1
|
Schoeler T, Baldwin JR, Martin E, Barkhuizen W, Pingault JB. Assessing rates and predictors of cannabis-associated psychotic symptoms across observational, experimental and medical research. NATURE. MENTAL HEALTH 2024; 2:865-876. [PMID: 39005547 PMCID: PMC11236708 DOI: 10.1038/s44220-024-00261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/26/2024] [Indexed: 07/16/2024]
Abstract
Cannabis, one of the most widely used psychoactive substances worldwide, can give rise to acute cannabis-associated psychotic symptoms (CAPS). While distinct study designs have been used to examine CAPS, an overarching synthesis of the existing findings has not yet been carried forward. To that end, we quantitatively pooled the evidence on rates and predictors of CAPS (k = 162 studies, n = 210,283 cannabis-exposed individuals) as studied in (1) observational research, (2) experimental tetrahydrocannabinol (THC) studies, and (3) medicinal cannabis research. We found that rates of CAPS varied substantially across the study designs, given the high rates reported by observational and experimental research (19% and 21%, respectively) but not medicinal cannabis studies (2%). CAPS was predicted by THC administration (for example, single dose, Cohen's d = 0.7), mental health liabilities (for example, bipolar disorder, d = 0.8), dopamine activity (d = 0.4), younger age (d = -0.2), and female gender (d = -0.09). Neither candidate genes (for example, COMT, AKT1) nor other demographic variables (for example, education) predicted CAPS in meta-analytical models. The results reinforce the need to more closely monitor adverse cannabis-related outcomes in vulnerable individuals as these individuals may benefit most from harm-reduction efforts.
Collapse
Affiliation(s)
- Tabea Schoeler
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Department of Clinical, Educational and Health Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Jessie R. Baldwin
- Department of Clinical, Educational and Health Psychology, Division of Psychology and Language Sciences, University College London, London, UK
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Ellen Martin
- Department of Clinical, Educational and Health Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Wikus Barkhuizen
- Department of Clinical, Educational and Health Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Jean-Baptiste Pingault
- Department of Clinical, Educational and Health Psychology, Division of Psychology and Language Sciences, University College London, London, UK
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
2
|
Manning B, Downey LA, Narayan A, Hayley AC. A systematic review of oculomotor deficits associated with acute and chronic cannabis use. Addict Biol 2024; 29:e13359. [PMID: 38221807 PMCID: PMC10898834 DOI: 10.1111/adb.13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/29/2023] [Accepted: 11/17/2023] [Indexed: 01/16/2024]
Abstract
Driving is a critical everyday task necessitating the rapid and seamless integration of dynamic visually derived information to guide neurobehaviour. Biological markers are frequently employed to detect Δ9-tetrahydrocannabinol (THC) consumption among drivers during roadside tests, despite not necessarily indicating impairment. Characterising THC-specific alterations to oculomotor behaviour may offer a more sensitive measure for indexing drug-related impairment, necessitating discrimination between acute THC effects, chronic use and potential tolerance effects. The present review aims to synthesise current evidence on the acute and chronic effects of THC on driving-relevant oculomotor behaviour. The review was prospectively registered (10.17605/OSF.IO/A4H9W), and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines informed reporting standards. Overall, 20 included articles comprising 12 experimental acute dosing trials, 5 cross-sectional chronic use studies and 3 roadside epidemiological studies examined the effects of cannabis/THC on oculomotor parameters including saccadic activity gaze behaviour, nystagmus, smooth pursuit and eyelid/blink characteristics. Acute THC consumption selectively impacts oculomotor control, notably increasing saccadic latency and inaccuracy and impairing inhibitory control. Chronic cannabis users, especially those with early age of use onset, display enduring oculomotor deficits that affect visual scanning efficiency. The presence of eyelid tremors appears to be a reliable indicator of cannabis consumption while remaining distinct from direct impairment associated with visual attention and motor control. Cannabis selectively influences oculomotor activity relevant to driving, highlighting the role of cannabinoid systems in these processes. Defining cannabis/THC-specific changes in oculomotor control may enhance the precision of roadside impairment assessments and vehicle safety systems to detect drug-related impairment and assess driving fitness.
Collapse
Affiliation(s)
- Brooke Manning
- Centre for Mental Health and Brain Science, School of Health SciencesSwinburne University of TechnologyHawthornVictoriaAustralia
- International Council for Alcohol, Drugs and Traffic Safety (ICADTS)RotterdamNetherlands
| | - Luke A. Downey
- Centre for Mental Health and Brain Science, School of Health SciencesSwinburne University of TechnologyHawthornVictoriaAustralia
- Institute for Breathing and SleepAustin HospitalMelbourneVictoriaAustralia
| | - Andrea Narayan
- Centre for Mental Health and Brain Science, School of Health SciencesSwinburne University of TechnologyHawthornVictoriaAustralia
| | - Amie C. Hayley
- Centre for Mental Health and Brain Science, School of Health SciencesSwinburne University of TechnologyHawthornVictoriaAustralia
- International Council for Alcohol, Drugs and Traffic Safety (ICADTS)RotterdamNetherlands
- Institute for Breathing and SleepAustin HospitalMelbourneVictoriaAustralia
| |
Collapse
|
3
|
Kapler S, Adery L, Hoftman GD, Amir CM, Grigoryan V, Cooper ZD, Bearden CE. Assessing evidence supporting cannabis harm reduction practices for adolescents at clinical high-risk for psychosis: a review and clinical implementation tool. Psychol Med 2024; 54:245-255. [PMID: 37882050 DOI: 10.1017/s0033291723002994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Cannabis use is consistently associated with both increased incidence of frank psychotic disorders and acute exacerbations of psychotic symptoms in healthy individuals and people with psychosis spectrum disorders. Although there is uncertainty around causality, cannabis use may be one of a few modifiable risk factors for conversion to psychotic disorders in individuals with Clinical High Risk for Psychosis (CHR-P) syndromes, characterized by functionally impairing and distressing subthreshold psychotic symptoms. To date, few recommendations beyond abstinence to reduce adverse psychiatric events associated with cannabis use have been made. This narrative review synthesizes existing scientific literature on cannabis' acute psychotomimetic effects and epidemiological associations with psychotic disorders in both CHR-P and healthy individuals to bridge the gap between scientific knowledge and practical mental health intervention. There is compelling evidence for cannabis acutely exacerbating psychotic symptoms in CHR-P, but its impact on conversion to psychotic disorder is unclear. Current evidence supports a harm reduction approach in reducing frequency of acute psychotic-like experiences, though whether such interventions decrease CHR-P individuals' risk of conversion to psychotic disorder remains unknown. Specific recommendations include reducing frequency of use, lowering delta-9-tetrahydrocannabinol content in favor of cannabidiol-only products, avoiding products with inconsistent potency like edibles, enhancing patient-provider communication about cannabis use and psychotic-like experiences, and utilizing a collaborative and individualized therapeutic approach. Despite uncertainty surrounding cannabis' causal association with psychotic disorders, cautious attempts to reduce acute psychosis risk may benefit CHR-P individuals uninterested in abstinence. Further research is needed to clarify practices associated with minimization of cannabis-related psychosis risk.
Collapse
Affiliation(s)
- Simon Kapler
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Behavioral Sciences, University of California, Los Angeles, CA, USA
| | - Laura Adery
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Behavioral Sciences, University of California, Los Angeles, CA, USA
| | - Gil D Hoftman
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Behavioral Sciences, University of California, Los Angeles, CA, USA
| | - Carolyn M Amir
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Behavioral Sciences, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Vardui Grigoryan
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Behavioral Sciences, University of California, Los Angeles, CA, USA
| | - Ziva D Cooper
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Behavioral Sciences, University of California, Los Angeles, CA, USA
- UCLA Center for Cannabis and Cannabinoids, University of California, Los Angeles, CA, USA
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Behavioral Sciences, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Manning B, Hayley AC, Catchlove S, Shiferaw B, Stough C, Downey LA. Effect of CannEpil ® on simulated driving performance and co-monitoring of ocular activity: A randomised controlled trial. J Psychopharmacol 2023; 37:472-483. [PMID: 37129083 PMCID: PMC10184186 DOI: 10.1177/02698811231170360] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Medicinal cannabis products containing Δ9-tetrahydrocannabinol (THC) are increasingly accessible. Yet, policy guidelines regarding fitness to drive are lacking, and cannabinoid-specific indexations of impairment are underdeveloped. AIMS To determine the impact of a standardised 1 mL sublingual dose of CannEpil®, a medicinal cannabis oil containing 100 mg cannabidiol (CBD) and 5 mg THC on simulated driving performance, relative to placebo and whether variations in vehicle control can be indexed by ocular activity. METHODS A double-blind, within-subjects, randomised, placebo-controlled, crossover trial assessed 31 healthy fully licensed drivers (15 male, 16 female) aged between 21 and 58 years (M = 38.0, SD = 10.78). Standard deviation of lateral position (SDLP), standard deviation of speed (SDS) and steering variability were assessed over time and as a function of treatment during a 40 min simulated drive, with oculomotor parameters assessed simultaneously. Oral fluid and plasma were collected at 30 min and 2.5 h. RESULTS CannEpil did not significantly alter SDLP across the full drive, although increased SDLP was observed between 20 and 30 min (p < 0.05). CannEpil increased SDS across the full drive (p < 0.05), with variance greatest at 20-30 min (p < 0.001). CannEpil increased fixation duration (p < 0.05), blink rate (trend p = 0.051) and decreased blink duration (p < 0.001) during driving. No significant correlations were observed between biological matrices and performance outcomes. CONCLUSIONS CannEpil impairs select aspects of vehicle control (speed and weaving) over time. Alterations to ocular behaviour suggest that eye tracking may assist in determining cannabis-related driver impairment or intoxication. Australian and New Zealand Clinician Trials Registry, https://anzctr.org.au(ACTRN12619000932167).
