1
|
Bohacova P, Terekhova M, Tsurinov P, Mullins R, Husarcikova K, Shchukina I, Antonova AU, Echalar B, Kossl J, Saidu A, Francis T, Mannie C, Arthur L, Harridge SDR, Kreisel D, Mudd PA, Taylor AM, McNamara CA, Cella M, Puram SV, van den Broek T, van Wijk F, Eghtesady P, Artyomov MN. Multidimensional profiling of human T cells reveals high CD38 expression, marking recent thymic emigrants and age-related naive T cell remodeling. Immunity 2024; 57:2362-2379.e10. [PMID: 39321807 DOI: 10.1016/j.immuni.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/21/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024]
Abstract
Thymic involution is a key factor in human immune aging, leading to reduced thymic output and a decline in recent thymic emigrant (RTE) naive T cells in circulation. Currently, the precise definition of human RTEs and their corresponding cell surface markers lacks clarity. Analysis of single-cell RNA-seq/ATAC-seq data distinguished RTEs by the expression of SOX4, IKZF2, and TOX and CD38 protein, whereby surface CD38hi expression universally identified CD8+ and CD4+ RTEs. We further determined the dynamics of RTEs and mature cells in a cohort of 158 individuals, including age-associated transcriptional reprogramming and shifts in cytokine production. Spectral cytometry profiling revealed two axes of aging common to naive CD8+ and CD4+ T cells: (1) a decrease in CD38++ cells (RTEs) and (2) an increase in CXCR3hi cells. Identification of RTEs enables direct assessment of thymic health. Furthermore, resolving the dynamics of naive T cell remodeling yields insight into vaccination and infection responsiveness throughout aging.
Collapse
Affiliation(s)
- Pavla Bohacova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina Terekhova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Riley Mullins
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kamila Husarcikova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alina Ulezko Antonova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Barbora Echalar
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jan Kossl
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adam Saidu
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas Francis
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Chelsea Mannie
- Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura Arthur
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephen D R Harridge
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Daniel Kreisel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip A Mudd
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Angela M Taylor
- Department of Medicine, Cardiovascular Division, University of Virginia, Charlottesville, VA 22903, USA
| | - Coleen A McNamara
- Department of Medicine, Cardiovascular Division, University of Virginia, Charlottesville, VA 22903, USA; Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22903, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sidharth V Puram
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Rob Ebert and Greg Stubblefield Head and Neck Tumor Center at Siteman Cancer Center, St. Louis, MO 63110, USA
| | - Theo van den Broek
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht 3584CX, the Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht 3584CX, the Netherlands
| | - Pirooz Eghtesady
- Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Nguyen AA, Platt CD. Flow Cytometry-based Immune Phenotyping of T and B Lymphocytes in the Evaluation of Immunodeficiency and Immune Dysregulation. Clin Lab Med 2024; 44:479-493. [PMID: 39089753 DOI: 10.1016/j.cll.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
There are approximately 500 congenital disorders that impair immune cell development and/or function. Patients with these disorders may present with a wide range of symptoms, including increased susceptibility to infection, autoimmunity, autoinflammation, lymphoproliferation, and/or atopy. Flow cytometry-based immune phenotyping of T and B lymphocytes plays an essential role in the evaluation of patients with these presentations. In this review, we describe the clinical utility of flow cytometry as part of a comprehensive evaluation of immune function and how this testing may be used as a diagnostic tool to identify underlying aberrant immune pathways, monitor disease activity, and assess infection risk.
Collapse
Affiliation(s)
- Alan A Nguyen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Fegan Building 6th Floor, Boston, MA 02115, USA
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, 1 Blackfan Circle, Karp Building 10th Floor, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Rantanen R, Honkila M, Kämä HR, Pokka T, Pihkala J, Rahkonen O, Mattila I, Renko M, Helminen M, Heinonen S, Kekäläinen E, Kallio M, Ruuska TS. Pneumonia, wheezing and asthma were more common in children after thymectomy due to open-heart surgery. Acta Paediatr 2024; 113:1685-1693. [PMID: 38501561 DOI: 10.1111/apa.17205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
AIM This nationwide study evaluated the clinical impact that an early thymectomy, during congenital heart defect (CHD) surgery, had on the health of children and adolescents. METHODS The subjects were patients aged 1-15 years who had undergone CHD surgery at the University Children's Hospital, Helsinki, where all CHD surgery in Finland is carried out, from 2006 to 2018. The parents or the cases and population-based controls, matched for sex, age and hospital district, completed electronic questionnaires. We excluded those with low birth weights or a known immunodeficiency. Adjusted odds ratios (aOR) and 95% confidence intervals (CI) were calculated for prespecified outcomes. RESULTS We received responses relating to 260/450 (58%) cases and 1403/4500 (31%) controls and excluded 73 cases with persistent cardiac or respiratory complaints after surgery. The CHD group reported more recurrent hospitalisations due to infections (aOR 6.3, 95% CI 3.0-13) than the controls and more pneumonia episodes (aOR 3.5, 95% CI 2.1-5.6), asthma (aOR 2.5, 95% CI 1.5-4.1) and wheezing (aOR 2.1, 95% CI 1.5-2.9). CONCLUSION Hospitalisation due to infections, pneumonia, wheezing and asthma was more common in children after a thymectomy due to open-heart surgery than population-based controls, underlining the importance of immunological follow-ups.
Collapse
Affiliation(s)
- Rea Rantanen
- Department of Paediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
- Research Unit of Clinical Medicine and Medical Research Centre (MRC) Oulu, University of Oulu, Oulu, Finland
| | - Minna Honkila
- Department of Paediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
- Research Unit of Clinical Medicine and Medical Research Centre (MRC) Oulu, University of Oulu, Oulu, Finland
| | - Hanna-Riikka Kämä
- Research Unit of Clinical Medicine and Medical Research Centre (MRC) Oulu, University of Oulu, Oulu, Finland
| | - Tytti Pokka
- Department of Paediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
- Research Unit of Clinical Medicine and Medical Research Centre (MRC) Oulu, University of Oulu, Oulu, Finland
- Research Service Unit, Oulu University Hospital, Oulu, Finland
| | - Jaana Pihkala
- Department of Paediatric Cardiology, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Otto Rahkonen
- Department of Paediatric Cardiology, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ilkka Mattila
- Department of Paediatric Cardiac and Transplantation Surgery, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Marjo Renko
- University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Merja Helminen
- Department of Paediatrics, Tampere University Hospital, Tampere, Finland
| | - Santtu Heinonen
- New Children's Hospital, Paediatric Research Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- HUS Diagnostic Centre, Helsinki, Finland
| | - Merja Kallio
- Research Unit of Clinical Medicine and Medical Research Centre (MRC) Oulu, University of Oulu, Oulu, Finland
- Department of Paediatric Cardiology, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Terhi S Ruuska
- Department of Paediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
- Research Unit of Clinical Medicine and Medical Research Centre (MRC) Oulu, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
4
|
Hale LP, Macintyre AN, Bowles DE, Kwun J, Li J, Theriot B, Turek JW. Comprehensive Flow Cytometric, Immunohistologic, and Molecular Assessment of Thymus Function in Rhesus Macaques. Immunohorizons 2024; 8:500-510. [PMID: 39018546 PMCID: PMC11294275 DOI: 10.4049/immunohorizons.2300112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/19/2024] [Indexed: 07/19/2024] Open
Abstract
The critical importance of the thymus for generating new naive T cells that protect against novel infections and are tolerant to self-antigens has led to a recent revival of interest in monitoring thymic function in species other than humans and mice. Nonhuman primates such as rhesus macaques (Macaca mulatta) provide particularly useful animal models for translational research in immunology. In this study, we tested the performance of a 15-marker multicolor Ab panel for flow cytometric phenotyping of lymphocyte subsets directly from rhesus whole blood, with validation by thymectomy and T cell depletion. Immunohistochemical and multiplex RNA expression analysis of thymus tissue biopsies and molecular assays on PBMCs were used to further validate thymus function. Results identify Ab panels that can accurately classify rhesus naive T cells (CD3+CD45RA+CD197+ or CD3+CD28+CD95-) and recent thymic emigrants (CD8+CD28+CD95-CD103+CD197+) using just 100 µl of whole blood and commercially available fluorescent Abs. An immunohistochemical panel reactive with pan-cytokeratin (CK), CK14, CD3, Ki-67, CCL21, and TdT provides histologic evidence of thymopoiesis from formalin-fixed, paraffin-embedded thymus tissues. Identification of mRNAs characteristic of both functioning thymic epithelial cells and developing thymocytes and/or molecular detection of products of TCR gene rearrangement provide additional complementary methods to evaluate thymopoiesis, without requiring specific Abs. Combinations of multiparameter flow cytometry, immunohistochemistry, multiplex gene expression, and TCR excision circle assays can comprehensively evaluate thymus function in rhesus macaques while requiring only minimal amounts of peripheral blood or biopsied thymus tissue.
Collapse
Affiliation(s)
- Laura P. Hale
- Department of Pathology and the Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC
| | - Andrew N. Macintyre
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Dawn E. Bowles
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Jean Kwun
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Jie Li
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Barbara Theriot
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC
| | - Joseph W. Turek
- Department of Surgery, Duke University Medical Center, Durham, NC
| |
Collapse
|
5
|
Kesäläinen A, Rantanen R, Honkila M, Helminen M, Rahkonen O, Kallio M, Ruuska T, Kekäläinen E, Heinonen S. Effects of antibiotics, hospitalisation and surgical complications on self-reported immunological vulnerability following paediatric open-heart surgery and thymectomy: a single-centre retrospective cohort study. BMJ Paediatr Open 2024; 8:e002651. [PMID: 38830724 PMCID: PMC11149146 DOI: 10.1136/bmjpo-2024-002651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Partial or complete thymectomy is routinely performed in paediatric open-heart surgeries when treating congenital heart defects. Whether or not thymectomised children require systematic immunological monitoring later in life is unknown. The objective of this study was to investigate the effects of preoperatively and postoperatively used antibiotics, hospitalisation and surgical complications on self-reported immunological vulnerability in paediatric patients with early thymectomy to better recognise the patients who could benefit from immunological follow-up in the future. METHODS We conducted a retrospective cohort study, including 98 children and adolescents aged 1-15 years, who had undergone an open-heart surgery and thymectomy in infancy and who had previously answered a survey regarding different immune-mediated symptoms and diagnoses. We performed a comprehensive chart review of preoperative and postoperative factors from 1 year preceding and 1 year following the open-heart surgery and compared the participants who had self-reported symptoms of immunological vulnerability to those who had not. RESULTS The median age at primary open-heart surgery and thymectomy was 19.5 days in the overall study population (60% men, n=56) and thymectomies mainly partial (80%, n=78). Broad-spectrum antibiotics were more frequently used preoperatively in participants with self-reported immunological vulnerability (OR=3.05; 95% CI 1.01 to 9.23). This group also had greater overall use of antibiotics postoperatively (OR=3.21; 95% CI 1.33 to 7.76). These findings were more pronounced in the subgroup of neonatally operated children. There was no statistically significant difference in the duration of intensive care unit stay, hospitalisation time, prevalence of severe infections, surgical complications or glucocorticoid use between the main study groups. CONCLUSION Antimicrobial agents were more frequently used both preoperatively and postoperatively in thymectomised children with self-reported immunological vulnerability after thymectomy. Substantial use of antimicrobial agents early in life should be considered a potential risk factor for increased immunological vulnerability when evaluating the significance of immune-mediated symptom occurrence in thymectomised paediatric patients.
