of fingolimod.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, United States of America.
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, United States of America
| |
Collapse
|
12
|
Rotstein I, Katz J. Increased Risk for Acute Periapical Abscesses in Multiple Sclerosis Patients and the Possible Association with Epstein-Barr Virus. J Endod 2023; 49:262-266. [PMID: 36526109 DOI: 10.1016/j.joen.2022.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a severe inflammatory neuroimmune degenerative condition affecting more than 2 million individuals worldwide. The purpose of this study was to assess the prevalence of acute periapical abscesses in patients with MS and to evaluate whether acute periapical abscesses (PAs) are more likely to affect patients who were previously infected by Epstein-Barr virus (EBV). METHODS Integrated data of hospital patients were used. Data from the corresponding diagnosis codes for MS and acute PA were retrieved by querying the appropriate International Classification of Diseases, Tenth Revision codes in the database. RESULTS Of the total hospital patient population, 0.18% were diagnosed with a history of MS. Females were more affected than males 3.25-fold. Whites were more affected than African Americans 6-fold. Whites were more affected than African Americans combined with other ethnicities 3.6-fold. The odds ratio (OR) for acute PAs in patients with a history of MS was 2.2 (P < .0001). After adjustment for diabetes mellitus comorbidity, the OR for acute PAs in patients with a history of MS was 2.6. After adjustment for cardiovascular disease comorbidity, the OR for acute PAs in patients with a history of MS was 1.27. Of the patients who presented with PAs, 0.2% were diagnosed with a history of EBV infection. The OR was 3.98, and the difference in prevalence was statistically significant (P < .0001). CONCLUSIONS Under the conditions of this cross-sectional study, it appears that the prevalence of acute PAs is higher in patients with MS and that EBV may play a role.
Collapse
Affiliation(s)
- Ilan Rotstein
- University of Southern California, Los Angeles, California.
| | | |
Collapse
|
13
|
Ramphul K, Kumar N, Verma R, Ramphul Y, Sombans S, Kumari K, Fnu A, Lohana P. Acute myocardial infarction in patients with multiple sclerosis; An insight from 1785 cases in the United States. Mult Scler Relat Disord 2022; 68:104140. [PMID: 36057176 DOI: 10.1016/j.msard.2022.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Kamleshun Ramphul
- Department of Pediatrics, Shanghai Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Nomesh Kumar
- Department of Internal Medicine, Detroit Medical Centre, Wayne State University, Sinai Grace Hospital, United States
| | - Renuka Verma
- Department of Internal Medicine, Guru Gobind Singh Medical College, Punjab, India
| | | | - Shaheen Sombans
- Department of Cardiology and Internal Medicine, Bharati Vidyapeeth University Medical College and Hospital, Pune, India
| | - Komal Kumari
- Department of Internal Medicine, Liaquat University of Medical and Health Sciences, Pakistan
| | - Arti Fnu
- Department of Internal Medicine, Medstar Union Memorial Hospital, Baltimore, United States
| | - Petras Lohana
- Department of Nephrology, Jacobi Medical Centre, Albert Einstein College of Medicine, NYC, United States
| |
Collapse
|
14
|
Diakou I, Papakonstantinou E, Papageorgiou L, Pierouli K, Dragoumani K, Spandidos DA, Bacopoulou F, Chrousos GP, Goulielmos GΝ, Eliopoulos E, Vlachakis D. Multiple sclerosis and computational biology (Review). Biomed Rep 2022; 17:96. [PMID: 36382258 PMCID: PMC9634047 DOI: 10.3892/br.2022.1579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neurodegenerative disease whose prevalence has increased worldwide. The resultant symptoms may be debilitating and can substantially reduce the of patients. Computational biology, which involves the use of computational tools to answer biomedical questions, may provide the basis for novel healthcare approaches in the context of MS. The rapid accumulation of health data, and the ever-increasing computational power and evolving technology have helped to modernize and refine MS research. From the discovery of novel biomarkers to the optimization of treatment and a number of quality-of-life enhancements for patients, computational biology methods and tools are shaping the field of MS diagnosis, management and treatment. The final goal in such a complex disease would be personalized medicine, i.e., providing healthcare services that are tailored to the individual patient, in accordance to the particular biology of their disease and the environmental factors to which they are subjected. The present review article summarizes the current knowledge on MS, modern computational biology and the impact of modern computational approaches of MS.
Collapse
Affiliation(s)
- Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Louis Papageorgiou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece
| | - Georges Ν. Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of The Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
15
|
McCombe PA, Greer JM. Effects of biological sex and pregnancy in experimental autoimmune encephalomyelitis: It's complicated. Front Immunol 2022; 13:1059833. [PMID: 36518769 PMCID: PMC9742606 DOI: 10.3389/fimmu.2022.1059833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) can be induced in many animal strains by inoculation with central nervous system antigens and adjuvant or by the passive transfer of lymphocytes reactive with these antigens and is widely used as an animal model for multiple sclerosis (MS). There are reports that female sex and pregnancy affect EAE. Here we review the effects of biological sex and the effects of pregnancy on the clinical features (including disease susceptibility) and pathophysiology of EAE. We also review reports of the possible mechanisms underlying these differences. These include sex-related differences in the immune system and in the central nervous system, the effects of hormones and the sex chromosomes and molecules unique to pregnancy. We also review sex differences in the response to factors that can modify the course of EAE. Our conclusion is that the effects of biological sex in EAE vary amongst animal models and should not be widely extrapolated. In EAE, it is therefore essential that studies looking at the effects of biological sex or pregnancy give full information about the model that is used (i.e. animal strain, sex, the inducing antigen, timing of EAE induction in relation to pregnancy, etc.). In addition, it would be preferable if more than one EAE model were used, to show if any observed effects are generalizable. This is clearly a field that requires further work. However, understanding of the mechanisms of sex differences could lead to greater understanding of EAE, and suggest possible therapies for MS.
Collapse
Affiliation(s)
| | - Judith M. Greer
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Ren ZL, Li CX, Ma CY, Chen D, Chen JH, Xu WX, Chen CA, Cheng FF, Wang XQ. Linking Nonalcoholic Fatty Liver Disease and Brain Disease: Focusing on Bile Acid Signaling. Int J Mol Sci 2022; 23:13045. [PMID: 36361829 PMCID: PMC9654021 DOI: 10.3390/ijms232113045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/01/2023] Open
Abstract
A metabolic illness known as non-alcoholic fatty liver disease (NAFLD), affects more than one-quarter of the world's population. Bile acids (BAs), as detergents involved in lipid digestion, show an abnormal metabolism in patients with NAFLD. However, BAs can affect other organs as well, such as the brain, where it has a neuroprotective effect. According to a series of studies, brain disorders may be extrahepatic manifestations of NAFLD, such as depression, changes to the cerebrovascular system, and worsening cognitive ability. Consequently, we propose that NAFLD affects the development of brain disease, through the bile acid signaling pathway. Through direct or indirect channels, BAs can send messages to the brain. Some BAs may operate directly on the central Farnesoid X receptor (FXR) and the G protein bile acid-activated receptor 1 (GPBAR1) by overcoming the blood-brain barrier (BBB). Furthermore, glucagon-like peptide-1 (GLP-1) and the fibroblast growth factor (FGF) 19 are released from the intestine FXR and GPBAR1 receptors, upon activation, both of which send signals to the brain. Inflammatory, systemic metabolic disorders in the liver and brain are regulated by the bile acid-activated receptors FXR and GPBAR1, which are potential therapeutic targets. From a bile acid viewpoint, we examine the bile acid signaling changes in NAFLD and brain disease. We also recommend the development of dual GPBAR1/FXR ligands to reduce side effects and manage NAFLD and brain disease efficiently.
Collapse
Affiliation(s)
- Zi-Lin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chang-Xiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chong-Yang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Dan Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jia-Hui Chen
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Wen-Xiu Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cong-Ai Chen
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Fa-Feng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xue-Qian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
17
|
Faraji J, Bettenson D, Babatunde S, Gangur-Powell T, Yong VW, Metz GA. Thermoregulatory dynamics reveal sex-specific inflammatory responses to experimental autoimmune encephalomyelitis in mice: Implications for multiple sclerosis-induced fatigue in females. Brain Behav Immun Health 2022; 23:100477. [PMID: 35677535 PMCID: PMC9167694 DOI: 10.1016/j.bbih.2022.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
The course of multiple sclerosis (MS) is characterized by striking sex differences in symptoms such as fatigue and impaired thermal regulation, which are associated with aggravated systemic pro-inflammatory processes. The purpose of this study was to replicate these symptoms in experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice in the quest to advance the preclinical study of non-motor symptoms of MS. Male and female C57BL/6 mice exposed to a mild form of EAE were evaluated for the progression of clinical, behavioural, thermal, and inflammatory processes. We show higher susceptibility in females to EAE than males based on greater clinical score and cumulative disease index (CDI), fatigue-like and anxiety-like behaviours. Accordingly, infrared (IR) thermography indicated higher cutaneous temperatures in females from post-induction days 12-23. Females also responded to EAE with greater splenic and adrenal gland weights than males as well as sex-specific changes in pro- and anti-inflammatory cytokines. These findings provide the first evidence of a sex-specific thermal response to immune-mediated demyelination, thus proposing a non-invasive assessment approach of the psychophysiological dynamics in EAE mice. The results are discussed in relation to the thermoregulatory correlates of fatigue and how endogenously elevated body temperature without direct heat exposure may be linked to psychomotor inhibition in patients with MS.
