1
|
Lofrumento DD, Miraglia A, La Pesa V, Treglia AS, Chieppa M, De Nuccio F, Nicolardi G, Miele C, Beguinot F, Garbi C, Di Jeso B. Increased hexosamine biosynthetic pathway flux alters cell-cell adhesion in INS-1E cells and murine islets. Endocrine 2023; 81:492-502. [PMID: 37306934 PMCID: PMC10403402 DOI: 10.1007/s12020-023-03412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/28/2023] [Indexed: 06/13/2023]
Abstract
PURPOSE In type 2 Diabetes, β-cell failure is caused by loss of cell mass, mostly by apoptosis, but also by simple dysfunction (dedifferentiation, decline of glucose-stimulated insulin secretion). Apoptosis and dysfunction are caused, at least in part, by glucotoxicity, in which increased flux of glucose in the hexosamine biosynthetic pathway plays a role. In this study, we sought to clarify whether increased hexosamine biosynthetic pathway flux affects another important aspect of β-cell physiology, that is β-cell-β-cell homotypic interactions. METHODS We used INS-1E cells and murine islets. The expression and cellular distribution of E-cadherin and β-catenin was evaluated by immunofluorescence, immunohistochemistry and western blot. Cell-cell adhesion was examined by the hanging-drop aggregation assay, islet architecture by isolation and microscopic observation. RESULTS E-cadherin expression was not changed by increased hexosamine biosynthetic pathway flux, however, there was a decrease of cell surface, and an increase in intracellular E-cadherin. Moreover, intracellular E-cadherin delocalized, at least in part, from the Golgi complex to the endoplasmic reticulum. Beta-catenin was found to parallel the E-cadherin redistribution, showing a dislocation from the plasmamembrane to the cytosol. These changes had as a phenotypic consequence a decreased ability of INS-1E to aggregate. Finally, in ex vivo experiments, glucosamine was able to alter islet structure and to decrease surface abundandance of E-cadherin and β-catenin. CONCLUSION Increased hexosamine biosynthetic pathway flux alters E-cadherin cellular localization both in INS-1E cells and murine islets and affects cell-cell adhesion and islet morphology. These changes are likely caused by alterations of E-cadherin function, highlighting a new potential target to counteract the consequences of glucotoxicity on β-cells.
Collapse
Affiliation(s)
| | - Alessandro Miraglia
- DiSTeBA, Centro Ecotekne, Strada Monteroni, University of Salento, 73100, Lecce, Italy
| | - Velia La Pesa
- Institute of Experimental Neurology and Division of Neuroscience, Neuropathology Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | | | - Marcello Chieppa
- DiSTeBA, Centro Ecotekne, Strada Monteroni, University of Salento, 73100, Lecce, Italy
| | - Francesco De Nuccio
- DiSTeBA, Centro Ecotekne, Strada Monteroni, University of Salento, 73100, Lecce, Italy
| | - Giuseppe Nicolardi
- DiSTeBA, Centro Ecotekne, Strada Monteroni, University of Salento, 73100, Lecce, Italy
| | - Claudia Miele
- CNR, IEOS and DiSMeT, Via S. Pansini 5, University "Federico II", Naples, Italy
| | - Francesco Beguinot
- CNR, IEOS and DiSMeT, Via S. Pansini 5, University "Federico II", Naples, Italy
| | - Corrado Garbi
- Dip. Medicina Molecolare e Biotecnologie Mediche, Via S. Pansini 5, University "Federico II", Naples, Italy
| | - Bruno Di Jeso
- DiSTeBA, Centro Ecotekne, Strada Monteroni, University of Salento, 73100, Lecce, Italy.
| |
Collapse
|
2
|
Bkaily G, Jacques D. Morphological and Functional Remodeling of Vascular Endothelium in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24031998. [PMID: 36768314 PMCID: PMC9916505 DOI: 10.3390/ijms24031998] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/21/2023] Open
Abstract
The vascular endothelium plays a vital role during embryogenesis and aging and is a cell monolayer that lines the blood vessels. The immune system recognizes the endothelium as its own. Therefore, an abnormality of the endothelium exposes the tissues to the immune system and provokes inflammation and vascular diseases such as atherosclerosis. Its secretory role allows it to release vasoconstrictors and vasorelaxants as well as cardio-modulatory factors that maintain the proper functioning of the circulatory system. The sealing of the monolayer provided by adhesion molecules plays an important role in cardiovascular physiology and pathology.
Collapse
|
3
|
Lopez Ruiz JR, Ernst SA, Holz RW, Stuenkel EL. Basal and Stress-Induced Network Activity in the Adrenal Medulla In Vivo. Front Endocrinol (Lausanne) 2022; 13:875865. [PMID: 35795145 PMCID: PMC9250985 DOI: 10.3389/fendo.2022.875865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
The adrenal medulla plays a critical role in mammalian homeostasis and the stress response. It is populated by clustered chromaffin cells that secrete epinephrine or norepinephrine along with peptides into the bloodstream affecting distant target organs. Despite been heavily studied, the central control of adrenal medulla and in-situ spatiotemporal responsiveness remains poorly understood. For this work, we continuously monitored the electrical activity of individual adrenomedullary chromaffin cells in the living anesthetized rat using multielectrode arrays. We measured the chromaffin cell activity under basal and physiological stress conditions and characterized the functional micro-architecture of the adrenal medulla. Under basal conditions, chromaffin cells fired action potentials with frequencies between ~0.2 and 4 Hz. Activity was almost completely driven by sympathetic inputs coming through the splanchnic nerve. Chromaffin cells were organized into independent local networks in which cells fired in a specific order, with latencies from hundreds of microseconds to a few milliseconds. Electrical stimulation of the splanchnic nerve evoked almost exactly the same spatiotemporal firing patterns that occurred spontaneously. Hypoglycemic stress, induced by insulin administration resulted in increased activity of a subset of the chromaffin cells. In contrast, respiratory arrest induced by lethal anesthesia resulted in an increase in the activity of virtually all chromaffin cells before cessation of all activity. These results suggest a stressor-specific activation of adrenomedullary chromaffin cell networks and revealed a surprisingly complex electrical organization that likely reflects the dynamic nature of the adrenal medulla's neuroendocrine output during basal conditions and during different types of physiological stress.
Collapse
Affiliation(s)
- Jose R Lopez Ruiz
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen A Ernst
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ronald W Holz
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Edward L Stuenkel
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
4
|
Velasco-Mallorquí F, Rodríguez-Comas J, Ramón-Azcón J. Cellulose-based scaffolds enhance pseudoislets formation and functionality. Biofabrication 2021; 13. [PMID: 34075893 DOI: 10.1088/1758-5090/ac00c3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022]
Abstract
In vitroresearch for the study of type 2 diabetes (T2D) is frequently limited by the availability of a functional model for islets of Langerhans. To overcome the limitations of obtaining pancreatic islets from different sources, such as animal models or human donors, immortalized cell lines as the insulin-producing INS1Eβ-cells have appeared as a valid alternative to model insulin-related diseases. However, immortalized cell lines are mainly used in flat surfaces or monolayer distributions, not resembling the spheroid-like architecture of the pancreatic islets. To generate islet-like structures, the use of scaffolds appeared as a valid tool to promote cell aggregations. Traditionally-used hydrogel encapsulation methods do not accomplish all the requisites for pancreatic tissue engineering, as its poor nutrient and oxygen diffusion induces cell death. Here, we use cryogelation technology to develop a more resemblance scaffold with the mechanical and physical properties needed to engineer pancreatic tissue. This study shows that carboxymethyl cellulose (CMC) cryogels prompted cells to generateβ-cell clusters in comparison to gelatin-based scaffolds, that did not induce this cell organization. Moreover, the high porosity achieved with CMC cryogels allowed us to create specific range pseudoislets. Pseudoislets formed within CMC-scaffolds showed cell viability for up to 7 d and a better response to glucose over conventional monolayer cultures. Overall, our results demonstrate that CMC-scaffolds can be used to control the organization and function of insulin-producingβ-cells, representing a suitable technique to generateβ-cell clusters to study pancreatic islet function.
Collapse
Affiliation(s)
- Ferran Velasco-Mallorquí
- Biosensors for Bioengineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, Barcelona 08028, Spain
| | - Júlia Rodríguez-Comas
- Biosensors for Bioengineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, Barcelona 08028, Spain
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, Barcelona 08028, Spain.,ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
5
|
Bourgeois S, Sawatani T, Van Mulders A, De Leu N, Heremans Y, Heimberg H, Cnop M, Staels W. Towards a Functional Cure for Diabetes Using Stem Cell-Derived Beta Cells: Are We There Yet? Cells 2021; 10:cells10010191. [PMID: 33477961 PMCID: PMC7835995 DOI: 10.3390/cells10010191] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a pandemic metabolic disorder that results from either the autoimmune destruction or the dysfunction of insulin-producing pancreatic beta cells. A promising cure is beta cell replacement through the transplantation of islets of Langerhans. However, donor shortage hinders the widespread implementation of this therapy. Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, represent an attractive alternative beta cell source for transplantation. Although major advances over the past two decades have led to the generation of stem cell-derived beta-like cells that share many features with genuine beta cells, producing fully mature beta cells remains challenging. Here, we review the current status of beta cell differentiation protocols and highlight specific challenges that are associated with producing mature beta cells. We address the challenges and opportunities that are offered by monogenic forms of diabetes. Finally, we discuss the remaining hurdles for clinical application of stem cell-derived beta cells and the status of ongoing clinical trials.
Collapse
Affiliation(s)
- Stephanie Bourgeois
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
| | - Toshiaki Sawatani
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium; (T.S.); (M.C.)
| | - Annelore Van Mulders
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
| | - Nico De Leu
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
- Department of Endocrinology, University Hospital Brussels, 1090 Brussels, Belgium
- Department of Endocrinology, ASZ Aalst, 9300 Aalst, Belgium
| | - Yves Heremans
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
| | - Harry Heimberg
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium; (T.S.); (M.C.)
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Willem Staels
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
- Service of Pediatric Endocrinology, Department of Pediatrics, KidZ Health Castle, Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
- Correspondence: ; Tel.: +32-0-24774473
| |
Collapse
|
6
|
Insulin/Glucose-Responsive Cells Derived from Induced Pluripotent Stem Cells: Disease Modeling and Treatment of Diabetes. Cells 2020; 9:cells9112465. [PMID: 33198288 PMCID: PMC7696367 DOI: 10.3390/cells9112465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes, characterized by dysfunction of pancreatic β-cells and insulin resistance in peripheral organs, accounts for more than 90% of all diabetes. Despite current developments of new drugs and strategies to prevent/treat diabetes, there is no ideal therapy targeting all aspects of the disease. Restoration, however, of insulin-producing β-cells, as well as insulin-responsive cells, would be a logical strategy for the treatment of diabetes. In recent years, generation of transplantable cells derived from stem cells in vitro has emerged as an important research area. Pluripotent stem cells, either embryonic or induced, are alternative and feasible sources of insulin-secreting and glucose-responsive cells. This notwithstanding, consistent generation of robust glucose/insulin-responsive cells remains challenging. In this review, we describe basic concepts of the generation of induced pluripotent stem cells and subsequent differentiation of these into pancreatic β-like cells, myotubes, as well as adipocyte- and hepatocyte-like cells. Use of these for modeling of human disease is now feasible, while development of replacement therapies requires continued efforts.
