1
|
Bonthrone AF, Cromb D, Chew A, Gal-Er B, Kelly C, Falconer S, Arichi T, Pushparajah K, Simpson J, Rutherford MA, Hajnal JV, Nosarti C, Edwards AD, O'Muircheartaigh J, Counsell SJ. Cortical scaling of the neonatal brain in typical and altered development. Proc Natl Acad Sci U S A 2025; 122:e2416423122. [PMID: 40198710 DOI: 10.1073/pnas.2416423122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
Theoretically derived scaling laws capture the nonlinear relationships between rapidly expanding brain volume and cortical gyrification across mammalian species and in adult humans. However, the preservation of these laws has not been comprehensively assessed in typical or pathological brain development. Here, we assessed the scaling laws governing cortical thickness (CT), surface area (SA), and cortical folding in the neonatal brain. We also assessed multivariate morphological terms that capture brain size, shape, and folding processes. The sample consisted of 345 typically developing infants, 73 preterm infants, and 107 infants with congenital heart disease (CHD) who underwent brain MRI. Our results show that typically developing neonates and those with CHD follow the cortical folding scaling law obtained from mammalian brains, children, and adults which captures the relationship between exposed SA, total SA, and CT. Cortical folding scaling was not affected by gestational age at birth, postmenstrual age at scan, sex, or multiple birth in these populations. CHD was characterized by a unique reduction in the multivariate morphological term capturing size, suggesting that CHD affects cortical growth overall but not cortical folding processes. In contrast, preterm birth was characterized by altered cortical folding scaling and altered shape, suggesting that the developmentally programmed processes of cortical folding are disrupted in this population. The degree of altered shape was associated with cognitive abilities in early childhood in preterm infants.
Collapse
Affiliation(s)
- Alexandra F Bonthrone
- Centre for the Developing Brain, Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Daniel Cromb
- Centre for the Developing Brain, Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Barat Gal-Er
- Centre for the Developing Brain, Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Christopher Kelly
- Centre for the Developing Brain, Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Shona Falconer
- Centre for the Developing Brain, Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Tomoki Arichi
- Centre for the Developing Brain, Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- Department of Paediatric Neurosciences, Evelina London Children's Hospital, London SE1 7EH, United Kingdom
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Kuberan Pushparajah
- Research Department of Cardiovascular Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- Department of Fetal and Paediatric Cardiology, Evelina London Children's Hospital, London SE1 7EH, United Kingdom
| | - John Simpson
- Department of Fetal and Paediatric Cardiology, Evelina London Children's Hospital, London SE1 7EH, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Chiara Nosarti
- Centre for the Developing Brain, Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AB, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AB, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| |
Collapse
|
2
|
Ganesan S, Barrios FA, Batta I, Bauer CCC, Braver TS, Brewer JA, Brown KW, Cahn R, Cain JA, Calhoun VD, Cao L, Chetelat G, Ching CRK, Creswell JD, Dagnino PC, Davanger S, Davidson RJ, Deco G, Dutcher JM, Escrichs A, Eyler LT, Fani N, Farb NAS, Fialoke S, Fresco DM, Garg R, Garland EL, Goldin P, Hafeman DM, Jahanshad N, Kang Y, Khalsa SS, Kirlic N, Lazar SW, Lutz A, McDermott TJ, Pagnoni G, Piguet C, Prakash RS, Rahrig H, Reggente N, Saccaro LF, Sacchet MD, Siegle GJ, Tang YY, Thomopoulos SI, Thompson PM, Torske A, Treves IN, Tripathi V, Tsuchiyagaito A, Turner MD, Vago DR, Valk S, Zeidan F, Zalesky A, Turner JA, King AP. ENIGMA-Meditation: Worldwide Consortium for Neuroscientific Investigations of Meditation Practices. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:425-436. [PMID: 39515581 PMCID: PMC11975497 DOI: 10.1016/j.bpsc.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Meditation is a family of ancient and contemporary contemplative mind-body practices that can modulate psychological processes, awareness, and mental states. Over the last 40 years, clinical science has manualized meditation practices and designed various meditation interventions that have shown therapeutic efficacy for disorders including depression, pain, addiction, and anxiety. Over the past decade, neuroimaging has been used to examine the neuroscientific basis of meditation practices, effects, states, and outcomes for clinical and nonclinical populations. However, the generalizability and replicability of current neuroscientific models of meditation have not yet been established, because they are largely based on small datasets entrenched with heterogeneity along several domains of meditation (e.g., practice types, meditation experience, clinical disorder targeted), experimental design, and neuroimaging methods (e.g., preprocessing, analysis, task-based, resting-state, structural magnetic resonance imaging). These limitations have precluded a nuanced and rigorous neuroscientific phenotyping of meditation practices and their potential benefits. Here, we present ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis)-Meditation, the first worldwide collaborative consortium for neuroscientific investigations of meditation practices. ENIGMA-Meditation will enable systematic meta- and mega-analyses of globally distributed neuroimaging datasets of meditation using shared, standardized neuroimaging methods and tools to improve statistical power and generalizability. Through this powerful collaborative framework, existing neuroscientific accounts of meditation practices can be extended to generate novel and rigorous neuroscientific insights that account for multidomain heterogeneity. ENIGMA-Meditation will inform neuroscientific mechanisms that underlie therapeutic action of meditation practices on psychological and cognitive attributes, thereby advancing the field of meditation and contemplative neuroscience.
Collapse
Affiliation(s)
- Saampras Ganesan
- Department of Biomedical Engineering, The University of Melbourne, Carlton, Victoria, Australia; Contemplative Studies Centre, Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia; Systems Lab of Neuroscience, Neuropsychiatry and Neuroengineering, The University of Melbourne, Parkville, Victoria, Australia.
| | - Fernando A Barrios
- Universidad Nacional Autónoma de México, Instituto de Neurobiolgía, Querétaro, México
| | - Ishaan Batta
- Center for Translational Research in Neuroimaging and Data Science: Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia
| | - Clemens C C Bauer
- Department of Psychology, Northeastern University, Boston, Massachusetts; Brain and Cognitive Science, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Todd S Braver
- Department of Psychological and Brain Sciences, Washington University, St. Louis, Missouri
| | - Judson A Brewer
- Department of Behavioral and Social Sciences, Brown University, School of Public Health, Providence, Rhode Island
| | - Kirk Warren Brown
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Rael Cahn
- University of Southern California Department of Psychiatry & Behavioral Sciences, Los Angeles, California; University of Southern California Center for Mindfulness Science, Los Angeles, California
| | - Joshua A Cain
- Institute for Advanced Consciousness Studies, Santa Monica, California
| | - Vince D Calhoun
- Center for Translational Research in Neuroimaging and Data Science: Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia
| | - Lei Cao
- Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine, Columbus, Ohio
| | - Gaël Chetelat
- Normandie University, Université de Caen Normandie, INSERM U1237, Neuropresage Team, Cyceron, Caen, France
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - J David Creswell
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, California
| | - Paulina Clara Dagnino
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Svend Davanger
- Division of Anatomy, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Richard J Davidson
- Psychology Department and Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin; Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Janine M Dutcher
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lisa T Eyler
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, California; Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Norman A S Farb
- Department of Psychology, University of Toronto, Mississauga, Ontario, Canada; Department of Psychological Clinical Science, University of Toronto, Scarborough, Ontario, Canada
| | - Suruchi Fialoke
- National Resource Center for Value Education in Engineering, Indian Institute of Technology, New Delhi, India
| | - David M Fresco
- Department of Psychiatry and Institute for Social Research, University of Michigan, Ann Arbor, Michigan
| | - Rahul Garg
- National Resource Center for Value Education in Engineering, Indian Institute of Technology, New Delhi, India; Department of Computer Science and Engineering, Indian Institute of Technology, New Delhi, India
| | - Eric L Garland
- Center on Mindfulness and Integrative Health Intervention Development, University of Utah, Salt Lake City, Utah
| | - Philippe Goldin
- Betty Irene Moore School of Nursing, University of California Davis, Sacramento, California
| | - Danella M Hafeman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Yoona Kang
- Department of Psychology, Rutgers University - Camden, Camden, New Jersey
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Namik Kirlic
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| | - Sara W Lazar
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Antoine Lutz
- Eduwell Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR 5292, Lyon University, Lyon, France; Lyon Neuroscience Research Centre, INSERM U1028, Lyon, France
| | - Timothy J McDermott
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Giuseppe Pagnoni
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Camille Piguet
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Hadley Rahrig
- Psychology Department and Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, California
| | - Luigi F Saccaro
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Psychiatry Department, Geneva University Hospital, Geneva, Switzerland
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Greg J Siegle
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yi-Yuan Tang
- College of Health Solutions, Arizona State University, Phoenix, Arizona
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Alyssa Torske
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Isaac N Treves
- Brain and Cognitive Science, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Vaibhav Tripathi
- Center for Brain Science and Department of Psychology, Harvard University, Cambridge, Massachusetts
| | - Aki Tsuchiyagaito
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Oxley College of Health & Natural Sciences, The University of Tulsa, Tulsa, Oklahoma; Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Matthew D Turner
- Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine, Columbus, Ohio
| | - David R Vago
- Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sofie Valk
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Systems Neuroscience, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, INM-7, Brain & Behaviour Research Centre Jülich, Jülich, Germany
| | - Fadel Zeidan
- Department of Anesthesiology, University of California San Diego, La Jolla, California; T. Denny Sanford Institute for Empathy and Compassion, University of California San Diego, La Jolla, California
| | - Andrew Zalesky
- Department of Biomedical Engineering, The University of Melbourne, Carlton, Victoria, Australia; Systems Lab of Neuroscience, Neuropsychiatry and Neuroengineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine, Columbus, Ohio
| | - Anthony P King
- Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine, Columbus, Ohio; Department of Psychology, The Ohio State University, Columbus, Ohio; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
3
|
Bedford SA, Lai MC, Lombardo MV, Chakrabarti B, Ruigrok A, Suckling J, Anagnostou E, Lerch JP, Taylor M, Nicolson R, Stelios G, Crosbie J, Schachar R, Kelley E, Jones J, Arnold PD, Courchesne E, Pierce K, Eyler LT, Campbell K, Barnes CC, Seidlitz J, Alexander-Bloch AF, Bullmore ET, Baron-Cohen S, Bethlehem RAI. Brain-Charting Autism and Attention-Deficit/Hyperactivity Disorder Reveals Distinct and Overlapping Neurobiology. Biol Psychiatry 2025; 97:517-530. [PMID: 39128574 DOI: 10.1016/j.biopsych.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/30/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Autism and attention-deficit/hyperactivity disorder (ADHD) are heterogeneous neurodevelopmental conditions with complex underlying neurobiology that is still poorly understood. Despite overlapping presentation and sex-biased prevalence, autism and ADHD are rarely studied together and sex differences are often overlooked. Population modeling, often referred to as normative modeling, provides a unified framework for studying age-specific and sex-specific divergences in brain development. METHODS Here, we used population modeling and a large, multisite neuroimaging dataset (N = 4255 after quality control) to characterize cortical anatomy associated with autism and ADHD, benchmarked against models of average brain development based on a sample of more than 75,000 individuals. We also examined sex and age differences and relationship with autistic traits and explored the co-occurrence of autism and ADHD. RESULTS We observed robust neuroanatomical signatures of both autism and ADHD. Overall, autistic individuals showed greater cortical thickness and volume that was localized to the superior temporal cortex, whereas individuals with ADHD showed more global increases in cortical thickness but lower cortical volume and surface area across much of the cortex. The co-occurring autism+ADHD group showed a unique pattern of widespread increases in cortical thickness and certain decreases in surface area. We also found that sex modulated the neuroanatomy of autism but not ADHD, and there was an age-by-diagnosis interaction for ADHD only. CONCLUSIONS These results indicate distinct cortical differences in autism and ADHD that are differentially affected by age and sex as well as potentially unique patterns related to their co-occurrence.
Collapse
Affiliation(s)
- Saashi A Bedford
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Michael V Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Bhismadev Chakrabarti
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Centre for Autism, School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | - Amber Ruigrok
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, Canada
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada; Department of Pediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jason P Lerch
- Program in Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Margot Taylor
- Program in Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rob Nicolson
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada
| | | | - Jennifer Crosbie
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Program in Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Russell Schachar
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Program in Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth Kelley
- Department of Psychology, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Jessica Jones
- Department of Psychology, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Paul D Arnold
- Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Departments of Psychiatry and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eric Courchesne
- Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Karen Pierce
- Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Lisa T Eyler
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Kathleen Campbell
- Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Cynthia Carter Barnes
- Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania
| | - Edward T Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridge Lifetime Autism Spectrum Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Richard A I Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Brown LE, Tallon M, Bellgrove MA, Rudaizky D, Kendall G, Boyes M, Myers B. Increasing Health Literacy on ADHD: A Cross-Disciplinary Integrative Review Examining the Impact of ADHD on Brain Maturation, Composition and Function and Cognitive Processes Across the Life Course. Child Psychiatry Hum Dev 2025:10.1007/s10578-025-01815-5. [PMID: 40011386 DOI: 10.1007/s10578-025-01815-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
There is a significant need to improve ADHD health literacy. This cross-disciplinary integrative review was conducted to synthesise the evidence on the impact ADHD has on brain maturation, composition and function as well as cognitive processes, across the life course. Although results are highly heterogenous, ADHD appears to be associated with (1) a significant delay in cortical maturation and differences in neuroanatomy that do not appear to fully resolve in adulthood, (2) atypical brain function, and (3) atypical cognitive processes. The cognitive processes implicated include working memory, inhibitory control, cognitive flexibility, alerting attention, reward processing, long-term memory, reaction time, time perception and estimation, planning, and complex decision making/problem-solving. We aim to use this data to develop a 'framework/checklist" that parents, adults and clinicians can use to identify the possible mechanisms that may be contributing to an individual with ADHD's challenges. This information can also be used to inform the content of ADHD education programs to ensure participants receive empirically-determine information from high quality review studies and meta-analysis that accurately reflects the rigor and limitations of study findings.
Collapse
Affiliation(s)
- Louise E Brown
- Faculty of Health Sciences, enAble Institute, Curtin University, Perth, WA, 6845, Australia.
- Faculty of Health Sciences, School of Nursing, Curtin University, Perth, WA, 6845, Australia.
| | - Mary Tallon
- Faculty of Health Sciences, School of Nursing, Curtin University, Perth, WA, 6845, Australia
| | - Mark A Bellgrove
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, 3800, Australia
| | - Daniel Rudaizky
- Faculty of Health Sciences, enAble Institute, Curtin University, Perth, WA, 6845, Australia
- Faculty of Health Sciences, School of Population Health, Curtin University, Perth, WA, 6845, Australia
| | - Garth Kendall
- Faculty of Health Sciences, School of Nursing, Curtin University, Perth, WA, 6845, Australia
| | - Mark Boyes
- Faculty of Health Sciences, enAble Institute, Curtin University, Perth, WA, 6845, Australia
| | - Bronwyn Myers
- Faculty of Health Sciences, enAble Institute, Curtin University, Perth, WA, 6845, Australia
| |
Collapse
|
5
|
Huang R, Liu Y. Research progress of tDCS in the treatment of ADHD. J Neural Transm (Vienna) 2025; 132:237-251. [PMID: 39508850 PMCID: PMC11785651 DOI: 10.1007/s00702-024-02853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
TDCS is one of the most widely used non-invasive neuromodulation techniques, which changes the excitability of local cortical tissue by applying weak continuous direct current to the scalp, effectively improves the attention and concentration of ADHD children, and improves the impulse disorder of patients, but related research is still in its infancy. Based on a review of a large number of existing literatures and an analysis of the pathogenesis and principle of ADHD, this paper summarized the research on tDCS in the treatment of ADHD in recent years from the aspects of treatment mechanism, safety and stimulation parameters, and simply compared the application of tDCS with other non-traumatic neuromodulation techniques in the treatment of ADHD. The future development direction of this technology is further discussed.
Collapse
Affiliation(s)
- Ruihan Huang
- School of Public Health, Qilu Medical University, Zibo, Shandong, China
| | - Yongsheng Liu
- School of Clinical Medicine, Qilu Medical University, Zibo, Shandong, China.
| |
Collapse
|
6
|
Zovetti N, Meller T, Evermann U, Pfarr JK, Hoffmann J, Federspiel A, Walther S, Grezellschak S, Jansen A, Abu-Akel A, Nenadić I. Multimodal imaging of the amygdala in non-clinical subjects with high vs. low autistic-like social skills traits. Psychiatry Res Neuroimaging 2025; 346:111910. [PMID: 39477779 DOI: 10.1016/j.pscychresns.2024.111910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 09/20/2024] [Accepted: 10/18/2024] [Indexed: 12/16/2024]
Abstract
Recent clinical and theoretical frameworks suggest that social skills and theory of mind impairments characteristic of autism spectrum disorder (ASD) are distributed in the general population on a continuum between healthy individuals and patients. The present multimodal study aimed at investigating the amygdala's function, perfusion, and volume in 56 non-clinical subjects from the general population with high (n = 28 High-SOC) or low (n = 28 Low-SOC) autistic-like social skills traits. Participants underwent magnetic resonance imaging to evaluate the amygdala's functional connectivity at rest, blood perfusion by means of arterial spin labelling, its activation during a face evaluation task and lastly grey matter volumes. The High-SOC group was characterised by higher blood perfusion in both amygdalae, lower volume of the left amygdala and higher activations of the right amygdala during processing of human faces with fearful value. Resting state analyses did not reveal any significant difference between the two groups. Overall, our results highlight the presence of overlapping morpho-functional alterations of the amygdala between healthy individuals and ASD patients confirming the importance of the amygdala in this disorder and in social and emotional processing. Our findings may help disentangle the neurobiological facets of ASD elucidating aetiology and the relationship between clinical symptomatology and neurobiology.