Collapse
Affiliation(s)
- Brooke Manning
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Amie C Hayley
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC, Australia
- International Council for Alcohol, Drugs, and Traffic Safety
- Institute for Breathing and Sleep, Austin Health, Melbourne, VIC, Australia
| | - Sarah Catchlove
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Brook Shiferaw
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC, Australia
- Seeing Machines, Melbourne, VIC, Australia
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Luke A Downey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC, Australia
- Institute for Breathing and Sleep, Austin Health, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Does cannabidiol make cannabis safer? A randomised, double-blind, cross-over trial of cannabis with four different CBD:THC ratios. Neuropsychopharmacology 2022; 48:869-876. [PMID: 36380220 PMCID: PMC10156730 DOI: 10.1038/s41386-022-01478-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
Abstract
As countries adopt more permissive cannabis policies, it is increasingly important to identify strategies that can reduce the harmful effects of cannabis use. This study aimed to determine if increasing the CBD content of cannabis can reduce its harmful effects. Forty-six healthy, infrequent cannabis users participated in a double-blind, within-subject, randomised trial of cannabis preparations varying in CBD content. There was an initial baseline visit followed by four drug administration visits, in which participants inhaled vaporised cannabis containing 10 mg THC and either 0 mg (0:1 CBD:THC), 10 mg (1:1), 20 mg (2:1), or 30 mg (3:1) CBD, in a randomised, counter-balanced order. The primary outcome was change in delayed verbal recall on the Hopkins Verbal Learning Task. Secondary outcomes included change in severity of psychotic symptoms (e.g., Positive and Negative Syndrome Scale [PANSS] positive subscale), plus further cognitive, subjective, pleasurable, pharmacological and physiological effects. Serial plasma concentrations of THC and CBD were measured. THC (0:1) was associated with impaired delayed verbal recall (t(45) = 3.399, d = 0.50, p = 0.001) and induced positive psychotic symptoms on the PANSS (t(45) = -4.709, d = 0.69, p = 2.41 × 10-5). These effects were not significantly modulated by any dose of CBD. Furthermore, there was no evidence of CBD modulating the effects of THC on other cognitive, psychotic, subjective, pleasurable, and physiological measures. There was a dose-response relationship between CBD dose and plasma CBD concentration, with no effect on plasma THC concentrations. At CBD:THC ratios most common in medicinal and recreational cannabis products, we found no evidence that CBD protects against the acute adverse effects of cannabis. This should be considered in health policy and safety decisions about medicinal and recreational cannabis.
Collapse
|
6
|
Effects of psychotropic drugs on ocular parameters relevant to traffic safety: A systematic review. Neurosci Biobehav Rev 2022; 141:104831. [PMID: 35995080 PMCID: PMC10067018 DOI: 10.1016/j.neubiorev.2022.104831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022]
Abstract
Driving is a complex neurobehavioural task necessitating the rapid selection, uptake, and processing of visual information. Eye movements that are critical for the execution of visually guided behaviour such as driving are also sensitive to the effects of psychotropic substances. The Embase (via Ovid), EBSCOHost, Psynet, Pubmed, Scopus and Web of Science databases were examined from January 01st, 2000 to December 31st, 2021. Study selection, data extraction and Cochrane Risk of Bias (RoB2) assessments were conducted according to PRISMA guidelines. The review was prospectively registered (CRD42021267554). In total, 36 full-text articles examined the effects of six principal psychotropic drug classes on measures of oculomotor parameters relevant to driving. Centrally depressing substances affect oculomotor responses in a dose-dependent manner. Psychostimulants improve maximal speed, but not accuracy, of visual search behaviours. Inhaled Δ-9-tetrahydrocannabinol (THC) increases inattention (saccadic inaccuracy) but does not consistently affect other oculomotor parameters. Alterations to composite ocular parameters due to psychoactive substance usage likely differently compromises performance precision during driving through impaired ability to select and process dynamic visual information.
Collapse
|
7
|
Meah F, Lundholm M, Emanuele N, Amjed H, Poku C, Agrawal L, Emanuele MA. The effects of cannabis and cannabinoids on the endocrine system. Rev Endocr Metab Disord 2022; 23:401-420. [PMID: 34460075 DOI: 10.1007/s11154-021-09682-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2021] [Indexed: 01/24/2023]
Abstract
With the increase in cannabis use due to policy changes and areas of decriminalization, it is important to recognize the potential impact of these substances on endocrine processes. Cannabinoids have many effects by activating the endocannabinoid system. This system plays a role in the normal functioning of nearly every organ and consists of the body's natural endocannabinoids, the cannabinoid receptors, and the enzymes and processes that regulate endocannabinoids. Exogenous cannabinoids such as Δ9-tetrahydrocannabinol (THC) are known to act through cannabinoid type 1 and 2 receptors, and have been shown to mimic endocannabinoid signaling and affect receptor expression. This review summarizes the known impacts of cannabis on thyroid, adrenal, and gonadal function in addition to glucose control, lipids, and bone metabolism, including: reduced female fertility, increased risk of adverse pregnancy outcomes, reduced sperm counts and function, lower thyroid hormone levels with acute use, blunting of stress response with chronic use, increased risk of prediabetes but lower risk of diabetes, suggested improvement of high density lipoproteins and triglycerides, and modest increase in fracture risk. The known properties of endocannabinoids, animal data, population data, and the possible benefits and concerns of cannabinoid use on hormonal function are discussed. The interconnectivity of the endocrine and endocannabinoid systems suggests opportunities for future therapeutic modalities which are an area of active investigation.
Collapse
Affiliation(s)
- Farah Meah
- Endocrinology Section, Medical Service, VA Hospital, Hines, Illinois, USA
| | - Michelle Lundholm
- Department of Internal Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Nicholas Emanuele
- Endocrinology Section, Medical Service, VA Hospital, Hines, Illinois, USA
| | - Hafsa Amjed
- Department of Medicine, Division of Endocrinology, Loyola University Health Care System, Maywood, Illinois, USA
| | - Caroline Poku
- Department of Medicine, Division of Endocrinology, Loyola University Health Care System, Maywood, Illinois, USA
| | - Lily Agrawal
- Endocrinology Section, Medical Service, VA Hospital, Hines, Illinois, USA
| | - Mary Ann Emanuele
- Department of Medicine, Division of Endocrinology, Loyola University Health Care System, Maywood, Illinois, USA.
| |
Collapse
|
8
|
Fiorentini A, Cantù F, Crisanti C, Cereda G, Oldani L, Brambilla P. Substance-Induced Psychoses: An Updated Literature Review. Front Psychiatry 2021; 12:694863. [PMID: 35002789 PMCID: PMC8732862 DOI: 10.3389/fpsyt.2021.694863] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/17/2021] [Indexed: 01/22/2023] Open
Abstract
Background: On the current psychopharmacological panorama, the variety of substances able to provoke an episode of acute psychosis is rapidly increasing. Such psychotic episodes are classified according to the major category of symptoms: positive, negative, or cognitive psychotic episodes. On one hand, the abuse of methamphetamines, cannabis, and cocaine plays a big role in increasing the incidence of episodes resembling a psychotic disorder. On the other hand, the progress in terms of pharmacodynamics knowledge has led to the synthesis of new drugs, such as cannabinoids and cathinone's, which have rapidly entered into the common pool of abusers' habits. Regarding these newly synthesized substances of abuse, further clinical studies are needed to understand their psychogenic properties. The topic of this review is complicated due to the frequent abuse of psychotomimetic drugs by patients affected by psychotic disorders, a fact that makes it extremely difficult to distinguish between an induced psychosis and a re-exacerbation of a previously diagnosed disorder. Methods: The present narrative review summarizes results from clinical studies, thus investigating the psychotogenic properties of abused substances and the psychotic symptoms they can give rise to. It also discusses the association between substance abuse and psychosis, especially with regards to the differential diagnosis between a primary vs. a substance-induced psychotic disorder. Findings: Our findings support the theory that psychosis due to substance abuse is commonly observed in clinical practice. The propensity to develop psychosis seems to be a function of the severity of use and addiction. Of note, from a phenomenological point of view, it is possible to identify some elements that may help clinicians involved in differential diagnoses between primary and substance-induced psychoses. There remains a striking paucity of information on the outcomes, treatments, and best practices of substance-induced psychotic episodes.
Collapse
Affiliation(s)
- Alessio Fiorentini
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Filippo Cantù
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Camilla Crisanti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Guido Cereda
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Lucio Oldani
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Glodosky NC, Cuttler C, McLaughlin RJ. A review of the effects of acute and chronic cannabinoid exposure on the stress response. Front Neuroendocrinol 2021; 63:100945. [PMID: 34461155 PMCID: PMC8605997 DOI: 10.1016/j.yfrne.2021.100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
While cannabis has been used for centuries for its stress-alleviating properties, the effects of acute and chronic cannabinoid exposure on responses to stress remain poorly understood. This review provides an overview of studies that measured stress-related endpoints following acute or chronic cannabinoid exposure in humans and animals. Acute cannabinoid exposure increases basal concentrations of stress hormones in rodents and humans and has dose-dependent effects on stress reactivity in humans and anxiety-like behavior in rodents. Chronic cannabis exposure is associated with dampened stress reactivity, a blunted cortisol awakening response (CAR), and flattened diurnal cortisol slope in humans. Sex differences in these effects remain underexamined, with limited evidence for sex differences in effects of cannabinoids on stress reactivity in rodents. Future research is needed to better understand sex differences in the effects of cannabis on the stress response, as well as downstream impacts on mental health and stress-related disorders.
Collapse
Affiliation(s)
| | - Carrie Cuttler
- Department of Psychology, Washington State University, Pullman, WA, USA.
| | - Ryan J McLaughlin
- Department of Psychology, Washington State University, Pullman, WA, USA; Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| |
Collapse
|
10
|
Kuzma-Hunt AG, Truong VB, Favetta LA. Glucocorticoids, Stress and Delta-9 Tetrahydrocannabinol (THC) during Early Embryonic Development. Int J Mol Sci 2021; 22:7289. [PMID: 34298908 PMCID: PMC8307766 DOI: 10.3390/ijms22147289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Elevated molecular stress in women is known to have negative impacts on the reproductive development of oocytes and the embryos prior to implantation. In recent years, the prevalence of cannabis use among women of reproductive age has risen due to its ability to relieve psychological stress and nausea, which are mediated by its psychoactive component, ∆-9-tetrahydrocannabinol (THC). Although cannabis is the most popular recreational drug of the 21st century, much is unknown about its influence on molecular stress in reproductive tissues. The current literature has demonstrated that THC causes dose- and time-dependent alterations in glucocorticoid signaling, which have the potential to compromise morphology, development, and quality of oocytes and embryos. However, there are inconsistencies across studies regarding the mechanisms for THC-dependent changes in stress hormones and how either compounds may drive or arrest development. Factors such as variability between animal models, physiologically relevant doses, and undiscovered downstream gene targets of both glucocorticoids and THC could account for such inconsistencies. This review evaluates the results of studies which have investigated the effects of glucocorticoids on reproductive development and how THC may alter stress signaling in relevant tissues.