Collapse
|
7
|
MicroRNA-127 inhibits cell proliferation via targeting Kif3b in pancreatic β cells. Aging (Albany NY) 2020; 11:1342-1355. [PMID: 30822278 PMCID: PMC6428088 DOI: 10.18632/aging.101835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/17/2019] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) have been implicated in β cells dysfunction. Previous studies indicated that miR-127 was specifically abundant in β cells and one of its target genes, Kif3b, promoted cell proliferation. However, the impact of the miR-127-Kif3b axis on β cells remains unknown. In this study, we revealed that miR-127 level was declined both in islets from the mice with a high-fat diet and in MIN6 cells with elevated glucose treatment. The elevated level of miR-127 attenuated β cell proliferation by repressing Kif3b expression without affecting apoptosis and cell cycle, and it dampened insulin secretion. Moreover, β cell-derived miR-127 could also affect the islet endothelial cell-line, MS1, in vitro via the transfer of extracellular vesicles (EVs). Treating MS1 cells with the EVs secreted by MIN6 cells exhibited a higher ability in cell migration and tube formation. However, this effect was abolished by the miR-127 inhibitor co-cultured with EVs-treated MS1 cells. Thus, we define that miR-127 is a crucial regulator of insulin secretion and cell proliferation in pancreatic β cells as well as a potential functional regulation factor in islet endothelial cells.
Collapse
|
8
|
Wang L, Wang C, Zhang R, Liu Y, Wang C, Song G, Yu J, Chen Z. Phenotypic characterization of a novel type 2 diabetes animal model in a SHANXI MU colony of Chinese hamsters. Endocrine 2019; 65:61-72. [PMID: 31025261 DOI: 10.1007/s12020-019-01940-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/17/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE Developing animal models for human diseases is critical for studying complex diseases such as type 2 diabetes mellitus (T2DM). Since inbred colonies of Chinese hamsters tend toward spontaneous development of diabetes, we investigated them as a possible model. METHODS We regarded individuals with fasting blood glucose (FBG) higher than 6.0 mmol/L and post-prandial blood glucose (PBG) higher than 7.0 mmol/L as diabetic based on the mean and 95% frequency distribution values of FBG and PBG. Diabetic hamsters were characterized based on metabolic profiles, histopathological features, and changes in the expression of genes involved in glucose and lipid metabolism. RESULTS Metabolic analyses showed that diabetic hamsters exhibited mild hyperglycemia, hypertriglyceridemia, glucose intolerance, and insulin resistance. Histopathological analysis revealed that cell nuclei migrated inward in skeletal muscle and obvious partial liver lipid deposition and focal necrosis was found. We additionally observed mild injury, atrophy, and occasional vacuolization in islet cells. Changes in the expression of several genes related to glucose and lipid metabolism were observed. Decreased expression of adiponectin and GLUT4 and increased expression of PPARγ, Akt, and leptin was observed in skeletal muscle. Decreased expression of adiponectin with increased expression of PPARγ and leptin was observed in the liver. CONCLUSIONS These results indicate that we have established a spontaneous diabetic hamster line that closely mimics human T2DM, which may hold potential for further research on the pathogenesis and treatment of this disease.
Collapse
Affiliation(s)
- Lu Wang
- Laboratory Animal Center of Shanxi Medical University, Shanxi Province, China
- Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Shanxi Province, China
| | - Chenyang Wang
- Laboratory Animal Center of Shanxi Medical University, Shanxi Province, China
- Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Shanxi Province, China
| | - Ruihu Zhang
- Laboratory Animal Center of Shanxi Medical University, Shanxi Province, China
- Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Shanxi Province, China
| | - Yu Liu
- Department of Pharmacology, Shanxi Medical University, Shanxi Province, China
| | - Chunfang Wang
- Laboratory Animal Center of Shanxi Medical University, Shanxi Province, China
- Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Shanxi Province, China
| | - Guohua Song
- Laboratory Animal Center of Shanxi Medical University, Shanxi Province, China
- Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Shanxi Province, China
| | - Jingjing Yu
- Laboratory Animal Center of Shanxi Medical University, Shanxi Province, China
- Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Shanxi Province, China
| | - Zhaoyang Chen
- Laboratory Animal Center of Shanxi Medical University, Shanxi Province, China.
- Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Shanxi Province, China.
| |
Collapse
|
9
|
The association between intake of dietary lycopene and other carotenoids and gestational diabetes mellitus risk during mid-trimester: a cross-sectional study. Br J Nutr 2019; 121:1405-1412. [DOI: 10.1017/s0007114519000606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThis study aimed to determine whether increased carotenoids intake was associated with reduced risk of gestational diabetes mellitus (GDM). We performed a cross-sectional analysis using data from Tongji Maternal and Child Health Cohort study. The dietary carotenoids intake of 1978 pregnant women was assessed using a researcher-administered FFQ before undertaking an oral glucose tolerance test at 24–28 weeks. Multivariate logistic and linear regression analyses were used to obtain the effect estimates. Participants in the highest quartile of lycopene intake showed a lower risk of GDM (OR 0·50; 95 % CI 0·29, 0·86; Pfor trend = 0·007) compared with those in the lowest quartile; each 1 mg increase in lycopene consumption was associated with a 5 % (95 % CI 0·91, 0·99; Pfor trend = 0·020) decrease in GDM risk. No significant association was found between α-carotene, β-carotene, β-cryptoxanthin, lutein/zeaxanthin intake and GDM risk. Multiple linear regression analysis suggested an inverse association between lycopene intake and fasting blood glucose (FBG) (Pfor trend < 0·001); each 1 mg increase in lycopene intake was associated with 0·005 (95 % CI 0·002, 0·007; Pfor trend < 0·001) mmol/l decrease in FBG. Interaction analysis indicated consistent effect on each age or pre-BMI subgroup; however, a stronger protective effect of lycopene intake against GDM was observed among primigravid women (OR 0·20; 95 % CI 0·07, 0·55 in the highest v. the lowest quartile of intake; Pfor interaction = 0·036). In conclusion, dietary lycopene intake was mainly assumed via reducing FBG to decrease GDM risk, and the protection was relatively increased among primigravid women.
Collapse
|
10
|
A simple method for the generation of insulin producing cells from bone marrow mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2019; 55:462-471. [PMID: 31111346 DOI: 10.1007/s11626-019-00358-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/11/2019] [Indexed: 10/26/2022]
Abstract
To produce insulin-producing cells (IPCs) from bone marrow mesenchymal stem cells (BM-MSCs) using a simple and cost effective method. During the initial 7 days of three-dimensional (3D) culture, BM-MSCs were cultured on 1% agar or agarose to form multicellular spheroids. Spheroids and spheroid-derived single cells (SS and SSC, respectively) were cultured in the absence of any proteinaceous growth factor in a simple specific medium for a further 7 d. The insulin content of the differentiated cells was evaluated at the mRNA and protein levels. Furthermore, the expression of pancreatic beta cells-related genes other than INS as well as the in vitro responses of IPCs to different glucose concentrations were investigated. Cellular clusters generated on agar and SS conditions (agar+SS-IPCs) stained better with beta cell specific stains and were more reactive to serum-containing insulin reactive antibodies compared with agarose-SS-IPCs. Gene expression analysis revealed that in comparison to agarose + SS-IPCs, agar+SS-IPCs expressed significantly higher levels of INS-1, INS-2, PDX-1, NKX6.1, and XBP-1. Of interest, agar+SS-IPCs expressed 2215.3 ± 120.8-fold more INS-1 gene compared to BM-MSCs. The expression of β-cell associated genes was also higher in agar+SS-IPCs compared to the agar+SSC-IPCs. Moreover, the expression of INS-1 gene was significantly higher in agar+SS-IPCs compared with agar+SSC-IPCs after culture in media with high concentration of glucose. Compared to the most expensive and time-consuming protocols, 3D culture of MSCs on agar followed by 2D culture of cellular clusters in a minimally supplemented high glucose media produced highly potent IPCs which may pay the way to the treatment of diabetic patients.
Collapse
|
11
|
Cluster-assembled zirconia substrates promote long-term differentiation and functioning of human islets of Langerhans. Sci Rep 2018; 8:9979. [PMID: 29967323 PMCID: PMC6028636 DOI: 10.1038/s41598-018-28019-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/07/2018] [Indexed: 12/19/2022] Open
Abstract
Ex vivo expansion and differentiation of human pancreatic β-cell are enabling steps of paramount importance for accelerating the development of therapies for diabetes. The success of regenerative strategies depends on their ability to reproduce the chemical and biophysical properties of the microenvironment in which β-cells develop, proliferate and function. In this paper we focus on the biophysical properties of the extracellular environment and exploit the cluster-assembled zirconia substrates with tailored roughness to mimic the nanotopography of the extracellular matrix. We demonstrate that β-cells can perceive nanoscale features of the substrate and can convert these stimuli into mechanotransductive processes which promote long-term in vitro human islet culture, thus preserving β-cell differentiation and function. Proteomic and quantitative immunofluorescence analyses demonstrate that the process is driven by nanoscale topography, via remodelling of the actin cytoskeleton and nuclear architecture. These modifications activate a transcriptional program which stimulates an adaptive metabolic glucose response. Engineered cluster-assembled substrates coupled with proteomic approaches may provide a useful strategy for identifying novel molecular targets for treating diabetes mellitus and for enhancing tissue engineering in order to improve the efficacy of islet cell transplantation therapies.
Collapse
|
12
|
Zhang Q, Qin W, Yang L, An J, Zhang X, Hong H, Xu L, Wang Y. Microcystis bloom containing microcystin-LR induces type 2 diabetes mellitus. Toxicol Lett 2018; 294:87-94. [PMID: 29777831 DOI: 10.1016/j.toxlet.2018.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/03/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
Abstract
Epidemiological data from Lake Taihu showed significantly higher incidences of type 2 diabetes mellitus (T2DM) than in other areas of China. This may be related to the occurrence of a Microcystis bloom in Lake Taihu in the summer and autumn every year. The objective of this study is to investigate whether the contaminated water from the Microcystis bloom and the derivative pollutant microcystin-LR (MC-LR) can explain the higher incidences of T2DM. Healthy male mice were fed with water from different regions of Lake Taihu, and were either acutely or chronically exposed to MC-LR through oral administration or intraperitoneal injection. Serum lipid profiles were determined, and the effects on T2DM-related gene expression and insulin receptor signaling pathway were investigated. Intraperitoneal glucose tolerance (IPGTT) and insulin resistance (IRT) tests were implemented, and the functions of pancreatic islet and β-cell were also evaluated. The results showed that both water sampled from the region with a Microcysis bloom and those containing MC-LR altered the serum glucide and lipid profiles in mice after exposure. The exposure to a Microcysis bloom water affected the expression T2DM-related genes: up-regulated the mRNA levels of FASn, ACACA, G6pc, LPL, and Insig2, and down-regulated the mRNA level of PEPCK and Gsk-3β. Both acute and chronic exposure of MC-LR, even at very low concentrations (1 μg/L), impaired the insulin receptor signalling pathway and induced hyperinsulinemia and insulin resistance in mice. In this study, the most important intracellular target of MC-LR was found to be hetapocellular mitochondria. Thus, exposure to Microcystis bloom water containing microcystin-LR can induce the incidence of T2DM, by impairing the function of mitochondria by microcystin-LR. The study suggests a review of the risk assessment concerning 1 μg/L MC-LR as the reference dose in surface water.