Collapse
Affiliation(s)
- Niccolò Zovetti
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany; Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Ulrika Evermann
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Jonas Hoffmann
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sarah Grezellschak
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany; BrainImaging Core Facility, Philipps Universität Marburg, Marburg, Germany
| | - Ahmad Abu-Akel
- School of Psychological Sciences, University of Haifa, Haifa, Israel; The Haifa Brain and Behavior Hub (HBBH), University of Haifa, Haifa, Israel
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany.
| |
Collapse
|
7
|
Heine VM, Dooves S. Neuroglia in autism spectrum disorders. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:303-311. [PMID: 40148051 DOI: 10.1016/b978-0-443-19102-2.00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Autism spectrum disorder (ASD) is characterized by difficulties in social interaction, communication, and repetitive behavior, typically diagnosed during early childhood and attributed to altered neuronal network connectivity. Several genetic and environmental risk factors contribute to ASD, including pre- or early life immune activation, which can trigger microglial and astroglial reactivity, impacting early neurodevelopment. In ASD, astrocytes show altered glutamate metabolism, directly influencing neuronal network activity, while microglia display impaired synaptic pruning, an essential developmental process for the refinement of neuronal connections. Additionally, reduced myelination in specific cortical and subcortical regions may affect brain connectivity in ASD, with white matter integrity correlating with the severity of the disorder, suggesting an important role for oligodendrocytes and myelin in ASD. This chapter provides an overview of current literature on the role of neuroglia cells in ASD, with a focus on immune activation, glutamate signaling, synaptic pruning, and myelination.
Collapse
Affiliation(s)
- Vivi M Heine
- Department of Child and Adolescence Psychiatry, Emma Center for Personalized Medicine, Amsterdam Neuroscience, Emma Children's Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Stephanie Dooves
- Department of Child and Adolescence Psychiatry, Emma Center for Personalized Medicine, Amsterdam Neuroscience, Emma Children's Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Moreau CA, Ayrolles A, Ching CRK, Bonicel R, Mathieu A, Stordeur C, Bergeret P, Traut N, Tran L, Germanaud D, Alison M, Elmaleh-Bergès M, Ehrlich S, Thompson PM, Bourgeron T, Delorme R. Neuroimaging Insights into Brain Mechanisms of Early-onset Restrictive Eating Disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.12.24317128. [PMID: 39606373 PMCID: PMC11601758 DOI: 10.1101/2024.11.12.24317128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Early-onset restrictive eating disorders (rEO-ED) encompass a heterogeneous group of conditions, including early-onset anorexia nervosa (EO-AN) and avoidant restrictive food intake disorders (ARFID). Almost nothing is known about the consequences of rEO-ED on brain development. Methods We performed the largest comparison of MRI-derived brain features in children and early adolescents (<13 years) with EO-AN (n=124), ARFID (n=50), and typically developing individuals (TD, n=112). Results Despite similar body mass index (BMI) distributions, EO-AN and ARFID showed divergent structural patterns, suggesting independent brain mechanisms. Half the regional brain measures were correlated with BMI in EO-AN and none in ARFID, indicating a partial mediation of EO-AN signal by BMI. EO-AN was associated with a widespread pattern of thinner cortex, while underweight ARFID patients exhibited smaller surface area and subcortical volumes than TD. Conclusion Future studies will be required to partition the contribution of low BMI vs. ED mechanisms in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Clara A Moreau
- Sainte Justine Hospital Azrieli Research Center, Department of Psychiatry and Addictology, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Anael Ayrolles
- Institut Pasteur, Université de Paris, CNRS UMR 3571, Human Genetics and Cognitive Functions, 25 rue du Dr. Roux, Paris, France
- Child and Adolescent Psychiatry Department, Robert Debré Hospital, APHP, Paris, France
| | - Christopher R K Ching
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Robin Bonicel
- Institut Pasteur, Université de Paris, CNRS UMR 3571, Human Genetics and Cognitive Functions, 25 rue du Dr. Roux, Paris, France
- Child and Adolescent Psychiatry Department, Robert Debré Hospital, APHP, Paris, France
| | - Alexandre Mathieu
- Institut Pasteur, Université de Paris, CNRS UMR 3571, Human Genetics and Cognitive Functions, 25 rue du Dr. Roux, Paris, France
| | - Coline Stordeur
- Child and Adolescent Psychiatry Department, Robert Debré Hospital, APHP, Paris, France
| | - Pierre Bergeret
- Sainte Justine Hospital Azrieli Research Center, Department of Psychiatry and Addictology, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Nicolas Traut
- Institut Pasteur, Université de Paris, CNRS UMR 3571, Human Genetics and Cognitive Functions, 25 rue du Dr. Roux, Paris, France
| | - Lydie Tran
- Institut Pasteur, Université de Paris, CNRS UMR 3571, Human Genetics and Cognitive Functions, 25 rue du Dr. Roux, Paris, France
| | - David Germanaud
- UNIACT, NeuroSpin, Frederic Joliot Institute, Centre d'études de Saclay, CEA Paris-Saclay, Gif-sur-Yvette, France
- InDEV, NeuroDiderot, Inserm, Université Paris Cité, Paris, France
- Department of Genetics, Robert-Debré Hospital, AP-HP, Centre de Référence Déficiences Intellectuelles de Causes Rares, Centre of Excellence InovAND, Paris, France
| | - Marianne Alison
- Department of Pediatric Radiology, Robert-Debré Hospital, AP-HP, Centre of Excellence InovAND, Paris, France
| | - Monique Elmaleh-Bergès
- Department of Pediatric Radiology, Robert-Debré Hospital, AP-HP, Centre of Excellence InovAND, Paris, France
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Germany
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Thomas Bourgeron
- Institut Pasteur, Université de Paris, CNRS UMR 3571, Human Genetics and Cognitive Functions, 25 rue du Dr. Roux, Paris, France
| | - Richard Delorme
- Institut Pasteur, Université de Paris, CNRS UMR 3571, Human Genetics and Cognitive Functions, 25 rue du Dr. Roux, Paris, France
- Child and Adolescent Psychiatry Department, Robert Debré Hospital, APHP, Paris, France
| |
Collapse
|
9
|
Ball G, Oldham S, Kyriakopoulou V, Williams LZJ, Karolis V, Price A, Hutter J, Seal ML, Alexander-Bloch A, Hajnal JV, Edwards AD, Robinson EC, Seidlitz J. Molecular signatures of cortical expansion in the human foetal brain. Nat Commun 2024; 15:9685. [PMID: 39516464 PMCID: PMC11549424 DOI: 10.1038/s41467-024-54034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The third trimester of human gestation is characterised by rapid increases in brain volume and cortical surface area. Recent studies have revealed a remarkable molecular diversity across the prenatal cortex but little is known about how this diversity translates into the differential rates of cortical expansion observed during gestation. We present a digital resource, μBrain, to facilitate knowledge translation between molecular and anatomical descriptions of the prenatal brain. Using μBrain, we evaluate the molecular signatures of preferentially-expanded cortical regions, quantified in utero using magnetic resonance imaging. Our findings demonstrate a spatial coupling between areal differences in the timing of neurogenesis and rates of neocortical expansion during gestation. We identify genes, upregulated from mid-gestation, that are highly expressed in rapidly expanding neocortex and implicated in genetic disorders with cognitive sequelae. The μBrain atlas provides a tool to comprehensively map early brain development across domains, model systems and resolution scales.
Collapse
Affiliation(s)
- G Ball
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| | - S Oldham
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - V Kyriakopoulou
- Centre for the Developing Brain, King's College London, London, UK
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - L Z J Williams
- Centre for the Developing Brain, King's College London, London, UK
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - V Karolis
- Centre for the Developing Brain, King's College London, London, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - A Price
- Centre for the Developing Brain, King's College London, London, UK
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - J Hutter
- Centre for the Developing Brain, King's College London, London, UK
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - M L Seal
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - A Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - J V Hajnal
- Centre for the Developing Brain, King's College London, London, UK
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - A D Edwards
- Centre for the Developing Brain, King's College London, London, UK
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - E C Robinson
- Centre for the Developing Brain, King's College London, London, UK
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - J Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Durham EL, Kaczkurkin AN. Structural Brain Correlates of Anxiety During Development. Curr Top Behav Neurosci 2024. [PMID: 39509051 DOI: 10.1007/7854_2024_541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Anxiety and related disorders are prevalent across the lifespan, often have their onset during youth, and are associated with notable levels of impairment and burden across multiple domains. Elucidating the associations between differential patterns of neurodevelopment and anxiety in youth is a promising approach for developing deeper insights regarding the neurobiological etiologies and maintenance factors associated with anxiety and related disorders. A growing body of literature has yielded evidence of associations between patterns of brain structure (i.e., volume, cortical thickness, and cortical surface area) and anxiety. Here, we present a review and synthesis of the existing body of literature surrounding neurostructural correlates of anxiety in youth spanning multiple anxiety presentations and three neurostructural modalities. We reveal substantially more research focusing on brain volume than cortical thickness or surface area and a greater number of studies examining anxiety broadly defined, obsessive-compulsive disorder, or posttraumatic stress disorder. There is also evidence of considerable variability in the brain regions implicated and the direction of associations across studies. Finally, we discuss the gaps and limitations in this body of work, which suggest avenues for future directions.
Collapse
Affiliation(s)
- E Leighton Durham
- Department of Psychological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Antonia N Kaczkurkin
- Department of Psychological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
11
|
Sun B, Xu Y, Kat S, Sun A, Yin T, Zhao L, Su X, Chen J, Wang H, Gong X, Liu Q, Han G, Peng S, Li X, Liu J. Exploring the most discriminative brain structural abnormalities in ASD with multi-stage progressive feature refinement approach. Front Psychiatry 2024; 15:1463654. [PMID: 39483728 PMCID: PMC11524921 DOI: 10.3389/fpsyt.2024.1463654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024] Open
Abstract
Objective Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by increasing prevalence, diverse impairments, and unclear origins and mechanisms. To gain a better grasp of the origins of ASD, it is essential to identify the most distinctive structural brain abnormalities in individuals with ASD. Methods A Multi-Stage Progressive Feature Refinement Approach was employed to identify the most pivotal structural magnetic resonance imaging (MRI) features that distinguish individuals with ASD from typically developing (TD) individuals. The study included 175 individuals with ASD and 69 TD individuals, all aged between 7 and 18 years, matched in terms of age and gender. Both cortical and subcortical features were integrated, with a particular focus on hippocampal subfields. Results Out of 317 features, 9 had the most significant impact on distinguishing ASD from TD individuals. These structural features, which include a specific hippocampal subfield, are closely related to the brain areas associated with the reward system. Conclusion Structural irregularities in the reward system may play a crucial role in the pathophysiology of ASD, and specific hippocampal subfields may also contribute uniquely, warranting further investigation.
Collapse
Affiliation(s)
- Bingxi Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yingying Xu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Siuching Kat
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Anlan Sun
- Yizhun Medical AI Co., Ltd, Algorithm and Development Department, Beijing, China
| | - Tingni Yin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Liyang Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xing Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jialu Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hui Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiaoyun Gong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Qinyi Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Gangqiang Han
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Shuchen Peng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xue Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
12
|
Nenadić I, Schröder Y, Hoffmann J, Evermann U, Pfarr JK, Bergmann A, Hohmann DM, Keil B, Abu-Akel A, Stroth S, Kamp-Becker I, Jansen A, Grezellschak S, Meller T. Superior temporal sulcus folding, functional network connectivity, and autistic-like traits in a non-clinical population. Mol Autism 2024; 15:44. [PMID: 39380071 PMCID: PMC11463051 DOI: 10.1186/s13229-024-00623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Autistic-like traits (ALT) are prevalent across the general population and might be linked to some facets of a broader autism spectrum disorder (ASD) phenotype. Recent studies suggest an association of these traits with both genetic and brain structural markers in non-autistic individuals, showing similar spatial location of findings observed in ASD and thus suggesting a potential neurobiological continuum. METHODS In this study, we first tested an association of ALTs (assessed with the AQ questionnaire) with cortical complexity, a cortical surface marker of early neurodevelopment, and then the association with disrupted functional connectivity. We analysed structural T1-weighted and resting-state functional MRI scans in 250 psychiatrically healthy individuals without a history of early developmental disorders, in a first step using the CAT12 toolbox for cortical complexity analysis and in a second step we used regional cortical complexity findings to apply the CONN toolbox for seed-based functional connectivity analysis. RESULTS Our findings show a significant negative correlation of both AQ total and AQ attention switching subscores with left superior temporal sulcus (STS) cortical folding complexity, with the former being significantly correlated with STS to left lateral occipital cortex connectivity, while the latter showed significant positive correlation of STS to left inferior/middle frontal gyrus connectivity (n = 233; all p < 0.05, FWE cluster-level corrected). Additional analyses also revealed a significant correlation of AQ attention to detail subscores with STS to left lateral occipital cortex connectivity. LIMITATIONS Phenotyping might affect association results (e.g. choice of inventories); in addition, our study was limited to subclinical expressions of autistic-like traits. CONCLUSIONS Our findings provide further evidence for biological correlates of ALT even in the absence of clinical ASD, while establishing a link between structural variation of early developmental origin and functional connectivity.
Collapse
Affiliation(s)
- Igor Nenadić
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35037, Marburg, Germany.
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg, Justus Liebig University Gießen, and Technical University of Darmstadt, Hans-Meerwein-Straße 6, 35032, Marburg, Germany.
- Marburg University Hospital - UKGM, Marburg, Germany.
- LOEWE Center DYNAMIC, University of Marburg, Marburg, Germany.
| | - Yvonne Schröder
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35037, Marburg, Germany
| | - Jonas Hoffmann
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35037, Marburg, Germany
| | - Ulrika Evermann
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35037, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg, Justus Liebig University Gießen, and Technical University of Darmstadt, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
| | - Julia-Katharina Pfarr
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35037, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg, Justus Liebig University Gießen, and Technical University of Darmstadt, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
| | - Aliénor Bergmann
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35037, Marburg, Germany
| | - Daniela Michelle Hohmann
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35037, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg, Justus Liebig University Gießen, and Technical University of Darmstadt, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
| | - Boris Keil
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg, Justus Liebig University Gießen, and Technical University of Darmstadt, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, TH Mittelhessen University of Applied Sciences, Giessen, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH Mittelhessen University of Applied Sciences, 35390, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Ahmad Abu-Akel
- School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Haifa Brain and Behavior Hub (HBBH), University of Haifa, Haifa, Israel
| | - Sanna Stroth
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg, Justus Liebig University Gießen, and Technical University of Darmstadt, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Inge Kamp-Becker
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg, Justus Liebig University Gießen, and Technical University of Darmstadt, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Andreas Jansen
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg, Justus Liebig University Gießen, and Technical University of Darmstadt, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
- BrainImaging Core Facility, School of Medicine, Philipps-Universität Marburg, Marburg, Germany
| | - Sarah Grezellschak
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35037, Marburg, Germany
| | - Tina Meller
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35037, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg, Justus Liebig University Gießen, and Technical University of Darmstadt, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
| |
Collapse
|
13
|
Michelini G, Carlisi CO, Eaton NR, Elison JT, Haltigan JD, Kotov R, Krueger RF, Latzman RD, Li JJ, Levin-Aspenson HF, Salum GA, South SC, Stanton K, Waldman ID, Wilson S. Where do neurodevelopmental conditions fit in transdiagnostic psychiatric frameworks? Incorporating a new neurodevelopmental spectrum. World Psychiatry 2024; 23:333-357. [PMID: 39279404 PMCID: PMC11403200 DOI: 10.1002/wps.21225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Features of autism spectrum disorder, attention-deficit/hyperactivity disorder, learning disorders, intellectual disabilities, and communication and motor disorders usually emerge early in life and are associated with atypical neurodevelopment. These "neurodevelopmental conditions" are grouped together in the DSM-5 and ICD-11 to reflect their shared characteristics. Yet, reliance on categorical diagnoses poses significant challenges in both research and clinical settings (e.g., high co-occurrence, arbitrary diagnostic boundaries, high within-disorder heterogeneity). Taking a transdiagnostic dimensional approach provides a useful alternative for addressing these limitations, accounting for shared underpinnings across neurodevelopmental conditions, and characterizing their common co-occurrence and developmental continuity with other psychiatric conditions. Neurodevelopmental features have not been adequately considered in transdiagnostic psychiatric frameworks, although this would have fundamental implications for research and clinical practices. Growing evidence from studies on the structure of neurodevelopmental and other psychiatric conditions indicates that features of neurodevelopmental conditions cluster together, delineating a "neurodevelopmental spectrum" ranging from normative to impairing profiles. Studies on shared genetic underpinnings, overlapping cognitive and neural profiles, and similar developmental course and efficacy of support/treatment strategies indicate the validity of this neurodevelopmental spectrum. Further, characterizing this spectrum alongside other psychiatric dimensions has clinical utility, as it provides a fuller view of an individual's needs and strengths, and greater prognostic utility than diagnostic categories. Based on this compelling body of evidence, we argue that incorporating a new neurodevelopmental spectrum into transdiagnostic frameworks has considerable potential for transforming our understanding, classification, assessment, and clinical practices around neurodevelopmental and other psychiatric conditions.