Collapse
Affiliation(s)
| | | | - Laura A. Favetta
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (A.G.K.-H.); (V.B.T.)
| |
Collapse
|
11
|
al'Absi M, Allen AM. Impact of Acute and Chronic Cannabis Use on Stress Response Regulation: Challenging the Belief That Cannabis Is an Effective Method for Coping. Front Psychol 2021; 12:687106. [PMID: 34276511 PMCID: PMC8283823 DOI: 10.3389/fpsyg.2021.687106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Although research has only recently started to examine the impact of cannabis use on stress response, there is some evidence that indicates acute and chronic impacts of cannabis on these processes. In this paper, we review processes involved in regulating the stress response and we review the influence of acute and chronic exposure to cannabis on patterns and regulation of the stress response. We also highlight the role of stress as a risk factor for initiation and maintenance of cannabis use. In this context, we examine moderating variables, including sex and life adversity. In light of recent observations indicating increasing prevalence of cannabis use during pregnancy, we provide additional focus on cannabis use in this vulnerable population, including how acute and chronic stress may predispose some individuals to use cannabis during pregnancy. While this line of research is in its infancy, we review available articles that focus on the perinatal period and that examined the association between cannabis use and various life stressors, including partner violence, job loss, and lack of housing. We also review psychiatric co-morbidities (e.g., post-traumatic stress disorder, anxiety). A better understanding of the way stress and cannabis use relate within the general population, as well as within certain subgroups that may be at a greater risk of using and/or at greater risk for adverse outcomes of use, may lead to the development of novel prevention and intervention approaches.
Collapse
Affiliation(s)
- Mustafa al'Absi
- Department of Family Medicine and Biobehavioral Health, University of Minnesota Medical School, Duluth, MN, United States
| | - Alicia M Allen
- Department of Family and Community Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
12
|
El-Dahan KS, Machtoub D, Massoud G, Nasser SA, Hamam B, Kobeissy F, Zouein FA, Eid AH. Cannabinoids and myocardial ischemia: Novel insights, updated mechanisms, and implications for myocardial infarction. Curr Med Chem 2021; 29:1990-2010. [PMID: 34102966 DOI: 10.2174/0929867328666210608144818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/22/2022]
Abstract
Cannabis is the most widely trafficked and abused illicit drug due to its calming psychoactive properties. It has been increasingly recognized as having potential health benefits and relatively less adverse health effects as compared to other illicit drugs; however, growing evidence clearly indicates that cannabis is associated with considerable adverse cardiovascular events. Recent studies have linked cannabis use to myocardial infarction (MI); yet, very little is known about the underlying mechanisms. A MI is a cardiovascular disease characterized by a mismatch in the oxygen supply and demand of the heart, resulting in ischemia and subsequent necrosis of the myocardium. Since cannabis is increasingly being considered a risk factor for MI, there is a growing need for better appreciating its potential health benefits and consequences. Here, we discuss the cellular mechanisms of cannabis that lead to an increased risk of MI. We provide a thorough and critical analysis of cannabinoids' actions, which include modulation of adipocyte biology, regional fat distribution, and atherosclerosis, as well as precipitation of hemodynamic stressors relevant in the setting of a MI. By critically dissecting the modulation of signaling pathways in multiple cell types, this paper highlights the mechanisms through which cannabis may trigger life-threatening cardiovascular events. This then provides a framework for future pharmacological studies which can identify targets or develop drugs that modulate cannabis' effects on the cardiovascular system as well as other organ systems. Cannabis' impact on the autonomic outflow, vascular smooth muscle cells, myocardium, cortisol levels and other hemodynamic changes are also mechanistically reviewed.
Collapse
Affiliation(s)
- Karim Seif El-Dahan
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Dima Machtoub
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Gaelle Massoud
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Suzanne A Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon
| | - Bassam Hamam
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, P.O. Box 146404, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha. Qatar
| |
Collapse
|
13
|
Abstract
Cannabinoids have been known as the primary component of cannabis for decades, but the characterization of the endocannabinoid system (ECS) in the 1990s opened the doors for cannabis' use in modern medicine. The 2 main receptors of this system, cannabinoid receptors 1 and 2, are found on cells of various tissues, with significant expression in the gastrointestinal (GI) tract. The characterization of the ECS also heralded the understanding of endocannabinoids, naturally occurring compounds synthesized in the human body. Via secondary signaling pathways acting on vagal nerves, nociceptors, and immune cells, cannabinoids have been shown to have both palliative and detrimental effects on the pathophysiology of GI disorders. Although research on the effects of both endogenous and exogenous cannabinoids has been slow due to the complicated legal history of cannabis, discoveries of cannabinoids' treatment potential have been found in various fields of medicine, including the GI world. Medical cannabis has since been offered as a treatment for a myriad of conditions and malignancies, including cancer, human immunodeficiency virus/acquired immunodeficiency syndrome, multiple sclerosis, chronic pain, nausea, posttraumatic stress disorder, amyotrophic lateral sclerosis, cachexia, glaucoma, and epilepsy. This article hopes to create an overview of current research on cannabinoids and the ECS, detail the potential advantages and pitfalls of their use in GI diseases, and explore possible future developments in this field.
Collapse
|
14
|
Birer-Williams C, Gufford BT, Chou E, Alilio M, VanAlstine S, Morley RE, McCune JS, Paine MF, Boyce RD. A New Data Repository for Pharmacokinetic Natural Product-Drug Interactions: From Chemical Characterization to Clinical Studies. Drug Metab Dispos 2020; 48:1104-1112. [PMID: 32601103 PMCID: PMC7543481 DOI: 10.1124/dmd.120.000054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
There are many gaps in scientific knowledge about the clinical significance of pharmacokinetic natural product–drug interactions (NPDIs) in which the natural product (NP) is the precipitant and a conventional drug is the object. The National Center for Complimentary and Integrative Health created the Center of Excellence for NPDI Research (NaPDI Center) (www.napdi.org) to provide leadership and guidance on the study of pharmacokinetic NPDIs. A key contribution of the Center is the first user-friendly online repository that stores and links pharmacokinetic NPDI data across chemical characterization, metabolomics analyses, and pharmacokinetic in vitro and clinical experiments (repo.napdi.org). The design is expected to help researchers more easily arrive at a complete understanding of pharmacokinetic NPDI research on a particular NP. The repository will also facilitate multidisciplinary collaborations, as the repository links all of the experimental data for a given NP across the study types. The current work describes the design of the repository, standard operating procedures used to enter data, and pharmacokinetic NPDI data that have been entered to date. To illustrate the usefulness of the NaPDI Center repository, more details on two high-priority NPs, cannabis and kratom, are provided as case studies.
Collapse
Affiliation(s)
- Caroline Birer-Williams
- Department of Biomedical Informatics (C.B.-W., E.C., R.D.B.) and School of Pharmacy (M.A.), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; School of Pharmacy, University of Utah, Salt Lake City, Utah (S.V., R.E.M.); Covance Inc., Clinical Pharmacology, Madison, Wisconsin (B.T.G.); Department of Population Sciences and Department of Hematology & HCT, City of Hope Comprehensive Cancer Center, Duarte, California (J.S.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.S.M., M.F.P., R.D.B.)
| | - Brandon T Gufford
- Department of Biomedical Informatics (C.B.-W., E.C., R.D.B.) and School of Pharmacy (M.A.), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; School of Pharmacy, University of Utah, Salt Lake City, Utah (S.V., R.E.M.); Covance Inc., Clinical Pharmacology, Madison, Wisconsin (B.T.G.); Department of Population Sciences and Department of Hematology & HCT, City of Hope Comprehensive Cancer Center, Duarte, California (J.S.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.S.M., M.F.P., R.D.B.)
| | - Eric Chou
- Department of Biomedical Informatics (C.B.-W., E.C., R.D.B.) and School of Pharmacy (M.A.), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; School of Pharmacy, University of Utah, Salt Lake City, Utah (S.V., R.E.M.); Covance Inc., Clinical Pharmacology, Madison, Wisconsin (B.T.G.); Department of Population Sciences and Department of Hematology & HCT, City of Hope Comprehensive Cancer Center, Duarte, California (J.S.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.S.M., M.F.P., R.D.B.)
| | - Marijanel Alilio
- Department of Biomedical Informatics (C.B.-W., E.C., R.D.B.) and School of Pharmacy (M.A.), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; School of Pharmacy, University of Utah, Salt Lake City, Utah (S.V., R.E.M.); Covance Inc., Clinical Pharmacology, Madison, Wisconsin (B.T.G.); Department of Population Sciences and Department of Hematology & HCT, City of Hope Comprehensive Cancer Center, Duarte, California (J.S.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.S.M., M.F.P., R.D.B.)
| | - Sidney VanAlstine
- Department of Biomedical Informatics (C.B.-W., E.C., R.D.B.) and School of Pharmacy (M.A.), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; School of Pharmacy, University of Utah, Salt Lake City, Utah (S.V., R.E.M.); Covance Inc., Clinical Pharmacology, Madison, Wisconsin (B.T.G.); Department of Population Sciences and Department of Hematology & HCT, City of Hope Comprehensive Cancer Center, Duarte, California (J.S.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.S.M., M.F.P., R.D.B.)
| | - Rachael E Morley
- Department of Biomedical Informatics (C.B.-W., E.C., R.D.B.) and School of Pharmacy (M.A.), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; School of Pharmacy, University of Utah, Salt Lake City, Utah (S.V., R.E.M.); Covance Inc., Clinical Pharmacology, Madison, Wisconsin (B.T.G.); Department of Population Sciences and Department of Hematology & HCT, City of Hope Comprehensive Cancer Center, Duarte, California (J.S.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.S.M., M.F.P., R.D.B.)
| | - Jeannine S McCune
- Department of Biomedical Informatics (C.B.-W., E.C., R.D.B.) and School of Pharmacy (M.A.), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; School of Pharmacy, University of Utah, Salt Lake City, Utah (S.V., R.E.M.); Covance Inc., Clinical Pharmacology, Madison, Wisconsin (B.T.G.); Department of Population Sciences and Department of Hematology & HCT, City of Hope Comprehensive Cancer Center, Duarte, California (J.S.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.S.M., M.F.P., R.D.B.)