Collapse
Affiliation(s)
- Anssi Kesäläinen
- Translational Immunology Research Program, University of Helsinki Faculty of Medicine, Helsinki, Uusimaa, Finland
| | - Rea Rantanen
- Department of Paediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Pohjanmaa, Finland
- Research Unit of Clinical Medicine and Medical Research Centre (MRC), Oulu University Faculty of Medicine, Oulu, Finland
| | - Minna Honkila
- Department of Paediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Pohjanmaa, Finland
- Research Unit of Clinical Medicine and Medical Research Centre (MRC), Oulu University Faculty of Medicine, Oulu, Finland
| | - Merja Helminen
- Department of Paediatrics, Tampere University Hospital, Tampere, Pirkanmaa, Finland
| | - Otto Rahkonen
- Department of Paediatric Cardiology, New Children's Hospital, Helsinki, Uusimaa, Finland
| | - Merja Kallio
- Research Unit of Clinical Medicine and Medical Research Centre (MRC), Oulu University Faculty of Medicine, Oulu, Finland
- Department of Paediatric Cardiology, New Children's Hospital, Helsinki, Uusimaa, Finland
| | - Terhi Ruuska
- Department of Paediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Pohjanmaa, Finland
- Research Unit of Clinical Medicine and Medical Research Centre (MRC), Oulu University Faculty of Medicine, Oulu, Finland
- University of Oulu Biocenter, Oulu, Finland
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, University of Helsinki Faculty of Medicine, Helsinki, Uusimaa, Finland
- HUS Diagnostic Center Clinical Microbiology, Helsinki University Central Hospital, Helsinki, Uusimaa, Finland
| | - Santtu Heinonen
- Paediatric Research Center, New Children's Hospital, Helsinki, Uusimaa, Finland
| |
Collapse
|
6
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Vicosa Bauermann F, Falkenberg S, Rudd JM, Peter CM, Merchioratto I, Ritchey JW, Gilliam J, Taylor J, Ma H, Maggioli MF. Immune Responses to Influenza D Virus in Calves Previously Infected with Bovine Viral Diarrhea Virus 2. Viruses 2023; 15:2442. [PMID: 38140683 PMCID: PMC10747992 DOI: 10.3390/v15122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) induces immunosuppression and thymus depletion in calves. This study explores the impact of prior BVDV-2 exposure on the subsequent immune response to influenza D virus (IDV). Twenty 3-week-old calves were divided into four groups. Calves in G1 and G3 were mock-treated on day 0, while calves in G2 and G4 received BVDV. Calves in G1 (mock) and G2 (BVDV) were necropsied on day 13 post-infection. IDV was inoculated on day 21 in G3 calves (mock + IDV) and G4 (BVDV + IDV) and necropsy was conducted on day 42. Pre-exposed BVDV calves exhibited prolonged and increased IDV shedding in nasal secretions. An approximate 50% reduction in the thymus was observed in acutely infected BVDV calves (G2) compared to controls (G1). On day 42, thymus depletion was observed in two calves in G4, while three had normal weight. BVDV-2-exposed calves had impaired CD8 T cell proliferation after IDV recall stimulation, and the α/β T cell impairment was particularly evident in those with persistent thymic atrophy. Conversely, no difference in antibody levels against IDV was noted. BVDV-induced thymus depletion varied from transient to persistent. Persistent thymus atrophy was correlated with weaker T cell proliferation, suggesting correlation between persistent thymus atrophy and impaired T cell immune response to subsequent infections.
Collapse
Affiliation(s)
- Fernando Vicosa Bauermann
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
| | - Shollie Falkenberg
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Animal Research Services, National Animal Disease Center, United States Department of Agriculture, Ames, IA 50010, USA
| | - Jennifer M. Rudd
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
| | - Cristina Mendes Peter
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
- Center for Medical Bioinformatics, Escola Paulista de Medicina, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04039-032, Brazil
| | - Ingryd Merchioratto
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Jerry W. Ritchey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
| | - John Gilliam
- Veterinary Clinical Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jared Taylor
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
| | - Hao Ma
- Animal Research Services, National Animal Disease Center, United States Department of Agriculture, Ames, IA 50010, USA
| | - Mayara Fernanda Maggioli
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
| |
Collapse
|
8
|
Abstract
Historically, the immune system was believed to develop along a linear axis of maturity from fetal life to adulthood. Now, it is clear that distinct layers of immune cells are generated from unique waves of hematopoietic progenitors during different windows of development. This model, known as the layered immune model, has provided a useful framework for understanding why distinct lineages of B cells and γδ T cells arise in succession and display unique functions in adulthood. However, the layered immune model has not been applied to CD8+ T cells, which are still often viewed as a uniform population of cells belonging to the same lineage, with functional differences between cells arising from environmental factors encountered during infection. Recent studies have challenged this idea, demonstrating that not all CD8+ T cells are created equally and that the functions of individual CD8+ T cells in adults are linked to when they were created in the host. In this review, we discuss the accumulating evidence suggesting there are distinct ontogenetic subpopulations of CD8+ T cells and propose that the layered immune model be extended to the CD8+ T cell compartment.
Collapse
Affiliation(s)
- Cybelle Tabilas
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
- Co-first author
| | - Norah L. Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
- Co-first author
| | - Brian D. Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Kinsella S, Evandy CA, Cooper K, Cardinale A, Iovino L, deRoos P, Hopwo KS, Smith CW, Granadier D, Sullivan LB, Velardi E, Dudakov JA. Damage-induced pyroptosis drives endog thymic regeneration via induction of Foxn1 by purinergic receptor activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524800. [PMID: 36711570 PMCID: PMC9882324 DOI: 10.1101/2023.01.19.524800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Endogenous thymic regeneration is a crucial process that allows for the renewal of immune competence following stress, infection or cytoreductive conditioning. Fully understanding the molecular mechanisms driving regeneration will uncover therapeutic targets to enhance regeneration. We previously demonstrated that high levels of homeostatic apoptosis suppress regeneration and that a reduction in the presence of damage-induced apoptotic thymocytes facilitates regeneration. Here we identified that cell-specific metabolic remodeling after ionizing radiation steers thymocytes towards mitochondrial-driven pyroptotic cell death. We further identified that a key damage-associated molecular pattern (DAMP), ATP, stimulates the cell surface purinergic receptor P2Y2 on cortical thymic epithelial cells (cTECs) acutely after damage, enhancing expression of Foxn1, the critical thymic transcription factor. Targeting the P2Y2 receptor with the agonist UTPγS promotes rapid regeneration of the thymus in vivo following acute damage. Together these data demonstrate that intrinsic metabolic regulation of pyruvate processing is a critical process driving thymus repair and identifies the P2Y2 receptor as a novel molecular therapeutic target to enhance thymus regeneration.
Collapse
Affiliation(s)
- Sinéad Kinsella
- Program in Immunology, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle WA, 98109, US
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle WA, 98109, US
| | - Cindy A Evandy
- Program in Immunology, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle WA, 98109, US
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle WA, 98109, US
| | - Kirsten Cooper
- Program in Immunology, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle WA, 98109, US
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle WA, 98109, US
| | - Antonella Cardinale
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, 00146, Italy
| | - Lorenzo Iovino
- Program in Immunology, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle WA, 98109, US
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle WA, 98109, US
| | - Paul deRoos
- Program in Immunology, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle WA, 98109, US
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle WA, 98109, US
| | - Kayla S Hopwo
- Program in Immunology, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle WA, 98109, US
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle WA, 98109, US
| | - Colton W Smith
- Program in Immunology, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle WA, 98109, US
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle WA, 98109, US
| | - David Granadier
- Program in Immunology, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle WA, 98109, US
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle WA, 98109, US
- Medical Scientist Training Program, University of Washington, Seattle WA, 98195, US
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle WA, 98109, US
| | - Enrico Velardi
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, 00146, Italy
| | - Jarrod A Dudakov
- Program in Immunology, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle WA, 98109, US
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle WA, 98109, US
- Department of Immunology, University of Washington, Seattle WA, 98195, US
| |
Collapse
|
10
|
The CXCR4-CXCL12 axis promotes T cell reconstitution via efficient hematopoietic immigration. J Genet Genomics 2022; 49:1138-1150. [PMID: 35483564 DOI: 10.1016/j.jgg.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 01/20/2023]
Abstract
T cells play a critical role in immunity to protect against pathogens and malignant cells. T cell immunodeficiency is detrimental, especially when T cell perturbation occurs during severe infection, irradiation, chemotherapy, and age-related thymic atrophy. Therefore, strategies that enhance T cell reconstitution provide considerable benefit and warrant intensive investigation. Here, we report the construction of a T cell ablation model in Tg(coro1a:DenNTR) zebrafish via metronidazole administration. The nascent T cells are mainly derived from the hematopoietic cells migrated from the kidney, the functional homolog of bone marrow and the complete recovery time is 6.5 days post-treatment. The cxcr4b gene is upregulated in the responsive hematopoietic cells. Functional interference of CXCR4 via both genetic and chemical manipulations does not greatly affect T lymphopoiesis, but delays T cell regeneration by disrupting hematopoietic migration. In contrast, cxcr4b accelerates the replenishment of hematopoietic cells in the thymus. Consistently, Cxcl12b, a ligand of Cxcr4, is increased in the thymic epithelial cells of the injured animals. Decreased or increased expression of Cxcl12b results in compromised or accelerated T cell recovery, respectively, similar to those observed with Cxcr4b. Taken together, our study reveals a role of CXCR4-CXCL12 signaling in promoting T cell recovery and provides a promising target for the treatment of immunodeficiency due to T cell injury.
Collapse
|
11
|
Baliu-Piqué M, Tesselaar K, Borghans JAM. Are homeostatic mechanisms aiding the reconstitution of the T-cell pool during lymphopenia in humans? Front Immunol 2022; 13:1059481. [PMID: 36483556 PMCID: PMC9723355 DOI: 10.3389/fimmu.2022.1059481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
A timely recovery of T-cell numbers following haematopoietic stem-cell transplantation (HSCT) is essential for preventing complications, such as increased risk of infection and disease relapse. In analogy to the occurrence of lymphopenia-induced proliferation in mice, T-cell dynamics in humans are thought to be homeostatically regulated in a cell density-dependent manner. The idea is that T cells divide faster and/or live longer when T-cell numbers are low, thereby helping the reconstitution of the T-cell pool. T-cell reconstitution after HSCT is, however, known to occur notoriously slowly. In fact, the evidence for the existence of homeostatic mechanisms in humans is quite ambiguous, since lymphopenia is often associated with infectious complications and immune activation, which confound the study of homeostatic regulation. This calls into question whether homeostatic mechanisms aid the reconstitution of the T-cell pool during lymphopenia in humans. Here we review the changes in T-cell dynamics in different situations of T-cell deficiency in humans, including the early development of the immune system after birth, healthy ageing, HIV infection, thymectomy and hematopoietic stem cell transplantation (HSCT). We discuss to what extent these changes in T-cell dynamics are a side-effect of increased immune activation during lymphopenia, and to what extent they truly reflect homeostatic mechanisms.
