1
|
Aceves-Serrano L, Neva JL, Munro J, Vavasour IM, Parent M, Boyd LA, Doudet DJ. Evaluation of microglia activation related markers following a clinical course of TBS: A non-human primate study. PLoS One 2024; 19:e0301118. [PMID: 38753646 PMCID: PMC11098425 DOI: 10.1371/journal.pone.0301118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/11/2024] [Indexed: 05/18/2024] Open
Abstract
While the applicability and popularity of theta burst stimulation (TBS) paradigms remain, current knowledge of their neurobiological effects is still limited, especially with respect to their impact on glial cells and neuroinflammatory processes. We used a multimodal imaging approach to assess the effects of a clinical course of TBS on markers for microglia activation and tissue injury as an indirect assessment of neuroinflammatory processes. Healthy non-human primates received continuous TBS (cTBS), intermittent TBS (iTBS), or sham stimulation over the motor cortex at 90% of resting motor threshold. Stimulation was delivered to the awake subjects 5 times a week for 3-4 weeks. Translocator protein (TSPO) expression was evaluated using Positron Emission Tomography and [11C]PBR28, and myo-inositol (mI) and N-acetyl-aspartate (NAA) concentrations were assessed with Magnetic Resonance Spectroscopy. Animals were then euthanized, and immunofluorescence staining was performed using antibodies against TSPO. Paired t-tests showed no significant changes in [11C]PBR28 measurements after stimulation. Similarly, no significant changes in mI and NAA concentrations were found. Post-mortem TSPO evaluation showed comparable mean immunofluorescence intensity after active TBS and sham delivery. The current study suggests that in healthy brains a clinical course of TBS, as evaluated with in-vivo imaging techniques (PET and MRS), did not measurably modulate the expression of glia related markers and metabolite associated with neural viability.
Collapse
Affiliation(s)
- Lucero Aceves-Serrano
- Department of Medicine, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason L. Neva
- Faculté de Médecine, École de Kinésiologie et des Sciences de l’activité Physique, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| | - Jonathan Munro
- CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Irene M. Vavasour
- Faculty of Medicine, UBC MRI Research Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Parent
- CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Lara A. Boyd
- Faculty of Medicine, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Medicine, Graduate Program of Rehabilitation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Doris J. Doudet
- Department of Medicine, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Golzari-Sorkheh M, Liyanage I, Reed MA, Weaver DF. Alzheimer's Disease and COVID-19 Pathogenic Overlap: Implications for Drug Repurposing. Can J Neurol Sci 2024; 51:161-172. [PMID: 36991574 DOI: 10.1017/cjn.2023.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
As COVID-19 continues, a safe, cost-effective treatment strategy demands continued inquiry. Chronic neuroinflammatory disorders may appear to be of little relevance in this regard; often indolent and progressive disorders characterized by neuroinflammation (such as Alzheimer's disease (AD)) are fundamentally dissimilar in etiology and symptomology to COVID-19's rapid infectivity and pathology. However, the two disorders share extensive pathognomonic features, including at membrane, cytoplasmic, and extracellular levels, culminating in analogous immunogenic destruction of their respective organ parenchyma. We hypothesize that these mechanistic similarities may extent to therapeutic targets, namely that it is conceivable an agent against AD's immunopathy may have efficacy against COVID-19 and vice versa. It is notable that while extensively investigated, no agent has yet demonstrated significant therapeutic efficacy against AD's cognitive and memory declines. Yet this very failure has driven the development of numerous agents with strong mechanistic potential and clinical characteristics. Having already approved for clinical trials, these agents may be an expedient starting point in the urgent search for an effective COVID-19 therapy. Herein, we review the overlapping Alzheimer's/ COVID-19 targets and theorize several initial platforms.
Collapse
Affiliation(s)
| | - Imindu Liyanage
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Mark A Reed
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Smith AN, Morris JK, Carbuhn AF, Herda TJ, Keller JE, Sullivan DK, Taylor MK. Creatine as a Therapeutic Target in Alzheimer's Disease. Curr Dev Nutr 2023; 7:102011. [PMID: 37881206 PMCID: PMC10594571 DOI: 10.1016/j.cdnut.2023.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, affecting approximately 6.5 million older adults in the United States. Development of AD treatment has primarily centered on developing pharmaceuticals that target amyloid-β (Aβ) plaques in the brain, a hallmark pathological biomarker that precedes symptomatic AD. Though recent clinical trials of novel drugs that target Aβ have demonstrated promising preliminary data, these pharmaceuticals have a poor history of developing into AD treatments, leading to hypotheses that other therapeutic targets may be more suitable for AD prevention and treatment. Impaired brain energy metabolism is another pathological hallmark that precedes the onset of AD that may provide a target for intervention. The brain creatine (Cr) system plays a crucial role in maintaining bioenergetic flux and is disrupted in AD. Recent studies using AD mouse models have shown that supplementing with Cr improves brain bioenergetics, as well as AD biomarkers and cognition. Despite these promising findings, no human trials have investigated the potential benefits of Cr supplementation in AD. This narrative review discusses the link between Cr and AD and the potential for Cr supplementation as a treatment for AD.
Collapse
Affiliation(s)
- Aaron N. Smith
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jill K. Morris
- Alzheimer’s Disease Research Center, University of Kansas, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Aaron F. Carbuhn
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Trent J. Herda
- Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, KS, United States
| | - Jessica E. Keller
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Debra K. Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- Alzheimer’s Disease Research Center, University of Kansas, Fairway, KS, United States
| | - Matthew K. Taylor
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- Alzheimer’s Disease Research Center, University of Kansas, Fairway, KS, United States
| |
Collapse
|
4
|
Li Y, Pang J, Wang J, Wang W, Bo Q, Lei L, Wang X, Wang M. High-frequency rTMS over the left DLPFC improves the response inhibition control of young healthy participants: an ERP combined 1H-MRS study. Front Psychol 2023; 14:1144757. [PMID: 37275686 PMCID: PMC10233929 DOI: 10.3389/fpsyg.2023.1144757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/25/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Unlike the effect of repetitive transcranial magnetic stimulation (rTMS) in treating neuropsychiatric diseases, little is known about how personal factors might account for the disparity of results from studies of cognition and rTMS. In this study, we investigated the effects of high-frequency rTMS on response inhibition control and explored the time course changes in cognitive processing and brain metabolic mechanisms after rTMS using event-related potentials (ERPs) and magnetic resonance spectroscopy (1H-MRS). Methods Participants were all right-handed and were naive to rTMS and the Go/NoGo task. Twenty-five healthy young participants underwent one 10 Hz rTMS session per day in which stimulation was applied over the left dorsolateral prefrontal cortex (DLPFC), and a homogeneous participant group of 25 individuals received a sham rTMS treatment for 1 week. A Go/NoGo task was performed, an electroencephalogram (EEG) was recorded, and 1H-MRS was performed. Results The results revealed that there was a strong trend of decreasing commission errors of NoGo stimuli by high frequency rTMS over the left DLPFC, whereas there was no significant difference between before and after rTMS treatment with respect to these parameters in the sham rTMS group. High-frequency rTMS significantly increased the amplitude of NoGo-N2 but not Go-N2, Go-P3, or NoGo-P3. The myo-inositol /creatine complex (MI/Cr) ratio, indexing cerebral metabolism, in the left DLPFC was decreased in the rTMS treated group. Discussion This observation supports the view that high-frequency rTMS over the left DLPFC has the strong tendency of reducing commission errors behaviorally, increase the amplitude of NoGo-N2 and improve the response inhibition control of healthy young participants. The results are consistent with the excitatory properties of high frequency rTMS. We suggest that the increase in the NoGo-N2 amplitude may be related to the increased excitability of the DLPFC-anterior cingulate cortex (ACC) neural loop. Metabolic changes in the DLPFC may be a possible mechanism for the improvement of the response inhibition control of rTMS.
Collapse
Affiliation(s)
- Yanmin Li
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, China
| | - Jianmin Pang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing Wang
- Department of Respiratory Medicine, Harrison International Peace Hospital, Hengshui, Hebei, China
| | - Wei Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, China
| | - Qianlan Bo
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, China
| | - Licun Lei
- Department of Radiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiayue Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, China
| | - Mingwei Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Derkaczew M, Martyniuk P, Osowski A, Wojtkiewicz J. Cyclitols: From Basic Understanding to Their Association with Neurodegeneration. Nutrients 2023; 15:2029. [PMID: 37432155 DOI: 10.3390/nu15092029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 07/12/2023] Open
Abstract
One of the most common cyclitols found in eukaryotic cells-Myo-inositol (MI) and its derivatives play a key role in many cellular processes such as ion channel physiology, signal transduction, phosphate storage, cell wall formation, membrane biogenesis and osmoregulation. The aim of this paper is to characterize the possibility of neurodegenerative disorders treatment using MI and the research of other therapeutic methods linked to MI's derivatives. Based on the reviewed literature the researchers focus on the most common neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Spinocerebellar ataxias, but there are also works describing other seldom encountered diseases. The use of MI, d-pinitol and other methods altering MI's metabolism, although research on this topic has been conducted for years, still needs much closer examination. The dietary supplementation of MI shows a promising effect on the treatment of neurodegenerative disorders and can be of great help in alleviating the accompanying depressive symptoms.
Collapse
Affiliation(s)
- Maria Derkaczew
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students' Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Piotr Martyniuk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students' Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Adam Osowski
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| |
Collapse
|
6
|
Kwon KJ, Byun JY. Asymmetry of Gray- and White-Matter Volume and Metabolites in the Central-Vestibular System in Healthy Individuals. J Clin Med 2023; 12:jcm12041272. [PMID: 36835808 PMCID: PMC9967821 DOI: 10.3390/jcm12041272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023] Open
Abstract
This study was designed to determine whether there was an asymmetry of structure and neurochemical activity of the interhemispheric vestibular-cortical system between healthy individuals and patients with vestibular failure. Previous studies have identified differences in gray-matter-volume (GMV) and white-matter-volume (WMV) asymmetry in the central-vestibular system and in concentrations of brain metabolites in the parietal lobe 2 (PO2) between patients with vestibulopathy and healthy controls. However, a comparison of the left and right sides in the healthy controls has not been made conclusively. This study included 23 healthy right-handed volunteers, and was carried out between March 2016 and March 2020. A three-dimensional T1-weighted image was used to calculate the GMV and WMV of the central-vestibular network on both sides, and proton magnetic resonance spectroscopy (H1MRS) was employed to analyze the brain metabolites in the PO2 area. The relative ratios of N-acetylaspartate (NAA)/tCr, tNAA/tCr, glycerophosphocholine (GPC)/tCr, Glx/tCr, and myo-inositol/tCr were quantified from the proton-MRS data. GMV and WMV differed significantly between the right and left vestibular-cortical regions. The GMVs of the right PO2, caudate, insula, and precuneus were significantly higher than those of the same locations on the left side; however, in the Rolandic operculum, the GMV on the left was significantly higher than on the right. In the PO2, Rolandic operculum, thalamus, and insula, the WMV on the left side was higher than on the right side of the corresponding location. However, the right caudate and precuneus WMV were higher than the left at the same location. In the H1MRS study, the Glx/tCr and GPC/tCr ratios on the left side were significantly higher than on the right. In comparison, the NAA/tCr and tNAA/tCr ratios showed contrasting results. The NAA/tCr ratio (r = -0.478, p = 0.021), tNAA/tCr ratio (r = -0.537, p = 0.008), and Glx/tCr ratio (r = -0.514, p = 0.012) on the right side showed a significant negative correlation with the participants' age. There was no relationship between GMV and metabolites on either side. Brain structure and concentrations of brain metabolites related to the vestibular system may differ between the two hemispheres in healthy individuals. Therefore, the asymmetry of the central-vestibular system should be considered when performing imaging.
Collapse
|
7
|
Su XB, Ko ALA, Saiardi A. Regulations of myo-inositol homeostasis: Mechanisms, implications, and perspectives. Adv Biol Regul 2023; 87:100921. [PMID: 36272917 DOI: 10.1016/j.jbior.2022.100921] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Phosphorylation is the most common module of cellular signalling pathways. The dynamic nature of phosphorylation, which is conferred by the balancing acts of kinases and phosphatases, allows this modification to finely control crucial cellular events such as growth, differentiation, and cell cycle progression. Although most research to date has focussed on protein phosphorylation, non-protein phosphorylation substrates also play vital roles in signal transduction. The most well-established substrate of non-protein phosphorylation is inositol, whose phosphorylation generates many important signalling molecules such as the second messenger IP3, a key factor in calcium signalling. A fundamental question to our understanding of inositol phosphorylation is how the levels of cellular inositol are controlled. While the availability of protein phosphorylation substrates is known to be readily controlled at the levels of transcription, translation, and/or protein degradation, the regulatory mechanisms that control the uptake, synthesis, and removal of inositol are underexplored. Potentially, such mechanisms serve as an important layer of regulation of cellular signal transduction pathways. There are two ways in which mammalian cells acquire inositol. The historic use of radioactive 3H-myo-inositol revealed that inositol is promptly imported from the extracellular environment by three specific symporters SMIT1/2, and HMIT, coupling sodium or proton entry, respectively. Inositol can also be synthesized de novo from glucose-6P, thanks to the enzymatic activity of ISYNA1. Intriguingly, emerging evidence suggests that in mammalian cells, de novo myo-inositol synthesis occurs irrespective of inositol availability in the environment, prompting the question of whether the two sources of inositol go through independent metabolic pathways, thus serving distinct functions. Furthermore, the metabolic stability of myo-inositol, coupled with the uptake and endogenous synthesis, determines that there must be exit pathways to remove this extraordinary sugar from the cells to maintain its homeostasis. This essay aims to review our current knowledge of myo-inositol homeostatic metabolism, since they are critical to the signalling events played by its phosphorylated forms.