Collapse
Affiliation(s)
- Giorgia Michelini
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Christina O Carlisi
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Nicholas R Eaton
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - John D Haltigan
- Department of Psychiatry, Division of Child and Youth Mental Health, University of Toronto, Toronto, ON, Canada
| | - Roman Kotov
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Robert F Krueger
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | | | - James J Li
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Giovanni A Salum
- Child Mind Institute, New York, NY, USA
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Instituto Nacional de Psiquiatria do Desenvolvimento para a Infância e Adolescência, São Paulo, Brazil
| | - Susan C South
- Department of Psychological Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Kasey Stanton
- Department of Psychology, University of Wyoming, Laramie, WY, USA
| | - Irwin D Waldman
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
14
|
McGhee CA, Honari H, Siqueiros-Sanchez M, Serur Y, van Staalduinen EK, Stevenson D, Bruno JL, Raman MM, Green T. Influences of RASopathies on Neuroanatomical Variation in Children. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:858-870. [PMID: 38621478 PMCID: PMC11381177 DOI: 10.1016/j.bpsc.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/09/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND RASopathies are a group of disorders characterized by pathogenic mutations in the Ras/mitogen-activated protein kinase (Ras/MAPK) signaling pathway. Distinct pathogenic variants in genes encoding proteins in the Ras/MAPK pathway cause Noonan syndrome (NS) and neurofibromatosis type 1 (NF1), which are associated with increased risk for autism spectrum disorder and attention-deficit/hyperactivity disorder. METHODS This study examined the effect of RASopathies (NS and NF1) on human neuroanatomy, specifically on surface area (SA), cortical thickness (CT), and subcortical volumes. Using vertex-based analysis for cortical measures and Desikan region of interest parcellation for subcortical volumes, we compared structural T1-weighted images of children with RASopathies (n = 91, mean age = 8.81 years, SD = 2.12) to those of sex- and age-matched typically developing children (n = 74, mean age = 9.07 years, SD = 1.77). RESULTS Compared with typically developing children, RASopathies had convergent effects on SA and CT, exhibiting increased SA in the precentral gyrus, decreased SA in occipital regions, and thinner CT in the precentral gyrus. RASopathies exhibited divergent effects on subcortical volumes, with syndrome-specific influences from NS and NF1. Overall, children with NS showed decreased volumes in striatal and thalamic structures, and children with NF1 displayed increased volumes in the hippocampus, amygdala, and thalamus. CONCLUSIONS Our study reveals the converging and diverging neuroanatomical effects of RASopathies on human neurodevelopment. The convergence of cortical effects on SA and CT indicates a shared influence of Ras/MAPK hyperactivation on the human brain. Therefore, considering these measures as objective outcome indicators for targeted treatments is imperative.
Collapse
Affiliation(s)
- Chloe Alexa McGhee
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California.
| | - Hamed Honari
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| | | | - Yaffa Serur
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| | - Eric K van Staalduinen
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| | - David Stevenson
- Division of Medical Genetics, Stanford University, Stanford, California
| | - Jennifer L Bruno
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| | - Mira Michelle Raman
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| | - Tamar Green
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| |
Collapse
|
15
|
Shou XJ, He Y. Autism and comorbidity: insights from brain imaging studies. Eur Child Adolesc Psychiatry 2024; 33:2441-2443. [PMID: 39014065 DOI: 10.1007/s00787-024-02529-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Affiliation(s)
- Xiao-Jing Shou
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yong He
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China.
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
16
|
Li C, Zhang R, Zhou Y, Li T, Qin R, Li L, Yuan X, Wang L, Wang X. Gray matter asymmetry alterations in children and adolescents with comorbid autism spectrum disorder and attention-deficit/hyperactivity disorder. Eur Child Adolesc Psychiatry 2024; 33:2593-2604. [PMID: 38159135 DOI: 10.1007/s00787-023-02323-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Despite the high coexistence of autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) (ASD + ADHD), the underlying neurobiological basis of this disorder remains unclear. Altered brain structural asymmetries have been verified in ASD and ADHD, respectively, making brain asymmetry a candidate for characterizing this coexisting disorder. Here, we measured the gray matter (GM) volume asymmetry in ASD + ADHD versus ASD without ADHD (ASD-only), ADHD without ASD (ADHD-only), and typically developing controls (TDc). High-resolution T1-weighted data from 48 ASD + ADHD, 63 ASD-only, 32 ADHD-only, and 211 matched TDc were included in our study. We also assessed brain-behavior relationships and the effects of age on GM asymmetry. We found that there were both shared and disorder-specific GM volume asymmetry alterations in ASD + ADHD, ASD-only, and ADHD-only compared with TDc. This finding demonstrates that ASD + ADHD is neither an endophenocopy nor an additive pathology of ASD and ADHD, but an entirely different neuroanatomical pathology. In addition, ASD + ADHD displayed altered GM volume asymmetries in the prefrontal regions responsible for executive function and theory of mind compared with ASD-only. We also found significant effects of age on GM asymmetry. The present study may provide structural insights into the neural basis of ASD + ADHD.
Collapse
Affiliation(s)
- Cuicui Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Rui Zhang
- Department of Radiology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.1 Jingba Road, Jinan, 250021, Shandong, China
| | - Yunna Zhou
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Tong Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Rui Qin
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Lin Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xianshun Yuan
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
| | - Li Wang
- Physical Examination Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
17
|
Laatsch J, Stein F, Maier S, Matthies S, Sobanski E, Alm B, Tebartz van Elst L, Krug A, Philipsen A. Neural correlates of inattention in adults with ADHD. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01872-2. [PMID: 39073447 DOI: 10.1007/s00406-024-01872-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
In the last two decades, numerous magnetic resonance imaging (MRI) studies have examined differences in cortical structure between individuals with Attention-Deficit/Hyperactivity Disorder (ADHD) and healthy controls. These studies primarily emphasized alterations in gray matter volume (GMV) and cortical thickness (CT). Still, the scientific literature is notably scarce in regard to investigating associations of cortical structure with ADHD psychopathology, specifically inattention within adults with ADHD. The present study aimed to elucidate neurobiological underpinnings of inattention beyond GMV and CT by including cortical gyrification, sulcal depth, and fractal dimension. Building upon the Comparison of Methylphenidate and Psychotherapy in Adult ADHD Study (COMPAS), cortical structure parameters were investigated using 141 T1-weighted anatomical scans of adult patients with ADHD. All brain structural analyses were performed using the threshold-free cluster enhancement (TFCE) approach and the Computational Anatomy Toolbox (CAT12) integrated into the Statistical Parametric Mapping Software (Matlab Version R2021a). Results revealed significant correlations of inattention in multiple brain regions. Cortical gyrification was negatively correlated, whereas cortical thickness and fractal dimension were positively associated with inattention. The clusters showed widespread distribution across the cerebral cortex, with both hemispheres affected. The cortical regions most prominently affected included the precuneus, para-, pre-, and postcentral gyri, superior parietal lobe, and posterior cingulate cortex. This study highlights the importance of cortical alterations in attentional processes in adults with ADHD. Further research in this area is warranted to elucidate intricacies of inattention in adults with ADHD to potentially enhance diagnostic accuracy and inform personalized treatment strategies.
Collapse
Affiliation(s)
- Jonathan Laatsch
- Department of Psychiatry und Psychotherapy, University Hospital Bonn, Bonn, Germany.
| | - Frederike Stein
- Department of Psychiatry und Psychotherapy, University of Marburg, Marburg, Germany
| | - Simon Maier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Swantje Matthies
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Esther Sobanski
- Department of Child and Adolescent Psychiatry Lucerne, Lucerne, Switzerland
- Department of Psychiatry and Psychotherapy, Medical Faculty of Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Barbara Alm
- Department of Psychiatry and Psychotherapy, Medical Faculty of Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Axel Krug
- Department of Psychiatry und Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry und Psychotherapy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
18
|
Bao Y, Chen X, Li Y, Yuan S, Han L, Deng X, Ran J. Chronic Low-Grade Inflammation and Brain Structure in the Middle-Aged and Elderly Adults. Nutrients 2024; 16:2313. [PMID: 39064755 PMCID: PMC11280392 DOI: 10.3390/nu16142313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Low-grade inflammation (LGI) mainly acted as the mediator of the association of obesity and inflammatory diet with numerous chronic diseases, including neuropsychiatric diseases. However, the evidence about the effect of LGI on brain structure is limited but important, especially in the context of accelerating aging. This study was then designed to close the gap, and we leveraged a total of 37,699 participants from the UK Biobank and utilized inflammation score (INFLA-score) to measure LGI. We built the longitudinal relationships of INFLA-score with brain imaging phenotypes using multiple linear regression models. We further analyzed the interactive effects of specific covariates. The results showed high level inflammation reduced the volumes of the subcortex and cortex, especially the globus pallidus (β [95% confidence interval] = -0.062 [-0.083, -0.041]), thalamus (-0.053 [-0.073, -0.033]), insula (-0.052 [-0.072, -0.032]), superior temporal gyrus (-0.049 [-0.069, -0.028]), lateral orbitofrontal cortex (-0.047 [-0.068, -0.027]), and others. Most significant effects were observed among urban residents. Furthermore, males and individuals with physical frailty were susceptive to the associations. The study provided potential insights into pathological changes during disease progression and might aid in the development of preventive and control targets in an age-friendly city to promote great health and well-being for sustainable development goals.
Collapse
Affiliation(s)
- Yujia Bao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.B.); (X.C.); (Y.L.); (S.Y.)
| | - Xixi Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.B.); (X.C.); (Y.L.); (S.Y.)
| | - Yongxuan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.B.); (X.C.); (Y.L.); (S.Y.)
| | - Shenghao Yuan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.B.); (X.C.); (Y.L.); (S.Y.)
| | - Lefei Han
- School of Global Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Xiaobei Deng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.B.); (X.C.); (Y.L.); (S.Y.)
| | - Jinjun Ran
- School of Public Health, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Zhukovsky P, Tio ES, Coughlan G, Bennett DA, Wang Y, Hohman TJ, Pizzagalli DA, Mulsant BH, Voineskos AN, Felsky D. Genetic influences on brain and cognitive health and their interactions with cardiovascular conditions and depression. Nat Commun 2024; 15:5207. [PMID: 38890310 PMCID: PMC11189393 DOI: 10.1038/s41467-024-49430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Approximately 40% of dementia cases could be prevented or delayed by modifiable risk factors related to lifestyle and environment. These risk factors, such as depression and vascular disease, do not affect all individuals in the same way, likely due to inter-individual differences in genetics. However, the precise nature of how genetic risk profiles interact with modifiable risk factors to affect brain health is poorly understood. Here we combine multiple data resources, including genotyping and postmortem gene expression, to map the genetic landscape of brain structure and identify 367 loci associated with cortical thickness and 13 loci associated with white matter hyperintensities (P < 5×10-8), with several loci also showing a significant association with cognitive function. We show that among 220 unique genetic loci associated with cortical thickness in our genome-wide association studies (GWAS), 95 also showed evidence of interaction with depression or cardiovascular conditions. Polygenic risk scores based on our GWAS of inferior frontal thickness also interacted with hypertension in predicting executive function in the Canadian Longitudinal Study on Aging. These findings advance our understanding of the genetic underpinning of brain structure and show that genetic risk for brain and cognitive health is in part moderated by treatable mid-life factors.
Collapse
Grants
- P30 AG072975 NIA NIH HHS
- U01 AG046152 NIA NIH HHS
- U01 AG061356 NIA NIH HHS
- R01 AG017917 NIA NIH HHS
- P30 AG010161 NIA NIH HHS
- R01 AG059716 NIA NIH HHS
- Wellcome Trust
- R01 AG015819 NIA NIH HHS
- Gouvernement du Canada | Instituts de Recherche en Santé du Canada | CIHR Skin Research Training Centre (Skin Research Training Centre)
- D.F. is supported by the generous contributions from the Michael and Sonja Koerner Foundation and the Krembil Family Foundation. D.F. is also supported in part by the Centre for Addiction and Mental Health (CAMH) Discovery Fund and CIHR.
- PZ was funded by the Canadian Institute of Health Research Postdoctoral Fellowship.
- Over the past 3 years, D.A.P has received consulting fees from Albright Stonebridge Group, Boehringer Ingelheim, Compass Pathways, Engrail Therapeutics, Neumora Therapeutics (formerly BlackThorn Therapeutics), Neurocrine Biosciences, Neuroscience Software, Otsuka, Sunovion, and Takeda; he has received honoraria from the Psychonomic Society and American Psychological Association (for editorial work) and from Alkermes; he has received research funding from the Brain and Behavior Research Foundation, the Dana Foundation, Millennium Pharmaceuticals, Wellcome Leap MCPsych, and NIMH; he has received stock options from Compass Pathways, Engrail Therapeutics, Neumora Therapeutics, and Neuroscience Software. No funding from these entities was used to support the current work, and all views expressed are solely those of the authors.
- U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- A.N.V. currently receives funding from CIHR, the NIH, the National Sciences and Engineering Research Council (NSERC), the CAMH Foundation, and the University of Toronto. E.S.T. was funded by the Ontario Graduate Scholarship.
Collapse
Affiliation(s)
- Peter Zhukovsky
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5T 1R8, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Earvin S Tio
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Gillian Coughlan
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - David A Bennett
- Department of Neurological Sciences, RUSH Medical College, Chicago, IL, 60612, USA
| | - Yanling Wang
- Department of Neurological Sciences, RUSH Medical College, Chicago, IL, 60612, USA
| | - Timothy J Hohman
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School and Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, 02478, USA
| | - Benoit H Mulsant
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5T 1R8, Canada.
| | - Daniel Felsky
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5T 1R8, Canada.
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Rotman Research Institute, Baycrest Hospital, Toronto, ON, M6A 2E1, Canada.
| |
Collapse
|
20
|
Canals J, Morales-Hidalgo P, Voltas N, Hernández-Martínez C. Prevalence of comorbidity of autism and ADHD and associated characteristics in school population: EPINED study. Autism Res 2024; 17:1276-1286. [PMID: 38695661 DOI: 10.1002/aur.3146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/19/2024] [Indexed: 06/20/2024]
Abstract
Autism and attention deficit hyperactivity disorder (ADHD) comorbidity in the school population have been understudied. This study estimates its prevalence considering both parents' and teachers' reports and clinical diagnosis. Sociodemographic, clinical, and cognitive data were compared by diagnostic groups: autism, ADHD, autism and ADHD, subthreshold autism spectrum disorder (ASD), subthreshold ADHD, and children without neurodevelopmental conditions. Following a two-phase design, 3727 parents and teachers (1802 preschoolers, 1925 school-age children) participated in the first phase. Subsequently, 781 participants underwent individual assessment for DSM-5 diagnoses. The estimated prevalence of the comorbid diagnosis was 0.51% (0.28%-0.74%), with significant sex differences (0.16% girls, 0.89% boys). The cooccurrence of symptoms of autism and ADHD reported by parents or teachers was 3.2% and 2.6%, respectively. ADHD comorbidity was observed in 32.8% of autistic children and 31.4% of those with subthreshold ASD. ASD comorbidity was observed in 9.8% of children with ADHD and 5.7% of those with subthreshold ADHD. Comorbidity was reported by at least one informant in 95% of children. Only 15.8% of children with autism and ADHD had been previously diagnosed with both conditions. Early detection and accurate comorbidity diagnosis are crucial to address the clinical and socio-educational needs of these children.
Collapse
Affiliation(s)
- Josefa Canals
- Research Group on Nutrition and Mental Health (NUTRISAM); Research Center for Behavioral Assessment (CRAMC); Department of Psychology, Rovira i Virgili University, Tarragona, Spain
| | - Paula Morales-Hidalgo
- Research Group on Nutrition and Mental Health (NUTRISAM); Research Center for Behavioral Assessment (CRAMC); Department of Psychology, Rovira i Virgili University, Tarragona, Spain
- Department of Psychology, Open University of Catalonia, Barcelona, Spain
| | - Núria Voltas
- Research Group on Nutrition and Mental Health (NUTRISAM); Research Center for Behavioral Assessment (CRAMC); Department of Psychology, Rovira i Virgili University, Tarragona, Spain
- Serra Húnter Fellow, Department of Psychology, Rovira i Virgili University, Tarragona, Spain
| | - Carmen Hernández-Martínez
- Research Group on Nutrition and Mental Health (NUTRISAM); Research Center for Behavioral Assessment (CRAMC); Department of Psychology, Rovira i Virgili University, Tarragona, Spain
| |
Collapse
|
21
|
Wang L, Yang B, Zheng W, Liang T, Chen X, Chen Q, Du J, Lu J, Li B, Chen N. Alterations in cortical thickness and volumes of subcortical structures in pediatric patients with complete spinal cord injury. CNS Neurosci Ther 2024; 30:e14810. [PMID: 38887969 PMCID: PMC11183907 DOI: 10.1111/cns.14810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
AIMS To study the changes in cortical thickness and subcortical gray matter structures in children with complete spinal cord injury (CSCI), reveal the possible causes of dysfunction beyond sensory motor dysfunction after CSCI, and provide a possible neural basis for corresponding functional intervention training. METHODS Thirty-seven pediatric CSCI patients and 34 age-, gender-matched healthy children as healthy controls (HCs) were recruited. The 3D high-resolution T1-weighted structural images of all subjects were obtained using a 3.0 Tesla MRI system. Statistical differences between pediatric CSCI patients and HCs in cortical thickness and volumes of subcortical gray matter structures were evaluated. Then, correlation analyses were performed to analyze the correlation between the imaging indicators and clinical characteristics. RESULTS Compared with HCs, pediatric CSCI patients showed decreased cortical thickness in the right precentral gyrus, superior temporal gyrus, and posterior segment of the lateral sulcus, while increased cortical thickness in the right lingual gyrus and inferior occipital gyrus. The volume of the right thalamus in pediatric CSCI patients was significantly smaller than that in HCs. No significant correlation was found between the imaging indicators and the injury duration, sensory scores, and motor scores of pediatric CSCI patients. CONCLUSIONS These findings demonstrated that the brain structural reorganizations of pediatric CSCI occurred not only in sensory motor areas but also in cognitive and visual related brain regions, which may suggest that the visual processing, cognitive abnormalities, and related early intervention therapy also deserve greater attention beyond sensory motor rehabilitation training in pediatric CSCI patients.
