1
|
Cui Z, Amevor FK, Lan X, Tang B, Qin S, Fu P, Liu A, Liu L. Integrative metabolomics and transcriptomics analysis revealed specific genes and metabolites affecting meat quality of chickens under different rearing systems. Poult Sci 2024; 103:103994. [PMID: 38991385 PMCID: PMC11296026 DOI: 10.1016/j.psj.2024.103994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Different rearing systems have varying effect on animal welfare and meat quality of poultry. Currently, there are no established standards for the rearing systems of Chinese indigenous chickens. Our study aimed to investigate the effects of different rearing systems on the meat quality, gene profiles, and metabolites of Chinese indigenous chickens (Nanchuan chicken). 10-wk-old Nanchuan chickens (n=360) were randomly divided into 3 groups (cage, net, and free-range groups), with 6 replicates per group (20 chickens per replicate). The experiment lasted for 12 wk. At 154-days-old, 36 healthy chickens (6 males and 6 females per group) were randomly selected, euthanized, and their breast muscles were collected to assess the meat quality parameters and histomorphological characteristics. Additionally, breast muscles from 18 random hens (3 males and 3 females per group) were used for metabolomics and RNA-seq analysis. The results showed that rearing systems significantly affected the meat quality and myofiber characteristics. The meat quality of breast muscles from free-range chickens was superior to that of caged chickens, characterized by more tender meat and smaller myofiber cross-sectional areas. Integrative metabolomics and transcriptomics analysis revealed that the differentially expressed genes of chicken breast muscles were primarily involved in the myofiber differentiation. Mechanically, the improved meat quality of breast muscle in free-range chickens were mainly associated with enhanced skeletal muscle differentiation facilitated by fibromodulin, increased levels of up-regulated Acetyl-L-carnitine and Propionylcarnitine level, and decreased levels of Nonanoic acid and Elaidic acid abundance (Graphical abstract). This provides a comprehensive understanding of the most effective and sustainable breeding, production, and rearing systems for Chinese indigenous chickens. It also contributes to the current knowledge of the molecular mechanisms underlying the effects of rearing systems on growth performance and meat quality of chickens.
Collapse
Affiliation(s)
- Zhifu Cui
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, P. R. China
| | - Felix Kwame Amevor
- State Key Laboratory of Swine and Poultry Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, P. R. China
| | - Bincheng Tang
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, P. R. China
| | - Simeng Qin
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, P. R. China
| | - Penghui Fu
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, P. R. China
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, P. R. China
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, P. R. China.
| |
Collapse
|
2
|
Chen J, Wang S, Guo F, Gong Y, Chen T, Shaw C, Jiang R, Huang F, Lin D. 1H-NMR-based metabolomics reveals the preventive effect of Enteromorpha prolifera polysaccharides on diabetes in Zucker diabetic fatty rats. Food Sci Nutr 2024; 12:4049-4062. [PMID: 38873458 PMCID: PMC11167149 DOI: 10.1002/fsn3.4061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 06/15/2024] Open
Abstract
The primary objective of this investigation was to explore the beneficial impacts of Enteromorpha prolifera polysaccharide (EP) on dysglycemia in Zucker diabetic fatty (ZDF) rats, while also shedding light on its potential mechanism using 1H-NMR-based metabolomics. The results demonstrated a noteworthy reduction in fasting blood glucose (FBG, 46.3%), fasting insulin (50.17%), glycosylated hemoglobin A1c (HbA1c, 44.1%), and homeostatic model assessment of insulin resistance (HOMA-IR, 59.75%) following EP administration, while the insulin sensitivity index (ISI, 19.6%) and homeostatic model assessment of β-cell function (HOMA-β, 2.5-fold) were significantly increased. These findings indicate that EP enhances β-cell function, increases insulin sensitivity, and improves insulin resistance caused by diabetes. Moreover, EP significantly reduced serum lipid levels, suggesting improvement of dyslipidemia. Through the analysis of serum metabolomics, 17 metabolites were found to be altered in diabetic rats, 14 of which were upregulated and 3 of which were downregulated. Notably, the administration of EP successfully reversed the abnormal levels of 9 out of the 17 metabolites. Pathway analysis further revealed that EP treatment partially restored metabolic dysfunction, with notable effects observed in valine, leucine, and isoleucine metabolism; aminoacyl-transfer RNA (tRNA) biosynthesis; and ketone body metabolism. These findings collectively indicate the potential therapeutic efficacy of EP in preventing glycemic abnormalities and improving insulin resistance. Thus, EP holds promise as a valuable treatment option for individuals with diabetes.
Collapse
Affiliation(s)
- Jie Chen
- Department of Nutrition and Food Safety, School of Public HealthFujian Medical UniversityFuzhouFujianChina
| | - Shuting Wang
- Department of Nutrition and Food Safety, School of Public HealthFujian Medical UniversityFuzhouFujianChina
| | - Fuchuan Guo
- Department of Nutrition and Food Safety, School of Public HealthFujian Medical UniversityFuzhouFujianChina
| | - Yupeng Gong
- Department of Nutrition and Food Safety, School of Public HealthFujian Medical UniversityFuzhouFujianChina
| | | | - Chris Shaw
- School of PharmacyQueen's UniversityBelfastUK
| | - Rencai Jiang
- Department of Nutrition and Food Safety, School of Public HealthFujian Medical UniversityFuzhouFujianChina
| | - Fang Huang
- Department of Nutrition and Food Safety, School of Public HealthFujian Medical UniversityFuzhouFujianChina
| | - Dai Lin
- Department of Nutrition and Food Safety, School of Public HealthFujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
3
|
Peng Y, Zhang Z, He L, Li C, Liu M. NMR spectroscopy for metabolomics in the living system: recent progress and future challenges. Anal Bioanal Chem 2024; 416:2319-2334. [PMID: 38240793 PMCID: PMC10950998 DOI: 10.1007/s00216-024-05137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/08/2023] [Accepted: 01/10/2024] [Indexed: 03/21/2024]
Abstract
Metabolism is a fundamental process that underlies human health and diseases. Nuclear magnetic resonance (NMR) techniques offer a powerful approach to identify metabolic processes and track the flux of metabolites at the molecular level in living systems. An in vitro study through in-cell NMR tracks metabolites in real time and investigates protein structures and dynamics in a state close to their most natural environment. This technique characterizes metabolites and proteins involved in metabolic pathways in prokaryotic and eukaryotic cells. In vivo magnetic resonance spectroscopy (MRS) enables whole-organism metabolic monitoring by visualizing the spatial distribution of metabolites and targeted proteins. One limitation of these NMR techniques is the sensitivity, for which a possible improved approach is through isotopic enrichment or hyperpolarization methods, including dynamic nuclear polarization (DNP) and parahydrogen-induced polarization (PHIP). DNP involves the transfer of high polarization from electronic spins of radicals to surrounding nuclear spins for signal enhancements, allowing the detection of low-abundance metabolites and real-time monitoring of metabolic activities. PHIP enables the transfer of nuclear spin polarization from parahydrogen to other nuclei for signal enhancements, particularly in proton NMR, and has been applied in studies of enzymatic reactions and cell signaling. This review provides an overview of in-cell NMR, in vivo MRS, and hyperpolarization techniques, highlighting their applications in metabolic studies and discussing challenges and future perspectives.
Collapse
Affiliation(s)
- Yun Peng
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zeting Zhang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lichun He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Conggang Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Optics Valley Laboratory, Wuhan, 430074, Hubei, China.
| |
Collapse
|
4
|
Klepochová R, Niess F, Meyerspeer M, Slukova D, Just I, Trattnig S, Ukropec J, Ukropcová B, Kautzky-Willer A, Leutner M, Krššák M. Correlation between skeletal muscle acetylcarnitine and phosphocreatine metabolism during submaximal exercise and recovery: interleaved 1H/ 31P MRS 7 T study. Sci Rep 2024; 14:3254. [PMID: 38332163 PMCID: PMC10853526 DOI: 10.1038/s41598-024-53221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Acetylcarnitine is an essential metabolite for maintaining metabolic flexibility and glucose homeostasis. The in vivo behavior of muscle acetylcarnitine content during exercise has not been shown with magnetic resonance spectroscopy. Therefore, this study aimed to explore the behavior of skeletal muscle acetylcarnitine during rest, plantar flexion exercise, and recovery in the human gastrocnemius muscle under aerobic conditions. Ten lean volunteers and nine overweight volunteers participated in the study. A 7 T whole-body MR system with a double-tuned surface coil was used to acquire spectra from the gastrocnemius medialis. An MR-compatible ergometer was used for the plantar flexion exercise. Semi-LASER-localized 1H MR spectra and slab-localized 31P MR spectra were acquired simultaneously in one interleaved exercise/recovery session. The time-resolved interleaved 1H/31P MRS acquisition yielded excellent data quality. A between-group difference in acetylcarnitine metabolism over time was detected. Significantly slower τPCr recovery, τPCr on-kinetics, and lower Qmax in the overweight group, compared to the lean group was found. Linear relations between τPCr on-kinetics, τPCr recovery, VO2max and acetylcarnitine content were identified. In conclusion, we are the first to show in vivo changes of skeletal muscle acetylcarnitine during acute exercise and immediate exercise recovery with a submaximal aerobic workload using interleaved 1H/31P MRS at 7 T.
Collapse
Affiliation(s)
- Radka Klepochová
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Fabian Niess
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Martin Meyerspeer
- High-Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Dorota Slukova
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Ivica Just
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging (MOLIMA), Vienna, Austria
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbara Ukropcová
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Michael Leutner
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Hayden CMT, Nagarajan R, Smith ZH, Gilmore S, Kent JA. Postcontraction [acetylcarnitine] reflects interindividual variation in skeletal muscle ATP production patterns in vivo. Am J Physiol Regul Integr Comp Physiol 2024; 326:R66-R78. [PMID: 37955131 DOI: 10.1152/ajpregu.00027.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
In addition to its role in substrate selection (carbohydrate vs. fat) for oxidative metabolism in muscle, acetylcarnitine production may be an important modulator of the energetic pathway by which ATP is produced. A combination of noninvasive magnetic resonance spectroscopy measures of cytosolic acetylcarnitine and ATP production pathways was used to investigate the link between [acetylcarnitine] and energy production in vivo. Intracellular metabolites were measured in the vastus lateralis muscle of eight males (mean: 28.4 yr, range: 25-35) during 8 min of incremental, dynamic contractions (0.5 Hz, 2-min stages at 6%, 9%, 12%, and 15% maximal torque) that increased [acetylcarnitine] approximately fivefold from resting levels. ATP production via oxidative phosphorylation, glycolysis, and the creatine kinase reaction was calculated based on phosphorus metabolites and pH. Spearman rank correlations indicated that postcontraction [acetylcarnitine] was positively associated with both absolute (mM) and relative (% total ATP) glycolytic ATP production (rs = 0.95, P = 0.001; rs = 0.93, P = 0.002), and negatively associated with relative (rs = -0.81, P = 0.02) but not absolute (rs = -0.14, P = 0.75) oxidative ATP production. Thus, acetylcarnitine accumulated more when there was a greater reliance on "nonoxidative" glycolysis and a relatively lower contribution from oxidative phosphorylation, reflecting the fate of pyruvate in working skeletal muscle. Furthermore, these data indicate striking interindividual variation in responses to the energy demand of submaximal contractions. Overall, the results of this preliminary study provide novel evidence of the coupling in vivo between ATP production pathways and the carnitine system.NEW & NOTEWORTHY Production of acetylcarnitine from acetyl-CoA and free carnitine may be important for energy pathway regulation in contracting skeletal muscle. Noninvasive magnetic resonance spectroscopy was used to investigate the link between acetylcarnitine and energy production in the vastus lateralis muscle during dynamic contractions (n = 8 individuals). A positive correlation between acetylcarnitine accumulation and "nonoxidative" glycolysis and an inverse relationship with oxidative phosphorylation, provides novel evidence of the coupling between ATP production and the carnitine system in vivo.