Collapse
Affiliation(s)
- Xue Bessie Su
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - An-Li Andrea Ko
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Adolfo Saiardi
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
8
|
Ali F, Manzoor U, Bhattacharya R, Bansal AK, Chandrashekharaiah KS, Singh LR, Saraswati SM, Uversky V, Dar TA. Brain Metabolite, Myo-inositol, Inhibits Catalase Activity: A Mechanism of the Distortion of the Antioxidant Defense System in Alzheimer's disease. ACS OMEGA 2022; 7:12690-12700. [PMID: 35474814 PMCID: PMC9025986 DOI: 10.1021/acsomega.1c06990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/02/2022] [Indexed: 05/14/2023]
Abstract
A strong correlation between brain metabolite accumulation and oxidative stress has been observed in Alzheimer's disease (AD) patients. There are two central hypotheses for this correlation: (i) coaccumulation of toxic amyloid-β and Myo-inositol (MI), a significant brain metabolite, during presymptomatic stages of AD, and (ii) enhanced expression of MI transporter in brain cells during oxidative stress-induced volume changes in the brain. Identifying specific interactive effects of MI with cellular antioxidant enzymes would represent an essential step in understanding the oxidative stress-induced AD pathogenicity. This study demonstrated that MI inhibits catalase, an essential antioxidant enzyme primarily inefficient in AD, by decreasing its k cat (turnover number) and increasing K m (Michaelis-Menten constant) values. This inhibition of catalase by MI under in vivo studies increased cellular H2O2 levels, leading to decreased cell viability. Furthermore, MI induces distortion of the active heme center with an overall loss of structure and stability of catalase. MI also alters distances of the vital active site and substrate channel residues of catalase. The present study provides evidence for the involvement of MI in the inactivation of the antioxidant defense system during oxidative stress-induced pathogenesis of AD. Regulation of MI levels, during early presymptomatic stages of AD, might serve as a potential early-on therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Fasil Ali
- Department
of Studies and Research in Biochemistry, Jnana Kaveri Campus, Mangalore University, Karnataka 574199, India
| | - Usma Manzoor
- Department
of Clinical Biochemistry, University of
Kashmir, Srinagar 190006, India
| | - Reshmee Bhattacharya
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Aniket Kumar Bansal
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi 110007, India
| | | | | | - Suma Mohan Saraswati
- School
of Chemical & Biotechnology,SASTRA Deemed
to be University, Tirumalaisamudram,
Thanjavur 613401, Tamilnadu, India
| | - Vladimir Uversky
- Department
of Molecular Medicine and USF Health Byrd Alzheimer’s Research
Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute
for Biological Instrumentation of the Russian Academy of Sciences,
Federal Research Center “Pushchino Scientific Center for Biological
Research of the Russian Academy of Sciences”, Pushchino 142290, Russia
| | - Tanveer Ali Dar
- Department
of Clinical Biochemistry, University of
Kashmir, Srinagar 190006, India
| |
Collapse
|
9
|
Arciniegas Ruiz SM, Eldar-Finkelman H. Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS-A Decade Onward. Front Mol Neurosci 2022; 14:792364. [PMID: 35126052 PMCID: PMC8813766 DOI: 10.3389/fnmol.2021.792364] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
The protein kinase, GSK-3, participates in diverse biological processes and is now recognized a promising drug discovery target in treating multiple pathological conditions. Over the last decade, a range of newly developed GSK-3 inhibitors of diverse chemotypes and inhibition modes has been developed. Even more conspicuous is the dramatic increase in the indications that were tested from mood and behavior disorders, autism and cognitive disabilities, to neurodegeneration, brain injury and pain. Indeed, clinical and pre-clinical studies were largely expanded uncovering new mechanisms and novel insights into the contribution of GSK-3 to neurodegeneration and central nerve system (CNS)-related disorders. In this review we summarize new developments in the field and describe the use of GSK-3 inhibitors in the variety of CNS disorders. This remarkable volume of information being generated undoubtedly reflects the great interest, as well as the intense hope, in developing potent and safe GSK-3 inhibitors in clinical practice.
Collapse
|
10
|
Jeon P, Mackinley M, Théberge J, Palaniyappan L. The trajectory of putative astroglial dysfunction in first episode schizophrenia: a longitudinal 7-Tesla MRS study. Sci Rep 2021; 11:22333. [PMID: 34785674 PMCID: PMC8595701 DOI: 10.1038/s41598-021-01773-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022] Open
Abstract
Myo-inositol is mainly found in astroglia and its levels has been shown to be reduced in the anterior cingulate cortex (ACC) of patients with schizophrenia. We investigate the status of astroglial integrity indexed by ACC myo-inositol at the onset and over the first 6 months of treatment of first episode schizophrenia. We employed 7 T magnetic resonance spectroscopy (1H-MRS) and quantified myo-inositol spectra at the dorsal ACC in 31 participants; 21 patients with schizophrenia with median lifetime antipsychotic exposure of less than 3 days, followed up after 6 months of treatment, and 10 healthy subjects scanned twice over the same period. We studied the time by group interaction for myo-inositol after adjusting for gender and age. We report significant reduction in myo-inositol concentration in the ACC in schizophrenia at an early, untreated state of acute illness that becomes insignificant over time, after instituting early intervention. This trajectory indicates that dynamic astroglial changes are likely to operate in the early stages of schizophrenia. MRS myo-inositol may be a critical marker of amelioration of active psychosis in early stages of schizophrenia.
Collapse
Affiliation(s)
- Peter Jeon
- Department of Medical Biophysics, Western University, London, Canada
- Imaging Division, Lawson Health Research Institute, London, Canada
| | - Michael Mackinley
- Imaging Division, Lawson Health Research Institute, London, Canada
- Robarts Research Institute, Western University, London, Canada
- Department of Neuroscience, Western University, London, Canada
| | - Jean Théberge
- Department of Medical Biophysics, Western University, London, Canada
- Imaging Division, Lawson Health Research Institute, London, Canada
- Diagnostic Imaging, St. Joseph's Health Care, London, Canada
- Department of Medical Imaging, Western University, London, Canada
- Department of Psychiatry, Western University, London, Canada
| | - Lena Palaniyappan
- Department of Medical Biophysics, Western University, London, Canada.
- Imaging Division, Lawson Health Research Institute, London, Canada.
- Robarts Research Institute, Western University, London, Canada.
- Department of Psychiatry, Western University, London, Canada.
- Robarts Research Institute, UWO, 1151 Richmond Street N., Room 3208, London, ON, N6A 5B7, Canada.
| |
Collapse
|
11
|
Patkee PA, Baburamani AA, Long KR, Dimitrova R, Ciarrusta J, Allsop J, Hughes E, Kangas J, McAlonan GM, Rutherford MA, De Vita E. Neurometabolite mapping highlights elevated myo-inositol profiles within the developing brain in down syndrome. Neurobiol Dis 2021; 153:105316. [PMID: 33711492 PMCID: PMC8039898 DOI: 10.1016/j.nbd.2021.105316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 01/02/2023] Open
Abstract
The neurodevelopmental phenotype in Down Syndrome (DS), or Trisomy 21, is variable including a wide spectrum of cognitive impairment and a high risk of early-onset Alzheimer's disease (AD). A key metabolite of interest within the brain in DS is Myo-inositol (mIns). The NA+/mIns co-transporter is located on human chromosome 21 and is overexpressed in DS. In adults with DS, elevated brain mIns was previously associated with cognitive impairment and proposed as a risk marker for progression to AD. However, it is unknown if brain mIns is increased earlier in development. The aim of this study was to estimate mIns concentration levels and key brain metabolites [N-acetylaspartate (NAA), Choline (Cho) and Creatine (Cr)] in the developing brain in DS and aged-matched controls. We used in vivo magnetic resonance spectroscopy (MRS) in neonates with DS (n = 12) and age-matched controls (n = 26) scanned just after birth (36-45 weeks postmenstrual age). Moreover, we used Mass Spectrometry in early (10-20 weeks post conception) ex vivo fetal brain tissue samples from DS (n = 14) and control (n = 30) cases. Relative to [Cho] and [Cr], we report elevated ratios of [mIns] in vivo in the basal ganglia/thalamus, in neonates with DS, when compared to age-matched typically developing controls. Glycine concentration ratios [Gly]/[Cr] and [Cho]/[Cr] also appear elevated. We observed elevated [mIns] in the ex vivo fetal cortical brain tissue in DS compared with controls. In conclusion, a higher level of brain mIns was evident as early as 10 weeks post conception and was measurable in vivo from 36 weeks post-menstrual age. Future work will determine if this early difference in metabolites is linked to cognitive outcomes in childhood or has utility as a potential treatment biomarker for early intervention.
Collapse
Affiliation(s)
- Prachi A Patkee
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK
| | - Ana A Baburamani
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK
| | - Katherine R Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, SE1 1UL, UK
| | - Ralica Dimitrova
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK; Department of Forensic and Neurodevelopmental Science, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AB, UK
| | - Judit Ciarrusta
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK; Department of Forensic and Neurodevelopmental Science, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AB, UK
| | - Joanna Allsop
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK
| | - Johanna Kangas
- Department of Forensic and Neurodevelopmental Science, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AB, UK
| | - Grainne M McAlonan
- Department of Forensic and Neurodevelopmental Science, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AB, UK
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK
| | - Enrico De Vita
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK; Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK.
| |
Collapse
|
12
|
López-Gambero AJ, Sanjuan C, Serrano-Castro PJ, Suárez J, Rodríguez de Fonseca F. The Biomedical Uses of Inositols: A Nutraceutical Approach to Metabolic Dysfunction in Aging and Neurodegenerative Diseases. Biomedicines 2020; 8:biomedicines8090295. [PMID: 32825356 PMCID: PMC7554709 DOI: 10.3390/biomedicines8090295] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/05/2023] Open
Abstract
Inositols are sugar-like compounds that are widely distributed in nature and are a part of membrane molecules, participating as second messengers in several cell-signaling processes. Isolation and characterization of inositol phosphoglycans containing myo- or d-chiro-inositol have been milestones for understanding the physiological regulation of insulin signaling. Other functions of inositols have been derived from the existence of multiple stereoisomers, which may confer antioxidant properties. In the brain, fluctuation of inositols in extracellular and intracellular compartments regulates neuronal and glial activity. Myo-inositol imbalance is observed in psychiatric diseases and its use shows efficacy for treatment of depression, anxiety, and compulsive disorders. Epi- and scyllo-inositol isomers are capable of stabilizing non-toxic forms of β-amyloid proteins, which are characteristic of Alzheimer’s disease and cognitive dementia in Down’s syndrome, both associated with brain insulin resistance. However, uncertainties of the intrinsic mechanisms of inositols regarding their biology are still unsolved. This work presents a critical review of inositol actions on insulin signaling, oxidative stress, and endothelial dysfunction, and its potential for either preventing or delaying cognitive impairment in aging and neurodegenerative diseases. The biomedical uses of inositols may represent a paradigm in the industrial approach perspective, which has generated growing interest for two decades, accompanied by clinical trials for Alzheimer’s disease.
Collapse
Affiliation(s)
- Antonio J. López-Gambero
- Departamento de Biología Celular, Genética y Fisiología, Campus de Teatinos s/n, Universidad de Málaga, Andalucia Tech, 29071 Málaga, Spain;
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain
| | | | - Pedro Jesús Serrano-Castro
- UGC Neurología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain;
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain
- Correspondence: (J.S.); (F.R.d.F.); Tel.: +34-952614012 (J.S.)