Collapse
Affiliation(s)
| | | | - José A. M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
12
|
Lagou MK, Anastasiadou DP, Karagiannis GS. A Proposed Link Between Acute Thymic Involution and Late Adverse Effects of Chemotherapy. Front Immunol 2022; 13:933547. [PMID: 35844592 PMCID: PMC9283860 DOI: 10.3389/fimmu.2022.933547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiologic data suggest that cancer survivors tend to develop a protuberant number of adverse late effects, including second primary malignancies (SPM), as a result of cytotoxic chemotherapy. Besides the genotoxic potential of these drugs that directly inflict mutational burden on genomic DNA, the precise mechanisms contributing to SPM development are poorly understood. Cancer is nowadays perceived as a complex process that goes beyond the concept of genetic disease and includes tumor cell interactions with complex stromal and immune cell microenvironments. The cancer immunoediting theory offers an explanation for the development of nascent neoplastic cells. Briefly, the theory suggests that newly emerging tumor cells are mostly eliminated by an effective tissue immunosurveillance, but certain tumor variants may occasionally escape innate and adaptive mechanisms of immunological destruction, entering an equilibrium phase, where immunologic tumor cell death "equals" new tumor cell birth. Subsequent microenvironmental pressures and accumulation of helpful mutations in certain variants may lead to escape from the equilibrium phase, and eventually cause an overt neoplasm. Cancer immunoediting functions as a dedicated sentinel under the auspice of a highly competent immune system. This perspective offers the fresh insight that chemotherapy-induced thymic involution, which is characterized by the extensive obliteration of the sensitive thymic epithelial cell (TEC) compartment, can cause long-term defects in thymopoiesis and in establishment of diverse T cell receptor repertoires and peripheral T cell pools of cancer survivors. Such delayed recovery of T cell adaptive immunity may result in prolonged hijacking of the cancer immunoediting mechanisms, and lead to development of persistent and mortal infections, inflammatory disorders, organ-specific autoimmunity lesions, and SPMs. Acknowledging that chemotherapy-induced thymic involution is a potential risk factor for the emergence of SPM demarcates new avenues for the rationalized development of pharmacologic interventions to promote thymic regeneration in patients receiving cytoreductive chemotherapies.
Collapse
Affiliation(s)
- Maria K. Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
| | - Dimitra P. Anastasiadou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
| | - George S. Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein Cancer Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
13
|
Dekker L, Sanders E, Lindemans CA, de Koning C, Nierkens S. Naive T Cells in Graft Versus Host Disease and Graft Versus Leukemia: Innocent or Guilty? Front Immunol 2022; 13:893545. [PMID: 35795679 PMCID: PMC9250980 DOI: 10.3389/fimmu.2022.893545] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
The outcome of allogeneic hematopoietic cell transplantation (allo-HCT) largely depends on the development and management of graft-versus-host disease (GvHD), infections, and the occurrence of relapse of malignancies. Recent studies showed a lower incidence of chronic GvHD and severe acute GvHD in patients receiving naive T cell depleted grafts compared to patients receiving complete T cell depleted grafts. On the other hand, the incidence of acute GvHD in patients receiving cord blood grafts containing only naive T cells is rather low, while potent graft-versus-leukemia (GvL) responses have been observed. These data suggest the significance of naive T cells as both drivers and regulators of allogeneic reactions. The naive T cell pool was previously thought to be a quiescent, homogenous pool of antigen-inexperienced cells. However, recent studies showed important differences in phenotype, differentiation status, location, and function within the naive T cell population. Therefore, the adequate recovery of these seemingly innocent T cells might be relevant in the imminent allogeneic reactions after allo-HCT. Here, an extensive review on naive T cells and their contribution to the development of GvHD and GvL responses after allo-HCT is provided. In addition, strategies specifically directed to stimulate adequate reconstitution of naive T cells while reducing the risk of GvHD are discussed. A better understanding of the relation between naive T cells and alloreactivity after allo-HCT could provide opportunities to improve GvHD prevention, while maintaining GvL effects to lower relapse risk.
Collapse
Affiliation(s)
- Linde Dekker
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Evy Sanders
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Coco de Koning
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
14
|
Hirai T, Yoshioka Y. Considerations of CD8+ T Cells for Optimized Vaccine Strategies Against Respiratory Viruses. Front Immunol 2022; 13:918611. [PMID: 35774782 PMCID: PMC9237416 DOI: 10.3389/fimmu.2022.918611] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The primary goal of vaccines that protect against respiratory viruses appears to be the induction of neutralizing antibodies for a long period. Although this goal need not be changed, recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have drawn strong attention to another arm of acquired immunity, CD8+ T cells, which are also called killer T cells. Recent evidence accumulated during the coronavirus disease 2019 (COVID-19) pandemic has revealed that even variants of SARS-CoV-2 that escaped from neutralizing-antibodies that were induced by either infection or vaccination could not escape from CD8+ T cell-mediated immunity. In addition, although traditional vaccine platforms, such as inactivated virus and subunit vaccines, are less efficient in inducing CD8+ T cells, newly introduced platforms for SARS-CoV-2, namely, mRNA and adenoviral vector vaccines, can induce strong CD8+ T cell-mediated immunity in addition to inducing neutralizing antibodies. However, CD8+ T cells function locally and need to be at the site of infection to control it. To fully utilize the protective performance of CD8+ T cells, it would be insufficient to induce only memory cells circulating in blood, using injectable vaccines; mucosal immunization could be required to set up CD8+ T cells for the optimal protection. CD8+ T cells might also contribute to the pathology of the infection, change their function with age and respond differently to booster vaccines in comparison with antibodies. Herein, we overview cutting-edge ideas on CD8+ T cell-mediated immunity that can enable the rational design of vaccines for respiratory viruses.
Collapse
Affiliation(s)
- Toshiro Hirai
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- *Correspondence: Toshiro Hirai,
| | - Yasuo Yoshioka
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Japan
| |
Collapse
|
15
|
Leone DM, Park HJ, Unlu S, Gurvitz M, Kang I, Elder RW. T Cell Response to Influenza Vaccination Remains Intact in Adults with Congenital Heart Disease Who Underwent Early Thymectomy. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2022; 8:100359. [PMID: 35600131 PMCID: PMC9122016 DOI: 10.1016/j.ijcchd.2022.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Introduction T cells developed in the thymus play a key role in vaccine immunity. Thymectomy occurs during infant congenital heart surgery and results in an altered T cell distribution. We investigated if adults with congenital heart disease (ACHD) who underwent early thymectomy have a diminished response to influenza vaccination. Methods Blood samples from ACHD with early thymectomy ≤ 1 year of age (ACHD-ET; n = 12), no thymectomy (ACHD-NT; n = 8), and healthy controls (HC; n = 14) were collected prior to and 4 weeks after influenza vaccination. Flow cytometric analysis of T cell subsets and vaccine-specific cytokine expressing CD4+ T cells as well as hemagglutination inhibition (HI) assays were completed. Results The mean age of the cohort was 34 ± 10.6 years and similar in all groups. The mean frequencies of naïve CD4+ and CD8+ T cells were lower in ACHD-ET than in HC (32.7% vs. 46.5%, p = 0.027 and 37.2% vs. 57.4%, p = 0.032, respectively). There was a rise in the frequency of memory CD4+ and CD8+ T cells in the ACHD-ET group. The ACHD-NT had no statistical difference from either group. The frequencies of influenza-specific memory CD4+ T cells expressing IFN-γ and TNF-α were increased after vaccination across all groups (p < 0.05). Conclusions ACHD-ET have fewer naïve T cells, suggesting immunosenescence. Despite this, they show an adequate T Cell response to vaccination in young adulthood. Our findings support routine vaccination is effective in this population, but research into older ACHD is necessary.
Collapse
Affiliation(s)
- David M Leone
- Section of Pediatric Cardiology, Yale School of Medicine, New Haven, CT
| | - Hong-Jai Park
- Section of Rheumatology, Allergy & Immunology, Yale School of Medicine, New Haven, CT
| | - Serhan Unlu
- Section of Rheumatology, Allergy & Immunology, Yale School of Medicine, New Haven, CT
| | - Michelle Gurvitz
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
| | - Insoo Kang
- Section of Rheumatology, Allergy & Immunology, Yale School of Medicine, New Haven, CT
| | - Robert W Elder
- Section of Pediatric Cardiology, Yale School of Medicine, New Haven, CT
- Adult Congenital Heart Program, Yale School of Medicine, New Haven, CT
| |
Collapse
|
16
|
Dessalles R, Pan Y, Xia M, Maestrini D, D'Orsogna MR, Chou T. How Naive T-Cell Clone Counts Are Shaped By Heterogeneous Thymic Output and Homeostatic Proliferation. Front Immunol 2022; 12:735135. [PMID: 35250963 PMCID: PMC8891377 DOI: 10.3389/fimmu.2021.735135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
The specificity of T cells is that each T cell has only one T cell receptor (TCR). A T cell clone represents a collection of T cells with the same TCR sequence. Thus, the number of different T cell clones in an organism reflects the number of different T cell receptors (TCRs) that arise from recombination of the V(D)J gene segments during T cell development in the thymus. TCR diversity and more specifically, the clone abundance distribution, are important factors in immune functions. Specific recombination patterns occur more frequently than others while subsequent interactions between TCRs and self-antigens are known to trigger proliferation and sustain naive T cell survival. These processes are TCR-dependent, leading to clone-dependent thymic export and naive T cell proliferation rates. We describe the heterogeneous steady-state population of naive T cells (those that have not yet been antigenically triggered) by using a mean-field model of a regulated birth-death-immigration process. After accounting for random sampling, we investigate how TCR-dependent heterogeneities in immigration and proliferation rates affect the shape of clone abundance distributions (the number of different clones that are represented by a specific number of cells, or “clone counts”). By using reasonable physiological parameter values and fitting predicted clone counts to experimentally sampled clone abundances, we show that realistic levels of heterogeneity in immigration rates cause very little change to predicted clone-counts, but that modest heterogeneity in proliferation rates can generate the observed clone abundances. Our analysis provides constraints among physiological parameters that are necessary to yield predictions that qualitatively match the data. Assumptions of the model and potentially other important mechanistic factors are discussed.
Collapse
Affiliation(s)
- Renaud Dessalles
- Department of Computational Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| | - Yunbei Pan
- Department of Mathematics, California State University at Northridge, Los Angeles, CA, United States
| | - Mingtao Xia
- Department of Mathematics, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| | - Davide Maestrini
- Department of Computational Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| | - Maria R D'Orsogna
- Department of Computational Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA, United States.,Department of Mathematics, California State University at Northridge, Los Angeles, CA, United States
| | - Tom Chou
- Department of Computational Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA, United States.,Department of Mathematics, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
17
|
Immunopathogenesis of patients with COVID-19: from the perspective of immune system 'evolution' and 'revolution'. Expert Rev Mol Med 2022; 24:e19. [PMID: 35535759 PMCID: PMC9884756 DOI: 10.1017/erm.2022.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus 2 is sweeping the world, threatening millions of lives and drastically altering our ways of living. According to current studies, failure to either activate or eliminate inflammatory responses timely and properly at certain stages could result in the progression of the disease. In other words, robust immune responses to coronavirus disease 2019 (COVID-19) are critical. However, they do not theoretically present in some special groups of people, including the young, the aged, patients with autoimmunity or cancer. Differences also do occur between men and women. Our immune system evolves to ensure delicate coordination at different stages of life. The innate immune cells mainly consisted of myeloid lineage cells, including neutrophils, basophils, eosinophils, dendritic cells and mast cells; they possess phagocytic capacity to different degrees at different stages of life. They are firstly recruited upon infection and may activate the adaptive immunity when needed. The adaptive immune cells, on the other way, are comprised mainly of lymphoid lineages. As one grows up, the adaptive immunity matures and expands its memory repertoire, accompanied by an adjustment in quantity and quality. In this review, we would summarise and analyse the immunological characteristics of these groups from the perspective of the immune system 'evolution' as well as 'revolution' that has been studied and speculated so far, which would aid the comprehensive understanding of COVID-19 and personalised-treatment strategy.