Collapse
Affiliation(s)
- Christopher M T Hayden
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Rajakumar Nagarajan
- Human Magnetic Resonance Center, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts, United States
| | - Zoe H Smith
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Samantha Gilmore
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Jane A Kent
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| |
Collapse
|
6
|
Savic D, Mózes FE, Green PG, Burrage MK, Kjær MS, Hodson L, Neubauer S, Pavlides M, Valkovič L. Detection and alterations of acetylcarnitine (AC) in human liver by 1 H MRS at 3T after supplementation with l-carnitine. Magn Reson Med 2023; 89:1314-1322. [PMID: 36573435 PMCID: PMC11497247 DOI: 10.1002/mrm.29544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 12/28/2022]
Abstract
PURPOSE Acetylcarnitine can be assessed in vivo using proton MRS (1 H-MRS) with long TEs and this has been previously applied successfully in muscle. The aim of this study was to evaluate a 1 H-MRS technique for liver acetylcarnitine quantification in healthy humans before and after l-carnitine supplementation. METHOD Baseline acetylcarnitine levels were quantified using a STEAM sequence with prolonged TE in 15 healthy adults. Using STEAM with four different TEs was evaluated in phantoms. To assess reproducibility of the measurements, five of the participants had repeated 1 H-MRS without receiving l-carnitine supplementation. To determine if liver acetylcarnitine could be changed after l-carnitine supplementation, acetylcarnitine was quantified 2 h after intravenous l-carnitine supplementation (50 mg/kg body weight) in the other 10 participants. Hepatic lipids were also quantified from the 1 H-MRS spectra. RESULTS There was good separation between the acetylcarnitine and fat in the phantoms using TE = 100 ms. Hepatic acetylcarnitine levels were reproducible (coefficient of reproducibility = 0.049%) and there was a significant (p < 0.001) increase in the relative abundance after a single supplementation of l-carnitine. Hepatic allylic, methyl, and methylene peaks were not altered by l-carnitine supplementation in healthy volunteers. CONCLUSION Our results demonstrate that our 1 H-MRS technique could be used to measure acetylcarnitine in the liver and detect changes following intravenous supplementation in healthy adults despite the presence of lipids. Our techniques should be explored further in the study of fatty liver disease, where acetylcarnitine is suggested to be altered due to hepatic inflexibilities.
Collapse
Affiliation(s)
- Dragana Savic
- The Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of MedicineUniversity of Oxford
OxfordUK
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
| | - Ferenc E. Mózes
- The Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of MedicineUniversity of Oxford
OxfordUK
| | - Peregrine G. Green
- The Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of MedicineUniversity of Oxford
OxfordUK
| | - Matthew K. Burrage
- The Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of MedicineUniversity of Oxford
OxfordUK
- Faculty of MedicineUniversity of QueenslandSt LuciaQueenslandAustralia
| | | | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
- Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Stefan Neubauer
- The Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of MedicineUniversity of Oxford
OxfordUK
| | - Michael Pavlides
- The Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of MedicineUniversity of Oxford
OxfordUK
- Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK
- Translational Gastroenterology UnitUniversity of OxfordOxfordUK
| | - Ladislav Valkovič
- The Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of MedicineUniversity of Oxford
OxfordUK
- Department of Imaging MethodsInstitute of Measurement Science, Slovak Academy of SciencesBratislavaSlovakia
| |
Collapse
|
7
|
Mancilla RF, Lindeboom L, Grevendonk L, Hoeks J, Koves TR, Muoio DM, Schrauwen P, Schrauwen-Hinderling V, Hesselink MK. Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans. JCI Insight 2023; 8:e163855. [PMID: 36413408 PMCID: PMC9870054 DOI: 10.1172/jci.insight.163855] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUNDAt the onset of exercise, the speed at which phosphocreatine (PCr) decreases toward a new steady state (PCr on-kinetics) reflects the readiness to activate mitochondrial ATP synthesis, which is secondary to Acetyl-CoA availability in skeletal muscle. We hypothesized that PCr on-kinetics are slower in metabolically compromised and older individuals and are associated with low carnitine acetyltransferase (CrAT) protein activity and compromised physical function.METHODSWe applied 31P-magnetic resonance spectroscopy (31P-MRS) to assess PCr on-kinetics in 2 cohorts of volunteers. Cohort 1 included patients who had type 2 diabetes, were obese, were lean trained (VO2max > 55 mL/kg/min), and were lean untrained (VO2max < 45 mL/kg/min). Cohort 2 included young (20-30 years) and older (65-80 years) individuals with normal physical activity and older, trained individuals. Previous results of CrAT protein activity and acetylcarnitine content in muscle tissue were used to explore the underlying mechanisms of PCr on-kinetics, along with various markers of physical function.RESULTSPCr on-kinetics were significantly slower in metabolically compromised and older individuals (indicating mitochondrial inertia) as compared with young and older trained volunteers, regardless of in vivo skeletal muscle oxidative capacity (P < 0.001). Mitochondrial inertia correlated with reduced CrAT protein activity, low acetylcarnitine content, and functional outcomes (P < 0.001).CONCLUSIONPCr on-kinetics are significantly slower in metabolically compromised and older individuals with normal physical activity compared with young and older trained individuals, regardless of in vivo skeletal muscle oxidative capacity, indicating greater mitochondrial inertia. Thus, PCr on-kinetics are a currently unexplored signature of skeletal muscle mitochondrial metabolism, tightly linked to functional outcomes. Skeletal muscle mitochondrial inertia might emerge as a target of intervention to improve physical function.TRIAL REGISTRATIONNCT01298375 and NCT03666013 (clinicaltrials.gov).FUNDINGRM and MH received an EFSD/Lilly grant from the European Foundation for the Study of Diabetes (EFSD). VS was supported by an ERC starting grant (grant 759161) "MRS in Diabetes."
Collapse
Affiliation(s)
- Rodrigo F. Mancilla
- NUTRIM School of Nutrition and Translational Research in Metabolism and
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| | - Lucas Lindeboom
- NUTRIM School of Nutrition and Translational Research in Metabolism and
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| | - Lotte Grevendonk
- NUTRIM School of Nutrition and Translational Research in Metabolism and
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| | - Joris Hoeks
- NUTRIM School of Nutrition and Translational Research in Metabolism and
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| | - Tim R. Koves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Deborah M. Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Patrick Schrauwen
- NUTRIM School of Nutrition and Translational Research in Metabolism and
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| | - Vera Schrauwen-Hinderling
- NUTRIM School of Nutrition and Translational Research in Metabolism and
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
- Department of Radiology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Matthijs K.C. Hesselink
- NUTRIM School of Nutrition and Translational Research in Metabolism and
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
8
|
op den Kamp YJ, Gemmink A, de Ligt M, Dautzenberg B, Kornips E, Jorgensen JA, Schaart G, Esterline R, Pava DA, Hoeks J, Schrauwen-Hinderling VB, Kersten S, Havekes B, Koves TR, Muoio DM, Hesselink MK, Oscarsson J, Phielix E, Schrauwen P. Effects of SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes on skeletal muscle cellular metabolism. Mol Metab 2022; 66:101620. [PMID: 36280113 PMCID: PMC9636471 DOI: 10.1016/j.molmet.2022.101620] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE SGLT2 inhibitors increase urinary glucose excretion and have beneficial effects on cardiovascular and renal outcomes; the underlying mechanism may be metabolic adaptations due to urinary glucose loss. Here, we investigated the cellular and molecular effects of 5 weeks of dapagliflozin treatment on skeletal muscle metabolism in type 2 diabetes patients. METHODS Twenty-six type 2 diabetes mellitus patients were randomized to a 5-week double-blind, cross-over study with 6-8-week wash-out. Skeletal muscle acetylcarnitine levels, intramyocellular lipid (IMCL) content and phosphocreatine (PCr) recovery rate were measured by magnetic resonance spectroscopy (MRS). Ex vivo mitochondrial respiration was measured in skeletal muscle fibers using high resolution respirometry. Intramyocellular lipid droplet and mitochondrial network dynamics were investigated using confocal microscopy. Skeletal muscle levels of acylcarnitines, amino acids and TCA cycle intermediates were measured. Expression of genes involved in fatty acid metabolism were investigated. RESULTS Mitochondrial function, mitochondrial network integrity and citrate synthase and carnitine acetyltransferase activities in skeletal muscle were unaltered after dapagliflozin treatment. Dapagliflozin treatment increased intramyocellular lipid content (0.060 (0.011, 0.110) %, p = 0.019). Myocellular lipid droplets increased in size (0.03 μm2 (0.01-0.06), p < 0.05) and number (0.003 μm-2 (-0.001-0.007), p = 0.09) upon dapagliflozin treatment. CPT1A, CPT1B and malonyl CoA-decarboxylase mRNA expression was increased by dapagliflozin. Fasting acylcarnitine species and C4-OH carnitine levels (0.4704 (0.1246, 0.8162) pmoles∗mg tissue-1, p < 0.001) in skeletal muscle were higher after dapagliflozin treatment, while acetylcarnitine levels were lower (-40.0774 (-64.4766, -15.6782) pmoles∗mg tissue-1, p < 0.001). Fasting levels of several amino acids, succinate, alpha-ketoglutarate and lactate in skeletal muscle were significantly lower after dapagliflozin treatment. CONCLUSION Dapagliflozin treatment for 5 weeks leads to adaptive changes in skeletal muscle substrate metabolism favoring metabolism of fatty acid and ketone bodies and reduced glycolytic flux. The trial is registered with ClinicalTrials.gov, number NCT03338855.
Collapse
Affiliation(s)
| | - Anne Gemmink
- Departments of Nutrition and Movement Sciences, Maastricht, the Netherlands
| | - Marlies de Ligt
- Departments of Nutrition and Movement Sciences, Maastricht, the Netherlands
| | - Bas Dautzenberg
- Departments of Nutrition and Movement Sciences, Maastricht, the Netherlands
| | - Esther Kornips
- Departments of Nutrition and Movement Sciences, Maastricht, the Netherlands
| | | | - Gert Schaart
- Departments of Nutrition and Movement Sciences, Maastricht, the Netherlands
| | | | - Diego A. Pava
- Departments of Nutrition and Movement Sciences, Maastricht, the Netherlands
| | - Joris Hoeks
- Departments of Nutrition and Movement Sciences, Maastricht, the Netherlands
| | - Vera B. Schrauwen-Hinderling
- Departments of Nutrition and Movement Sciences, Maastricht, the Netherlands,Departments of Radiology and Nuclear Medicine, Maastricht, the Netherlands
| | - Sander Kersten
- Division of Human Nutrition and Health, Wageningen University, the Netherlands
| | - Bas Havekes
- Departments of Internal Medicine, Division of Endocrinology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Timothy R. Koves
- Duke Molecular Physiology Institute and the Sarah W. Stedman Nutrition and Metabolism Center, Department of Medicine, Duke University, Durham, NC 27704, USA
| | - Deborah M. Muoio
- Duke Molecular Physiology Institute and the Sarah W. Stedman Nutrition and Metabolism Center, Department of Medicine, Duke University, Durham, NC 27704, USA
| | | | - Jan Oscarsson
- BioPharmaceuticals R&D, Late-Stage Development, Cardiovascular, Renal and Metabolism, AstraZeneca, Gothenburg, Sweden
| | - Esther Phielix
- Departments of Nutrition and Movement Sciences, Maastricht, the Netherlands
| | - Patrick Schrauwen
- Departments of Nutrition and Movement Sciences, Maastricht, the Netherlands,Corresponding author. Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, the Netherlands.
| |
Collapse
|
9
|
Andonian BJ, Koss A, Koves TR, Hauser ER, Hubal MJ, Pober DM, Lord JM, MacIver NJ, St Clair EW, Muoio DM, Kraus WE, Bartlett DB, Huffman KM. Rheumatoid arthritis T cell and muscle oxidative metabolism associate with exercise-induced changes in cardiorespiratory fitness. Sci Rep 2022; 12:7450. [PMID: 35523821 PMCID: PMC9076829 DOI: 10.1038/s41598-022-11458-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
Rheumatoid arthritis (RA) T cells drive autoimmune features via metabolic reprogramming that reduces oxidative metabolism. Exercise training improves cardiorespiratory fitness (i.e., systemic oxidative metabolism) and thus may impact RA T cell oxidative metabolic function. In this pilot study of RA participants, we took advantage of heterogeneous responses to a high-intensity interval training (HIIT) exercise program to identify relationships between improvements in cardiorespiratory fitness with changes in peripheral T cell and skeletal muscle oxidative metabolism. In 12 previously sedentary persons with seropositive RA, maximal cardiopulmonary exercise tests, fasting blood, and vastus lateralis biopsies were obtained before and after 10 weeks of HIIT. Following HIIT, improvements in RA cardiorespiratory fitness were associated with changes in RA CD4 + T cell basal and maximal respiration and skeletal muscle carnitine acetyltransferase (CrAT) enzyme activity. Further, changes in CD4 + T cell respiration were associated with changes in naïve CD4 + CCR7 + CD45RA + T cells, muscle CrAT, and muscle medium-chain acylcarnitines and fat oxidation gene expression profiles. In summary, modulation of cardiorespiratory fitness and molecular markers of skeletal muscle oxidative metabolism during exercise training paralleled changes in T cell metabolism. Exercise training that improves RA cardiorespiratory fitness may therefore be valuable in managing pathologically related immune and muscle dysfunction.Trial registration: ClinicalTrials.gov, NCT02528344. Registered on 19 August 2015.