Collapse
Affiliation(s)
- Ling Wang
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Beining Yang
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Weimin Zheng
- Department of Radiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Tengfei Liang
- Department of Medical ImagingAffiliated Hospital of Hebei Engineering UniversityHandanChina
| | - Xin Chen
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Qian Chen
- Department of Radiology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Jubao Du
- Department of Rehabilitation Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Baowei Li
- Department of Medical ImagingAffiliated Hospital of Hebei Engineering UniversityHandanChina
| | - Nan Chen
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| |
Collapse
|
22
|
Lu B, Chen X, Xavier Castellanos F, Thompson PM, Zuo XN, Zang YF, Yan CG. The power of many brains: Catalyzing neuropsychiatric discovery through open neuroimaging data and large-scale collaboration. Sci Bull (Beijing) 2024; 69:1536-1555. [PMID: 38519398 DOI: 10.1016/j.scib.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Recent advances in open neuroimaging data are enhancing our comprehension of neuropsychiatric disorders. By pooling images from various cohorts, statistical power has increased, enabling the detection of subtle abnormalities and robust associations, and fostering new research methods. Global collaborations in imaging have furthered our knowledge of the neurobiological foundations of brain disorders and aided in imaging-based prediction for more targeted treatment. Large-scale magnetic resonance imaging initiatives are driving innovation in analytics and supporting generalizable psychiatric studies. We also emphasize the significant role of big data in understanding neural mechanisms and in the early identification and precise treatment of neuropsychiatric disorders. However, challenges such as data harmonization across different sites, privacy protection, and effective data sharing must be addressed. With proper governance and open science practices, we conclude with a projection of how large-scale imaging resources and collaborations could revolutionize diagnosis, treatment selection, and outcome prediction, contributing to optimal brain health.
Collapse
Affiliation(s)
- Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York 10016, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg 10962, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; National Basic Science Data Center, Beijing 100190, China
| | - Yu-Feng Zang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310004, China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou 310030, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment, Hangzhou 311121, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China; International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
23
|
Bonetti M, Giugno L, Borsani E, Bonomini F. Potential Neuroprotective Effect of Melatonin in the Hippocampus of Male BTBR Mice. Nutrients 2024; 16:1652. [PMID: 38892585 PMCID: PMC11174678 DOI: 10.3390/nu16111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder identified by impairments in common social interactions and repetitive behaviors. In ASD patients, substantial morphological alterations have been observed in the hippocampus, which represents an important region for the development of social skills. Melatonin, commonly found in many foods and plants, is also produced by the pineal gland. This indolamine, known to regulate the circadian rhythm, shows antioxidant and anti-inflammatory properties. We therefore hypothesized that melatonin may reduce oxidative stress and inflammation in the hippocampus of ASD patients. We explored our hypothesis using the BTBR mouse, a well-regarded murine transgenic model for ASD. Immediately after weaning, male BTBR and C57BL/6 mice underwent an 8-week treatment with melatonin or vehicle. Later, through immunohistochemistry and the immunoblotting analysis of the hippocampus, we evaluated the overall expression and cellular localization of Nrf2 and SOD1, two enzymes involved in the oxidative stress response. Similarly, we evaluated NLRP3 and NFkB, two mediators of inflammation, and GAD67, an enzyme responsible for the synthesis of GABA. Ultimately, we addressed melatonin's potential to regulate iron metabolism through a DAB-enhanced Perls reaction assay. Results showed melatonin's potential for modulating the analyzed markers in BTBR mice, suggesting a potential neuroprotective effect in ASD patients.
Collapse
Affiliation(s)
- Matteo Bonetti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.B.); (L.G.); (E.B.)
| | - Lorena Giugno
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.B.); (L.G.); (E.B.)
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.B.); (L.G.); (E.B.)
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| | - Francesca Bonomini
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.B.); (L.G.); (E.B.)
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
24
|
Malik M, Weber A, Lang D, Vanderwal T, Zwicker JG. Cortical grey matter volume differences in children with developmental coordination disorder compared to typically developing children. Front Hum Neurosci 2024; 18:1276057. [PMID: 38826616 PMCID: PMC11140146 DOI: 10.3389/fnhum.2024.1276057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/08/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction The cause of Developmental Coordination Disorder (DCD) is unknown, but neuroimaging evidence suggests that DCD may be related to altered brain development. Children with DCD show less structural and functional connectivity compared to typically developing (TD) children, but few studies have examined cortical volume in children with DCD. The purpose of this study was to investigate cortical grey matter volume using voxel-based morphometry (VBM) in children with DCD compared to TD children. Methods This cross-sectional study was part of a larger randomized-controlled trial (ClinicalTrials.gov ID: NCT02597751) that involved various MRI scans of children with/without DCD. This paper focuses on the anatomical scans, performing VBM of cortical grey matter volume in 30 children with DCD and 12 TD children. Preprocessing and VBM data analysis were conducted using the Computational Anatomy Tool Box-12 and a study-specific brain template. Differences between DCD and TD groups were assessed using a one-way ANOVA, controlling for total intracranial volume. Regression analyses examined if motor and/or attentional difficulties predicted grey matter volume. We used threshold-free cluster enhancement (5,000 permutations) and set an alpha level of 0.05. Due to the small sample size, we did not correct for multiple comparisons. Results Compared to the TD group, children with DCD had significantly greater grey matter in the left superior frontal gyrus. Lower motor scores (meaning greater impairment) were related to greater grey matter volume in left superior frontal gyrus, frontal pole, and right middle frontal gyrus. Greater grey matter volume was also significantly correlated with higher scores on the Conners 3 ADHD Index in the left superior frontal gyrus, superior parietal lobe, and precuneus. These results indicate that greater grey matter volume in these regions is associated with poorer motor and attentional skills. Discussion Greater grey matter volume in the left superior frontal gyrus in children with DCD may be a result of delayed or absent healthy cortical thinning, potentially due to altered synaptic pruning as seen in other neurodevelopmental disorders. These findings provide further support for the hypothesis that DCD is related to altered brain development.
Collapse
Affiliation(s)
- Myrah Malik
- Graduate Programs in Rehabilitation Science, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Weber
- Brain, Behaviour, & Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Donna Lang
- Brain, Behaviour, & Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Tamara Vanderwal
- Brain, Behaviour, & Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Jill G. Zwicker
- Brain, Behaviour, & Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- Department of Occupational Science & Occupational Therapy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Awadalla TO, Igwe O, Okeafor CU, Attarian HP. Improvement of attention deficit disorder symptoms after treatment of obstructive sleep apnea in an adult: a case report and mini review. J Clin Sleep Med 2024; 20:825-827. [PMID: 38230976 PMCID: PMC11063700 DOI: 10.5664/jcsm.11034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Sparse literature exists on the effects of obstructive sleep apnea (OSA) treatment on symptoms of attention deficit hyperactivity disorder (ADHD) in adults. This article aims to bring to the fore the relationship between ADHD and OSA in adults and the implications of the treatment of OSA on the symptoms of ADHD. A case of an adult who was previously diagnosed with attention deficit disorder in childhood with symptom improvement following OSA treatment is reported. Considering the complex relationship between ADHD and sleep problems, the recommendation to screen for OSA and other sleep problems among persons being assessed for ADHD should be upheld. This article advocates for more research on the effect of the treatment of OSA on ADHD symptoms. CITATION Awadalla TO, Igwe O, Okeafor CU, Attarian HP. Improvement of attention deficit disorder symptoms after treatment of obstructive sleep apnea in an adult: a case report and mini review. J Clin Sleep Med. 2024;20(5):825-827.
Collapse
Affiliation(s)
- Tanzeel O. Awadalla
- Department of Family Medicine, United Health Services Hospitals, Binghamton, New York
| | - Ogechi Igwe
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Chukwuma U. Okeafor
- Department of Neuropsychiatry, University of Port Harcourt Teaching Hospital, Choba, Nigeria
| | - Hrayr P. Attarian
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
26
|
Schleifer CH, O'Hora KP, Fung H, Xu J, Robinson TA, Wu AS, Kushan-Wells L, Lin A, Ching CRK, Bearden CE. Effects of gene dosage and development on subcortical nuclei volumes in individuals with 22q11.2 copy number variations. Neuropsychopharmacology 2024; 49:1024-1032. [PMID: 38431758 PMCID: PMC11039652 DOI: 10.1038/s41386-024-01832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
The 22q11.2 locus contains genes critical for brain development. Reciprocal Copy Number Variations (CNVs) at this locus impact risk for neurodevelopmental and psychiatric disorders. Both 22q11.2 deletions (22qDel) and duplications (22qDup) are associated with autism, but 22qDel uniquely elevates schizophrenia risk. Understanding brain phenotypes associated with these highly penetrant CNVs can provide insights into genetic pathways underlying neuropsychiatric disorders. Human neuroimaging and animal models indicate subcortical brain alterations in 22qDel, yet little is known about developmental differences across specific nuclei between reciprocal 22q11.2 CNV carriers and typically developing (TD) controls. We conducted a longitudinal MRI study in a total of 385 scans from 22qDel (n = 96, scans = 191, 53.1% female), 22qDup (n = 37, scans = 64, 45.9% female), and TD controls (n = 80, scans = 130, 51.2% female), across a wide age range (5.5-49.5 years). Volumes of the thalamus, hippocampus, amygdala, and anatomical subregions were estimated using FreeSurfer, and the linear effects of 22q11.2 gene dosage and non-linear effects of age were characterized with generalized additive mixed models (GAMMs). Positive gene dosage effects (volume increasing with copy number) were observed for total intracranial and whole hippocampus volumes, but not whole thalamus or amygdala volumes. Several amygdala subregions exhibited similar positive effects, with bi-directional effects found across thalamic nuclei. Distinct age-related trajectories were observed across the three groups. Notably, both 22qDel and 22qDup carriers exhibited flattened development of hippocampal CA2/3 subfields relative to TD controls. This study provides novel insights into the impact of 22q11.2 CNVs on subcortical brain structures and their developmental trajectories.
Collapse
Affiliation(s)
- Charles H Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Kathleen P O'Hora
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Hoki Fung
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jennifer Xu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Taylor-Ann Robinson
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Angela S Wu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Guo Z, Tang X, Xiao S, Yan H, Sun S, Yang Z, Huang L, Chen Z, Wang Y. Systematic review and meta-analysis: multimodal functional and anatomical neural alterations in autism spectrum disorder. Mol Autism 2024; 15:16. [PMID: 38576034 PMCID: PMC10996269 DOI: 10.1186/s13229-024-00593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND This meta-analysis aimed to explore the most robust findings across numerous existing resting-state functional imaging and voxel-based morphometry (VBM) studies on the functional and structural brain alterations in individuals with autism spectrum disorder (ASD). METHODS A whole-brain voxel-wise meta-analysis was conducted to compare the differences in the intrinsic functional activity and gray matter volume (GMV) between individuals with ASD and typically developing individuals (TDs) using Seed-based d Mapping software. RESULTS A total of 23 functional imaging studies (786 ASD, 710 TDs) and 52 VBM studies (1728 ASD, 1747 TDs) were included. Compared with TDs, individuals with ASD displayed resting-state functional decreases in the left insula (extending to left superior temporal gyrus [STG]), bilateral anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC), left angular gyrus and right inferior temporal gyrus, as well as increases in the right supplementary motor area and precuneus. For VBM meta-analysis, individuals with ASD displayed decreased GMV in the ACC/mPFC and left cerebellum, and increased GMV in the left middle temporal gyrus (extending to the left insula and STG), bilateral olfactory cortex, and right precentral gyrus. Further, individuals with ASD displayed decreased resting-state functional activity and increased GMV in the left insula after overlapping the functional and structural differences. CONCLUSIONS The present multimodal meta-analysis demonstrated that ASD exhibited similar alterations in both function and structure of the insula and ACC/mPFC, and functional or structural alterations in the default mode network (DMN), primary motor and sensory regions. These findings contribute to further understanding of the pathophysiology of ASD.
Collapse
Affiliation(s)
- Zixuan Guo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinyue Tang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shu Xiao
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hong Yan
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shilin Sun
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zibin Yang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Huang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhuoming Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ying Wang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
28
|
Tissink EP, Shadrin AA, van der Meer D, Parker N, Hindley G, Roelfs D, Frei O, Fan CC, Nagel M, Nærland T, Budisteanu M, Djurovic S, Westlye LT, van den Heuvel MP, Posthuma D, Kaufmann T, Dale AM, Andreassen OA. Abundant pleiotropy across neuroimaging modalities identified through a multivariate genome-wide association study. Nat Commun 2024; 15:2655. [PMID: 38531894 DOI: 10.1038/s41467-024-46817-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Genetic pleiotropy is abundant across spatially distributed brain characteristics derived from one neuroimaging modality (e.g. structural, functional or diffusion magnetic resonance imaging [MRI]). A better understanding of pleiotropy across modalities could inform us on the integration of brain function, micro- and macrostructure. Here we show extensive genetic overlap across neuroimaging modalities at a locus and gene level in the UK Biobank (N = 34,029) and ABCD Study (N = 8607). When jointly analysing phenotypes derived from structural, functional and diffusion MRI in a genome-wide association study (GWAS) with the Multivariate Omnibus Statistical Test (MOSTest), we boost the discovery of loci and genes beyond previously identified effects for each modality individually. Cross-modality genes are involved in fundamental biological processes and predominantly expressed during prenatal brain development. We additionally boost prediction of psychiatric disorders by conditioning independent GWAS on our multimodal multivariate GWAS. These findings shed light on the shared genetic mechanisms underlying variation in brain morphology, functional connectivity, and tissue composition.
Collapse
Affiliation(s)
- E P Tissink
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands.
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - A A Shadrin
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
| | - D van der Meer
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - N Parker
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
| | - G Hindley
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
- Psychosis Studies, Institute of Psychiatry, Psychology and Neurosciences, King's College London, 16 De Crespigny Park, London, SE5 8AB, United Kingdom
| | - D Roelfs
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
| | - O Frei
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
| | - C C Fan
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92037, USA
| | - M Nagel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - T Nærland
- K.G. Jebsen Centre for Neurodevelopmental disorders, Division of Paediatric Medicine, Institute of Clinical Medicine, University of Oslo, Building 31, Oslo, Norway
| | - M Budisteanu
- Prof. Dr. Alex Obregia Clinical Hospital of Psychiatry, Bucharest, Romania
- "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - S Djurovic
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental disorders, Division of Paediatric Medicine, Institute of Clinical Medicine, University of Oslo, Building 31, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - L T Westlye
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental disorders, Division of Paediatric Medicine, Institute of Clinical Medicine, University of Oslo, Building 31, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - M P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, The Netherlands
| | - D Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, The Netherlands
| | - T Kaufmann
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - A M Dale
- Department of Radiology, University of California San Diego, La Jolla, CA, 92037, USA
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
| | - O A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway.
- K.G. Jebsen Centre for Neurodevelopmental disorders, Division of Paediatric Medicine, Institute of Clinical Medicine, University of Oslo, Building 31, Oslo, Norway.
| |
Collapse
|
29
|
You W, Li Q, Chen L, He N, Li Y, Long F, Wang Y, Chen Y, McNamara RK, Sweeney JA, DelBello MP, Gong Q, Li F. Common and distinct cortical thickness alterations in youth with autism spectrum disorder and attention-deficit/hyperactivity disorder. BMC Med 2024; 22:92. [PMID: 38433204 PMCID: PMC10910790 DOI: 10.1186/s12916-024-03313-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are neurodevelopmental disorders with overlapping behavioral features and genetic etiology. While brain cortical thickness (CTh) alterations have been reported in ASD and ADHD separately, the degree to which ASD and ADHD are associated with common and distinct patterns of CTh changes is unclear. METHODS We searched PubMed, Web of Science, Embase, and Science Direct from inception to 8 December 2023 and included studies of cortical thickness comparing youth (age less than 18) with ASD or ADHD with typically developing controls (TDC). We conducted a comparative meta-analysis of vertex-based studies to identify common and distinct CTh alterations in ASD and ADHD. RESULTS Twelve ASD datasets involving 458 individuals with ASD and 10 ADHD datasets involving 383 individuals with ADHD were included in the analysis. Compared to TDC, ASD showed increased CTh in bilateral superior frontal gyrus, left middle temporal gyrus, and right superior parietal lobule (SPL) and decreased CTh in right temporoparietal junction (TPJ). ADHD showed decreased CTh in bilateral precentral gyri, right postcentral gyrus, and right TPJ relative to TDC. Conjunction analysis showed both disorders shared reduced TPJ CTh located in default mode network (DMN). Comparative analyses indicated ASD had greater CTh in right SPL and TPJ located in dorsal attention network and thinner CTh in right TPJ located in ventral attention network than ADHD. CONCLUSIONS These results suggest shared thinner TPJ located in DMN is an overlapping neurobiological feature of ASD and ADHD. This alteration together with SPL alterations might be related to altered biological motion processing in ASD, while abnormalities in sensorimotor systems may contribute to behavioral control problems in ADHD. The disorder-specific thinner TPJ located in disparate attention networks provides novel insight into distinct symptoms of attentional deficits associated with the two neurodevelopmental disorders. TRIAL REGISTRATION PROSPERO CRD42022370620. Registered on November 9, 2022.