Collapse
Affiliation(s)
- Qiong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, United Kingdom
| | - Wendi Qin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Jing An
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hao Hong
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Lizhi Xu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Yaping Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| |
Collapse
|
13
|
Gosak M, Stožer A, Markovič R, Dolenšek J, Perc M, Rupnik MS, Marhl M. Critical and Supercritical Spatiotemporal Calcium Dynamics in Beta Cells. Front Physiol 2017; 8:1106. [PMID: 29312008 PMCID: PMC5743929 DOI: 10.3389/fphys.2017.01106] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/14/2017] [Indexed: 01/12/2023] Open
Abstract
A coordinated functioning of beta cells within pancreatic islets is mediated by oscillatory membrane depolarization and subsequent changes in cytoplasmic calcium concentration. While gap junctions allow for intraislet information exchange, beta cells within islets form complex syncytia that are intrinsically nonlinear and highly heterogeneous. To study spatiotemporal calcium dynamics within these syncytia, we make use of computational modeling and confocal high-speed functional multicellular imaging. We show that model predictions are in good agreement with experimental data, especially if a high degree of heterogeneity in the intercellular coupling term is assumed. In particular, during the first few minutes after stimulation, the probability distribution of calcium wave sizes is characterized by a power law, thus indicating critical behavior. After this period, the dynamics changes qualitatively such that the number of global intercellular calcium events increases to the point where the behavior becomes supercritical. To better mimic normal in vivo conditions, we compare the described behavior during supraphysiological non-oscillatory stimulation with the behavior during exposure to a slightly lower and oscillatory glucose challenge. In the case of this protocol, we observe only critical behavior in both experiment and model. Our results indicate that the loss of oscillatory changes, along with the rise in plasma glucose observed in diabetes, could be associated with a switch to supercritical calcium dynamics and loss of beta cell functionality.
Collapse
Affiliation(s)
- Marko Gosak
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
- Faculty of Energy Technology, University of Maribor, Krško, Slovenia
| | - Jurij Dolenšek
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Center for Applied Mathematics and Theoretical Physics, University of Maribor, Maribor, Slovenia
- Complexity Science Hub, Vienna, Austria
| | - Marjan S. Rupnik
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Institute of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
| |
Collapse
|
14
|
Aamodt KI, Powers AC. Signals in the pancreatic islet microenvironment influence β-cell proliferation. Diabetes Obes Metab 2017; 19 Suppl 1:124-136. [PMID: 28880471 PMCID: PMC5679109 DOI: 10.1111/dom.13031] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/22/2017] [Accepted: 06/01/2017] [Indexed: 12/31/2022]
Abstract
The progressive loss of pancreatic β-cell mass that occurs in both type 1 and type 2 diabetes is a primary factor driving efforts to identify strategies for effectively increasing, enhancing or restoring β-cell mass. While factors that seem to influence β-cell proliferation in specific contexts have been described, reliable stimulation of human β-cell proliferation has remained a challenge. Importantly, β-cells exist in the context of a complex, integrated pancreatic islet microenvironment where they interact with other endocrine cells, vascular endothelial cells, extracellular matrix, neuronal projections and islet macrophages. This review highlights different components of the pancreatic microenvironment, and reviews what is known about how signaling that occurs between β-cells and these other components influences β-cell proliferation. Future efforts to further define the role of the pancreatic islet microenvironment on β-cell proliferation may lead to the development of successful approaches to increase or restore β-cell mass in diabetes.
Collapse
Affiliation(s)
- Kristie I. Aamodt
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alvin C. Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
15
|
Abstract
The pancreas produces enzymes with a digestive function and hormones with a metabolic function, which are produced by distinct cell types of acini and islets, respectively. Within these units, secretory cells coordinate their functioning by exchanging information via signals that flow in the intercellular spaces and are generated either at distance (several neural and hormonal inputs) or nearby the pancreatic cells themselves (inputs mediated by membrane ionic-specific channels and by ionic- and metabolite-permeant pannexin channels and connexin "hemichannels"). Pancreatic secretory cells further interact via the extracellular matrix of the pancreas (inputs mediated by integrins) and directly with neighboring cells, by mechanisms that do not require extracellular mediators (inputs mediated by gap and tight junction channels). Here, we review the expression and function of the connexins and pannexins that are expressed by the main secretory cells of the exocrine and endocrine pancreatic cells. Available data show that the patterns of expression of these proteins differ in acini and islets, supporting distinct functions in the physiological secretion of pancreatic enzymes and hormones. Circumstantial evidence further suggests that alterations in the signaling provided by these proteins are involved in pancreatic diseases.
Collapse
|
16
|
Dolenšek J, Špelič D, Skelin Klemen M, Žalik B, Gosak M, Slak Rupnik M, Stožer A. Membrane Potential and Calcium Dynamics in Beta Cells from Mouse Pancreas Tissue Slices: Theory, Experimentation, and Analysis. SENSORS 2015; 15:27393-419. [PMID: 26516866 PMCID: PMC4701238 DOI: 10.3390/s151127393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/11/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022]
Abstract
Beta cells in the pancreatic islets of Langerhans are precise biological sensors for glucose and play a central role in balancing the organism between catabolic and anabolic needs. A hallmark of the beta cell response to glucose are oscillatory changes of membrane potential that are tightly coupled with oscillatory changes in intracellular calcium concentration which, in turn, elicit oscillations of insulin secretion. Both membrane potential and calcium changes spread from one beta cell to the other in a wave-like manner. In order to assess the properties of the abovementioned responses to physiological and pathological stimuli, the main challenge remains how to effectively measure membrane potential and calcium changes at the same time with high spatial and temporal resolution, and also in as many cells as possible. To date, the most wide-spread approach has employed the electrophysiological patch-clamp method to monitor membrane potential changes. Inherently, this technique has many advantages, such as a direct contact with the cell and a high temporal resolution. However, it allows one to assess information from a single cell only. In some instances, this technique has been used in conjunction with CCD camera-based imaging, offering the opportunity to simultaneously monitor membrane potential and calcium changes, but not in the same cells and not with a reliable cellular or subcellular spatial resolution. Recently, a novel family of highly-sensitive membrane potential reporter dyes in combination with high temporal and spatial confocal calcium imaging allows for simultaneously detecting membrane potential and calcium changes in many cells at a time. Since the signals yielded from both types of reporter dyes are inherently noisy, we have developed complex methods of data denoising that permit for visualization and pixel-wise analysis of signals. Combining the experimental approach of high-resolution imaging with the advanced analysis of noisy data enables novel physiological insights and reassessment of current concepts in unprecedented detail.
Collapse
Affiliation(s)
- Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
| | - Denis Špelič
- Faculty of Electrical Engineering and Computer Science, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (D.Š.); (B.Ž.)
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
| | - Borut Žalik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (D.Š.); (B.Ž.)
- Center for Open Innovation and Research, Core@UM, University of Maribor, SI-2000 Maribor, Slovenia
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
- Center for Open Innovation and Research, Core@UM, University of Maribor, SI-2000 Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
- Center for Open Innovation and Research, Core@UM, University of Maribor, SI-2000 Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
- Center for Open Innovation and Research, Core@UM, University of Maribor, SI-2000 Maribor, Slovenia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +386-2-2345843
| |
Collapse
|
17
|
Yesildag B, Bock T, Herrmanns K, Wollscheid B, Stoffel M. Kin of IRRE-like Protein 2 Is a Phosphorylated Glycoprotein That Regulates Basal Insulin Secretion. J Biol Chem 2015; 290:25891-906. [PMID: 26324709 DOI: 10.1074/jbc.m115.684704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Indexed: 12/17/2022] Open
Abstract
Direct interactions among pancreatic β-cells via cell surface proteins inhibit basal and enhance stimulated insulin secretion. Here, we functionally and biochemically characterized Kirrel2, an immunoglobulin superfamily protein with β-cell-specific expression in the pancreas. Our results show that Kirrel2 is a phosphorylated glycoprotein that co-localizes and interacts with the adherens junction proteins E-cadherin and β-catenin in MIN6 cells. We further demonstrate that the phosphosites Tyr(595-596) are functionally relevant for the regulation of Kirrel2 stability and localization. Analysis of the extracellular and intracellular domains of Kirrel2 revealed that it is cleaved and shed from MIN6 cells and that the remaining membrane spanning cytoplasmic domain is processed by γ-secretase complex. Kirrel2 knockdown with RNA interference in MIN6 cells and ablation of Kirrel2 from mice with genetic deletion resulted in increased basal insulin secretion from β-cells, with no immediate influence on stimulated insulin secretion, total insulin content, or whole body glucose metabolism. Our results show that in pancreatic β-cells Kirrel2 localizes to adherens junctions, is regulated by multiple post-translational events, including glycosylation, extracellular cleavage, and phosphorylation, and engages in the regulation of basal insulin secretion.
Collapse
Affiliation(s)
- Burcak Yesildag
- From the Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich
| | - Thomas Bock
- the Department of Health Sciences and Technology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology Zurich, Auguste-Piccard-Hof 1, 8093 Zurich, and
| | - Karolin Herrmanns
- From the Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich
| | - Bernd Wollscheid
- the Department of Health Sciences and Technology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology Zurich, Auguste-Piccard-Hof 1, 8093 Zurich, and
| | - Markus Stoffel
- From the Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, the Department of Health Sciences and Technology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology Zurich, Auguste-Piccard-Hof 1, 8093 Zurich, and the Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
18
|
Lebreton F, Pirog A, Belouah I, Bosco D, Berney T, Meda P, Bornat Y, Catargi B, Renaud S, Raoux M, Lang J. Slow potentials encode intercellular coupling and insulin demand in pancreatic beta cells. Diabetologia 2015; 58:1291-9. [PMID: 25788295 DOI: 10.1007/s00125-015-3558-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/23/2015] [Indexed: 11/24/2022]
Abstract
AIMS/HYPOTHESIS Ion fluxes constitute a major integrative signal in beta cells that leads to insulin secretion and regulation of gene expression. Understanding these electrical signals is important for deciphering the endogenous algorithms used by islets to attain homeostasis and for the design of new sensors for monitoring beta cell function. METHODS Mouse and human islets were cultured on multielectrode arrays (MEAs) for 3-13 days. Extracellular electrical activities received on each electrode were continuously amplified and recorded for offline characterisation. RESULTS Differential band-pass filtering of MEA recordings of mouse islets showed two extracellular voltage waveforms: action potentials (lasting 40-60 ms) and very robust slow potentials (SPs, lasting 800-1,500 ms), the latter of which have not been described previously. The frequency of SPs directly correlated with glucose concentration, peaked at 10 mmol/l glucose and was further augmented by picomolar concentrations of glucagon-like peptide-1. SPs required the closure of ATP-dependent potassium channels as they were induced by glucose or glibenclamide but were not elicited by KCl-induced depolarisation. Pharmacological tools and the use of beta cell specific knockout mice showed that SPs reflected cell coupling via connexin 36. Moreover, increasing and decreasing glucose ramps showed hysteresis with reduced glucose sensitivity during the decreasing phase. SPs were also observed in human islets and could be continuously recorded over 24 h. CONCLUSIONS/INTERPRETATION This novel electrical signature reflects the syncytial function of the islets and is specific to beta cells. Moreover, the observed hysteresis provides evidence for an endogenous algorithm naturally present in islets to protect against hypoglycaemia.