Collapse
Affiliation(s)
- Brian J Andonian
- Division of Rheumatology and Immunology, Duke University School of Medicine, Durham, NC, 27701, USA.
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 22701, USA.
| | - Alec Koss
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 22701, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 22701, USA
| | - Elizabeth R Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 22701, USA
| | - Monica J Hubal
- Department of Kinesiology, Indiana University-Purdue University Indianapolis School of Health & Human Sciences, Indianapolis, IN, 46202, USA
| | | | - Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
| | - Nancie J MacIver
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - E William St Clair
- Division of Rheumatology and Immunology, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 22701, USA
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 22701, USA
| | - David B Bartlett
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 22701, USA
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Kim M Huffman
- Division of Rheumatology and Immunology, Duke University School of Medicine, Durham, NC, 27701, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 22701, USA
| |
Collapse
|
10
|
Imai N, Nicholls HT, Alves-Bezerra M, Li Y, Ivanova AA, Ortlund EA, Cohen DE. Up-regulation of thioesterase superfamily member 2 in skeletal muscle promotes hepatic steatosis and insulin resistance in mice. Hepatology 2022; 75:154-169. [PMID: 34433228 PMCID: PMC9938941 DOI: 10.1002/hep.32122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS Thioesterase superfamily member 2 (Them2) is highly expressed in liver and oxidative tissues, where it hydrolyzes long-chain fatty acyl-CoA esters to free fatty acids and CoA. Although mice globally lacking Them2 (Them2-/- ) are protected against diet-induced obesity, hepatic steatosis (HS), and insulin resistance (IR), liver-specific Them2-/- mice remain susceptible. The aim of this study was to test whether Them2 activity in extrahepatic oxidative tissues is a primary determinant of HS and IR. APPROACH AND RESULTS Upon observing IR and up-regulation of Them2 in skeletal, but not cardiac, muscle of high-fat-diet (HFD)-fed wild-type compared to Them2-/- mice, we created mice with Them2 specifically deleted in skeletal (S-Them2-/- ) and cardiac muscle (C-Them2-/- ), as well as in adipose tissue (A-Them2-/- ). When fed an HFD, S-Them2-/- , but not C-Them2-/- or A-Them2-/- , mice exhibited reduced weight gain and improved glucose homeostasis and insulin sensitivity. Reconstitution of Them2 expression in skeletal muscle of global Them2-/- mice, using adeno-associated virus, was sufficient to restore excess weight gain. Increased rates of fatty acid oxidation in skeletal muscle of S-Them2-/- mice contributed to protection from HFD-induced HS by increasing VLDL triglyceride secretion rates in response to greater demand. Increases in insulin sensitivity were further attributable to alterations in production of skeletal muscle metabolites, including short-chain fatty acids, branched-chain amino acids, and pentose phosphate pathway intermediates, as well as in expression of myokines that modulate insulin responsiveness. CONCLUSIONS These results reveal a key role for skeletal muscle Them2 in the pathogenesis of HS and IR and implicate it as a target in the management of NAFLD.
Collapse
Affiliation(s)
- Norihiro Imai
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, NY 10021 USA
| | - Hayley T. Nicholls
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, NY 10021 USA
| | - Michele Alves-Bezerra
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, NY 10021 USA
| | - Yingxia Li
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, NY 10021 USA
| | - Anna A. Ivanova
- Department of Biochemistry, Emory University, Atlanta, GA 30322 USA
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University, Atlanta, GA 30322 USA
| | - David E. Cohen
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, NY 10021 USA
| |
Collapse
|
11
|
Lievens E, Van Vossel K, Van de Casteele F, Baguet A, Derave W. Sex-specific maturation of muscle metabolites carnosine, creatine, and carnitine over puberty: a longitudinal follow-up study. J Appl Physiol (1985) 2021; 131:1241-1250. [PMID: 34473575 DOI: 10.1152/japplphysiol.00380.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Due to the invasiveness of a muscle biopsy, there is fragmentary information on the existence and possible origin of a sexual dimorphism in the skeletal muscle concentrations of the energy delivery-related metabolites carnosine, creatine, and carnitine. As these metabolites can be noninvasively monitored by proton magnetic resonance spectroscopy, this technique offers the possibility to investigate if sexual dimorphisms are present in an adult reference population and if these dimorphisms originated during puberty using a longitudinal design. Concentrations of carnosine, creatine, and carnitine were examined using proton magnetic resonance spectroscopy in the soleus and gastrocnemius muscles of an adult reference population of female (n = 50) and male adults (n = 50). For the longitudinal follow-up over puberty, 29 boys and 28 girls were scanned prepuberty. Six years later, 24 boys and 24 girls were rescanned postpuberty. A sexual dimorphism was present in carnosine and creatine, but not carnitine, in the adult reference population. Carnosine was 28.5% higher in the gastrocnemius (P < 0.001) and carnosine and creatine were respectively 19.9% (P < 0.001) and 18.2% (P < 0.001) higher in the soleus of male when compared with female adults. Through puberty, carnosine increased more in male subjects compared with female subjects, both in the gastrocnemius (+10.43% and -10.83%, respectively; interaction effect: P = 0.002) and in the soleus (+24.30% and +5.49%, respectively; interaction effect: P = 0.012). No significant effect of puberty was found in either creatine (interaction effect: P = 0.307) or carnitine (interaction effect: P = 0.066). A sexual dimorphism in the adult human muscle is present in carnosine and creatine, but not in carnitine.NEW & NOTEWORTHY This is the first study to investigate sexual dimorphisms in skeletal muscle carnosine, creatine, and carnitine concentrations in a substantial adult reference population (n = 100). A sexual dimorphism is present in both carnosine and creatine at adult age. The origin of the sexual dimorphisms is investigated using a longitudinal design over puberty in 24 males and 24 females. The sexual dimorphism in carnosine originated partly during puberty for carnosine, but not for creatine.
Collapse
Affiliation(s)
- Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Kim Van Vossel
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | | | - Audrey Baguet
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Park JM, Josan S, Hurd RE, Graham J, Havel PJ, Bendahan D, Mayer D, Chung Y, Spielman DM, Jue T. Hyperpolarized NMR study of the impact of pyruvate dehydrogenase kinase inhibition on the pyruvate dehydrogenase and TCA flux in type 2 diabetic rat muscle. Pflugers Arch 2021; 473:1761-1773. [PMID: 34415396 DOI: 10.1007/s00424-021-02613-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 01/06/2023]
Abstract
The role of pyruvate dehydrogenase in mediating lipid-induced insulin resistance stands as a central question in the pathogenesis of type 2 diabetes mellitus. Many researchers have invoked the Randle hypothesis to explain the reduced glucose disposal in skeletal muscle by envisioning an elevated acetyl CoA pool arising from increased oxidation of fatty acids. Over the years, in vivo NMR studies have challenged that monolithic view. The advent of the dissolution dynamic nuclear polarization NMR technique and a unique type 2 diabetic rat model provides an opportunity to clarify. Dynamic nuclear polarization enhances dramatically the NMR signal sensitivity and allows the measurement of metabolic kinetics in vivo. Diabetic muscle has much lower pyruvate dehydrogenase activity than control muscle, as evidenced in the conversion of [1-13C]lactate and [2-13C]pyruvate to HCO3- and acetyl carnitine. The pyruvate dehydrogenase kinase inhibitor, dichloroacetate, restores rapidly the diabetic pyruvate dehydrogenase activity to control level. However, diabetic muscle has a much larger dynamic change in pyruvate dehydrogenase flux than control. The dichloroacetate-induced surge in pyruvate dehydrogenase activity produces a differential amount of acetyl carnitine but does not affect the tricarboxylic acid flux. Further studies can now proceed with the dynamic nuclear polarization approach and a unique rat model to interrogate closely the biochemical mechanism interfacing oxidative metabolism with insulin resistance and metabolic inflexibility.
Collapse
Affiliation(s)
- Jae Mo Park
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.,Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA
| | - Sonal Josan
- Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA.,Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - Ralph E Hurd
- Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA.,Applied Science Laboratory, GE Healthcare, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - James Graham
- Department of Molecular Biosciences, University of California Davis, 3426 Meyer Hall, Davis, CA, 95616, USA
| | - Peter J Havel
- Department of Molecular Biosciences, University of California Davis, 3426 Meyer Hall, Davis, CA, 95616, USA
| | - David Bendahan
- CNRS, Aix-Marseille University, CRMBM, 13385, Marseille, France
| | - Dirk Mayer
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA.,Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, 22 S. Green St., Baltimore, MD, 21201, USA
| | - Youngran Chung
- Department of Biochemistry and Molecular Medicine, University of California-Davis, 4323 Tupper Hall, Davis, CA, 95616, USA
| | - Daniel M Spielman
- Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA
| | - Thomas Jue
- Department of Biochemistry and Molecular Medicine, University of California-Davis, 4323 Tupper Hall, Davis, CA, 95616, USA.
| |
Collapse
|
13
|
Lievens E, Van Vossel K, Van de Casteele F, Krššák M, Murdoch JB, Befroy DE, Derave W. CORP: quantification of human skeletal muscle carnosine concentration by proton magnetic resonance spectroscopy. J Appl Physiol (1985) 2021; 131:250-264. [PMID: 33982593 DOI: 10.1152/japplphysiol.00056.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Noninvasive techniques to quantify metabolites in skeletal muscle provide unique insight into human physiology and enable the translation of research into practice. Proton magnetic resonance spectroscopy (1H-MRS) permits the assessment of several abundant muscle metabolites in vivo, including carnosine, a dipeptide composed of the amino acids histidine and beta-alanine. Muscle carnosine loading, accomplished by chronic oral beta-alanine supplementation, improves muscle function and exercise capacity and has pathophysiological relevance in multiple diseases. Moreover, the marked difference in carnosine content between fast-twitch and slow-twitch muscle fibers has rendered carnosine an attractive candidate to estimate human muscle fiber type composition. However, the quantification of carnosine with 1H-MRS requires technical expertise to obtain accurate and reproducible data. In this review, we describe the technical and physiological factors that impact the detection, analysis, and quantification of carnosine in muscle with 1H-MRS. We discuss potential sources of error during the acquisition and preprocessing of the 1H-MRS spectra and present best practices to enable the accurate, reliable, and reproducible application of this technique.
Collapse
Affiliation(s)
- E Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - K Van Vossel
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - F Van de Casteele
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - M Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine III and High Field MR Centre, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | | | - W Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Krššák M, Lindeboom L, Schrauwen‐Hinderling V, Szczepaniak LS, Derave W, Lundbom J, Befroy D, Schick F, Machann J, Kreis R, Boesch C. Proton magnetic resonance spectroscopy in skeletal muscle: Experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4266. [PMID: 32022964 PMCID: PMC8244035 DOI: 10.1002/nbm.4266] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/21/2019] [Accepted: 01/15/2020] [Indexed: 05/02/2023]
Abstract
1 H-MR spectroscopy of skeletal muscle provides insight into metabolism that is not available noninvasively by other methods. The recommendations given in this article are intended to guide those who have basic experience in general MRS to the special application of 1 H-MRS in skeletal muscle. The highly organized structure of skeletal muscle leads to effects that change spectral features far beyond simple peak heights, depending on the type and orientation of the muscle. Specific recommendations are given for the acquisition of three particular metabolites (intramyocellular lipids, carnosine and acetylcarnitine) and for preconditioning of experiments and instructions to study volunteers.
