1
|
Kroll T, Miranda A, Drechsel A, Beer S, Lang M, Drzezga A, Rosa-Neto P, Verhaeghe J, Elmenhorst D, Bauer A. Dynamic neuroreceptor positron emission tomography in non-anesthetized rats using point source based motion correction: A feasibility study with [ 11C]ABP688. J Cereb Blood Flow Metab 2024; 44:1852-1866. [PMID: 38684219 PMCID: PMC11504418 DOI: 10.1177/0271678x241239133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 05/02/2024]
Abstract
To prevent motion artifacts in small animal positron emission tomography (PET), animals are routinely scanned under anesthesia or physical restraint. Both may potentially alter metabolism and neurochemistry. This study investigates the feasibility of fully awake acquisition and subsequent absolute quantification of dynamic brain PET data via pharmacokinetic modelling in moving rats using the glutamate 5 receptor radioligand [11C]ABP688 and point source based motion correction. Five male rats underwent three dynamic [11C]ABP688 PET scans: two test-retest awake PET scans and one scan under anesthesia for comparison. Specific radioligand binding was determined via the simplified reference tissue model (reference: cerebellum) and outcome parameters BPND and R1 were evaluated in terms of stability and reproducibility. Test-retest measurements in awake animals gave reliable results with high correlations of BPND (y = 1.08 × -0.2, r = 0.99, p < 0.01) and an acceptable variability (mean over all investigated regions 15.7 ± 2.4%). Regional [11C]ABP688 BPNDs under awake and anesthetized conditions were comparable although in awake scans, absolute radioactive peak uptakes were lower and relative blood flow in terms of R1 was higher. Awake small animal PET with absolute quantification of neuroreceptor availability is technically feasible and reproducible thereby providing a suitable alternative whenever effects of anesthesia are undesirable, e.g. in sleep research.
Collapse
Affiliation(s)
- Tina Kroll
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
| | - Alan Miranda
- Molecular Imaging Center Antwerp, University of Antwerp, Belgium
| | - Alexandra Drechsel
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
| | - Simone Beer
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
| | - Markus Lang
- Institute of Neurosciences and Medicine (INM-5), Forschungszentrum Jülich GmbH, Germany
| | - Alexander Drzezga
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
- Department of Nuclear Medicine, University Hospital Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp, University of Antwerp, Belgium
| | - David Elmenhorst
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
- Department of Nuclear Medicine, University Hospital Cologne, Germany
| | - Andreas Bauer
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
| |
Collapse
|
2
|
Asch RH, Worhunsky PD, Davis MT, Holmes SE, Cool R, Boster S, Carson RE, Blumberg HP, Esterlis I. Deficits in prefrontal metabotropic glutamate receptor 5 are associated with functional alterations during emotional processing in bipolar disorder. J Affect Disord 2024; 361:415-424. [PMID: 38876317 PMCID: PMC11250898 DOI: 10.1016/j.jad.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Elucidating biological mechanisms contributing to bipolar disorder (BD) is key to improved diagnosis and treatment development. With converging evidence implicating the metabotropic glutamate receptor 5 (mGlu5) in the pathology of BD, here, we therefore test the hypothesis that recently identified deficits in mGlu5 are associated with functional brain differences during emotion processing in BD. METHODS Positron emission tomography (PET) with [18F]FPEB was used to measure mGlu5 receptor availability and functional imaging (fMRI) was performed while participants completed an emotion processing task. Data were analyzed from 62 individuals (33 ± 12 years, 45 % female) who completed both PET and fMRI, including individuals with BD (n = 18), major depressive disorder (MDD: n = 20), and psychiatrically healthy comparisons (HC: n = 25). RESULTS Consistent with some prior reports, the BD group displayed greater activation during fear processing relative to MDD and HC, notably in right lateralized frontal and parietal brain regions. In BD, (but not MDD or HC) lower prefrontal mGlu5 availability was associated with greater activation in bilateral pre/postcentral gyri and cuneus during fear processing. Furthermore, greater prefrontal mGlu5-related brain activity in BD was associated with difficulties in psychomotor function (r≥0.904, p≤0.005) and attention (r≥0.809, p≤0.028). LIMITATIONS The modest sample size is the primary limitation. CONCLUSIONS Deficits in prefrontal mGlu5 in BD were linked to increased cortical activation during fear processing, which in turn was associated with impulsivity and attentional difficulties. These data further implicate an mGlu5-related mechanism unique to BD. More generally these data suggest integrating PET and fMRI can provide novel mechanistic insights.
Collapse
Affiliation(s)
- Ruth H. Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
| | | | - Margaret T. Davis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
| | - Sophie E. Holmes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511
| | - Ryan Cool
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
| | - Sarah Boster
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
| | - Richard E. Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06511
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06511
| | - Hilary P. Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06511
- Child Study Center, Yale School of Medicine, New Haven, CT 06511
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06511
- Department of Psychology, Yale University, New Haven, CT 06511
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT 06516
| |
Collapse
|
3
|
McClintick MN, Kessler RM, Mandelkern MA, Mahmoudie T, Allen DC, Lachoff H, Pochon JBF, Ghahremani DG, Farahi JB, Partiai E, Casillas RA, Mooney LJ, Dean AC, London ED. Brain mGlu5 Is Linked to Cognition and Cigarette Smoking but Does Not Differ From Control in Early Abstinence From Chronic Methamphetamine Use. Int J Neuropsychopharmacol 2024; 27:pyae031. [PMID: 39120945 PMCID: PMC11348008 DOI: 10.1093/ijnp/pyae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/07/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND The group-I metabotropic glutamate receptor subtype 5 (mGlu5) has been implicated in methamphetamine exposure in animals and in human cognition. Because people with methamphetamine use disorder (MUD) exhibit cognitive deficits, we evaluated mGlu5 in people with MUD and controls and tested its association with cognitive performance. METHODS Positron emission tomography was performed to measure the total VT of [18F]FPEB, a radiotracer for mGlu5, in brains of participants with MUD (abstinent from methamphetamine for at least 2 weeks, N = 14) and a control group (N = 14). Drug use history questionnaires and tests of verbal learning, spatial working memory, and executive function were administered. Associations of VT with methamphetamine use, tobacco use, and cognitive performance were tested. RESULTS MUD participants did not differ from controls in global or regional VT, and measures of methamphetamine use were not correlated with VT. VT was significantly higher globally in nonsmoking vs smoking participants (main effect, P = .0041). MUD participants showed nonsignificant weakness on the Rey Auditory Verbal Learning Task and the Stroop test vs controls (P = .08 and P = .13, respectively) with moderate to large effect sizes, and significantly underperformed controls on the Spatial Capacity Delayed Response Test (P = .015). Across groups, Rey Auditory Verbal Learning Task performance correlated with VT in the dorsolateral prefrontal cortex and superior frontal gyrus. CONCLUSION Abstinent MUD patients show no evidence of mGlu5 downregulation in brain, but association of VT in dorsolateral prefrontal cortex with verbal learning suggests that medications that target mGlu5 may improve cognitive performance.