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain
- Correspondence: (J.S.); (F.R.d.F.); Tel.: +34-952614012 (J.S.)
| |
Collapse
|
13
|
Rueda N, Flórez J, Dierssen M, Martínez-Cué C. Translational validity and implications of pharmacotherapies in preclinical models of Down syndrome. PROGRESS IN BRAIN RESEARCH 2019; 251:245-268. [PMID: 32057309 DOI: 10.1016/bs.pbr.2019.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurodevelopmental disorders are challenging to study in the laboratory, and despite a large investment, few novel treatments have been developed in the last decade. While animal models have been valuable in elucidating disease mechanisms and in providing insights into the function of specific genes, the predictive validity of preclinical models to test potential therapies has been questioned. In the last two decades, diverse new murine models of Down syndrome (DS) have been developed and numerous studies have demonstrated neurobiological alterations that could be responsible for the cognitive and behavioral phenotypes found in this syndrome. In many cases, similar alterations were found in murine models and in individuals with DS, although several phenotypes shown in animals have yet not been confirmed in the human condition. Some of the neurobiological alterations observed in mice have been proposed to account for their changes in cognition and behavior, and have received special attention because of being putative therapeutic targets. Those include increased oxidative stress, altered neurogenesis, overexpression of the Dyrk1A gene, GABA-mediated overinhibition and Alzheimer's disease-related neurodegeneration. Subsequently, different laboratories have tested the efficacy of pharmacotherapies targeting these alterations. Unfortunately, animal models are limited in their ability to mimic the extremely complex process of human neurodevelopment and neuropathology. Therefore, the safety and efficacy identified in animal studies are not always translated to humans, and most of the drugs tested have not demonstrated any positive effect or very limited efficacy in clinical trials. Despite their limitations, though, animal trials give us extremely valuable information for developing and testing drugs for human use that cannot be obtained from molecular or cellular experiments alone. This chapter reviews some of these therapeutic approaches and discusses some reasons that could account for the discrepancy between the findings in mouse models of DS and in humans, including: (i) the incomplete resemble of the genetic alterations of available mouse models of DS and human trisomy 21, (ii) the lack of evidence that some of the phenotypic alterations found in mice (e.g., GABA-mediated overinhibition, and alterations in adult neurogenesis) are also present in DS individuals, and (iii) the inaccuracy and/or inadequacy of the methods used in clinical trials to detect changes in the cognitive and behavioral functions of people with DS. Despite the shortcomings of animal models, animal experimentation remains an invaluable tool in developing drugs. Thus, we will also discuss how to increase predictive validity of mouse models.
Collapse
Affiliation(s)
- Noemí Rueda
- Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Jesús Flórez
- Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Mara Dierssen
- Cellular and Systems Neurobiology, Systems Biology Program, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain.
| |
Collapse
|
14
|
Chhetri DR. Myo-Inositol and Its Derivatives: Their Emerging Role in the Treatment of Human Diseases. Front Pharmacol 2019; 10:1172. [PMID: 31680956 PMCID: PMC6798087 DOI: 10.3389/fphar.2019.01172] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
Myo-inositol has been established as an important growth-promoting factor of mammalian cells and animals. The role of myo-inositol as a lipotropic factor has been proven, in addition to its involvement as co-factors of enzymes and as messenger molecules in signal transduction. Myo-inositol deficiency leads to intestinal lipodystrophy in animals and "inositol-less death" in some fungi. Of late, diverse uses of myo-inositol and its derivatives have been discovered in medicinal research. These compounds are used in the treatment of a variety of ailments from diabetes to cancer, and continued research in this direction promises a new future in therapeutics. In different diseases, inositols implement different strategies for therapeutic actions such as tissue specific increase or decrease in inositol products, production of inositol phosphoglycans (IPGs), conversion of myo-inositol (MI) to D-chiro-inositol (DCI), modulation of signal transduction, regulation of reactive oxygen species (ROS) production, etc. Though inositol pharmacology is a relatively lesser-known field, recent years of research has generated a critical mass of information on the subject. This review aims to summarize our current understanding on the role of inositol derivatives in ameliorating the symptoms of different diseases.
Collapse
Affiliation(s)
- Dhani Raj Chhetri
- Department of Botany, School of Life Sciences, Sikkim University, Gangtok, India
| |
Collapse
|
15
|
Baburamani AA, Patkee PA, Arichi T, Rutherford MA. New approaches to studying early brain development in Down syndrome. Dev Med Child Neurol 2019; 61:867-879. [PMID: 31102269 PMCID: PMC6618001 DOI: 10.1111/dmcn.14260] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2019] [Indexed: 12/19/2022]
Abstract
Down syndrome is the most common genetic developmental disorder in humans and is caused by partial or complete triplication of human chromosome 21 (trisomy 21). It is a complex condition which results in multiple lifelong health problems, including varying degrees of intellectual disability and delays in speech, memory, and learning. As both length and quality of life are improving for individuals with Down syndrome, attention is now being directed to understanding and potentially treating the associated cognitive difficulties and their underlying biological substrates. These have included imaging and postmortem studies which have identified decreased regional brain volumes and histological anomalies that accompany early onset dementia. In addition, advances in genome-wide analysis and Down syndrome mouse models are providing valuable insight into potential targets for intervention that could improve neurogenesis and long-term cognition. As little is known about early brain development in human Down syndrome, we review recent advances in magnetic resonance imaging that allow non-invasive visualization of brain macro- and microstructure, even in utero. It is hoped that together these advances may enable Down syndrome to become one of the first genetic disorders to be targeted by antenatal treatments designed to 'normalize' brain development. WHAT THIS PAPER ADDS: Magnetic resonance imaging can provide non-invasive characterization of early brain development in Down syndrome. Down syndrome mouse models enable study of underlying pathology and potential intervention strategies. Potential therapies could modify brain structure and improve early cognitive levels. Down syndrome may be the first genetic disorder to have targeted therapies which alter antenatal brain development.
Collapse
Affiliation(s)
- Ana A Baburamani
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK
| | - Prachi A Patkee
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK
| | - Tomoki Arichi
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK,Department of BioengineeringImperial College LondonLondonUK,Children's NeurosciencesEvelina London Children's HospitalLondonUK
| | - Mary A Rutherford
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK
| |
Collapse
|
16
|
Cannizzaro M, Jarošová J, De Paepe B. Relevance of solute carrier family 5 transporter defects to inherited and acquired human disease. J Appl Genet 2019; 60:305-317. [PMID: 31286439 DOI: 10.1007/s13353-019-00502-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 06/21/2019] [Accepted: 06/30/2019] [Indexed: 01/12/2023]
Abstract
The solute carrier (SLC) group of membrane transport proteins is crucial for cells via their control of import and export of vital molecules across the cellular membrane. Defects in these transporters with narrow substrate specificities cause monogenic disorders, giving us essential clues of their precise roles in cellular functioning. The SLC5 family in particular has been linked to various human diseases, of mild and severe phenotype as well as high and low prevalence. In this review, we describe the effects on health of SLC5 dysfunction and dysregulation by summarizing findings in patients with transporter gene defects. Patients display a plethora of pathologies which include glucose/galactose malabsorption, familiar renal glycosuria, thyroid dyshormonogenesis, and distal hereditary motor neuronopathies. In addition, the therapeutic potential of intervening in transporter activities for treating common diseases such as diabetes and cancer is explored.
Collapse
Affiliation(s)
- Miryam Cannizzaro
- Department of Neurology & Neuromuscular Reference Center, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Jana Jarošová
- Department of Neurology & Neuromuscular Reference Center, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Boel De Paepe
- Department of Neurology & Neuromuscular Reference Center, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
17
|
Yanez Lopez M, Pardon MC, Baiker K, Prior M, Yuchun D, Agostini A, Bai L, Auer DP, Faas HM. Myoinositol CEST signal in animals with increased Iba-1 levels in response to an inflammatory challenge-Preliminary findings. PLoS One 2019; 14:e0212002. [PMID: 30789943 PMCID: PMC6383890 DOI: 10.1371/journal.pone.0212002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 12/08/2018] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation plays an important role in the pathogenesis of a range of brain disorders. Non-invasive imaging of neuroinflammation is critical to help improve our understanding of the underlying disease mechanisms, monitor therapies and guide drug development. Generally, MRI lacks specificity to molecular imaging biomarkers, but molecular MR imaging based on chemical exchange saturation transfer (CEST) can potentially detect changes of myoinositol, a putative glial marker that may index neuroinflammation. In this pilot study we aimed to investigate, through validation with immunohistochemistry and in vivo magnetic resonance spectroscopy (MRS), whether CEST imaging can reflect the microglial response to a mild inflammatory challenge with lipopolysaccharide (LPS), in the APPSwe/ PS1 mouse model of Alzheimer’s disease and wild type controls. The response to the immune challenge was variable and did not align with genotype. Animals with a strong response to LPS (Iba1+, n = 6) showed an increase in CEST contrast compared with those who did not (Iba1-, n = 6). Changes of myoinositol levels after LPS were not significant. We discuss the difficulties of this mild inflammatory model, the role of myoinositol as a glial biomarker, and the technical challenges of CEST imaging at 0.6ppm.
Collapse
Affiliation(s)
- Maria Yanez Lopez
- Sir Peter Mansfield Imaging Centre, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | | | - Kerstin Baiker
- School of Veterinary Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Malcolm Prior
- Medical Imaging Unit, University of Nottingham, Nottingham, United Kingdom
| | - Ding Yuchun
- School of Computer Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alessandra Agostini
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Li Bai
- School of Computer Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Dorothee P. Auer
- Sir Peter Mansfield Imaging Centre, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Henryk M. Faas
- Sir Peter Mansfield Imaging Centre, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Voevodskaya O, Poulakis K, Sundgren P, van Westen D, Palmqvist S, Wahlund LO, Stomrud E, Hansson O, Westman E. Brain myoinositol as a potential marker of amyloid-related pathology: A longitudinal study. Neurology 2019; 92:e395-e405. [PMID: 30610093 PMCID: PMC6369900 DOI: 10.1212/wnl.0000000000006852] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/18/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the association between longitudinal changes in proton magnetic resonance spectroscopy (MRS) metabolites and amyloid pathology in individuals without dementia, and to explore the relationship between MRS and cognitive decline. METHODS In this longitudinal multiple time point study (a subset of the Swedish BioFINDER), we included cognitively healthy participants, individuals with subjective cognitive decline, and individuals with mild cognitive impairment. MRS was acquired serially in 294 participants (670 individual spectra) from the posterior cingulate/precuneus. Using mixed-effects models, we assessed the association between MRS and baseline β-amyloid (Aβ), and between MRS and the longitudinal Mini-Mental State Examination, accounting for APOE, age, and sex. RESULTS While baseline MRS metabolites were similar in Aβ positive (Aβ+) and negative (Aβ-) individuals, in the Aβ+ group, the estimated rate of change was +1.9%/y for myo-inositol (mI)/creatine (Cr) and -2.0%/y for N-acetylaspartate (NAA)/mI. In the Aβ- group, mI/Cr and NAA/mI yearly change was -0.05% and +1.2%; however, this was not significant across time points. The mild cognitive impairment Aβ+ group showed the steepest MRS changes, with an estimated rate of +2.93%/y (p = 0.07) for mI/Cr and -3.55%/y (p < 0.01) for NAA/mI. Furthermore, in the entire cohort, we found that Aβ+ individuals with low baseline NAA/mI had a significantly higher rate of cognitive decline than Aβ+ individuals with high baseline NAA/mI. CONCLUSION We demonstrate that the longitudinal change in mI/Cr and NAA/mI is associated with underlying amyloid pathology. MRS may be a useful noninvasive marker of Aβ-related processes over time. In addition, we show that in Aβ+ individuals, baseline NAA/mI may predict the rate of future cognitive decline.