Collapse
Affiliation(s)
- Martin Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine III & High Field MR Centre, Department of Biomedical Imaging and Image guided TherapyMedical University of ViennaViennaAustria
| | - Lucas Lindeboom
- Department of Radiology and Nuclear Medicine and Department of Nutrition and Movement ScienceMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Vera Schrauwen‐Hinderling
- Department of Radiology and Nuclear Medicine and Department of Nutrition and Movement ScienceMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Lidia S. Szczepaniak
- Biomedical Research Consulting in Magnetic Resonance SpectroscopyAlbuquerqueNew Mexico
| | - Wim Derave
- Department of Movement and Sports SciencesGhent UniversityGhentBelgium
| | - Jesper Lundbom
- Department of Diagnostics and TherapeuticsUniversity of HelsinkiHelsinkiFinland
| | | | - Fritz Schick
- Section on Experimental Radiology, Department of Diagnostic and Interventional RadiologyUniversity Hospital TübingenTübingenGermany
| | - Jürgen Machann
- Section on Experimental Radiology, Department of Diagnostic and Interventional RadiologyUniversity Hospital TübingenTübingenGermany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of TübingenTübingenGermany
- German Center for Diabetes Research (DZD)TübingenGermany
| | - Roland Kreis
- Departments of Radiology and Biomedical ResearchUniversity and InselspitalBernSwitzerland
| | - Chris Boesch
- Departments of Radiology and Biomedical ResearchUniversity and InselspitalBernSwitzerland
| |
Collapse
|
15
|
Darpolor MM, Singh M, Covington J, Hanet S, Ravussin E, Carmichael OT. Molecular correlates of MRS-based 31 phosphocreatine muscle resynthesis rate in healthy adults. NMR IN BIOMEDICINE 2021; 34:e4402. [PMID: 32875687 PMCID: PMC8491428 DOI: 10.1002/nbm.4402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/25/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Dynamic phosphorus MRS (31 P-MRS) is a method used for in vivo studies of skeletal muscle energetics including measurements of phosphocreatine (PCr) resynthesis rate during recovery of submaximal exercise. However, the molecular events associated with the PCr resynthesis rate are still under debate. We assessed vastus lateralis PCr resynthesis rate from 31 P-MRS spectra collected from healthy adults as part of the CALERIE II study (caloric restriction), and assessed associations between PCr resynthesis and muscle mitochondrial signature transcripts and proteins (NAMPT, NQO1, PGC-1α, and SIRT1). Regression analysis indicated that higher concentration of nicotinamide phosphoribosyltransferase (NAMPT) protein, a mitochondrial capacity marker, was associated with faster PCr resynthesis. However, PCr resynthesis was not associated with greater physical fitness (VO2 peak) or messenger ribonucleic acid levels of mitochondrial function markers such as NQO1, PGC-1α, and SIRT1, suggesting that the impact of these molecular signatures on PCr resynthesis may be minimal in the context of an acute exercise bout. Together, these findings suggest that 31 P-MRS based PCr resynthesis may represent a valid non-invasive surrogate marker of mitochondrial NAMPT in human skeletal muscle.
Collapse
Affiliation(s)
- Moses M Darpolor
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Maninder Singh
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Jeffrey Covington
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Sebastian Hanet
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Owen T Carmichael
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| |
Collapse
|
16
|
Bruls YMH, op den Kamp YJM, Phielix E, Lindeboom L, Havekes B, Schaart G, Moonen-Kornips E, Wildberger JE, Hesselink MKC, Schrauwen P, Schrauwen-Hinderling VB. L-carnitine infusion does not alleviate lipid-induced insulin resistance and metabolic inflexibility. PLoS One 2020; 15:e0239506. [PMID: 32976523 PMCID: PMC7518598 DOI: 10.1371/journal.pone.0239506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/07/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Low carnitine status may underlie the development of insulin resistance and metabolic inflexibility. Intravenous lipid infusion elevates plasma free fatty acid (FFA) concentration and is a model for simulating insulin resistance and metabolic inflexibility in healthy, insulin sensitive volunteers. Here, we hypothesized that co-infusion of L-carnitine may alleviate lipid-induced insulin resistance and metabolic inflexibility. METHODS In a randomized crossover trial, eight young healthy volunteers underwent hyperinsulinemic-euglycemic clamps (40mU/m2/min) with simultaneous infusion of saline (CON), Intralipid (20%, 90mL/h) (LIPID), or Intralipid (20%, 90mL/h) combined with L-carnitine infusion (28mg/kg) (LIPID+CAR). Ten volunteers were randomized for the intervention arms (CON, LIPID and LIPID+CAR), but two dropped-out during the study. Therefore, eight volunteers participated in all three intervention arms and were included for analysis. RESULTS L-carnitine infusion elevated plasma free carnitine availability and resulted in a more pronounced increase in plasma acetylcarnitine, short-, medium-, and long-chain acylcarnitines compared to lipid infusion, however no differences in skeletal muscle free carnitine or acetylcarnitine were found. Peripheral insulin sensitivity and metabolic flexibility were blunted upon lipid infusion compared to CON but L-carnitine infusion did not alleviate this. CONCLUSION Acute L-carnitine infusion could not alleviated lipid-induced insulin resistance and metabolic inflexibility and did not alter skeletal muscle carnitine availability. Possibly, lipid-induced insulin resistance may also have affected carnitine uptake and may have blunted the insulin-induced carnitine storage in muscle. Future studies are needed to investigate this.
Collapse
Affiliation(s)
- Yvonne M. H. Bruls
- Departments of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
- Departments of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yvo J. M. op den Kamp
- Departments of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Esther Phielix
- Departments of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lucas Lindeboom
- Departments of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
- Departments of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Bas Havekes
- Division of Endocrinology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Gert Schaart
- Departments of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Esther Moonen-Kornips
- Departments of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joachim E. Wildberger
- Departments of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Matthijs K. C. Hesselink
- Departments of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Patrick Schrauwen
- Departments of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Vera B. Schrauwen-Hinderling
- Departments of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
- Departments of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
17
|
Klepochová R, Leutner M, Bastian M, Krebs M, Weber M, Trattnig S, Kautzky‐Willer A, Krššák M. Muscle-Specific Relation of Acetylcarnitine and Intramyocellular Lipids to Chronic Hyperglycemia: A Pilot 3-T 1H MRS Study. Obesity (Silver Spring) 2020; 28:1405-1411. [PMID: 32820618 PMCID: PMC7497241 DOI: 10.1002/oby.22846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Acetylcarnitine plays an important role in fat metabolism and can be detected in proton magnetic resonance spectra in skeletal muscle. An inverse relationship of acetylcarnitine to intramyocellular lipids and metabolic markers of chronic hyperglycemia has been suggested. This study aimed to compare the acetylcarnitine concentrations and intramyocellular lipids measured noninvasively by proton magnetic resonance spectroscopy (1H MRS) in the tibialis anterior and the soleus of three different groups of volunteers with a broad range of glycemic control. METHODS Acetylcarnitine and intramyocellular lipid concentrations were measured in 35 individuals stratified into three groups according to glucose tolerance and/or manifestation of type 2 diabetes mellitus. All MRS measurements were performed on a 3-T MR system. RESULTS The differences in patient phenotype were mirrored by increased intramyocellular lipids in the tibialis anterior and decreased acetylcarnitine concentrations in the soleus muscle of type 2 diabetes patients when compared with normal glucose-tolerant individuals. Results suggest that intramyocellular lipids mirror whole-body glucose tolerance better in the tibialis anterior muscle, whereas acetylcarnitine is a better discriminator in the soleus muscle. CONCLUSIONS This muscle-specific behavior of metabolites could represent different fiber compositions in the examined muscles and should be considered when planning future metabolic studies.
Collapse
Affiliation(s)
- Radka Klepochová
- High‐Field MR CenterDepartment of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria
| | - Michael Leutner
- Department of Internal Medicine IIIClinical Division of Endocrinology and MetabolismUnit of Gender MedicineMedical University of ViennaViennaAustria
| | - Magdalena Bastian
- Department of Internal Medicine IIIClinical Division of Endocrinology and MetabolismUnit of Gender MedicineMedical University of ViennaViennaAustria
| | - Michael Krebs
- Department of Internal Medicine IIIClinical Division of Endocrinology and MetabolismUnit of Gender MedicineMedical University of ViennaViennaAustria
| | - Michael Weber
- Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Siegfried Trattnig
- High‐Field MR CenterDepartment of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria
| | - Alexandra Kautzky‐Willer
- Department of Internal Medicine IIIClinical Division of Endocrinology and MetabolismUnit of Gender MedicineMedical University of ViennaViennaAustria
- Gender InstituteGars am KampAustria
| | - Martin Krššák
- High‐Field MR CenterDepartment of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria
- Department of Internal Medicine IIIClinical Division of Endocrinology and MetabolismUnit of Gender MedicineMedical University of ViennaViennaAustria
| |
Collapse
|
18
|
Remie CME, Roumans KHM, Moonen MPB, Connell NJ, Havekes B, Mevenkamp J, Lindeboom L, de Wit VHW, van de Weijer T, Aarts SABM, Lutgens E, Schomakers BV, Elfrink HL, Zapata-Pérez R, Houtkooper RH, Auwerx J, Hoeks J, Schrauwen-Hinderling VB, Phielix E, Schrauwen P. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am J Clin Nutr 2020; 112:413-426. [PMID: 32320006 PMCID: PMC7398770 DOI: 10.1093/ajcn/nqaa072] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Nicotinamide riboside (NR) is an NAD+ precursor that boosts cellular NAD+ concentrations. Preclinical studies have shown profound metabolic health effects after NR supplementation. OBJECTIVES We aimed to investigate the effects of 6 wk NR supplementation on insulin sensitivity, mitochondrial function, and other metabolic health parameters in overweight and obese volunteers. METHODS A randomized, double-blinded, placebo-controlled, crossover intervention study was conducted in 13 healthy overweight or obese men and women. Participants received 6 wk NR (1000 mg/d) and placebo supplementation, followed by broad metabolic phenotyping, including hyperinsulinemic-euglycemic clamps, magnetic resonance spectroscopy, muscle biopsies, and assessment of ex vivo mitochondrial function and in vivo energy metabolism. RESULTS Markers of increased NAD+ synthesis-nicotinic acid adenine dinucleotide and methyl nicotinamide-were elevated in skeletal muscle after NR compared with placebo. NR increased body fat-free mass (62.65% ± 2.49% compared with 61.32% ± 2.58% in NR and placebo, respectively; change: 1.34% ± 0.50%, P = 0.02) and increased sleeping metabolic rate. Interestingly, acetylcarnitine concentrations in skeletal muscle were increased upon NR (4558 ± 749 compared with 3025 ± 316 pmol/mg dry weight in NR and placebo, respectively; change: 1533 ± 683 pmol/mg dry weight, P = 0.04) and the capacity to form acetylcarnitine upon exercise was higher in NR than in placebo (2.99 ± 0.30 compared with 2.40 ± 0.33 mmol/kg wet weight; change: 0.53 ± 0.21 mmol/kg wet weight, P = 0.01). However, no effects of NR were found on insulin sensitivity, mitochondrial function, hepatic and intramyocellular lipid accumulation, cardiac energy status, cardiac ejection fraction, ambulatory blood pressure, plasma markers of inflammation, or energy metabolism. CONCLUSIONS NR supplementation of 1000 mg/d for 6 wk in healthy overweight or obese men and women increased skeletal muscle NAD+ metabolites, affected skeletal muscle acetylcarnitine metabolism, and induced minor changes in body composition and sleeping metabolic rate. However, no other metabolic health effects were observed.This trial was registered at clinicaltrials.gov as NCT02835664.