Collapse
Affiliation(s)
- Wanfang You
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, People's Republic of China
| | - Qian Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lizhou Chen
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ning He
- Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuanyuan Li
- Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fenghua Long
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yaxuan Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yufei Chen
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, 45219, USA
| | - John A Sweeney
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, 45219, USA
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, 45219, USA
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fei Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
30
|
Backhausen LL, Fröhner JH, Lemaître H, Artiges E, Martinot MP, Herting MM, Sticca F, Banaschewski T, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Nees F, Papadopoulos‐Orfanos D, Poustka L, Hohmann S, Robinson L, Walter H, Winterer J, Whelan R, Schumann G, Martinot J, Smolka MN, Vetter NC. Adolescent to young adult longitudinal development of subcortical volumes in two European sites with four waves. Hum Brain Mapp 2024; 45:e26574. [PMID: 38401132 PMCID: PMC10893970 DOI: 10.1002/hbm.26574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/16/2023] [Accepted: 12/11/2023] [Indexed: 02/26/2024] Open
Abstract
Adolescent subcortical structural brain development might underlie psychopathological symptoms, which often emerge in adolescence. At the same time, sex differences exist in psychopathology, which might be mirrored in underlying sex differences in structural development. However, previous studies showed inconsistencies in subcortical trajectories and potential sex differences. Therefore, we aimed to investigate the subcortical structural trajectories and their sex differences across adolescence using for the first time a single cohort design, the same quality control procedure, software, and a general additive mixed modeling approach. We investigated two large European sites from ages 14 to 24 with 503 participants and 1408 total scans from France and Germany as part of the IMAGEN project including four waves of data acquisition. We found significantly larger volumes in males versus females in both sites and across all seven subcortical regions. Sex differences in age-related trajectories were observed across all regions in both sites. Our findings provide further evidence of sex differences in longitudinal adolescent brain development of subcortical regions and thus might eventually support the relationship of underlying brain development and different adolescent psychopathology in boys and girls.
Collapse
Affiliation(s)
- Lea L. Backhausen
- Department of Psychiatry and PsychotherapyTUD Dresden University of TechnologyDresdenGermany
- Department of Child and Adolescent Psychiatry, Medical Faculty and University Hospital Carl Gustav CarusTUD Dresden University of TechnologyDresdenGermany
| | - Juliane H. Fröhner
- Department of Psychiatry and PsychotherapyTUD Dresden University of TechnologyDresdenGermany
| | - Hervé Lemaître
- NeuroSpin, CEAUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEAUniversité de BordeauxBordeauxFrance
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires Développementales en Psychiatrie"Université Paris‐Saclay, Ecole Normale supérieure Paris‐Saclay, CNRS, Centre BorelliGif‐sur‐YvetteFrance
- Department of PsychiatryLab‐D‐Psy, EPS Barthélémy DurandEtampesFrance
| | - Marie‐Laure Palillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires Développementales en Psychiatrie"Université Paris‐Saclay, Ecole Normale supérieure Paris‐Saclay, CNRS, Centre BorelliGif‐sur‐YvetteFrance
- AP‐HP, Sorbonne Université, Department of Child and Adolescent PsychiatryPitié‐Salpêtrière HospitalParisFrance
| | - Megan M. Herting
- Departments of Population and Public Health Sciences and PediatricsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Fabio Sticca
- Institute for Educational Support for Behaviour, Social‐Emotional, and Psychomotor DevelopmentUniversity of Teacher Education in Special NeedsZurichSwitzerland
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Gareth J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Arun L. W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP CentreKing's College LondonLondonUK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Department of Psychology, School of Social SciencesUniversity of MannheimMannheimGermany
| | - Antoine Grigis
- NeuroSpin, CEAUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Hugh Garavan
- Departments of Psychiatry and PsychologyUniversity of VermontBurlingtonVermontUSA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and AstronomyUniversity of Nottingham, University ParkNottinghamUK
| | - Andreas Heinz
- Department of Psychiatry and NeurosciencesCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Rüdiger Brühl
- Physikalisch‐Technische Bundesanstalt (PTB)BraunschweigGermany
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Institute of Medical Psychology and Medical SociologyUniversity Medical Center Schleswig Holstein, Kiel UniversityKielGermany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and PsychotherapyUniversity Medical Centre GöttingenGöttingenGermany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Department of Child and Adolescent Psychiatry, Psychotherapy and PsychosomaticsUniversity Medical Center Hamburg EppendorfHamburgGermany
| | - Lauren Robinson
- Department of Psychological Medicine, Section for Eating Disorders, Institute of PsychiatryPsychology and Neuroscience, King's College LondonLondonUK
| | - Henrik Walter
- Department of Psychiatry and NeurosciencesCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Jeanne Winterer
- Department of Psychiatry and NeurosciencesCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Department of Education and PsychologyFreie Universität BerlinBerlinGermany
| | - Robert Whelan
- School of Psychology and Global Brain Health InstituteTrinity College DublinDublinIreland
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP CentreKing's College LondonLondonUK
- PONS Research Group, Dept of Psychiatry and Psychotherapy, Campus Charite MitteHumboldt University, Berlin and Leibniz Institute for NeurobiologyMagdeburgGermany
- Institute for Science and Technology of Brain‐Inspired Intelligence (ISTBI)Fudan UniversityShanghaiChina
| | - Jean‐Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires Développementales en Psychiatrie"Université Paris‐Saclay, Ecole Normale supérieure Paris‐Saclay, CNRS, Centre BorelliGif‐sur‐YvetteFrance
| | - Michael N. Smolka
- Department of Psychiatry and PsychotherapyTUD Dresden University of TechnologyDresdenGermany
| | - Nora C. Vetter
- Department of Psychiatry and PsychotherapyTUD Dresden University of TechnologyDresdenGermany
- Department of Child and Adolescent Psychiatry, Medical Faculty and University Hospital Carl Gustav CarusTUD Dresden University of TechnologyDresdenGermany
- Department of PsychologyMSB Medical School BerlinBerlinGermany
| | | |
Collapse
|
31
|
Ball G, Oldham S, Kyriakopoulou V, Williams LZJ, Karolis V, Price A, Hutter J, Seal ML, Alexander-Bloch A, Hajnal JV, Edwards AD, Robinson EC, Seidlitz J. Molecular signatures of cortical expansion in the human fetal brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580198. [PMID: 38405710 PMCID: PMC10888819 DOI: 10.1101/2024.02.13.580198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The third trimester of human gestation is characterised by rapid increases in brain volume and cortical surface area. A growing catalogue of cells in the prenatal brain has revealed remarkable molecular diversity across cortical areas.1,2 Despite this, little is known about how this translates into the patterns of differential cortical expansion observed in humans during the latter stages of gestation. Here we present a new resource, μBrain, to facilitate knowledge translation between molecular and anatomical descriptions of the prenatal developing brain. Built using generative artificial intelligence, μBrain is a three-dimensional cellular-resolution digital atlas combining publicly-available serial sections of the postmortem human brain at 21 weeks gestation3 with bulk tissue microarray data, sampled across 29 cortical regions and 5 transient tissue zones.4 Using μBrain, we evaluate the molecular signatures of preferentially-expanded cortical regions during human gestation, quantified in utero using magnetic resonance imaging (MRI). We find that differences in the rates of expansion across cortical areas during gestation respect anatomical and evolutionary boundaries between cortical types5 and are founded upon extended periods of upper-layer cortical neuron migration that continue beyond mid-gestation. We identify a set of genes that are upregulated from mid-gestation and highly expressed in rapidly expanding neocortex, which are implicated in genetic disorders with cognitive sequelae. Our findings demonstrate a spatial coupling between areal differences in the timing of neurogenesis and rates of expansion across the neocortical sheet during the prenatal epoch. The μBrain atlas is available from: https://garedaba.github.io/micro-brain/ and provides a new tool to comprehensively map early brain development across domains, model systems and resolution scales.
Collapse
Affiliation(s)
- G Ball
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - S Oldham
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - V Kyriakopoulou
- Centre for the Developing Brain, King's College London, London, UK
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - L Z J Williams
- Centre for the Developing Brain, King's College London, London, UK
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - V Karolis
- Centre for the Developing Brain, King's College London, London, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - A Price
- Centre for the Developing Brain, King's College London, London, UK
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - J Hutter
- Centre for the Developing Brain, King's College London, London, UK
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - M L Seal
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - A Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - J V Hajnal
- Centre for the Developing Brain, King's College London, London, UK
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - A D Edwards
- Centre for the Developing Brain, King's College London, London, UK
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - E C Robinson
- Centre for the Developing Brain, King's College London, London, UK
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - J Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
32
|
Walther S. How to embrace transdiagnostic concepts when neurodevelopmental disorders become harbingers of adult psychopathology? Eur Arch Psychiatry Clin Neurosci 2024; 274:1-2. [PMID: 38150095 DOI: 10.1007/s00406-023-01756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Affiliation(s)
- Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, 3008, Bern, Switzerland.
| |
Collapse
|
33
|
Shen L, Zhang J, Fan S, Ping L, Yu H, Xu F, Cheng Y, Xu X, Yang C, Zhou C. Cortical thickness abnormalities in autism spectrum disorder. Eur Child Adolesc Psychiatry 2024; 33:65-77. [PMID: 36542200 DOI: 10.1007/s00787-022-02133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The pathological mechanism of autism spectrum disorder (ASD) remains unclear. Nowadays, surface-based morphometry (SBM) based on structural magnetic resonance imaging (sMRI) techniques have reported cortical thickness (CT) variations in ASD. However, the findings were inconsistent and heterogeneous. This current meta-analysis conducted a whole-brain vertex-wise coordinate-based meta-analysis (CBMA) on CT studies to explore the most noticeable and robust CT changes in ASD individuals by applying the seed-based d mapping (SDM) program. A total of 26 investigations comprised 27 datasets were included, containing 1,635 subjects with ASD and 1470 HC, along with 94 coordinates. Individuals with ASD exhibited significantly altered CT in several regions compared to HC, including four clusters with thicker CT in the right superior temporal gyrus (STG.R), the left middle temporal gyrus (MTG.L), the left anterior cingulate/paracingulate gyri, the right superior frontal gyrus (SFG.R, medial orbital parts), as well as three clusters with cortical thinning including the left parahippocampal gyrus (PHG.L), the right precentral gyrus (PCG.R) and the left middle frontal gyrus (MFG.L). Adults with ASD only demonstrated CT thinning in the right parahippocampal gyrus (PHG.R), revealed by subgroup meta-analyses. Meta-regression analyses found that CT in STG.R was positively correlated with age. Meanwhile, CT in MFG.L and PHG.L had negative correlations with the age of ASD individuals. These results suggested a complicated and atypical cortical development trajectory in ASD, and would provide a deeper understanding of the neural mechanism underlying the cortical morphology in ASD.
Collapse
Affiliation(s)
- Liancheng Shen
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, China
| | - Junqing Zhang
- Department of Pharmacy, Shandong Daizhuang Hospital, Jining, China
| | - Shiran Fan
- School of Mental Health, Jining Medical University, Jining, China
| | - Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Hao Yu
- School of Mental Health, Jining Medical University, Jining, China
| | - Fangfang Xu
- School of Mental Health, Jining Medical University, Jining, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunyan Yang
- School of Rehabilitation Medicine, Jining Medical University, Jining, China.
| | - Cong Zhou
- School of Mental Health, Jining Medical University, Jining, China.
- Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China.
| |
Collapse
|
34
|
Ching CRK, Kang MJY, Thompson PM. Large-Scale Neuroimaging of Mental Illness. Curr Top Behav Neurosci 2024; 68:371-397. [PMID: 38554248 DOI: 10.1007/7854_2024_462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Neuroimaging has provided important insights into the brain variations related to mental illness. Inconsistencies in prior studies, however, call for methods that lead to more replicable and generalizable brain markers that can reliably predict illness severity, treatment course, and prognosis. A paradigm shift is underway with large-scale international research teams actively pooling data and resources to drive consensus findings and test emerging methods aimed at achieving the goals of precision psychiatry. In parallel with large-scale psychiatric genomics studies, international consortia combining neuroimaging data are mapping the transdiagnostic brain signatures of mental illness on an unprecedented scale. This chapter discusses the major challenges, recent findings, and a roadmap for developing better neuroimaging-based tools and markers for mental illness.
Collapse
Affiliation(s)
- Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Melody J Y Kang
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| |
Collapse
|
35
|
Bedford SA, Lai MC, Lombardo MV, Chakrabarti B, Ruigrok A, Suckling J, Anagnostou E, Lerch JP, Taylor M, Nicolson R, Stelios G, Crosbie J, Schachar R, Kelley E, Jones J, Arnold PD, Courchesne E, Pierce K, Eyler LT, Campbell K, Barnes CC, Seidlitz J, Alexander-Bloch AF, Bullmore ET, Baron-Cohen S, Bethlehem RA. Brain-charting autism and attention deficit hyperactivity disorder reveals distinct and overlapping neurobiology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.06.23299587. [PMID: 38106166 PMCID: PMC10723556 DOI: 10.1101/2023.12.06.23299587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background Autism and attention deficit hyperactivity disorder (ADHD) are heterogeneous neurodevelopmental conditions with complex underlying neurobiology. Despite overlapping presentation and sex-biased prevalence, autism and ADHD are rarely studied together, and sex differences are often overlooked. Normative modelling provides a unified framework for studying age-specific and sex-specific divergences in neurodivergent brain development. Methods Here we use normative modelling and a large, multi-site neuroimaging dataset to characterise cortical anatomy associated with autism and ADHD, benchmarked against models of typical brain development based on a sample of over 75,000 individuals. We also examined sex and age differences, relationship with autistic traits, and explored the co-occurrence of autism and ADHD (autism+ADHD). Results We observed robust neuroanatomical signatures of both autism and ADHD. Overall, autistic individuals showed greater cortical thickness and volume localised to the superior temporal cortex, whereas individuals with ADHD showed more global effects of cortical thickness increases but lower cortical volume and surface area across much of the cortex. The autism+ADHD group displayed a unique pattern of widespread increases in cortical thickness, and certain decreases in surface area. We also found evidence that sex modulates the neuroanatomy of autism but not ADHD, and an age-by-diagnosis interaction for ADHD only. Conclusions These results indicate distinct cortical differences in autism and ADHD that are differentially impacted by age, sex, and potentially unique patterns related to their co-occurrence.
Collapse
Affiliation(s)
- Saashi A. Bedford
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei 100229, Taiwan
| | - Michael V. Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Bhismadev Chakrabarti
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Centre for Autism, School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6ES, UK
| | - Amber Ruigrok
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Department of Pediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jason P. Lerch
- Program in Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Margot Taylor
- Program in Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Rob Nicolson
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada
| | | | - Jennifer Crosbie
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
- Program in Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Russell Schachar
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
- Program in Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth Kelley
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6 Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6 Canada
- Department of Psychiatry, Queen’s University, Kingston, ON K7L 3N6 Canada
| | - Jessica Jones
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6 Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6 Canada
- Department of Psychiatry, Queen’s University, Kingston, ON K7L 3N6 Canada
| | - Paul D. Arnold
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Departments of Psychiatry and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eric Courchesne
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Karen Pierce
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Lisa T. Eyler
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Kathleen Campbell
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Cynthia Carter Barnes
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA 19104, USA
| | - Aaron F. Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA 19104, USA
| | - Edward T. Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Cambridge Lifetime Autism Spectrum Service (CLASS), Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Richard A.I. Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
36
|
Fan H, Liu Z, Wu X, Yu G, Gu X, Kuang N, Zhang K, Liu Y, Jia T, Sahakian BJ, Robbins TW, Schumann G, Cheng W, Feng J, Becker B, Zhang J. Decoding anxiety-impulsivity subtypes in preadolescent internalising disorders: findings from the Adolescent Brain Cognitive Development study. Br J Psychiatry 2023; 223:542-554. [PMID: 37730654 DOI: 10.1192/bjp.2023.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
BACKGROUND Internalising disorders are highly prevalent emotional dysregulations during preadolescence but clinical decision-making is hampered by high heterogeneity. During this period impulsivity represents a major risk factor for psychopathological trajectories and may act on this heterogeneity given the controversial anxiety-impulsivity relationships. However, how impulsivity contributes to the heterogeneous symptomatology, neurobiology, neurocognition and clinical trajectories in preadolescent internalising disorders remains unclear. AIMS The aim was to determine impulsivity-dependent subtypes in preadolescent internalising disorders that demonstrate distinct anxiety-impulsivity relationships, neurobiological, genetic, cognitive and clinical trajectory signatures. METHOD We applied a data-driven strategy to determine impulsivity-related subtypes in 2430 preadolescents with internalising disorders from the Adolescent Brain Cognitive Development study. Cross-sectional and longitudinal analyses were employed to examine subtype-specific signatures of the anxiety-impulsivity relationship, brain morphology, cognition and clinical trajectory from age 10 to 12 years. RESULTS We identified two distinct subtypes of patients who internalise with comparably high anxiety yet distinguishable levels of impulsivity, i.e. enhanced (subtype 1) or decreased (subtype 2) compared with control participants. The two subtypes exhibited opposing anxiety-impulsivity relationships: higher anxiety at baseline was associated with higher lack of perseverance in subtype 1 but lower sensation seeking in subtype 2 at baseline/follow-up. Subtype 1 demonstrated thicker prefrontal and temporal cortices, and genes enriched in immune-related diseases and glutamatergic and GABAergic neurons. Subtype 1 exhibited cognitive deficits and a detrimental trajectory characterised by increasing emotional/behavioural dysregulations and suicide risks during follow-up. CONCLUSIONS Our results indicate impulsivity-dependent subtypes in preadolescent internalising disorders and unify past controversies about the anxiety-impulsivity interaction. Clinically, individuals with a high-impulsivity subtype exhibit a detrimental trajectory, thus early interventions are warranted.