Collapse
Affiliation(s)
- Olga Voevodskaya
- From the Division of Clinical Geriatrics (O.V., K.P., L.-O.W., E.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm; Department of Diagnostic Radiology (P.S., D.v.W.), Lund University; Imaging and Function (D.v.W.), Skåne University Health Care, Lund; Clinical Memory Research Unit (S.P., E.S., O.H.), Department of Clinical Sciences, Malmö, Lund University; Memory Clinic (E.S., O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - Konstantinos Poulakis
- From the Division of Clinical Geriatrics (O.V., K.P., L.-O.W., E.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm; Department of Diagnostic Radiology (P.S., D.v.W.), Lund University; Imaging and Function (D.v.W.), Skåne University Health Care, Lund; Clinical Memory Research Unit (S.P., E.S., O.H.), Department of Clinical Sciences, Malmö, Lund University; Memory Clinic (E.S., O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Pia Sundgren
- From the Division of Clinical Geriatrics (O.V., K.P., L.-O.W., E.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm; Department of Diagnostic Radiology (P.S., D.v.W.), Lund University; Imaging and Function (D.v.W.), Skåne University Health Care, Lund; Clinical Memory Research Unit (S.P., E.S., O.H.), Department of Clinical Sciences, Malmö, Lund University; Memory Clinic (E.S., O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Danielle van Westen
- From the Division of Clinical Geriatrics (O.V., K.P., L.-O.W., E.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm; Department of Diagnostic Radiology (P.S., D.v.W.), Lund University; Imaging and Function (D.v.W.), Skåne University Health Care, Lund; Clinical Memory Research Unit (S.P., E.S., O.H.), Department of Clinical Sciences, Malmö, Lund University; Memory Clinic (E.S., O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Sebastian Palmqvist
- From the Division of Clinical Geriatrics (O.V., K.P., L.-O.W., E.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm; Department of Diagnostic Radiology (P.S., D.v.W.), Lund University; Imaging and Function (D.v.W.), Skåne University Health Care, Lund; Clinical Memory Research Unit (S.P., E.S., O.H.), Department of Clinical Sciences, Malmö, Lund University; Memory Clinic (E.S., O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Lars-Olof Wahlund
- From the Division of Clinical Geriatrics (O.V., K.P., L.-O.W., E.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm; Department of Diagnostic Radiology (P.S., D.v.W.), Lund University; Imaging and Function (D.v.W.), Skåne University Health Care, Lund; Clinical Memory Research Unit (S.P., E.S., O.H.), Department of Clinical Sciences, Malmö, Lund University; Memory Clinic (E.S., O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Erik Stomrud
- From the Division of Clinical Geriatrics (O.V., K.P., L.-O.W., E.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm; Department of Diagnostic Radiology (P.S., D.v.W.), Lund University; Imaging and Function (D.v.W.), Skåne University Health Care, Lund; Clinical Memory Research Unit (S.P., E.S., O.H.), Department of Clinical Sciences, Malmö, Lund University; Memory Clinic (E.S., O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Oskar Hansson
- From the Division of Clinical Geriatrics (O.V., K.P., L.-O.W., E.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm; Department of Diagnostic Radiology (P.S., D.v.W.), Lund University; Imaging and Function (D.v.W.), Skåne University Health Care, Lund; Clinical Memory Research Unit (S.P., E.S., O.H.), Department of Clinical Sciences, Malmö, Lund University; Memory Clinic (E.S., O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Eric Westman
- From the Division of Clinical Geriatrics (O.V., K.P., L.-O.W., E.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm; Department of Diagnostic Radiology (P.S., D.v.W.), Lund University; Imaging and Function (D.v.W.), Skåne University Health Care, Lund; Clinical Memory Research Unit (S.P., E.S., O.H.), Department of Clinical Sciences, Malmö, Lund University; Memory Clinic (E.S., O.H.), Skåne University Hospital, Malmö, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
19
|
Head E, Powell DK, Schmitt FA. Metabolic and Vascular Imaging Biomarkers in Down Syndrome Provide Unique Insights Into Brain Aging and Alzheimer Disease Pathogenesis. Front Aging Neurosci 2018; 10:191. [PMID: 29977201 PMCID: PMC6021507 DOI: 10.3389/fnagi.2018.00191] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/06/2018] [Indexed: 12/26/2022] Open
Abstract
People with Down syndrome (DS) are at high risk for developing Alzheimer disease (AD). Neuropathology consistent with AD is present by 40 years of age and dementia may develop up to a decade later. In this review, we describe metabolic and vascular neuroimaging studies in DS that suggest these functional changes are a key feature of aging, linked to cognitive decline and AD in this vulnerable cohort. FDG-PET imaging in DS suggests systematic reductions in glucose metabolism in posterior cingulate and parietotemporal cortex. Magentic resonance spectroscopy studies show consistent decreases in neuronal health and increased myoinositol, suggesting inflammation. There are few vascular imaging studies in DS suggesting a gap in our knowledge. Future studies would benefit from longitudinal measures and combining various imaging approaches to identify early signs of dementia in DS that may be amenable to intervention.
Collapse
Affiliation(s)
- Elizabeth Head
- Department of Pharmacology & Nutritional Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - David K Powell
- Magnetic Resonance Imaging and Spectroscopy Center, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Frederick A Schmitt
- Department of Neurology, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
20
|
The impact of acute and short-term methamphetamine abstinence on brain metabolites: A proton magnetic resonance spectroscopy chemical shift imaging study. Drug Alcohol Depend 2018; 185:226-237. [PMID: 29471227 DOI: 10.1016/j.drugalcdep.2017.11.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Abuse of methamphetamine (MA) is a global health concern. Previous 1H-MRS studies have found that, with methamphetamine abstinence (MAA), there are changes in n-acetyl-aspartate (NAA/Cr), myo-inositol (mI/Cr), choline (Cho/Cr and Cho/NAA), and glutamate with glutamine (Glx) metabolites. Limited studies have investigated the effect of acute MAA, and acute-to-short-term MAA on brain metabolites. METHODS Adults with chronic MA dependence (n = 31) and healthy controls (n = 22) were recruited. Two-dimensional chemical shift 1H-MRS imaging (TR2000 ms, TE30 ms) slice was performed and included voxels in bilateral anterior-cingulate (ACC), frontal-white-matter (FWM), and dorsolateral-prefrontal-cortices (DLPFC). Control participants were scanned once. The MA group was scanned twice, with acute (1.5 ± 0.6 weeks, n = 31) and short-term MAA (5.1 ± 0.8 weeks, n = 22). The change in 1H-MRS metabolites over time (n = 19) was also investigated. Standard 1H-MRS metabolites are reported relative to Cr + PCr. RESULTS Acute MAA showed lower n-acetyl-aspartate (NAA) and n-acetyl-aspartate with n-acetyl-aspartyl-glutamate (NAA + NAAG) in left DLPFC, and glycerophosphocholine with phosphocholine (GPC + PCh) in left FWM. Short-term MAA showed lower NAA + NAAG and higher myo-inositol (mI) in right ACC, lower NAA and NAA + NAAG in the left DLPFC, and lower GPC + PCh in left FWM. Over time, MAA showed decreased NAA and NAA + NAAG and increased mI in right ACC, decreased NAA and NAA + NAAG in right FWM, and decreased in mI in left FWM. CONCLUSION In acute MAA, there was damage to the integrity of neuronal tissue, which was enhanced with short-term MAA. From acute to short-term MAA, activation of neuroinflammatory processes are suggested. This is the first 1H-MRS study to report the development of neuroinflammation with loss of neuronal integrity in MAA.
Collapse
|
21
|
Rafii MS, Skotko BG, McDonough ME, Pulsifer M, Evans C, Doran E, Muranevici G, Kesslak P, Abushakra S, Lott IT. A Randomized, Double-Blind, Placebo-Controlled, Phase II Study of Oral ELND005 (scyllo-Inositol) in Young Adults with Down Syndrome without Dementia. J Alzheimers Dis 2018; 58:401-411. [PMID: 28453471 DOI: 10.3233/jad-160965] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND ELND005 (scyllo-Inositol; cyclohexane-1,2,3,4,5,6-hexol) has been evaluated as a potential disease-modifying treatment for Alzheimer's disease (AD). Individuals with Down syndrome (DS) have an increased risk for developing AD dementia. OBJECTIVE To evaluate the safety and tolerability of ELND005 and to determine its pharmacokinetics (PK) and relationship between PK parameters, safety outcome measures, and exploratory efficacy outcome measures in young adults with DS without dementia. METHODS This was a prospective, randomized, double-blind, placebo-controlled, parallel-group, three-arm, multicenter Phase II study of the safety and pharmacokinetics of ELND005 administered orally for 4 weeks (ClinicalTrials.gov NCT01791725). Participants who met study eligibility criteria were randomly assigned in a 2 : 1:1 ratio to receive ELND005 at either 250 mg twice daily (BID) or 250 mg once daily (QD) or matching placebo for 4 weeks. RESULTS There were no apparent treatment group-related trends on cognitive or behavioral measures and there were no SAEs and no deaths in the study. Overall, mean changes from baseline in clinical laboratory parameters, vital sign measurements, electrocardiogram results, and other physical findings were unremarkable. ELND005 accumulation averaged approximately 2-fold with QD dosing, and 3- to 4-fold with BID dosing. CONCLUSION Overall, treatment of adults with DS with ELND005 at both doses was well tolerated, achieved measurable blood levels and demonstrated no safety findings. Further studies will be needed to test efficacy.
Collapse
Affiliation(s)
- Michael S Rafii
- Alzheimer's Therapeutic Research Institute (ATRI) at University of Southern California, San Diego, CA, USA.,Department of Neurosciences, University of California, San Diego, CA, USA
| | - Brian G Skotko
- Department of Pediatrics, Down Syndrome Program, Division of Medical Genetics, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Mary Ellen McDonough
- Department of Pediatrics, Down Syndrome Program, Division of Medical Genetics, Massachusetts General Hospital, Boston, MA, USA
| | - Margaret Pulsifer
- Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital, Boston, MA, USA
| | - Casey Evans
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital, Boston, MA, USA
| | - Eric Doran
- Department of Pediatrics, University of California, Irvine, CA, USA
| | | | | | | | - Ira T Lott
- Department of Pediatrics, University of California, Irvine, CA, USA
| | | |
Collapse
|
22
|
Zorrilla de San Martin J, Delabar JM, Bacci A, Potier MC. GABAergic over-inhibition, a promising hypothesis for cognitive deficits in Down syndrome. Free Radic Biol Med 2018; 114:33-39. [PMID: 28993272 DOI: 10.1016/j.freeradbiomed.2017.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 12/31/2022]
Abstract
Down syndrome (DS), also known as trisomy 21, is the most common genetic cause of intellectual disability. It is also a model human disease for exploring consequences of gene dosage imbalance on complex phenotypes. Learning and memory impairments linked to intellectual disabilities in DS could result from synaptic plasticity deficits and excitatory-inhibitory alterations leading to changes in neuronal circuitry in the brain of affected individuals. Increasing number of studies in mouse and cellular models converge towards the assumption that excitatory-inhibitory imbalance occurs in DS, likely early during development. Thus increased inhibition appears to be a common trend that could explain synaptic and circuit disorganization. Interestingly using several potent pharmacological tools, preclinical studies strongly demonstrated that cognitive deficits could be restored in mouse models of DS. Clinical trials have not yet provided robust data for therapeutic application and additional studies are needed. Here we review the literature and our own published work emphasizing the over-inhibition hypothesis in DS and their links with gene dosage imbalance paving the way for future basic and clinical research.
Collapse
Affiliation(s)
- Javier Zorrilla de San Martin
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Jean-Maurice Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Alberto Bacci
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Marie-Claude Potier
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.
| |
Collapse
|
23
|
Cárdenas AM, Fernández-Olivares P, Díaz-Franulic I, González-Jamett AM, Shimahara T, Segura-Aguilar J, Caviedes R, Caviedes P. Knockdown of Myo-Inositol Transporter SMIT1 Normalizes Cholinergic and Glutamatergic Function in an Immortalized Cell Line Established from the Cerebral Cortex of a Trisomy 16 Fetal Mouse, an Animal Model of Human Trisomy 21 (Down Syndrome). Neurotox Res 2017; 32:614-623. [PMID: 28695546 DOI: 10.1007/s12640-017-9775-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 12/31/2022]
Abstract
The Na+/myo-inositol cotransporter (SMIT1) is overexpressed in human Down syndrome (DS) and in trisomy 16 fetal mice (Ts16), an animal model of the human condition. SMIT1 overexpression determines increased levels of intracellular myo-inositol, a precursor of phophoinositide synthesis. SMIT1 is overexpressed in CTb cells, an immortalized cell line established from the cerebral cortex of a Ts16 mouse fetus. CTb cells exhibit impaired cytosolic Ca2+ signals in response to glutamatergic and cholinergic stimuli (increased amplitude and delayed time-dependent kinetics in the decay post-stimulation), compared to our CNh cell line, derived from the cerebral cortex of a euploid animal. Considering the role of myo-inositol in intracellular signaling, we normalized SMIT1 expression in CTb cells using specific mRNA antisenses. Forty-eight hours post-transfection, SMIT1 levels in CTb cells reached values comparable to those of CNh cells. At this time, decay kinetics of Ca2+ signals induced by either glutamate, nicotine, or muscarine were accelerated in transfected CTb cells, to values similar to those of CNh cells. The amplitude of glutamate-induced cytosolic Ca2+ signals in CTb cells was also normalized. The results suggest that SMIT1 overexpression contributes to abnormal cholinergic and glutamatergic Ca2+ signals in the trisomic condition, and knockdown of DS-related genes in our Ts16-derived cell line could constitute a relevant tool to study DS-related neuronal dysfunction.