Collapse
Affiliation(s)
- Carlijn M E Remie
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Kay H M Roumans
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Michiel P B Moonen
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Niels J Connell
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Bas Havekes
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
- Division of Endocrinology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Julian Mevenkamp
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Lucas Lindeboom
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Vera H W de Wit
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Tineke van de Weijer
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Suzanne A B M Aarts
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| | - Bauke V Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Core Facility Metabolomics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Hyung L Elfrink
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Core Facility Metabolomics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Rubén Zapata-Pérez
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
19
|
Houzelle A, Dahlmans D, Nascimento EBM, Schaart G, Jörgensen JA, Moonen-Kornips E, Kersten S, Wang X, Hoeks J. MicroRNA-204-5p modulates mitochondrial biogenesis in C2C12 myotubes and associates with oxidative capacity in humans. J Cell Physiol 2020; 235:9851-9863. [PMID: 32452584 PMCID: PMC7586823 DOI: 10.1002/jcp.29797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/24/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022]
Abstract
Using an unbiased high‐throughput microRNA (miRNA)‐silencing screen combined with functional readouts for mitochondrial oxidative capacity in C2C12 myocytes, we previously identified 19 miRNAs as putative regulators of skeletal muscle mitochondrial metabolism. In the current study, we highlight miRNA‐204‐5p, identified from this screen, and further studied its role in the regulation of skeletal muscle mitochondrial function. Following silencing of miRNA‐204‐5p in C2C12 myotubes, gene and protein expression were assessed using quantitative polymerase chain reaction, microarray analysis, and western blot analysis, while morphological changes were studied by confocal microscopy. In addition, miRNA‐204‐5p expression was quantified in human skeletal muscle biopsies and associated with in vivo mitochondrial oxidative capacity. Transcript levels of PGC‐1α (3.71‐fold; p < .01), predicted as an miR‐204‐5p target, as well as mitochondrial DNA copy number (p < .05) and citrate synthase activity (p = .06) were increased upon miRNA‐204‐5p silencing in C2C12 myotubes. Silencing of miRNA‐204‐5p further resulted in morphological changes, induced gene expression of autophagy marker light chain 3 protein b (LC3B; q = .05), and reduced expression of the mitophagy marker FUNDC1 (q = .01). Confocal imaging revealed colocalization between the autophagosome marker LC3B and the mitochondrial marker OxPhos upon miRNA‐204‐5p silencing. Finally, miRNA‐204‐5p was differentially expressed in human subjects displaying large variation in oxidative capacity and its expression levels associated with in vivo measures of skeletal muscle mitochondrial function. In summary, silencing of miRNA‐204‐5p in C2C12 myotubes stimulated mitochondrial biogenesis, impacted on cellular morphology, and altered expression of markers related to autophagy and mitophagy. The association between miRNA‐204‐5p and in vivo mitochondrial function in human skeletal muscle further identifies miRNA‐204‐5p as an interesting modulator of skeletal muscle mitochondrial metabolism.
Collapse
Affiliation(s)
- Alexandre Houzelle
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Dennis Dahlmans
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Emmani B M Nascimento
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Gert Schaart
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Johanna A Jörgensen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Esther Moonen-Kornips
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Sander Kersten
- Division of Human Nutrition, Nutrition, Metabolism and Genomics Group, Wageningen University, Wageningen, The Netherlands
| | - Xu Wang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
20
|
Meienberg F, Loher H, Bucher J, Jenni S, Krüsi M, Kreis R, Boesch C, Betz MJ, Christ E. The effect of exercise on intramyocellular acetylcarnitine (AcCtn) concentration in adult growth hormone deficiency (GHD). Sci Rep 2019; 9:19431. [PMID: 31857652 PMCID: PMC6923484 DOI: 10.1038/s41598-019-55942-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/13/2019] [Indexed: 01/28/2023] Open
Abstract
To cover increasing energy demands during exercise, tricarboxylic cycle (TCA) flux in skeletal muscle is markedly increased, resulting in the increased formation of intramyocellular acetylcarnitine (AcCtn). We hypothesized that reduced substrate availability within the exercising muscle, reflected by a diminished increase of intramyocellular AcCtn concentration during exercise, might be an underlying mechanism for the impaired exercise performance observed in adult patients with growth hormone deficiency (GHD). We aimed at assessing the effect of 2 hours of moderately intense exercise on intramyocellular AcCtn concentrations, measured by proton magnetic resonance spectroscopy (1H-MRS), in seven adults with GHD compared to seven matched control subjects (CS). Compared to baseline levels AcCtn concentrations significantly increased after 2 hours of exercise, and significantly decreased over the following 24 hours (ANOVA p for effect of time = 0.0023 for all study participants; p = 0.067 for GHD only, p = 0.045 for CS only). AcCtn concentrations at baseline, as well as changes in AcCtn concentrations over time were similar between GHD patients and CS (ANOVA p for group effect = 0.45). There was no interaction between group and time (p = 0.53). Our study suggests that during moderately intense exercise the availability of energy substrate within the exercising muscle is not significantly different in GHD patients compared to CS.
Collapse
Affiliation(s)
- Fabian Meienberg
- Endocrinology & Diabetology, Kantonsspital Baselland, Liestal, Switzerland
| | - Hannah Loher
- Innere Medizin, Kantonsspital, St. Gallen, Switzerland
| | | | - Stefan Jenni
- Praxis Endokrinologie Diabetologie Bern, Bern, Switzerland
| | - Marion Krüsi
- Praxis Endokrinologie & Diabetologie, Zürich Unterland, Embrach, Switzerland
| | - Roland Kreis
- Departments of Biomedical Research and Radiology, University Bern, Bern, Switzerland
| | - Chris Boesch
- Departments of Biomedical Research and Radiology, University Bern, Bern, Switzerland
| | - Matthias Johannes Betz
- Endocrinology, Diabetes & Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Emanuel Christ
- Endocrinology, Diabetes & Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
21
|
Bruls YM, de Ligt M, Lindeboom L, Phielix E, Havekes B, Schaart G, Kornips E, Wildberger JE, Hesselink MK, Muoio D, Schrauwen P, Schrauwen-Hinderling VB. Carnitine supplementation improves metabolic flexibility and skeletal muscle acetylcarnitine formation in volunteers with impaired glucose tolerance: A randomised controlled trial. EBioMedicine 2019; 49:318-330. [PMID: 31676389 PMCID: PMC6945245 DOI: 10.1016/j.ebiom.2019.10.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Type 2 diabetes patients and individuals at risk of developing diabetes are characterized by metabolic inflexibility and disturbed glucose homeostasis. Low carnitine availability may contribute to metabolic inflexibility and impaired glucose tolerance. Here, we investigated whether carnitine supplementation improves metabolic flexibility and insulin sensitivity in impaired glucose tolerant (IGT) volunteers. METHODS Eleven IGT- volunteers followed a 36-day placebo- and L-carnitine treatment (2 g/day) in a randomised, placebo-controlled, double blind crossover design. A hyperinsulinemic-euglycemic clamp (40 mU/m2/min), combined with indirect calorimetry (ventilated hood) was performed to determine insulin sensitivity and metabolic flexibility. Furthermore, metabolic flexibility was assessed in response to a high-energy meal. Skeletal muscle acetylcarnitine concentrations were measured in vivo using long echo time proton magnetic resonance spectroscopy (1H-MRS, TE=500 ms) in the resting state (7:00AM and 5:00PM) and after a 30-min cycling exercise. Twelve normal glucose tolerant (NGT) volunteers were included without any intervention as control group. RESULTS Metabolic flexibility of IGT-subjects completely restored towards NGT control values upon carnitine supplementation, measured during a hyperinsulinemic-euglycemic clamp and meal test. In muscle, carnitine supplementation enhanced the increase in resting acetylcarnitine concentrations over the day (delta 7:00 AM versus 5:00 PM) in IGT-subjects. Furthermore, carnitine supplementation increased post-exercise acetylcarnitine concentrations and reduced long-chain acylcarnitine species in IGT-subjects, suggesting the stimulation of a more complete fat oxidation in muscle. Whole-body insulin sensitivity was not affected. CONCLUSION Carnitine supplementation improves acetylcarnitine formation and rescues metabolic flexibility in IGT-subjects. Future research should investigate the potential of carnitine in prevention/treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Yvonne Mh Bruls
- Department of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands; Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Marlies de Ligt
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Lucas Lindeboom
- Department of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands; Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Bas Havekes
- Department of Internal Medicine, Division of Endocrinology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Gert Schaart
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Esther Kornips
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Joachim E Wildberger
- Department of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Matthijs Kc Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Deborah Muoio
- Department of Medicine, Duke University Medical Center, Durham, NC NC22704, United States of America
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands; Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands.
| |
Collapse
|
22
|
Pino MF, Stephens NA, Eroshkin AM, Yi F, Hodges A, Cornnell HH, Pratley RE, Smith SR, Wang M, Han X, Coen PM, Goodpaster BH, Sparks LM. Endurance training remodels skeletal muscle phospholipid composition and increases intrinsic mitochondrial respiration in men with Type 2 diabetes. Physiol Genomics 2019; 51:586-595. [PMID: 31588872 DOI: 10.1152/physiolgenomics.00014.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The effects of exercise training on the skeletal muscle (SKM) lipidome and mitochondrial function have not been thoroughly explored in individuals with Type 2 diabetes (T2D). We hypothesize that 10 wk of supervised endurance training improves SKM mitochondrial function and insulin sensitivity that are related to alterations in lipid signatures within SKM of T2D (males n = 8). We employed integrated multi-omics data analyses including ex vivo lipidomics (MS/MS-shotgun) and transcriptomics (RNA-Seq). From biopsies of SKM, tissue and primary myotubes mitochondrial respiration were quantified by high-resolution respirometry. We also performed hyperinsulinemic-euglycemic clamps and blood draws before and after the training. The lipidomics analysis revealed that endurance training (>95% compliance) increased monolysocardiolipin by 68.2% (P ≤ 0.03), a putative marker of mitochondrial remodeling, and reduced total sphingomyelin by 44.8% (P ≤ 0.05) and phosphatidylserine by 39.7% (P ≤ 0.04) and tended to reduce ceramide lipid content by 19.8%. Endurance training also improved intrinsic mitochondrial respiration in SKM of T2D without alterations in mitochondrial DNA copy number or cardiolipin content. RNA-Seq revealed 71 transcripts in SKM of T2D that were differentially regulated. Insulin sensitivity was unaffected, and HbA1c levels moderately increased by 7.3% despite an improvement in cardiorespiratory fitness (V̇o2peak) following the training intervention. In summary, endurance training improves intrinsic and cell-autonomous SKM mitochondrial function and modifies lipid composition in men with T2D independently of alterations in insulin sensitivity and glycemic control.
Collapse
Affiliation(s)
- Maria F Pino
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Natalie A Stephens
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Alexey M Eroshkin
- Sanford Burnham Prebys Medical Discovery Institute, Torrey Pines, California
| | - Fanchao Yi
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Andrew Hodges
- Sanford Burnham Prebys Medical Discovery Institute, Torrey Pines, California
| | - Heather H Cornnell
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Richard E Pratley
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Miao Wang
- University of Texas Health Sciences Center San Antonio, San Antonio, Texas
| | - Xianlin Han
- University of Texas Health Sciences Center San Antonio, San Antonio, Texas
| | - Paul M Coen
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| |
Collapse
|
23
|
Liu Y, Li Q, Wang H, Zhao X, Li N, Zhang H, Chen G, Liu Z. Fish oil alleviates circadian bile composition dysregulation in male mice with NAFLD. J Nutr Biochem 2019; 69:53-62. [PMID: 31055233 DOI: 10.1016/j.jnutbio.2019.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/22/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
Our previous studies have found that fish oil rich in ω-3 polyunsaturated fatty acids (ω-3 PUFA) protects against non-alcoholic fatty liver disease (NAFLD) in mice. This study was aimed to explore the effects of fish oil on high fat diet (HFD)-induced circadian bile composition chaos. Male C57BL/6 mice were randomly divided into three groups, a control group (CON), a HFD group and a fish oil (FO) group, which were fed a normal chow diet, a HFD, and a HFD supplemented with FO, respectively for 12 weeks. At the end of the experiment, liver tissue, blood and bile samples were processed at 12-h intervals with the first one at zeitgeber time 0 (ZT0) and the second at zeitgeber time 12 (ZT12). Metabolites in bile were determined using UPLC-QTOF-MS, screened using multivariate statistical analysis, and analyzed using KEGG database and Metaboanalyst. The expression levels of key proteins in bile acid metabolism were examined using western blot. Results of biochemical analysis and H&E staining illustrated that feeding of HFD induced NAFLD, which was ameliorated in FO group. The bile content of each group at ZT0 (CON, HFD, or FO group) was respectively higher than that at ZT12 (P<.05). The metabolic pathway analysis of differential metabolites showed that these differences were correlated with amino acid metabolism, fatty acid biosynthesis and primary bile acid synthesis at ZT0. FO supplement could modify bile composition, which was related to the influence of its ω-3 PUFA on liver metabolism. ω-3 PUFA may also regulate the circadian rhythm of bile metabolism.