| | - Mary F Paine
- Department of Biomedical Informatics (C.B.-W., E.C., R.D.B.) and School of Pharmacy (M.A.), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; School of Pharmacy, University of Utah, Salt Lake City, Utah (S.V., R.E.M.); Covance Inc., Clinical Pharmacology, Madison, Wisconsin (B.T.G.); Department of Population Sciences and Department of Hematology & HCT, City of Hope Comprehensive Cancer Center, Duarte, California (J.S.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.S.M., M.F.P., R.D.B.)
| | - Richard D Boyce
- Department of Biomedical Informatics (C.B.-W., E.C., R.D.B.) and School of Pharmacy (M.A.), University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; School of Pharmacy, University of Utah, Salt Lake City, Utah (S.V., R.E.M.); Covance Inc., Clinical Pharmacology, Madison, Wisconsin (B.T.G.); Department of Population Sciences and Department of Hematology & HCT, City of Hope Comprehensive Cancer Center, Duarte, California (J.S.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.S.M., M.F.P., R.D.B.)
| |
Collapse
|
15
|
Koller D, Saiz-Rodríguez M, Zubiaur P, Ochoa D, Almenara S, Román M, Romero-Palacián D, de Miguel-Cáceres A, Martín S, Navares-Gómez M, Mejía G, Wojnicz A, Abad-Santos F. The effects of aripiprazole and olanzapine on pupillary light reflex and its relationship with pharmacogenetics in a randomized multiple-dose trial. Br J Clin Pharmacol 2020; 86:2051-2062. [PMID: 32250470 PMCID: PMC7495280 DOI: 10.1111/bcp.14300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Aims Pupillography is a noninvasive and cost‐effective method to determine autonomic nerve activity. Genetic variants in cytochrome P450 (CYP), dopamine receptor (DRD2, DRD3), serotonin receptor (HTR2A, HTR2C) and ATP‐binding cassette subfamily B (ABCB1) genes, among others, were previously associated with the pharmacokinetics and pharmacodynamics of antipsychotic drugs. Our aim was to evaluate the effects of aripiprazole and olanzapine on pupillary light reflex related to pharmacogenetics. Methods Twenty‐four healthy volunteers receiving 5 oral doses of 10 mg aripiprazole and 5 mg olanzapine tablets were genotyped for 46 polymorphisms by quantitative polymerase chain reaction. Pupil examination was performed by automated pupillometry. Aripiprazole, dehydro‐aripiprazole and olanzapine plasma concentrations were measured by high‐performance liquid chromatography–tandem mass spectrometry. Results Aripiprazole affected pupil contraction: it caused dilatation after the administration of the first dose, then caused constriction after each dosing. It induced changes in all pupillometric parameters (P < .05). Olanzapine only altered minimum pupil size (P = .046). Polymorphisms in CYP3A, HTR2A, UGT1A1, DRD2 and ABCB1 affected pupil size, the time of onset of constriction, pupil recovery and constriction velocity. Aripiprazole, dehydro‐aripiprazole and olanzapine pharmacokinetics were significantly affected by polymorphisms in CYP2D6, CYP3A, CYP1A2, ABCB1 and UGT1A1 genes. Conclusions In conclusion, aripiprazole and its main metabolite, dehydro‐aripiprazole altered pupil contraction, but olanzapine did not have such an effect. Many polymorphisms may influence pupillometric parameters and several polymorphisms had an effect on aripiprazole, dehydro‐aripiprazole and olanzapine pharmacokinetics. Pupillography could be a useful tool for the determination of autonomic nerve activity during antipsychotic treatment.
Collapse
Affiliation(s)
- Dora Koller
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Miriam Saiz-Rodríguez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Dolores Ochoa
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.,Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa, UICEC Hospital Universitario de La Princesa, Madrid, Spain
| | - Susana Almenara
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Manuel Román
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.,Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa, UICEC Hospital Universitario de La Princesa, Madrid, Spain
| | - Daniel Romero-Palacián
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Alejandro de Miguel-Cáceres
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Samuel Martín
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.,Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa, UICEC Hospital Universitario de La Princesa, Madrid, Spain
| | - Marcos Navares-Gómez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Gina Mejía
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.,Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa, UICEC Hospital Universitario de La Princesa, Madrid, Spain
| | - Aneta Wojnicz
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.,Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa, UICEC Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
16
|
Hindley G, Beck K, Borgan F, Ginestet CE, McCutcheon R, Kleinloog D, Ganesh S, Radhakrishnan R, D'Souza DC, Howes OD. Psychiatric symptoms caused by cannabis constituents: a systematic review and meta-analysis. Lancet Psychiatry 2020; 7:344-353. [PMID: 32197092 PMCID: PMC7738353 DOI: 10.1016/s2215-0366(20)30074-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Approximately 188 million people use cannabis yearly worldwide, and it has recently been legalised in 11 US states, Canada, and Uruguay for recreational use. The potential for increased cannabis use highlights the need to better understand its risks, including the acute induction of psychotic and other psychiatric symptoms. We aimed to investigate the effect of the cannabis constituent Δ9-tetrahydrocannabinol (THC) alone and in combination with cannabidiol (CBD) compared with placebo on psychiatric symptoms in healthy people. METHODS In this systematic review and meta-analysis, we searched MEDLINE, Embase, and PsycINFO for studies published in English between database inception and May 21, 2019, with a within-person, crossover design. Inclusion criteria were studies reporting symptoms using psychiatric scales (the Brief Psychiatric Rating Scale [BPRS] and the Positive and Negative Syndrome Scale [PANSS]) following the acute administration of intravenous, oral, or nasal THC, CBD, and placebo in healthy participants, and presenting data that allowed calculation of standardised mean change (SMC) scores for positive (including delusions and hallucinations), negative (such as blunted affect and amotivation), and general (including depression and anxiety) symptoms. We did a random-effects meta-analysis to assess the main outcomes of the effect sizes for total, positive, and negative PANSS and BPRS scores measured in healthy participants following THC administration versus placebo. Because the number of studies to do a meta-analysis on CBD's moderating effects was insufficient, this outcome was only systematically reviewed. This study is registered with PROSPERO, CRD42019136674. FINDINGS 15 eligible studies involving the acute administration of THC and four studies on CBD plus THC administration were identified. Compared with placebo, THC significantly increased total symptom severity with a large effect size (assessed in nine studies, with ten independent samples, involving 196 participants: SMC 1·10 [95% CI 0·92-1·28], p<0·0001); positive symptom severity (assessed in 14 studies, with 15 independent samples, involving 324 participants: SMC 0·91 [95% CI 0·68-1·14], p<0·0001); and negative symptom severity with a large effect size (assessed in 12 studies, with 13 independent samples, involving 267 participants: SMC 0·78 [95% CI 0·59-0·97], p<0·0001). In the systematic review, of the four studies evaluating CBD's effects on THC-induced symptoms, only one identified a significant reduction in symptoms. INTERPRETATION A single THC administration induces psychotic, negative, and other psychiatric symptoms with large effect sizes. There is no consistent evidence that CBD induces symptoms or moderates the effects of THC. These findings highlight the potential risks associated with the use of cannabis and other cannabinoids that contain THC for recreational or therapeutic purposes. FUNDING UK Medical Research Council, Maudsley Charity, Brain and Behavior Research Foundation, Wellcome Trust, and the UK National Institute for Health Research.
Collapse
Affiliation(s)
- Guy Hindley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Katherine Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and the Maudsley NHS Foundation Trust, London, UK; MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Faith Borgan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Cedric E Ginestet
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniel Kleinloog
- Department of Intensive Care Medicine, Leiden University Medical Hospital, Leiden, Netherlands
| | - Suhas Ganesh
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Deepak Cyril D'Souza
- Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and the Maudsley NHS Foundation Trust, London, UK; MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
17
|
Gupta S, De Aquino JP, D'Souza DC, Ranganathan M. Effects of haloperidol on the delta-9-tetrahydrocannabinol response in humans: a responder analysis. Psychopharmacology (Berl) 2019; 236:2635-2640. [PMID: 30919005 PMCID: PMC6697616 DOI: 10.1007/s00213-019-05235-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
Abstract
RATIONALE Δ-9-Tetrahydrocannabinol (Δ-9-THC) produces psychotomimetic effects in humans. However, the role of dopamine signaling in producing such effects is unclear. We hypothesized that dopaminergic antagonism would reduce the psychotomimetic effect of Δ-9-THC. OBJECTIVE The objective of this study was to evaluate whether pre-treatment with haloperidol would alter the psychotomimetic and perceptual-altering effects of Δ-9-THC, measured by the Positive and Negative Syndrome Scale for Schizophrenia (PANSS) and the Clinician-Administered Dissociative Symptom Scale (CADSS) in humans. METHODS In a two-test-day double-blind study, 28 healthy individuals were administered with active (0.057 mg/kg) or placebo oral haloperidol, followed 90 and 215 min later by intravenous administration of active (0.0286 mg/kg) Δ-9-THC and placebo, respectively. This secondary analysis was conducted because of the observation in other studies and in our data that a significant proportion of individuals may not have an adequate response to THC (floor effect), thus limiting the ability to test an interaction. Therefore, this analysis was performed including only responders to THC (n = 10), defined as individuals who had an increase of at least one point on the PANSS positive scale, consistent with prior human laboratory studies. RESULTS In the 10 responders, Δ-9-THC-induced increases in PANSS positive scores were significantly lower in the haloperidol condition (1.1 + 0.35) compared with the placebo condition (2.9 + 0.92). CONCLUSION This responder analysis showed that haloperidol did reduce the psychotomimetic effect of Δ-9-THC, supporting the hypothesis that dopaminergic signaling may participate in the psychosis-like effects of cannabinoids.
Collapse
Affiliation(s)
- Swapnil Gupta
- Department of Psychiatry, Yale University School of Medicine, 300 George St, Suite 901, New Haven, CT, 06510, USA
- Connecticut Mental Health Center, 34 Park St, New Haven, CT, USA
| | - Joao P De Aquino
- Department of Psychiatry, Yale University School of Medicine, 300 George St, Suite 901, New Haven, CT, 06510, USA.
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park St, 3rd Floor, New Haven, CT, USA.