Collapse
Affiliation(s)
- Megan N McClintick
- Veterans Administration of Greater Los Angeles System, Los Angeles, California, USA
- Semel Institute and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Robert M Kessler
- Semel Institute and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Mark A Mandelkern
- Veterans Administration of Greater Los Angeles System, Los Angeles, California, USA
- Department of Physics, University of California Irvine, Irvine, California, USA
| | - Tarannom Mahmoudie
- Semel Institute and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | | | - Hilary Lachoff
- Veterans Administration of Greater Los Angeles System, Los Angeles, California, USA
- Semel Institute and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Jean-Baptiste F Pochon
- Semel Institute and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Dara G Ghahremani
- Semel Institute and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Judah B Farahi
- Veterans Administration of Greater Los Angeles System, Los Angeles, California, USA
| | - Edwin Partiai
- Veterans Administration of Greater Los Angeles System, Los Angeles, California, USA
| | - Robert A Casillas
- Veterans Administration of Greater Los Angeles System, Los Angeles, California, USA
| | - Larissa J Mooney
- Veterans Administration of Greater Los Angeles System, Los Angeles, California, USA
- Semel Institute and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Andy C Dean
- Semel Institute and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Edythe D London
- Veterans Administration of Greater Los Angeles System, Los Angeles, California, USA
- Semel Institute and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
4
|
Elmeseiny OSA, Müller HK. A molecular perspective on mGluR5 regulation in the antidepressant effect of ketamine. Pharmacol Res 2024; 200:107081. [PMID: 38278430 DOI: 10.1016/j.phrs.2024.107081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Ketamine, a non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist, has received much attention for its rapid antidepressant effects. A single administration of ketamine elicits rapid and sustained antidepressant effects in both humans and animals. Current efforts are focused on uncovering molecular mechanisms responsible for ketamine's antidepressant activity. Ketamine primarily acts via the glutamatergic pathway, and increasing evidence suggests that ketamine induces synaptic and structural plasticity through increased translation and release of neurotrophic factors, activation of mammalian target of rapamycin (mTOR), and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR)-mediated synaptic potentiation. However, the initial events triggering activation of intracellular signaling cascades and the mechanisms responsible for the sustained antidepressant effects of ketamine remain poorly understood. Over the last few years, it has become apparent that in addition to the fast actions of the ligand-gated AMPARs and NMDARs, metabotropic glutamate receptors (mGluRs), and particularly mGluR5, may also play a role in the antidepressant action of ketamine. Although research on mGluR5 in relation to the beneficial actions of ketamine is still in its infancy, a careful evaluation of the existing literature can identify converging trends and provide new interpretations. Here, we review the current literature on mGluR5 regulation in response to ketamine from a molecular perspective and propose a possible mechanism linking NMDAR inhibition to mGluR5 modulation.
Collapse
Affiliation(s)
- Ola Sobhy A Elmeseiny
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
5
|
Scala SG, Kang MS, Cox SML, Rosa‐Neto P, Massarweh G, Leyton M. Mesocorticolimbic function in cocaine polydrug users: A multimodal study of drug cue reactivity and cognitive regulation. Addict Biol 2024; 29:e13358. [PMID: 38221806 PMCID: PMC10898841 DOI: 10.1111/adb.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 01/16/2024]
Abstract
Addictions are thought to be fostered by the emergence of poorly regulated mesocorticolimbic responses to drug-related cues. The development and persistence of these responses might be promoted by altered glutamate transmission, including changes to type 5 metabotropic glutamate receptors (mGluR5s). Unknown, however, is when these changes arise and whether the mGluR5 and mesocorticolimbic alterations are related. To investigate, non-dependent cocaine polydrug users and cocaine-naïve healthy controls underwent a positron emission tomography scan (15 cocaine users and 14 healthy controls) with [11 C]ABP688, and a functional magnetic resonance imaging scan (15/group) while watching videos depicting activities with and without cocaine use. For some drug videos, participants were instructed to use a cognitive strategy to lower craving. Both groups exhibited drug cue-induced mesocorticolimbic activations and these were larger in the cocaine polydrug users than healthy controls during the session's second half. During the cognitive regulation trials, the cocaine users' corticostriatal responses were reduced. [11 C]ABP688 binding was unaltered in cocaine users, relative to healthy controls, but post hoc analyses found reductions in those with 75 or more lifetime cocaine use sessions. Finally, among cocaine users (n = 12), individual differences in prefrontal [11 C]ABP688 binding were associated with midbrain and limbic region activations during the regulation trials. Together, these preliminary findings raise the possibility that (i) recreational polydrug cocaine users show biased brain processes towards cocaine-related cues and (ii) repeated cocaine use can lower cortical mGluR5 levels, diminishing the ability to regulate drug cue responses. These alterations might promote susceptibility to addiction and identify early intervention targets.
Collapse
Affiliation(s)
| | - Min Su Kang
- Integrated Program in NeuroscienceMcGill UniversityMontrealQuebecCanada
- Sunnybrook Research InstituteUniversity of TorontoTorontoOntarioCanada
| | | | - Pedro Rosa‐Neto
- Integrated Program in NeuroscienceMcGill UniversityMontrealQuebecCanada
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
- Department of Neurology & Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Gassan Massarweh
- McConnell Brain Imaging CentreMontreal Neurological InstituteMontrealQuebecCanada
| | - Marco Leyton
- Integrated Program in NeuroscienceMcGill UniversityMontrealQuebecCanada
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
- Department of Neurology & Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
- McConnell Brain Imaging CentreMontreal Neurological InstituteMontrealQuebecCanada
- Department of PsychologyMcGill UniversityMontrealQuebecCanada
- Center for Studies in Behavioral NeurobiologyConcordia UniversityMontrealQuebecCanada
| |
Collapse
|
6
|
Holmes SE, Asch RH, Davis MT, DellaGioia N, Pashankar N, Gallezot JD, Nabulsi N, Matuskey D, Sanacora G, Carson RE, Blumberg HP, Esterlis I. Differences in Quantification of the Metabotropic Glutamate Receptor 5 Across Bipolar Disorder and Major Depressive Disorder. Biol Psychiatry 2023; 93:1099-1107. [PMID: 36764853 PMCID: PMC10164841 DOI: 10.1016/j.biopsych.2022.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Understanding the neurobiology underlying bipolar disorder (BD) versus major depressive disorder (MDD) is crucial for accurate diagnosis and for driving the discovery of novel treatments. A promising target is the metabotropic glutamate receptor 5 (mGluR5), a modulator of glutamate transmission associated with synaptic plasticity. We measured mGluR5 availability in individuals with MDD and BD for the first time using positron emission tomography. METHODS Individuals with BD (n = 17 depressed; n = 10 euthymic) or MDD (n = 17) and healthy control (HC) individuals (n = 18) underwent imaging with [18F]FPEB positron emission tomography to quantify mGluR5 availability in regions of the prefrontal cortex, which was compared across groups and assessed in relation to depressive symptoms and cognitive function. RESULTS Prefrontal cortex mGluR5 availability was significantly different across groups (F6,116 = 2.18, p = .050). Specifically, mGluR5 was lower in BD versus MDD and HC groups, with no difference between MDD and HC groups. Furthermore, after dividing the BD group, mGluR5 was lower in both BD-depression and BD-euthymia groups versus both MDD and HC groups across regions of interest. Interestingly, lower dorsolateral prefrontal cortex mGluR5 was associated with worse depression in MDD (r = -0.67, p = .005) but not in BD. Significant negative correlations were observed between mGluR5 and working memory in MDD and BD-depression groups. CONCLUSIONS This work suggests that mGluR5 could be helpful in distinguishing BD and MDD as a possible treatment target for depressive symptoms in MDD and for cognitive alterations in both disorders. Further work is needed to confirm differentiating roles for mGluR5 in BD and MDD and to probe modulation of mGluR5 as a preventive/treatment strategy.