Collapse
Affiliation(s)
- Jamshid Faraji
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Dennis Bettenson
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Stella Babatunde
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Tabitha Gangur-Powell
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Voon Wee Yong
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Gerlinde A.S. Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
18
|
Skoug C, Martinsson I, Gouras GK, Meissner A, Duarte JMN. Sphingosine 1-Phoshpate Receptors are Located in Synapses and Control Spontaneous Activity of Mouse Neurons in Culture. Neurochem Res 2022; 47:3114-3125. [PMID: 35781853 PMCID: PMC9470655 DOI: 10.1007/s11064-022-03664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/26/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
Abstract
Sphingosine-1-phosphate (S1P) is best known for its roles as vascular and immune regulator. Besides, it is also present in the central nervous system (CNS) where it can act as neuromodulator via five S1P receptors (S1PRs), and thus control neurotransmitter release. The distribution of S1PRs in the active zone and postsynaptic density of CNS synapses remains unknown. In the current study, we investigated the localization of S1PR1-5 in synapses of the mouse cortex. Cortical nerve terminals purified in a sucrose gradient were endowed with all five S1PRs. Further subcellular fractionation of cortical nerve terminals revealed S1PR2 and S1PR4 immunoreactivity in the active zone of presynaptic nerve terminals. Interestingly, only S1PR2 and S1PR3 immunoreactivity was found in the postsynaptic density. All receptors were present outside the active zone of nerve terminals. Neurons in the mouse cortex and primary neurons in culture showed immunoreactivity against all five S1PRs, and Ca2+ imaging revealed that S1P inhibits spontaneous neuronal activity in a dose-dependent fashion. When testing selective agonists for each of the receptors, we found that only S1PR1, S1PR2 and S1PR4 control spontaneous neuronal activity. We conclude that S1PR2 and S1PR4 are located in the active zone of nerve terminals and inhibit neuronal activity. Future studies need to test whether these receptors modulate stimulation-induced neurotransmitter release.
Collapse
Affiliation(s)
- Cecilia Skoug
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Isak Martinsson
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Gunnar K Gouras
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Anja Meissner
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Physiology, University of Augsburg, Augsburg, Germany
| | - João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
19
|
Harbuzariu A, Nti A, Harp KO, Cespedes JC, Driss A, Stiles JK. Neuregulin-1/ErbB4 signaling modulates Plasmodium falciparum HRP2-induced damage to brain cortical organoids. iScience 2022; 25:104407. [PMID: 35663028 PMCID: PMC9157207 DOI: 10.1016/j.isci.2022.104407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 12/21/2021] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Human cerebral malaria (HCM) is a severe complication of Plasmodium falciparum (P.f.) infection that is characterized by capillary occlusions, rupture of the blood-brain barrier (BBB), perivascular cellular injury, and brain swelling. P.f.histidine-rich protein 2 (HRP2), a byproduct of parasitized red blood cell (pRBC) lysis, crosses the BBB when compromised to cause brain injury. We hypothesized that HRP2-induced neuronal damage can be attenuated by Neuregulin-1 (NRG1), an anti-inflammatory neuroprotective factor. Using brain cortical organoids, we determined that HRP2 upregulated cell death and inflammatory markers and disorganized brain organoid tissue. We identified toll-like receptors (TLR1 and 2) as potential mediators of HRP2-induced cellular damage and inflammation. Exogenous acute treatment of organoids with NRG1 attenuated HRP2 effects. The results indicate that HRP2 mediates malaria-associated HRP2-induced brain injury and inflammation and that NRG1 may be an effective therapy against HRP2 effects in the brain.
Collapse
Affiliation(s)
- Adriana Harbuzariu
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Annette Nti
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Keri Oxendine Harp
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Juan C. Cespedes
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Adel Driss
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Jonathan K. Stiles
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
20
|
Bhusal A, Nam Y, Seo D, Rahman MH, Hwang EM, Kim S, Lee W, Suk K. Cathelicidin‐related antimicrobial peptide promotes neuroinflammation through astrocyte–microglia communication in experimental autoimmune encephalomyelitis. Glia 2022; 70:1902-1926. [DOI: 10.1002/glia.24227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/10/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine Kyungpook National University Daegu Republic of Korea
| | - Youngpyo Nam
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
| | - Donggun Seo
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
- Division of Endocrinology, Department of Medicine Rutgers Robert Wood Johnson Medical School New Brunswick New Jersey USA
| | - Eun Mi Hwang
- Brain Science Institute, Korea Institute of Science and Technology Seoul Republic of Korea
| | - Seung‐Chan Kim
- Brain Science Institute, Korea Institute of Science and Technology Seoul Republic of Korea
| | - Won‐Ha Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group Kyungpook National University Daegu Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine Kyungpook National University Daegu Republic of Korea
- Brain Science and Engineering Institute Kyungpook National University Daegu Republic of Korea
| |
Collapse
|
21
|
Arenas YM, Balzano T, Ivaylova G, Llansola M, Felipo V. The S1PR2‐CCL2‐BDNF‐TrkB pathway mediates neuroinflammation and motor incoordination in hyperammonaemia. Neuropathol Appl Neurobiol 2022; 48. [PMID: 35152448 DOI: 10.1111/nan.12799] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 02/05/2022] [Indexed: 11/18/2024]
Abstract
AbstractAimsChronic hyperammonaemia and inflammation synergistically induce neurological impairment, including motor incoordination, in hepatic encephalopathy. Hyperammonaemic rats show neuroinflammation in the cerebellum which enhances GABAergic neurotransmission leading to motor incoordination. We aimed to identify underlying mechanisms. The aims were (1) to assess if S1PR2 is involved in microglial and astrocytic activation in the cerebellum of hyperammonaemic rats; (2) to identify pathways by which enhanced S1PR2 activation induces neuroinflammation and alters neurotransmission; (3) to assess if blocking S1PR2 reduces neuroinflammation and restores motor coordination in hyperammonaemic rats.MethodsWe performed ex vivo studies in cerebellar slices from control or hyperammonaemic rats to identify pathways by which neuroinflammation enhances GABAergic neurotransmission in hyperammonaemia. Neuroinflammation and neurotransmission were assessed by immunochemistry/immunofluorescence and western blot. S1PR2 was blocked by intracerebral treatment with JTE‐013 using osmotic mini‐pumps. Motor coordination was assessed by beam walking.ResultsChronic hyperammonaemia enhances S1PR2 activation in the cerebellum by increasing its membrane expression. This increases CCL2, especially in Purkinje neurons. CCL2 activates CCR2 in microglia, leading to microglial activation, increased P2X4 membrane expression and BDNF in microglia. BDNF enhances TrkB activation in neurons, increasing KCC2 membrane expression. This enhances GABAergic neurotransmission, leading to motor incoordination in hyperammonaemic rats. Blocking S1PR2 in hyperammonaemic rats by intracerebral administration of JTE‐013 normalises the S1PR2‐CCL2‐CCR2‐BDNF‐TrkB‐KCC2 pathway, reduces glial activation and restores motor coordination in hyperammonaemic rats.ConclusionsEnhanced S1PR2‐CCL2‐BDNF‐TrkB pathway activation mediates neuroinflammation and incoordination in hyperammonaemia. The data raise a promising therapy for patients with hepatic encephalopathy using compounds targeting this pathway.