- VA Connecticut Healthcare System, Clinical Neurosciences Division, U.S. Department of Veterans Affairs, West Haven, CT, USA.
| | - Deepak C D'Souza
- Department of Psychiatry, Yale University School of Medicine, 300 George St, Suite 901, New Haven, CT, 06510, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park St, 3rd Floor, New Haven, CT, USA
- VA Connecticut Healthcare System, Clinical Neurosciences Division, U.S. Department of Veterans Affairs, West Haven, CT, USA
| | - Mohini Ranganathan
- Department of Psychiatry, Yale University School of Medicine, 300 George St, Suite 901, New Haven, CT, 06510, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park St, 3rd Floor, New Haven, CT, USA
- VA Connecticut Healthcare System, Clinical Neurosciences Division, U.S. Department of Veterans Affairs, West Haven, CT, USA
| |
Collapse
|
18
|
Liu Z, Martin JH. Gaps in predicting clinical doses for cannabinoids therapy: Overview of issues for pharmacokinetics and pharmacodynamics modelling. Br J Clin Pharmacol 2018; 84:2483-2487. [PMID: 29766540 PMCID: PMC6177720 DOI: 10.1111/bcp.13635] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 01/14/2023] Open
Abstract
Model-based prediction on clinical doses for cannabinoids therapy is beneficial in the clinical setting, especially for seriously ill patients with both altered pharmacokinetics and pharmacodynamic responses. The objective of this article is to review the currently available PK and/or PD models of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) and to highlight the major issues for modelling this complex therapeutic area. A systematic search was conducted in the electronic databases PubMed and EMBASE using the key words 'cannabis', 'cannabinoid', 'tetrahydrocannabinol', 'THC', 'cannabidiol', 'CBD', 'pharmacokinetic model', 'pharmacodynamics model' and their combinations. Twelve empirical PK and/or PD models for THC for humans were identified. Among them, ten were developed from data of healthy participants and two were from ill patients. Models for CBD were not found. Model-based prediction on appropriate doses for cannabinoids therapy for ill patients is currently limited due to insufficiency of relevant PK and PD data. High-quality PK and PD data of cannabinoids for patients with different illnesses is needed for model development. Mechanism-based PK and PD models are promising for improved predictive dosing performance for ill and comorbid patients.
Collapse
Affiliation(s)
- Zheng Liu
- School of Medicine and Public HealthUniversity of Newcastle, Hunter Medical Research Institute, Kookaburra CircuitNSW2305Australia
- The Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE)New Lambton HeightsNSW2305Australia
- Clinical Pharmacology, Department of MedicineThe Royal Children's Hospital MelbourneAustralia
| | - Jennifer H. Martin
- School of Medicine and Public HealthUniversity of Newcastle, Hunter Medical Research Institute, Kookaburra CircuitNSW2305Australia
- The Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE)New Lambton HeightsNSW2305Australia
| |
Collapse
|
19
|
Koller D, Belmonte C, Lubomirov R, Saiz-Rodríguez M, Zubiaur P, Román M, Ochoa D, Carcas A, Wojnicz A, Abad-Santos F. Effects of aripiprazole on pupillometric parameters related to pharmacokinetics and pharmacogenetics after single oral administration to healthy subjects. J Psychopharmacol 2018; 32:1212-1222. [PMID: 30251598 DOI: 10.1177/0269881118798605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Pupillometry is used for the detection of autonomic dysfunction related to numerous diseases and drug administration. Genetic variants in cytochrome P450 ( CYP2D6, CYP3A4), dopamine receptor ( DRD2, DRD3), serotonin receptor ( HTR2A, HTR2C) and ATP-binding cassette subfamily B ( ABCB1) genes were previously associated with aripiprazole response. AIMS Our aim was to evaluate if aripiprazole affects pupil contraction and its relationship with pharmacokinetics and pharmacogenetics. METHODS Thirty-two healthy volunteers receiving a 10 mg single oral dose of aripiprazole were genotyped for 15 polymorphisms in ABCB1, CYP2D6, DRD2, DRD3, HTR2A and HTR2C genes by reverse transcription polymerase chain reaction. Aripiprazole and dehydro-aripiprazole plasma concentrations were measured by high-performance liquid chromatography tandem mass spectrometry. Pupil examination was performed by automated pupillometry. RESULTS Aripiprazole caused pupil constriction and reached the peak value at Cmax. HTR2A rs6313 T allele carriers and HTR2C rs3813929 C/T subjects showed higher maximum constriction velocity and maximum pupil diameter. Besides, Gly/Gly homozygotes for DRD3 rs6280 showed significantly lower maximum constriction velocity values. A/G heterozygotes for DRD2 rs6277 showed higher total time taken by the pupil to recover 75% of the initial resting size values. CYP2D6 intermediate metabolisers showed higher area under the curve, Cmax and T1/2 than extensive metabolisers. ABCB1 G2677T/A A/A homozygotes had greater T1/2 in comparison with C/C homozygotes. ABCB1 C3435T T allele carriers and C1236T C/T subjects showed greater area under the curve than C/C homozygotes. CONCLUSIONS Aripiprazole affects pupil contraction, which could be a secondary effect through dopamine and serotonin receptors. Pupillometry could be a useful tool to assess autonomic nervous system activity during antipsychotic treatment.
Collapse
Affiliation(s)
- Dora Koller
- 1 Clinical Pharmacology Department, Hospital Universitario de La Princesa, Madrid, Spain
| | - Carmen Belmonte
- 1 Clinical Pharmacology Department, Hospital Universitario de La Princesa, Madrid, Spain
| | - Rubin Lubomirov
- 2 Pharmacology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Miriam Saiz-Rodríguez
- 1 Clinical Pharmacology Department, Hospital Universitario de La Princesa, Madrid, Spain
| | - Pablo Zubiaur
- 1 Clinical Pharmacology Department, Hospital Universitario de La Princesa, Madrid, Spain
| | - Manuel Román
- 1 Clinical Pharmacology Department, Hospital Universitario de La Princesa, Madrid, Spain.,3 Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Dolores Ochoa
- 1 Clinical Pharmacology Department, Hospital Universitario de La Princesa, Madrid, Spain.,3 Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Antonio Carcas
- 4 Pharmacology Department, Universidad Autónoma de Madrid, Spain
| | - Aneta Wojnicz
- 1 Clinical Pharmacology Department, Hospital Universitario de La Princesa, Madrid, Spain
| | - Francisco Abad-Santos
- 1 Clinical Pharmacology Department, Hospital Universitario de La Princesa, Madrid, Spain.,3 Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| |
Collapse
|
20
|
Cservenka A, Lahanas S, Dotson-Bossert J. Marijuana Use and Hypothalamic-Pituitary-Adrenal Axis Functioning in Humans. Front Psychiatry 2018; 9:472. [PMID: 30327619 PMCID: PMC6174415 DOI: 10.3389/fpsyt.2018.00472] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/10/2018] [Indexed: 01/30/2023] Open
Abstract
Preclinical studies suggest cannabinoids affect functioning of the hypothalamic-pituitary-adrenal (HPA) axis, but little is known about the effects of marijuana (MJ) use on HPA axis functioning in humans. Since previous work indicates substances of abuse may dysregulate the HPA axis, it is critical to understand how MJ use affects HPA axis activity. Here, we review studies that (a) examined the effects of acute MJ administration on HPA axis functioning, (b) investigated the impact of stress on HPA axis functioning in MJ users, (c) examined the effect of chronic MJ use on basal cortisol levels, and (d) studied the relationship between MJ use and the cortisol awakening response (CAR). Findings indicate acute MJ administration typically raises cortisol levels, but this increase is blunted in MJ-dependent users relative to controls. Frequent MJ users have blunted adrenocorticotropic hormone and cortisol reactivity in response to acute stress. These findings suggest HPA axis activity may be dysregulated by heavy MJ use. Alternatively, dysregulation of the HPA axis may be a risk marker for heavy MJ use. There is mixed evidence for how MJ use affects basal cortisol levels and the CAR. Future studies should consider MJ use characteristics, method of hormone collection, time when samples are collected, and environmental factors that may influence HPA axis activity in MJ users. By examining existing studies we provide one of the first reviews aimed at synthesizing the literature on HPA axis functioning in MJ users.
Collapse
Affiliation(s)
- Anita Cservenka
- School of Psychological Science, Oregon State University, Corvallis, OR, United States
| | - Sarah Lahanas
- School of Psychological Science, Oregon State University, Corvallis, OR, United States
| | | |
Collapse
|
21
|
Boggs DL, Nguyen JD, Morgenson D, Taffe MA, Ranganathan M. Clinical and Preclinical Evidence for Functional Interactions of Cannabidiol and Δ 9-Tetrahydrocannabinol. Neuropsychopharmacology 2018; 43:142-154. [PMID: 28875990 PMCID: PMC5719112 DOI: 10.1038/npp.2017.209] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 12/21/2022]
Abstract
The plant Cannabis sativa, commonly called cannabis or marijuana, has been used for its psychotropic and mind-altering side effects for millennia. There has been growing attention in recent years on its potential therapeutic efficacy as municipalities and legislative bodies in the United States, Canada, and other countries grapple with enacting policy to facilitate the use of cannabis or its constituents for medical purposes. There are >550 chemical compounds and >100 phytocannabinoids isolated from cannabis, including Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC is thought to produce the main psychoactive effects of cannabis, while CBD does not appear to have similar effects. Studies conflict as to whether CBD attenuates or exacerbates the behavioral and cognitive effects of THC. This includes effects of CBD on THC-induced anxiety, psychosis, and cognitive deficits. In this article, we review the available evidence on the pharmacology and behavioral interactions of THC and CBD from preclinical and human studies, particularly with reference to anxiety and psychosis-like symptoms. Both THC and CBD, as well as other cannabinoid molecules, are currently being evaluated for medicinal purposes, separately and in combination. Future cannabis-related policy decisions should include consideration of scientific findings, including the individual and interactive effects of CBD and THC.