Collapse
Affiliation(s)
- Sophie E Holmes
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Ruth H Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Margaret T Davis
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Yale University, New Haven, Connecticut
| | - Nicole DellaGioia
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Neha Pashankar
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Jean-Dominique Gallezot
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - David Matuskey
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Hilary P Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Child Study Center, Yale School of Medicine, New Haven, Connecticut
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Child Study Center, Yale School of Medicine, New Haven, Connecticut; Clinical Neurosciences Division, U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, Connecticut.
| |
Collapse
|
7
|
Lopresti BJ, Royse SK, Mathis CA, Tollefson SA, Narendran R. Beyond monoamines: I. Novel targets and radiotracers for Positron emission tomography imaging in psychiatric disorders. J Neurochem 2023; 164:364-400. [PMID: 35536762 DOI: 10.1111/jnc.15615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
With the emergence of positron emission tomography (PET) in the late 1970s, psychiatry had access to a tool capable of non-invasive assessment of human brain function. Early applications in psychiatry focused on identifying characteristic brain blood flow and metabolic derangements using radiotracers such as [15 O]H2 O and [18 F]FDG. Despite the success of these techniques, it became apparent that more specific probes were needed to understand the neurochemical bases of psychiatric disorders. The first neurochemical PET imaging probes targeted sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. Based on the centrality of monoamine dysfunction in psychiatric disorders and the measured success of monoamine-enhancing drugs in treating them, the next 30 years witnessed the development of an armamentarium of PET radiopharmaceuticals and imaging methodologies for studying monoamines. Continued development of monoamine-enhancing drugs over this time however was less successful, realizing only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely paralleled drug development priorities resulting in the development of new PET imaging agents for non-monoamine targets. Part one of this review will briefly survey novel PET imaging targets with relevance to the field of psychiatry, which include the metabotropic glutamate receptor type 5 (mGluR5), purinergic P2 X7 receptor, type 1 cannabinoid receptor (CB1 ), phosphodiesterase 10A (PDE10A), and describe radiotracers developed for these and other targets that have matured to human subject investigations. Current limitations of the targets and techniques will also be discussed.
Collapse
Affiliation(s)
- Brian J Lopresti
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah K Royse
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah A Tollefson
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Yousefzadehfard Y, Wechsler B, DeLorenzo C. Human circadian rhythm studies: Practical guidelines for inclusion/exclusion criteria and protocol. Neurobiol Sleep Circadian Rhythms 2022; 13:100080. [PMID: 35989718 PMCID: PMC9382328 DOI: 10.1016/j.nbscr.2022.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/03/2022] Open
Abstract
As interest in circadian rhythms and their effects continues to grow, there is an increasing need to perform circadian studies in humans. Although the constant routine is the gold standard for these studies, there are advantages to performing more naturalistic studies. Here, a review of protocols for such studies is provided along with sample inclusion and exclusion criteria. Sleep routines, drug use, shift work, and menstrual cycle are addressed as screening considerations. Regarding protocol, best practices for measuring melatonin, including light settings, posture, exercise, and dietary habits are described. The inclusion/exclusion recommendations and protocol guidelines are intended to reduce confounding variables in studies that do not involve the constant routine. Given practical limitations, a range of recommendations is provided from stringent to lenient. The scientific rationale behind these recommendations is discussed. However, where the science is equivocal, recommendations are based on empirical decisions made in previous studies. While not all of the recommendations listed may be practical in all research settings and with limited potential participants, the goal is to allow investigators to make well informed decisions about their screening procedures and protocol techniques and to improve rigor and reproducibility, in line with the objectives of the National Institutes of Health.
Collapse
Affiliation(s)
- Yashar Yousefzadehfard
- Center for Understanding Biology Using Imaging Technology, Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA.,Department of Psychiatry, Texas Tech University Health Science Center, Midland, TX, USA
| | - Bennett Wechsler
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christine DeLorenzo
- Center for Understanding Biology Using Imaging Technology, Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
9
|
Kim J, Kang S, Choi TY, Chang KA, Koo JW. Metabotropic Glutamate Receptor 5 in Amygdala Target Neurons Regulates Susceptibility to Chronic Social Stress. Biol Psychiatry 2022; 92:104-115. [PMID: 35314057 DOI: 10.1016/j.biopsych.2022.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Metabotropic glutamate receptor 5 (mGluR5) has been implicated in stress-related psychiatric disorders, particularly major depressive disorder. Although growing evidence supports the proresilient role of mGluR5 in corticolimbic circuitry in the depressive-like behaviors following chronic stress exposure, the underlying neural mechanisms, including circuits and molecules, remain unknown. METHODS We measured the c-Fos expression and probability of neurotransmitter release in and from basolateral amygdala (BLA) neurons projecting to the medial prefrontal cortex (mPFC) and to the ventral hippocampus (vHPC) after chronic social defeat stress. The role of BLA projections in depressive-like behaviors was assessed using optogenetic manipulations, and the underlying molecular mechanisms of mGluR5 and downstream signaling were investigated by Western blotting, viral-mediated gene transfer, and pharmacological manipulations. RESULTS Chronic social defeat stress disrupted neural activity and glutamatergic transmission in both BLA projections. Optogenetic activation of BLA projections reversed the detrimental effects of chronic social defeat stress on depressive-like behaviors and mGluR5 expression in the mPFC and vHPC. Conversely, inhibition of BLA projections of mice undergoing subthreshold social defeat stress induced a susceptible phenotype and mGluR5 reduction. These two BLA circuits appeared to act in an independent way. We demonstrate that mGluR5 overexpression in the mPFC or vHPC was proresilient while the mGluR5 knockdown was prosusceptible and that the proresilient effects of mGluR5 are mediated through distinctive downstream signaling pathways in the mPFC and vHPC. CONCLUSIONS These findings identify mGluR5 in the mPFC and vHPC that receive BLA inputs as a critical mediator of stress resilience, highlighting circuit-specific signaling for depressive-like behaviors.
Collapse
Affiliation(s)
- Jeongseop Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Shinwoo Kang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Tae-Yong Choi
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea.
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
| |
Collapse
|
10
|
Glorie D, Verhaeghe J, Miranda A, De Lombaerde S, Stroobants S, Staelens S. Quantification of Metabotropic Glutamate Receptor 5 Availability With Both [ 11C]ABP688 and [ 18F]FPEB Positron Emission Tomography in the Sapap3 Knockout Mouse Model for Obsessive-Compulsive-like Behavior. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:607-615. [PMID: 34856382 DOI: 10.1016/j.bpsc.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND This study provides a first direct comparison between positron emission tomography radioligands targeting the allosteric site of the metabotropic glutamate receptor 5 (mGluR5): [11C]ABP688 and [18F]FPEB. A blocking paradigm was set up to substantiate the common binding site of both radioligands. Second, both radioligands were applied in Sapap3 knockout (KO) mice showing compulsive-like behavior characterized by a lower in vivo mGluR5 availability. METHODS First, wild-type mice (n = 7) received four position emission tomography/computed tomography scans: a [11C]ABP688 scan, a [18F]FPEB scan, and two blocking scans using cold FPEB and cold ABP688, respectively. A second experiment compared both radioligands in wild-type (n = 7) and KO (n = 10) mice. The simplified reference tissue model was used to calculate the nondisplaceable binding potential representing the in vivo availability of mGluR5 in the brain. RESULTS Using cold FPEB as a blocking compound for [11C]ABP688 micro-positron emission tomography and vice versa, we observed averaged global reductions in mGluR5 availability of circa 98% for [11C]ABP688 and 82%-96% for [18F]FPEB. For KOs, the [11C]ABP688 nondisplaceable binding potential was on average 25% lower compared with wild-type control mice (p < .0001-.001), while this was about 17% for [18F]FPEB (p < .05). CONCLUSIONS The current findings substantiate a common binding site and suggest a strong relationship between mGluR5 availability levels measured with both radioligands. In Sapap3 KO mice, a reduced mGluR5 availability could therefore be demonstrated with both radioligands. With [11C]ABP688, higher significance levels were achieved in more brain regions. These findings suggest [11C]ABP688 as a preferable radiotracer to quantify mGluR5 availability, as exemplified here in a model for compulsive-like behavior.