Collapse
Affiliation(s)
- Yaiza M. Arenas
- Laboratory of Neurobiology Centro Investigación Príncipe Felipe Valencia Spain
| | - Tiziano Balzano
- Laboratory of Neurobiology Centro Investigación Príncipe Felipe Valencia Spain
| | - Gergana Ivaylova
- Laboratory of Neurobiology Centro Investigación Príncipe Felipe Valencia Spain
| | - Marta Llansola
- Laboratory of Neurobiology Centro Investigación Príncipe Felipe Valencia Spain
| | - Vicente Felipo
- Laboratory of Neurobiology Centro Investigación Príncipe Felipe Valencia Spain
| |
Collapse
|
22
|
Sphingosine 1-phosphate receptor-targeted therapeutics in rheumatic diseases. Nat Rev Rheumatol 2022; 18:335-351. [PMID: 35508810 DOI: 10.1038/s41584-022-00784-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
Sphingosine 1-phosphate (S1P), which acts via G protein-coupled S1P receptors (S1PRs), is a bioactive lipid essential for vascular integrity and lymphocyte trafficking. The S1P-S1PR signalling axis is a key component of the inflammatory response in autoimmune rheumatic diseases. Several drugs that target S1PRs have been approved for the treatment of multiple sclerosis and inflammatory bowel disease and are under clinical testing for patients with systemic lupus erythematosus (SLE). Preclinical studies support the hypothesis that targeting the S1P-S1PR axis would be beneficial to patients with SLE, rheumatoid arthritis (RA) and systemic sclerosis (SSc) by reducing pathological inflammation. Whereas most preclinical research and development efforts are focused on reducing lymphocyte trafficking, protective effects of circulating S1P on endothelial S1PRs, which maintain the vascular barrier and enable blood circulation while dampening leukocyte extravasation, have been largely overlooked. In this Review, we take a holistic view of S1P-S1PR signalling in lymphocyte and vascular pathobiology. We focus on the potential of S1PR modulators for the treatment of SLE, RA and SSc and summarize the rationale, pathobiology and evidence from preclinical models and clinical studies. Improved understanding of S1P pathobiology in autoimmune rheumatic diseases and S1PR therapeutic modulation is anticipated to lead to efficacious and safer management of these diseases.
Collapse
|
23
|
Immune Cell Contributors to the Female Sex Bias in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Curr Top Behav Neurosci 2022; 62:333-373. [PMID: 35467295 DOI: 10.1007/7854_2022_324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, demyelinating disease of the central nervous system (CNS) that leads to axonal damage and accumulation of disability. Relapsing-remitting MS (RR-MS) is the most frequent presentation of MS and this form of MS is three times more prevalent in females than in males. This female bias in MS is apparent only after puberty, suggesting a role for sex hormones in this regulation; however, very little is known of the biological mechanisms that underpin the sex difference in MS onset. Experimental autoimmune encephalomyelitis (EAE) is an animal model of RR-MS that presents more severely in females in certain mouse strains and thus has been useful to study sex differences in CNS autoimmunity. Here, we overview the immunopathogenesis of MS and EAE and how immune mechanisms in these diseases differ between a male and female. We further describe how females exhibit more robust myelin-specific T helper (Th) 1 immunity in MS and EAE and how this sex bias in Th cells is conveyed by sex hormone effects on the T cells, antigen presenting cells, regulatory T cells, and innate lymphoid cell populations.
Collapse
|
24
|
Chen H, Chen K, Huang W, Staudt LM, Cyster JG, Li X. Structure of S1PR2-heterotrimeric G 13 signaling complex. SCIENCE ADVANCES 2022; 8:eabn0067. [PMID: 35353559 PMCID: PMC8967229 DOI: 10.1126/sciadv.abn0067] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/07/2022] [Indexed: 06/01/2023]
Abstract
Sphingosine-1-phosphate (S1P) regulates immune cell trafficking, angiogenesis, and vascular function via its five receptors. Inherited mutations in S1P receptor 2 (S1PR2) occur in individuals with hearing loss, and acquired mutations in S1PR2 and Gα13 occur in a malignant lymphoma. Here, we present the cryo-electron microscopy structure of S1P-bound S1PR2 coupled to the heterotrimeric G13. Interaction between S1PR2 intracellular loop 2 (ICL2) and transmembrane helix 4 confines ICL2 to engage the α5 helix of Gα13. Transforming growth factor-α shedding assays and cell migration assays support the key roles of the residues in S1PR2-Gα13 complex assembly. The structure illuminates the mechanism of receptor disruption by disease-associated mutations. Unexpectedly, we showed that FTY720-P, an agonist of the other four S1PRs, can trigger G13 activation via S1PR2. S1PR2F274I variant can increase the activity of G13 considerably with FTY720-P and S1P, thus revealing a basis for S1PR drug selectivity.
Collapse
Affiliation(s)
- Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin Chen
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Weijiao Huang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason G. Cyster
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
25
|
Luo Z, Liu H, Yu Y, Gropler RJ, Klein RS, Tu Z. Synthesis and evaluation of highly selective quinazoline-2,4-dione ligands for sphingosine-1-phosphate receptor 2. RSC Med Chem 2022; 13:202-207. [PMID: 35308025 PMCID: PMC8864552 DOI: 10.1039/d1md00357g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/22/2021] [Indexed: 01/05/2023] Open
Abstract
A series of twenty-nine new quinazoline-2,4-dione compounds were synthesized and their IC50 values for binding toward sphingosine-1-phosphate receptor 2 (S1PR2) were determined using a [32P]S1P binding assay. Seven compounds 2a, 2g, 2h, 2i, 2j, 2k, and 5h exhibit high S1PR2 binding potencies (IC50 values < 50 nM) and four of these new compounds 2g, 2i, 2j, and 2k have IC50 values (<10 nM) of 6.3, 5.7, 4.8, and 2.6 nM, and are highly selective for S1PR2 over other S1PR subtypes, S1PR1, 3, 4, and 5. Compounds 2a and 2i were chosen for C-11 radiosynthesis through O-[11C]methylation of precursors 13 and 2k with good radiochemical yields (35-40%), high chemical and radiochemical purity (>98%), and high molar activity (153-222 GBq μmol-1, at the end of bombardment). [11C]2a and [11C]2i were further evaluated by the ex vivo biodistribution study. The results showed that both tracers have low brain uptake, preventing their potential for neuroimaging application. Further explorations of this class of S1PR2 PET tracers in peripheral tissue diseases are underway.
Collapse
Affiliation(s)
- Zonghua Luo
- Department of Radiology, Washington University School of Medicine St. Louis MO 63110 USA
- School of Biomedical Engineering, ShanghaiTech University Shanghai 201210 China
| | - Hui Liu
- Department of Radiology, Washington University School of Medicine St. Louis MO 63110 USA
| | - Yanbo Yu
- Department of Radiology, Washington University School of Medicine St. Louis MO 63110 USA
| | - Robert J Gropler
- Department of Radiology, Washington University School of Medicine St. Louis MO 63110 USA
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine St. Louis MO 63110 USA
- Department of Neuroscience, Washington University School of Medicine St. Louis MO 63110 USA
- Department of Pathology & Immunology, Washington University School of Medicine St. Louis MO 63110 USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine St. Louis MO 63110 USA
| |
Collapse
|
26
|
Dal SR, Elphick TL, Fuller K. Epidemiological study of multiple sclerosis in Illawarra region. Intern Med J 2022. [PMID: 35112760 DOI: 10.1111/imj.15704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/03/2022] [Accepted: 01/22/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease which causes significant disabilities. Latest MS epidemiological data in Australia reveals rising prevalence. No epidemiological study of MS has been conducted so far in the Illawarra region. AIM To calculate prevalence and incidence of MS in the Illawarra and compare with other regions', states' and national prevalence data. METHOD Data of MS patients in the Illawarra were collected from hospital medical records, ambulatory care units and hospital pharmacy. Prevalence was calculated for alive MS patients on June 30, 2018 expressed per 100 000 population. Yearly adjusted incidence rate was calculated for 10 years (2009-2019), expressed as cases per 100 000 population-years. RESULTS Estimated MS prevalence in the Illawarra was 116.6 per 100 000 population with yearly incidence (2009-2019) of 5.06 cases per 100 000 population-years (female to male, 3:1). Relapsing-remitting MS (RRMS) was the most common type (277/397 ~ 69.7%) with primary progressive MS (PPMS) in 52/397 ~ 13%, and secondary progressive MS (SPMS) in 45/397 ~ 11.3% (unknown in 23). Commonest age at diagnosis ranged between 30-39 years for all types with RRMS and PPMS between 30-39 years and 40-49 years respectively. The most commonly recorded treatment was natalizumab (103 patients) followed by fingolimod (82 patients) and interferon (58 patients). CONCLUSION The calculated MS prevalence in the Illawarra is higher than NSW and Australian average MS prevalence. Further epidemiological studies focusing on MS risk factors and other factors bearing on MS prevalence in the Illawarra are required. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shoaib R Dal
- Department of Neurology, Wollongong Hospital, Wollongong, New South Wales, Australia
| | - Tiana-Lee Elphick
- Research Central, Wollongong Hospital, Wollongong, New South Wales, Australia
| | - Karen Fuller
- Department of Neurology, Wollongong Hospital, Wollongong, New South Wales, Australia
| |
Collapse
|
27
|