Collapse
Affiliation(s)
- Douglas L Boggs
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,VA Connecticut Healthcare System, West Haven, CT, USA
| | - Jacques D Nguyen
- Department of Neuroscience; The Scripps Research Institute, La Jolla, CA, USA
| | | | - Michael A Taffe
- Department of Neuroscience; The Scripps Research Institute, La Jolla, CA, USA
| | - Mohini Ranganathan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, 950 Campbell Avenue, New Haven, CT 06511, USA, Tel: +1 203 932 5711X2546, E-mail:
| |
Collapse
|
22
|
Murray RM, Englund A, Abi-Dargham A, Lewis DA, Di Forti M, Davies C, Sherif M, McGuire P, D'Souza DC. Cannabis-associated psychosis: Neural substrate and clinical impact. Neuropharmacology 2017. [PMID: 28634109 DOI: 10.1016/j.neuropharm.2017.06.018] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Prospective epidemiological studies have consistently demonstrated that cannabis use is associated with an increased subsequent risk of both psychotic symptoms and schizophrenia-like psychoses. Early onset of use, daily use of high-potency cannabis, and synthetic cannabinoids carry the greatest risk. The risk-increasing effects are not explained by shared genetic predisposition between schizophrenia and cannabis use. Experimental studies in healthy humans show that cannabis and its active ingredient, delta-9-tetrahydrocannabinol (THC), can produce transient, dose-dependent, psychotic symptoms, as well as an array of psychosis-relevant behavioral, cognitive and psychophysiological effects; the psychotogenic effects can be ameliorated by cannabidiol (CBD). Findings from structural imaging studies in cannabis users have been inconsistent but functional MRI studies have linked the psychotomimetic and cognitive effects of THC to activation in brain regions implicated in psychosis. Human PET studies have shown that acute administration of THC weakly releases dopamine in the striatum but that chronic users are characterised by low striatal dopamine. We are beginning to understand how cannabis use impacts on the endocannabinoid system but there is much still to learn about the biological mechanisms underlying how cannabis increases risk of psychosis. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- R M Murray
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK.
| | - A Englund
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - A Abi-Dargham
- Department of Psychiatry, School of Medicine, Stony Brook University, New York, USA
| | - D A Lewis
- Department of Psychiatry, University of Pittsburg, PA, USA
| | - M Di Forti
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - C Davies
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - M Sherif
- Department of Psychiatry, Yale University School of Medicine, CT, USA
| | - P McGuire
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - D C D'Souza
- Department of Psychiatry, Yale University School of Medicine, CT, USA
| |
Collapse
|
23
|
Hillard CJ, Beatka M, Sarvaideo J. Endocannabinoid Signaling and the Hypothalamic-Pituitary-Adrenal Axis. Compr Physiol 2016; 7:1-15. [PMID: 28134998 DOI: 10.1002/cphy.c160005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The elucidation of Δ9-tetrahydrocannabinol as the active principal of Cannabis sativa in 1963 initiated a fruitful half-century of scientific discovery, culminating in the identification of the endocannabinoid signaling system, a previously unknown neuromodulatory system. A primary function of the endocannabinoid signaling system is to maintain or recover homeostasis following psychological and physiological threats. We provide a brief introduction to the endocannabinoid signaling system and its role in synaptic plasticity. The majority of the article is devoted to a summary of current knowledge regarding the role of endocannabinoid signaling as both a regulator of endocrine responses to stress and as an effector of glucocorticoid and corticotrophin-releasing hormone signaling in the brain. We summarize data demonstrating that cannabinoid receptor 1 (CB1R) signaling can both inhibit and potentiate the activation of the hypothalamic-pituitary-adrenal axis by stress. We present a hypothesis that the inhibitory arm has high endocannabinoid tone and also serves to enhance recovery to baseline following stress, while the potentiating arm is not tonically active but can be activated by exogenous agonists. We discuss recent findings that corticotropin-releasing hormone in the amygdala enables hypothalamic-pituitary-adrenal axis activation via an increase in the catabolism of the endocannabinoid N-arachidonylethanolamine. We review data supporting the hypotheses that CB1R activation is required for many glucocorticoid effects, particularly feedback inhibition of hypothalamic-pituitary-adrenal axis activation, and that glucocorticoids mobilize the endocannabinoid 2-arachidonoylglycerol. These features of endocannabinoid signaling make it a tantalizing therapeutic target for treatment of stress-related disorders but to date, this promise is largely unrealized. © 2017 American Physiological Society. Compr Physiol 7:1-15, 2017.
Collapse
Affiliation(s)
- Cecilia J Hillard
- Department of Pharmacology and Toxicology, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Margaret Beatka
- Department of Pharmacology and Toxicology, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jenna Sarvaideo
- Department of Medicine, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
24
|
Sharkey KA, Wiley JW. The Role of the Endocannabinoid System in the Brain-Gut Axis. Gastroenterology 2016; 151:252-66. [PMID: 27133395 PMCID: PMC4961581 DOI: 10.1053/j.gastro.2016.04.015] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/21/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
Abstract
The actions of cannabis are mediated by receptors that are part of an endogenous cannabinoid system. The endocannabinoid system (ECS) consists of the naturally occurring ligands N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), their biosynthetic and degradative enzymes, and the cannabinoid (CB) receptors CB1 and CB2. The ECS is a widely distributed transmitter system that controls gut functions peripherally and centrally. It is an important physiologic regulator of gastrointestinal motility. Polymorphisms in the gene encoding CB1 (CNR1) have been associated with some forms of irritable bowel syndrome. The ECS is involved in the control of nausea and vomiting and visceral sensation. The homeostatic role of the ECS also extends to the control of intestinal inflammation. We review the mechanisms by which the ECS links stress and visceral pain. CB1 in sensory ganglia controls visceral sensation, and transcription of CNR1 is modified through epigenetic processes under conditions of chronic stress. These processes might link stress with abdominal pain. The ECS is also involved centrally in the manifestation of stress, and endocannabinoid signaling reduces the activity of hypothalamic-pituitary-adrenal pathways via actions in specific brain regions, notably the prefrontal cortex, amygdala, and hypothalamus. Agents that modulate the ECS are in early stages of development for treatment of gastrointestinal diseases. Increasing our understanding of the ECS will greatly advance our knowledge of interactions between the brain and gut and could lead to new treatments for gastrointestinal disorders.
Collapse
Affiliation(s)
- Keith A. Sharkey
- Hotchkiss Brain Institute and Snyder Institute of Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada,Corresponding author: Dr. Keith Sharkey, Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada, , Tel: 403-220-4601
| | - John W. Wiley
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Sherif M, Radhakrishnan R, D'Souza DC, Ranganathan M. Human Laboratory Studies on Cannabinoids and Psychosis. Biol Psychiatry 2016; 79:526-38. [PMID: 26970363 DOI: 10.1016/j.biopsych.2016.01.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
Abstract
Some of the most compelling evidence supporting an association between cannabinoid agonists and psychosis comes from controlled laboratory studies in humans. Randomized, double-blind, placebo-controlled, crossover laboratory studies demonstrate that cannabinoid agonists, including phytocannabinoids and synthetic cannabinoids, produce a wide range of positive, negative, and cognitive symptoms and psychophysiologic deficits in healthy human subjects that resemble the phenomenology of schizophrenia. These effects are time locked to drug administration, are dose related, and are transient and rarely necessitate intervention. The magnitude of effects is similar to the effects of ketamine but qualitatively distinct from other psychotomimetic drugs, including ketamine, amphetamine, and salvinorin A. Cannabinoid agonists have also been shown to transiently exacerbate symptoms in individuals with schizophrenia in laboratory studies. Patients with schizophrenia are more vulnerable than healthy control subjects to the acute behavioral and cognitive effects of cannabinoid agonists and experience transient exacerbation of symptoms despite treatment with antipsychotic medications. Furthermore, laboratory studies have failed to demonstrate any "beneficial" effects of cannabinoid agonists in individuals with schizophrenia-challenging the cannabis self-medication hypothesis. Emerging evidence suggests that polymorphisms of several genes related to dopamine metabolism (e.g., COMT, DAT1, and AKT1) may moderate the effects of cannabinoid agonists in laboratory studies. Cannabinoid agonists induce dopamine release, although the magnitude of release does not appear to be commensurate to the magnitude and spectrum of their acute psychotomimetic effects. Interactions between the endocannabinoid, gamma-aminobutyric acid, and glutamate systems and their individual and interactive effects on neural oscillations provide a plausible mechanism underlying the psychotomimetic effects of cannabinoids.
Collapse
Affiliation(s)
- Mohamed Sherif
- Schizophrenia and Neuropharmacology Research Group, VA Connecticut Healthcare System, West Haven; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Rajiv Radhakrishnan
- Schizophrenia and Neuropharmacology Research Group, VA Connecticut Healthcare System, West Haven; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Deepak Cyril D'Souza
- Schizophrenia and Neuropharmacology Research Group, VA Connecticut Healthcare System, West Haven; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Mohini Ranganathan
- Schizophrenia and Neuropharmacology Research Group, VA Connecticut Healthcare System, West Haven; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
26
|
Kleinloog D, Rombouts S, Zoethout R, Klumpers L, Niesters M, Khalili-Mahani N, Dahan A, van Gerven J. Subjective Effects of Ethanol, Morphine, Δ(9)-Tetrahydrocannabinol, and Ketamine Following a Pharmacological Challenge Are Related to Functional Brain Connectivity. Brain Connect 2015; 5:641-8. [PMID: 26390148 DOI: 10.1089/brain.2014.0314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This analysis examines the neuronal foundation of drug-induced psychomimetic symptoms by relating the severity of these symptoms to changes in functional connectivity for a range of different psychoactive compounds with varying degrees of psychomimetic effects. The repeated measures design included 323 resting-state functional magnetic resonance imaging time series and measures of subjective effects in 36 healthy male volunteers. Four different pharmacological challenges with ethanol, morphine, Δ(9)-tetrahydrocannabinol, and ketamine (12 subjects per drug) were applied. A set of 10 "template" resting-state networks was used to determine individual connectivity maps. Linear regression was used for each individual subject to relate these connectivity maps to three clusters of drug-induced subjective psychomimetic effects ("perception," "relaxation," and "dysphoria") as measured with visual analogue scales. Group analysis showed that the subjective effects of perception correlated significantly across drugs with the connectivity of the posterior cingulate cortex and precentral gyrus with the sensorimotor network (p < 0.005, corrected). No significant correlations were found for relaxation or dysphoria. The posterior cingulate cortex has a role in visuospatial evaluation and the precentral gyrus has been associated with auditory hallucinations. Both the posterior cingulate cortex and the precentral gyrus show changes in activation in patients with schizophrenia, which can be related to the severity of positive symptoms (i.e., hallucinations and delusions), and have previously been related to changes induced by psychoactive drugs. The similarity of functional connectivity changes for drug-induced psychomimetic effects and symptoms of psychosis provides further support for the use of pharmacological challenges with psychomimetic drugs as models for psychosis.