Collapse
Affiliation(s)
- Huaxin Fan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Zhaowen Liu
- School of Computer Science, Northwestern Polytechnical University, China
| | - Xinran Wu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Gechang Yu
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Xinrui Gu
- Sino-European School of Technology, Shanghai University, China
| | - Nanyu Kuang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Kai Zhang
- School of Computer Science and Technology, East China Normal University, Shanghai, China
| | - Yu Liu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Tianye Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Barbara J Sahakian
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK and Department of Psychiatry, University of Cambridge School of Clinical Medicine, UK
| | - Trevor W Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China; Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK and Department of Psychology, University of Cambridge, UK
| | - Gunter Schumann
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China and PONS-Center, Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité Universitätsmedizin Berlin, Germany
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, China and Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| |
Collapse
|
37
|
Matsumoto J, Fukunaga M, Miura K, Nemoto K, Okada N, Hashimoto N, Morita K, Koshiyama D, Ohi K, Takahashi T, Koeda M, Yamamori H, Fujimoto M, Yasuda Y, Ito S, Yamazaki R, Hasegawa N, Narita H, Yokoyama S, Mishima R, Miyata J, Kobayashi Y, Sasabayashi D, Harada K, Yamamoto M, Hirano Y, Itahashi T, Nakataki M, Hashimoto RI, Tha KK, Koike S, Matsubara T, Okada G, Yoshimura R, Abe O, van Erp TGM, Turner JA, Jahanshad N, Thompson PM, Onitsuka T, Watanabe Y, Matsuo K, Yamasue H, Okamoto Y, Suzuki M, Ozaki N, Kasai K, Hashimoto R. Cerebral cortical structural alteration patterns across four major psychiatric disorders in 5549 individuals. Mol Psychiatry 2023; 28:4915-4923. [PMID: 37596354 PMCID: PMC10914601 DOI: 10.1038/s41380-023-02224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
According to the operational diagnostic criteria, psychiatric disorders such as schizophrenia (SZ), bipolar disorder (BD), major depressive disorder (MDD), and autism spectrum disorder (ASD) are classified based on symptoms. While its cluster of symptoms defines each of these psychiatric disorders, there is also an overlap in symptoms between the disorders. We hypothesized that there are also similarities and differences in cortical structural neuroimaging features among these psychiatric disorders. T1-weighted magnetic resonance imaging scans were performed for 5,549 subjects recruited from 14 sites. Effect sizes were determined using a linear regression model within each protocol, and these effect sizes were meta-analyzed. The similarity of the differences in cortical thickness and surface area of each disorder group was calculated using cosine similarity, which was calculated from the effect sizes of each cortical regions. The thinnest cortex was found in SZ, followed by BD and MDD. The cosine similarity values between disorders were 0.943 for SZ and BD, 0.959 for SZ and MDD, and 0.943 for BD and MDD, which indicated that a common pattern of cortical thickness alterations was found among SZ, BD, and MDD. Additionally, a generally smaller cortical surface area was found in SZ and MDD than in BD, and the effect was larger in SZ. The cosine similarity values between disorders were 0.945 for SZ and MDD, 0.867 for SZ and ASD, and 0.811 for MDD and ASD, which indicated a common pattern of cortical surface area alterations among SZ, MDD, and ASD. Patterns of alterations in cortical thickness and surface area were revealed in the four major psychiatric disorders. To our knowledge, this is the first report of a cross-disorder analysis conducted on four major psychiatric disorders. Cross-disorder brain imaging research can help to advance our understanding of the pathogenesis of psychiatric disorders and common symptoms.
Collapse
Affiliation(s)
- Junya Matsumoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, 187-8553, Japan
| | - Masaki Fukunaga
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, 187-8553, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, 113-0033, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kentaro Morita
- Department of Rehabilitation, University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
- Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Michihiko Koeda
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Hidenaga Yamamori
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, 187-8553, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
- Japan Community Health Care Organization Osaka Hospital, Osaka, 553-0003, Japan
| | - Michiko Fujimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, 187-8553, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, 187-8553, Japan
- Life Grow Brilliant Mental Clinic, Medical Corporation Foster, Osaka, 530-0013, Japan
| | - Satsuki Ito
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, 187-8553, Japan
- Department of Developmental and Clinical Psychology, The Division of Human Developmental Sciences, Graduate School of Humanity and Sciences, Ochanomizu University, Tokyo, 112-8610, Japan
| | - Ryuichi Yamazaki
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, 187-8553, Japan
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Naomi Hasegawa
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, 187-8553, Japan
| | - Hisashi Narita
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Satoshi Yokoyama
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Ryo Mishima
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Jun Miyata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuko Kobayashi
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Maeri Yamamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yoji Hirano
- Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
| | - Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, 157-8577, Japan
| | - Masahito Nakataki
- Department of Psychiatry, Tokushima University Hospital, Tokushima, 770-8503, Japan
| | - Ryu-Ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, 157-8577, Japan
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Hachioji, 192-0397, Japan
| | - Khin K Tha
- Global Center for Biomedical Science and Engineering, Hokkaido University Faculty of Medicine, Sapporo, 060-8638, Japan
| | - Shinsuke Koike
- The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, 113-0033, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, 153-8902, Japan
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Toshio Matsubara
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Theo G M van Erp
- Clinical Translatational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, 92697, USA
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, the Ohio State University, Columbus, OH, 43210, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90292, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90292, USA
| | - Toshiaki Onitsuka
- National Hospital Organization Sakakibara Hospital, Tsu, 514-1292, Japan
| | - Yoshiyuki Watanabe
- Department of Radiology, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Koji Matsuo
- Department of Psychiatry, Faculty of Medicine, Saitama Medical University, Saitama, 350-0495, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, 113-0033, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, 153-8902, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, 187-8553, Japan.
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.
| |
Collapse
|
38
|
Schleifer CH, O’Hora KP, Fung H, Xu J, Robinson TA, Wu AS, Kushan-Wells L, Lin A, Ching CRK, Bearden CE. Effects of Gene Dosage and Development on Subcortical Nuclei Volumes in Individuals with 22q11.2 Copy Number Variations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564553. [PMID: 37961662 PMCID: PMC10635019 DOI: 10.1101/2023.10.31.564553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The 22q11.2 locus contains genes critical for brain development. Reciprocal Copy Number Variations (CNVs) at this locus impact risk for neurodevelopmental and psychiatric disorders. Both 22q11.2 deletions (22qDel) and duplications (22qDup) are associated with autism, but 22qDel uniquely elevates schizophrenia risk. Understanding brain phenotypes associated with these highly penetrant CNVs can provide insights into genetic pathways underlying neuropsychiatric disorders. Human neuroimaging and animal models indicate subcortical brain alterations in 22qDel, yet little is known about developmental differences across specific nuclei between reciprocal 22q11.2 CNV carriers and typically developing (TD) controls. We conducted a longitudinal MRI study in 22qDel (n=96, 53.1% female), 22qDup (n=37, 45.9% female), and TD controls (n=80, 51.2% female), across a wide age range (5.5-49.5 years). Volumes of the thalamus, hippocampus, amygdala, and anatomical subregions were estimated using FreeSurfer, and the effect of 22q11.2 gene dosage was examined using linear mixed models. Age-related changes were characterized with general additive mixed models (GAMMs). Positive gene dosage effects (22qDel < TD < 22qDup) were observed for total intracranial and whole hippocampus volumes, but not whole thalamus or amygdala volumes. Several amygdala subregions exhibited similar positive effects, with bi-directional effects found across thalamic nuclei. Distinct age-related trajectories were observed across the three groups. Notably, both 22qDel and 22qDup carriers exhibited flattened development of hippocampal CA2/3 subfields relative to TD controls. This study provides novel insights into the impact of 22q11.2 CNVs on subcortical brain structures and their developmental trajectories.
Collapse
Affiliation(s)
- Charles H. Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kathleen P. O’Hora
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Hoki Fung
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jennifer Xu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Taylor-Ann Robinson
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Angela S. Wu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
39
|
Luo S, Hsu E, Lawrence KE, Adise S, Pickering TA, Herting MM, Buchanan T, Page KA, Thompson PM. Associations among prenatal exposure to gestational diabetes mellitus, brain structure, and child adiposity markers. Obesity (Silver Spring) 2023; 31:2699-2708. [PMID: 37840377 PMCID: PMC11025497 DOI: 10.1002/oby.23901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the mediating role of child brain structure in the relationship between prenatal gestational diabetes mellitus (GDM) exposure and child adiposity. METHODS This was a cross-sectional study of 9- to 10-year-old participants and siblings across the US. Data were obtained from the baseline assessment of the Adolescent Brain Cognitive Development (ABCD) Study®. Brain structure was evaluated by magnetic resonance imaging. GDM exposure was self-reported, and discordance for GDM exposure within biological siblings was identified. Mixed effects and mediation models were used to examine associations among prenatal GDM exposure, brain structure, and adiposity markers with sociodemographic covariates. RESULTS The sample included 8521 children (7% GDM-exposed), among whom there were 28 sibling pairs discordant for GDM exposure. Across the entire study sample, prenatal exposure to GDM was associated with lower global and regional cortical gray matter volume (GMV) in the bilateral rostral middle frontal gyrus and superior temporal gyrus. GDM-exposed siblings also demonstrated lower global cortical GMV than unexposed siblings. Global cortical GMV partially mediated the associations between prenatal GDM exposure and child adiposity markers. CONCLUSIONS The results identify brain markers of prenatal GDM exposure and suggest that low cortical GMV may explain increased obesity risk for offspring prenatally exposed to GDM.
Collapse
Affiliation(s)
- Shan Luo
- Division of Endocrinology and Diabetes, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Psychology, University of Southern California, Los Angeles, California, USA
- Center for Endocrinology, Diabetes and Metabolism, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Eustace Hsu
- Division of Endocrinology and Diabetes, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Katherine E. Lawrence
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Shana Adise
- Center for Endocrinology, Diabetes and Metabolism, Children’s Hospital Los Angeles, Los Angeles, California, USA
- Division of Research on Children, Youth, and Families, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Trevor A. Pickering
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Thomas Buchanan
- Division of Endocrinology and Diabetes, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kathleen A. Page
- Division of Endocrinology and Diabetes, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
40
|
Choi US, Park JY, Lee JJ, Choi KY, Won S, Lee KH. Predicting mild cognitive impairments from cognitively normal brains using a novel brain age estimation model based on structural magnetic resonance imaging. Cereb Cortex 2023; 33:10858-10866. [PMID: 37718166 DOI: 10.1093/cercor/bhad331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Brain age prediction is a practical method used to quantify brain aging and detect neurodegenerative diseases such as Alzheimer's disease (AD). However, very few studies have considered brain age prediction as a biomarker for the conversion of cognitively normal (CN) to mild cognitive impairment (MCI). In this study, we developed a novel brain age prediction model using brain volume and cortical thickness features. We calculated an acceleration of brain age (ABA) derived from the suggested model to estimate different diagnostic groups (CN, MCI, and AD) and to classify CN to MCI and MCI to AD conversion groups. We observed a strong association between ABA and the 3 diagnostic groups. Additionally, the classification models for CN to MCI conversion and MCI to AD conversion exhibited acceptable and robust performances, with area under the curve values of 0.66 and 0.76, respectively. We believe that our proposed model provides a reliable estimate of brain age for elderly individuals and can identify those at risk of progressing from CN to MCI. This model has great potential to reveal a diagnosis associated with a change in cognitive decline.
Collapse
Affiliation(s)
- Uk-Su Choi
- Gwangju Alzheimer's and Related Dementia Cohort Research Center, Chosun University, Gwangju 61452, Republic of Korea
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jun Young Park
- Gwangju Alzheimer's and Related Dementia Cohort Research Center, Chosun University, Gwangju 61452, Republic of Korea
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- Neurozen Inc., Seoul 06168, Republic of Korea
| | - Jang Jae Lee
- Gwangju Alzheimer's and Related Dementia Cohort Research Center, Chosun University, Gwangju 61452, Republic of Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer's and Related Dementia Cohort Research Center, Chosun University, Gwangju 61452, Republic of Korea
| | - Sungho Won
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
| | - Kun Ho Lee
- Gwangju Alzheimer's and Related Dementia Cohort Research Center, Chosun University, Gwangju 61452, Republic of Korea
- Department of Biomedical Sciences, Chosun University, Gwangju 61452, Republic of Korea
- Korea Brain Research Institute, Daegu 41061, Republic of Korea
| |
Collapse
|
41
|
Lin S, Zhang H, Qi M, Cooper DN, Yang Y, Yang Y, Zhao H. Inferring the genetic relationship between brain imaging-derived phenotypes and risk of complex diseases by Mendelian randomization and genome-wide colocalization. Neuroimage 2023; 279:120325. [PMID: 37579999 DOI: 10.1016/j.neuroimage.2023.120325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/09/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023] Open
Abstract
Observational studies consistently disclose brain imaging-derived phenotypes (IDPs) as critical markers for early diagnosis of both brain disorders and cardiovascular diseases. However, it remains unclear about the shared genetic landscape between brain IDPs and the risk of brain disorders and cardiovascular diseases, restricting the applications of potential diagnostic techniques through brain IDPs. Here, we reported genetic correlations and putative causal relationships between 921 brain IDPs, 20 brain disorders and six cardiovascular diseases by leveraging their large-scale genome-wide association study (GWAS) summary statistics. Applications of Mendelian randomization (MR) identified significant putative causal effects of multiple region-specific brain IDPs in relation to the increased risks for amyotrophic lateral sclerosis (ALS), major depressive disorder (MDD), autism spectrum disorder (ASD) and schizophrenia (SCZ). We also found brain IDPs specifically from temporal lobe as a putatively causal consequence of hypertension. The genome-wide colocalization analysis identified three genomic regions in which MDD, ASD and SCZ colocalized with the brain IDPs, and two novel SNPs to be associated with ASD, SCZ, and multiple brain IDPs. Furthermore, we identified a list of candidate genes involved in the shared genetics underlying pairs of brain IDPs and MDD, ASD, SCZ, ALS and hypertension. Our results provide novel insights into the genetic relationships between brain disorders and cardiovascular diseases and brain IDP, which may server as clues for using brain IDPs to predict risks of diseases.
Collapse
Affiliation(s)
- Siying Lin
- Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Haoyang Zhang
- School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Mengling Qi
- Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Yuanhao Yang
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia.
| | - Huiying Zhao
- Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
42
|
Yu G, Liu Z, Wu X, Becker B, Zhang K, Fan H, Peng S, Kuang N, Kang J, Dong G, Zhao XM, Schumann G, Feng J, Sahakian BJ, Robbins TW, Palaniyappan L, Zhang J. Common and disorder-specific cortical thickness alterations in internalizing, externalizing and thought disorders during early adolescence: an Adolescent Brain and Cognitive Development study. J Psychiatry Neurosci 2023; 48:E345-E356. [PMID: 37673436 PMCID: PMC10495167 DOI: 10.1503/jpn.220202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/13/2023] [Accepted: 05/17/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND A growing body of neuroimaging studies has reported common neural abnormalities among mental disorders in adults. However, it is unclear whether the distinct disorder-specific mechanisms operate during adolescence despite the overlap among disorders. METHODS We studied a large cohort of more than 11 000 preadolescent (age 9-10 yr) children from the Adolescent Brain and Cognitive Development cohort. We adopted a regrouping approach to compare cortical thickness (CT) alterations and longitudinal changes between healthy controls (n = 4041) and externalizing (n = 1182), internalizing (n = 1959) and thought disorder (n = 347) groups. Genome-wide association study (GWAS) was performed on regional CT across 4468 unrelated European youth. RESULTS Youth with externalizing or internalizing disorders exhibited increased regional CT compared with controls. Externalizing (p = 8 × 10-4, Cohen d = 0.10) and internalizing disorders (p = 2 × 10-3, Cohen d = 0.08) shared thicker CT in the left pars opercularis. The somatosensory and the primary auditory cortex were uniquely affected in externalizing disorders, whereas the primary motor cortex and higher-order visual association areas were uniquely affected in internalizing disorders. Only youth with externalizing disorders showed decelerated cortical thinning from age 10-12 years. The GWAS found 59 genome-wide significant associated genetic variants across these regions. Cortical thickness in common regions was associated with glutamatergic neurons, while internalizing-specific regional CT was associated with astrocytes, oligodendrocyte progenitor cells and GABAergic neurons. LIMITATIONS The sample size of the GWAS was relatively small. CONCLUSION Our study provides strong evidence for the presence of specificity in CT, developmental trajectories and underlying genetic underpinnings among externalizing and internalizing disorders during early adolescence. Our results support the neurobiological validity of the regrouping approach that could supplement the use of a dimensional approach in future clinical practice.