Collapse
Affiliation(s)
- Dorien Glorie
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium
| | - Alan Miranda
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium
| | - Stef De Lombaerde
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium; Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium; Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
11
|
Brašić JR, Goodman JA, Nandi A, Russell DS, Jennings D, Barret O, Martin SD, Slifer K, Sedlak T, Mathur AK, Seibyl JP, Berry-Kravis EM, Wong DF, Budimirovic DB. Fragile X Mental Retardation Protein and Cerebral Expression of Metabotropic Glutamate Receptor Subtype 5 in Men with Fragile X Syndrome: A Pilot Study. Brain Sci 2022; 12:314. [PMID: 35326270 PMCID: PMC8946825 DOI: 10.3390/brainsci12030314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple lines of evidence suggest that a deficiency of Fragile X Mental Retardation Protein (FMRP) mediates dysfunction of the metabotropic glutamate receptor subtype 5 (mGluR5) in the pathogenesis of fragile X syndrome (FXS), the most commonly known single-gene cause of inherited intellectual disability (ID) and autism spectrum disorder (ASD). Nevertheless, animal and human studies regarding the link between FMRP and mGluR5 expression provide inconsistent or conflicting findings about the nature of those relationships. Since multiple clinical trials of glutamatergic agents in humans with FXS did not demonstrate the amelioration of the behavioral phenotype observed in animal models of FXS, we sought measure if mGluR5 expression is increased in men with FXS to form the basis for improved clinical trials. Unexpectedly marked reductions in mGluR5 expression were observed in cortical and subcortical regions in men with FXS. Reduced mGluR5 expression throughout the living brains of men with FXS provides a clue to examine FMRP and mGluR5 expression in FXS. In order to develop the findings of our previous study and to strengthen the objective tools for future clinical trials of glutamatergic agents in FXS, we sought to assess the possible value of measuring both FMRP levels and mGluR5 expression in men with FXS. We aimed to show the value of measurement of FMRP levels and mGluR5 expression for the diagnosis and treatment of individuals with FXS and related conditions. We administered 3-[18F]fluoro-5-(2-pyridinylethynyl)benzonitrile ([18F]FPEB), a specific mGluR5 radioligand for quantitative measurements of the density and the distribution of mGluR5s, to six men with the full mutation (FM) of FXS and to one man with allele size mosaicism for FXS (FXS-M). Utilizing the seven cortical and subcortical regions affected in neurodegenerative disorders as indicator variables, adjusted linear regression of mGluR5 expression and FMRP showed that mGluR5 expression was significantly reduced in the occipital cortex and the thalamus relative to baseline (anterior cingulate cortex) if FMRP levels are held constant (F(7,47) = 6.84, p < 0.001).These findings indicate the usefulness of cerebral mGluR5 expression measured by PET with [18F]FPEB and FMRP values in men with FXS and related conditions for assessments in community facilities within a hundred-mile radius of a production center with a cyclotron. These initial results of this pilot study advance our previous study regarding the measurement of mGluR5 expression by combining both FMRP levels and mGluR5 expression as tools for meaningful clinical trials of glutamatergic agents for men with FXS. We confirm the feasibility of this protocol as a valuable tool to measure FMRP levels and mGluR5 expression in clinical trials of individuals with FXS and related conditions and to provide the foundations to apply precision medicine to tailor treatment plans to the specific needs of individuals with FXS and related conditions.
Collapse
Affiliation(s)
- James Robert Brašić
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
| | - Jack Alexander Goodman
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT 06473, USA;
| | - Ayon Nandi
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
| | - David S. Russell
- Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Invicro, New Haven, CT 06510, USA
| | - Danna Jennings
- Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Invicro, New Haven, CT 06510, USA
- Denali Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Olivier Barret
- Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Invicro, New Haven, CT 06510, USA
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Institut de Biologie François Jacob, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Université Paris-Saclay, CEDEX, 92265 Fontenay-aux-Roses, France
| | - Samuel D. Martin
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
- Department of Neuroscience, Zanvyl Krieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Keith Slifer
- Department of Psychiatry and Behavioral Sciences-Child Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Department of Behavioral Psychology, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Thomas Sedlak
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
- Department of Psychiatry and Behavioral Sciences-General Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anil Kumar Mathur
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
| | - John P. Seibyl
- Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Invicro, New Haven, CT 06510, USA
| | - Elizabeth M. Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Dean F. Wong
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
- Laboratory of Central Nervous System (CNS) Neuropsychopharmacology and Multimodal, Imaging (CNAMI), Mallinckrodt Institute of Radiology, Washington University, Saint Louis, MO 63110, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry and Behavioral Sciences-Child Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Department of Psychiatry, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Kaulen N, Rajkumar R, Régio Brambilla C, Mauler J, Ramkiran S, Orth L, Sbaihat H, Lang M, Wyss C, Rota Kops E, Scheins J, Neumaier B, Ermert J, Herzog H, Langen K, Lerche C, Shah NJ, Veselinović T, Neuner I. mGluR
5
and
GABA
A
receptor‐specific parametric
PET
atlas construction—
PET
/
MR
data processing pipeline, validation, and application. Hum Brain Mapp 2022; 43:2148-2163. [PMID: 35076125 PMCID: PMC8996359 DOI: 10.1002/hbm.25778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022] Open
Abstract
The glutamate and γ‐aminobutyric acid neuroreceptor subtypes mGluR5 and GABAA are hypothesized to be involved in the development of a variety of psychiatric diseases. However, detailed information relating to their in vivo distribution is generally unavailable. Maps of such distributions could potentially aid clinical studies by providing a reference for the normal distribution of neuroreceptors and may also be useful as covariates in advanced functional magnetic resonance imaging (MR) studies. In this study, we propose a comprehensive processing pipeline for the construction of standard space, in vivo distributions of non‐displaceable binding potential (BPND), and total distribution volume (VT) based on simultaneously acquired bolus‐infusion positron emission tomography (PET) and MR data. The pipeline was applied to [11C]ABP688‐PET/MR (13 healthy male non‐smokers, 26.6 ± 7.0 years) and [11C]Flumazenil‐PET/MR (10 healthy males, 25.8 ± 3.0 years) data. Activity concentration templates, as well as VT and BPND atlases of mGluR5 and GABAA, were generated from these data. The maps were validated by assessing the percent error δ from warped space to native space in a selection of brain regions. We verified that the average δABP = 3.0 ± 1.0% and δFMZ = 3.8 ± 1.4% were lower than the expected variabilities σ of the tracers (σABP = 4.0%–16.0%, σFMZ = 3.9%–9.5%). An evaluation of PET‐to‐PET registrations based on the new maps showed higher registration accuracy compared to registrations based on the commonly used [15O]H2O‐template distributed with SPM12. Thus, we conclude that the resulting maps can be used for further research and the proposed pipeline is a viable tool for the construction of standardized PET data distributions.