Collapse
|
18
|
Ao YQ, Jiang JH, Gao J, Wang HK, Ding JY. Recent thymic emigrants as the bridge between thymoma and autoimmune diseases. Biochim Biophys Acta Rev Cancer 2022; 1877:188730. [DOI: 10.1016/j.bbcan.2022.188730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022]
|
19
|
Heikkilä N, Hetemäki I, Sormunen S, Isoniemi H, Kekäläinen E, Saramäki J, Arstila TP. Peripheral differentiation patterns of human T cells. Eur J Immunol 2022; 52:882-894. [PMID: 35307831 PMCID: PMC9313577 DOI: 10.1002/eji.202149465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/12/2022] [Accepted: 03/15/2022] [Indexed: 11/08/2022]
Abstract
Long-term T-cell memory is dependent on the maintenance of memory T cells in the lymphoid tissues, and at the surface interfaces that provide entry routes for pathogens. However, much of the current information on human T-cell memory is based on analyzing circulating T cells. Here, we have studied the distribution and age-related changes of memory T-cell subsets in samples from blood, mesenteric LNs, spleen, and ileum, obtained from donors ranging in age from 5 days to 67 years of age. Our data show that the main reservoir of polyclonal naive cells is found in the LNs, and the resting memory subsets capable of self-renewal are also prominent there. In contrast, nondividing but functionally active memory subsets dominate the spleen, and especially the ileum. In general, the replacement of naive cells with memory subsets continues throughout our period of observation, with no apparent plateau. In conclusion, the analysis of lymphoid and nonlymphoid tissues reveals a dynamic pattern of changes distinct to each tissue, and with substantial differences between CD4+ and CD8+ compartments.
Collapse
Affiliation(s)
- Nelli Heikkilä
- Translational Immunology Research Program (TRIMM), Research Programs Unit (RPU), Department of Bacteriology and Immunology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Iivo Hetemäki
- Translational Immunology Research Program (TRIMM), Research Programs Unit (RPU), Department of Bacteriology and Immunology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Silja Sormunen
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Helena Isoniemi
- Division of Transplantation and Liver Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Eliisa Kekäläinen
- Translational Immunology Research Program (TRIMM), Research Programs Unit (RPU), Department of Bacteriology and Immunology, Medicum, Faculty of Medicine, HUSLAB Clinical Microbiology, University of Helsinki, and Helsinki University Central Hospital, Helsinki, Finland
| | - Jari Saramäki
- Department of Computer Science, Aalto University, Espoo, Finland
| | - T Petteri Arstila
- Translational Immunology Research Program (TRIMM), Research Programs Unit (RPU), Department of Bacteriology and Immunology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Sandgaard KS, Gkouleli T, Attenborough T, Adams S, Gibbons D, Holm M, Eisen S, Baxendale H, De Rossi A, Pahwa S, Chain B, Gkazi AS, Klein N. The importance of taking ART appropriately in children and adolescents with HIV-1 to reach the highest capacity of immune function later in life. Front Immunol 2022; 13:860316. [PMID: 35967315 PMCID: PMC9364750 DOI: 10.3389/fimmu.2022.860316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Current antiretroviral therapy (ART) guidelines recommend treating all children with HIV-1 infection. This has changed from the broader use of ART to treat children to improve morbidity and minimise mortality. However, prior to current recommendations, not everyone with HIV-1 received timely treatment. What happens to the paediatric immune system when HIV-1 replication is not appropriately supressed remains unclear. 11 samples from adolescents with HIV-1 on ART and uninfected controls in the UK, aged 12-25 years, were examined; overall, adolescents with CD4+ counts > 500/μl and a viral load < 50 copies/ml were compared with adolescents with CD4+ counts < 500/μl and a viral load > 50 copies/ml at time of sampling. Measurements of thymic output were combined with high throughput next generation sequencing and bioinformatics to systematically organize CD4+ and CD8+ T cell receptor (TCR) repertoires. TCR repertoire diversity, clonal expansions, TCR sequence sharing, and formation of TCR clusters in HIV-1 infected adolescents with successful HIV-1 suppression were compared to adolescents with ineffective HIV-1 suppression. Thymic output and CD4+ T cell numbers were decreased in HIV-1 infected adolescents with poor HIV-1 suppression. A strong homeostatic TCR response, driven by the decreased CD4+ T cell compartment and reduced thymic output was observed in the virally uncontrolled HIV-1-infected adolescents. Formation of abundant robust TCR clusters and structurally related TCRs were found in the adolescents with effective HIV-1 suppression. Numerous CD4+ T cell numbers in the virally controlled adolescents emphasize the importance of high thymic output and formation of robust TCR clusters in the maintenance of HIV-1 suppression. While the profound capacity for immune recovery in children may allow better opportunity to deal with immunological stress, when ART is taken appropriately, this study demonstrates new insights into the unique paediatric immune system and the immunological changes when HIV-1 replication is ongoing.
Collapse
Affiliation(s)
- Katrine Schou Sandgaard
- Infection, Immunity and Inflammation, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Triantafylia Gkouleli
- Infection, Immunity and Inflammation, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom.,University College London (UCL) Zayed Centre for Research into Rare Disease in Children, London, United Kingdom
| | - Teresa Attenborough
- Infection, Immunity and Inflammation, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Stuart Adams
- Genetics and Rare Diseases, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Deena Gibbons
- Peter Gorer Department of Immunobiology, Kings College London, London, United Kingdom
| | - Mette Holm
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Sarah Eisen
- Tropical Diseases, University College London Hospital, London, United Kingdom
| | - Helen Baxendale
- Clinical Immunology Department, Royal Papworth Hospital, Cambridge, United Kingdom
| | - Anita De Rossi
- Department of Mother and Child Health, University of Padova, Padova, Italy
| | - Savita Pahwa
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - Benny Chain
- University College London (UCL) Division of Infection and Immunity, University College London (UCL) Cruciform Building, London, United Kingdom
| | - Athina S Gkazi
- Genetics and Rare Diseases, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Nigel Klein
- Infection, Immunity and Inflammation, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
21
|
Cavalcanti NV, Palmeira P, Jatene MB, de Barros Dorna M, Carneiro-Sampaio M. Early Thymectomy Is Associated With Long-Term Impairment of the Immune System: A Systematic Review. Front Immunol 2021; 12:774780. [PMID: 34899730 PMCID: PMC8656688 DOI: 10.3389/fimmu.2021.774780] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Aims Congenital heart diseases (CHDs) are diagnosed in approximately 9 in 1,000 newborns, and early cardiac corrective surgery often requires partial or complete thymectomy. As the long-term effect of early thymectomy on the subsequent development of the immune system in humans has not been completely elucidated, the present study aimed to evaluate the effects of thymus removal on the functional capacity of the immune system after different periods. Methods A systematic review of the literature was performed using MEDLINE, EMBASE, LILACS and Scopus. The inclusion criteria were original studies that analyzed any component of the immune system in patients with CHD who had undergone thymectomy during cardiac surgery in the first years of life. The results were evaluated for the quality of evidence. Results Twenty-three studies were selected and showed that patients who underwent a thymectomy in the first years of life tended to exhibit important alterations in the T cell compartment, such as fewer total T cells, CD4+, CD8+, naïve and CD31+ T cells, lower TRECs, decreased diversity of the TCR repertoire and higher peripheral proliferation (increased Ki-67 expression) than controls. However, the numbers of memory T cells and Treg cells differed across the selected studies. Conclusions Early thymectomy, either partial or complete, may be associated with a reduction in many T cell subpopulations and TCR diversity, and these alterations may persist during long-term follow-up. Alternative solutions should be studied, either in the operative technique with partial preservation of the thymus or through the autograft of fragments of the gland. Systematic Review Registration Prospero [157188].
Collapse
Affiliation(s)
- Nara Vasconcelos Cavalcanti
- Children's Hospital, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Patrícia Palmeira
- Laboratory of Clinical Investigation LIM-36, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Marcelo Biscegli Jatene
- Pediatric Cardiovascular Surgery Department, Heart Institute, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Mayra de Barros Dorna
- Children's Hospital, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Magda Carneiro-Sampaio
- Children's Hospital, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil.,Laboratory of Clinical Investigation LIM-36, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| |
Collapse
|
22
|
Cardinale A, De Luca CD, Locatelli F, Velardi E. Thymic Function and T-Cell Receptor Repertoire Diversity: Implications for Patient Response to Checkpoint Blockade Immunotherapy. Front Immunol 2021; 12:752042. [PMID: 34899700 PMCID: PMC8652142 DOI: 10.3389/fimmu.2021.752042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/05/2021] [Indexed: 01/05/2023] Open
Abstract
The capacity of T cells to recognize and mount an immune response against tumor antigens depends on the large diversity of the T-cell receptor (TCR) repertoire generated in the thymus during the process of T-cell development. However, this process is dramatically impaired by immunological insults, such as that caused by cytoreductive cancer therapies and infections, and by the physiological decline of thymic function with age. Defective thymic function and a skewed TCR repertoire can have significant clinical consequences. The presence of an adequate pool of T cells capable of recognizing specific tumor antigens is a prerequisite for the success of cancer immunotherapy using checkpoint blockade therapy. However, while this approach has improved the chances of survival of patients with different types of cancer, a large proportion of them do not respond. The limited response rate to checkpoint blockade therapy may be linked to a suboptimal TCR repertoire in cancer patients prior to therapy. Here, we focus on the role of the thymus in shaping the T-cell pool in health and disease, discuss how the TCR repertoire influences patients’ response to checkpoint blockade therapy and highlight approaches able to manipulate thymic function to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Antonella Cardinale
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | | | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Enrico Velardi
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
23
|
Wienecke LM, Cohen S, Bauersachs J, Mebazaa A, Chousterman BG. Immunity and inflammation: the neglected key players in congenital heart disease? Heart Fail Rev 2021; 27:1957-1971. [PMID: 34855062 PMCID: PMC8636791 DOI: 10.1007/s10741-021-10187-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/23/2022]
Abstract
Although more than 90% of children born with congenital heart disease (CHD) survive into adulthood, patients face significantly higher and premature morbidity and mortality. Heart failure as well as non-cardiac comorbidities represent a striking and life-limiting problem with need for new treatment options. Systemic chronic inflammation and immune activation have been identified as crucial drivers of disease causes and progression in various cardiovascular disorders and are promising therapeutic targets. Accumulating evidence indicates an inflammatory state and immune alterations in children and adults with CHD. In this review, we highlight the implications of chronic inflammation, immunity, and immune senescence in CHD. In this context, we summarize the impact of infant open-heart surgery with subsequent thymectomy on the immune system later in life and discuss the potential role of comorbidities and underlying genetic alterations. How an altered immunity and chronic inflammation in CHD influence patient outcomes facing SARS-CoV-2 infection is unclear, but requires special attention, as CHD could represent a population particularly at risk during the COVID-19 pandemic. Concluding remarks address possible clinical implications of immune changes in CHD and consider future immunomodulatory therapies.
Collapse
Affiliation(s)
- Laura M Wienecke
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30621, Hannover, Germany.
- Department of Anaesthesiology and Critical Care, Lariboisière University Hospital, DMU Parabol, AP-HP, Paris, France.