Collapse
Affiliation(s)
- Ana María Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Paola Fernández-Olivares
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Program of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Clasificador 7, Independencia, 1027, Santiago, Chile
| | - Ignacio Díaz-Franulic
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Center for Bioinformatics and Integrative Biology, Universidad Andrés Bello, Santiago, Chile
- Fundación Fraunhofer Chile, Las Condes, Chile
| | - Arlek M González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | - Juan Segura-Aguilar
- Program of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Clasificador 7, Independencia, 1027, Santiago, Chile
| | - Raúl Caviedes
- Program of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Clasificador 7, Independencia, 1027, Santiago, Chile
| | - Pablo Caviedes
- Program of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Clasificador 7, Independencia, 1027, Santiago, Chile.
| |
Collapse
|
24
|
Kaur S, Birdsill AC, Steward K, Pasha E, Kruzliak P, Tanaka H, Haley AP. Higher visceral fat is associated with lower cerebral N-acetyl-aspartate ratios in middle-aged adults. Metab Brain Dis 2017; 32:727-733. [PMID: 28144886 PMCID: PMC6802935 DOI: 10.1007/s11011-017-9961-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 01/24/2017] [Indexed: 01/01/2023]
Abstract
Excessive adipose tissue, particularly with a central distribution, consists of visceral fat, which is metabolically active and could impinge upon central nervous system functioning. The aim of the current study was to examine levels of visceral adiposity in relation to key cerebral metabolite ratios localized in the occipitoparietal grey matter. Seventy-three adults, aged between 40 and 60 years, underwent structural magnetic resonance imaging and single voxel 1H Magnetic Resonance Spectroscopy (1H MRS). Visceral fat was assessed using Dual Energy X Ray Absorptiometry (DXA). Individuals with higher visceral fat mass and volume had significantly lower ratios of N-acetyl-aspartate to total creatine (phosphocreatine + creatine, PCr + Cr) (NAA/PCr + Cr) (β = -0.29, p = 0.03, β = -0.28, p = 0.04). They also had significantly higher ratios of myo-inositol to total creatine (mI/PCr + Cr ) (β = 0.36, p = 0.01, β = 0.36, p = 0.01). Visceral fat mass and volume were not significantly related to ratios of glutamate to total creatine (Glu/PCr + Cr). While future studies are necessary, these results indicate central adiposity is associated with metabolic changes that could impinge upon the central nervous system in middle age.
Collapse
Affiliation(s)
- Sonya Kaur
- Department of Psychology, The University of Texas at Austin, 108 East Dean Keeton, Stop A8000, Austin, TX, 78712, USA
| | - Alex C Birdsill
- Department of Psychology, The University of Texas at Austin, 108 East Dean Keeton, Stop A8000, Austin, TX, 78712, USA
| | - Kayla Steward
- Department of Psychology, The University of Texas at Austin, 108 East Dean Keeton, Stop A8000, Austin, TX, 78712, USA
| | - Evan Pasha
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - Peter Kruzliak
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Hirofumi Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - Andreana P Haley
- Department of Psychology, The University of Texas at Austin, 108 East Dean Keeton, Stop A8000, Austin, TX, 78712, USA.
- Imaging Research Center, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
25
|
De Paepe B, Martin JJ, Herbelet S, Jimenez-Mallebrera C, Iglesias E, Jou C, Weis J, De Bleecker JL. Activation of osmolyte pathways in inflammatory myopathy and Duchenne muscular dystrophy points to osmoregulation as a contributing pathogenic mechanism. J Transl Med 2016; 96:872-84. [PMID: 27322952 DOI: 10.1038/labinvest.2016.68] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/25/2016] [Accepted: 05/16/2016] [Indexed: 12/22/2022] Open
Abstract
Alongside well-known nuclear factor κB (NFκB) and its associated cytokine networks, nuclear factor of activated T cells 5 (NFAT5), the master regulator of cellular osmoprotective programs, comes forward as an inflammatory regulator. To gain insight into its yet unexplored role in muscle disease, we studied the expression of NFAT5 target proteins involved in osmolyte accumulation: aldose reductase (AR), taurine transporter (TauT), and sodium myo-inositol co-transporter (SMIT). We analyzed idiopathic inflammatory myopathy and Duchenne muscular dystrophy muscle biopsies and myotubes in culture, using immunohistochemistry, immunofluorescence, and western blotting. We report that the level of constitutive AR was upregulated in patients, most strongly so in Duchenne muscular dystrophy. TauT and SMIT expression levels were induced in patients' muscle fibers, mostly representing regenerating and atrophic fibers. In dermatomyositis, strong staining for AR, TauT, and SMIT in atrophic perifascicular fibers was accompanied by staining for other molecular NFAT5 targets, including chaperones, chemokines, and inducible nitric oxide synthase. In these fibers, NFAT5 and NFκB p65 staining coincided, linking both transcription factors with this important pathogenic hallmark. In sporadic inclusion body myositis, SMIT localized to inclusions inside muscle fibers. In addition, SMIT was expressed by a substantial subset of muscle-infiltrating macrophages and T cells in patient biopsies. Our results indicate that osmolyte pathways may contribute to normal muscle functioning, and that activation of AR, TauT, and SMIT in muscle inflammation possibly contributes to the tissue's failing program of damage control.
Collapse
Affiliation(s)
- Boel De Paepe
- Department of Neurology, Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| | - Jean-Jacques Martin
- Department of Ultrastructural Neuropathology, Born-Bunge Institute, Antwerp University Hospital, Wilrijk, Belgium
| | - Sandrine Herbelet
- Department of Neurology, Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| | - Cecilia Jimenez-Mallebrera
- Department of Neurology, Neuromuscular Unit, Hospital Sant Joan de DeuBarcelona, Esplugues de Llobregat, Spain
| | - Estibaliz Iglesias
- Department of Pediatrics, Hospital Sant Joan de Deu Barcelona, Esplugues de Llobregat, Spain
| | - Cristina Jou
- Department of Pathology and Biobank, Hospital Sant Joan de Deu Barcelona, Esplugues de Llobregat, Spain
| | - Joachim Weis
- Institute for Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jan L De Bleecker
- Department of Neurology, Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
26
|
Lin AL, Powell D, Caban-Holt A, Jicha G, Robertson W, Gold BT, Davis R, Abner E, Wilcock DM, Schmitt FA, Head E. (1)H-MRS metabolites in adults with Down syndrome: Effects of dementia. NEUROIMAGE-CLINICAL 2016; 11:728-735. [PMID: 27330972 PMCID: PMC4908308 DOI: 10.1016/j.nicl.2016.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 04/11/2016] [Accepted: 06/01/2016] [Indexed: 02/04/2023]
Abstract
To determine if proton magnetic resonance spectroscopy (1H-MRS) detect differences in dementia status in adults with Down syndrome (DS), we used 1H-MRS to measure neuronal and glial metabolites in the posterior cingulate cortex in 22 adults with DS and in 15 age- and gender-matched healthy controls. We evaluated associations between 1H-MRS results and cognition among DS participants. Neuronal biomarkers, including N-acetylaspartate (NAA) and glutamate-glutamine complex (Glx), were significantly lower in DS patients with Alzheimer's should probably be changed to Alzheimer (without ' or s) through ms as per the new naming standard disease (DSAD) when compared to non-demented DS (DS) and healthy controls (CTL). Neuronal biomarkers therefore appear to reflect dementia status in DS. In contrast, all DS participants had significantly higher myo-inositol (MI), a putative glial biomarker, compared to CTL. Our data indicate that there may be an overall higher glial inflammatory component in DS compared to CTL prior to and possibly independent of developing dementia. When computing the NAA to MI ratio, we found that presence or absence of dementia could be distinguished in DS. NAA, Glx, and NAA/MI in all DS participants were correlated with scores from the Brief Praxis Test and the Severe Impairment Battery. 1H-MRS may be a useful diagnostic tool in future longitudinal studies to measure AD progression in persons with DS. In particular, NAA and the NAA/MI ratio is sensitive to the functional status of adults with DS, including prior to dementia. 1H-MRS was used to compare demented and nondemented adults with Down syndrome. Neuronal biomarkers were lowest in demented adults with Down syndrome. Glial biomarkers including myoinositol were higher in demented adults with DS. Neuronal and glial biomarkers were correlated with cognition in Down syndrome.
Collapse
Affiliation(s)
- A-L Lin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - D Powell
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, USA; Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY, USA
| | - A Caban-Holt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - G Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - W Robertson
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - B T Gold
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, USA; Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY, USA
| | - R Davis
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - E Abner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - D M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - F A Schmitt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - E Head
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
27
|
Osmoregulatory inositol transporter SMIT1 modulates electrical activity by adjusting PI(4,5)P2 levels. Proc Natl Acad Sci U S A 2016; 113:E3290-9. [PMID: 27217553 DOI: 10.1073/pnas.1606348113] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Myo-inositol is an important cellular osmolyte in autoregulation of cell volume and fluid balance, particularly for mammalian brain and kidney cells. We find it also regulates excitability. Myo-inositol is the precursor of phosphoinositides, key signaling lipids including phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. However, whether myo-inositol accumulation during osmoregulation affects signaling and excitability has not been fully explored. We found that overexpression of the Na(+)/myo-inositol cotransporter (SMIT1) and myo-inositol supplementation enlarged intracellular PI(4,5)P2 pools, modulated several PI(4,5)P2-dependent ion channels including KCNQ2/3 channels, and attenuated the action potential firing of superior cervical ganglion neurons. Further experiments using the rapamycin-recruitable phosphatase Sac1 to hydrolyze PI(4)P and the P4M probe to visualize PI(4)P suggested that PI(4)P levels increased after myo-inositol supplementation with SMIT1 expression. Elevated relative levels of PIP and PIP2 were directly confirmed using mass spectrometry. Inositol trisphosphate production and release of calcium from intracellular stores also were augmented after myo-inositol supplementation. Finally, we found that treatment with a hypertonic solution mimicked the effect we observed with SMIT1 overexpression, whereas silencing tonicity-responsive enhancer binding protein prevented these effects. These results show that ion channel function and cellular excitability are under regulation by several "physiological" manipulations that alter the PI(4,5)P2 setpoint. We demonstrate a previously unrecognized linkage between extracellular osmotic changes and the electrical properties of excitable cells.
Collapse
|
28
|
Voevodskaya O, Sundgren PC, Strandberg O, Zetterberg H, Minthon L, Blennow K, Wahlund LO, Westman E, Hansson O. Myo-inositol changes precede amyloid pathology and relate to APOE genotype in Alzheimer disease. Neurology 2016; 86:1754-61. [PMID: 27164711 PMCID: PMC4862247 DOI: 10.1212/wnl.0000000000002672] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/14/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We aimed to test whether in vivo levels of magnetic resonance spectroscopy (MRS) metabolites myo-inositol (mI), N-acetylaspartate (NAA), and choline are abnormal already during preclinical Alzheimer disease (AD), relating these changes to amyloid or tau pathology, and functional connectivity. METHODS In this cross-sectional multicenter study (a subset of the prospective Swedish BioFINDER study), we included 4 groups, representing the different stages of predementia AD: (1) cognitively healthy elderly with normal CSF β-amyloid 42 (Aβ42), (2) cognitively healthy elderly with abnormal CSF Aβ42, (3) patients with subjective cognitive decline and abnormal CSF Aβ42, (4) patients with mild cognitive decline and abnormal CSF Aβ42 (Ntotal = 352). Spectroscopic markers measured in the posterior cingulate/precuneus were considered alongside known disease biomarkers: CSF Aβ42, phosphorylated tau, total tau, [(18)F]-flutemetamol PET, f-MRI, and the genetic risk factor APOE. RESULTS Amyloid-positive cognitively healthy participants showed a significant increase in mI/creatine and mI/NAA levels compared to amyloid-negative healthy elderly (p < 0.05). In amyloid-positive healthy elderly, mI/creatine and mI/NAA correlated with cortical retention of [(18)F] flutemetamol tracer ([Formula: see text] = 0.44, p = 0.02 and [Formula: see text] = 0.51, p = 0.01, respectively). Healthy elderly APOE ε4 carriers with normal CSF Aβ42 levels had significantly higher mI/creatine levels (p < 0.001) than ε4 noncarriers. Finally, elevated mI/creatine was associated with decreased functional connectivity within the default mode network (rpearson = -0.16, p = 0.02), independently of amyloid pathology. CONCLUSIONS mI levels are elevated already at asymptomatic stages of AD. Moreover, mI/creatine concentrations were increased in healthy APOE ε4 carriers with normal CSF Aβ42 levels, suggesting that mI levels may reveal regional brain consequences of APOE ε4 before detectable amyloid pathology.