Collapse
Affiliation(s)
- Nicolas Kaulen
- Forschungszentrum Jülich Institute of Neuroscience and Medicine 4, INM‐4 Jülich Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics RWTH Aachen University Aachen Germany
| | - Ravichandran Rajkumar
- Forschungszentrum Jülich Institute of Neuroscience and Medicine 4, INM‐4 Jülich Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics RWTH Aachen University Aachen Germany
- JARA BRAIN Translational Medicine Aachen Germany
| | - Cláudia Régio Brambilla
- Forschungszentrum Jülich Institute of Neuroscience and Medicine 4, INM‐4 Jülich Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics RWTH Aachen University Aachen Germany
- JARA BRAIN Translational Medicine Aachen Germany
| | - Jörg Mauler
- Forschungszentrum Jülich Institute of Neuroscience and Medicine 4, INM‐4 Jülich Germany
| | - Shukti Ramkiran
- Forschungszentrum Jülich Institute of Neuroscience and Medicine 4, INM‐4 Jülich Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics RWTH Aachen University Aachen Germany
- JARA BRAIN Translational Medicine Aachen Germany
| | - Linda Orth
- Forschungszentrum Jülich Institute of Neuroscience and Medicine 4, INM‐4 Jülich Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics RWTH Aachen University Aachen Germany
| | - Hasan Sbaihat
- Forschungszentrum Jülich Institute of Neuroscience and Medicine 4, INM‐4 Jülich Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics RWTH Aachen University Aachen Germany
- Department of Medical Imaging Arab‐American University Palestine Jenin Palestine
| | - Markus Lang
- Forschungszentrum Jülich Institute of Neuroscience and Medicine 5, INM‐5 Jülich Germany
| | - Christine Wyss
- Forschungszentrum Jülich Institute of Neuroscience and Medicine 4, INM‐4 Jülich Germany
- Department for Psychiatry, Psychotherapy and Psychosomatics Social Psychiatry University Hospital of Psychiatry Zurich Zurich Switzerland
| | - Elena Rota Kops
- Forschungszentrum Jülich Institute of Neuroscience and Medicine 4, INM‐4 Jülich Germany
| | - Jürgen Scheins
- Forschungszentrum Jülich Institute of Neuroscience and Medicine 4, INM‐4 Jülich Germany
| | - Bernd Neumaier
- Forschungszentrum Jülich Institute of Neuroscience and Medicine 5, INM‐5 Jülich Germany
| | - Johannes Ermert
- Forschungszentrum Jülich Institute of Neuroscience and Medicine 5, INM‐5 Jülich Germany
| | - Hans Herzog
- Forschungszentrum Jülich Institute of Neuroscience and Medicine 4, INM‐4 Jülich Germany
| | - Karl‐Joseph Langen
- Forschungszentrum Jülich Institute of Neuroscience and Medicine 4, INM‐4 Jülich Germany
- JARA BRAIN Translational Medicine Aachen Germany
- Department of Nuclear Medicine RWTH Aachen University Aachen Germany
| | - Christoph Lerche
- Forschungszentrum Jülich Institute of Neuroscience and Medicine 4, INM‐4 Jülich Germany
| | - N. Jon Shah
- Forschungszentrum Jülich Institute of Neuroscience and Medicine 4, INM‐4 Jülich Germany
- JARA BRAIN Translational Medicine Aachen Germany
- Forschungszentrum Jülich Institute of Neuroscience and Medicine 11, INM‐11 Jülich Germany
- Department of Neurology RWTH Aachen University Aachen Germany
| | - Tanja Veselinović
- Department of Psychiatry, Psychotherapy and Psychosomatics RWTH Aachen University Aachen Germany
| | - Irene Neuner
- Forschungszentrum Jülich Institute of Neuroscience and Medicine 4, INM‐4 Jülich Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics RWTH Aachen University Aachen Germany
- JARA BRAIN Translational Medicine Aachen Germany
| |
Collapse
|
13
|
mGluR5 binding changes during a mismatch negativity task in a multimodal protocol with [ 11C]ABP688 PET/MR-EEG. Transl Psychiatry 2022; 12:6. [PMID: 35013095 PMCID: PMC8748790 DOI: 10.1038/s41398-021-01763-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, the metabotropic glutamate receptor 5 (mGluR5) is the subject of several lines of research in the context of neurology and is of high interest as a target for positron-emission tomography (PET). Here, we assessed the feasibility of using [11C]ABP688, a specific antagonist radiotracer for an allosteric site on the mGluR5, to evaluate changes in glutamatergic neurotransmission through a mismatch-negativity (MMN) task as a part of a simultaneous and synchronized multimodal PET/MR-EEG study. We analyzed the effect of MMN by comparing the changes in nondisplaceable binding potential (BPND) prior to (baseline) and during the task in 17 healthy subjects by applying a bolus/infusion protocol. Anatomical and functional regions were analyzed. A small change in BPND was observed in anatomical regions (posterior cingulate cortex and thalamus) and in a functional network (precuneus) after the start of the task. The effect size was quantified using Kendall's W value and was 0.3. The motor cortex was used as a control region for the task and did not show any significant BPND changes. There was a significant ΔBPND between acquisition conditions. On average, the reductions in binding across the regions were - 8.6 ± 3.2% in anatomical and - 6.4 ± 0.5% in the functional network (p ≤ 0.001). Correlations between ΔBPND and EEG latency for both anatomical (p = 0.008) and functional (p = 0.022) regions were found. Exploratory analyses suggest that the MMN task played a role in the glutamatergic neurotransmission, and mGluR5 may be indirectly modulated by these changes.
Collapse
|
14
|
Kim JH, Joo YH, Son YD, Kim HK, Kim JH. Differences in mGluR5 Availability Depending on the Level of Social Avoidance in Drug-Naïve Young Patients with Major Depressive Disorder. Neuropsychiatr Dis Treat 2022; 18:2041-2053. [PMID: 36124236 PMCID: PMC9481450 DOI: 10.2147/ndt.s379395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/03/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Previous research has shown that metabotropic glutamate receptor-5 (mGluR5) signaling is significantly involved in social avoidance. We investigated the relationship between levels of social avoidance and mGluR5 availability in drug-naïve young patients with major depressive disorder (MDD). METHODS Twenty non-smoking patients and eighteen matched non-smoking healthy controls underwent [11C]ABP688 positron emission tomography (PET) and magnetic resonance imaging scans. The binding potential (BPND) of [11C]ABP688 was obtained using the simplified reference tissue model. Patients' level of social avoidance was assessed using the Social Avoidance and Distress Scale (SADS). For [11C]ABP688 BPND, the region-of-interest (ROI)-based between-group comparisons and correlations with SADS scores were investigated. The frontal cortices were chosen as a priori ROIs based on previous PET investigations in MDD, and on literature underscoring the importance of the frontal cortex in social avoidance. RESULTS Independent samples t-tests revealed no significant differences in [11C]ABP688 BPND in the frontal cortices between the MDD patient group as a whole and healthy controls. One-way analysis of variance with post-hoc tests revealed significantly lower BPND in the bilateral superior frontal cortex (SFC) and left middle frontal cortex (MFC) in MDD patients with low levels of social avoidance (L-SADS) than in healthy controls. The L-SADS patients also had significantly lower BPND in the medial part of the right SFC than both MDD patients with high levels of social avoidance (H-SADS) and healthy controls. The L-SADS patients also showed significantly lower BPND in the orbital parts of the SFC, MFC, and inferior frontal cortex than H-SADS patients. No significant group differences were found between H-SADS patients and healthy controls. The ROI-based correlation analysis revealed significant positive correlations between social avoidance levels and frontal [11C]ABP688 BPND in the entire patients. CONCLUSION Our exploratory study shows significant differences in frontal mGluR5 availability depending on the level of social avoidance in drug-naïve non-smoking MDD patients, suggesting that social avoidance should be considered as one of the clinical factors involved in mGluR5 signaling changes in depression.
Collapse
Affiliation(s)
- Jeong-Hee Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea
| | - Yo-Han Joo
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Young-Don Son
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea.,Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon, Republic of Korea
| | - Hang-Keun Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea.,Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon, Republic of Korea
| | - Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon, Republic of Korea.,Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Incheon, Republic of Korea
| |
Collapse
|
15
|
Kubota M, Kimura Y, Shimojo M, Takado Y, Duarte JMN, Takuwa H, Seki C, Shimada H, Shinotoh H, Takahata K, Kitamura S, Moriguchi S, Tagai K, Obata T, Nakahara J, Tomita Y, Tokunaga M, Maeda J, Kawamura K, Zhang MR, Ichise M, Suhara T, Higuchi M. Dynamic alterations in the central glutamatergic status following food and glucose intake: in vivo multimodal assessments in humans and animal models. J Cereb Blood Flow Metab 2021; 41:2928-2943. [PMID: 34039039 PMCID: PMC8545038 DOI: 10.1177/0271678x211004150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/17/2022]
Abstract
Fluctuations of neuronal activities in the brain may underlie relatively slow components of neurofunctional alterations, which can be modulated by food intake and related systemic metabolic statuses. Glutamatergic neurotransmission plays a major role in the regulation of excitatory tones in the central nervous system, although just how dietary elements contribute to the tuning of this system remains elusive. Here, we provide the first demonstration by bimodal positron emission tomography (PET) and magnetic resonance spectroscopy (MRS) that metabotropic glutamate receptor subtype 5 (mGluR5) ligand binding and glutamate levels in human brains are dynamically altered in a manner dependent on food intake and consequent changes in plasma glucose levels. The brain-wide modulations of central mGluR5 ligand binding and glutamate levels and profound neuronal activations following systemic glucose administration were further proven by PET, MRS, and intravital two-photon microscopy, respectively, in living rodents. The present findings consistently support the notion that food-associated glucose intake is mechanistically linked to glutamatergic tones in the brain, which are translationally accessible in vivo by bimodal PET and MRS measurements in both clinical and non-clinical settings.