Collapse
Affiliation(s)
- Fanny Lebreton
- CNRS UMR 5248, Chimie et Biologie des Membranes et Nano-objets, Université de Bordeaux, Batiment B14, Allée Geoffroy St Hilaire, CS90063, 33615, Pessac, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Irles E, Ñeco P, Lluesma M, Villar-Pazos S, Santos-Silva JC, Vettorazzi JF, Alonso-Magdalena P, Carneiro EM, Boschero AC, Nadal Á, Quesada I. Enhanced glucose-induced intracellular signaling promotes insulin hypersecretion: pancreatic beta-cell functional adaptations in a model of genetic obesity and prediabetes. Mol Cell Endocrinol 2015; 404:46-55. [PMID: 25633666 DOI: 10.1016/j.mce.2015.01.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/13/2022]
Abstract
Obesity is associated with insulin resistance and is known to be a risk factor for type-2 diabetes. In obese individuals, pancreatic beta-cells try to compensate for the increased insulin demand in order to maintain euglycemia. Most studies have reported that this adaptation is due to morphological changes. However, the involvement of beta-cell functional adaptations in this process needs to be clarified. For this purpose, we evaluated different key steps in the glucose-stimulated insulin secretion (GSIS) in intact islets from female ob/ob obese mice and lean controls. Obese mice showed increased body weight, insulin resistance, hyperinsulinemia, glucose intolerance and fed hyperglycemia. Islets from ob/ob mice exhibited increased glucose-induced mitochondrial activity, reflected by enhanced NAD(P)H production and mitochondrial membrane potential hyperpolarization. Perforated patch-clamp examination of beta-cells within intact islets revealed several alterations in the electrical activity such as increased firing frequency and higher sensitivity to low glucose concentrations. A higher intracellular Ca(2+) mobilization in response to glucose was also found in ob/ob islets. Additionally, they displayed a change in the oscillatory pattern and Ca(2+) signals at low glucose levels. Capacitance experiments in intact islets revealed increased exocytosis in individual ob/ob beta-cells. All these up-regulated processes led to increased GSIS. In contrast, we found a lack of beta-cell Ca(2+) signal coupling, which could be a manifestation of early defects that lead to beta-cell malfunction in the progression to diabetes. These findings indicate that beta-cell functional adaptations are an important process in the compensatory response to obesity.
Collapse
Affiliation(s)
- Esperanza Irles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Patricia Ñeco
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Mónica Lluesma
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Sabrina Villar-Pazos
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Junia Carolina Santos-Silva
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Jean F Vettorazzi
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Paloma Alonso-Magdalena
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Everardo M Carneiro
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Antonio C Boschero
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Ángel Nadal
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Ivan Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| |
Collapse
|
20
|
Parnaud G, Lavallard V, Bedat B, Matthey-Doret D, Morel P, Berney T, Bosco D. Cadherin engagement improves insulin secretion of single human β-cells. Diabetes 2015; 64:887-96. [PMID: 25277393 DOI: 10.2337/db14-0257] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to assess whether cadherin-mediated adhesion of human islet cells was affected by insulin secretagogues and explore the role of cadherins in the secretory activity of β-cells. Experiments were carried out with single islet cells adherent to chimeric proteins made of functional E-, N-, or P-cadherin ectodomains fused to the Fc fragment of immunoglobulin (E-cad/Fc, N-cad/Fc, and P-cad/Fc) and immobilized on an inert substrate. We observed that cadherin expression in islet cells was not affected by insulin secretagogues. Adhesion tests showed that islet cells attached to N-cad/Fc and E-cad/Fc acquired, in a time- and secretagogue-dependent manner, a spreading form that was inhibited by blocking cadherin antibodies. By reverse hemolytic plaque assay, we showed that glucose-stimulated insulin secretion of single β-cells was increased by N-cad/Fc and E-cad/Fc adhesion compared with control. In the presence of E-cad/Fc and after glucose stimulation, we showed that total insulin secretion was six times higher in spreading β-cells compared with round β-cells. Furthermore, cadherin-mediated adhesion induced an asymmetric distribution of cortical actin in β-cells. Our results demonstrate that adhesion of β-cells to E- and N-cadherins is regulated by insulin secretagogues and that E- and N-cadherin engagement promotes stimulated insulin secretion.
Collapse
Affiliation(s)
- Geraldine Parnaud
- Department of Surgery, Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Vanessa Lavallard
- Department of Surgery, Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Benoît Bedat
- Department of Surgery, Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - David Matthey-Doret
- Department of Surgery, Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Philippe Morel
- Department of Surgery, Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Thierry Berney
- Department of Surgery, Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Department of Surgery, Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Pseudoislet formation enhances gene expression, insulin secretion and cytoprotective mechanisms of clonal human insulin-secreting 1.1B4 cells. Pflugers Arch 2015; 467:2219-28. [DOI: 10.1007/s00424-014-1681-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/08/2014] [Accepted: 12/18/2014] [Indexed: 12/31/2022]
|
22
|
Brouwers B, de Faudeur G, Osipovich AB, Goyvaerts L, Lemaire K, Boesmans L, Cauwelier EJG, Granvik M, Pruniau VPEG, Van Lommel L, Van Schoors J, Stancill JS, Smolders I, Goffin V, Binart N, in't Veld P, Declercq J, Magnuson MA, Creemers JWM, Schuit F, Schraenen A. Impaired islet function in commonly used transgenic mouse lines due to human growth hormone minigene expression. Cell Metab 2014; 20:979-90. [PMID: 25470546 PMCID: PMC5674787 DOI: 10.1016/j.cmet.2014.11.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/29/2014] [Accepted: 11/04/2014] [Indexed: 11/15/2022]
Abstract
The human growth hormone (hGH) minigene is frequently used in the derivation of transgenic mouse lines to enhance transgene expression. Although this minigene is present in the transgenes as a secondcistron, and thus not thought to be expressed, we found that three commonly used lines, Pdx1-Cre(Late), RIP-Cre, and MIP-GFP, each expressed significant amounts of hGH in pancreatic islets. Locally secreted hGH binds to prolactin receptors on β cells, activates STAT5 signaling, and induces pregnancy-like changes in gene expression, thereby augmenting pancreatic β cell mass and insulin content. In addition, islets of Pdx1-Cre(Late) mice have lower GLUT2 expression and reduced glucose-induced insulin release and are protected against the β cell toxin streptozotocin. These findings may be important when interpreting results obtained when these and other hGH minigene-containing transgenic mice are used.
Collapse
Affiliation(s)
- Bas Brouwers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Geoffroy de Faudeur
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Anna B Osipovich
- Center for Stem Cell Biology and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lotte Goyvaerts
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Katleen Lemaire
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Leen Boesmans
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Elisa J G Cauwelier
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Mikaela Granvik
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Vincent P E G Pruniau
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Leentje Van Lommel
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Jolien Van Schoors
- Center for Neurosciences, Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Jennifer S Stancill
- Center for Stem Cell Biology and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ilse Smolders
- Center for Neurosciences, Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Vincent Goffin
- INSERM U845, Research Center Growth and Signaling, PRL/GH Pathophysiology Laboratory, Faculty of Medicine, University Paris Descartes, Sorbonne Paris Cité, Paris 75993, France
| | - Nadine Binart
- INSERM U693, Faculté de Médecine Paris-Sud, University Paris-Sud, Le Kremlin-Bicêtre 94276, France
| | - Peter in't Veld
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Jeroen Declercq
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Mark A Magnuson
- Center for Stem Cell Biology and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John W M Creemers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium.
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium.
| | - Anica Schraenen
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
23
|
Hoang DT, Matsunari H, Nagaya M, Nagashima H, Millis JM, Witkowski P, Periwal V, Hara M, Jo J. A conserved rule for pancreatic islet organization. PLoS One 2014; 9:e110384. [PMID: 25350558 PMCID: PMC4211668 DOI: 10.1371/journal.pone.0110384] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/12/2014] [Indexed: 11/18/2022] Open
Abstract
Morphogenesis, spontaneous formation of organism structure, is essential for life. In the pancreas, endocrine α, β, and δ cells are clustered to form islets of Langerhans, the critical micro-organ for glucose homeostasis. The spatial organization of endocrine cells in islets looks different between species. Based on the three-dimensional positions of individual cells in islets, we computationally inferred the relative attractions between cell types, and found that the attractions between homotypic cells were slightly, but significantly, stronger than the attractions between heterotypic cells commonly in mouse, pig, and human islets. The difference between α-β cell attraction and β-β cell attraction was minimal in human islets, maximizing the plasticity of islet structures. Our result suggests that although the cellular composition and attractions of pancreatic endocrine cells are quantitatively different between species, the physical mechanism of islet morphogenesis may be evolutionarily conserved.
Collapse
Affiliation(s)
- Danh-Tai Hoang
- Asia Pacific Center for Theoretical Physics, Pohang, Korea
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, Kanagawa, Japan
| | - Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, Kanagawa, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kanagawa, Japan
| | - J. Michael Millis
- Department of Surgery, The University of Chicago, Chicago, IL, United States of America
| | - Piotr Witkowski
- Department of Surgery, The University of Chicago, Chicago, IL, United States of America
| | - Vipul Periwal
- Laboratory of Biological Modeling, NIDDK, NIH, Bethesda, MD, United States of America
| | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, IL, United States of America
| | - Junghyo Jo
- Asia Pacific Center for Theoretical Physics, Pohang, Korea
- Department of Physics, POSTECH, Pohang, Korea
| |
Collapse
|
24
|
Bursting synchronization dynamics of pancreatic β-cells with electrical and chemical coupling. Cogn Neurodyn 2014; 7:197-212. [PMID: 24427201 DOI: 10.1007/s11571-012-9226-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 09/17/2012] [Accepted: 10/11/2012] [Indexed: 10/27/2022] Open
Abstract
Based on bifurcation analysis, the synchronization behaviors of two identical pancreatic β-cells connected by electrical and chemical coupling are investigated, respectively. Various firing patterns are produced in coupled cells when a single cell exhibits tonic spiking or square-wave bursting individually, irrespectively of what the cells are connected by electrical or chemical coupling. On the one hand, cells can burst synchronously for both weak electrical and chemical coupling when an isolated cell exhibits tonic spiking itself. In particular, for electrically coupled cells, under the variation of the coupling strength there exist complex transition processes of synchronous firing patterns such as "fold/limit cycle" type of bursting, then anti-phase continuous spiking, followed by the "fold/torus" type of bursting, and finally in-phase tonic spiking. On the other hand, it is shown that when the individual cell exhibits square-wave bursting, suitable coupling strength can make the electrically coupled system generate "fold/Hopf" bursting via "fold/fold" hysteresis loop; whereas, the chemically coupled cells generate "fold/subHopf" bursting. Especially, chemically coupled bursters can exhibit inverse period-adding bursting sequence. Fast-slow dynamics analysis is applied to explore the generation mechanism of these bursting oscillations. The above analysis of bursting types and the transition may provide us with better insight into understanding the role of coupling in the dynamic behaviors of pancreatic β-cells.