Collapse
Affiliation(s)
- Olga Voevodskaya
- From Clinical Geriatrics (O.V., L.-O.W., E.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm; Department of Diagnostic Radiology (P.C.S., O.S.), Lund University; Clinical Neurochemistry Laboratory (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; UCL Institute of Neurology (H.Z.), Queen Square, London, UK; Memory Clinic (L.M., O.H.), Skåne University Hospital; and Clinical Memory Research Unit (L.M., O.H.), Department of Clinical Sciences, Malmö, Lund University, Sweden.
| | - Pia C Sundgren
- From Clinical Geriatrics (O.V., L.-O.W., E.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm; Department of Diagnostic Radiology (P.C.S., O.S.), Lund University; Clinical Neurochemistry Laboratory (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; UCL Institute of Neurology (H.Z.), Queen Square, London, UK; Memory Clinic (L.M., O.H.), Skåne University Hospital; and Clinical Memory Research Unit (L.M., O.H.), Department of Clinical Sciences, Malmö, Lund University, Sweden
| | - Olof Strandberg
- From Clinical Geriatrics (O.V., L.-O.W., E.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm; Department of Diagnostic Radiology (P.C.S., O.S.), Lund University; Clinical Neurochemistry Laboratory (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; UCL Institute of Neurology (H.Z.), Queen Square, London, UK; Memory Clinic (L.M., O.H.), Skåne University Hospital; and Clinical Memory Research Unit (L.M., O.H.), Department of Clinical Sciences, Malmö, Lund University, Sweden
| | - Henrik Zetterberg
- From Clinical Geriatrics (O.V., L.-O.W., E.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm; Department of Diagnostic Radiology (P.C.S., O.S.), Lund University; Clinical Neurochemistry Laboratory (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; UCL Institute of Neurology (H.Z.), Queen Square, London, UK; Memory Clinic (L.M., O.H.), Skåne University Hospital; and Clinical Memory Research Unit (L.M., O.H.), Department of Clinical Sciences, Malmö, Lund University, Sweden
| | - Lennart Minthon
- From Clinical Geriatrics (O.V., L.-O.W., E.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm; Department of Diagnostic Radiology (P.C.S., O.S.), Lund University; Clinical Neurochemistry Laboratory (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; UCL Institute of Neurology (H.Z.), Queen Square, London, UK; Memory Clinic (L.M., O.H.), Skåne University Hospital; and Clinical Memory Research Unit (L.M., O.H.), Department of Clinical Sciences, Malmö, Lund University, Sweden
| | - Kaj Blennow
- From Clinical Geriatrics (O.V., L.-O.W., E.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm; Department of Diagnostic Radiology (P.C.S., O.S.), Lund University; Clinical Neurochemistry Laboratory (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; UCL Institute of Neurology (H.Z.), Queen Square, London, UK; Memory Clinic (L.M., O.H.), Skåne University Hospital; and Clinical Memory Research Unit (L.M., O.H.), Department of Clinical Sciences, Malmö, Lund University, Sweden
| | - Lars-Olof Wahlund
- From Clinical Geriatrics (O.V., L.-O.W., E.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm; Department of Diagnostic Radiology (P.C.S., O.S.), Lund University; Clinical Neurochemistry Laboratory (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; UCL Institute of Neurology (H.Z.), Queen Square, London, UK; Memory Clinic (L.M., O.H.), Skåne University Hospital; and Clinical Memory Research Unit (L.M., O.H.), Department of Clinical Sciences, Malmö, Lund University, Sweden
| | - Eric Westman
- From Clinical Geriatrics (O.V., L.-O.W., E.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm; Department of Diagnostic Radiology (P.C.S., O.S.), Lund University; Clinical Neurochemistry Laboratory (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; UCL Institute of Neurology (H.Z.), Queen Square, London, UK; Memory Clinic (L.M., O.H.), Skåne University Hospital; and Clinical Memory Research Unit (L.M., O.H.), Department of Clinical Sciences, Malmö, Lund University, Sweden
| | - Oskar Hansson
- From Clinical Geriatrics (O.V., L.-O.W., E.W.), Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm; Department of Diagnostic Radiology (P.C.S., O.S.), Lund University; Clinical Neurochemistry Laboratory (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; UCL Institute of Neurology (H.Z.), Queen Square, London, UK; Memory Clinic (L.M., O.H.), Skåne University Hospital; and Clinical Memory Research Unit (L.M., O.H.), Department of Clinical Sciences, Malmö, Lund University, Sweden.
| | | |
Collapse
|
29
|
Rapoport SI, Primiani CT, Chen CT, Ahn K, Ryan VH. Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. PLoS One 2015; 10:e0132675. [PMID: 26168237 PMCID: PMC4500567 DOI: 10.1371/journal.pone.0132675] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/17/2015] [Indexed: 01/10/2023] Open
Abstract
Background Phosphoinositides, lipid-signaling molecules, participate in diverse brain processes within a wide metabolic cascade. Hypothesis Gene transcriptional networks coordinately regulate the phosphoinositide cascade during human brain Development and Aging. Methods We used the public BrainCloud database for human dorsolateral prefrontal cortex to examine age-related expression levels of 49 phosphoinositide metabolic genes during Development (0 to 20+ years) and Aging (21+ years). Results We identified three groups of partially overlapping genes in each of the two intervals, with similar intergroup correlations despite marked phenotypic differences between Aging and Development. In each interval, ITPKB, PLCD1, PIK3R3, ISYNA1, IMPA2, INPPL1, PI4KB, and AKT1 are in Group 1, PIK3CB, PTEN, PIK3CA, and IMPA1 in Group 2, and SACM1L, PI3KR4, INPP5A, SYNJ1, and PLCB1 in Group 3. Ten of the genes change expression nonlinearly during Development, suggesting involvement in rapidly changing neuronal, glial and myelination events. Correlated transcription for some gene pairs likely is facilitated by colocalization on the same chromosome band. Conclusions Stable coordinated gene transcriptional networks regulate brain phosphoinositide metabolic pathways during human Development and Aging.
Collapse
Affiliation(s)
- Stanley I. Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| | - Christopher T. Primiani
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
| | - Chuck T. Chen
- Section on Nutritional Neurosciences, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States of America
| | - Kwangmi Ahn
- Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States of America
| | - Veronica H. Ryan
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
30
|
Smith RN, Agharkar AS, Gonzales EB. A review of creatine supplementation in age-related diseases: more than a supplement for athletes. F1000Res 2014; 3:222. [PMID: 25664170 PMCID: PMC4304302 DOI: 10.12688/f1000research.5218.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2014] [Indexed: 12/12/2022] Open
Abstract
Creatine is an endogenous compound synthesized from arginine, glycine and methionine. This dietary supplement can be acquired from food sources such as meat and fish, along with athlete supplement powders. Since the majority of creatine is stored in skeletal muscle, dietary creatine supplementation has traditionally been important for athletes and bodybuilders to increase the power, strength, and mass of the skeletal muscle. However, new uses for creatine have emerged suggesting that it may be important in preventing or delaying the onset of neurodegenerative diseases associated with aging. On average, 30% of muscle mass is lost by age 80, while muscular weakness remains a vital cause for loss of independence in the elderly population. In light of these new roles of creatine, the dietary supplement's usage has been studied to determine its efficacy in treating congestive heart failure, gyrate atrophy, insulin insensitivity, cancer, and high cholesterol. In relation to the brain, creatine has been shown to have antioxidant properties, reduce mental fatigue, protect the brain from neurotoxicity, and improve facets/components of neurological disorders like depression and bipolar disorder. The combination of these benefits has made creatine a leading candidate in the fight against age-related diseases, such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, long-term memory impairments associated with the progression of Alzheimer's disease, and stroke. In this review, we explore the normal mechanisms by which creatine is produced and its necessary physiology, while paying special attention to the importance of creatine supplementation in improving diseases and disorders associated with brain aging and outlining the clinical trials involving creatine to treat these diseases.
Collapse
Affiliation(s)
- Rachel N. Smith
- Department of Pharmacology & Neuroscience, UNT Health Science Center, Fort Worth, TX, TX, 76107, USA
| | - Amruta S. Agharkar
- Department of Pharmacology & Neuroscience, UNT Health Science Center, Fort Worth, TX, TX, 76107, USA
| | - Eric B. Gonzales
- Department of Pharmacology & Neuroscience, UNT Health Science Center, Fort Worth, TX, TX, 76107, USA
- Institute for Aging and Alzheimer’s Disease Research, UNT Health Science Center, Fort Worth, TX, TX, 76107, USA
- Cardiovascular Research Institute, UNT Health Science Center, Fort Worth, TX, TX, 76107, USA
| |
Collapse
|
31
|
Abbott GW, Tai KK, Neverisky DL, Hansler A, Hu Z, Roepke TK, Lerner DJ, Chen Q, Liu L, Zupan B, Toth M, Haynes R, Huang X, Demirbas D, Buccafusca R, Gross SS, Kanda VA, Berry GT. KCNQ1, KCNE2, and Na+-coupled solute transporters form reciprocally regulating complexes that affect neuronal excitability. Sci Signal 2014; 7:ra22. [PMID: 24595108 DOI: 10.1126/scisignal.2005025] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Na(+)-coupled solute transport is crucial for the uptake of nutrients and metabolic precursors, such as myo-inositol, an important osmolyte and precursor for various cell signaling molecules. We found that various solute transporters and potassium channel subunits formed complexes and reciprocally regulated each other in vitro and in vivo. Global metabolite profiling revealed that mice lacking KCNE2, a K(+) channel β subunit, showed a reduction in myo-inositol concentration in cerebrospinal fluid (CSF) but not in serum. Increased behavioral responsiveness to stress and seizure susceptibility in Kcne2(-/-) mice were alleviated by injections of myo-inositol. Suspecting a defect in myo-inositol transport, we found that KCNE2 and KCNQ1, a voltage-gated potassium channel α subunit, colocalized and coimmunoprecipitated with SMIT1, a Na(+)-coupled myo-inositol transporter, in the choroid plexus epithelium. Heterologous coexpression demonstrated that myo-inositol transport by SMIT1 was augmented by coexpression of KCNQ1 but was inhibited by coexpression of both KCNQ1 and KCNE2, which form a constitutively active, heteromeric K(+) channel. SMIT1 and the related transporter SMIT2 were also inhibited by a constitutively active mutant form of KCNQ1. The activities of KCNQ1 and KCNQ1-KCNE2 were augmented by SMIT1 and the glucose transporter SGLT1 but were suppressed by SMIT2. Channel-transporter signaling complexes may be a widespread mechanism to facilitate solute transport and electrochemical crosstalk.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- 1Bioelectricity Laboratory, Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kantarci K. Proton MRS in mild cognitive impairment. J Magn Reson Imaging 2013; 37:770-7. [PMID: 23526756 DOI: 10.1002/jmri.23800] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 08/03/2012] [Indexed: 11/08/2022] Open
Abstract
Mild cognitive impairment (MCI) is a clinical syndrome operationalized for early diagnosis and treatment of Alzheimer's disease (AD). Many individuals with MCI are at the prodromal stage of AD or other dementia. Various quantitative magnetic resonance imaging (MRI) techniques that measure the anatomic, biochemical, microstructural, functional, and blood-flow changes are being evaluated as possible surrogate measures for early diagnosis and disease progression in MCI. The pathology underlying MCI is heterogeneous, dominated by AD, cerebrovascular disease, Lewy body disease, or a mixture of these pathologies in autopsy cohorts. Proton magnetic resonance spectroscopy ((1)H MRS) metabolite markers may help identify and track etiologies that typically underlie MCI in the elderly. The role of proton MRS will be critical for pathophysiological processes for which a reliable biomarker does not exist such as neuronal dysfunction, glial and microglial activation in MCI.
Collapse
Affiliation(s)
- Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| |
Collapse
|
33
|
Abstract
Neurodegenerative dementias are characterized by elevated myoinositol and decreased N-acetylaspartate (NAA) levels. The increase in myoinositol seems to precede decreasing NAA levels in Alzheimer's diseases. NAA/myo-inositol ratio in the posterior cingulate gyri decreases with increasing burden of Alzheimer's disease pathologic conditions. Proton magnetic resonance spectroscopy ((1)H MRS) is sensitive to the pathophysiologic processes associated with the risk of dementia in patients with mild cognitive impairment. Although significant progress has been made in improving the acquisition and analysis techniques in (1)H MRS, translation of these technical developments to clinical practice have not been effective because of the lack of standardization for multisite applications and normative data and an insufficient understanding of the pathologic basis of (1)H MRS metabolite changes.
Collapse
|
34
|
Muetzel RL, Marjańska M, Collins PF, Becker MP, Valabrègue R, Auerbach EJ, Lim KO, Luciana M. In vivo 1H magnetic resonance spectroscopy in young-adult daily marijuana users. NEUROIMAGE-CLINICAL 2013; 2:581-589. [PMID: 23956957 PMCID: PMC3743264 DOI: 10.1016/j.nicl.2013.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To date, there has been little work describing the neurochemical profile of young, heavy marijuana users. In this study, we examined 27 young-adult marijuana users and 26 healthy controls using single-voxel magnetic resonance spectroscopy on a 3 T scanner. The voxel was placed in the dorsal striatum, and estimated concentrations of glutamate + glutamine, myo-inositol, taurine + glucose, total choline and total N-acetylaspartate were examined between groups. There were no overall group effects, but two metabolites showed group by sex interactions. Lower levels of glutamate + glutamine (scaled to total creatine) were observed in female, but not male, marijuana users compared to controls. Higher levels of myo-inositol were observed in female users compared to female non-users and to males in both groups. Findings are discussed in relation to patterns of corticostriatal connectivity and function, in the context of marijuana abuse. The neurochemical profile of the basal ganglia was examined in young marijuana users. Glutamate/glutamine levels were lower in female users versus male users and controls. Higher myo-inositol levels were observed in female users as compared to other groups. Neurochemical impacts of marijuana may be particularly pronounced in females.