Collapse
Affiliation(s)
- Daniël Kleinloog
- 1 Centre for Human Drug Research , Leiden, The Netherlands .,2 Leiden Institute for Brain and Cognition , Leiden, The Netherlands .,3 Leiden University Medical Centre , Leiden, The Netherlands
| | - Serge Rombouts
- 2 Leiden Institute for Brain and Cognition , Leiden, The Netherlands .,3 Leiden University Medical Centre , Leiden, The Netherlands .,4 Institute of Psychology, Leiden University , Leiden, The Netherlands
| | - Remco Zoethout
- 1 Centre for Human Drug Research , Leiden, The Netherlands
| | - Linda Klumpers
- 1 Centre for Human Drug Research , Leiden, The Netherlands
| | | | - Najmeh Khalili-Mahani
- 2 Leiden Institute for Brain and Cognition , Leiden, The Netherlands .,3 Leiden University Medical Centre , Leiden, The Netherlands
| | - Albert Dahan
- 3 Leiden University Medical Centre , Leiden, The Netherlands
| | - Joop van Gerven
- 1 Centre for Human Drug Research , Leiden, The Netherlands .,3 Leiden University Medical Centre , Leiden, The Netherlands
| |
Collapse
|
27
|
Heuberger JAAC, Guan Z, Oyetayo OO, Klumpers L, Morrison PD, Beumer TL, van Gerven JMA, Cohen AF, Freijer J. Population pharmacokinetic model of THC integrates oral, intravenous, and pulmonary dosing and characterizes short- and long-term pharmacokinetics. Clin Pharmacokinet 2015; 54:209-19. [PMID: 25316574 DOI: 10.1007/s40262-014-0195-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Δ(9)-Tetrahydrocannobinol (THC), the main psychoactive compound of Cannabis, is known to have a long terminal half-life. However, this characteristic is often ignored in pharmacokinetic (PK) studies of THC, which may affect the accuracy of predictions in different pharmacologic areas. For therapeutic use for example, it is important to accurately describe the terminal phase of THC to describe accumulation of the drug. In early clinical research, the THC challenge test can be optimized through more accurate predictions of the dosing sequence and the wash-out between occasions in a crossover setting, which is mainly determined by the terminal half-life of the compound. The purpose of this study is to better quantify the long-term pharmacokinetics of THC. A population-based PK model for THC was developed describing the profile up to 48 h after an oral, intravenous, and pulmonary dose of THC in humans. In contrast to earlier models, the current model integrates all three major administration routes and covers the long terminal phase of THC. Results show that THC has a fast initial and intermediate half-life, while the apparent terminal half-life is long (21.5 h), with a clearance of 38.8 L/h. Because the current model characterizes the long-term pharmacokinetics, it can be used to assess the accumulation of THC in a multiple-dose setting and to forecast concentration profiles of the drug under many different dosing regimens or administration routes. Additionally, this model could provide helpful insights into the THC challenge test used for the development of (novel) compounds targeting the cannabinoid system for different therapeutic applications and could improve decision making in future clinical trials.
Collapse
|
28
|
Sami MB, Rabiner EA, Bhattacharyya S. Does cannabis affect dopaminergic signaling in the human brain? A systematic review of evidence to date. Eur Neuropsychopharmacol 2015; 25:1201-24. [PMID: 26068702 DOI: 10.1016/j.euroneuro.2015.03.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/23/2015] [Accepted: 03/22/2015] [Indexed: 12/21/2022]
Abstract
A significant body of epidemiological evidence has linked psychotic symptoms with both acute and chronic use of cannabis. Precisely how these effects of THC are mediated at the neurochemical level is unclear. While abnormalities in multiple pathways may lead to schizophrenia, an abnormality in dopamine neurotransmission is considered to be the final common abnormality. One would thus expect cannabis use to be associated with dopamine signaling alterations. This is the first systematic review of all studies, both observational as well as experimental, examining the acute as well as chronic effect of cannabis or its main psychoactive ingredient, THC, on the dopamine system in man. We aimed to review all studies conducted in man, with any reported neurochemical outcomes related to the dopamine system after cannabis, cannabinoid or endocannabinoid administration or use. We identified 25 studies reporting outcomes on over 568 participants, of which 244 participants belonged to the cannabis/cannabinoid exposure group. In man, there is as yet little direct evidence to suggest that cannabis use affects acute striatal dopamine release or affects chronic dopamine receptor status in healthy human volunteers. However some work has suggested that acute cannabis exposure increases dopamine release in striatal and pre-frontal areas in those genetically predisposed for, or at clinical high risk of psychosis. Furthermore, recent studies are suggesting that chronic cannabis use blunts dopamine synthesis and dopamine release capacity. Further well-designed studies are required to definitively delineate the effects of cannabis use on the dopaminergic system in man.
Collapse
Affiliation(s)
- Musa Basser Sami
- Kent and Medway Partnership, NHS Trust, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King׳s College London, De Crespigny Park, London SE5 8AF, UK
| | - Eugenii A Rabiner
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King׳s College London, UK; Imanova, Centre for Imaging Sciences, London, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King׳s College London, De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|
29
|
Kleinloog D, Uit den Boogaard A, Dahan A, Mooren R, Klaassen E, Stevens J, Freijer J, van Gerven J. Optimizing the glutamatergic challenge model for psychosis, using S+ -ketamine to induce psychomimetic symptoms in healthy volunteers. J Psychopharmacol 2015; 29:401-13. [PMID: 25693889 DOI: 10.1177/0269881115570082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The psychomimetic effects that occur after acute administration of ketamine can constitute a model of psychosis and antipsychotic drug action. However, the optimal dose/concentration has not been established and there is a large variety in outcome measures. In this study, 36 healthy volunteers (21 males and 15 females) received infusions of S(+)-ketamine or placebo to achieve pseudo-steady state concentrations of 180 and 360 ng/mL during two hours. The target of 360 ng/mL induced increasingly more intensive effects than expected, and the targets were subsequently reduced to 120 and 240 ng/mL, which were considered tolerable. There was a clear, concentration-dependent psychomimetic effect as shown on all subscales of the positive and negative syndrome scale (e.g. positive subscale +43.7%, 95%CI 34.4-53.7%, p < 0.0001 for 120 ng/mL and +70.5%, 95%CI 59.0-82.8%, p < 0.0001 for 240 ng/mL) and different visual analogue scales. The startle reflex was inhibited (prepulse inhibition) by both main target concentrations to a similar extent, suggesting a maximum effect. Ketamine was found to constitute a robust model for induction of psychomimetic symptoms and the optimal concentration range for a drug interaction study would be between 100 and 200 ng/mL.
Collapse
Affiliation(s)
| | | | - Albert Dahan
- Leiden University Medical Centre, Leiden, The Netherlands
| | - René Mooren
- Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | - Jan Freijer
- Centre for Human Drug Research, Leiden, The Netherlands
| | - Joop van Gerven
- Centre for Human Drug Research, Leiden, The Netherlands Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
30
|
Abstract
Some of the earliest reports of the effects of cannabis consumption on humans were related to endocrine system changes. In this review, the effects of cannabinoids and the role of the CB1 cannabinoid receptor in the regulation of the following endocrine systems are discussed: the hypothalamic-pituitary-gonadal axis, prolactin and oxytocin, thyroid hormone and growth hormone, and the hypothalamic-pituitary-adrenal axis. Preclinical and human study results are presented.
Collapse
Affiliation(s)
- Cecilia J Hillard
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
31
|
The influence of personality on the sensitivity to subjective effects of Δ9-tetrahydrocannabinol. Psychiatry Res 2014; 220:945-53. [PMID: 25454117 DOI: 10.1016/j.psychres.2014.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 08/14/2014] [Accepted: 10/05/2014] [Indexed: 01/15/2023]
Abstract
The effects of drugs are not only determined by their pharmacological action, but also by user characteristics. This analysis explored the influence of personality on the differences in subjective effects in response to a standardized pharmacological challenge with the cannabinoid CB1/CB2 partial agonist Δ9-tetrahydrocannabinol (THC). To express the sensitivity to THC, pharmacokinetic–pharmacodynamic (PK–PD) non-linear mixed effects modelling was applied to the subjective response of 184 healthy subjects to a pharmacological challenge with inhalation of THC. The subjective effects were measured using visual analogue scales and described by three clusters: ‘perception’, ‘relaxation’ and ‘dysphoria’. The sensitivity for THC (described as EC50) was related to scores on Cloninger׳s temperament and character inventory (TCI) using multiple linear regression. Effect compartment models were used to describe the PK–PD relations of THC. Within the multivariate model, ‘harm avoidance’ was significantly correlated with changes in ‘perception’, and ‘self-transcendence’ with changes in ‘dysphoria’. Within the psychobiological model of personality, ‘harm avoidance’ is related to serotonergic systems. Subjects with either very low (easy-going) or very high (cautious) scores were less sensitive to THC-induced changes in ‘perception’. ‘Self-transcendence’ relates to schizotypy. Subjects with more schizotypy were more sensitive to the dysphoric subjective effects of THC.
Collapse
|
32
|
Graur S, Siegle G. Pupillary motility: bringing neuroscience to the psychiatry clinic of the future. Curr Neurol Neurosci Rep 2014; 13:365. [PMID: 23780801 DOI: 10.1007/s11910-013-0365-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modern pupillometry has expanded the study and utility of pupil responses in many new domains, including psychiatry, particularly for understanding aspects of cognitive and emotional information processing. Here, we review the applications of pupillometry in psychiatry for understanding patients' information processing styles, predicting treatment, and augmenting function. In the past year pupillometry has been shown to be useful in specifying cognitive/affective occurrences during experimental tasks and informing clinical diagnoses. Such studies demonstrate the potential of pupillary motility to be used in clinical psychiatry much as it has been in neurology for the past century.
Collapse
Affiliation(s)
- Simona Graur
- University of Pittsburgh, School of Medicine, 121 Meyran St, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
33
|
Kleinloog D, Roozen F, De Winter W, Freijer J, Van Gerven J. Profiling the subjective effects of Δ⁹-tetrahydrocannabinol using visual analogue scales. Int J Methods Psychiatr Res 2014; 23:245-56. [PMID: 24496889 PMCID: PMC6878449 DOI: 10.1002/mpr.1424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 11/07/2022] Open
Abstract
The subjective effects of cannabis and its main psychoactive component Δ(9) -tetrahydrocannabinol (THC) have played an important part in determining the therapeutic potential of cannabinoid agonists and antagonists. The effects mainly consist of feeling high, changes in perception, feelings of relaxation and occasionally dysphoric reactions. These effects are captured by two of the most frequently used visual analogue scales (VASs) in clinical (pharmacologic) research to measure subjective effects: VAS Bond and Lader (alertness, calmness and mood) and VAS Bowdle (psychedelic effects). In this analysis, the effects of THC on these VASs were compared within a total of 217 subjects who participated in 10 different studies. Not surprisingly, the item feeling high was found to be the best predictor for the effect of THC. Three separate clusters that describe the spectrum of subjective effects of THC were identified using different statistical methods, consisting of VAS "time", "thoughts" and "high" ("perception"), VAS "drowsy", "muzzy", "mentally slow" and "dreamy" ("relaxation") and VAS "voices", "meaning" and "suspicious" ("dysphoria"). These results provide experimental evidence that THC can evoke different classes of effects. These distinct subjective clusters could represent effects on various systems in the brain, which can be used to further differentiate the involvement of endocannabinoid systems in health and disease.