Collapse
Affiliation(s)
- Yang Liu
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qi Li
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hualin Wang
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Xiuju Zhao
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Na Li
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongyu Zhang
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN, United States
| | - Zhiguo Liu
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
24
|
van de Weijer T, Schrauwen-Hinderling VB. Application of Magnetic Resonance Spectroscopy in metabolic research. Biochim Biophys Acta Mol Basis Dis 2019; 1865:741-748. [DOI: 10.1016/j.bbadis.2018.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 02/08/2023]
|
25
|
Gancheva S, Jelenik T, Álvarez-Hernández E, Roden M. Interorgan Metabolic Crosstalk in Human Insulin Resistance. Physiol Rev 2018; 98:1371-1415. [PMID: 29767564 DOI: 10.1152/physrev.00015.2017] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Excessive energy intake and reduced energy expenditure drive the development of insulin resistance and metabolic diseases such as obesity and type 2 diabetes mellitus. Metabolic signals derived from dietary intake or secreted from adipose tissue, gut, and liver contribute to energy homeostasis. Recent metabolomic studies identified novel metabolites and enlarged our knowledge on classic metabolites. This review summarizes the evidence of their roles as mediators of interorgan crosstalk and regulators of insulin sensitivity and energy metabolism. Circulating lipids such as free fatty acids, acetate, and palmitoleate from adipose tissue and short-chain fatty acids from the gut effectively act on liver and skeletal muscle. Intracellular lipids such as diacylglycerols and sphingolipids can serve as lipotoxins by directly inhibiting insulin action in muscle and liver. In contrast, fatty acid esters of hydroxy fatty acids have been recently shown to exert a series of beneficial effects. Also, ketoacids are gaining interest as potent modulators of insulin action and mitochondrial function. Finally, branched-chain amino acids not only predict metabolic diseases, but also inhibit insulin signaling. Here, we focus on the metabolic crosstalk in humans, which regulates insulin sensitivity and energy homeostasis in the main insulin-sensitive tissues, skeletal muscle, liver, and adipose tissue.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Tomas Jelenik
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Elisa Álvarez-Hernández
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| |
Collapse
|
26
|
Klepochová R, Valkovič L, Hochwartner T, Triska C, Bachl N, Tschan H, Trattnig S, Krebs M, Krššák M. Differences in Muscle Metabolism Between Triathletes and Normally Active Volunteers Investigated Using Multinuclear Magnetic Resonance Spectroscopy at 7T. Front Physiol 2018; 9:300. [PMID: 29666584 PMCID: PMC5891578 DOI: 10.3389/fphys.2018.00300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/13/2018] [Indexed: 11/29/2022] Open
Abstract
Purpose: The influence of endurance training on skeletal muscle metabolism can currently be studied only by invasive sampling or through a few related parameters that are investigated by either proton (1H) or phosphorus (31P) magnetic resonance spectroscopy (MRS). The aim of this study was to compare the metabolic differences between endurance-trained triathletes and healthy volunteers using multi-parametric data acquired by both, 31P- and 1H-MRS, at ultra-high field (7T) in a single experimental protocol. This study also aimed to determine the interrelations between these MRS-derived metabolic parameters. Methods: Thirteen male triathletes and ten active male volunteers participated in the study. Proton MRS data from the vastus lateralis yielded concentrations of acetylcarnitine, carnosine, and intramyocellular lipids (IMCL). For the measurement of phosphodiesters (PDEs), inorganic phosphate (Pi), phosphocreatine (PCr), and maximal oxidative capacity (Qmax) phosphorus MRS data were acquired at rest, during 6 min of submaximal exercise and following immediate recovery. Results: The triathletes exhibited significantly higher IMCL levels, higher initial rate of PCr resynthesis (VPCr) during the recovery period, a shorter PCr recovery time constant (τPCr), and higher Qmax. Multivariate stepwise regression analysis identified PDE as the strongest independent predictor of whole-body maximal oxygen uptake (VO2max). Conclusion: In conclusion, we cannot suggest a single MRS-based parameter as an exclusive biomarker of muscular fitness and training status. There is, rather, a combination of different parameters, assessable during a single multi-nuclear MRS session that could be useful for further cross-sectional and/or focused interventional studies on skeletal muscle fitness and training effects.
Collapse
Affiliation(s)
- Radka Klepochová
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Center, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, MOLIMA, Vienna, Austria
| | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom.,Department of Imaging Methods, Institute of Measurements Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Thomas Hochwartner
- Centre of Sport Science and University Sport, University of Vienna, Vienna, Austria
| | - Christoph Triska
- Centre of Sport Science and University Sport, University of Vienna, Vienna, Austria
| | - Norbert Bachl
- Centre of Sport Science and University Sport, University of Vienna, Vienna, Austria
| | - Harald Tschan
- Centre of Sport Science and University Sport, University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Center, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, MOLIMA, Vienna, Austria
| | - Michael Krebs
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Martin Krššák
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Center, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, MOLIMA, Vienna, Austria.,Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Esterline RL, Vaag A, Oscarsson J, Vora J. MECHANISMS IN ENDOCRINOLOGY: SGLT2 inhibitors: clinical benefits by restoration of normal diurnal metabolism? Eur J Endocrinol 2018; 178:R113-R125. [PMID: 29371333 DOI: 10.1530/eje-17-0832] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/19/2018] [Indexed: 12/26/2022]
Abstract
Type 2 diabetes (T2D) is associated with inhibition of autophagic and lysosomal housekeeping processes that detrimentally affect key organ functioning; a process likely to be exacerbated by conventional insulin-driven anabolic therapies. We propose that the cardio-renal benefits demonstrated with sodium-glucose cotransporter-2 inhibitor (SGLT2i) treatment in T2D partly may be explained by their ability to drive consistent, overnight periods of increased catabolism brought about by constant glucosuria. Key steps driving this catabolic mechanism include: a raised glucagon/insulin ratio initially depleting glycogen in the liver and ultimately activating gluconeogenesis utilizing circulating amino acids (AAs); a general fuel switch from glucose to free fatty acids (accompanied by a change in mitochondrial morphology from a fission to a sustained fusion state driven by a decrease in AA levels); a decrease in circulating AAs and insulin driving inhibition of mammalian target of rapamycin complex 1 (mTORC1), which enhances autophagy/lysosomal degradation of dysfunctional organelles, eventually causing a change in mitochondrial morphology from a fission to a sustained fusion state. Resumption of eating in the morning restores anabolic biogenesis of new and fully functional organelles and proteins. Restoration of diurnal metabolic rhythms and flexibility by SGLT2is may have therapeutic implications beyond those already demonstrated for the cardio-renal axis and may therefore affect other non-diabetes disease states.
Collapse
Affiliation(s)
| | - Allan Vaag
- Cardiovascular and Metabolic Disease (CVMD) Translational Medicine Unit, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Jan Oscarsson
- AstraZeneca Pharmaceuticals, Gaithersburg, Maryland, USA
| | - Jiten Vora
- Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK
| |
Collapse
|
28
|
Abstract
Objectives The aims of this study were to detect the acetylcarnitine resonance line at 2.13 ppm in the human vastus lateralis and soleus muscles, assess T1 and T2 relaxation times, and investigate the diurnal and exercise-related changes in absolute concentration noninvasively, using proton magnetic resonance spectroscopy at 7 T. Materials and Methods All measurements were performed on a 7 T whole-body Magnetom MR system with a 28-channel knee coil. Five healthy, moderately trained volunteers participated in the assessment of the detectability, repeatability, and relaxation times of acetylcarnitine. For the evaluation of the effect of training status, another 5 healthy, normally active volunteers were examined. In addition, normally active volunteers underwent a day-long protocol to estimate diurnal changes and response to the exercise. Results Using a long echo time of 350 milliseconds, we were able to detect the acetylcarnitine resonance line at 2.13 ppm in both muscle groups without significant lipid contamination. The T1 of acetylcarnitine in the vastus lateralis muscle was found to be 1807.2 ± 513.1 milliseconds and T2 was found to be 129.9 ± 44.9 milliseconds. Concentrations of acetylcarnitine from the vastus lateralis muscle in moderately trained volunteers were higher than concentrations from normally active volunteers. Acetylcarnitine concentrations changed during the day, tending to be higher in the morning after an overnight fast than after lunch. After 10 minutes of high-intensity exercise, the concentration significantly increased, and 15 minutes after cessation of exercise, a decrease could be observed. Conclusions Our results demonstrate an effective detection of acetylcarnitine using a long TE of 350 milliseconds at 7 T in the vastus lateralis and soleus muscles with high repeatability and reliability on a 7 T scanner. Our data emphasize the need for strict standardization, physical activity, and dietary conditions for the measurement of the acetylcarnitine.
Collapse
|
29
|
Constantin-Teodosiu D, Cederblad G, Bergström M, Greenhaff PL. Maximal-intensity exercise does not fully restore muscle pyruvate dehydrogenase complex activation after 3 days of high-fat dietary intake. Clin Nutr 2018; 38:948-953. [PMID: 29459213 DOI: 10.1016/j.clnu.2018.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND & AIMS Exercise activates muscle pyruvate dehydrogenase complex (PDC), but moderate intensity exercise fails to fully activate muscle PDC after high-fat diet [1]. We investigated whether maximal intensity exercise overcomes this inhibition. METHODS Quadriceps femoris muscle biopsy samples were obtained from healthy males at rest, and after 46 and 92 electrically-evoked maximal intermittent isometric contractions, which were preceded by 3 days of either low- (18%) or high- (69%) isocaloric dietary fat intake (LFD and HFD, respectively). RESULTS The ratio of PDCa (active form) to total PDCt (fully activated) at rest was 50% less after HFD (0.32 ± 0.01 vs 0.15 ± 0.01; P < 0.05). This ratio increased to 0.77 ± 0.06 after 46 contractions (P < 0.001) and to 0.98 ± 0.07 after 92 contractions (P < 0.001) in LFD. The corresponding values after HFD were less (0.54 ± 0.06; P < 0.01 and 0.70 ± 0.07; P < 0.01, respectively). Resting muscle acetyl-CoA and acetylcarnitine content was greater after HFD than LFD (both P < 0.05), but their rate of accumulation in the former was reduced during contraction. Muscle lactate content after 92 contractions was 30% greater after HFD (P < 0.05). Muscle force generation during contraction was no different between interventions, but HFD lengthened muscle relaxation time (P < 0.05). Daily urinary total carnitine excretion after HFD was 2.5-fold greater than after LFD (P < 0.01). CONCLUSIONS A bout of maximal intense exercise did not overcome dietary fat-mediated inhibition of muscle pyruvate dehydrogenase complex activation, and was associated with greater muscle lactate accumulation, as a result of lower PDC flux, and increased muscle relaxation time.
Collapse
Affiliation(s)
- D Constantin-Teodosiu
- MRC/ARUK Centre for Musculoskeletal Ageing Research, ARUK Centre for Sport, Exercise and Osteoarthritis, NIHR Nottingham BRC, School of Life Sciences, The Medical School, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | - G Cederblad
- Clinical Chemistry, Karolinska University Hospital, S-141 86 Huddinge, Sweden
| | - M Bergström
- Clinical Chemistry, Karolinska University Hospital, S-141 86 Huddinge, Sweden
| | - P L Greenhaff
- MRC/ARUK Centre for Musculoskeletal Ageing Research, ARUK Centre for Sport, Exercise and Osteoarthritis, NIHR Nottingham BRC, School of Life Sciences, The Medical School, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
30
|
Abstract
Fat and carbohydrate are the major fuel sources utilised for oxidative, mitochondrial ATP resynthesis during human skeletal muscle contraction. The relative contribution of these two substrates to ATP resynthesis and total energy expenditure during exercise can vary substantially, and is predominantly determined by fuel availability and exercise intensity and duration. For example, the increased ATP demand that occurs with an increase in exercise intensity is met by increases in both fat and carbohydrate oxidation up to an intensity of approximately 60-70 % of maximal oxygen consumption. When exercise intensity increases beyond this workload, skeletal muscle carbohydrate utilisation is accelerated, which results in a reduction and inhibition of the relative and absolute contribution of fat oxidation to total energy expenditure. However, the precise mechanisms regulating muscle fuel selection and underpinning the decline in fat oxidation remain unclear. This brief review will primarily address the theory that a carbohydrate flux-mediated reduction in the availability of muscle carnitine to the mitochondrial enzyme carnitine palmitoyltransferase 1, a rate-limiting step in mitochondrial fat translocation, is a key mechanism for the decline in fat oxidation during high-intensity exercise. This is discussed in relation to recent work in this area investigating fuel metabolism at various exercise intensities and taking advantage of the discovery that skeletal muscle carnitine content can be nutritionally increased in vivo in human subjects.