Collapse
Affiliation(s)
- Manabu Kubota
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuyuki Kimura
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Masafumi Shimojo
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yuhei Takado
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Joao MN Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Hiroyuki Takuwa
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Chie Seki
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hitoshi Shimada
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hitoshi Shinotoh
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Keisuke Takahata
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Soichiro Kitamura
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Department of Psychiatry, Nara Medical University, Nara, Japan
| | - Sho Moriguchi
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kenji Tagai
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takayuki Obata
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Tomita
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
- Tomita Hospital, Aichi, Japan
| | - Masaki Tokunaga
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jun Maeda
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kazunori Kawamura
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masanori Ichise
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
16
|
Khodaii J, Araj-Khodaei M, Vafaee MS, Wong DF, Gjedde A. Relative strengths of three linearizations of receptor availability: Saturation, Inhibition, and Occupancy plots. J Nucl Med 2021; 63:294-301. [PMID: 34088774 DOI: 10.2967/jnumed.117.204453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
We derived three widely used linearizations from the definition of receptor availability in molecular imaging with Positron Emission Tomography. The purpose of the present research was to determine the convergence of the results of the three methods in terms of three parameters, occupancy (s), distribution volume of the non-displaceable binding compartment (VND), and binding potential of the radioligand (BPND), in the absence of a gold standard. We tested 104 cases culled from the literature and calculated the goodness of fit of each of the Least Squares (LSM) and Deming II (DM) methods of linear regression when applied to the determination of the three main parameters, s, VND, and BPND, using the goodness of fit parameters R2, coefficient of variation (RMSE), and ‖X‖_∞ with both regression methods. We observed superior convergence among the values of s, VND, and BPND for the Inhibition and Occupancy plots. The Inhibition Plot emerged as the plot with a slightly higher degree of convergence (based on R2, RMSE and ‖X‖_∞ value). With two regression methods, Least Squares (LSM) and Deming II (DM), the estimated values of s, VND, and BPND generally converged. The Inhibition and Occupancy plots yielded the best fits to the data, according to the goodness of fit parameters, due primarily to the absent commingling of the dependent and independent variables tested with the Saturation (original Lassen) plot. In the presence of noise, the Inhibition and Occupancy plots yielded higher convergence.
Collapse
Affiliation(s)
- Javad Khodaii
- Amirkabir university of technology (Tehran Polytechnic), Iran, Islamic Republic of
| | - Mostafa Araj-Khodaei
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences ,Tabriz, Iran, Iran, Islamic Republic of
| | - Manouchehr S Vafaee
- Center of Neuroscience, University of Copenhagen, Copenhagen, Denmark, Denmark
| | - Dean F Wong
- Section of Nuclear Medicine, Department of Radiology and Radiological Science, Johns Hopkins Medical, United States
| | - Albert Gjedde
- Center of Neuroscience, University of Copenhagen, Copenhagen, Denmark, Denmark
| |
Collapse
|
17
|
Lam J, DuBois JM, Rowley J, Rousset OG, González-Otárula KA, Soucy JP, Massarweh G, Hall JA, Guiot MC, Zimmermann M, Minuzzi L, Rosa-Neto P, Kobayashi E. In vivo hippocampal cornu ammonis 1-3 glutamatergic abnormalities are associated with temporal lobe epilepsy surgery outcomes. Epilepsia 2021; 62:1559-1568. [PMID: 34060082 DOI: 10.1111/epi.16952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Previous positron emission tomography (PET) studies using [11 C]ABP688 show reduced metabotropic glutamate receptor type 5 (mGluR5) allosteric binding site availability in the epileptogenic hippocampus of mesial temporal lobe epilepsy (MTLE) patients. However, the link between mGluR5 abnormalities and postsurgical outcomes remains unclear. Here, we test whether reduced PET [11 C]ABP688 binding in cornu ammonis (CA) sectors more vulnerable to glutamatergic excitotoxicity relates to surgical outcomes. METHODS We obtained magnetic resonance imaging (MRI) and [11 C]ABP688-PET from 31 unilateral MTLE patients and 30 healthy controls. MRI hippocampal subfields were segmented using FreeSurfer. To respect the lower PET special resolution, MRI-derived anatomical subfields were combined into CA1-3, CA4/dentate gyrus, and Subiculum. Partial volume corrected [11 C]ABP688 nondisplaceable binding potential (BPND ) values were averaged across each subfield, and Z-scores were calculated. Subfield [11 C]ABP688-BPND was compared between seizure-free and non-seizure-free patients. In addition, we also assessed subfield volumes and [18 F]fluorodeoxyglucose (FDG) uptake in each clinical group. RESULTS MTLE [11 C]ABP688-BPND was reduced in ipsilateral (epileptogenic) CA1-3 and CA4/dentate-gyrus (p < .001, 95% confidence interval [CI] = .29-.51) compared to controls, with no difference in Subiculum. [11 C]ABP688-BPND and subfield volumes were compared between seizure-free (Engel IA, n = 13) and non-seizure-free patients (Engel IC-III, n = 10). In ipsilateral CA1-3 only, [11 C]ABP688-BPND was lower in seizure-free patients than in non-seizure-free patients (p = .012, 95% CI = 1.46-11.0) independently of volume. A subset analysis of 12 patients with [11 C]ABP688-PET+[18 F]FDG-PET showed no between-group significant difference in [18 F]FDG uptake, whereas CA1-3 [11 C]ABP688-BPND remained significantly lower in the seven of 12 seizure-free patients (p = .03, 95% CI = -3.13 to -.21). SIGNIFICANCE Reduced mGluR5 allosteric site availability in hippocampal CA1-3, measured in vivo by [11 C]ABP688-PET, is associated with postsurgery seizure freedom independent of atrophy or hypometabolism. Information derived from hippocampal CA1-3 [11 C]ABP688-PET is a promising imaging biomarker potentially impactful in surgical decisions for MRI-negative/PET-negative MTLE patients.
Collapse
Affiliation(s)
- Jack Lam
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Jonathan M DuBois
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Jared Rowley
- Translational Neuroimaging Laboratory, McGill University, Montréal, Québec, Canada
| | - Olivier G Rousset
- Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University, Baltimore, Maryland, USA
| | - Karina A González-Otárula
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Jean-Paul Soucy
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada.,PET Unit, McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Gassan Massarweh
- PET Unit, McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Jeffery A Hall
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Marie-Christine Guiot
- Department of Pathology, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Maria Zimmermann
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Luciano Minuzzi
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada.,Translational Neuroimaging Laboratory, McGill University, Montréal, Québec, Canada.,PET Unit, McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Eliane Kobayashi
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| |
Collapse
|
18
|
Brambilla CR, Scheins J, Issa A, Tellmann L, Herzog H, Rota Kops E, Shah NJ, Neuner I, Lerche CW. Bias evaluation and reduction in 3D OP-OSEM reconstruction in dynamic equilibrium PET studies with 11C-labeled for binding potential analysis. PLoS One 2021; 16:e0245580. [PMID: 33481896 PMCID: PMC7822533 DOI: 10.1371/journal.pone.0245580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/05/2021] [Indexed: 11/26/2022] Open
Abstract
Iterative image reconstruction is widely used in positron emission tomography. However, it is known to contribute to quantitation bias and is particularly pronounced during dynamic studies with 11C-labeled radiotracers where count rates become low towards the end of the acquisition. As the strength of the quantitation bias depends on the counts in the reconstructed frame, it can differ from frame to frame of the acquisition. This is especially relevant in the case of neuro-receptor studies with simultaneous PET/MR when a bolus-infusion protocol is applied to allow the comparison of pre- and post-task effects. Here, count dependent changes in quantitation bias may interfere with task changes. We evaluated the impact of different framing schemes on quantitation bias and its propagation into binding potential (BP) using a phantom decay study with 11C and 3D OP-OSEM. Further, we propose a framing scheme that keeps the true counts per frame constant over the acquisition time as constant framing schemes and conventional increasing framing schemes are unlikely to achieve stable bias values during the acquisition time range. For a constant framing scheme with 5 minutes frames, the BP bias was 7.13±2.01% (10.8% to 3.8%) compared to 5.63±2.85% (7.8% to 4.0%) for conventional increasing framing schemes. Using the proposed constant true counts framing scheme, a stabilization of the BP bias was achieved at 2.56±3.92% (3.5% to 1.7%). The change in BP bias was further studied by evaluating the linear slope during the acquisition time interval. The lowest slope values were observed in the constant true counts framing scheme. The constant true counts framing scheme was effective for BP bias stabilization at relevant activity and time ranges. The mean BP bias under these conditions was 2.56±3.92%, which represents the lower limit for the detection of changes in BP during equilibrium and is especially important in the case of cognitive tasks where the expected changes are low.