- Inserm U942 MASCOT, Université de Paris, Paris, France.
- Department of Cardiology, Angiology and Respiratory Medicine, Heidelberg University Hospital, Heidelberg, Germany.
| | - Sarah Cohen
- Congenital Heart Diseases Department, M3C Hospital Marie Lannelongue, Université Paris-Saclay, Plessis-Robinson, Paris, France
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30621, Hannover, Germany
| | - Alexandre Mebazaa
- Department of Anaesthesiology and Critical Care, Lariboisière University Hospital, DMU Parabol, AP-HP, Paris, France
- Inserm U942 MASCOT, Université de Paris, Paris, France
| | - Benjamin G Chousterman
- Department of Anaesthesiology and Critical Care, Lariboisière University Hospital, DMU Parabol, AP-HP, Paris, France
- Inserm U942 MASCOT, Université de Paris, Paris, France
| |
Collapse
|
24
|
van Aalderen MC, van Lier RAW, Hombrink P. How to Reliably Define Human CD8 + T-Cell Subsets: Markers Playing Tricks. Cold Spring Harb Perspect Biol 2021; 13:a037747. [PMID: 33782028 PMCID: PMC8559543 DOI: 10.1101/cshperspect.a037747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In recent years, our understanding about the functional complexity of CD8+ T-cell populations has increased tremendously. The immunology field is now facing challenges to translate these insights into phenotypic definitions that correlate reliably with distinct functional traits. This is key to adequately monitor and understand compound immune responses including vaccination and immunotherapy regimens. Here we will summarize our understanding of the current state in the human CD8+ T-cell subset characterization field. We will address how reliably the currently used cell surface markers are connected to differentiation status and function of particular subsets. By restricting ourselves to CD8+ αβ T cells, we will focus mostly on major histocompatibility complex (MHC) class I-restricted virus- and tumor-specific T cells. This comes with a major advantage as fluorescently labeled peptide-loaded MHC class I multimers have been widely used to identify and characterize these cells.
Collapse
Affiliation(s)
- Michiel C van Aalderen
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centre (AUMC), Amsterdam 1105 AZ, The Netherlands
| | - Rene A W van Lier
- Adaptive Immunity Laboratory and Landsteiner Laboratory of the AUMC at Sanquin Blood Supply Foundation, Amsterdam 1066 CX, The Netherlands
| | - Pleun Hombrink
- Adaptive Immunity Laboratory and Landsteiner Laboratory of the AUMC at Sanquin Blood Supply Foundation, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
25
|
Kinsella S, Evandy CA, Cooper K, Iovino L, deRoos PC, Hopwo KS, Granadier DW, Smith CW, Rafii S, Dudakov JA. Attenuation of apoptotic cell detection triggers thymic regeneration after damage. Cell Rep 2021; 37:109789. [PMID: 34610317 PMCID: PMC8627669 DOI: 10.1016/j.celrep.2021.109789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 07/02/2021] [Accepted: 09/10/2021] [Indexed: 01/21/2023] Open
Abstract
The thymus, which is the primary site of T cell development, is particularly sensitive to insult but also has a remarkable capacity for repair. However, the mechanisms orchestrating regeneration are poorly understood, and delayed repair is common after cytoreductive therapies. Here, we demonstrate a trigger of thymic regeneration, centered on detecting the loss of dying thymocytes that are abundant during steady-state T cell development. Specifically, apoptotic thymocytes suppressed production of the regenerative factors IL-23 and BMP4 via TAM receptor signaling and activation of the Rho-GTPase Rac1, the intracellular pattern recognition receptor NOD2, and micro-RNA-29c. However, after damage, when profound thymocyte depletion occurs, this TAM-Rac1-NOD2-miR29c pathway is attenuated, increasing production of IL-23 and BMP4. Notably, pharmacological inhibition of Rac1-GTPase enhanced thymic function after acute damage. These findings identify a complex trigger of tissue regeneration and offer a regenerative strategy for restoring immune competence in patients whose thymic function has been compromised.
Collapse
Affiliation(s)
- Sinéad Kinsella
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Cindy A Evandy
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kirsten Cooper
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lorenzo Iovino
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Paul C deRoos
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kayla S Hopwo
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - David W Granadier
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Colton W Smith
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Shahin Rafii
- Department of Genetic Medicine and Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10021, USA
| | - Jarrod A Dudakov
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
26
|
Sharma H, Moroni L. Recent Advancements in Regenerative Approaches for Thymus Rejuvenation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100543. [PMID: 34306981 PMCID: PMC8292900 DOI: 10.1002/advs.202100543] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/04/2021] [Indexed: 05/29/2023]
Abstract
The thymus plays a key role in adaptive immunity by generating a diverse population of T cells that defend the body against pathogens. Various factors from disease and toxic insults contribute to the degeneration of the thymus resulting in a fewer output of T cells. Consequently, the body is prone to a wide host of diseases and infections. In this review, first, the relevance of the thymus is discussed, followed by thymic embryological organogenesis and anatomy as well as the development and functionality of T cells. Attempts to regenerate the thymus include in vitro methods, such as forming thymic organoids aided by biofabrication techniques that are transplantable. Ex vivo methods that have shown promise in enhancing thymic regeneration are also discussed. Current regenerative technologies have not yet matched the complexity and functionality of the thymus. Therefore, emerging techniques that have shown promise and the challenges that lie ahead are explored.
Collapse
Affiliation(s)
- Himal Sharma
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityMaastricht6229 ERNetherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityMaastricht6229 ERNetherlands
| |
Collapse
|
27
|
The Presence of a Marked Imbalance Between Regulatory T Cells and Effector T Cells Reveals That Tolerance Mechanisms Could Be Compromised in Heart Transplant Children. Transplant Direct 2021; 7:e693. [PMID: 33928185 PMCID: PMC8078462 DOI: 10.1097/txd.0000000000001152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/19/2022] Open
Abstract
Regulatory T cells (Treg) are crucial for the induction and maintenance of graft tolerance. In pediatric heart transplant procedures, the thymus is routinely excised, removing the primary source of T-cell replenishment. Consequently, thymectomy joined to the effects of immunosuppression on the T-cell compartment may have a detrimental impact on Treg values, compromising the intrinsic tolerance mechanisms and the protective role of Treg preventing graft rejection in heart transplant children.
Collapse
|
28
|
Rispoli F, Valencic E, Girardelli M, Pin A, Tesser A, Piscianz E, Boz V, Faletra F, Severini GM, Taddio A, Tommasini A. Immunity and Genetics at the Revolving Doors of Diagnostics in Primary Immunodeficiencies. Diagnostics (Basel) 2021; 11:532. [PMID: 33809703 PMCID: PMC8002250 DOI: 10.3390/diagnostics11030532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/14/2022] Open
Abstract
Primary immunodeficiencies (PIDs) are a large and growing group of disorders commonly associated with recurrent infections. However, nowadays, we know that PIDs often carry with them consequences related to organ or hematologic autoimmunity, autoinflammation, and lymphoproliferation in addition to simple susceptibility to pathogens. Alongside this conceptual development, there has been technical advancement, given by the new but already established diagnostic possibilities offered by new genetic testing (e.g., next-generation sequencing). Nevertheless, there is also the need to understand the large number of gene variants detected with these powerful methods. That means advancing beyond genetic results and resorting to the clinical phenotype and to immunological or alternative molecular tests that allow us to prove the causative role of a genetic variant of uncertain significance and/or better define the underlying pathophysiological mechanism. Furthermore, because of the rapid availability of results, laboratory immunoassays are still critical to diagnosing many PIDs, even in screening settings. Fundamental is the integration between different specialties and the development of multidisciplinary and flexible diagnostic workflows. This paper aims to tell these evolving aspects of immunodeficiencies, which are summarized in five key messages, through introducing and exemplifying five clinical cases, focusing on diseases that could benefit targeted therapy.
Collapse
Affiliation(s)
- Francesco Rispoli
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.R.); (V.B.); (A.T.); (A.T.)
| | - Erica Valencic
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Martina Girardelli
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Alessia Pin
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Alessandra Tesser
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Elisa Piscianz
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Valentina Boz
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.R.); (V.B.); (A.T.); (A.T.)
| | - Flavio Faletra
- Department of Diagnostics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Giovanni Maria Severini
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Andrea Taddio
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.R.); (V.B.); (A.T.); (A.T.)
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Alberto Tommasini
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.R.); (V.B.); (A.T.); (A.T.)
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| |
Collapse
|
29
|
Popperud TH, Gul KA, Brunborg C, Olaussen RW, Abrahamsen TG, Osnes LT, Kerty E. Thymectomy in Juvenile Myasthenia Gravis Is Safe Regarding Long Term Immunological Effects. Front Neurol 2021; 12:596859. [PMID: 33716918 PMCID: PMC7947605 DOI: 10.3389/fneur.2021.596859] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
Thymectomy is an established treatment in adult MG and also recommended for the treatment of post-pubertal onset juvenile MG. Whether the youngest children should be thymectomized is still debated. Signs of premature aging of the immune system have been shown in studies on early perioperative thymectomy in children with congenital heart defect. In this retrospective cohort study the objective was to investigate the long-term effects of treatment related thymectomy on T cell subsets and T cell receptor rearrangement excision circles (TRECs) in peripheral blood of juvenile myasthenia gravis (MG) patients, as well as clinical occurrence of autoimmune disorders, malignancies and infectious diseases. Forty-seven patients with onset of myasthenia gravis before the age of 19 years were included; 32 (68.1%) had been thymectomized and 15 (31.8%) had not. They were studied at varying times after thymectomy (7–26 years). We found a significant lower number of naïve helper T cells (CD4+CD45RA+) with an increased proportion of memory helper T cells (CD4+CD45RO+), and a significant lower number of naïve cytotoxic T cells (CD8+CD27+CD28+) in the thymectomized patients. In addition they showed a significant reduction in the number of TRECs and proportion of recent thymic emigrants (RTE) compared to non-thymectomized patients. In none of them an increased frequency of malignancies or infections was found. Our findings indicate a premature aging of the immune system after thymectomy in juvenile MG, but associated clinical consequences could not be verified.
Collapse
Affiliation(s)
- Trine H Popperud
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kiran A Gul
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Pediatric Research Institute, Oslo University Hospital, Oslo, Norway
| | - Cathrine Brunborg
- Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | | | - Tore G Abrahamsen
- Division of Pediatric and Adolescent Medicine, Centre for Rare Disorders, Oslo University Hospital, Oslo, Norway
| | - Liv T Osnes
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Emila Kerty
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Granadier D, Iovino L, Kinsella S, Dudakov JA. Dynamics of thymus function and T cell receptor repertoire breadth in health and disease. Semin Immunopathol 2021; 43:119-134. [PMID: 33608819 PMCID: PMC7894242 DOI: 10.1007/s00281-021-00840-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
T cell recognition of unknown antigens relies on the tremendous diversity of the T cell receptor (TCR) repertoire; generation of which can only occur in the thymus. TCR repertoire breadth is thus critical for not only coordinating the adaptive response against pathogens but also for mounting a response against malignancies. However, thymic function is exquisitely sensitive to negative stimuli, which can come in the form of acute insult, such as that caused by stress, infection, or common cancer therapies; or chronic damage such as the progressive decline in thymic function with age. Whether it be prolonged T cell deficiency after hematopoietic cell transplantation (HCT) or constriction in the breadth of the peripheral TCR repertoire with age; these insults result in poor adaptive immune responses. In this review, we will discuss the importance of thymic function for generation of the TCR repertoire and how acute and chronic thymic damage influences immune health. We will also discuss methods that are used to measure thymic function in patients and strategies that have been developed to boost thymic function.