Collapse
|
31
|
Dahlmans D, Houzelle A, Jörgensen JA, Phielix E, Lindeboom L, Hesselink MKC, Schrauwen P, Hoeks J. Evaluation of Muscle microRNA Expression in Relation to Human Peripheral Insulin Sensitivity: A Cross-Sectional Study in Metabolically Distinct Subject Groups. Front Physiol 2017; 8:711. [PMID: 28983252 PMCID: PMC5613141 DOI: 10.3389/fphys.2017.00711] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/04/2017] [Indexed: 11/16/2022] Open
Abstract
In recent years, several microRNAs (miRNAs)—post-transcriptional regulators of gene expression—have been linked to the regulation of peripheral insulin sensitivity. Many of these studies, however, have been conducted in cell or animal models and the few human studies available lack adequate measurements of peripheral insulin sensitivity. In the present study, we examined the expression of 25 miRNAs, putatively involved in (peripheral) insulin sensitivity, in skeletal muscle biopsies from extensively phenotyped human individuals, widely ranging in insulin sensitivity. To identify miRNAs expressed in skeletal muscle and associated with insulin sensitivity and type 2 diabetes, a comprehensive PubMed-based literature search was performed. Subsequently, the expression of selected miRNAs was determined by RT-qPCR using predesigned 384-well Pick-&-Mix miRNA PCR Panel plates in muscle biopsies from type 2 diabetes patients, non-diabetic obese/overweight individuals, lean sedentary individuals and endurance-trained athletes. In all subjects, peripheral insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp. The literature search resulted in 25 candidate miRNAs, 6 of which were differentially expressed in human type 2 diabetes compared to non-diabetic obese/overweight individuals. In turn, four of these miRNAs, i.e., miRNA27a-3p (r = −0.45, p = 0.0012), miRNA-29a-3p (r = −0.40, p = 0.0052), miRNA-29b-3p (r = −0.70, p < 0.0001) and miRNA-29c-3p (r = −0.50, p = 0.0004) demonstrated strong negative correlations with peripheral insulin sensitivity across all four subject groups. We identified miR-27a-3p and all members of the miRNA-29 family as potential regulatory players in insulin sensitivity in humans. These miRNA's may represent interesting novel targets for maintaining or improving insulin sensitivity.
Collapse
Affiliation(s)
- Dennis Dahlmans
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
| | - Alexandre Houzelle
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
| | - Johanna A. Jörgensen
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
| | - Esther Phielix
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
| | - Lucas Lindeboom
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
- Departments of Radiology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical CenterMaastricht, Netherlands
| | - Matthijs K. C. Hesselink
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
| | - Patrick Schrauwen
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
| | - Joris Hoeks
- Departments of Human Biology and Human Movement Sciences, Maastricht University Medical CenterMaastricht, Netherlands
- *Correspondence: Joris Hoeks
| |
Collapse
|
32
|
Mulkern RV, Balasubramanian M. Spectroscopic sampling of the left side of long-TE spin echoes: a free lunch? MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:321-340. [DOI: 10.1007/s10334-017-0647-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/07/2017] [Accepted: 08/10/2017] [Indexed: 12/20/2022]
|
33
|
Dahlmans D, Houzelle A, Andreux P, Jörgensen JA, Wang X, de Windt LJ, Schrauwen P, Auwerx J, Hoeks J. An unbiased silencing screen in muscle cells identifies miR-320a, miR-150, miR-196b, and miR-34c as regulators of skeletal muscle mitochondrial metabolism. Mol Metab 2017; 6:1429-1442. [PMID: 29107290 PMCID: PMC5681243 DOI: 10.1016/j.molmet.2017.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/13/2017] [Accepted: 08/21/2017] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Strategies improving skeletal muscle mitochondrial capacity are commonly paralleled by improvements in (metabolic) health. We and others previously identified microRNAs regulating mitochondrial oxidative capacity, but data in skeletal muscle are limited. Therefore, the present study aimed to identify novel microRNAs regulating skeletal muscle mitochondrial metabolism. METHODS AND RESULTS We conducted an unbiased, hypothesis-free microRNA silencing screen in C2C12 myoblasts, using >700 specific microRNA inhibitors, and investigated a broad panel of mitochondrial markers. After subsequent validation in differentiated C2C12 myotubes, and exclusion of microRNAs without a human homologue or with an adverse effect on mitochondrial metabolism, 19 candidate microRNAs remained. Human clinical relevance of these microRNAs was investigated by measuring their expression in human skeletal muscle of subject groups displaying large variation in skeletal muscle mitochondrial capacity. CONCLUSION The results show that that microRNA-320a, microRNA-196b-3p, microRNA-150-5p, and microRNA-34c-3p are tightly related to in vivo skeletal muscle mitochondrial function in humans and identify these microRNAs as targets for improving mitochondrial metabolism.
Collapse
Affiliation(s)
- Dennis Dahlmans
- Department of Human Biology and Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, 6200MD, The Netherlands
| | - Alexandre Houzelle
- Department of Human Biology and Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, 6200MD, The Netherlands
| | - Pénélope Andreux
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Johanna A Jörgensen
- Department of Human Biology and Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, 6200MD, The Netherlands
| | - Xu Wang
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Leon J de Windt
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6200MD, The Netherlands
| | - Patrick Schrauwen
- Department of Human Biology and Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, 6200MD, The Netherlands
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Joris Hoeks
- Department of Human Biology and Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, 6200MD, The Netherlands.
| |
Collapse
|
34
|
Adeva-Andany MM, Calvo-Castro I, Fernández-Fernández C, Donapetry-García C, Pedre-Piñeiro AM. Significance of l-carnitine for human health. IUBMB Life 2017; 69:578-594. [PMID: 28653367 DOI: 10.1002/iub.1646] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/24/2017] [Indexed: 12/29/2022]
Abstract
Carnitine acyltransferases catalyze the reversible transfer of acyl groups from acyl-coenzyme A esters to l-carnitine, forming acyl-carnitine esters that may be transported across cell membranes. l-Carnitine is a wáter-soluble compound that humans may obtain both by food ingestion and endogenous synthesis from trimethyl-lysine. Most l-carnitine is intracellular, being present predominantly in liver, skeletal muscle, heart and kidney. The organic cation transporter-2 facilitates l-carnitine uptake inside cells. Congenital dysfunction of this transporter causes primary l-carnitine deficiency. Carnitine acetyltransferase is involved in the export of excess acetyl groups from the mitochondria and in acetylation reactions that regulate gene transcription and enzyme activity. Carnitine octanoyltransferase is a peroxysomal enzyme required for the complete oxidation of very long-chain fatty acids and phytanic acid, a branched-chain fatty acid. Carnitine palmitoyltransferase-1 is a transmembrane protein located on the outer mitochondrial membrane where it catalyzes the conversion of acyl-coenzyme A esters to acyl-carnitine esters. Carnitine acyl-carnitine translocase transports acyl-carnitine esters across the inner mitochondrial membrane in exchange for free l-carnitine that exits the mitochondrial matrix. Carnitine palmitoyltransferase-2 is anchored on the matrix side of the inner mitochondrial membrane, where it converts acyl-carnitine esters back to acyl-coenzyme A esters, which may be used in metabolic pathways, such as mitochondrial β-oxidation. l-Carnitine enhances nonoxidative glucose disposal under euglycemic hyperinsulinemic conditions in both healthy individuals and patients with type 2 diabetes, suggesting that l-carnitine strengthens insulin effect on glycogen storage. The plasma level of acyl-carnitine esters, primarily acetyl-carnitine, increases during diabetic ketoacidosis, fasting, and physical activity, particularly high-intensity exercise. Plasma concentration of free l-carnitine decreases simultaneously under these conditions. © 2017 IUBMB Life, 69(8):578-594, 2017.
Collapse
|
35
|
Lindeboom L, de Graaf RA. Measurement of lipid composition in human skeletal muscle and adipose tissue with1H-MRS homonuclear spectral editing. Magn Reson Med 2017; 79:619-627. [DOI: 10.1002/mrm.26740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/15/2017] [Accepted: 04/10/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Lucas Lindeboom
- Department of Radiology; NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center; Maastricht the Netherlands
- Department of Human Biology/Human Movement Sciences; NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center; Maastricht the Netherlands
| | - Robin A. de Graaf
- Department of Radiology and Biomedical Imaging; Magnetic Resonance Research Center, Yale University School of Medicine; New Haven Connecticut USA
| |
Collapse
|
36
|
van de Weijer T, Paiman EHM, Lamb HJ. Cardiac metabolic imaging: current imaging modalities and future perspectives. J Appl Physiol (1985) 2017; 124:168-181. [PMID: 28473616 DOI: 10.1152/japplphysiol.01051.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this review, current imaging techniques and their future perspectives in the field of cardiac metabolic imaging in humans are discussed. This includes a range of noninvasive imaging techniques, allowing a detailed investigation of cardiac metabolism in health and disease. The main imaging modalities discussed are magnetic resonance spectroscopy techniques for determination of metabolite content (triglycerides, glucose, ATP, phosphocreatine, and so on), MRI for myocardial perfusion, and single-photon emission computed tomography and positron emission tomography for quantitation of perfusion and substrate uptake.
Collapse
|
37
|
Abstract
Cardiovascular disease is the leading cause of death in general population. Besides well-known risk factors such as hypertension, impaired glucose tolerance and dyslipidemia, growing evidence suggests that hormonal changes in various endocrine diseases also impact the cardiac morphology and function. Recent studies highlight the importance of ectopic intracellular myocardial and pericardial lipid deposition, since even slight changes of these fat depots are associated with alterations in cardiac performance. In this review, we overview the effects of hormones, including insulin, thyroid hormones, growth hormone and cortisol, on heart function, focusing on their impact on myocardial lipid metabolism, cardiac substrate utilization and ectopic lipid deposition, in order to highlight the important role of even subtle hormonal changes for heart function in various endocrine and metabolic diseases.
Collapse
Affiliation(s)
- Peter Wolf
- Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Yvonne Winhofer
- Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Martin Krššák
- Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- High Field MR CentreDepartment of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Krebs
- Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Hesselink MKC, Schrauwen-Hinderling V, Schrauwen P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol 2016; 12:633-645. [PMID: 27448057 DOI: 10.1038/nrendo.2016.104] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Low levels of physical activity and the presence of obesity are associated with mitochondrial dysfunction. In addition, mitochondrial dysfunction has been associated with the development of insulin resistance and type 2 diabetes mellitus (T2DM). Although the evidence for a causal relationship between mitochondrial function and insulin resistance is still weak, emerging evidence indicates that boosting mitochondrial function might be beneficial to patient health. Exercise training is probably the most recognized promoter of mitochondrial function and insulin sensitivity and hence is still regarded as the best strategy to prevent and treat T2DM. Animal data, however, have revealed several new insights into the regulation of mitochondrial metabolism, and novel targets for interventions to boost mitochondrial function have emerged. Importantly, many of these targets seem to be regulated by factors such as nutrition, ambient temperature and circadian rhythms, which provides a basis for nonpharmacological strategies to prevent or treat T2DM in humans. Here, we will review the current evidence that mitochondrial function can be targeted therapeutically to improve insulin sensitivity and to prevent T2DM, focusing mainly on human intervention studies.
Collapse
Affiliation(s)
- Matthijs K C Hesselink
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
| | - Vera Schrauwen-Hinderling
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- Department of Radiology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
| | - Patrick Schrauwen
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
| |
Collapse
|
39
|
Affourtit C. Mitochondrial involvement in skeletal muscle insulin resistance: A case of imbalanced bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1678-93. [PMID: 27473535 DOI: 10.1016/j.bbabio.2016.07.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/19/2016] [Accepted: 07/23/2016] [Indexed: 12/16/2022]
Abstract
Skeletal muscle insulin resistance in obesity associates with mitochondrial dysfunction, but the causality of this association is controversial. This review evaluates mitochondrial models of nutrient-induced muscle insulin resistance. It transpires that all models predict that insulin resistance arises as a result of imbalanced cellular bioenergetics. The nature and precise origin of the proposed insulin-numbing molecules differ between models but all species only accumulate when metabolic fuel supply outweighs energy demand. This observation suggests that mitochondrial deficiency in muscle insulin resistance is not merely owing to intrinsic functional defects, but could instead be an adaptation to nutrient-induced changes in energy expenditure. Such adaptive effects are likely because muscle ATP supply is fully driven by energy demand. This market-economic control of myocellular bioenergetics offers a mechanism by which insulin-signalling deficiency can cause apparent mitochondrial dysfunction, as insulin resistance lowers skeletal muscle anabolism and thus dampens ATP demand and, consequently, oxidative ATP synthesis.