Chen Z, Haider A, Chen J, Xiao Z, Gobbi L, Honer M, Grether U, Arnold SE, Josephson L, Liang SH. The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO. J Med Chem 2021; 64:17656-17689. [PMID: 34905377 PMCID: PMC9094091 DOI: 10.1021/acs.jmedchem.1c01571] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuroinflammation is an adaptive response of the central nervous system to diverse potentially injurious stimuli, which is closely associated with neurodegeneration and typically characterized by activation of microglia and astrocytes. As a noninvasive and translational molecular imaging tool, positron emission tomography (PET) could provide a better understanding of neuroinflammation and its role in neurodegenerative diseases. Ligands to translator protein (TSPO), a putative marker of neuroinflammation, have been the most commonly studied in this context, but they suffer from serious limitations. Herein we present a repertoire of different structural chemotypes and novel PET ligand design for classical and emerging neuroinflammatory targets beyond TSPO. We believe that this Perspective will support multidisciplinary collaborations in academic and industrial institutions working on neuroinflammation and facilitate the progress of neuroinflammation PET probe development for clinical use.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Luca Gobbi
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Steven E. Arnold
- Department of Neurology and the Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| |
Collapse
|
28
|
Ryan L, Mills KHG. Sex differences regulate immune responses in experimental autoimmune encephalomyelitis and multiple sclerosis. Eur J Immunol 2021; 52:24-33. [PMID: 34727577 DOI: 10.1002/eji.202149589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022]
Abstract
MS is an autoimmune disease of the CNS that afflicts over 2.5 million people worldwide. There are striking sex differences in the susceptibility to and progression of this disease in humans. Females are twice as likely to develop MS than males, whereas disease progression and disability is more rapid in males compared with females; however, the latter is still controversial. There is growing evidence, mainly from animal models, that innate and adaptive immune responses are different in males and females, and that this can influence the outcome of a range of diseases including infection, cancer, and autoimmunity. Since MS is an immune-mediated disease, sex differences in pathogenic immune responses may account for some of the differences in susceptibility to and progression seen in men versus women. Indeed, data from the mouse model of MS, EAE, have already provided some evidence that female mice have earlier disease onset associated with stronger Th17 responses. This review will discuss the possible immunological basis of sex differences in susceptibility and disease outcome in EAE and MS and how a better understanding of sex differences in the responses to disease-modifying therapies may lead to improved patient treatment.
Collapse
Affiliation(s)
- Lucy Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
29
|
Galea I. The blood-brain barrier in systemic infection and inflammation. Cell Mol Immunol 2021; 18:2489-2501. [PMID: 34594000 PMCID: PMC8481764 DOI: 10.1038/s41423-021-00757-x] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
The vascular blood-brain barrier is a highly regulated interface between the blood and brain. Its primary function is to protect central neurons while signaling the presence of systemic inflammation and infection to the brain to enable a protective sickness behavior response. With increasing degrees and duration of systemic inflammation, the vascular blood-brain barrier becomes more permeable to solutes, undergoes an increase in lymphocyte trafficking, and is infiltrated by innate immune cells; endothelial cell damage may occasionally occur. Perturbation of neuronal function results in the clinical features of encephalopathy. Here, the molecular and cellular anatomy of the vascular blood-brain barrier is reviewed, first in a healthy context and second in a systemic inflammatory context. Distinct from the molecular and cellular mediators of the blood-brain barrier's response to inflammation, several moderators influence the direction and magnitude at genetic, system, cellular and molecular levels. These include sex, genetic background, age, pre-existing brain pathology, systemic comorbidity, and gut dysbiosis. Further progress is required to define and measure mediators and moderators of the blood-brain barrier's response to systemic inflammation in order to explain the heterogeneity observed in animal and human studies.
Collapse
Affiliation(s)
- Ian Galea
- grid.5491.90000 0004 1936 9297Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD UK
| |
Collapse
|
30
|
Takata F, Nakagawa S, Matsumoto J, Dohgu S. Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. Front Cell Neurosci 2021; 15:661838. [PMID: 34588955 PMCID: PMC8475767 DOI: 10.3389/fncel.2021.661838] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is involved in the onset or progression of various neurodegenerative diseases. Initiation of neuroinflammation is triggered by endogenous substances (damage-associated molecular patterns) and/or exogenous pathogens. Activation of glial cells (microglia and astrocytes) is widely recognized as a hallmark of neuroinflammation and triggers the release of proinflammatory cytokines, leading to neurotoxicity and neuronal dysfunction. Another feature associated with neuroinflammatory diseases is impairment of the blood-brain barrier (BBB). The BBB, which is composed of brain endothelial cells connected by tight junctions, maintains brain homeostasis and protects neurons. Impairment of this barrier allows trafficking of immune cells or plasma proteins into the brain parenchyma and subsequent inflammatory processes in the brain. Besides neurons, activated glial cells also affect BBB integrity. Therefore, BBB dysfunction can amplify neuroinflammation and act as a key process in the development of neuroinflammation. BBB integrity is determined by the integration of multiple signaling pathways within brain endothelial cells through intercellular communication between brain endothelial cells and brain perivascular cells (pericytes, astrocytes, microglia, and oligodendrocytes). For prevention of BBB disruption, both cellular components, such as signaling molecules in brain endothelial cells, and non-cellular components, such as inflammatory mediators released by perivascular cells, should be considered. Thus, understanding of intracellular signaling pathways that disrupt the BBB can provide novel treatments for neurological diseases associated with neuroinflammation. In this review, we discuss current knowledge regarding the underlying mechanisms involved in BBB impairment by inflammatory mediators released by perivascular cells.
Collapse
Affiliation(s)
- Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
31
|
Dayton JR, Yuan Y, Pacumio LP, Dorflinger BG, Yoo SC, Olson MJ, Hernández-Suárez SI, McMahon MM, Cruz-Orengo L. Expression of IL-20 Receptor Subunit β Is Linked to EAE Neuropathology and CNS Neuroinflammation. Front Cell Neurosci 2021; 15:683687. [PMID: 34557075 PMCID: PMC8452993 DOI: 10.3389/fncel.2021.683687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Considerable clinical evidence supports that increased blood-brain barrier (BBB) permeability is linked to immune extravasation of CNS parenchyma during neuroinflammation. Although BBB permeability and immune extravasation are known to be provoked by vascular endothelial growth factor-A (i.e., VEGF-A) and C-X-C motif chemokine ligand 12 (CXCL12), respectively, the mechanisms that link both processes are still elusive. The interleukin-20 (i.e., IL-20) cytokine signaling pathway was previously implicated in VEGF-mediated angiogenesis and is known to induce cellular response by way of signaling through IL-20 receptor subunit β (i.e., IL-20RB). Dysregulated IL-20 signaling is implicated in many inflammatory pathologies, but it's contribution to neuroinflammation has yet to be reported. We hypothesize that the IL-20 cytokine, and the IL cytokine subfamily more broadly, play a key role in CNS neuroinflammation by signaling through IL-20RB, induce VEGF activity, and enhance both BBB-permeability and CXCL12-mediated immune extravasation. To address this hypothesis, we actively immunized IL-20RB-/- mice and wild-type mice to induce experimental autoimmune encephalomyelitis (EAE) and found that IL-20RB-/- mice showed amelioration of disease progression compared to wild-type mice. Similarly, we passively immunized IL-20RB-/- mice and wild-type mice with myelin-reactive Th1 cells from either IL-20RB-/- and wild-type genotype. Host IL-20RB-/- mice showed lesser disease progression than wild-type mice, regardless of the myelin-reactive Th1 cells genotype. Using multianalyte bead-based immunoassay and ELISA, we found distinctive changes in levels of pro-inflammatory cytokines between IL-20RB-/- mice and wild-type mice at peak of EAE. We also found detectable levels of all cytokines of the IL-20 subfamily within CNS tissues and specific alteration to IL-20 subfamily cytokines IL-19, IL-20, and IL-24, expression levels. Immunolabeling of CNS region-specific microvessels confirmed IL-20RB protein at the spinal cord microvasculature and upregulation during EAE. Microvessels isolated from macaques CNS tissues also expressed IL-20RB. Moreover, we identified the expression of all IL-20 receptor subunits: IL-22 receptor subunit α-1 (IL-22RA1), IL-20RB, and IL-20 receptor subunit α (IL-20RA) in human CNS microvessels. Notably, human cerebral microvasculature endothelial cells (HCMEC/D3) treated with IL-1β showed augmented expression of the IL-20 receptor. Lastly, IL-20-treated HCMEC/D3 showed alterations on CXCL12 apicobasal polarity consistent with a neuroinflammatory status. This evidence suggests that IL-20 subfamily cytokines may signal at the BBB via IL-20RB, triggering neuroinflammation.