Collapse
Affiliation(s)
- Gechang Yu
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Zhaowen Liu
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Xinran Wu
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Benjamin Becker
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Kai Zhang
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Huaxin Fan
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Songjun Peng
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Nanyu Kuang
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Jujiao Kang
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Guiying Dong
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Xing-Ming Zhao
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Gunter Schumann
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Jianfeng Feng
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Barbara J Sahakian
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Trevor W Robbins
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Lena Palaniyappan
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Jie Zhang
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| |
Collapse
|
43
|
Kumar K, Modenato C, Moreau C, Ching CRK, Harvey A, Martin-Brevet S, Huguet G, Jean-Louis M, Douard E, Martin CO, Younis N, Tamer P, Maillard AM, Rodriguez-Herreros B, Pain A, Kushan L, Isaev D, Alpert K, Ragothaman A, Turner JA, Wang L, Ho TC, Schmaal L, Silva AI, van den Bree MBM, Linden DEJ, Owen MJ, Hall J, Lippé S, Dumas G, Draganski B, Gutman BA, Sønderby IE, Andreassen OA, Schultz LM, Almasy L, Glahn DC, Bearden CE, Thompson PM, Jacquemont S. Subcortical Brain Alterations in Carriers of Genomic Copy Number Variants. Am J Psychiatry 2023; 180:685-698. [PMID: 37434504 PMCID: PMC10885337 DOI: 10.1176/appi.ajp.20220304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
OBJECTIVE Copy number variants (CNVs) are well-known genetic pleiotropic risk factors for multiple neurodevelopmental and psychiatric disorders (NPDs), including autism (ASD) and schizophrenia. Little is known about how different CNVs conferring risk for the same condition may affect subcortical brain structures and how these alterations relate to the level of disease risk conferred by CNVs. To fill this gap, the authors investigated gross volume, vertex-level thickness, and surface maps of subcortical structures in 11 CNVs and six NPDs. METHODS Subcortical structures were characterized using harmonized ENIGMA protocols in 675 CNV carriers (CNVs at 1q21.1, TAR, 13q12.12, 15q11.2, 16p11.2, 16p13.11, and 22q11.2; age range, 6-80 years; 340 males) and 782 control subjects (age range, 6-80 years; 387 males) as well as ENIGMA summary statistics for ASD, schizophrenia, attention deficit hyperactivity disorder, obsessive-compulsive disorder, bipolar disorder, and major depression. RESULTS All CNVs showed alterations in at least one subcortical measure. Each structure was affected by at least two CNVs, and the hippocampus and amygdala were affected by five. Shape analyses detected subregional alterations that were averaged out in volume analyses. A common latent dimension was identified, characterized by opposing effects on the hippocampus/amygdala and putamen/pallidum, across CNVs and across NPDs. Effect sizes of CNVs on subcortical volume, thickness, and local surface area were correlated with their previously reported effect sizes on cognition and risk for ASD and schizophrenia. CONCLUSIONS The findings demonstrate that subcortical alterations associated with CNVs show varying levels of similarities with those associated with neuropsychiatric conditions, as well distinct effects, with some CNVs clustering with adult-onset conditions and others with ASD. These findings provide insight into the long-standing questions of why CNVs at different genomic loci increase the risk for the same NPD and why a single CNV increases the risk for a diverse set of NPDs.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Claudia Modenato
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Clara Moreau
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Christopher R K Ching
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Annabelle Harvey
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Sandra Martin-Brevet
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Guillaume Huguet
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Martineau Jean-Louis
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Elise Douard
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Charles-Olivier Martin
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Nadine Younis
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Petra Tamer
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Anne M Maillard
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Borja Rodriguez-Herreros
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Aurélie Pain
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Leila Kushan
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Dmitry Isaev
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Kathryn Alpert
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Anjani Ragothaman
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Jessica A Turner
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Lei Wang
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Tiffany C Ho
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Lianne Schmaal
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Ana I Silva
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Marianne B M van den Bree
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - David E J Linden
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Michael J Owen
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Jeremy Hall
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Sarah Lippé
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Guillaume Dumas
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Bogdan Draganski
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Boris A Gutman
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Ida E Sønderby
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Ole A Andreassen
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Laura M Schultz
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Laura Almasy
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - David C Glahn
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Carrie E Bearden
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Paul M Thompson
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| | - Sébastien Jacquemont
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal (Kumar, Harvey, Huguet, Jean-Louis, Douard, Martin, Younis, Tamer, Dumas, Jacquemont); Mila-Quebec AI Institute, University of Montreal, Montreal (Dumas); Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences (Modenato, Martin-Brevet, Lippé, Draganski), and Service des Troubles du Spectre de l'Autisme et Apparentés (Maillard, Rodriguez-Herreros, Pain), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Human Genetics and Cognitive Functions, Institut Pasteur, and Université de Paris, CNRS UMR 3571, Paris (Moreau); Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles (Kushan, Bearden); School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands (Silva, Linden); Centre for Neuropsychiatric Genetics and Genomics (Silva, van den Bree, Owen, Hall), Division of Psychological Medicine and Clinical Neurosciences, School of Medicine (van den Bree, Owen, Hall), and Neuroscience and Mental Health Innovation Institute (van den Bree, Linden, Hall), Cardiff University, Cardiff, U.K.; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Draganski); Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey (Ching, Moreau, Thompson); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia (Schultz, Almasy); Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia (Schultz, Almasy); Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Almasy); Department of Psychiatry, Harvard Medical School, Boston, and Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston (Glahn); Department of Biomedical Engineering, Duke University, Durham, N.C. (Isaev); Department of Biomedical Engineering, Oregon Health and Science University, Portland (Ragothaman); Department of Psychology, Georgia State University, Atlanta (Turner); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago (Alpert, Wang); Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus (Wang); Department of Psychiatry and Behavioral Sciences and Department of Psychology, Stanford University, Stanford (Ho); Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia, and Centre for Youth Mental Health, University of Melbourne, Melbourne (Schmaal); NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, and University of Oslo, Oslo (Sønderby, Andreassen); Department of Medical Genetics, Oslo University Hospital, Oslo (Sønderby); K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo (Sønderby, Andreassen); Department of Biomedical Engineering, Illinois Institute of Technology, Chicago (Gutman)
| |
Collapse
|
44
|
Xu C, Wang F, Huang Q, Lyu D, Wu C, Cao T, Zhao J, Wang M, Zhou N, Yang W, Chen Y, Wei Z, Xie B, Hong W. Association between overt aggression and anhedonia in patients with major depressive disorder during the acute phase. J Psychiatr Res 2023; 165:41-47. [PMID: 37459777 DOI: 10.1016/j.jpsychires.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 09/03/2023]
Abstract
OBJECTIVE To explore the factors influencing anhedonia at baseline and use them as confounding factors. To further investigate the correlation between overt aggression and anhedonia during the acute phase of major depressive disorder. METHODS In this eight-week prospective study, 384 major depressive disorder patients were recruited from the outpatient section of Shanghai Mental Health Center from May 1, 2017, to October 30, 2018. Standard treatments were performed with escitalopram or venlafaxine for participants. Depressive symptoms, overt aggression, and anhedonia were assessed using the 17-item Hamilton Rating Scale for Depression, Modified Overt Aggression Scale, and Snaith-Hamilton Pleasure Scale at baseline, and in the 4th and 8th weeks. RESULTS Obsessive-compulsive symptoms and the duration of untreated psychosis were positively associated with aggression (P < 0.05). Patients with aggressive behaviour had worse cognitive impairment and severe anhedonia of pleasurable sensory experiences (P < 0.05). For anhedonia, being female (tau_b = -0.23, P = 0.012) was a protective factor, while number of recurrent, melancholic features, current obsessions, previous combination drug therapies, depressive symptoms, and aggressive behaviour were risk factors (P < 0.05). Social anhedonia related to interests/pastimes, and pleasurable sensory experiences were more severe in major depressive disorder patients with aggressive behaviour in the acute phase (P < 0.05). CONCLUSIONS Anhedonia persisted in major depressive disorder patients with aggressive behaviour after standardized treatment during the acute phase. Being female protected the pleasures from social interaction and sensory experience. However, the number of depressive episodes, melancholic features, current obsessive symptoms, previous combination drug therapies, depressive symptoms, and aggressive behaviour was positively associated with anhedonia.
Collapse
Affiliation(s)
- Chuchen Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Fan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China. beauty--
| | - Qinte Huang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Dongbin Lyu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Chenglin Wu
- Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, 200124, China.
| | - Tongdan Cao
- Shanghai Mental Health Center of Huangpu District, Shanghai, 200011, China.
| | - Jie Zhao
- Shanghai Mental Health Center of Huangpu District, Shanghai, 200011, China.
| | - Meiti Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Ni Zhou
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Weichieh Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Yiming Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Zheyi Wei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Bin Xie
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 20030, China.
| | - Wu Hong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 20030, China.
| |
Collapse
|
45
|
He Q, Keding TJ, Zhang Q, Miao J, Russell JD, Herringa RJ, Lu Q, Travers BG, Li JJ. Neurogenetic mechanisms of risk for ADHD: Examining associations of polygenic scores and brain volumes in a population cohort. J Neurodev Disord 2023; 15:30. [PMID: 37653373 PMCID: PMC10469494 DOI: 10.1186/s11689-023-09498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND ADHD polygenic scores (PGSs) have been previously shown to predict ADHD outcomes in several studies. However, ADHD PGSs are typically correlated with ADHD but not necessarily reflective of causal mechanisms. More research is needed to elucidate the neurobiological mechanisms underlying ADHD. We leveraged functional annotation information into an ADHD PGS to (1) improve the prediction performance over a non-annotated ADHD PGS and (2) test whether volumetric variation in brain regions putatively associated with ADHD mediate the association between PGSs and ADHD outcomes. METHODS Data were from the Philadelphia Neurodevelopmental Cohort (N = 555). Multiple mediation models were tested to examine the indirect effects of two ADHD PGSs-one using a traditional computation involving clumping and thresholding and another using a functionally annotated approach (i.e., AnnoPred)-on ADHD inattention (IA) and hyperactivity-impulsivity (HI) symptoms, via gray matter volumes in the cingulate gyrus, angular gyrus, caudate, dorsolateral prefrontal cortex (DLPFC), and inferior temporal lobe. RESULTS A direct effect was detected between the AnnoPred ADHD PGS and IA symptoms in adolescents. No indirect effects via brain volumes were detected for either IA or HI symptoms. However, both ADHD PGSs were negatively associated with the DLPFC. CONCLUSIONS The AnnoPred ADHD PGS was a more developmentally specific predictor of adolescent IA symptoms compared to the traditional ADHD PGS. However, brain volumes did not mediate the effects of either a traditional or AnnoPred ADHD PGS on ADHD symptoms, suggesting that we may still be underpowered in clarifying brain-based biomarkers for ADHD using genetic measures.
Collapse
Affiliation(s)
- Quanfa He
- Department of Psychology, University of, Wisconsin-Madison, 1202 W. Johnson Street, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, USA
| | | | - Qi Zhang
- Department of Educational Psychology, University of Wisconsin-Madison, Madison, USA
| | - Jiacheng Miao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, USA
| | - Justin D Russell
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Ryan J Herringa
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, USA
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, USA
- Department of Statistics, University of Wisconsin-Madison, Madison, USA
| | - Brittany G Travers
- Waisman Center, University of Wisconsin-Madison, Madison, USA
- Department of Kinesiology, University of Wisconsin-Madison, Madison, USA
| | - James J Li
- Department of Psychology, University of, Wisconsin-Madison, 1202 W. Johnson Street, Madison, WI, 53706, USA.
- Waisman Center, University of Wisconsin-Madison, Madison, USA.
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, USA.
| |
Collapse
|
46
|
Miyauchi M, Matsuura N, Mukai K, Hashimoto T, Ogino S, Yamanishi K, Yamada H, Hayashida K, Matsunaga H. A prospective investigation of impacts of comorbid attention deficit hyperactivity disorder (ADHD) on clinical features and long-term treatment response in adult patients with obsessive-compulsive disorder (OCD). Compr Psychiatry 2023; 125:152401. [PMID: 37454485 DOI: 10.1016/j.comppsych.2023.152401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/13/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND A close association between obsessive-compulsive disorder (OCD) and attention-deficit/hyperactivity disorder (ADHD) in children and adolescents has been investigated in previous studies. However, few studies examined the relationship between lifetime comorbidity of ADHD and OCD in adults. Therefore, we sought to investigate the clinical and psychopathological features related to comorbid ADHD in Japanese adult patients with OCD. METHODS We assessed lifetime comorbidity of ADHD in 93 adult Japanese patients with OCD. Additionally, we used the Japanese version of Conners' Adult ADHD Rating Scales to assess the characteristics and severity of ADHD in each participant. According to the results, we excluded OCD patients that did not have ADHD but who exhibited elevated levels of ADHD traits. We compared OCD patients with ADHD (ADHD+ group) and those without ADHD or its trait (ADHD- group) in terms of background profiles and clinical features, such as OCD symptomatology and psychometric test results. Additionally, the 6-month treatment outcome was compared prospectively between groups. RESULTS Of the 93 OCD participants, the prevalence of lifetime comorbidity of ADHD was estimated as 16.1%. Compared with the ADHD- group, participants in the ADHD+ group had an earlier age of onset of OCD, higher frequencies of hoarding symptoms, higher levels of depressive and anxiety symptoms and lower quality of life, more elevated levels of impulsivity, and higher rates of substance or behavioral addiction and major depression. Finally, the mean improvement rate on the Yale-Brown Obsessive Compulsive Scale after 6 months of standardized OCD treatment in the ADHD+ group (16.1%) was significantly lower than that in the ADHD- group (44.6%). CONCLUSION The lifetime comorbidity of ADHD is likely to exert a significant effect on clinical features and treatment outcome in adult patients with OCD. It is important to consider that underlying ADHD pathology may function as a facilitator for increased severity of global clinical features and treatment refractory conditions in OCD patients. Further studies are required to examine treatment strategies for such patients.
Collapse
Affiliation(s)
- Masahiro Miyauchi
- Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Japan
| | - Naomi Matsuura
- Graduate School of Education, Mie University, Mie, Japan
| | - Keiichiro Mukai
- Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takuya Hashimoto
- Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shun Ogino
- Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hisashi Yamada
- Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kazuhisa Hayashida
- Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hisato Matsunaga
- Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Japan.
| |
Collapse
|
47
|
Cha JH, Cho Y, Moon JH, Lee J, Na JY, Kim YJ. Feeding practice during infancy is associated with attention-deficit/hyperactivity disorder and autism spectrum disorder: a population-based study in South Korea. Eur J Pediatr 2023; 182:3559-3568. [PMID: 37219627 DOI: 10.1007/s00431-023-05022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
Attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are representative neurodevelopmental disorders. Using a nationwide database, we aimed to investigate whether feeding practices in infancy (breastfeeding and the timing of supplementary food introduction) could impact ADHD or ASD development. We evaluated 1,173,448 children aged 4-6 months who were included in the National Screening Program for Infants and Children (NHSPIC) between 2008 and 2014. We observed individuals until 6-7 years of age. Data on feeding type (milk feeding: exclusive breastfeeding [EBF], partial breastfeeding [PBF], exclusive formula feeding [EFF] at 4-6 months of age; supplementary food introduction: < 6 or > 6 months of age) were obtained from the NHSPIC, and diagnoses were based on the International Classification of Diseases, Tenth Revision. In a generalized linear model, children who received EBF had significantly lower incidence of both ADHD (odds ratio [OR]: 0.77, 95% confidence interval [CI]: 0.72-0.82) and ASD (OR: 0.64, 95% CI: 0.60-0.67) than that of children who received EFF. PBF also had a significant protective effect on both ADHD (0.91; 0.85-0.98), and ASD (0.89; 0.83-0.95). The timing of supplementary food introduction was not associated with either ADHD or ASD, although there was an increased risk of ASD in the EFF infants who had supplementary food introduced at > 6 months of age. Conclusion: Our study strengthens and supports the beneficial effect of breastfeeding on neurodevelopmental disorders in children. Breastfeeding should be encouraged and recommended to promote desirable neurodevelopmental outcomes. What is Known: • Breastfeeding is beneficial for the overall health of children, including neurodevelopmental outcomes and cognitive functions. What is New: • Breastfeeding, especially exclusive breastfeeding, was protective against neurodevelopmental disorders. • The effect of the timing of supplementary food introduction was limited.
Collapse
Affiliation(s)
- Jong Ho Cha
- Department of Pediatrics, Hanyang University Hospital, Seoul, South Korea
| | - Yongil Cho
- Department of Emergency Medicine, Hanyang University College of Medicine, Seoul, South Korea
| | - Jin-Hwa Moon
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea
| | - Juncheol Lee
- Department of Emergency Medicine, Hanyang University College of Medicine, Seoul, South Korea
| | - Jae Yoon Na
- Department of Pediatrics, Hanyang University Hospital, Seoul, South Korea.
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea.
| | - Yong Joo Kim
- Department of Pediatrics, Hanyang University Hospital, Seoul, South Korea.
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea.
| |
Collapse
|
48
|
Zugman A, Alliende L, Medel V, Bethlehem RA, Seidlitz J, Ringlein G, Arango C, Arnatkevičiūtė A, Asmal L, Bellgrove M, Benegal V, Bernardo M, Billeke P, Bosch-Bayard J, Bressan R, Busatto G, Castro M, Chaim-Avancini T, Compte A, Costanzi M, Czepielewski L, Dazzan P, de la Fuente-Sandoval C, Di Forti M, Díaz-Caneja C, María Díaz-Zuluaga A, Du Plessis S, Duran F, Fittipaldi S, Fornito A, Freimer N, Gadelha A, Gama C, Garani R, Garcia-Rizo C, Gonzalez Campo C, Gonzalez-Valderrama A, Guinjoan S, Holla B, Ibañez A, Ivanovic D, Jackowski A, Leon-Ortiz P, Lochner C, López-Jaramillo C, Luckhoff H, Massuda R, McGuire P, Miyata J, Mizrahi R, Murray R, Ozerdem A, Pan P, Parellada M, Phahladira L, Ramirez-Mahaluf J, Reckziegel R, Reis Marques T, Reyes-Madrigal F, Roos A, Rosa P, Salum G, Scheffler F, Schumann G, Serpa M, Stein D, Tepper A, Tiego J, Ueno T, Undurraga J, Undurraga E, Valdes-Sosa P, Valli I, Villarreal M, Winton-Brown T, Yalin N, Zamorano F, Zanetti M, Winkler A, Pine D, Evans-Lacko S, Crossley N. Country-level gender inequality is associated with structural differences in the brains of women and men. Proc Natl Acad Sci U S A 2023; 120:e2218782120. [PMID: 37155867 PMCID: PMC10193926 DOI: 10.1073/pnas.2218782120] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/15/2023] [Indexed: 05/10/2023] Open
Abstract
Gender inequality across the world has been associated with a higher risk to mental health problems and lower academic achievement in women compared to men. We also know that the brain is shaped by nurturing and adverse socio-environmental experiences. Therefore, unequal exposure to harsher conditions for women compared to men in gender-unequal countries might be reflected in differences in their brain structure, and this could be the neural mechanism partly explaining women's worse outcomes in gender-unequal countries. We examined this through a random-effects meta-analysis on cortical thickness and surface area differences between adult healthy men and women, including a meta-regression in which country-level gender inequality acted as an explanatory variable for the observed differences. A total of 139 samples from 29 different countries, totaling 7,876 MRI scans, were included. Thickness of the right hemisphere, and particularly the right caudal anterior cingulate, right medial orbitofrontal, and left lateral occipital cortex, presented no differences or even thicker regional cortices in women compared to men in gender-equal countries, reversing to thinner cortices in countries with greater gender inequality. These results point to the potentially hazardous effect of gender inequality on women's brains and provide initial evidence for neuroscience-informed policies for gender equality.