Collapse
Affiliation(s)
- Charles Affourtit
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth University, Drake Circus, PL4 8AA Plymouth, UK.
| |
Collapse
|
40
|
Lindeboom L, Bruls YMH, van Ewijk PA, Hesselink MKC, Wildberger JE, Schrauwen P, Schrauwen-Hinderling VB. Longitudinal relaxation time editing for acetylcarnitine detection with 1 H-MRS. Magn Reson Med 2016; 77:505-510. [PMID: 26887359 DOI: 10.1002/mrm.26149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 02/04/2023]
Abstract
PURPOSE Acetylcarnitine formation is suggested to be crucial in sustaining metabolic flexibility and glucose homeostasis. Recently, we introduced a method to detect acetylcarnitine in vivo with long TE 1 H-MRS. Differences in T1 relaxation time between lipids and acetylcarnitine can be exploited for additional lipid suppression in subjects with high myocellular lipid levels. METHODS Acquisition of spectra with an inversion recovery sequence was alternated with standard signal acquisition to suppress short T1 metabolite signals. A proof of principle experiment was conducted in a lean subject and the new approach was subsequently tested in four overweight/obese subjects. RESULTS Using the new T1 editing approach, lipid signals in spectra of skeletal muscle can be (additionally) suppressed by a factor of 10 using a TI of 900 ms. Combination of the long TE protocol with the T1 editing resulted in a well-resolved acetylcarnitine peak in the obese subjects. CONCLUSION The T1 editing approach suppresses short T1 metabolites and offers a new contrast in 1 H-MRS. The approach should be used in combination with a long TE in subjects with high lipid contamination for accurate quantification of the acetylcarnitine concentration. Magn Reson Med 77:505-510, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Lucas Lindeboom
- Department of Radiology, NUTRIM school for Nutrition and Translational Research in Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands.,Department Human Biology and Human Movement Sciences, NUTRIM school for Nutrition and Translational Research in Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yvonne M H Bruls
- Department of Radiology, NUTRIM school for Nutrition and Translational Research in Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands.,Department Human Biology and Human Movement Sciences, NUTRIM school for Nutrition and Translational Research in Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Petronella A van Ewijk
- Department of Radiology, NUTRIM school for Nutrition and Translational Research in Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Matthijs K C Hesselink
- Department Human Biology and Human Movement Sciences, NUTRIM school for Nutrition and Translational Research in Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joachim E Wildberger
- Department of Radiology, NUTRIM school for Nutrition and Translational Research in Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Patrick Schrauwen
- Department Human Biology and Human Movement Sciences, NUTRIM school for Nutrition and Translational Research in Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Radiology, NUTRIM school for Nutrition and Translational Research in Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands.,Department Human Biology and Human Movement Sciences, NUTRIM school for Nutrition and Translational Research in Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
41
|
Popadic Gacesa J, Schick F, Machann J, Grujic N. Intramyocellular lipids and their dynamics assessed by 1 H magnetic resonance spectroscopy. Clin Physiol Funct Imaging 2016; 37:558-566. [PMID: 26865009 DOI: 10.1111/cpf.12346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/26/2015] [Indexed: 12/15/2022]
Abstract
This report provides an overview on the present knowledge on intramyocellular lipids (IMCL) and their dynamics in the course of interventions with physical activity of variable type and intensity in different population groups, as accessible by examinations using non-invasive volume-selective 1 H magnetic resonance spectroscopy (1 H MRS). IMCL serve as energy source in skeletal muscle for fat oxidation in the mitochondria and became intensively studied after discovery of their relation with insulin sensitivity. While baseline levels of IMCL concentration have been shown to be mainly dependent on the metabolic status (insulin sensitivity), on the level of training and on fibre composition in the muscles, studies applying different physical activity protocols revealed the dynamic of their depletion and replenishment. From the findings in human studies, it can be concluded that IMCL levels are potentially useful markers for monitoring metabolic adaptation of skeletal muscle to sportive activities and training.
Collapse
Affiliation(s)
- J Popadic Gacesa
- Laboratory for Functional Diagnostics, Department of Physiology, Medical School, University of Novi Sad, Novi Sad, Serbia
| | - F Schick
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - J Machann
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Tübingen, Germany
| | - N Grujic
- Laboratory for Functional Diagnostics, Department of Physiology, Medical School, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
42
|
Schrauwen-Hinderling VB, Kooi ME, Schrauwen P. Mitochondrial Function and Diabetes: Consequences for Skeletal and Cardiac Muscle Metabolism. Antioxid Redox Signal 2016; 24:39-51. [PMID: 25808308 DOI: 10.1089/ars.2015.6291] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE An early hallmark in the development of type 2 diabetes is the resistance to the effect of insulin in skeletal muscle and in the heart. Since mitochondrial function was found to be diminished in patients with type 2 diabetes, it was suggested that this defect might be involved in the etiology of insulin resistance. Although several hypotheses were suggested, yet unclear is the mechanistic link between these two phenomena. RECENT ADVANCES Herein, we review the evidence for disturbances in mitochondrial function in skeletal muscle and the heart in the diabetic state. Also the mechanisms involved in improving mitochondrial function are considered and, whenever possible, human data is cited. CRITICAL ISSUES Reported evidence shows that interventions that improve skeletal muscle mitochondrial function also improve insulin sensitivity in humans. In the heart, available data from animal studies suggests that enhancement of mitochondrial function can reverse aging-induced changes in heart function, and can be protective against cardiomyopathy and heart failure. FUTURE DIRECTIONS Mitochondria and their functions can be targeted with the aim of improving skeletal muscle insulin sensitivity and cardiac function. However, human clinical intervention studies are needed to fully substantiate the potential of mitochondria as a target to prevent cardiometabolic disease.
Collapse
Affiliation(s)
- Vera B Schrauwen-Hinderling
- 1 Department of Radiology, Maastricht University Medical Center , Maastricht, The Netherlands .,2 Department of Human Biology, Maastricht University Medical Center , Maastricht, The Netherlands .,3 Department of NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center , Maastricht, The Netherlands
| | - Marianne Eline Kooi
- 1 Department of Radiology, Maastricht University Medical Center , Maastricht, The Netherlands .,3 Department of NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center , Maastricht, The Netherlands .,4 Department of CARIM School for Cardiovascular Diseases in Maastricht, Maastricht University Medical Center , Maastricht, The Netherlands
| | - Patrick Schrauwen
- 2 Department of Human Biology, Maastricht University Medical Center , Maastricht, The Netherlands .,3 Department of NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center , Maastricht, The Netherlands
| |
Collapse
|
43
|
Davies MN, Kjalarsdottir L, Thompson JW, Dubois LG, Stevens RD, Ilkayeva OR, Brosnan MJ, Rolph TP, Grimsrud PA, Muoio DM. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-Induced Lysine Acetylation of Mitochondrial Proteins. Cell Rep 2015; 14:243-54. [PMID: 26748706 DOI: 10.1016/j.celrep.2015.12.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/26/2015] [Accepted: 12/03/2015] [Indexed: 11/25/2022] Open
Abstract
Lysine acetylation (AcK), a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis, we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT), an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK.
Collapse
Affiliation(s)
- Michael N Davies
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Lilja Kjalarsdottir
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - J Will Thompson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27701, USA; Proteomics and Metabolomics Shared Resource, Duke University, Durham, NC 27701, USA
| | - Laura G Dubois
- Proteomics and Metabolomics Shared Resource, Duke University, Durham, NC 27701, USA
| | - Robert D Stevens
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Olga R Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - M Julia Brosnan
- CV and Metabolic Diseases (CVMED), a Pfizer Research Unit, Cambridge, MA 02139, USA
| | - Timothy P Rolph
- CV and Metabolic Diseases (CVMED), a Pfizer Research Unit, Cambridge, MA 02139, USA
| | - Paul A Grimsrud
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Deborah M Muoio
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA; Department of Medicine, Duke University, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27701, USA.
| |
Collapse
|
44
|
Iozzo P. Metabolic imaging in obesity: underlying mechanisms and consequences in the whole body. Ann N Y Acad Sci 2015; 1353:21-40. [PMID: 26335600 DOI: 10.1111/nyas.12880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Obesity is a phenotype resulting from a series of causative factors with a variable risk of complications. Etiologic diversity requires personalized prevention and treatment. Imaging procedures offer the potential to investigate the interplay between organs and pathways underlying energy intake and consumption in an integrated manner, and may open the perspective to classify and treat obesity according to causative mechanisms. This review illustrates the contribution provided by imaging studies to the understanding of human obesity, starting with the regulation of food intake and intestinal metabolism, followed by the role of adipose tissue in storing, releasing, and utilizing substrates, including the interconversion of white and brown fat, and concluding with the examination of imaging risk indicators related to complications, including type 2 diabetes, liver pathologies, cardiac and kidney diseases, and sleep disorders. The imaging modalities include (1) positron emission tomography to quantify organ-specific perfusion and substrate metabolism; (2) computed tomography to assess tissue density as an indicator of fat content and browning/ whitening; (3) ultrasounds to examine liver steatosis, stiffness, and inflammation; and (4) magnetic resonance techniques to assess blood oxygenation levels in the brain, liver stiffness, and metabolite contents (triglycerides, fatty acids, glucose, phosphocreatine, ATP, and acetylcarnitine) in a variety of organs.
Collapse
Affiliation(s)
- Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy.,The Turku PET Centre, University of Turku, Turku, Finland
| |
Collapse
|
45
|
Seiler SE, Koves TR, Gooding JR, Wong KE, Stevens RD, Ilkayeva OR, Wittmann AH, DeBalsi KL, Davies MN, Lindeboom L, Schrauwen P, Schrauwen-Hinderling VB, Muoio DM. Carnitine Acetyltransferase Mitigates Metabolic Inertia and Muscle Fatigue during Exercise. Cell Metab 2015; 22:65-76. [PMID: 26154055 PMCID: PMC4754082 DOI: 10.1016/j.cmet.2015.06.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/26/2015] [Accepted: 06/02/2015] [Indexed: 01/08/2023]
Abstract
Acylcarnitine metabolites have gained attention as biomarkers of nutrient stress, but their physiological relevance and metabolic purpose remain poorly understood. Short-chain carnitine conjugates, including acetylcarnitine, derive from their corresponding acyl-CoA precursors via the action of carnitine acetyltransferase (CrAT), a bidirectional mitochondrial matrix enzyme. We show here that contractile activity reverses acetylcarnitine flux in muscle, from net production and efflux at rest to net uptake and consumption during exercise. Disruption of this switch in mice with muscle-specific CrAT deficiency resulted in acetyl-CoA deficit, perturbed energy charge, and diminished exercise tolerance, whereas acetylcarnitine supplementation produced opposite outcomes in a CrAT-dependent manner. Likewise, in exercise-trained compared to untrained humans, post-exercise phosphocreatine recovery rates were positively associated with CrAT activity and coincided with dramatic shifts in muscle acetylcarnitine dynamics. These findings show acetylcarnitine serves as a critical acetyl buffer for working muscles and provide insight into potential therapeutic strategies for combatting exercise intolerance.
Collapse
Affiliation(s)
- Sarah E Seiler
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27704, USA
| | - Timothy R Koves
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC 27704, USA; Division of Geriatrics, Duke University, Durham, NC 27704, USA
| | - Jessica R Gooding
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC 27704, USA
| | - Kari E Wong
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC 27704, USA
| | - Robert D Stevens
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC 27704, USA
| | - Olga R Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC 27704, USA
| | - April H Wittmann
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC 27704, USA
| | - Karen L DeBalsi
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27704, USA
| | - Michael N Davies
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC 27704, USA
| | - Lucas Lindeboom
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands; Department of Radiology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Patrick Schrauwen
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Radiology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Deborah M Muoio
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27704, USA; Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC 27704, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, NC 27704, USA.
| |
Collapse
|
46
|
Muoio DM. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell 2015; 159:1253-62. [PMID: 25480291 DOI: 10.1016/j.cell.2014.11.034] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Indexed: 12/18/2022]
Abstract
Normal energy metabolism is characterized by periodic shifts in glucose and fat oxidation, as the mitochondrial machinery responsible for carbon combustion switches freely between alternative fuels according to physiological and nutritional circumstances. These transitions in fuel choice are orchestrated by an intricate network of metabolic and cell signaling events that enable exquisite crosstalk and cooperation between competing substrates to maintain energy and glucose homeostasis. By contrast, obesity-related cardiometabolic diseases are increasingly recognized as disorders of metabolic inflexibility, in which nutrient overload and heightened substrate competition result in mitochondrial indecision, impaired fuel switching, and energy dysregulation. This Perspective offers a speculative view on the molecular origins and pathophysiological consequences of metabolic inflexibility.
Collapse
Affiliation(s)
- Deborah M Muoio
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|