Collapse
|
34
|
Wilkinson ST, Radhakrishnan R, D'Souza DC. Impact of Cannabis Use on the Development of Psychotic Disorders. CURRENT ADDICTION REPORTS 2014; 1:115-128. [PMID: 25767748 DOI: 10.1007/s40429-014-0018-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The link between cannabis use and psychosis comprises three distinct relationships: acute psychosis associated with cannabis intoxication, acute psychosis that lasts beyond the period of acute intoxication, and persistent psychosis not time-locked to exposure. Experimental studies reveal that cannabis, tetrahydrocannabinol (THC) and synthetic cannabinoids reliably produce transient positive, negative, and cognitive symptoms in healthy volunteers. Case-studies indicate that cannabinoids can induce acute psychosis which lasts beyond the period of acute intoxication but resolves within a month. Exposure to cannabis in adolescence is associated with a risk for later psychotic disorder in adulthood; this association is consistent, temporally related, shows a dose-response, and is biologically plausible. However, cannabis is neither necessary nor sufficient to cause a persistent psychotic disorder. More likely it is a component cause that interacts with other factors to result in psychosis. The link between cannabis and psychosis is moderated by age at onset of cannabis use, childhood abuse and genetic vulnerability. While more research is needed to better characterize the relationship between cannabinoid use and the onset and persistence of psychosis, clinicians should be mindful of the potential risk of psychosis especially in vulnerable populations, including adolescents and those with a psychosis diathesis.
Collapse
Affiliation(s)
- Samuel T Wilkinson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA ; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA ; Schizophrenia and Neuropharmacology Research Group, VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
35
|
McPartland JM, Guy GW, Di Marzo V. Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system. PLoS One 2014; 9:e89566. [PMID: 24622769 PMCID: PMC3951193 DOI: 10.1371/journal.pone.0089566] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/21/2014] [Indexed: 12/31/2022] Open
Abstract
Background The “classic” endocannabinoid (eCB) system includes the cannabinoid receptors CB1 and CB2, the eCB ligands anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and their metabolic enzymes. An emerging literature documents the “eCB deficiency syndrome” as an etiology in migraine, fibromyalgia, irritable bowel syndrome, psychological disorders, and other conditions. We performed a systematic review of clinical interventions that enhance the eCB system—ways to upregulate cannabinoid receptors, increase ligand synthesis, or inhibit ligand degradation. Methodology/Principal Findings We searched PubMed for clinical trials, observational studies, and preclinical research. Data synthesis was qualitative. Exclusion criteria limited the results to 184 in vitro studies, 102 in vivo animal studies, and 36 human studies. Evidence indicates that several classes of pharmaceuticals upregulate the eCB system, including analgesics (acetaminophen, non-steroidal anti-inflammatory drugs, opioids, glucocorticoids), antidepressants, antipsychotics, anxiolytics, and anticonvulsants. Clinical interventions characterized as “complementary and alternative medicine” also upregulate the eCB system: massage and manipulation, acupuncture, dietary supplements, and herbal medicines. Lifestyle modification (diet, weight control, exercise, and the use of psychoactive substances—alcohol, tobacco, coffee, cannabis) also modulate the eCB system. Conclusions/Significance Few clinical trials have assessed interventions that upregulate the eCB system. Many preclinical studies point to other potential approaches; human trials are needed to explore these promising interventions.
Collapse
Affiliation(s)
- John M. McPartland
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wiltshire, United Kingdom
- Department of Family Medicine, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| | - Geoffrey W. Guy
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wiltshire, United Kingdom
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomoleculare, CNR, Via Campi Flegrei, Pozzuoli, Napoli, Italy
| |
Collapse
|
36
|
Radhakrishnan R, Wilkinson ST, D'Souza DC. Gone to Pot - A Review of the Association between Cannabis and Psychosis. Front Psychiatry 2014; 5:54. [PMID: 24904437 PMCID: PMC4033190 DOI: 10.3389/fpsyt.2014.00054] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/02/2014] [Indexed: 01/01/2023] Open
Abstract
Cannabis is the most commonly used illicit drug worldwide, with ~5 million daily users worldwide. Emerging evidence supports a number of associations between cannabis and psychosis/psychotic disorders, including schizophrenia. These associations-based on case-studies, surveys, epidemiological studies, and experimental studies indicate that cannabinoids can produce acute, transient effects; acute, persistent effects; and delayed, persistent effects that recapitulate the psychopathology and psychophysiology seen in schizophrenia. Acute exposure to both cannabis and synthetic cannabinoids (Spice/K2) can produce a full range of transient psychotomimetic symptoms, cognitive deficits, and psychophysiological abnormalities that bear a striking resemblance to symptoms of schizophrenia. In individuals with an established psychotic disorder, cannabinoids can exacerbate symptoms, trigger relapse, and have negative consequences on the course of the illness. Several factors appear to moderate these associations, including family history, genetic factors, history of childhood abuse, and the age at onset of cannabis use. Exposure to cannabinoids in adolescence confers a higher risk for psychosis outcomes in later life and the risk is dose-related. Individuals with polymorphisms of COMT and AKT1 genes may be at increased risk for psychotic disorders in association with cannabinoids, as are individuals with a family history of psychotic disorders or a history of childhood trauma. The relationship between cannabis and schizophrenia fulfills many but not all of the standard criteria for causality, including temporality, biological gradient, biological plausibility, experimental evidence, consistency, and coherence. At the present time, the evidence indicates that cannabis may be a component cause in the emergence of psychosis, and this warrants serious consideration from the point of view of public health policy.
Collapse
Affiliation(s)
- Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA
| | - Samuel T Wilkinson
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA ; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center , New Haven, CT , USA ; Schizophrenia and Neuropharmacology Research Group, VA Connecticut Healthcare System , West Haven, CT , USA
| |
Collapse
|
37
|
Greydanus DE, Hawver EK, Greydanus MM, Merrick J. Marijuana: current concepts(†). Front Public Health 2013; 1:42. [PMID: 24350211 PMCID: PMC3859982 DOI: 10.3389/fpubh.2013.00042] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/23/2013] [Indexed: 12/12/2022] Open
Abstract
Marijuana (cannabis) remains a controversial drug in the twenty-first century. This paper considers current research on use of Cannabis sativa and its constituents such as the cannabinoids. Topics reviewed include prevalence of cannabis (pot) use, other drugs consumed with pot, the endocannabinoid system, use of medicinal marijuana, medical adverse effects of cannabis, and psychiatric adverse effects of cannabis use. Treatment of cannabis withdrawal and dependence is difficult and remains mainly based on psychological therapy; current research on pharmacologic management of problems related to cannabis consumption is also considered. The potential role of specific cannabinoids for medical benefit will be revealed as the twenty-first century matures. However, potential dangerous adverse effects from smoking marijuana are well known and should be clearly taught to a public that is often confused by a media-driven, though false message and promise of benign pot consumption.
Collapse
Affiliation(s)
- Donald E Greydanus
- Department of Pediatric and Adolescent Medicine, Western Michigan University School of Medicine , Kalamazoo, MI , USA
| | - Elizabeth K Hawver
- Department of Pediatric and Adolescent Medicine, Western Michigan University School of Medicine , Kalamazoo, MI , USA
| | - Megan M Greydanus
- Department of Pediatric and Adolescent Medicine, Western Michigan University School of Medicine , Kalamazoo, MI , USA
| | - Joav Merrick
- National Institute of Child Health and Human Development , Jerusalem , Israel ; Health Services, Division for Intellectual and Developmental Disabilities, Ministry of Social Affairs and Social Services , Jerusalem , Israel ; Division of Pediatrics, Hadassah Hebrew University Medical Center, Mt. Scopus Campus , Jerusalem , Israel ; Kentucky Children's Hospital, University of Kentucky College of Medicine , Lexington, KY , USA
| |
Collapse
|
38
|
Englund A, Morrison PD, Nottage J, Hague D, Kane F, Bonaccorso S, Stone JM, Reichenberg A, Brenneisen R, Holt D, Feilding A, Walker L, Murray RM, Kapur S. Cannabidiol inhibits THC-elicited paranoid symptoms and hippocampal-dependent memory impairment. J Psychopharmacol 2013; 27:19-27. [PMID: 23042808 DOI: 10.1177/0269881112460109] [Citation(s) in RCA: 333] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Community-based studies suggest that cannabis products that are high in Δ⁹-tetrahydrocannabinol (THC) but low in cannabidiol (CBD) are particularly hazardous for mental health. Laboratory-based studies are ideal for clarifying this issue because THC and CBD can be administered in pure form, under controlled conditions. In a between-subjects design, we tested the hypothesis that pre-treatment with CBD inhibited THC-elicited psychosis and cognitive impairment. Healthy participants were randomised to receive oral CBD 600 mg (n=22) or placebo (n=26), 210 min ahead of intravenous (IV) THC (1.5 mg). Post-THC, there were lower PANSS positive scores in the CBD group, but this did not reach statistical significance. However, clinically significant positive psychotic symptoms (defined a priori as increases ≥ 3 points) were less likely in the CBD group compared with the placebo group, odds ratio (OR)=0.22 (χ²=4.74, p<0.05). In agreement, post-THC paranoia, as rated with the State Social Paranoia Scale (SSPS), was less in the CBD group compared with the placebo group (t=2.28, p<0.05). Episodic memory, indexed by scores on the Hopkins Verbal Learning Task-revised (HVLT-R), was poorer, relative to baseline, in the placebo pre-treated group (-10.6 ± 18.9%) compared with the CBD group (-0.4% ± 9.7 %) (t=2.39, p<0.05). These findings support the idea that high-THC/low-CBD cannabis products are associated with increased risks for mental health.
Collapse
Affiliation(s)
- Amir Englund
- The Biomedical Research Centre, Institute of Psychiatry, King's College London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|