Collapse
Affiliation(s)
- David Granadier
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
- Department of Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Lorenzo Iovino
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sinéad Kinsella
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jarrod A Dudakov
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
31
|
Ayasoufi K, Pfaller CK, Evgin L, Khadka RH, Tritz ZP, Goddery EN, Fain CE, Yokanovich LT, Himes BT, Jin F, Zheng J, Schuelke MR, Hansen MJ, Tung W, Parney IF, Pease LR, Vile RG, Johnson AJ. Brain cancer induces systemic immunosuppression through release of non-steroid soluble mediators. Brain 2020; 143:3629-3652. [PMID: 33253355 PMCID: PMC7954397 DOI: 10.1093/brain/awaa343] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 01/09/2023] Open
Abstract
Immunosuppression of unknown aetiology is a hallmark feature of glioblastoma and is characterized by decreased CD4 T-cell counts and downregulation of major histocompatibility complex class II expression on peripheral blood monocytes in patients. This immunosuppression is a critical barrier to the successful development of immunotherapies for glioblastoma. We recapitulated the immunosuppression observed in glioblastoma patients in the C57BL/6 mouse and investigated the aetiology of low CD4 T-cell counts. We determined that thymic involution was a hallmark feature of immunosuppression in three distinct models of brain cancer, including mice harbouring GL261 glioma, B16 melanoma, and in a spontaneous model of diffuse intrinsic pontine glioma. In addition to thymic involution, we determined that tumour growth in the brain induced significant splenic involution, reductions in peripheral T cells, reduced MHC II expression on blood leucocytes, and a modest increase in bone marrow resident CD4 T cells. Using parabiosis we report that thymic involution, declines in peripheral T-cell counts, and reduced major histocompatibility complex class II expression levels were mediated through circulating blood-derived factors. Conversely, T-cell sequestration in the bone marrow was not governed through circulating factors. Serum isolated from glioma-bearing mice potently inhibited proliferation and functions of T cells both in vitro and in vivo. Interestingly, the factor responsible for immunosuppression in serum is non-steroidal and of high molecular weight. Through further analysis of neurological disease models, we determined that the immunosuppression was not unique to cancer itself, but rather occurs in response to brain injury. Non-cancerous acute neurological insults also induced significant thymic involution and rendered serum immunosuppressive. Both thymic involution and serum-derived immunosuppression were reversible upon clearance of brain insults. These findings demonstrate that brain cancers cause multifaceted immunosuppression and pinpoint circulating factors as a target of intervention to restore immunity.
Collapse
Affiliation(s)
| | - Christian K Pfaller
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
- Paul-Ehrlich-Institute, Division of Veterinary Medicine, Langen, Germany
| | - Laura Evgin
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
| | - Roman H Khadka
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Zachariah P Tritz
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Emma N Goddery
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Cori E Fain
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Lila T Yokanovich
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Benjamin T Himes
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Neurologic Surgery, Rochester, MN, USA
| | - Fang Jin
- Mayo Clinic Department of Immunology, Rochester, MN, USA
| | - Jiaying Zheng
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Matthew R Schuelke
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Immunology, Mayo Clinic Medical Scientist Training Program, Rochester, Minnesota, USA
| | | | - Wesley Tung
- Mayo Clinic Department of Immunology, Rochester, MN, USA
| | - Ian F Parney
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Neurologic Surgery, Rochester, MN, USA
| | - Larry R Pease
- Mayo Clinic Department of Immunology, Rochester, MN, USA
| | - Richard G Vile
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
| | - Aaron J Johnson
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
- Mayo Clinic Department of Neurology, Rochester, MN, USA
| |
Collapse
|
32
|
Bikhet M, Morsi M, Hara H, Rhodes LA, Carlo WF, Cleveland D, Cooper DK, Iwase H. The immune system in infants: Relevance to xenotransplantation. Pediatr Transplant 2020; 24:e13795. [PMID: 32845539 PMCID: PMC7606572 DOI: 10.1111/petr.13795] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
Despite the improvement in surgical interventions in the treatment of congenital heart disease, many life-threatening lesions (eg, hypoplastic left heart syndrome) ultimately require transplantation. However, there is a great limitation in the availability of deceased human cardiac donors of a suitable size. Hearts from genetically engineered pigs may provide an alternative source. The relatively immature immune system in infants (eg, absence of anti-carbohydrate antibodies, reduced complement activation, reduced innate immune cell activity) should minimize the risk of early antibody-mediated rejection of a pig graft. Additionally, recipient thymectomy, performed almost routinely as a preliminary to orthotopic heart transplantation in this age-group, impairs the T-cell response. Because of the increasing availability of genetically engineered pigs (eg, triple-knockout pigs that do not express any of the three known carbohydrate antigens against which humans have natural antibodies) and the ability to diagnose congenital heart disease during fetal life, cardiac xenotransplantation could be preplanned to be carried out soon after birth. Because of these several advantages, prolonged graft survival and even the induction of tolerance, for example, following donor-specific pig thymus transplantation, are more likely to be achieved in infants than in adults. In this review, we summarize the factors in the infant immune system that would be advantageous in the success of cardiac xenotransplantation in this age-group.
Collapse
Affiliation(s)
- Mohamed Bikhet
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Mahmoud Morsi
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Leslie A. Rhodes
- Division of Pediatric Cardiology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Waldemar F. Carlo
- Division of Pediatric Cardiology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David Cleveland
- Department of Pediatric Cardiovascular Surgery, Children’s Hospital of Alabama, Birmingham, AL, USA
| | - David K.C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
33
|
Interleukin-8 as a candidate for thymoma identification and recurrence surveillance. Nat Commun 2020; 11:4881. [PMID: 32985506 PMCID: PMC7522267 DOI: 10.1038/s41467-020-18697-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/04/2020] [Indexed: 01/09/2023] Open
Abstract
Thymoma is the most common tumor of the anterior mediastinum. Routine imaging methods such as computed tomography or magnetic resonance imaging often lead to misdiagnosis between thymoma and other thymic abnormalities. Therefore, urgently needed is to develop a new diagnostic strategy. Here we identify interleukin-8 (IL-8) as a biomarker for auxiliary diagnosis of thymoma. We find that IL-8 levels in naïve T cells are markedly elevated in patients with thymoma compared to those with other thymic tumors. IL-8 levels in naive T cells are significantly decreased after surgical resection in thymoma patients, and rise again when thymoma recurs. A receiver operating characteristic curve analysis shows that IL-8 evaluation performs well in thymoma identification, with high specificities and sensitivities. We also observe significant clinical relevance between IL-8 levels in naïve T cells and clinicopathological features. In conclusion, our study suggests that IL-8 is a biomarker for thymoma identification and recurrence surveillance. Imaging methods, such as CT or MRI, cannot provide accurate diagnosis between malignant thymomas and other thymic abnormalities. Here the authors show that the levels of IL-8 in circulating naive T cells are elevated in patients with thymoma compared with other thymic masses, proposing IL-8 as a candidate biomarker for thymoma diagnosis and recurrence surveillance.
Collapse
|
34
|
Kinsella S, Dudakov JA. When the Damage Is Done: Injury and Repair in Thymus Function. Front Immunol 2020; 11:1745. [PMID: 32903477 PMCID: PMC7435010 DOI: 10.3389/fimmu.2020.01745] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
Even though the thymus is exquisitely sensitive to acute insults like infection, shock, or common cancer therapies such as cytoreductive chemo- or radiation-therapy, it also has a remarkable capacity for repair. This phenomenon of endogenous thymic regeneration has been known for longer even than its primary function to generate T cells, however, the underlying mechanisms controlling the process have been largely unstudied. Although there is likely continual thymic involution and regeneration in response to stress and infection in otherwise healthy people, acute and profound thymic damage such as that caused by common cancer cytoreductive therapies or the conditioning regimes as part of hematopoietic cell transplantation (HCT), leads to prolonged T cell deficiency; precipitating high morbidity and mortality from opportunistic infections and may even facilitate cancer relapse. Furthermore, this capacity for regeneration declines with age as a function of thymic involution; which even at steady state leads to reduced capacity to respond to new pathogens, vaccines, and immunotherapy. Consequently, there is a real clinical need for strategies that can boost thymic function and enhance T cell immunity. One approach to the development of such therapies is to exploit the processes of endogenous thymic regeneration into novel pharmacologic strategies to boost T cell reconstitution in clinical settings of immune depletion such as HCT. In this review, we will highlight recent work that has revealed the mechanisms by which the thymus is capable of repairing itself and how this knowledge is being used to develop novel therapies to boost immune function.
Collapse
Affiliation(s)
- Sinéad Kinsella
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Jarrod A. Dudakov
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|
35
|
Davenport MP, Smith NL, Rudd BD. Building a T cell compartment: how immune cell development shapes function. Nat Rev Immunol 2020; 20:499-506. [PMID: 32493982 DOI: 10.1038/s41577-020-0332-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
We are just beginning to understand the diversity of the peripheral T cell compartment, which arises from the specialization of different T cell subsets and the plasticity of individual naive T cells to adopt different fates. Although the progeny of a single T cell can differentiate into many phenotypes following infection, individual T cells are biased towards particular phenotypes. These biases are typically ascribed to random factors that occur during and after antigenic stimulation. However, the T cell compartment does not remain static with age, and shifting immune challenges during ontogeny give rise to T cells with distinct functional properties. Here, we argue that the developmental history of naive T cells creates a 'hidden layer' of diversity that persists into adulthood. Insight into this diversity can provide a new perspective on immunity and immunotherapy across the lifespan.
Collapse
Affiliation(s)
- Miles P Davenport
- Kirby Institute for Infection and Immunity, University of New South Wales Australia, Sydney, New South Wales, Australia.
| | - Norah L Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
36
|
Helgeland H, Gabrielsen I, Akselsen H, Sundaram AYM, Flåm ST, Lie BA. Transcriptome profiling of human thymic CD4+ and CD8+ T cells compared to primary peripheral T cells. BMC Genomics 2020; 21:350. [PMID: 32393182 PMCID: PMC7216358 DOI: 10.1186/s12864-020-6755-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
Background The thymus is a highly specialized organ of the immune system where T cell precursors develop and differentiate into self-tolerant CD4+ or CD8+ T cells. No studies to date have investigated how the human transcriptome profiles differ, between T cells still residing in the thymus and T cells in the periphery. Results We have performed high-throughput RNA sequencing to characterize the transcriptomes of primary single positive (SP) CD4+ and CD8+ T cells from infant thymic tissue, as well as primary CD4+ and CD8+ T cells from infant and adult peripheral blood, to enable the comparisons across tissues and ages. In addition, we have assessed the expression of candidate genes related to autoimmune diseases in thymic CD4+ and CD8+ T cells. The thymic T cells showed the largest number of uniquely expressed genes, suggesting a more diverse transcription in thymic T cells. Comparing T cells of thymic and blood origin, revealed more differentially expressed genes, than between infant and adult blood. Functional enrichment analysis revealed an over-representation of genes involved in cell cycle and replication in thymic T cells, whereas infant blood T cells were dominated by immune related terms. Comparing adult and infant blood T cells, the former was enriched for inflammatory response, cytokine production and biological adhesion, while upregulated genes in infant blood T cells were associated with cell cycle, cell death and gene expression. Conclusion This study provides valuable insight into the transcriptomes of the human primary SP T cells still residing within the thymus, and offers a unique comparison to primary blood derived T cells. Interestingly, the majority of autoimmune disease associated genes were expressed in one or more T cell subset, however ~ 11% of these were not expressed in frequently studied adult peripheral blood.