Collapse
Affiliation(s)
- Cláudia Régio Brambilla
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- * E-mail:
| | - Jürgen Scheins
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ahlam Issa
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lutz Tellmann
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Hans Herzog
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Elena Rota Kops
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Neuroscience and Medicine, INM-11, Forschungszentrum Jülich GmbH, Jülich, Germany
- JARA–BRAIN–Translational Medicine, RWTH Aachen University, Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Irene Neuner
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA–BRAIN–Translational Medicine, RWTH Aachen University, Aachen, Germany
| | - Christoph W. Lerche
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
19
|
Longitudinal imaging of metabotropic glutamate 5 receptors during early and extended alcohol abstinence. Neuropsychopharmacology 2021; 46:380-385. [PMID: 32919411 PMCID: PMC7852514 DOI: 10.1038/s41386-020-00856-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 01/22/2023]
Abstract
Chronic alcohol use has important effects on the glutamate system. The metabotropic glutamate 5 (mGlu5) receptor has shown promise in preclinical models as a target to reduce drinking-related behaviors and cue-induced reinstatement, motivating human studies of mGlu5 receptor negative allosteric modulators. The goal of this work was to measure levels of mGlu5 receptor availability with positron emission tomography (PET) imaging using the mGlu5 receptor-specific radiotracer [18F]FPEB during early and extended alcohol abstinence. Subjects who met DSM-5 criteria for alcohol use disorder (AUD; n = 17) were admitted inpatient for the study duration. [18F]FPEB PET scans were acquired first during early abstinence (6 ± 4 days after last drink) and a second time during extended abstinence (n = 13; 27 ± 6 days after last drink). A single scan was acquired in healthy controls matched for sex and smoking status (n = 20). [18F]FPEB total volumes of distribution (VT) corrected for partial volume effects were measured using equilibrium analysis throughout the brain. A linear mixed model controlling for smoking status and sex identified significantly higher [18F]FPEB VT in AUD subjects at early abstinence compared to controls (F(1,32) = 7.23, p = 0.011). Post-hoc analyses revealed this effect to occur in cortical brain regions. No evidence for significant changes in [18F]FPEB VT over time were established. These findings provide human evidence consistent with a robust preclinical literature supporting mGlu5 receptor drugs as pharmacotherapies for AUD.
Collapse
|
20
|
Smart K, Nagano-Saito A, Milella MS, Sakae DY, Favier M, Vigneault E, Louie L, Hamilton A, Ferguson SSG, Rosa-Neto P, Narayanan S, El Mestikawy S, Leyton M, Benkelfat C. Metabotropic glutamate type 5 receptor binding availability during dextroamphetamine sensitization in mice and humans. J Psychiatry Neurosci 2021; 46:E1-E13. [PMID: 32559027 PMCID: PMC7955855 DOI: 10.1503/jpn.190162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Glutamate transmission is implicated in drug-induced behavioural sensitization and the associated long-lasting increases in mesolimbic output. Metabotropic glutamate type 5 (mGlu5) receptors might be particularly important, but most details are poorly understood. METHODS We first assessed in mice (n = 51, all male) the effects of repeated dextroamphetamine administration (2.0 mg/kg, i.p.) on locomotor activity and binding of the mGlu5 ligand [3H]ABP688. In a parallel study, in 19 stimulant-drug-naïve healthy human volunteers (14 female) we administered 3 doses of dextroamphetamine (0.3 mg/kg, p.o.) or placebo, followed by a fourth dose 2 weeks later. We measured [11C]ABP688 binding using positron emission tomography before and after the induction phase. We assessed psychomotor and behavioural sensitization using speech rate, eye blink rate and self-report. We measured the localization of mGlu5 relative to synaptic markers in mouse striatum using immunofluorescence. RESULTS We observed amphetamine-induced psychomotor sensitization in mice and humans. We did not see group differences in mGlu5 availability following 3 pre-challenge amphetamine doses, but group differences did develop in mice administered 5 doses. In mice and humans, individual differences in mGlu5 binding after repeated amphetamine administration were negatively correlated with the extent of behavioural sensitization. In drug-naïve mice, mGlu5 was expressed at 67% of excitatory synapses on dendrites of striatal medium spiny neur. LIMITATIONS Correlational results should be interpreted as suggestive because of the limited sample size. We did not assess sex differences. CONCLUSION Together, these results suggest that changes in mGlu5 availability are not part of the earliest neural adaptations in stimulant-induced behavioural sensitization, but low mGlu5 binding might identify a higher propensity for sensitization.
Collapse
Affiliation(s)
- Kelly Smart
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Atsuko Nagano-Saito
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Michele S Milella
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Diana Yae Sakae
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Mathieu Favier
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Erika Vigneault
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Leanne Louie
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Alison Hamilton
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Stephen S G Ferguson
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Pedro Rosa-Neto
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Sridar Narayanan
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Salah El Mestikawy
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Marco Leyton
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Chawki Benkelfat
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| |
Collapse
|
21
|
Brašić JR, Nandi A, Russell DS, Jennings D, Barret O, Mathur A, Slifer K, Sedlak T, Martin SD, Brinson Z, Vyas P, Seibyl JP, Berry-Kravis EM, Wong DF, Budimirovic DB. Reduced Expression of Cerebral Metabotropic Glutamate Receptor Subtype 5 in Men with Fragile X Syndrome. Brain Sci 2020; 10:E899. [PMID: 33255214 PMCID: PMC7760509 DOI: 10.3390/brainsci10120899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/07/2020] [Accepted: 11/14/2020] [Indexed: 12/28/2022] Open
Abstract
Glutamatergic receptor expression is mostly unknown in adults with fragile X syndrome (FXS). Favorable behavioral effects of negative allosteric modulators (NAMs) of the metabotropic glutamate receptor subtype 5 (mGluR5) in fmr1 knockout (KO) mouse models have not been confirmed in humans with FXS. Measurement of cerebral mGluR5 expression in humans with FXS exposed to NAMs might help in that effort. We used positron emission tomography (PET) to measure the mGluR5 density as a proxy of mGluR5 expression in cortical and subcortical brain regions to confirm target engagement of NAMs for mGluR5s. The density and the distribution of mGluR5 were measured in two independent samples of men with FXS (N = 9) and typical development (TD) (N = 8). We showed the feasibility of this complex study including MRI and PET, meaning that this challenging protocol can be accomplished in men with FXS with an adequate preparation. Analysis of variance of estimated mGluR5 expression showed that mGluR5 expression was significantly reduced in cortical and subcortical regions of men with FXS in contrast to age-matched men with TD.