Collapse
Affiliation(s)
- André Zugman
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch (E & D), National Institute of Mental Health, National Institutes of Health, BethesdaMD20894
| | - Luz María Alliende
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago8330077, Chile
- Department of Psychology, Northwestern University, Evanston, IL60208
| | - Vicente Medel
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago7941169, Chile
| | - Richard A.I. Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, CambridgeCB2 8AH, United Kingdom
- Department of Psychology, University of Cambridge, CambridgeCB2 3EB, United Kingdom
| | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA19104
| | - Grace Ringlein
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch (E & D), National Institute of Mental Health, National Institutes of Health, BethesdaMD20894
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), School of Medicine, Universidad Complutense, Madrid28009, Spain
| | - Aurina Arnatkevičiūtė
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC3168, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC3168, Australia
| | - Laila Asmal
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town7602, South Africa
| | - Mark Bellgrove
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC3168, Australia
| | - Vivek Benegal
- Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka560029, India
| | - Miquel Bernardo
- Barcelona Clinic Schizophrenia Unit, Hospital Clínic de Barcelona, Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), Institut d’Investigacions Biomèdiques, August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Instituto de Salud Carlos III (ISCIII), Barcelona08036, Spain
| | - Pablo Billeke
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago7610658, Chile
| | - Jorge Bosch-Bayard
- McGill Centre for Integrative Neuroscience, Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute, Montreal, QCH3A 2B4, Canada
- McGill University, Montreal, QCH3A 2B4, Canada
| | - Rodrigo Bressan
- Interdisciplinary Laboratory in Clinical Neuroscience (LiNC), Department of Psychiatry, Federal University of São Paulo, São Paulo04039-032, Brazil
| | - Geraldo F. Busatto
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo05403-903, Brazil
| | - Mariana N. Castro
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (INAAC), Fleni-Consejo Nacional de Investigaciones Científicas y Técnicas Neurosciences Institute (INEU), Ciudad Autónoma de Buenos AiresC1428, Argentina
- Department of Psychiatry and Mental Health, School of Medicine, University of Buenos Aires, Ciudad Autónoma de Buenos AiresC1114AAD, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos AiresC1033AAJ, Argentina
| | - Tiffany Chaim-Avancini
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas, Faculdade de Medicina Universidade de São Paulo (HCFMUSP), Faculdade de Medicina Universidade de São Paulo, São PauloSP05403-903, Brazil
| | - Albert Compte
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona08036, Spain
| | - Monise Costanzi
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto AlegreRS90035-007, Brazil
| | - Leticia Czepielewski
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto AlegreRS90035-007, Brazil
- Programa de Pós-Graduação em Psicologia, Instituto Psicologia, Universidade Federal do Rio Grande do Sul, Porto AlegreRS90040-060, Brazil
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, LondonSE5 8AF, United Kingdom
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Direction of Research, Instituto Nacional de Neurología y Neurocirugía, Mexico City14269, Mexico
| | - Marta Di Forti
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, LondonSE5 8AF, United Kingdom
- National Institute for Health Research (NIHR), Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King’s College London, LondonSE5 8AZ, United Kingdom
| | - Covadonga M. Díaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), School of Medicine, Universidad Complutense, Madrid28009, Spain
| | - Ana María Díaz-Zuluaga
- Department of Psychiatry, Faculty of Medicine, University of Antioquia, Medellín050011, Colombia
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior Los Angeles, University of California Los Angeles (UCLA), Los Angeles, CA90024
| | - Stefan Du Plessis
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town7602, South Africa
- South African Medical Research Council (SA MRC), Genomics of Brain Disorders Unit, Cape Town7505, South Africa
| | - Fabio L. S. Duran
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas, Faculdade de Medicina Universidade de São Paulo (HCFMUSP), Faculdade de Medicina Universidade de São Paulo, São PauloSP05403-903, Brazil
| | - Sol Fittipaldi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago7941169, Chile
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Victoria, Ciudad Autónoma de Buenos AiresB1644BID, Argentina
- Global Brain Health Institute (GBHI), Trinity College Dublin (TCD), DublinDO2 PN40, Ireland
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA94158
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC3168, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC3168, Australia
| | - Nelson B. Freimer
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior Los Angeles, University of California Los Angeles (UCLA), Los Angeles, CA90024
| | - Ary Gadelha
- Interdisciplinary Laboratory in Clinical Neuroscience (LiNC), Department of Psychiatry, Federal University of São Paulo, São Paulo04039-032, Brazil
| | - Clarissa S. Gama
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto AlegreRS90035-007, Brazil
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Hospital de Clinicas de Porto Alegre, Porto Alegre, RS90035903, Brazil
| | - Ranjini Garani
- Integrated Program in Neuroscience, McGill University, Montreal, QuebecH3A 1A12B4Canada
| | - Clemente Garcia-Rizo
- Barcelona Clinic Schizophrenia Unit, Hospital Clínic de Barcelona, Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), Institut d’Investigacions Biomèdiques, August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Instituto de Salud Carlos III (ISCIII), Barcelona08036, Spain
| | - Cecilia Gonzalez Campo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos AiresC1033AAJ, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Victoria, Ciudad Autónoma de Buenos AiresB1644BID, Argentina
| | - Alfonso Gonzalez-Valderrama
- Early Intervention Program, Instituto Psiquiátrico Dr. J. Horwitz Barak, Santiago8431621, Chile
- School of Medicine, Universidad Finis Terrae, Santiago7501015, Chile
| | - Salvador Guinjoan
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos AiresC1033AAJ, Argentina
- Laureate Institute for Brain Research, Tulsa, OK74136
| | - Bharath Holla
- Department of Integrative Medicine, NIMHANS, Bengaluru, Karnataka560029, India
- Accelerator Program for Discovery in Brain disorders using Stem cells, Department of Psychiatry, NIMHANS, Bengaluru, Karnataka560029, India
| | - Agustín Ibañez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago7941169, Chile
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos AiresC1033AAJ, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Victoria, Ciudad Autónoma de Buenos AiresB1644BID, Argentina
- Global Brain Health Institute (GBHI), Trinity College Dublin (TCD), DublinDO2 PN40, Ireland
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA94158
| | - Daniza Ivanovic
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago7610658, Chile
| | - Andrea Jackowski
- Department of Psychiatry, Universidade Federal de São Paulo, São Paulo04038-000, Brazil
- Department of Education, Information and Communications Technology (ICT) and Learning, Østfold University College, Halden1757, Norway
| | - Pablo Leon-Ortiz
- Laboratory of Experimental Psychiatry, Direction of Research, Instituto Nacional de Neurología y Neurocirugía, Mexico City14269, Mexico
| | - Christine Lochner
- South African Medical Research Council (SA MRC) Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch7505, South Africa
| | - Carlos López-Jaramillo
- Department of Psychiatry, Faculty of Medicine, University of Antioquia, Medellín050011, Colombia
| | - Hilmar Luckhoff
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town7602, South Africa
| | - Raffael Massuda
- Department of Psychiatry, Universidade Federal do Paraná (UFPR), CuritibaPR 80060-000, Brazil
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, OxfordOX3 9DU, United Kingdom
- NIHR Oxford Health Biomedical Research Centre, OxfordOX3 7JX, United Kingdom
- Oxford HealthNational Health Service (NHS), Foundation Trust, OxfordOX4 4XN, United Kingdom
| | - Jun Miyata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto606-8507, Japan
| | - Romina Mizrahi
- Integrated Program in Neuroscience, McGill University, Montreal, QuebecH3A 1A12B4Canada
- Clinical and Translational Sciences Lab, McGill University, Douglas Mental Health University Institute, Montreal, QCH4A 1R3, Canada
- Department of Psychiatry, McGill University,Montreal, QCH3A 1A1, Canada
| | - Robin Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, LondonSE5 8AF, United Kingdom
| | - Aysegul Ozerdem
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MinnesotaMN55905
| | - Pedro M. Pan
- Interdisciplinary Laboratory in Clinical Neuroscience (LiNC), Department of Psychiatry, Federal University of São Paulo, São Paulo04039-032, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo04038-000, Brazil
| | - Mara Parellada
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), School of Medicine, Universidad Complutense, Madrid28009, Spain
| | - Lebogan Phahladira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town7602, South Africa
| | - Juan P. Ramirez-Mahaluf
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago8330077, Chile
| | - Ramiro Reckziegel
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto AlegreRS90035-007, Brazil
| | - Tiago Reis Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, LondonSE5 8AF, United Kingdom
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Direction of Research, Instituto Nacional de Neurología y Neurocirugía, Mexico City14269, Mexico
| | - Annerine Roos
- South African Medical Research Council (SA MRC) Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town7925, South Africa
| | - Pedro Rosa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas, Faculdade de Medicina Universidade de São Paulo (HCFMUSP), Faculdade de Medicina Universidade de São Paulo, São PauloSP05403-903, Brazil
| | - Giovanni Salum
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Hospital de Clinicas de Porto Alegre, Porto Alegre, RS90035903, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo04038-000, Brazil
| | - Freda Scheffler
- South African Medical Research Council (SA MRC) Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town7925, South Africa
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai200433, China
- PONS-Centre, Charité Mental Health, Dept of Psychiatry and Psychotherapy, Charité Campus Mitte, Berlin10117, Germany
| | - Mauricio Serpa
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo05403-903, Brazil
| | - Dan J. Stein
- South African Medical Research Council (SA MRC) Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town7925, South Africa
| | - Angeles Tepper
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago8330077, Chile
| | - Jeggan Tiego
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC3168, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC3168, Australia
| | - Tsukasa Ueno
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto606-8507, Japan
- Integrated Clinical Education Center, Kyoto University Hospital, Kyoto606-8397, Japan
| | - Juan Undurraga
- Early Intervention Program, Instituto Psiquiátrico Dr. J. Horwitz Barak, Santiago8431621, Chile
- Department of Neurology and Psychiatry, Faculty of Medicine, Clínica Alemana Universidad del DesarrolloVitacura, Santiago7650568, Chile
| | - Eduardo A. Undurraga
- Escuela de Gobierno, Pontificia Universidad Católica de Chile, Santiago7820436, Chile
- Research Center for Integrated Disaster Risk Management (CIGIDEN), Santiago7820436, Chile
- Canadian Institute for Advanced Research (CIFAR), Azrieli Global Scholars Program, CIFAR, Toronto, ONM5G 1M1, Canada
| | - Pedro Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu610054, China
- Centro de Neurociencias de Cuba, La Habana11600, Cuba
| | - Isabel Valli
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona08036, Spain
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, LondonSE5 8AF, United Kingdom
| | - Mirta Villarreal
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (INAAC), Fleni-Consejo Nacional de Investigaciones Científicas y Técnicas Neurosciences Institute (INEU), Ciudad Autónoma de Buenos AiresC1428, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos AiresC1033AAJ, Argentina
- Department of Physics, Universidad de Buenos Aires, Ciudad Autónoma deBuenos AiresC1428EGA, Argentina
| | - Toby T. Winton-Brown
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC3004, Australia
- Department of Psychiatry, Alfred Health, Melbourne, VIC3004, Australia
| | - Nefize Yalin
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, LondonSE5 8AF, United Kingdom
- South London and Maudsley National Health Service (NHS), Foundation Trust, LondonSE5 8AZ, United Kingdom
| | - Francisco Zamorano
- Unidad de Imágenes Cuantitativas Avanzadas, Departamento de Imágenes, Clínica Alemana de Santiago, Universidad del Desarrollo, Santiago7650568, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago7510602, Chile
| | - Marcus V. Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas, Faculdade de Medicina Universidade de São Paulo (HCFMUSP), Faculdade de Medicina Universidade de São Paulo, São PauloSP05403-903, Brazil
- Hospital Sírio-Libanês, São Paulo01308-050, Brazil
| | | | - Anderson M. Winkler
- Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, Texas TX78520
| | - Daniel S. Pine
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch (E & D), National Institute of Mental Health, National Institutes of Health, BethesdaMD20894
| | - Sara Evans-Lacko
- Care Policy and Evaluation Centre, School of Economics and Political Science, LondonWC2A 2AE, United Kingdom
| | - Nicolas A. Crossley
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago8330077, Chile
- Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
| |
Collapse
|
49
|
Zhang J, Fang S, Yao Y, Li F, Luo Q. Parsing the heterogeneity of brain-symptom associations in autism spectrum disorder via random forest with homogeneous canonical correlation. J Affect Disord 2023; 335:36-43. [PMID: 37156272 DOI: 10.1016/j.jad.2023.04.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a highly heterogeneous developmental disorder, but the neuroimaging substrates of its heterogeneity remain unknown. The difficulty lies mainly on the significant individual variability in the brain-symptom association. METHODS T1-weighted magnetic resonance imaging data from the Autism Brain Imaging Database Exchange (ABIDE) (NTDC = 1146) were used to generate a normative model to map brain structure deviations of cases (NASD = 571). Voxel-based morphometry (VBM) was used to compute gray matter volume (GMV). Singular Value Decomposition (SVD) was employed to perform dimensionality reduction. A tree-based algorithm was proposed to identify the ASD subtypes according to the pattern of brain-symptom association as assessed by a homogeneous canonical correlation. RESULTS We identified 4 ASD subtypes with distinct association patterns between residual volumes and a social symptom score. More severe the social symptom was associated with greater GMVs in both the frontoparietal regions for the subtype1 (r = 0.29-0.44) and the ventral visual pathway for the subtype3 (r = 0.19-0.23), but lower GMVs in both the right anterior cingulate cortex for the subtype4 (r = -0.25) and a few subcortical regions for the subtype2 (r = -0.31-0.20). The subtyping significantly improved the classification accuracy between cases and controls from 0.64 to 0.75 (p < 0.05, permutation test), which was also better than the accuracy of 0.68 achieved by the k-means-based subtyping (p < 0.01). LIMITATIONS Sample size limited the study due to the missing data. CONCLUSIONS These findings suggest that the heterogeneity of ASD might reflect changes in different subsystems of the social brain, especially including social attention, motivation, perceiving and evaluation.
Collapse
Affiliation(s)
- Jiajun Zhang
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Shuanfeng Fang
- Department of Children Health Care, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, PR China
| | - Yin Yao
- Department of Computational Biology, School of Life Sciences, Fudan University, PR China
| | - Fei Li
- Developmental and Behavioral Pediatric Department & Child Primary Care Department, Ministry of Education Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, School of Life Sciences, Fudan University, Shanghai 200433, PR China; Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai 200032, China.
| |
Collapse
|
50
|
Nakua H, Hawco C, Forde NJ, Joseph M, Grillet M, Johnson D, Jacobs GR, Hill S, Voineskos A, Wheeler AL, Lai MC, Szatmari P, Georgiades S, Nicolson R, Schachar R, Crosbie J, Anagnostou E, Lerch JP, Arnold PD, Ameis SH. Systematic comparisons of different quality control approaches applied to three large pediatric neuroimaging datasets. Neuroimage 2023; 274:120119. [PMID: 37068719 DOI: 10.1016/j.neuroimage.2023.120119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023] Open
Abstract
INTRODUCTION Poor quality T1-weighted brain scans systematically affect the calculation of brain measures. Removing the influence of such scans requires identifying and excluding scans with noise and artefacts through a quality control (QC) procedure. While QC is critical for brain imaging analyses, it is not yet clear whether different QC approaches lead to the exclusion of the same participants. Further, the removal of poor-quality scans may unintentionally introduce a sampling bias by excluding the subset of participants who are younger and/or feature greater clinical impairment. This study had two aims: 1) examine whether different QC approaches applied to T1-weighted scans would exclude the same participants, and 2) examine how exclusion of poor-quality scans impacts specific demographic, clinical and brain measure characteristics between excluded and included participants in three large pediatric neuroimaging samples. METHODS We used T1-weighted, resting-state fMRI, demographic and clinical data from the Province of Ontario Neurodevelopmental Disorders network (Aim 1: n=553, Aim 2: n=465), the Healthy Brain Network (Aim 1: n=1051, Aim 2: n=558), and the Philadelphia Neurodevelopmental Cohort (Aim 1: n=1087; Aim 2: n=619). Four different QC approaches were applied to T1-weighted MRI (visual QC, metric QC, automated QC, fMRI-derived QC). We used tetrachoric correlation and inter-rater reliability analyses to examine whether different QC approaches excluded the same participants. We examined differences in age, mental health symptoms, everyday/adaptive functioning, IQ and structural MRI-derived brain indices between participants that were included versus excluded following each QC approach. RESULTS Dataset-specific findings revealed mixed results with respect to overlap of QC exclusion. However, in POND and HBN, we found a moderate level of overlap between visual and automated QC approaches (rtet=0.52-0.59). Implementation of QC excluded younger participants, and tended to exclude those with lower IQ, and lower everyday/adaptive functioning scores across several approaches in a dataset-specific manner. Across nearly all datasets and QC approaches examined, excluded participants had lower estimates of cortical thickness and subcortical volume, but this effect did not differ by QC approach. CONCLUSION The results of this study provide insight into the influence of QC decisions on structural pediatric imaging analyses. While different QC approaches exclude different subsets of participants, the variation of influence of different QC approaches on clinical and brain metrics is minimal in large datasets. Overall, implementation of QC tends to exclude participants who are younger, and those who have more cognitive and functional impairment. Given that automated QC is standardized and can reduce between-study differences, the results of this study support the potential to use automated QC for large pediatric neuroimaging datasets.
Collapse
Affiliation(s)
- Hajer Nakua
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Natalie J Forde
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Michael Joseph
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Maud Grillet
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Delaney Johnson
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Grace R Jacobs
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Sean Hill
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Aristotle Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Anne L Wheeler
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Peter Szatmari
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Rob Nicolson
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada
| | - Russell Schachar
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada; Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer Crosbie
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada; Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Paul D Arnold
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Departments of Psychiatry and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|