Collapse
Affiliation(s)
- Hanna Helgeland
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0450, Oslo, Norway. .,Department of Radiation Biology, Oslo University Hospital, 0379, Oslo, Norway.
| | - Ingvild Gabrielsen
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0450, Oslo, Norway
| | - Helle Akselsen
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0450, Oslo, Norway
| | - Arvind Y M Sundaram
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0450, Oslo, Norway
| | - Siri Tennebø Flåm
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0450, Oslo, Norway
| | - Benedicte Alexandra Lie
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0450, Oslo, Norway.
| |
Collapse
|
37
|
Abstract
Thymus regenerative therapy implementation is severely obstructed by the limited number and expansion capacity in vitro of tissue-specific thymic epithelial stem cells (TESC). Current solutions are mostly based on growth factors that can drive differentiation of pluripotent stem cells toward tissue-specific TESC. Target-specific small chemical compounds represent an alternative solution that could induce and support the clonal expansion of TESC and reversibly block their differentiation into mature cells. These compounds could be used both in the composition of culture media designed for TESC expansion in vitro, and in drugs development for thymic regeneration in vivo. It should allow reaching the ultimate objective - autologous thymic tissue regeneration in paediatric patients who had their thymus removed in the course of cardiac surgery.
Collapse
|
38
|
Deya-Martinez A, Flinn AM, Gennery AR. Neonatal thymectomy in children-accelerating the immunologic clock? J Allergy Clin Immunol 2020; 146:236-243. [PMID: 32169378 DOI: 10.1016/j.jaci.2020.02.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/25/2020] [Accepted: 02/26/2020] [Indexed: 12/29/2022]
Abstract
The thymus is critical for central tolerance and diverse T-lymphocyte repertoire development, to provide lifelong defense against pathogens while maintaining self-tolerance. Peak thymic output occurs in utero, during infancy, and in early childhood, diminishing throughout life. Infants with congenital heart disease requiring sternotomy often undergo thymectomy to clear the surgical field. The long-term effects of early thymectomy are just being appreciated. Many patients remain asymptomatic despite immunologic findings mirroring those of immunosenescence. Few develop increased infection or lymphoreticular malignancy risk. When considering the effects of infant thymectomy, patients with partial DiGeorge syndrome or hypomorphic recombination-activating gene (RAG) mutations may be instructive. These patients are lymphocytopenic, with increased early-onset infection and autoimmunity risk that is not seen in most patients who underwent thymectomy during infancy. The thymic structure of patients with partial DiGeorge syndrome or hypomorphic RAG is abnormal, with disrupted architecture inclining to perturbation of central tolerance. Similar findings may be seen in patients with myasthenia gravis, although disrupted peripheral tolerance may play a greater role in autoimmunity development. In conclusion, thymectomy during infancy may increase future risk of infection or autoimmunity, with premature immunosenescence mediated through disruption of central and peripheral tolerance mechanisms initiated by early cessation or diminution of thymic output. Ideally, some thymic tissue should be preserved at the time of surgery.
Collapse
Affiliation(s)
- Angela Deya-Martinez
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain
| | - Aisling M Flinn
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Childrens' Hospital, Newcastle upon Tyne, United Kingdom
| | - Andrew R Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Childrens' Hospital, Newcastle upon Tyne, United Kingdom; Primary Immunodeficiency Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
39
|
Kared H, Tan SW, Lau MC, Chevrier M, Tan C, How W, Wong G, Strickland M, Malleret B, Amoah A, Pilipow K, Zanon V, Govern NM, Lum J, Chen JM, Lee B, Florian MC, Geiger H, Ginhoux F, Ruiz-Mateos E, Fulop T, Rajasuriar R, Kamarulzaman A, Ng TP, Lugli E, Larbi A. Immunological history governs human stem cell memory CD4 heterogeneity via the Wnt signaling pathway. Nat Commun 2020; 11:821. [PMID: 32041953 PMCID: PMC7010798 DOI: 10.1038/s41467-020-14442-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
The diversity of the naïve T cell repertoire drives the replenishment potential and capacity of memory T cells to respond to immune challenges. Attrition of the immune system is associated with an increased prevalence of pathologies in aged individuals, but whether stem cell memory T lymphocytes (TSCM) contribute to such attrition is still unclear. Using single cells RNA sequencing and high-dimensional flow cytometry, we demonstrate that TSCM heterogeneity results from differential engagement of Wnt signaling. In humans, aging is associated with the coupled loss of Wnt/β-catenin signature in CD4 TSCM and systemic increase in the levels of Dickkopf-related protein 1, a natural inhibitor of the Wnt/β-catenin pathway. Functional assays support recent thymic emigrants as the precursors of CD4 TSCM. Our data thus hint that reversing TSCM defects by metabolic targeting of the Wnt/β-catenin pathway may be a viable approach to restore and preserve immune homeostasis in the context of immunological history.
Collapse
Affiliation(s)
- Hassen Kared
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore.
| | - Shu Wen Tan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Mai Chan Lau
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Marion Chevrier
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Crystal Tan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Wilson How
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Glenn Wong
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Marie Strickland
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benoit Malleret
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Amanda Amoah
- Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Karolina Pilipow
- Humanitas Clinical and Research Center, Laboratory of Translational Immunology (LTI), Rozzano, Italy
| | - Veronica Zanon
- Humanitas Clinical and Research Center, Laboratory of Translational Immunology (LTI), Rozzano, Italy
| | - Naomi Mc Govern
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Jin Miao Chen
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | | | - Hartmut Geiger
- Institute of Molecular Medicine, University of Ulm, Ulm, Germany
- Experimental Hematology and Cancer Biology, CCHMC, Cincinnati, OH, USA
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Ezequiel Ruiz-Mateos
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Tamas Fulop
- Department of Medicine, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Reena Rajasuriar
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Adeeba Kamarulzaman
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tze Pin Ng
- Gerontology Research Programme and Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Enrico Lugli
- Humanitas Clinical and Research Center, Laboratory of Translational Immunology (LTI), Rozzano, Italy
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
- Department of Medicine, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada.
| |
Collapse
|
40
|
Abstract
Neonatal CD4+ and CD8+ T cells have historically been characterized as immature or defective. However, recent studies prompt a reinterpretation of the functions of neonatal T cells. Rather than a population of cells always falling short of expectations set by their adult counterparts, neonatal T cells are gaining recognition as a distinct population of lymphocytes well suited for the rapidly changing environment in early life. In this review, I will highlight new evidence indicating that neonatal T cells are not inert or less potent versions of adult T cells but instead are a broadly reactive layer of T cells poised to quickly develop into regulatory or effector cells, depending on the needs of the host. In this way, neonatal T cells are well adapted to provide fast-acting immune protection against foreign pathogens, while also sustaining tolerance to self-antigens.
Collapse
Affiliation(s)
- Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|
41
|
Sánchez-Martínez D, Baroni ML, Gutierrez-Agüera F, Roca-Ho H, Blanch-Lombarte O, González-García S, Torrebadell M, Junca J, Ramírez-Orellana M, Velasco-Hernández T, Bueno C, Fuster JL, Prado JG, Calvo J, Uzan B, Cools J, Camos M, Pflumio F, Toribio ML, Menéndez P. Fratricide-resistant CD1a-specific CAR T cells for the treatment of cortical T-cell acute lymphoblastic leukemia. Blood 2019; 133:2291-2304. [PMID: 30796021 PMCID: PMC6554538 DOI: 10.1182/blood-2018-10-882944] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/18/2019] [Indexed: 12/13/2022] Open
Abstract
Relapsed/refractory T-cell acute lymphoblastic leukemia (T-ALL) has a dismal outcome, and no effective targeted immunotherapies for T-ALL exist. The extension of chimeric antigen receptor (CAR) T cells (CARTs) to T-ALL remains challenging because the shared expression of target antigens between CARTs and T-ALL blasts leads to CART fratricide. CD1a is exclusively expressed in cortical T-ALL (coT-ALL), a major subset of T-ALL, and retained at relapse. This article reports that the expression of CD1a is mainly restricted to developing cortical thymocytes, and neither CD34+ progenitors nor T cells express CD1a during ontogeny, confining the risk of on-target/off-tumor toxicity. We thus developed and preclinically validated a CD1a-specific CAR with robust and specific cytotoxicity in vitro and antileukemic activity in vivo in xenograft models of coT-ALL, using both cell lines and coT-ALL patient-derived primary blasts. CD1a-CARTs are fratricide resistant, persist long term in vivo (retaining antileukemic activity in re-challenge experiments), and respond to viral antigens. Our data support the therapeutic and safe use of fratricide-resistant CD1a-CARTs for relapsed/refractory coT-ALL.
Collapse
Affiliation(s)
- Diego Sánchez-Martínez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Matteo L Baroni
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Francisco Gutierrez-Agüera
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Heleia Roca-Ho
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Oscar Blanch-Lombarte
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Montserrat Torrebadell
- Haematology Laboratory, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Junca
- Institut Catala d'Oncologia-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Manuel Ramírez-Orellana
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain
| | - Talía Velasco-Hernández
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - José Luís Fuster
- Sección de Oncohematología Pediátrica, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Julia G Prado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Julien Calvo
- Univerité Paris Diderot and Université Paris-Sud, Unité Mixte de Recherche 967, INSERM, U967, Fontenay-aux-Roses, France
| | - Benjamin Uzan
- Univerité Paris Diderot and Université Paris-Sud, Unité Mixte de Recherche 967, INSERM, U967, Fontenay-aux-Roses, France
| | - Jan Cools
- KU Center for Human Genetics and VIB Center for Cancer Biology, Leuven, Belgium
| | - Mireia Camos
- Haematology Laboratory, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Françoise Pflumio
- Univerité Paris Diderot and Université Paris-Sud, Unité Mixte de Recherche 967, INSERM, U967, Fontenay-aux-Roses, France
| | | | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomedica en Red-Oncología, Instituto de Salud Carlos III, Barcelona, Spain; and
- Instituciò Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
42
|
Affiliation(s)
- Amelia Evoli
- Institute of Neurology, Università Cattolica del Sacro Cuore, Roma, Italy
- Fondazione Policlinico Gemelli, IRCCS, Roma, Italy
| | - Elisa Meacci
- Fondazione Policlinico Gemelli, IRCCS, Roma, Italy
- Institute of Thoracic Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
43
|
Abstract
The thymus is a primary lymphoid organ essential for the development of T lymphocytes, which orchestrate adaptive immune responses. T-cell development in the thymus is spatially regulated; key checkpoints in T-cell maturation and selection occur in cortical and medullary regions to eliminate self-reactive T cells, establish central tolerance, and export naïve T cells to the periphery with the potential to recognize diverse pathogens. Thymic output is also temporally regulated due to age-related involution of the thymus accompanied by loss of epithelial cells. This review discusses the structural and age-related control of thymus function in humans.