Collapse
Affiliation(s)
- Jacquelyn R Dayton
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Yinyu Yuan
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Lisa P Pacumio
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Bryce G Dorflinger
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Samantha C Yoo
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Mariah J Olson
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Sara I Hernández-Suárez
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States.,Bayer School of Natural and Environmental Sciences, Duquesne University of the Holy Spirit, Pittsburgh, PA, United States
| | - Moira M McMahon
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States.,Department of Molecular and Cell Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Lillian Cruz-Orengo
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
32
|
McGinley MP, Cohen JA. Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions. Lancet 2021; 398:1184-1194. [PMID: 34175020 DOI: 10.1016/s0140-6736(21)00244-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/19/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
The sphingosine 1-phosphate (S1P) signalling pathways have important and diverse functions. S1P receptors (S1PRs) have been proposed as a therapeutic target for various diseases due to their involvement in regulation of lymphocyte trafficking, brain and cardiac function, vascular permeability, and vascular and bronchial tone. S1PR modulators were first developed to prevent rejection by the immune system following renal transplantation, but the only currently approved indication is multiple sclerosis. The primary mechanism of action of S1PR modulators in multiple sclerosis is through binding S1PR subtype 1 on lymphocytes resulting in internalisation of the receptor and loss of responsiveness to the S1P gradient that drives lymphocyte egress from lymph nodes. The reduction in circulating lymphocytes presumably limits inflammatory cell migration into the CNS. Four S1PR modulators (fingolimod, siponimod, ozanimod, and ponesimod) have regulatory approval for multiple sclerosis. Preclinical evidence and ongoing and completed clinical trials support development of S1PR modulators for other therapeutic indications.
Collapse
|
33
|
Colombo E, Farina C. Lessons from S1P receptor targeting in multiple sclerosis. Pharmacol Ther 2021; 230:107971. [PMID: 34450231 DOI: 10.1016/j.pharmthera.2021.107971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a potent bioactive sphingolipid binding to specific G protein-coupled receptors expressed in several organs. The relevance of S1P-S1P receptor axis in the pathophysiology of immune and nervous systems has encouraged the development of S1P receptor modulators for the treatment of neurological, autoimmune and/or inflammatory disorders. Currently, four S1P receptor modulators are approved drugs for multiple sclerosis (MS), an inflammatory disorder of the central nervous system. As main pharmacologic effect, these treatments induce lymphopenia due to the loss of responsiveness to S1P gradients guiding lymphocyte egress from lymphoid organs into the bloodstream. Recent data point to immunological effects of the S1P modulators beyond the inhibition of lymphocyte trafficking. Further, these drugs may cross the blood-brain barrier and directly target CNS resident cells expressing S1P receptors. Here we review the role of S1P signalling in neuroimmunology at the light of the evidences generated from the study of the mechanism of action of S1P receptor modulators in MS and integrate this information with findings derived from neuroinflammatory animal models and in vitro observations. These insights can direct the application of therapeutic approaches targeting S1P receptors in other disease areas.
Collapse
Affiliation(s)
- Emanuela Colombo
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy.
| |
Collapse
|
34
|
Ondek K, Nasirishargh A, Dayton JR, Nuño MA, Cruz-Orengo L. Strain and sex differences in somatosensation and sociability during experimental autoimmune encephalomyelitis. Brain Behav Immun Health 2021; 14:100262. [PMID: 34589768 PMCID: PMC8474462 DOI: 10.1016/j.bbih.2021.100262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 12/01/2022] Open
Abstract
Multiple Sclerosis (MS) is an immune-mediated disease that results in major locomotor deficits. However, recent studies have revealed that fatigue, slow processing speed, and memory impairment are the top variables impacting employment status for MS patients. These suggest that cognitive effects may have a greater impact on productivity, lifestyle, and quality of life than do disease-related motor deficits. However, these debilitating non-locomotive effects have been largely overlooked in rodent models of the disease, such as experimental autoimmune encephalomyelitis (EAE). We hypothesized that murine EAE can also be used to assess non-locomotive dysfunctions (mood, sociability, muscle strength, and balance), as well as potential biases in these dysfunctions due to sex and/or strain. We actively immunized male and female C57BL/6 (B6) and SJL mice for EAE and evaluated their performance on the Deacon's weight grip test, Kondziela's inverted screen test, Hall's rope grip test, manual von Frey test for somatic nociception, and a three-chamber social preference paradigm. We hypothesized that EAE progression is associated with changes in muscle strength, balance, pain, and sociability and that these variations are linked to sex and/or strain. Our results indicate that strain but not sex influenced differences in muscle strength and balance during EAE, and both sex and strain have an impact on mechanical nociception, regardless of EAE disease status. Furthermore, both sex and strain had complex effects on differences in sociability. In conclusion, testing these additional modalities during EAE helps to unveil other signs and symptoms that could be used to determine the efficacy of a drug or treatment in the modulation of a MS-like behavior.
Collapse
Affiliation(s)
- Katelynn Ondek
- University of California, Davis. Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Aida Nasirishargh
- University of California, Davis. Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Jacquelyn R. Dayton
- University of California, Davis. Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Miriam A. Nuño
- University of California, Davis. Department of Public Health, Division of Biostatistics, School of Medicine, Public Health/Medical Sciences Bldg. 1-C, Davis, CA 95616, USA
| | - Lillian Cruz-Orengo
- University of California, Davis. Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| |
Collapse
|
35
|
Tanis RM, Wedman-Robida PA, Chumanevich AP, Fuseler JW, Oskeritzian CA. The mast cell/S1P axis is not linked to pre-lesional male skin remodeling in a mouse model of eczema. AIMS ALLERGY AND IMMUNOLOGY 2021; 5:160-174. [PMID: 37885821 PMCID: PMC10602012 DOI: 10.3934/allergy.2021012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Atopic dermatitis (AD, eczema) is an inflammatory skin condition whose histopathology involves remodeling. Few preclinical AD studies are performed using male mice. The histopathological mechanisms underlying AD development were investigated here in male mice at a pre-lesional stage using a human AD-like mouse model. Hypodermal cellular infiltration without thickening of skin layers was observed after one epicutaneous exposure to antigen ovalbumin (OVA), compared to controls. In contrast to our previous report using female mice, OVA treatment did not activate skin mast cells (MC) or elevate sphingosine-1-phosphate (S1P) levels while increasing systemic but not local levels of CCL2, CCL3 and CCL5 chemokines. In contrast to the pathogenic AD mechanisms we recently uncovered in female, S1P-mediated skin MC activation with subsequent local chemokine production is not observed in male mice, supporting sex differences in pre-lesional stages of AD. We are proposing that differential involvement of the MC/S1P axis in early pathogenic skin changes contributes to the well documented yet still incompletely understood sex-dimorphic susceptibility to AD in humans.
Collapse
Affiliation(s)
- Ross M. Tanis
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
- Department of Internal Medicine, Loyola University Medical Center, 2160 South 1st Avenue, Maywood, IL 60153, USA
| | - Piper A. Wedman-Robida
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
- Department of Natural Science, Northwestern Oklahoma State University, Science Building 100-D, 709 Oklahoma Boulevard, Alva, OK 73717, USA
| | - Alena P. Chumanevich
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - John W. Fuseler
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Carole A. Oskeritzian
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
36
|
Activation of sphingosine-1-phosphate receptor subtype 1 in the central nervous system contributes to morphine-induced hyperalgesia and antinociceptive tolerance in rodents. Pain 2021; 161:2107-2118. [PMID: 32301840 DOI: 10.1097/j.pain.0000000000001888] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/30/2020] [Indexed: 12/31/2022]
Abstract
ABSTRACT Morphine-induced alterations in sphingolipid metabolism in the spinal cord and increased formation of the bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) have been implicated in the development of morphine-induced hyperalgesia (OIH; increased pain sensitivity) and antinociceptive tolerance. These adverse effects hamper opioid use for treating chronic pain and contribute to dependence and abuse. S1P produces distinct effects through 5 G-protein-coupled receptors (S1PR1-5) and several intracellular targets. How S1P exerts its effects in response to morphine remains unknown. Here, we report that S1P contributes to the development of morphine-induced hyperalgesia and tolerance through S1P receptor subtype 1 (S1PR1) signaling in uninjured male and female rodents, which can be blocked by targeting S1PR1 with S1PR1 antagonists or RNA silencing. In mouse neuropathic pain models, S1PR1 antagonists blocked the development of tolerance to the antiallodynic effects of morphine without altering morphine pharmacokinetics and prevented prolonged morphine-induced neuropathic pain. Targeting S1PR1 reduced morphine-induced neuroinflammatory events in the dorsal horn of the spinal cord: increased glial marker expression, mitogen-activated protein kinase p38 and nuclear factor κB activation, and increased inflammatory cytokine expression, such as interleukin-1β, a cytokine central in the modulation of opioid-induced neural plasticity. Our results identify S1PR1 as a critical path for S1P signaling in response to sustained morphine and reveal downstream neuroinflammatory pathways impacted by S1PR1 activation. Our data support investigating S1PR1 antagonists as a clinical approach to mitigate opioid-induced adverse effects and repurposing the functional S1PR1 antagonist FTY720, which is FDA-approved for multiple sclerosis, as an opioid adjunct.