Collapse
|
25
|
Stamper IJ, Jackson E, Wang X. Phase transitions in pancreatic islet cellular networks and implications for type-1 diabetes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012719. [PMID: 24580269 PMCID: PMC4172977 DOI: 10.1103/physreve.89.012719] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Indexed: 06/03/2023]
Abstract
In many aspects the onset of a chronic disease resembles a phase transition in a complex dynamic system: Quantitative changes accumulate largely unnoticed until a critical threshold is reached, which causes abrupt qualitative changes of the system. In this study we examine a special case, the onset of type-1 diabetes (T1D), a disease that results from loss of the insulin-producing pancreatic islet β cells. Within each islet, the β cells are electrically coupled to each other via gap-junctional channels. This intercellular coupling enables the β cells to synchronize their insulin release, thereby generating the multiscale temporal rhythms in blood insulin that are critical to maintaining blood glucose homeostasis. Using percolation theory we show how normal islet function is intrinsically linked to network connectivity. In particular, the critical amount of β-cell death at which the islet cellular network loses site percolation is consistent with laboratory and clinical observations of the threshold loss of β cells that causes islet functional failure. In addition, numerical simulations confirm that the islet cellular network needs to be percolated for β cells to synchronize. Furthermore, the interplay between site percolation and bond strength predicts the existence of a transient phase of islet functional recovery after onset of T1D and introduction of treatment, potentially explaining the honeymoon phenomenon. Based on these results, we hypothesize that the onset of T1D may be the result of a phase transition of the islet β-cell network.
Collapse
Affiliation(s)
- I. J. Stamper
- Department of Physics, the University of Alabama at Birmingham, Birmingham, Alabama, USA
- The Comprehensive Diabetes Center, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elais Jackson
- Department of Computer and Information Sciences, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xujing Wang
- Department of Physics, the University of Alabama at Birmingham, Birmingham, Alabama, USA
- The Comprehensive Diabetes Center, the University of Alabama at Birmingham, Birmingham, Alabama, USA
- Systems Biology Center, the National Heart, Lung, and Blood Institute, the National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Cigliola V, Chellakudam V, Arabieter W, Meda P. Connexins and β-cell functions. Diabetes Res Clin Pract 2013; 99:250-9. [PMID: 23176806 DOI: 10.1016/j.diabres.2012.10.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 10/15/2012] [Indexed: 11/20/2022]
Abstract
Proper functioning of pancreatic islets requires that numerous β-cells are properly coordinated. With evolution, many mechanisms have converged, which now allow individual β-cells to sense the state of activity of their neighbors as well as the changes taking place in the extracellular medium, and to regulate accordingly their own function. Here, we review one such mechanism for intercellular coordination, which depends on connexins. These integral membrane proteins accumulate at sites of close apposition between adjacent islet cell membranes, referred to as gap junctions. Recent evidence demonstrates that connexin-dependent signaling is relevant for the in vivo control of insulin biosynthesis and release, as well as for the survival of β-cells under stressing conditions. The data suggest that alterations of this signaling may be implicated in the β-cell alterations which characterize most forms of diabetes, raising the tantalizing possibility that targeting of the direct intercellular communications β-cells establish within each pancreatic islet may provide a novel, therapeutically useful strategy.
Collapse
Affiliation(s)
- Valentina Cigliola
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, 1 rue Michel-Servet, Geneva, Switzerland
| | | | | | | |
Collapse
|
27
|
Pedersen MG. Homogenization of Heterogeneously Coupled Bistable ODE's-Applied to Excitation Waves in Pancreatic Islets of Langerhans. J Biol Phys 2013; 30:285-303. [PMID: 23345873 DOI: 10.1023/b:jobp.0000046727.28337.f4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We consider a lattice of coupled identical differential equations. The coupling is between nearest neighbors and of resistance type, but the strength of coupling varies from site to site. Such a lattice can, for example, model an islet of Langerhans, where the sites in the lattice model individual but identical β-cells, and the coupling between cells is made of gap junctions.By using a homogenization technique we approximate the coupled discrete equations by a PDE, basically a nonlinear heat equation (a Fisher equation). For appropriate parameters this equation is known to have wave-solutions. Of importance is the fact, that the resulting diffusion coefficient does not only depend on the average of the coupling, but also on the variance of the strength. This means that the heterogeneity of the coupling strength influences the wave velocity-the greater the variance, the slower is the wave. This result is illustrated by simulations, both of a simple prototype equation, and for a full model of coupled beta-cells in both one and two dimensions, and implies that the natural heterogeneity in the islets of Langerhans should be taken into account.
Collapse
Affiliation(s)
- Morten Gram Pedersen
- Informatics and Mathematical Modelling, The Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
28
|
Meda P. Protein-mediated interactions of pancreatic islet cells. SCIENTIFICA 2013; 2013:621249. [PMID: 24278783 PMCID: PMC3820362 DOI: 10.1155/2013/621249] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/10/2012] [Indexed: 05/29/2023]
Abstract
The islets of Langerhans collectively form the endocrine pancreas, the organ that is soley responsible for insulin secretion in mammals, and which plays a prominent role in the control of circulating glucose and metabolism. Normal function of these islets implies the coordination of different types of endocrine cells, noticeably of the beta cells which produce insulin. Given that an appropriate secretion of this hormone is vital to the organism, a number of mechanisms have been selected during evolution, which now converge to coordinate beta cell functions. Among these, several mechanisms depend on different families of integral membrane proteins, which ensure direct (cadherins, N-CAM, occludin, and claudins) and paracrine communications (pannexins) between beta cells, and between these cells and the other islet cell types. Also, other proteins (integrins) provide communication of the different islet cell types with the materials that form the islet basal laminae and extracellular matrix. Here, we review what is known about these proteins and their signaling in pancreatic β -cells, with particular emphasis on the signaling provided by Cx36, given that this is the integral membrane protein involved in cell-to-cell communication, which has so far been mostly investigated for effects on beta cell functions.
Collapse
Affiliation(s)
- Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| |
Collapse
|
29
|
Desarménien MG, Jourdan C, Toutain B, Vessières E, Hormuzdi SG, Guérineau NC. Gap junction signalling is a stress-regulated component of adrenal neuroendocrine stimulus-secretion coupling in vivo. Nat Commun 2013; 4:2938. [PMID: 24356378 DOI: 10.1038/ncomms3938] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/14/2013] [Indexed: 01/06/2023] Open
Abstract
Elucidating the mechanisms whereby neuroendocrine tissues coordinate their input and output signals to ensure appropriate hormone secretion is currently a topical issue. In particular, whether a direct communication mediated by gap junctions between neurosecretory cells contributes to hormone release in vivo still remains unknown. Here we address this issue using a microsurgical approach allowing combined monitoring of adrenal catecholamine secretion and splanchnic nerve stimulation in anaesthetised mice. Pharmacological blockade of adrenal gap junctions by the uncoupling agent carbenoxolone reduces nerve stimulation-evoked catecholamine release in control mice and to a larger extent in stressed mice. In parallel, the gap junction-coupled cell network is extended in stressed mice. Altogether, this argues for a significant contribution of adrenomedullary gap junctions to catecholamine secretion in vivo. As such, gap junctional signalling appears to be a substantial component for neuroendocrine function in the adrenal medulla, as it may represent an additional lever regulating hormone release.
Collapse
Affiliation(s)
- Michel G Desarménien
- 1] CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier F-34094, France [2] INSERM, U661, Montpellier F-34094, France [3] Universités de Montpellier 1 & 2, UMR-5203, Montpellier F-34094, France [4]
| | - Carole Jourdan
- 1] CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier F-34094, France [2] INSERM, U661, Montpellier F-34094, France [3] Universités de Montpellier 1 & 2, UMR-5203, Montpellier F-34094, France [4]
| | - Bertrand Toutain
- 1] Department of Integrated Neurovascular and Mitochondrial Biology, Angers F-49045, France [2] CNRS UMR6214, Angers F-49045, France [3] INSERM U1083, Angers F-49045, France [4] University of Angers, Angers F-49045, France
| | - Emilie Vessières
- 1] Department of Integrated Neurovascular and Mitochondrial Biology, Angers F-49045, France [2] CNRS UMR6214, Angers F-49045, France [3] INSERM U1083, Angers F-49045, France [4] University of Angers, Angers F-49045, France
| | - Sheriar G Hormuzdi
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Nathalie C Guérineau
- 1] Department of Integrated Neurovascular and Mitochondrial Biology, Angers F-49045, France [2] CNRS UMR6214, Angers F-49045, France [3] INSERM U1083, Angers F-49045, France [4] University of Angers, Angers F-49045, France
| |
Collapse
|
30
|
Zimmermann C, Cederroth CR, Bourgoin L, Foti M, Nef S. Prevention of diabetes in db/db mice by dietary soy is independent of isoflavone levels. Endocrinology 2012; 153:5200-11. [PMID: 22962258 DOI: 10.1210/en.2012-1490] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Recent evidence points towards the beneficial use of soy proteins and isoflavones to improve glucose control and slow the progression of type 2 diabetes. Here, we used diabetic db/db mice fed a high soy-containing diet (SD) or a casein soy-free diet to investigate the metabolic effects of soy and isoflavones consumption on glucose homeostasis, hepatic glucose production, and pancreatic islet function. Male db/db mice fed with a SD exhibited a robust reduction in hyperglycemia (50%), correlating with a reduction in hepatic glucose production and preserved pancreatic β-cell function. The rapid decrease in fasting glucose levels resulted from an inhibition of gluconeogenesis and an increase in glycolysis in the liver of db/db mice. Soy consumption also prevented the loss of pancreatic β-cell mass and thus improved glucose-stimulated insulin secretion (3-fold), which partly accounted for the overall improvements in glucose homeostasis. Comparison of SD effects on hyperglycemia with differing levels of isoflavones or with purified isoflavones indicate that the beneficial physiological effects of soy are not related to differences in their isoflavone content. Overall, these findings suggest that consumption of soy is beneficial for improving glucose homeostasis and delaying the progression of diabetes in the db/db mice but act independently of isoflavone concentration.
Collapse
Affiliation(s)
- Céline Zimmermann
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Yeo RWY, Yang K, Li G, Lim SK. High glucose predisposes gene expression and ERK phosphorylation to apoptosis and impaired glucose-stimulated insulin secretion via the cytoskeleton. PLoS One 2012; 7:e44988. [PMID: 23024780 PMCID: PMC3443235 DOI: 10.1371/journal.pone.0044988] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/11/2012] [Indexed: 01/09/2023] Open
Abstract
Chronic high glucose (HG) inflicts glucotoxicity on vulnerable cell types such as pancreatic β cells and contributes to insulin resistance and impaired insulin secretion in diabetic patients. To identify HG-induced cellular aberrations that are candidate mediators of glucotoxicity in pancreatic β cells, we analyzed gene expression in ERoSHK6, a mouse insulin-secreting cell line after chronic HG exposure (six-day exposure to 33.3 mM glucose). Chronic HG exposure which reduced glucose-stimulated insulin secretion (GSIS) increased transcript levels of 185 genes that clustered primarily in 5 processes namely cellular growth and proliferation; cell death; cellular assembly and organization; cell morphology; and cell-to-cell signaling and interaction. The former two were validated by increased apoptosis of ERoSHK6 cells after chronic HG exposure and reaffirmed the vulnerability of β cells to glucotoxicity. The three remaining processes were partially substantiated by changes in cellular morphology and structure, and instigated an investigation of the cytoskeleton and cell-cell adhesion. These studies revealed a depolymerized actin cytoskeleton that lacked actin stress fibers anchored at vinculin-containing focal adhesion sites as well as loss of E-cadherin-mediated cell-cell adherence after exposure to chronic HG, and were concomitant with constitutive ERK1/2 phosphorylation that was refractory to serum and glucose deprivation. Although inhibition of ERK phosphorylation by PD98059 promoted actin polymerization, it increased apoptosis and GSIS impairment. These findings suggest that ERK phosphorylation is a proximate regulator of cellular processes targeted by chronic HG-induced gene expression and that dynamic actin polymerization and depolymerization is important in β cell survival and function. Therefore, chronic HG alters gene expression and signal transduction to predispose the cytoskeleton towards apoptosis and GSIS impairment.