Collapse
Affiliation(s)
- Ryan L Muetzel
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mangalam A, Poisson L, Nemutlu E, Datta I, Denic A, Dzeja P, Rodriguez M, Rattan R, Giri S. Profile of Circulatory Metabolites in a Relapsing-remitting Animal Model of Multiple Sclerosis using Global Metabolomics. ACTA ACUST UNITED AC 2013; 4. [PMID: 24273690 DOI: 10.4172/2155-9899.1000150] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the CNS. Although, MS is well characterized in terms of the role played by immune cells, cytokines and CNS pathology, nothing is known about the metabolic alterations that occur during the disease process in circulation. Recently, metabolic aberrations have been defined in various disease processes either as contributing to the disease, as potential biomarkers, or as therapeutic targets. Thus in an attempt to define the metabolic alterations that may be associated with MS disease progression, we profiled the plasma metabolites at the chronic phase of disease utilizing relapsing remitting-experimental autoimmune encephalomyelitis (RR-EAE) model in SJL mice. At the chronic phase of the disease (day 45), untargeted global metabolomic profiling of plasma collected from EAE diseased SJL and healthy mice was performed, using a combination of high-throughput liquid-and-gas chromatography with mass spectrometry. A total of 282 metabolites were identified, with significant changes observed in 44 metabolites (32 up-regulated and 12 down-regulated), that mapped to lipid, amino acid, nucleotide and xenobiotic metabolism and distinguished EAE from healthy group (p<0.05, false discovery rate (FDR)<0.23). Mapping the differential metabolite signature to their respective biochemical pathways using the Kyoto Encyclopedia of Genes and Genomics (KEGG) database, we found six major pathways that were significantly altered (containing concerted alterations) or impacted (containing alteration in key junctions). These included bile acid biosynthesis, taurine metabolism, tryptophan and histidine metabolism, linoleic acid and D-arginine metabolism pathways. Overall, this study identified a 44 metabolite signature drawn from various metabolic pathways which correlated well with severity of the EAE disease, suggesting that these metabolic changes could be exploited as (1) biomarkers for EAE/MS progression and (2) to design new treatment paradigms where metabolic interventions could be combined with present and experimental therapeutics to achieve better treatment of MS.
Collapse
Affiliation(s)
- Ak Mangalam
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA ; Department ofNeurology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Golomb J, Kluger A, Ferris SH. Mild cognitive impairment: historical development and summary of research. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22034453 PMCID: PMC3181818 DOI: 10.31887/dcns.2004.6.4/jgolomb] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review article broadly traces the historical development, diagnostic criteria, clinical and neuropathological characteristics, and treatment strategies related to mild cognitive impairment (MCI), The concept of MCI is considered in the context of other terms that have been developed to characterize the elderly with varying degrees of cognitive impairment Criteria based on clinical global scale ratings, cognitive test performance, and performance on other domains of functioning are discussed. Approaches employing clinical, neuropsychological, neuroimaging, biological, and molecular genetic methodology used in the validation of MCI are considered, including results from cross-sectional, longitudinal, and postmortem investigations. Results of recent drug treatment studies of MCI and related methodological issues are also addressed.
Collapse
Affiliation(s)
- James Golomb
- Department of Neurology, William & Sylvia Silberstein Institute for Aging and Dementia, New York University Medical Center, New York, NY
| | | | | |
Collapse
|
37
|
The profile of hippocampal metabolites differs between Alzheimer's disease and subcortical ischemic vascular dementia, as measured by proton magnetic resonance spectroscopy. J Cereb Blood Flow Metab 2012; 32:805-15. [PMID: 22314267 PMCID: PMC3345919 DOI: 10.1038/jcbfm.2012.9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alzheimer's disease (AD) and subcortical ischemic vascular dementia (SIVD) have overlapping pathologies and risk factors, but their underlying neurodegenerative mechanisms are basically different. We performed magnetic resonance spectroscopy (MRS) to study metabolite differences between the two diseases in vivo. The subjects were 31 patients with SIVD and 99 with AD. Additionally, 45 elderly subjects were recruited as controls. We measured N-acetylaspartate (NAA), glutamine and glutamate (Glx), and myoinositol (mIns) concentration quantitatively using a 1.5-T MR scanner. N-acetylaspartate and Glx concentrations decreased in the hippocampus and cingulate/precuneal cortices (PCC) in both AD and SIVD patients, and the NAA decrease in the hippocampus was more prominent in AD than in SIVD. Interestingly, the pattern of mIns concentration changes differed between the two disorders; mIns was increased in AD but not increased in SIVD. If one differentiates between AD and SIVD by the mIns concentration in the hippocampus, the area under the receiver operating characteristic curve was 0.95, suggesting a high potential for discrimination. Our results suggest that proton MRS can provide useful information to differentiate between AD and SIVD. The difference of mIns concentrations in the hippocampus and PCC seems to reflect the different neurodegenerative mechanisms of the two disorders.
Collapse
|
38
|
Walecki J, Barcikowska M, Ćwikła JB, Gabryelewicz T. N-acetylaspartate, choline, myoinositol, glutamine and glutamate (glx) concentration changes in proton MR spectroscopy (1H MRS) in patients with mild cognitive impairment (MCI). Med Sci Monit 2012; 17:MT105-11. [PMID: 22129910 PMCID: PMC3628128 DOI: 10.12659/msm.882112] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Purpose of study was evaluation of regional metabolic disorders using 1H MRS in patients with MCI, as a predictor of clinical conversion to dementia based on clinical follow-up. Material/Methods The study group consisted of 31 subjects with diagnosis of MCI based on criteria the Mayo Clinic Group. 1H MRS was performed with a single-voxel method using PRESS sequence. The volume of interest (VOI) was located in the hippocampal formation and posterior part of the cingulated gyrus. Results Patients had annual clinical control at least twice. At the beginning, 9 had amnestic MCI and the others had multidomain MCI. During follow-up (median 3 yrs) 8 subjects had stable disease (SD), 13 had disease progression (DP) and 10 develop Alzheimer disease (AD). Baseline metabolic ratios (1H MRS) between 3 groups indicated significant difference (P<0.05) in left frontal lobe in mI/H20 ratio, between patients with SD (0.27) and DP. In comparing the groups with DP and AD, a significant difference in NAA/Cr (1.77 vs. 1.43) was found. A significant difference within left temporal external lobes was found between SD and DP in NAA/H2O ratio (0.55 vs. 0.51). An additional significant difference within medial temporal lobe was found between DP and AD in Glx/H2O ratio (0.44 vs. 0.34) on the right side. Conclusions 1H MRS seems to be sensitive method allows prediction of which patients are liable to progress from MCI to AD. Combined with other biomarkers of disease staging, it is an important approach in the preclinical AD diagnosis, as well as the assessment of dementia progression.
Collapse
Affiliation(s)
- Jerzy Walecki
- Department of Radiology, Medical Centre of Postgraduate Education, Warsaw, Poland.
| | | | | | | |
Collapse
|
39
|
Elevated serum C-reactive protein relates to increased cerebral myoinositol levels in middle-aged adults. Cardiovasc Psychiatry Neurol 2012; 2012:120540. [PMID: 22461977 PMCID: PMC3296271 DOI: 10.1155/2012/120540] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 01/04/2012] [Accepted: 01/12/2012] [Indexed: 01/08/2023] Open
Abstract
C-reactive protein (CRP), a systemic marker of inflammation, is a risk factor for late life cognitive impairment and dementia, yet the mechanisms that link elevated CRP to cognitive decline are not fully understood. In this study we examined the relationship between CRP and markers of neuronal integrity and cerebral metabolism in middle-aged adults with intact cognitive function, using proton magnetic resonance spectrocospy. We hypothesized that increased levels of circulating CRP would correlate with changes in brain metabolites indicative of early brain vulnerability. Thirty-six individuals, aged 40 to 60, underwent neuropsychological assessment, a blood draw for CRP quantification, and 1H MRS examining N-acetyl-aspartate, myo-inositol, creatine, choline, and glutamate concentrations in occipito-parietal grey matter. Independent of age, sex and education, serum CRP was significantly related to higher cerebral myo-inositol/creatine ratio (F(4,31) = 4.74, P = 0.004), a relationship which remained unchanged after adjustment for cardiovascular risk (F(5,30) = 4.356, CRP β = 0.322, P = 0.045). Because these biomarkers are detectable in midlife they may serve as useful indicators of brain vulnerability during the preclinical period when mitigating intervention is still possible.
Collapse
|
40
|
Kantarci K, Boeve BF, Wszolek ZK, Rademakers R, Whitwell JL, Baker MC, Senjem ML, Samikoglu AR, Knopman DS, Petersen RC, Jack CR. MRS in presymptomatic MAPT mutation carriers: a potential biomarker for tau-mediated pathology. Neurology 2010; 75:771-8. [PMID: 20805522 PMCID: PMC2938968 DOI: 10.1212/wnl.0b013e3181f073c7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To determine the proton magnetic resonance spectroscopy ((1)H MRS) changes in carriers of microtubule-associated protein (MAPT) mutations in a case-control study. METHODS Patients with MAPT mutations (N279K, V337M, R406W, IVS9-10G>T, P301L) from 5 different families (n = 24) underwent MRI and single voxel (1)H MRS from the posterior cingulate gyrus inferior precuneus at 3 T. Ten of the patients were symptomatic with median Clinical Dementia Rating sum of boxes score (CDR-SOB) of 6.5 and 14 patients were presymptomatic with CDR-SOB of 0. Age- and sex-matched controls (n = 24) were recruited. RESULTS Symptomatic MAPT mutation carriers were characterized by decreased N-acetylaspartate/creatine (NAA/Cr) ratio, an index of neuronal integrity, increased myoinositol (mI)/Cr ratio, a possible marker for glial activity, decreased NAA/mI, and hippocampal atrophy (p < 0.001). Whereas presymptomatic MAPT mutation carriers had elevated mI/Cr and decreased NAA/mI (p < 0.001), NAA/Cr levels and hippocampal volumes were not different from controls. Decrease in NAA/Cr (R(2) = 0. 22; p = 0.021) and hippocampal volumes (R(2) = 0.46; p < 0.001) were associated with proximity to the expected or actual age at symptom onset in MAPT mutation carriers. CONCLUSION (1)H MRS metabolite abnormalities characterized by an elevated mI/Cr and decreased NAA/mI are present several years before the onset of symptoms in MAPT mutation carriers. The data suggest an ordered sequencing of the (1)H MRS and MRI biomarkers. MI/Cr, a possible index of glial proliferation, precedes the decrease in neuronal integrity marker NAA/Cr and hippocampal atrophy. (1)H MRS may be a useful inclusion biomarker for preventive trials in presymptomatic carriers of MAPT mutations and possibly other proteinopathies.
Collapse
Affiliation(s)
- K Kantarci
- Departmentsof Radiology, Mayo Clinic, Rochester, MN 55905, USA. kantarci.kejal@mayo
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chen SQ, Wang PJ, Ten GJ, Zhan W, Li MH, Zang FC. Role of myo-inositol by magnetic resonance spectroscopy in early diagnosis of Alzheimer's disease in APP/PS1 transgenic mice. Dement Geriatr Cogn Disord 2010; 28:558-66. [PMID: 20093832 PMCID: PMC2837893 DOI: 10.1159/000261646] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS To explore the potential value of myo-inositol (mIns), which is regarded as a biomarker for early diagnosis of Alzheimer's disease, in APP/PS1 transgenic (tg) mice detected by (1)H-MRS. METHODS (1)H-MRS was performed in 30 APP/PS1 tg mice and 20 wild-type (wt) littermates at 3, 5 and 8 months of age. Areas under the peak of N-acetylaspartate (NAA), mIns and creatine (Cr) in the frontal cortex and hippocampus were measured, and the NAA/Cr and mIns/Cr ratios were analyzed quantitatively. RESULTS Compared with the wt mice, the mIns/Cr ratio of the 3-month-old tg mice was significantly higher (p < 0.05), and pathology showed activation and proliferation of astrocytes in the frontal cortex and hippocampus. The concentration of NAA was significantly lower at 8 and 8 months of age (p < 0.05). According to the threshold of mIns/Cr that was adopted to separate the tg from the wt mice, the rate of correct predictions was 82, 94 and 95%, respectively, for 3, 5 and 8 months. CONCLUSION Of the early AD metabolites as detected by (1)H-MRS, mIns is the most valuable marker for assessment of AD. Quantitative analysis of mIns may provide important clues for early diagnosis of AD.