Collapse
|
37
|
Xiang P, Chew WS, Seow WL, Lam BWS, Ong WY, Herr DR. The S1P 2 receptor regulates blood-brain barrier integrity and leukocyte extravasation with implications for neurodegenerative disease. Neurochem Int 2021; 146:105018. [PMID: 33727061 DOI: 10.1016/j.neuint.2021.105018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 01/08/2023]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid which modulates vascular integrity through its receptors, S1P1-S1P5. Notably, S1P2 has been shown to mediate the disruption of cerebrovascular integrity in vitro and in vivo. However, the mechanism underlying this process has not been fully elucidated. We evaluated the role of S1P2 in blood-brain barrier (BBB) disruption induced by lipopolysaccharide (LPS)-mediated systemic inflammation and found that BBB disruption and neutrophil infiltration were significantly attenuated in S1pr2-/- mice relative to S1pr2+/- littermates. This is concomitant with attenuation of LPS-induced transcriptional activation of IL-6 and downregulation of occludin. Furthermore, S1pr2-/- mice had significantly reduced expression of genes essential for neutrophil infiltration: Sele, Cxcl1, and Cxcl2. Conversely, pharmacological agonism of S1P2 induced transcriptional activation of E-selectin in vitro and in vivo. Although S1P2 does not appear to be required for activation of microglia, stimulation of microglial cells with the S1P2 potentiated the response of endothelial cells to LPS. These results demonstrate that S1P2 promotes LPS-induced neutrophil extravasation by inducing expression of endothelial adhesion molecule gene, Sele, and potentiating microglial inflammation of endothelial cells. It is likely that S1P2 is a mediator of cerebrovascular inflammation and represents a potential therapeutic target for neurodegenerative disease such as vascular cognitive impairment.
Collapse
Affiliation(s)
- Ping Xiang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wee Siong Chew
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Lun Seow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Brenda Wan Shing Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biology, San Diego State University, San Diego, CA, 92182, USA; American University of Health Sciences, Long Beach, CA, 90755, USA.
| |
Collapse
|
38
|
Wang Y, Zhang Z, Wan W, Liu Y, Jing H, Dong F. FAM19A5/S1PR1 signaling pathway regulates the viability and proliferation of mantle cell lymphoma. J Recept Signal Transduct Res 2021; 42:225-229. [PMID: 33685344 DOI: 10.1080/10799893.2021.1895220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Several intracellular pathological processes have been reported to be regulated by the FAM19A5/S1PR1 signaling pathway. However, the role of FAM19A5/S1PR1 signaling pathway in the viability and proliferation of mantle cell lymphoma is not been completely understood. The task of this study is to explore the influence of FAM19A5/S1PR1 signaling pathway in affecting the survival and growth of mantle cell lymphoma. shRNAs against FAM19A5 or S1PR1 were transfected into mantle cell lymphom. Cell viability and proliferation were measured through MTT assay and CCK8 assay, respectively. Our results demonstrated that loss of FAM19A5 significantly reduced the viability of mantle cell lymphom, an effect that was followed by a drop in cell proliferation capacity. Besides, inhibition of S1PR1 also impairs cell survival and interrupt mantle cell lymphom proliferation in vitro. Taken together, our results illustrate that FAM19A5/S1PR1 signaling pathway is associated with the regulation of mantle cell lymphom viability and proliferation. This finding will provide a potential target for the treatment of malignant lymphoma in the clinical practice.
Collapse
Affiliation(s)
- Yanfang Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Zhenhao Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Wei Wan
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Yan Liu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Fei Dong
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
39
|
Kim JH, Afridi R, Han J, Jung HG, Kim SC, Hwang EM, Shim HS, Ryu H, Choe Y, Hoe HS, Suk K. Gamma subunit of complement component 8 is a neuroinflammation inhibitor. Brain 2021; 144:528-552. [PMID: 33382892 DOI: 10.1093/brain/awaa425] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022] Open
Abstract
The complement system is part of the innate immune system that comprises several small proteins activated by sequential cleavages. The majority of these complement components, such as components 3a (C3a) and C5a, are chemotactic and pro-inflammatory. However, in this study, we revealed an inhibitory role of complement component 8 gamma (C8G) in neuroinflammation. In patients with Alzheimer's disease, who exhibit strong neuroinflammation, we found higher C8G levels in brain tissue, CSF, and plasma. Our novel findings also showed that the expression level of C8G increases in the inflamed mouse brain, and that C8G is mainly localized to brain astrocytes. Experiments using recombinant C8G protein and shRNA-mediated knockdown showed that C8G inhibits glial hyperactivation, neuroinflammation, and cognitive decline in acute and chronic animal models of Alzheimer's disease. Additionally, we identified sphingosine-1-phosphate receptor 2 (S1PR2) as a novel interaction protein of C8G and demonstrated that astrocyte-derived C8G interacts with S1PR2 to antagonize the pro-inflammatory action of S1P in microglia. Taken together, our results reveal the previously unrecognized role of C8G as a neuroinflammation inhibitor. Our findings pave the way towards therapeutic containment of neuroinflammation in Alzheimer's disease and related neurological diseases.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ruqayya Afridi
- Department of Pharmacology and Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jin Han
- Department of Pharmacology and Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun-Gug Jung
- Center for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Seung-Chan Kim
- Center for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Eun Mi Hwang
- Center for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Hyun Soo Shim
- Center for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Hoon Ryu
- Center for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
- VA Boston Healthcare System, Boston, MA, USA
- Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Youngshik Choe
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyang-Sook Hoe
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Kyoungho Suk
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology and Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
40
|
Weber CM, Clyne AM. Sex differences in the blood-brain barrier and neurodegenerative diseases. APL Bioeng 2021; 5:011509. [PMID: 33758788 PMCID: PMC7968933 DOI: 10.1063/5.0035610] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
The number of people diagnosed with neurodegenerative diseases is on the rise. Many of these diseases, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and motor neuron disease, demonstrate clear sexual dimorphisms. While sex as a biological variable must now be included in animal studies, sex is rarely included in in vitro models of human neurodegenerative disease. In this Review, we describe these sex-related differences in neurodegenerative diseases and the blood-brain barrier (BBB), whose dysfunction is linked to neurodegenerative disease development and progression. We explain potential mechanisms by which sex and sex hormones affect BBB integrity. Finally, we summarize current in vitro BBB bioengineered models and highlight their potential to study sex differences in BBB integrity and neurodegenerative disease.
Collapse
Affiliation(s)
- Callie M. Weber
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
41
|
Abstract
The myocardium consists of different cell types, of which endothelial cells, cardiomyocytes, and fibroblasts are the most abundant. Communication between these different cell types, also called paracrine signaling, is essential for normal cardiac function, but also important in cardiac remodeling and heart failure. Systematic studies on the expression of ligands and their corresponding receptors in different cell types showed that for 60% of the expressed ligands in a particular cell, the receptor is also expressed. The fact that many ligand-receptor pairs are present in most cells, including the major cell types in the heart, indicates that autocrine signaling is a widespread phenomenon. Autocrine signaling in cardiac remodeling and heart failure is involved in all pathophysiological mechanisms generally observed: hypertrophy, fibrosis, angiogenesis, cell survival, and inflammation. Herein, we review ligand-receptor pairs present in the major cardiac cell types based on RNA-sequencing expression databases, and we review current literature on extracellular signaling proteins with an autocrine function in the heart; these include C-type natriuretic peptide, fibroblast growth factors 2, F21, and 23, macrophage migration inhibitory factor, heparin binding-epidermal growth factor, angiopoietin-like protein 2, leptin, adiponectin, follistatin-like 1, apelin, neuregulin 1, vascular endothelial growth factor, transforming growth factor β, wingless-type integration site family, member 1-induced secreted protein-1, interleukin 11, connective tissue growth factor/cellular communication network factor, and calcitonin gene‒related peptide. The large number of autocrine signaling factors that have been studied in the literature supports the concept that autocrine signaling is an essential part of myocardial biology and disease.