Collapse
Affiliation(s)
- Ronne Wee Yeh Yeo
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | | | - GuoDong Li
- Department of Clinical Research, Singapore General Hospital, Singapore, Singapore
| | - Sai Kiang Lim
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
32
|
Head WS, Orseth ML, Nunemaker CS, Satin LS, Piston DW, Benninger RK. Connexin-36 gap junctions regulate in vivo first- and second-phase insulin secretion dynamics and glucose tolerance in the conscious mouse. Diabetes 2012; 61:1700-7. [PMID: 22511206 PMCID: PMC3379660 DOI: 10.2337/db11-1312] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 02/06/2012] [Indexed: 12/30/2022]
Abstract
Insulin is secreted from the islets of Langerhans in coordinated pulses. These pulses are thought to lead to plasma insulin oscillations, which are putatively more effective in lowering blood glucose than continuous levels of insulin. Gap-junction coupling of β-cells by connexin-36 coordinates intracellular free calcium oscillations and pulsatile insulin release in isolated islets, however a role in vivo has not been shown. We test whether loss of gap-junction coupling disrupts plasma insulin oscillations and whether this impacts glucose tolerance. We characterized the connexin-36 knockout (Cx36(-/-)) mouse phenotype and performed hyperglycemic clamps with rapid sampling of insulin in Cx36(-/-) and control mice. Our results show that Cx36(-/-) mice are glucose intolerant, despite normal plasma insulin levels and insulin sensitivity. However, Cx36(-/-) mice exhibit reduced insulin pulse amplitudes and a reduction in first-phase insulin secretion. These changes are similarly found in isolated Cx36(-/-) islets. We conclude that Cx36 gap junctions regulate the in vivo dynamics of insulin secretion, which in turn is important for glucose homeostasis. Coordinated pulsatility of individual islets enhances the first-phase elevation and second-phase pulses of insulin. Because these dynamics are disrupted in the early stages of type 2 diabetes, dysregulation of gap-junction coupling could be an important factor in the development of this disease.
Collapse
Affiliation(s)
- W. Steven Head
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Meredith L. Orseth
- Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Craig S. Nunemaker
- Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Leslie S. Satin
- Department of Pharmacology and Brehm Diabetes Center, University of Michigan, Ann Arbor, Michigan
| | - David W. Piston
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Richard K.P. Benninger
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Department of Bioengineering and Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
33
|
Affiliation(s)
- Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
34
|
Roggli E, Gattesco S, Caille D, Briet C, Boitard C, Meda P, Regazzi R. Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice. Diabetes 2012; 61:1742-51. [PMID: 22537941 PMCID: PMC3379668 DOI: 10.2337/db11-1086] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the initial phases of type 1 diabetes, pancreatic islets are invaded by immune cells, exposing β-cells to proinflammatory cytokines. This unfavorable environment results in gene expression modifications leading to loss of β-cell functions. To study the contribution of microRNAs (miRNAs) in this process, we used microarray analysis to search for changes in miRNA expression in prediabetic NOD mice islets. We found that the levels of miR-29a/b/c increased in islets of NOD mice during the phases preceding diabetes manifestation and in isolated mouse and human islets exposed to proinflammatory cytokines. Overexpression of miR-29a/b/c in MIN6 and dissociated islet cells led to impairment in glucose-induced insulin secretion. Defective insulin release was associated with diminished expression of the transcription factor Onecut2, and a consequent rise of granuphilin, an inhibitor of β-cell exocytosis. Overexpression of miR-29a/b/c also promoted apoptosis by decreasing the level of the antiapoptotic protein Mcl1. Indeed, a decoy molecule selectively masking the miR-29 binding site on Mcl1 mRNA protected insulin-secreting cells from apoptosis triggered by miR-29 or cytokines. Taken together, our findings suggest that changes in the level of miR-29 family members contribute to cytokine-mediated β-cell dysfunction occurring during the initial phases of type 1 diabetes.
Collapse
Affiliation(s)
- Elodie Roggli
- Department of Cell Biology and Morphology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sonia Gattesco
- Department of Cell Biology and Morphology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dorothée Caille
- Department of Cell Physiology and Metabolism, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Claire Briet
- Institut National de Santé et de Recherche Médicale U986, Paris, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christian Boitard
- Institut National de Santé et de Recherche Médicale U986, Paris, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Romano Regazzi
- Department of Cell Biology and Morphology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Corresponding author: Romano Regazzi,
| |
Collapse
|
35
|
Matsumoto T, Sakurai K, Tanaka A, Ishibashi T, Tachibana K, Ishikawa K, Yokote K. The anti-ulcer agent, irsogladine, increases insulin secretion by MIN6 cells. Eur J Pharmacol 2012; 685:213-7. [PMID: 22542662 DOI: 10.1016/j.ejphar.2012.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 03/28/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
Insulin secretion by pancreatic islets is a multicellular process. In addition to other essential systems, gap junctions are an important component of cell-to-cell communication in pancreatic islets. It is well known that dysfunction of gap junctions causes inappropriate insulin secretion. The anti-ulcer agent, irsogladine, increases gap junctions in some cell types. To examine the effect of irsogladine on insulin secretion, we investigated insulin secretion by MIN6 cells treated with or without irsogladine. The expression of connexin 36 proteins and intracellular cAMP levels were also determined using immunoblotting and ELISA assays, respectively. Irsogladine had no effect on insulin secretion under 5.6mM glucose conditions. However, under 16.7 mM glucose conditions, irsogladine (1.0 × 10(-5)M) induced a 1.7 ± 0.20 fold increase in insulin secretion compared to the control (P<0.05). This effect of irsogladine on insulin secretion was inhibited by the addition of the gap junction inhibitor 18-beta-glycyrrhetinic acid. Irsogladine treatment increased the protein level of connexin 36 in the plasma membrane fraction. The intracellular cAMP level in MIN6 cells was significantly, but mildly, increased by irsogladine treatment. Furthermore, Rp-cAMP and H89 inhibited the effects of irsogladine on insulin secretion under high glucose conditions. Irsogladine increases insulin secretion under high glucose conditions. The up-regulation of gap junction channels and the increased level of intracellular cAMP induced by irsogladine treatment suggest that these phenomena are involved in irsogladine-induced increased insulin secretion.
Collapse
Affiliation(s)
- Tsuyoshi Matsumoto
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Klee P, Allagnat F, Pontes H, Cederroth M, Charollais A, Caille D, Britan A, Haefliger JA, Meda P. Connexins protect mouse pancreatic β cells against apoptosis. J Clin Invest 2011; 121:4870-9. [PMID: 22056383 PMCID: PMC3225984 DOI: 10.1172/jci40509] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/28/2011] [Indexed: 12/18/2022] Open
Abstract
Type 1 diabetes develops when most insulin-producing β cells of the pancreas are killed by an autoimmune attack. The in vivo conditions modulating the sensitivity and resistance of β cells to this attack remain largely obscure. Here, we show that connexin 36 (Cx36), a trans-membrane protein that forms gap junctions between β cells in the pancreatic islets, protects mouse β cells against both cytotoxic drugs and cytokines that prevail in the islet environment at the onset of type 1 diabetes. We documented that this protection was at least partially dependent on intercellular communication, which Cx36 and other types of connexin channels establish within pancreatic islets. We further found that proinflammatory cytokines decreased expression of Cx36 and that experimental reduction or augmentation of Cx36 levels increased or decreased β cell apoptosis, respectively. Thus, we conclude that Cx36 is central to β cell protection from toxic insults.
Collapse
Affiliation(s)
- Philippe Klee
- Department of Cell Physiology and Metabolism, University of Geneva, Medical School, Geneva, Switzerland.
Service of Internal Medicine, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Florent Allagnat
- Department of Cell Physiology and Metabolism, University of Geneva, Medical School, Geneva, Switzerland.
Service of Internal Medicine, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Helena Pontes
- Department of Cell Physiology and Metabolism, University of Geneva, Medical School, Geneva, Switzerland.
Service of Internal Medicine, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Manon Cederroth
- Department of Cell Physiology and Metabolism, University of Geneva, Medical School, Geneva, Switzerland.
Service of Internal Medicine, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Anne Charollais
- Department of Cell Physiology and Metabolism, University of Geneva, Medical School, Geneva, Switzerland.
Service of Internal Medicine, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Dorothée Caille
- Department of Cell Physiology and Metabolism, University of Geneva, Medical School, Geneva, Switzerland.
Service of Internal Medicine, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Aurore Britan
- Department of Cell Physiology and Metabolism, University of Geneva, Medical School, Geneva, Switzerland.
Service of Internal Medicine, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Jacques-Antoine Haefliger
- Department of Cell Physiology and Metabolism, University of Geneva, Medical School, Geneva, Switzerland.
Service of Internal Medicine, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva, Medical School, Geneva, Switzerland.
Service of Internal Medicine, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| |
Collapse
|
37
|
Potolicchio I, Cigliola V, Velazquez-Garcia S, Klee P, Valjevac A, Kapic D, Cosovic E, Lepara O, Hadzovic-Dzuvo A, Mornjacovic Z, Meda P. Connexin-dependent signaling in neuro-hormonal systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1919-36. [PMID: 22001400 DOI: 10.1016/j.bbamem.2011.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/14/2011] [Accepted: 09/23/2011] [Indexed: 01/04/2023]
Abstract
The advent of multicellular organisms was accompanied by the development of short- and long-range chemical signalling systems, including those provided by the nervous and endocrine systems. In turn, the cells of these two systems have developed mechanisms for interacting with both adjacent and distant cells. With evolution, such mechanisms have diversified to become integrated in a complex regulatory network, whereby individual endocrine and neuro-endocrine cells sense the state of activity of their neighbors and, accordingly, regulate their own level of functioning. A consistent feature of this network is the expression of connexin-made channels between the (neuro)hormone-producing cells of all endocrine glands and secretory regions of the central nervous system so far investigated in vertebrates. This review summarizes the distribution of connexins in the mammalian (neuro)endocrine systems, and what we know about the participation of these proteins on hormone secretion, the life of the producing cells, and the action of (neuro)hormones on specific targets. The data gathered since the last reviews on the topic are summarized, with particular emphasis on the roles of Cx36 in the function of the insulin-producing beta cells of the endocrine pancreas, and of Cx40 in that of the renin-producing juxta-glomerular epithelioid cells of the kidney cortex. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Ilaria Potolicchio
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The appearance of multicellular organisms imposed the development of several mechanisms for cell-to-cell communication, whereby different types of cells coordinate their function. Some of these mechanisms depend on the intercellular diffusion of signal molecules in the extracellular spaces, whereas others require cell-to-cell contact. Among the latter mechanisms, those provided by the proteins of the connexin family are widespread in most tissues. Connexin signaling is achieved via direct exchanges of cytosolic molecules between adjacent cells at gap junctions, for cell-to-cell coupling, and possibly also involves the formation of membrane "hemi-channels," for the extracellular release of cytosolic signals, direct interactions between connexins and other cell proteins, and coordinated influence on the expression of multiple genes. Connexin signaling appears to be an obligatory attribute of all multicellular exocrine and endocrine glands. Specifically, the experimental evidence we review here points to a direct participation of the Cx36 isoform in the function of the insulin-producing β-cells of the endocrine pancreas, and of the Cx40 isoform in the function of the renin-producing juxtaglomerular epithelioid cells of the kidney cortex.