Collapse
Affiliation(s)
- Shuang-Qing Chen
- Department of Radiology, Tongji Hospital, Tongji University, Shanghai, China
| | - Pei-Jun Wang
- Department of Radiology, Tongji Hospital, Tongji University, Shanghai, China,*Pei-Jun Wang, Department of Radiology, Tongji Hospital, Tongji University, No. 389, Xincun Road, Putuo District, Shanghai 200065 (China), Tel. +86 21 6611 1206, Fax +86 21 5695 2231, E-Mail
| | - Gao-Jun Ten
- Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, China,Molecular Imaging Laboratory, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wei Zhan
- Department of Radiology, Tongji Hospital, Tongji University, Shanghai, China
| | - Ming-Hua Li
- Department of Radiology, Tongji Hospital, Tongji University, Shanghai, China
| | - Feng-Chao Zang
- Molecular Imaging Laboratory, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
42
|
Kantarci K, Knopman DS, Dickson DW, Parisi JE, Whitwell JL, Weigand SD, Josephs KA, Boeve BF, Petersen RC, Jack CR. Alzheimer disease: postmortem neuropathologic correlates of antemortem 1H MR spectroscopy metabolite measurements. Radiology 2008; 248:210-20. [PMID: 18566174 DOI: 10.1148/radiol.2481071590] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine the neuropathologic correlates of antemortem hydrogen 1 ((1)H) magnetic resonance (MR) spectroscopy metabolite measurements in subjects with Alzheimer disease (AD)-type pathology. MATERIALS AND METHODS This study was approved by the institutional review board and was compliant with HIPAA regulations. Informed consent was obtained from each subject. The authors identified 54 subjects who underwent antemortem (1)H MR spectroscopy and were clinically healthy or had AD-type pathology with low to high likelihood of AD according to National Institute on Aging-Reagan neuropathologic criteria at autopsy. They investigated the associations between (1)H MR spectroscopy metabolite measurements and Braak neurofibrillary tangle stage (Braak stage), neuritic plaque score, and AD likelihood, with adjustments for subject age, subject sex, and time between (1)H MR spectroscopy and death. RESULTS Decreases in N-acetylaspartate-to-creatine ratio, an index of neuronal integrity, and increases in myo-inositol-to-creatine ratio were associated with higher Braak stage, higher neuritic plaque score, and greater likelihood of AD. The N-acetylaspartate-to-myo-inositol ratio proved to be the strongest predictor of the pathologic likelihood of AD. The strongest association observed was that between N-acetylaspartate-to-myo-inositol ratio and Braak stage (R(N)(2) = 0.47, P < .001). CONCLUSION Antemortem (1)H MR spectroscopy metabolite changes correlated with AD-type pathology seen at autopsy. The study findings validated (1)H MR spectroscopy metabolite measurements against the neuropathologic criteria for AD, and when combined with prior longitudinal (1)H MR spectroscopy findings, indicate that these measurements could be used as biomarkers for disease progression in clinical trials.
Collapse
Affiliation(s)
- Kejal Kantarci
- Departments of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ma K, Deutsch J, Villacreses NE, Rosenberger TA, Rapoport SI, Shetty HU. Measuring brain uptake and incorporation into brain phosphatidylinositol of plasma myo-[2H6]inositol in unanesthetized rats: an approach to estimate in vivo brain phosphatidylinositol turnover. Neurochem Res 2006; 31:759-65. [PMID: 16791473 DOI: 10.1007/s11064-006-9080-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
The in vivo rate of turnover of phosphatidylinositol (PtdIns) in brain is not known. In brain, certain receptor-mediated signal transduction involves metabolism of PtdIns and a method to measure its turnover in awake animals is useful in studying the effect of lithium and other therapeutic agents. In a method described here, rats were infused subcutaneously with myo-[2H6]inositol (Ins*) using an osmotic pump and, at 1 and 8 weeks, concentrations of free myo-inositol (Ins) and Ins* in plasma and brain were measured by GC-MS (chemical ionization). Also, PtdIns and PtdIns* together in brain were isolated, and Ins and Ins* from their headgroups were released enzymatically and specific activity of incorporated inositol was measured. The specific activity of inositol reached a steady state in plasma within 1 week of infusion, but not in brain even at 8 weeks. However, in brain, the specific activity of phosphatidylinositol was same as that of inositol at both time-points, suggestive of fast turnover of PtdIns. The animal experiment and the analytical methodology described here should be useful for measuring the rate of turnover of brain PtdIns in pathological and drug treatment conditions.
Collapse
Affiliation(s)
- Kaizong Ma
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
44
|
Waldman AD, Cordery RJ, MacManus DG, Godbolt A, Collinge J, Rossor MN. Regional brain metabolite abnormalities in inherited prion disease and asymptomatic gene carriers demonstrated in vivo by quantitative proton magnetic resonance spectroscopy. Neuroradiology 2006; 48:428-33. [PMID: 16598479 DOI: 10.1007/s00234-006-0068-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 12/07/2005] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Inherited prion diseases are caused by mutations in the gene which codes for prion protein (PrP), leading to proliferation of abnormal PrP isomers in the brain and neurodegeneration; they include Gerstmann-Sträussler-Scheinker disease (GSS), fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD). METHODS We studied two patients with symptomatic inherited prion disease (P102L) and two pre-symptomatic P102L gene carriers using quantitative magnetic resonance spectroscopy (MRS). Short echo time spectra were acquired from the thalamus, caudate region and frontal white matter, metabolite levels and ratios were measured and z-scores calculated for individual patients relative to age-matched normal controls. MRS data were compared with structural magnetic resonance imaging. RESULTS One fCJD case had generalised atrophy and showed increased levels of myo-inositol (MI) in the thalamus (z=3.7). The other had decreased levels of N-acetylaspartate (z=4) and diffuse signal abnormality in the frontal white matter. Both asymptomatic gene carriers had normal imaging, but increased frontal white matter MI (z=4.3, 4.1), and one also had increased MI in the caudate (z=5.3). CONCLUSION Isolated MI abnormalities in asymptomatic gene carriers are a novel finding and may reflect early glial proliferation, prior to significant neuronal damage. MRS provides potential non-invasive surrogate markers of early disease and progression in inherited prion disease.
Collapse
Affiliation(s)
- A D Waldman
- Dementia Research Group, Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London, WC1 3BG, UK.
| | | | | | | | | | | |
Collapse
|
45
|
Norman LR, Kumar A. Neuropscyhological Complications of HIV Disease and Substances of Abuse. AMERICAN JOURNAL OF INFECTIOUS DISEASES 2006; 2:67-73. [PMID: 27065366 PMCID: PMC4824002 DOI: 10.3844/ajidsp.2006.67.73] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the last decade, it has become increasingly apparent that neuropsychological deficits and impairments are associated with HIV infection. Given that antiretroviral therapies have extended the life expectancy of HIV-infected persons, it becomes critical to focus on the physical and mental health of these patients. Understanding the neuropsychology of HIV disease can provide insight into improving mental health, functional capacity and overall quality of life for persons living with HIV/AIDS. Furthermore, clinicians may be better able to assist patients to manage their symptoms, thereby increasing the number of patients who are able to successfully maintain difficult treatment schedules. In addition, it is equally important to understand the potentially exacerbating effects of various factors. One such factor is substance abuse, which has been associated with various neuropsychological impairments, irrespective of the substance of abuse. Therefore, a more complete understanding of the effects of substance abuse on the progression of impaired cognitive processes and functioning can allow for an enhanced evaluation and management of those patients who live with HIV disease and who suffer from substance abuse disorders. As such, the present paper provides an overview of the neuropsychology of HIV and substance abuse, as well as of the available research that has examined the potential interaction effects between HIV disease and substance abuse. The implications of the findings as well as directions for future research are discussed.
Collapse
Affiliation(s)
- Lisa R. Norman
- AIDS Research Program, Department of Microbiology Ponce School of Medicine, Ponce, PR 00732
| | - Anil Kumar
- AIDS Research Program, Department of Microbiology Ponce School of Medicine, Ponce, PR 00732
- Laboratory of Viral Immunology, Department of Microbiology Ponce School of Medicine, Ponce, PR 00732
- Division of Pharmacology, School of Pharmacy, University of Missouri, Kansas City, MO 64108
| |
Collapse
|
46
|
Wu RH, O'Donnell T, Ulrich M, Asghar SJ, Hanstock CC, Silverstone PH. Brain choline concentrations may not be altered in euthymic bipolar disorder patients chronically treated with either lithium or sodium valproate. ANNALS OF GENERAL HOSPITAL PSYCHIATRY 2004; 3:13. [PMID: 15283867 PMCID: PMC509421 DOI: 10.1186/1475-2832-3-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 07/30/2004] [Indexed: 11/18/2022]
Abstract
Background It has been suggested that lithium increases choline concentrations, although previous human studies examining this possibility using 1H magnetic resonance spectroscopy (1H MRS) have had mixed results: some found increases while most found no differences. Methods The present study utilized 1H MRS, in a 3 T scanner to examine the effects of both lithium and sodium valproate upon choline concentrations in treated euthymic bipolar patients utilizing two different methodologies. In the first part of the study healthy controls (n = 18) were compared with euthymic Bipolar Disorder patients (Type I and Type II) who were taking either lithium (n = 14) or sodium valproate (n = 11), and temporal lobe choline/creatine (Cho/Cr) ratios were determined. In the second part we examined a separate group of euthymic Bipolar Disorder Type I patients taking sodium valproate (n = 9) and compared these to controls (n = 11). Here we measured the absolute concentrations of choline in both temporal and frontal lobes. Results The results from the first part of the study showed that bipolar patients chronically treated with both lithium and sodium valproate had significantly reduced temporal lobe Cho/Cr ratios. In contrast, in the second part of the study, there were no effects of sodium valproate on either absolute choline concentrations or on Cho/Cr ratios in either temporal or frontal lobes. Conclusions These findings suggest that measuring Cho/Cr ratios may not accurately reflect brain choline concentrations. In addition, the results do not support previous suggestions that either lithium or valproate increases choline concentrations in bipolar patients.
Collapse
Affiliation(s)
- Ren H Wu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Tina O'Donnell
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Michele Ulrich
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Sheila J Asghar
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
47
|
Hsu YY, Du AT, Schuff N, Weiner MW. Magnetic resonance imaging and magnetic resonance spectroscopy in dementias. J Geriatr Psychiatry Neurol 2001; 14:145-66. [PMID: 11563438 PMCID: PMC1857299 DOI: 10.1177/089198870101400308] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This article reviews recent studies of magnetic resonance imaging and magnetic resonance spectroscopy in dementia, including Alzheimer's disease, frontotemporal dementia, dementia with Lewy bodies, idiopathic Parkinson's disease, Huntington's disease, and vascular dementia. Magnetic resonance imaging and magnetic resonance spectroscopy can detect structural alteration and biochemical abnormalities in the brain of demented subjects and may help in the differential diagnosis and early detection of affected individuals, monitoring disease progression, and evaluation of therapeutic effect.
Collapse
Affiliation(s)
- Y Y Hsu
- Magnetic Resonance Unit, Department of Veterans Affairs Medical Center, San Francisco 94121, USA
| | | | | | | |
Collapse
|
48
|
Rapoport SI. Functional brain imaging to identify affected subjects genetically at risk for Alzheimer's disease. Proc Natl Acad Sci U S A 2000; 97:5696-8. [PMID: 10811924 PMCID: PMC33991 DOI: 10.1073/pnas.120178897] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- S I Rapoport
- Section on Brain Physiology and Metabolism, Building 10, Room 6C103, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Shetty HU, Siarey RJ, Galdzicki Z, Stoll J, Rapoport SI. Ts65Dn mouse, a Down syndrome model, exhibits elevated myo-inositol in selected brain regions and peripheral tissues. Neurochem Res 2000; 25:431-5. [PMID: 10823574 DOI: 10.1023/a:1007592006005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
myo-Inositol is elevated in the Down syndrome (DS; trisomy 21) brain and may play a role in mental retardation. In the present study, we examined brain regions and peripheral tissues of Ts65Dn mouse, a recently characterized genetic model of DS, for abnormal myo-inositol accumulation. A GC/MS technique was used to quantitate myo-inositol and other polyol species (ribitol, arabitol, xylitol, and 1,5-anhydrosorbitol) in tissues from the Ts65Dn mice and control diploid mice. myo-Inositol was found to be elevated in frontal cortex, hippocampus, and brain stem but not in cerebellum of the Ts65Dn mouse. Among peripheral organs examined, liver and skeletal muscle were found to excessively accumulate myo-inositol. In all tissues, concentrations of polyol internal controls were normal. The Ts65Dn mouse is useful to study the possible effect of elevated myo-inositol on cellular processes.
Collapse
Affiliation(s)
- H U Shetty
- Section on Brain Physiology and Metabolism, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892-1582, USA.
| | | | | | | | | |
Collapse
|