Collapse
Affiliation(s)
- Vincent F. M. Segers
- Laboratory of PhysiopharmacologyUniversity of AntwerpBelgium
- Department of CardiologyUniversity Hospital AntwerpEdegemBelgium
| | - Gilles W. De Keulenaer
- Laboratory of PhysiopharmacologyUniversity of AntwerpBelgium
- Department of CardiologyZNA HospitalAntwerpBelgium
| |
Collapse
|
42
|
Asher AL, Alvi MA, Bydon M, Pouratian N, Warnick RE, McInerney J, Grills IS, Sheehan J. Local failure after stereotactic radiosurgery (SRS) for intracranial metastasis: analysis from a cooperative, prospective national registry. J Neurooncol 2021; 152:299-311. [PMID: 33481148 DOI: 10.1007/s11060-021-03698-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/08/2021] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Stereotactic radiosurgery (SRS) has been increasingly employed to treat patients with intracranial metastasis, both as a salvage treatment after failed whole brain radiation therapy (WBRT) and as an initial treatment. "Several studies have shown that SRS may be as effective as WBRT with the added benefit of preserving neuro-cognition". However, some patients may have local failure following SRS for intracranial metastasis, defined as increase in total lesion volume by 25% after at least 3 months of follow up. METHODS The SRS registry, established by the Neuro point alliance (NPA) under the auspices of the American Association of Neurological Surgeons (AANS), was queried for patients with intracranial metastasis receiving SRS at the participating sites. Demographic, clinical symptoms, tumor, and treatment characteristics as well as follow up status were summarized for the cohort. A multivariable explanatory cox- regression was performed to evaluate the impact of each of the factors on time to local failure.at last follow-up. RESULTS A total of 441 patients with 1255 intracranial metastatic lesions undergoing SRS were identified. The most common primary cancer histology was non-small cell lung cancer (43.8%, n = 193). More than half of the cohort had more than 1 metastatic lesion (2-3 lesions: 29.5%, n = 130; more than 3 lesions: 25.2% (n = 111). The average duration of follow-up for the cohort was found to be 8.4 months (SD = 7.61). The mean clinical treatment volume (CTV), after adding together the volume of each lesion for each patient was 5.39 cc (SD = 7.6) at baseline. A total of 20.2% (n = 89) had local failure (increase in volume by > 25%) with a mean time to progression of 7.719 months (SD = 6.09). The progression free survival (PFS) for the cohort at 3, 6 and 12 months were found to be 94.9%, 84.3%, and 69.4%, respectively. On multivariable cox regression analysis, factors associated with increased hazard of local failure included male gender (HR 1.65, 95% CI 1.03-2.66, p = 0.037), chemotherapy at or before SRS (HR = 2.39, 95% CI 1.41-4.05, p = 0.001), WBRT at or before SRS (HR = 2.21, 95% CI 1.16- 4.22, p = 0.017), while surgical resection (HR 0.45, 95% CI 0.21-0. 97, p = 0.04) and immunotherapy (0.34, 95% CI 0.16-0.50, p = 0.014) were associated with lower hazard of local failure. CONCLUSION Factors found to be predictive of local failure included higher RPA score and those receiving chemotherapy, while patients undergoing surgical resection and those with occipital lobe lesions were less likely to experience local failure. Our analyses not only corroborate those previously reported but also demonstrate the utility of a multi-institutional registry to advance real-world SRS research for patients with intracranial metastatic lesions.
Collapse
Affiliation(s)
- Anthony L Asher
- Neuroscience Institute, Carolinas Healthcare System and Carolina, Neurosurgery & Spine Associates, Charlotte, NC, 28204, USA
| | - Mohammed Ali Alvi
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55902, USA
| | - Mohamad Bydon
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55902, USA
| | - Nader Pouratian
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Ronald E Warnick
- Department of Neurosurgery, The Jewish Hospital, Cincinnati, OH, USA
| | - James McInerney
- Department of Neurosurgery, Penn State Health, Hershey, PA, USA
| | - Inga S Grills
- Department of Neurological Surgery, Beaumont Health System, Royal Oak, MI, USA
| | - Jason Sheehan
- Department of Neurological Surgery, University of Virginia Health System, 1300 Jefferson Park Ave, Charlottesville, VA, 22908, USA.
| |
Collapse
|
43
|
Almsned F, Lipsky RH, Jafri MS. Transcriptomic analysis of Multiple Sclerosis patient-derived monocytes by RNA-Sequencing for candidate gene discovery. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
44
|
Sex differences in EAE reveal common and distinct cellular and molecular components. Cell Immunol 2021; 359:104242. [PMID: 33190849 PMCID: PMC7770093 DOI: 10.1016/j.cellimm.2020.104242] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 12/27/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is commonly used as an animal model for evaluating clinical, histological and immunological processes potentially relevant to the human disease multiple sclerosis (MS), for which the mode of disease induction remains largely unknown. An important caveat for interpreting EAE processes in mice is the inflammatory effect of immunization with myelin peptides emulsified in Complete Freund's Adjuvant (CFA), often followed by additional injections of pertussis toxin (Ptx) in some strains to induce EAE. The current study evaluated clinical, histological, cellular (spleen), and chemokine-driven processes in spinal cords of male vs. female C57BL/6 mice that were immunized with mouse (m)MOG-35-55/CFA/Ptx to induce EAE; immunized with saline/CFA/Ptx only (CFA, no EAE); or were untreated (Naïve, no EAE). Analysis of response curves utilized a rigorous and sophisticated methodology to parse and characterize the effects of EAE and adjuvant alone vs. the Naive baseline responses. The results demonstrated stronger pro-inflammatory responses of immune cells and their associated cytokines, chemokines, and receptors in male vs. female CFA and EAE mice that appeared to be offset partially by increased percentages of male anti-inflammatory, regulatory and checkpoint T cell, B cell, and monocyte/macrophage subsets. These sex differences in peripheral immune responses may explain the reduced cellular infiltration and differing chemokine profiles in the Central Nervous System (CNS) of male vs. female CFA immunized mice and the reduced CNS infiltration and demyelination observed in male vs. female EAE groups of mice that ultimately resulted in the same clinical EAE disease severity in both sexes. Our findings suggest EAE disease severity is governed not only by the degree of CNS infiltration and demyelination, but also by the balance of pro-inflammatory vs. regulatory cell types and their secreted cytokines and chemokines.
Collapse
|
45
|
Sun J, Wu J, Hua F, Chen Y, Zhan F, Xu G. Sleep Deprivation Induces Cognitive Impairment by Increasing Blood-Brain Barrier Permeability via CD44. Front Neurol 2020; 11:563916. [PMID: 33329306 PMCID: PMC7728917 DOI: 10.3389/fneur.2020.563916] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Sleep deprivation occurs frequently in older adults, which can result in delirium and cognitive impairment. CD44 is a key molecular in blood-brain barrier (BBB) regulation. However, whether CD44 participates in the role of sleep deprivation in cognitive impairment remains unclear. In this study, the effect of sleep deprivation on cognitive ability, tissue inflammation, BBB permeability, and astrocyte activity were evaluated in vivo. The differentially expressed genes (DEGs) were identified by RNA sequencing. A CD44 overexpression in the BBB model was performed in vitro to assess the effect and mechanisms of CD44. Sleep deprivation impaired the learning and memory ability and increased the levels of inflammatory cytokines, along with increased BBB permeability and activated astrocytes in hippocampus tissue. RNA sequencing of the hippocampus tissue revealed that 329 genes were upregulated in sleep deprivation-induced mice compared to control mice, and 147 genes were downregulated. GO and pathways showed that DEGs were mainly involved in BBB permeability and astrocyte activation, including nervous system development, neuron development, and brain development, and neuroactive ligand-receptor interaction. Moreover, the PCR analysis revealed that CD44 was dramatically increased in mice with sleep deprivation induction. The overexpression of CD44 in astrocytes promoted BBB permeability in vitro and induced the expression of the downstream gene NANOG. Our results indicate that sleep deprivation upregulated CD44 expression in hippocampus tissue, and increased BBB permeability, resulting in cognitive impairment.