Collapse
Affiliation(s)
- Domenico Bosco
- Department of Surgery, University of Geneva Medical School, Geneva, Switzerland
| | | | | |
Collapse
|
39
|
Klee P, Lamprianou S, Charollais A, Caille D, Sarro R, Cederroth M, Haefliger JA, Meda P. Connexin implication in the control of the murine beta-cell mass. Pediatr Res 2011; 70:142-7. [PMID: 21527868 DOI: 10.1203/pdr.0b013e318220f106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Diabetes develops when the insulin needs of peripheral cells exceed the availability or action of the hormone. This situation results from the death of most beta-cells in type 1 diabetes, and from an inability of the beta-cell mass to adapt to increasing insulin needs in type 2 and gestational diabetes. We analyzed several lines of transgenic mice and showed that connexins (Cxs), the transmembrane proteins that form gap junctions, are implicated in the modulation of the beta-cell mass. Specifically, we found that the native Cx36 does not alter islet size or insulin content, whereas the Cx43 isoform increases both parameters, and Cx32 has a similar effect only when combined with GH. These findings open interesting perspectives for the in vitro and in vivo regulation of the beta-cell mass.
Collapse
Affiliation(s)
- Philippe Klee
- Department of Pediatrics, University Hospital of Geneva, Geneva 1211, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Soriano S, Gonzalez A, Marroquí L, Tudurí E, Vieira E, Amaral AG, Batista TM, Rafacho A, Boschero AC, Nadal A, Carneiro EM, Quesada I. Reduced insulin secretion in protein malnourished mice is associated with multiple changes in the beta-cell stimulus-secretion coupling. Endocrinology 2010; 151:3543-54. [PMID: 20555033 DOI: 10.1210/en.2010-0008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanism by which protein malnutrition impairs glucose-stimulated insulin secretion in the pancreatic beta-cell is not completely known but may be related to alterations in the signaling events involved in insulin release. Here, we aimed to study the stimulus-secretion coupling of beta-cells from mice fed with low-protein (LP) diet or normal-protein (NP) diet for 8 wk after weaning. Patch-clamp measurements in isolated cells showed that beta-cells from LP mice had a resting membrane potential that was more hyperpolarized than controls. Additionally, depolarization and generation of action potentials in response to stimulatory glucose concentrations were also impaired in beta-cells of LP mice. All these alterations in the LP group were most likely attributed to higher ATP-dependent K(+) (K(ATP)) channel activity in resting conditions and lower efficiency of glucose to induce the closure of these channels. Moreover, a Western blot analysis revealed higher protein levels of the sulphonylurea receptor of the K(ATP) channel in islets of LP mice. Because beta-cell Ca(2+) signals depend on electrical activity, intracellular Ca(2+) oscillations were measured by fluorescence microscopy in intact islets, indicating a lower response to glucose in the LP group. Finally, cell-to-cell synchrony of Ca(2+) signals was analyzed by confocal microscopy. Islets from LP mice exhibited a decreased level of coupling among beta-cells, which was probably due to the low expression levels of connexin 36. Therefore, low-protein diet leads to several alterations in the stimulus-secretion coupling of pancreatic beta-cells that might explain the diminished insulin secretion in response to glucose in this malnutrition state.
Collapse
Affiliation(s)
- Sergi Soriano
- Instituto de Bioingeniería and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad Miguel Hernández, 03202 Elche, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lenas P, Moos M, Luyten FP. Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science. TISSUE ENGINEERING PART B-REVIEWS 2010; 15:395-422. [PMID: 19589040 DOI: 10.1089/ten.teb.2009.0461] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The field of tissue engineering is moving toward a new concept of "in vitro biomimetics of in vivo tissue development." In Part I of this series, we proposed a theoretical framework integrating the concepts of developmental biology with those of process design to provide the rules for the design of biomimetic processes. We named this methodology "developmental engineering" to emphasize that it is not the tissue but the process of in vitro tissue development that has to be engineered. To formulate the process design rules in a rigorous way that will allow a computational design, we should refer to mathematical methods to model the biological process taking place in vitro. Tissue functions cannot be attributed to individual molecules but rather to complex interactions between the numerous components of a cell and interactions between cells in a tissue that form a network. For tissue engineering to advance to the level of a technologically driven discipline amenable to well-established principles of process engineering, a scientifically rigorous formulation is needed of the general design rules so that the behavior of networks of genes, proteins, or cells that govern the unfolding of developmental processes could be related to the design parameters. Now that sufficient experimental data exist to construct plausible mathematical models of many biological control circuits, explicit hypotheses can be evaluated using computational approaches to facilitate process design. Recent progress in systems biology has shown that the empirical concepts of developmental biology that we used in Part I to extract the rules of biomimetic process design can be expressed in rigorous mathematical terms. This allows the accurate characterization of manufacturing processes in tissue engineering as well as the properties of the artificial tissues themselves. In addition, network science has recently shown that the behavior of biological networks strongly depends on their topology and has developed the necessary concepts and methods to describe it, allowing therefore a deeper understanding of the behavior of networks during biomimetic processes. These advances thus open the door to a transition for tissue engineering from a substantially empirical endeavor to a technology-based discipline comparable to other branches of engineering.
Collapse
Affiliation(s)
- Petros Lenas
- Department of Biochemistry and Molecular Biology IV, Veterinary Faculty, Complutense University of Madrid , Madrid, Spain
| | | | | |
Collapse
|
42
|
Roggli E, Britan A, Gattesco S, Lin-Marq N, Abderrahmani A, Meda P, Regazzi R. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 2010; 59:978-86. [PMID: 20086228 PMCID: PMC2844845 DOI: 10.2337/db09-0881] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Pancreatic beta-cells exposed to proinflammatory cytokines display alterations in gene expression resulting in defective insulin secretion and apoptosis. MicroRNAs are small noncoding RNAs emerging as key regulators of gene expression. Here, we evaluated the contribution of microRNAs to cytokine-mediated beta-cell cytotoxicity. RESEARCH DESIGN AND METHODS We used global microarray profiling and real-time PCR analysis to detect changes in microRNA expression in beta-cells exposed to cytokines and in islets of pre-diabetic NOD mice. We assessed the involvement of the microRNAs affected in cytokine-mediated beta-cell failure by modifying their expression in insulin-secreting MIN6 cells. RESULTS We found that IL-1beta and TNF-alpha induce the expression of miR-21, miR-34a, and miR-146a both in MIN6 cells and human pancreatic islets. We further show an increase of these microRNAs in islets of NOD mice during development of pre-diabetic insulitis. Blocking miR-21, miR-34a, or miR-146a function using antisense molecules did not restore insulin-promoter activity but prevented the reduction in glucose-induced insulin secretion observed upon IL-1beta exposure. Moreover, anti-miR-34a and anti-miR-146a treatment protected MIN6 cells from cytokine-triggered cell death. CONCLUSIONS Our data identify miR-21, miR-34a, and miR-146a as novel players in beta-cell failure elicited in vitro and in vivo by proinflammatory cytokines, notably during the development of peri-insulitis that precedes overt diabetes in NOD mice.
Collapse
Affiliation(s)
- Elodie Roggli
- Department of Cell Biology and Morphology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Aurore Britan
- Department of Cell Physiology and Metabolism, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Sonia Gattesco
- Department of Cell Biology and Morphology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nathalie Lin-Marq
- Department of Genetic Medicine and Development, Geneva Eurexpress, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Amar Abderrahmani
- Department of Cell Biology and Morphology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Service of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Romano Regazzi
- Department of Cell Biology and Morphology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Corresponding author: Romano Regazzi,
| |
Collapse
|
43
|
Abstract
Cell-cell communication within any given tissue is an important aspect of correct organ function. The islets of Langerhans forming the endocrine pancreas are composed of alpha-, beta-, delta-, epsilon- and PP-cells, and interactions between these cells are required for fine-tuning glucose homeostasis of the body. The endocrine cells communicate through homotypic or heterotypic cell-cell adhesion, or in a paracrine fashion, and this communication is involved in the regulated secretion of islet hormones. This review discusses how islet hormones, secreted molecules and ions influence the endocrine cells and how cell adhesion molecules such as neural cell adhesion molecule, cadherins, connexin-36, Eph receptors and ephrin ligands, as well as extracellular matrix proteins, modulate pancreatic islet function.
Collapse
Affiliation(s)
- R Jain
- Institute of Metabolic Physiology, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
44
|
Villiger M, Goulley J, Friedrich M, Grapin-Botton A, Meda P, Lasser T, Leitgeb RA. In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy. Diabetologia 2009; 52:1599-607. [PMID: 19484218 DOI: 10.1007/s00125-009-1383-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS Structural and functional imaging of the islets of Langerhans and the insulin-secreting beta cells represents a significant challenge and a long-lasting objective in diabetes research. In vivo microscopy offers a valuable insight into beta cell function but has severe limitations regarding sample labelling, imaging speed and depth, and was primarily performed on isolated islets lacking native innervations and vascularisation. This article introduces extended-focus optical coherence microscopy (xfOCM) to image murine pancreatic islets in their natural environment in situ, i.e. in vivo and in a label-free condition. METHODS Ex vivo measurements on excised pancreases were performed and validated by standard immunohistochemistry to investigate the structures that can be observed with xfOCM. The influence of streptozotocin on the signature of the islets was investigated in a second step. Finally, xfOCM was applied to make measurements of the murine pancreas in situ and in vivo. RESULTS xfOCM circumvents the fundamental physical limit that trades lateral resolution for depth of field, and achieves fast volumetric imaging with high resolution in all three dimensions. It allows label-free visualisation of pancreatic lobules, ducts, blood vessels and individual islets of Langerhans ex vivo and in vivo, and detects streptozotocin-induced islet destruction. CONCLUSIONS/INTERPRETATION Our results demonstrate the potential value of xfOCM in high-resolution in vivo studies to assess islet structure and function in animal models of diabetes, aiming towards its use in longitudinal studies of diabetes progression and islet transplants.