Collapse
Affiliation(s)
- Puspa Thapa
- Columbia Center for Translational Immunology, Columbia University Medical Center, 650 West 168th Street, BB1501, New York, NY 10032, USA
| | - Donna L Farber
- Department of Surgery, Columbia Center for Translational Immunology, Columbia University Medical Center, 650 West 168th Street, BB1501, New York, NY 10032, USA.
| |
Collapse
|
44
|
Newman DK, Fu G, McOlash L, Schauder D, Newman PJ, Cui W, Rao S, Johnson BD, Gershan JA, Riese MJ. Frontline Science: PECAM-1 (CD31) expression in naïve and memory, but not acutely activated, CD8 + T cells. J Leukoc Biol 2018; 104:883-893. [PMID: 30063264 PMCID: PMC6195461 DOI: 10.1002/jlb.2hi0617-229rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/20/2017] [Accepted: 07/01/2018] [Indexed: 01/16/2023] Open
Abstract
Inhibitory cell surface proteins on T cells are often dynamically regulated, which contributes to their physiologic function. PECAM-1 (CD31) is an inhibitory receptor that facilitates TGF-β-mediated suppression of T cell activity. It is well established in CD4+ T cells that PECAM-1 is expressed in naïve recent thymic emigrants, but is down-regulated after acute T cell activation and absent from memory cells. The extent to which PECAM-1 expression is similarly regulated in CD8+ T cells is much less well characterized. We evaluated T cells recovered from mice after infection with a model intracellular pathogen and determined that, in CD8+ T cells, PECAM-1 expression was strongly down-regulated during acute infection but re-expressed to intermediate levels in memory cells. Down-regulation of PECAM-1 expression in CD8+ T cells was transcriptionally regulated and affected by the strength and nature of TCR signaling. PECAM-1 was also detected on the surface of human activated/memory CD8+ , but not CD4+ T cells. These data demonstrate that PECAM-1 expression is dynamically regulated, albeit differently, in both CD4+ and CD8+ T cells. Furthermore, unlike memory CD4+ T cells, memory CD8+ T cells retain PECAM-1 expression and have the potential to be modulated by this inhibitory receptor.
Collapse
Affiliation(s)
- Debra K. Newman
- Blood Research Institute, Blood Center of Wisconsin, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI, 53226
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI, 53226
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI, 53226
| | - Guoping Fu
- Blood Research Institute, Blood Center of Wisconsin, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI, 53226
| | - Laura McOlash
- Division of Hematology/Oncology/Transplant, Department of Pediatrics, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI, 53226
| | - David Schauder
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI, 53226
| | - Peter J. Newman
- Blood Research Institute, Blood Center of Wisconsin, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI, 53226
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI, 53226
| | - Weiguo Cui
- Blood Research Institute, Blood Center of Wisconsin, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI, 53226
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI, 53226
| | - Sridhar Rao
- Blood Research Institute, Blood Center of Wisconsin, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI, 53226
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI, 53226
| | - Bryon D. Johnson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI, 53226
- Division of Hematology/Oncology/Transplant, Department of Pediatrics, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI, 53226
| | - Jill A. Gershan
- Division of Hematology/Oncology/Transplant, Department of Pediatrics, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI, 53226
| | - Matthew J. Riese
- Blood Research Institute, Blood Center of Wisconsin, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI, 53226
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI, 53226
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI, 53226
| |
Collapse
|
45
|
Human T Cell Development, Localization, and Function throughout Life. Immunity 2018; 48:202-213. [PMID: 29466753 DOI: 10.1016/j.immuni.2018.01.007] [Citation(s) in RCA: 701] [Impact Index Per Article: 116.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/07/2017] [Accepted: 01/08/2018] [Indexed: 01/03/2023]
Abstract
Throughout life, T cells coordinate multiple aspects of adaptive immunity, including responses to pathogens, allergens, and tumors. In mouse models, the role of T cells is studied in the context of a specific type of pathogen, antigen, or disease condition over a limited time frame, whereas in humans, T cells control multiple insults simultaneously throughout the body and maintain immune homeostasis over decades. In this review, we discuss how human T cells develop and provide essential immune protection at different life stages and highlight tissue localization and subset delineation as key determinants of the T cell functional role in immune responses. We also discuss how anatomic compartments undergo distinct age-associated changes in T cell subset composition and function over a lifetime. It is important to consider age and tissue influences on human T cells when developing targeted strategies to modulate T cell-mediated immunity in vaccines and immunotherapies.
Collapse
|
46
|
Sadighi Akha AA. Aging and the immune system: An overview. J Immunol Methods 2018; 463:21-26. [PMID: 30114401 DOI: 10.1016/j.jim.2018.08.005] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/17/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022]
Abstract
The world is witnessing a rapid demographic shift towards an older population, a trend with major medical, social, economic and political implications. Aging is a multifaceted process, involving numerous molecular and cellular mechanisms in the context of different organ systems. A crucial component of aging is a set of functional and structural alterations in the immune system that can manifest as a decreased ability to fight infection, diminished response to vaccination, increased incidence of cancer, higher prevalence of autoimmunity and constitutive low-grade inflammation, among others. In addition to cell-intrinsic changes in both innate and adaptive immune cells, alterations in the stromal microenvironment in primary and secondary lymphoid organs play an important role in age-associated immune dysfunction. This article will provide a broad overview of these phenomena and point out some of their clinical and therapeutic implications.
Collapse
Affiliation(s)
- Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States.
| |
Collapse
|
47
|
Crespo J, Wu K, Li W, Kryczek I, Maj T, Vatan L, Wei S, Opipari AW, Zou W. Human Naive T Cells Express Functional CXCL8 and Promote Tumorigenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:814-820. [PMID: 29802127 PMCID: PMC6039239 DOI: 10.4049/jimmunol.1700755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 04/29/2018] [Indexed: 01/18/2023]
Abstract
Naive T cells are thought to be functionally quiescent. In this study, we studied and compared the phenotype, cytokine profile, and potential function of human naive CD4+ T cells in umbilical cord and peripheral blood. We found that naive CD4+ T cells, but not memory T cells, expressed high levels of chemokine CXCL8. CXCL8+ naive T cells were preferentially enriched CD31+ T cells and did not express T cell activation markers or typical Th effector cytokines, including IFN-γ, IL-4, IL-17, and IL-22. In addition, upon activation, naive T cells retained high levels of CXCL8 expression. Furthermore, we showed that naive T cell-derived CXCL8 mediated neutrophil migration in the in vitro migration assay, supported tumor sphere formation, and promoted tumor growth in an in vivo human xenograft model. Thus, human naive T cells are phenotypically and functionally heterogeneous and can carry out active functions in immune responses.
Collapse
Affiliation(s)
- Joel Crespo
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109
- Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Ke Wu
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Li
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ilona Kryczek
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Tomasz Maj
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Linda Vatan
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Shuang Wei
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Anthony W Opipari
- Department of Obstetrics and Gynecology, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109;
- Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109
- University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109; and
- Graduate Program in Tumor Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109
| |
Collapse
|
48
|
Wilhelmson AS, Lantero Rodriguez M, Svedlund Eriksson E, Johansson I, Fogelstrand P, Stubelius A, Lindgren S, Fagman JB, Hansson GK, Carlsten H, Karlsson MCI, Ekwall O, Tivesten Å. Testosterone Protects Against Atherosclerosis in Male Mice by Targeting Thymic Epithelial Cells-Brief Report. Arterioscler Thromb Vasc Biol 2018; 38:1519-1527. [PMID: 29853568 PMCID: PMC6039408 DOI: 10.1161/atvbaha.118.311252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— Androgen deprivation therapy has been associated with increased cardiovascular risk in men. Experimental studies support that testosterone protects against atherosclerosis, but the target cell remains unclear. T cells are important modulators of atherosclerosis, and deficiency of testosterone or its receptor, the AR (androgen receptor), induces a prominent increase in thymus size. Here, we tested the hypothesis that atherosclerosis induced by testosterone deficiency in male mice is T-cell dependent. Further, given the important role of the thymic epithelium for T-cell homeostasis and development, we hypothesized that depletion of the AR in thymic epithelial cells will result in increased atherosclerosis. Approach and Results— Prepubertal castration of male atherosclerosis-prone apoE−/− mice increased atherosclerotic lesion area. Depletion of T cells using an anti-CD3 antibody abolished castration-induced atherogenesis, demonstrating a role of T cells. Male mice with depletion of the AR specifically in epithelial cells (E-ARKO [epithelial cell-specific AR knockout] mice) showed increased thymus weight, comparable with that of castrated mice. E-ARKO mice on an apoE−/− background displayed significantly increased atherosclerosis and increased infiltration of T cells in the vascular adventitia, supporting a T-cell–driven mechanism. Consistent with a role of the thymus, E-ARKO apoE−/− males subjected to prepubertal thymectomy showed no atherosclerosis phenotype. Conclusions— We show that atherogenesis induced by testosterone/AR deficiency is thymus- and T-cell dependent in male mice and that the thymic epithelial cell is a likely target cell for the antiatherogenic actions of testosterone. These insights may pave the way for new therapeutic strategies for safer endocrine treatment of prostate cancer.
Collapse
Affiliation(s)
- Anna S Wilhelmson
- From the Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine (A.S.W., M.L.R., E.S.E., I.J., P.F., J.B.F., A.T.)
| | - Marta Lantero Rodriguez
- From the Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine (A.S.W., M.L.R., E.S.E., I.J., P.F., J.B.F., A.T.)
| | - Elin Svedlund Eriksson
- From the Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine (A.S.W., M.L.R., E.S.E., I.J., P.F., J.B.F., A.T.)
| | - Inger Johansson
- From the Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine (A.S.W., M.L.R., E.S.E., I.J., P.F., J.B.F., A.T.)
| | - Per Fogelstrand
- From the Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine (A.S.W., M.L.R., E.S.E., I.J., P.F., J.B.F., A.T.)
| | - Alexandra Stubelius
- Center for Bone and Arthritis Research, Institute of Medicine (A.S., H.C.).,Department of Rheumatology and Inflammation Research, Institute of Medicine (A.S., S.L., H.C., O.E.)
| | - Susanne Lindgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine (A.S., S.L., H.C., O.E.).,Department of Pediatrics, Institute of Clinical Sciences (S.L., O.E.), University of Gothenburg, Sweden
| | - Johan B Fagman
- From the Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine (A.S.W., M.L.R., E.S.E., I.J., P.F., J.B.F., A.T.)
| | - Göran K Hansson
- Department of Medicine, Center for Molecular Medicine (G.K.H.)
| | - Hans Carlsten
- Center for Bone and Arthritis Research, Institute of Medicine (A.S., H.C.).,Department of Rheumatology and Inflammation Research, Institute of Medicine (A.S., S.L., H.C., O.E.)
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor, and Cell Biology (M.C.I.K.), Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine (A.S., S.L., H.C., O.E.).,Department of Pediatrics, Institute of Clinical Sciences (S.L., O.E.), University of Gothenburg, Sweden
| | - Åsa Tivesten
- From the Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine (A.S.W., M.L.R., E.S.E., I.J., P.F., J.B.F., A.T.)
| |
Collapse
|
49
|
de Koning C, Nierkens S, Jan Boelens J. How to define and measure thymopoiesis after transplantation? Bone Marrow Transplant 2018; 53:1364-1365. [PMID: 29725110 DOI: 10.1038/s41409-018-0199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Coco de Koning
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefan Nierkens
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,UDAIR, Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jaap Jan Boelens
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands. .,Pediatric Blood and Marrow Transplantation Program, Wilhemina Children's Hospital, Utrecht, The Netherlands. .,Princess Maxima Center for Pediatric Oncology, Blood and Marrow Transplantation Program, Utrecht, The Netherlands.
| |
Collapse
|
50
|
|