Collapse
Affiliation(s)
- Jing Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jusheng Wu
- Department of Anesthesiology, Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
46
|
Profaci CP, Munji RN, Pulido RS, Daneman R. The blood-brain barrier in health and disease: Important unanswered questions. J Exp Med 2020; 217:151582. [PMID: 32211826 PMCID: PMC7144528 DOI: 10.1084/jem.20190062] [Citation(s) in RCA: 377] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/21/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
The blood vessels vascularizing the central nervous system exhibit a series of distinct properties that tightly control the movement of ions, molecules, and cells between the blood and the parenchyma. This "blood-brain barrier" is initiated during angiogenesis via signals from the surrounding neural environment, and its integrity remains vital for homeostasis and neural protection throughout life. Blood-brain barrier dysfunction contributes to pathology in a range of neurological conditions including multiple sclerosis, stroke, and epilepsy, and has also been implicated in neurodegenerative diseases such as Alzheimer's disease. This review will discuss current knowledge and key unanswered questions regarding the blood-brain barrier in health and disease.
Collapse
Affiliation(s)
- Caterina P Profaci
- Department of Neurosciences, University of California, San Diego, San Diego, CA.,Department of Pharmacology, University of California, San Diego, San Diego, CA
| | - Roeben N Munji
- Department of Neurosciences, University of California, San Diego, San Diego, CA.,Department of Pharmacology, University of California, San Diego, San Diego, CA
| | - Robert S Pulido
- Department of Neurosciences, University of California, San Diego, San Diego, CA.,Department of Pharmacology, University of California, San Diego, San Diego, CA
| | - Richard Daneman
- Department of Neurosciences, University of California, San Diego, San Diego, CA.,Department of Pharmacology, University of California, San Diego, San Diego, CA
| |
Collapse
|
47
|
Positron Emission Tomography in the Inflamed Cerebellum: Addressing Novel Targets among G Protein-Coupled Receptors and Immune Receptors. Pharmaceutics 2020; 12:pharmaceutics12100925. [PMID: 32998351 PMCID: PMC7601272 DOI: 10.3390/pharmaceutics12100925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 01/12/2023] Open
Abstract
Inflammatory processes preceding clinical manifestation of brain diseases are moving increasingly into the focus of positron emission tomographic (PET) investigations. A key role in inflammation and as a target of PET imaging efforts is attributed to microglia. Cerebellar microglia, with a predominant ameboid and activated subtype, is of special interest also regarding improved and changing knowledge on functional involvement of the cerebellum in mental activities in addition to its regulatory role in motor function. The present contribution considers small molecule ligands as potential PET tools for the visualization of several receptors recognized to be overexpressed in microglia and which can potentially serve as indicators of inflammatory processes in the cerebellum. The sphingosine 1 phosphate receptor 1 (S1P1), neuropeptide Y receptor 2 (NPY2) and purinoceptor Y12 (P2Y12) cannabinoid receptors and the chemokine receptor CX3CR1 as G-protein-coupled receptors and the ionotropic purinoceptor P2X7 provide structures with rather classical binding behavior, while the immune receptor for advanced glycation end products (RAGE) and the triggering receptor expressed on myeloid cells 2 (TREM2) might depend for instance on further accessory proteins. Improvement in differentiation between microglial functional subtypes in comparison to the presently used 18 kDa translocator protein ligands as well as of the knowledge on the role of polymorphisms are special challenges in such developments.
Collapse
|
48
|
Luo Z, Liang Q, Liu H, Sumit J, Jiang H, Klein RS, Tu Z. Synthesis and characterization of [ 125I]TZ6544, a promising radioligand for investigating sphingosine-1-phosphate receptor 2. Nucl Med Biol 2020; 88-89:52-61. [PMID: 32791475 DOI: 10.1016/j.nucmedbio.2020.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/14/2020] [Accepted: 07/26/2020] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Sphingosine-1-phosphate receptor 2 (S1PR2) activation exerts a critical role in biological abnormalities and diseases. A suitable radiotracer will advance our understanding of S1PR2 pathophysiology of diseases. The objective of this study is to evaluate the potential of iodine-125 labeled [125I]TZ6544 to be used for screening new compounds binding toward S1PR2, and assessing the changes of S1PR2 expression in the kidney of streptozotocin-induced diabetic rats. METHODS [125I]TZ6544 was synthesized from borate precursor by copper (II)-catalyzed iodization reaction with [125I]NaI. [125I]TZ6544 was characterized using human recombinant S1PR2 cell membrane and biodistribution studies of [125]TZ6544 were performed on Wistar rats that were euthanized at 5 and 30 min post-injection. A rat model of diabetes was induced by IV injection of streptozotocin (55 mg/kg). In vitro autoradiography studies, immunostaining, and enzyme-linked immunosorbent assay (ELISA) analysis were performed in both diabetic and control rats. RESULTS Radiosynthesis of [125I]TZ6544 was achieved successfully with good radiochemical yields of ~47% and high radiochemical purity of >99%. [125I]TZ6544 is a potent ligand in vitro for S1PR2 with Kd value of 4.31 nM. [125I]TZ6544 and [32P]-labeled endogenous S1P provided comparable IC50 values in radioactive competitive binding assays against known S1PR2 ligands. Compared to control, the kidney of diabetic rats had increased uptake of [125I]TZ6544, which could be reduced by a S1PR2 antagonist, JTE-013. Immunostaining and ELISA analysis confirmed that the diabetic rat had increased S1PR2 expression in the kidney. CONCLUSIONS [125I]TZ6544 was synthesized successfully in high yields, and in vitro evaluation suggested [125I]TZ6544 has high potential to be used for screening new S1PR2 compounds and investigating the pathophysiology of S1PR2 functions. The availability of [125I]TZ6544 may facilitate the development of therapeutics and imaging agents targeting S1PR2. ADVANCES IN KNOWLEDGE: [125I]TZ6544 showed increased expression of S1PR2 in diabetic rat kidney and can be used to determine binding potency of S1PR2 compounds.
Collapse
Affiliation(s)
- Zonghua Luo
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Qianwa Liang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hui Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshi Sumit
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao Jiang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robyn S Klein
- Departments of Medicine, Neuroscience, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
49
|
Kipp M. Does Siponimod Exert Direct Effects in the Central Nervous System? Cells 2020; 9:cells9081771. [PMID: 32722245 PMCID: PMC7463861 DOI: 10.3390/cells9081771] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
The modulation of the sphingosine 1-phosphate receptor is an approved treatment for relapsing multiple sclerosis because of its anti-inflammatory effect of retaining lymphocytes in lymph nodes. Different sphingosine 1-phosphate receptor subtypes are expressed in the brain and spinal cord, and their pharmacological effects may improve disease development and neuropathology. Siponimod (BAF312) is a novel sphingosine 1-phosphate receptor modulator that has recently been approved for the treatment of active secondary progressive multiple sclerosis (MS). In this review article, we summarize recent evidence suggesting that the active role of siponimod in patients with progressive MS may be due to direct interaction with central nervous system cells. Additionally, we tried to summarize our current understanding of the function of siponimod and discuss the effects observed in the case of MS.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057 Rostock, Germany
| |
Collapse
|
50
|
Cohan S, Lucassen E, Smoot K, Brink J, Chen C. Sphingosine-1-Phosphate: Its Pharmacological Regulation and the Treatment of Multiple Sclerosis: A Review Article. Biomedicines 2020; 8:biomedicines8070227. [PMID: 32708516 PMCID: PMC7400006 DOI: 10.3390/biomedicines8070227] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), via its G-protein-coupled receptors, is a signaling molecule with important regulatory properties on numerous, widely varied cell types. Five S1P receptors (S1PR1-5) have been identified, each with effects determined by their unique G-protein-driven downstream pathways. The discovery that lymphocyte egress from peripheral lymphoid organs is promoted by S1P via S1PR-1 stimulation led to the development of pharmacological agents which are S1PR antagonists. These agents promote lymphocyte sequestration and reduce lymphocyte-driven inflammatory damage of the central nervous system (CNS) in animal models, encouraging their examination of efficacy in the treatment of multiple sclerosis (MS). Preclinical research has also demonstrated direct protective effects of S1PR antagonists within the CNS, by modulation of S1PRs, particularly S1PR-1 and S1PR-5, and possibly S1PR-2, independent of effects upon lymphocytes. Three of these agents, fingolimod, siponimod and ozanimod have been approved, and ponesimod has been submitted for regulatory approval. In patients with MS, these agents reduce relapse risk, sustained disability progression, magnetic resonance imaging markers of disease activity, and whole brain and/or cortical and deep gray matter atrophy. Future opportunities in the development of more selective and intracellular S1PR-driven downstream pathway modulators may expand the breadth of agents to treat MS.
Collapse
|