Collapse
Affiliation(s)
- M Villiger
- Laboratoire d'Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
45
|
Veyrat-Durebex C, Montet X, Vinciguerra M, Gjinovci A, Meda P, Foti M, Rohner-Jeanrenaud F. The Lou/C rat: a model of spontaneous food restriction associated with improved insulin sensitivity and decreased lipid storage in adipose tissue. Am J Physiol Endocrinol Metab 2009; 296:E1120-32. [PMID: 19208855 DOI: 10.1152/ajpendo.90592.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The inbred Lou/C rat, originating from the Wistar strain, has been described as a model of resistance to diet-induced obesity, but little is known about its metabolism. Since this knowledge could provide some clues about the etiology of obesity/insulin resistance, this study aimed at characterizing glucose and lipid metabolism in Lou/C vs. Wistar rats. This was achieved by performing glucose and insulin tolerance tests, euglycemic hyperinsulinemic clamps, and characterization of intracellular insulin signaling in skeletal muscle. Substrate-induced insulin secretion was evaluated using perfused pancreas and isolated islets. Finally, body fat composition and the expression of various factors involved in lipid metabolism were determined. Body weight and caloric intake were lower in Lou/C than in Wistar rats, whereas food efficiency was similar. Improved glucose tolerance of Lou/C rats was not related to increased insulin output but was related to improved insulin sensitivity/responsiveness in the liver and in skeletal muscles. In the latter tissue, this was accompanied by improved insulin signaling, as suggested by higher activation of the insulin receptor and of the Akt/protein kinase B pathway. Fat deposition was markedly lower in Lou/C than in Wistar rats, especially in visceral adipose tissue. In the inguinal adipose depot, expression of uncoupling protein-1 was detected in Lou/C but not in Wistar rats, in keeping with a higher expression of peroxisome proliferator-activated receptor-gamma coactivator-1 in these animals. The Lou/C rat is a valuable model of spontaneous food restriction with associated improved insulin sensitivity. Independently from its reduced caloric intake, it also exhibits a preferential channeling of nutrients toward utilization rather than storage.
Collapse
|
46
|
Bhoj EJ, Romeo S, Baroni MG, Bartov G, Schultz RA, Zinn AR. MODY-like diabetes associated with an apparently balanced translocation: possible involvement of MPP7 gene and cell polarity in the pathogenesis of diabetes. Mol Cytogenet 2009; 2:5. [PMID: 19216786 PMCID: PMC2646739 DOI: 10.1186/1755-8166-2-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 02/13/2009] [Indexed: 11/10/2022] Open
Abstract
Background Characterization of disease-associated balanced translocations has led to the discovery of genes responsible for many disorders, including syndromes that include various forms of diabetes mellitus. We studied a man with unexplained maturity onset diabetes of the young (MODY)-like diabetes and an apparently balanced translocation [46,XY,t(7;10)(q22;p12)] and sought to identify a novel diabetes locus by characterizing the translocation breakpoints. Results Mutations in coding exons and splice sites of known MODY genes were first ruled out by PCR amplification and DNA sequencing. Fluorescent in situ hybridization (FISH) studies demonstrated that the translocation did not disrupt two known diabetes-related genes on 10p12. The translocation breakpoints were further mapped to high resolution using FISH and somatic cell hybrids and the junctions PCR-amplified and sequenced. The translocation did not disrupt any annotated transcription unit. However, the chromosome 10 breakpoint was 220 kilobases 5' to the Membrane Protein, Palmitoylated 7 (MPP7) gene, which encodes a protein required for proper cell polarity. This biological function is shared by HNF4A, a known MODY gene. Databases show MPP7 is highly expressed in mouse pancreas and is expressed in human islets. The translocation did not appear to alter lymphoblastoid expression of MPP7 or other genes near the breakpoints. Conclusion The balanced translocation and MODY-like diabetes in the proband could be coincidental. Alternatively, the translocation may cause islet cell dysfunction by altering MPP7 expression in a subtle or tissue-specific fashion. The potential roles of MPP7 mutations in diabetes and perturbed islet cell polarity in insulin secretion warrant further study.
Collapse
Affiliation(s)
- Elizabeth J Bhoj
- McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Zhang Q, Galvanovskis J, Abdulkader F, Partridge CJ, Göpel SO, Eliasson L, Rorsman P. Cell coupling in mouse pancreatic beta-cells measured in intact islets of Langerhans. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:3503-23. [PMID: 18632454 DOI: 10.1098/rsta.2008.0110] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The perforated whole-cell configuration of the patch-clamp technique was applied to functionally identified beta-cells in intact mouse pancreatic islets to study the extent of cell coupling between adjacent beta-cells. Using a combination of current- and voltage-clamp recordings, the total gap junctional conductance between beta-cells in an islet was estimated to be 1.22 nS. The analysis of the current waveforms in a voltage-clamped cell (due to the firing of an action potential in a neighbouring cell) suggested that the gap junctional conductance between a pair of beta-cells was 0.17 nS. Subthreshold voltage-clamp depolarization (to -55 mV) gave rise to a slow capacitive current indicative of coupling between beta-cells, but not in non-beta-cells, with a time constant of 13.5 ms and a total charge movement of 0.2 pC. Our data suggest that a superficial beta-cell in an islet is in electrical contact with six to seven other beta-cells. No evidence for dye coupling was obtained when cells were dialysed with Lucifer yellow even when electrical coupling was apparent. The correction of the measured resting conductance for the contribution of the gap junctional conductance indicated that the whole-cell KATP channel conductance (GK,ATP) falls from approximately 2.5 nS in the absence of glucose to 0.1 nS at 15 mM glucose with an estimated IC50 of approximately 4mM. Theoretical considerations indicate that the coupling between beta-cells within the islet is sufficient to allow propagation of [Ca2+]i waves to spread with a speed of approximately 80 microms-1, similar to that observed experimentally in confocal [Ca2+]i imaging.
Collapse
Affiliation(s)
- Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Nittala A, Wang X. The hyperbolic effect of density and strength of inter beta-cell coupling on islet bursting: a theoretical investigation. Theor Biol Med Model 2008; 5:17. [PMID: 18673579 PMCID: PMC2538510 DOI: 10.1186/1742-4682-5-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Accepted: 08/03/2008] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Insulin, the principal regulating hormone of blood glucose, is released through the bursting of the pancreatic islets. Increasing evidence indicates the importance of islet morphostructure in its function, and the need of a quantitative investigation. Recently we have studied this problem from the perspective of islet bursting of insulin, utilizing a new 3D hexagonal closest packing (HCP) model of islet structure that we have developed. Quantitative non-linear dependence of islet function on its structure was found. In this study, we further investigate two key structural measures: the number of neighboring cells that each beta-cell is coupled to, nc, and the coupling strength, gc. RESULTS BETA-cell clusters of different sizes with number of beta-cells nbeta ranging from 1-343, nc from 0-12, and gc from 0-1000 pS, were simulated. Three functional measures of islet bursting characteristics--fraction of bursting beta-cells fb, synchronization index lambda, and bursting period Tb, were quantified. The results revealed a hyperbolic dependence on the combined effect of nc and gc. From this we propose to define a dimensionless cluster coupling index or CCI, as a composite measure for islet morphostructural integrity. We show that the robustness of islet oscillatory bursting depends on CCI, with all three functional measures fb, lambda and Tb increasing monotonically with CCI when it is small, and plateau around CCI = 1. CONCLUSION CCI is a good islet function predictor. It has the potential of linking islet structure and function, and providing insight to identify therapeutic targets for the preservation and restoration of islet beta-cell mass and function.
Collapse
Affiliation(s)
- Aparna Nittala
- Max McGee National Research Center for Juvenile Diabetes & Human and Molecular Genetics Center, Medical College of Wisconsin and Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
49
|
Cederroth CR, Vinciguerra M, Gjinovci A, Kühne F, Klein M, Cederroth M, Caille D, Suter M, Neumann D, James RW, Doerge DR, Wallimann T, Meda P, Foti M, Rohner-Jeanrenaud F, Vassalli JD, Nef S. Dietary phytoestrogens activate AMP-activated protein kinase with improvement in lipid and glucose metabolism. Diabetes 2008; 57:1176-85. [PMID: 18420492 DOI: 10.2337/db07-0630] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Emerging evidence suggests that dietary phytoestrogens can have beneficial effects on obesity and diabetes, although their mode of action is not known. Here, we investigate the mechanisms mediating the action of dietary phytoestrogens on lipid and glucose metabolism in rodents. RESEARCH DESIGN AND METHODS Male CD-1 mice were fed from conception to adulthood with either a high soy-containing diet or a soy-free diet. Serum levels of circulating isoflavones, ghrelin, leptin, free fatty acids, triglycerides, and cholesterol were quantified. Tissue samples were analyzed by quantitative RT-PCR and Western blotting to investigate changes of gene expression and phosphorylation state of key metabolic proteins. Glucose and insulin tolerance tests and euglycemic-hyperinsulinemic clamp were used to assess changes in insulin sensitivity and glucose uptake. In addition, insulin secretion was determined by in situ pancreas perfusion. RESULTS In peripheral tissues of soy-fed mice, especially in white adipose tissue, phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase was increased, and expression of genes implicated in peroxisomal fatty acid oxidation and mitochondrial biogenesis was upregulated. Soy-fed mice also showed reduced serum insulin levels and pancreatic insulin content and improved insulin sensitivity due to increased glucose uptake into skeletal muscle. Thus, mice fed with a soy-rich diet have improved adipose and glucose metabolism. CONCLUSIONS Dietary soy could prove useful to prevent obesity and associated disorders. Activation of the AMPK pathway by dietary soy is likely involved and may mediate the beneficial effects of dietary soy in peripheral tissues.
Collapse
Affiliation(s)
- Christopher R Cederroth
- Department of Genetic Medicine and Development, National Centre of Competence in Research-Frontiers in Genetics, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wellershaus K, Degen J, Deuchars J, Theis M, Charollais A, Caille D, Gauthier B, Janssen-Bienhold U, Sonntag S, Herrera P, Meda P, Willecke K. A new conditional mouse mutant reveals specific expression and functions of connexin36 in neurons and pancreatic beta-cells. Exp Cell Res 2008; 314:997-1012. [PMID: 18258229 DOI: 10.1016/j.yexcr.2007.12.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 12/20/2007] [Accepted: 12/20/2007] [Indexed: 11/19/2022]
Abstract
Connexin36 (Cx36) is the main connexin isoform expressed in neurons of the central nervous system (CNS) and in pancreatic beta-cells, i.e. two types of excitable cells that share - in spite of their different origins - a number of common features. Previous studies on Cx36 deficient mice have documented that loss of Cx36 resulted in phenotypic abnormalities in both the CNS and the pancreas which, however, could not be attributed to specific cell types due to the general deletion nature of the animal model used. Attempts to address this limitation using cell type specific deletions generated by the Cre/loxP strategy have so far been complicated by the lack of Cx36 expression from the floxed allele. We have now generated a conditional Cx36 deficient mouse mutant in which the coding region of Cx36 is flanked by loxP sites, followed by a cyan fluorescent protein (CFP) reporter gene. Here we show that Cx36 was still expressed from the floxed allele in neurons and pancreatic beta-cells. In these cells, a 30-60% decrease of this protein, relative to the expression level of the wildtype allele, did not significantly perturb cell coupling. The deletion of Cx36 by ubiquitously and cell type specifically expressed Cre recombinases revealed that CFP functions as a reliable reporter for Cx36 expression in brain neurons and to some extent in retina neurons, but not in pancreas. Loss of Cx36 by Cre-mediated recombination was documented at transcript and protein levels. Cell type specific deletion of Cx36 in the endocrine pancreas revealed major alterations in the basal as well as the glucose-induced insulin secretion, hence specifically attributing to pancreatic Cx36 an important regulatory role in the control of beta-cell function. Cell type specific deletion of Cx36 in the CNS by suitable Cre recombinases should also help to elucidate the functional role of Cx36 in different neuronal subtypes.
Collapse
Affiliation(s)
- Kerstin Wellershaus
- Institute of Genetics, Division of Molecular Genetics, University of Bonn, Roemerstrasse 164, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|