Collapse
Affiliation(s)
- James R. Brašić
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (A.M.); (T.S.); (S.D.M.); (Z.B.); (P.V.); (D.F.W.)
| | - Ayon Nandi
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (A.M.); (T.S.); (S.D.M.); (Z.B.); (P.V.); (D.F.W.)
| | - David S. Russell
- Clinical Research, Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Research Clinic, Invicro LLC, New Haven, CT 06510, USA
| | - Danna Jennings
- Clinical Research, Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Research Clinic, Invicro LLC, New Haven, CT 06510, USA
- Denali Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Olivier Barret
- Clinical Research, Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
| | - Anil Mathur
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (A.M.); (T.S.); (S.D.M.); (Z.B.); (P.V.); (D.F.W.)
| | - Keith Slifer
- Department of Psychiatry and Behavioral Sciences-Child Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Department of Behavioral Psychology, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Thomas Sedlak
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (A.M.); (T.S.); (S.D.M.); (Z.B.); (P.V.); (D.F.W.)
- Department of Psychiatry and Behavioral Sciences-General Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Samuel D. Martin
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (A.M.); (T.S.); (S.D.M.); (Z.B.); (P.V.); (D.F.W.)
- Department of Neuroscience, Zanvyl Krieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zabecca Brinson
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (A.M.); (T.S.); (S.D.M.); (Z.B.); (P.V.); (D.F.W.)
| | - Pankhuri Vyas
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (A.M.); (T.S.); (S.D.M.); (Z.B.); (P.V.); (D.F.W.)
| | - John P. Seibyl
- Clinical Research, Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Research Clinic, Invicro LLC, New Haven, CT 06510, USA
| | - Elizabeth M. Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Dean F. Wong
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (A.M.); (T.S.); (S.D.M.); (Z.B.); (P.V.); (D.F.W.)
- Precision Radio-Theranostics Translational Laboratories, Mallinckrodt Institute of Radiology, School of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry and Behavioral Sciences-Child Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Departments of Psychiatry and Neurogenetics, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
22
|
Groman SM, Hillmer AT, Heather L, Fowles K, Holden D, Morris ED, Lee D, Taylor JR. Dysregulation of Decision Making Related to Metabotropic Glutamate 5, but Not Midbrain D 3, Receptor Availability Following Cocaine Self-administration in Rats. Biol Psychiatry 2020; 88:777-787. [PMID: 32826065 PMCID: PMC8935943 DOI: 10.1016/j.biopsych.2020.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/05/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Compulsive patterns of drug use are thought to be the consequence of drug-induced adaptations in the neural mechanisms that enable behavior to be flexible. Neuroimaging studies have found evidence of robust alterations in glutamate and dopamine receptors within brain regions that are known to be critical for decision-making processes in cocaine-dependent individuals, and these changes have been argued to be the consequence of persistent drug use. The causal relationships among drug-induced alterations, cocaine taking, and maladaptive decision-making processes, however, are difficult to establish in humans. METHODS We assessed decision making in adult male rats using a probabilistic reversal learning task and used positron emission tomography with the [11C]-(+)-PHNO and [18F]FPEB radioligands to quantify regional dopamine D2/3 and metabotropic glutamate 5 (mGlu5) receptor availability, respectively, before and after 21 days of cocaine or saline self-administration. Tests of motivation and relapse-like behaviors were also conducted. RESULTS We found that self-administration of cocaine, but not of saline, disrupted behavior in the probabilistic reversal learning task measured by selective impairments in negative-outcome updating and also increased cortical mGlu5 receptor availability following 2 weeks of forced abstinence. D2/3 and, importantly, midbrain D3 receptor availability was not altered following 2 weeks of abstinence from cocaine. Notably, the degree of the cocaine-induced increase in cortical mGlu5 receptor availability was related to the degree of disruption in negative-outcome updating. CONCLUSIONS These findings suggest that cocaine-induced changes in mGlu5 signaling may be a mechanism by which disruptions in negative-outcome updating emerge in cocaine-dependent individuals.
Collapse
Affiliation(s)
- Stephanie M. Groman
- Department of Psychiatry Yale University,Correspondence should be addressed to: Stephanie M. Groman, Ph.D. (), Jane R. Taylor, Ph.D. (), 34 Park Street, New Haven CT 06515
| | - Ansel T. Hillmer
- Department of Psychiatry Yale University,Department of Radiology and Biomedical Imaging Yale University,Department of Yale Positron Emission Tomography Center Yale University
| | - Liu Heather
- Department of Radiology and Biomedical Imaging Yale University
| | - Krista Fowles
- Department of Yale Positron Emission Tomography Center Yale University
| | - Daniel Holden
- Department of Yale Positron Emission Tomography Center Yale University
| | - Evan D. Morris
- Department of Radiology and Biomedical Imaging Yale University,Department of Yale Positron Emission Tomography Center Yale University,Invicro LLC
| | - Daeyeol Lee
- The Zanvyl Krieger Mind/Brain Institute, The Solomon H Snyder Department of Neuroscience, Department of Psychological and Brain Sciences, Johns Hopkins University
| | - Jane R. Taylor
- Department of Psychiatry Yale University,Department of Neuroscience Yale University,Correspondence should be addressed to: Stephanie M. Groman, Ph.D. (), Jane R. Taylor, Ph.D. (), 34 Park Street, New Haven CT 06515
| |
Collapse
|
23
|
Holmes SE, Gallezot JD, Davis MT, DellaGioia N, Matuskey D, Nabulsi N, Krystal JH, Javitch JA, DeLorenzo C, Carson RE, Esterlis I. Measuring the effects of ketamine on mGluR5 using [ 18F]FPEB and PET. J Cereb Blood Flow Metab 2020; 40:2254-2264. [PMID: 31744389 PMCID: PMC7585925 DOI: 10.1177/0271678x19886316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 01/21/2023]
Abstract
The metabotropic glutamate receptor 5 (mGluR5) is a promising treatment target for psychiatric disorders due to its modulatory effects on glutamate transmission. Using [11C]ABP688, we previously showed that the rapidly acting antidepressant ketamine decreases mGluR5 availability. The mGluR5 radioligand [18F]FPEB offers key advantages over [11C]ABP688; however, its suitability for drug challenge studies is unknown. We evaluated whether [18F]FPEB can be used to capture ketamine-induced effects on mGluR5. Seven healthy subjects participated in three [18F]FPEB scans: a baseline, a same-day post-ketamine, and a 24-h post-ketamine scan. The outcome measure was VT/fP, obtained using a two-tissue compartment model and a metabolite-corrected arterial input function. Dissociative symptoms, heart rate and blood pressure increased following ketamine infusion. [18F]FPEB VT/fP decreased by 9% across the cortex after ketamine infusion, with minimal difference between baseline and 24-h scans. Compared to our previous work using [11C]ABP688, the magnitude of the ketamine-induced change in mGluR5 was smaller using [18F]FPEB; however, effect sizes were similar for the same-day post-ketamine vs. baseline scan (Cohen's d = 0.75 for [18F]FPEB and 0.88 for [11C]ABP688). [18F]FPEB is therefore able to capture some of the effects of ketamine on mGluR5, but [11C]ABP688 appears to be more suitable in drug challenge paradigms designed to probe glutamate transmission.
Collapse
Affiliation(s)
- Sophie E Holmes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | - Margaret T Davis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Nicole DellaGioia
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - David Matuskey
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Jonathan A Javitch
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
- Departments of Psychiatry and Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Christine DeLorenzo
- Department of Psychiatry and Behavioral Health, Stony Brook University, New York, NY, USA
| | - Richard E Carson
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
24
|
Kim JH, Marton J, Ametamey SM, Cumming P. A Review of Molecular Imaging of Glutamate Receptors. Molecules 2020; 25:molecules25204749. [PMID: 33081223 PMCID: PMC7587586 DOI: 10.3390/molecules25204749] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Molecular imaging with positron emission tomography (PET) and single photon emission computed tomography (SPECT) is a well-established and important in vivo technique to evaluate fundamental biological processes and unravel the role of neurotransmitter receptors in various neuropsychiatric disorders. Specific ligands are available for PET/SPECT studies of dopamine, serotonin, and opiate receptors, but corresponding development of radiotracers for receptors of glutamate, the main excitatory neurotransmitter in mammalian brain, has lagged behind. This state of affairs has persisted despite the central importance of glutamate neurotransmission in brain physiology and in disorders such as stroke, epilepsy, schizophrenia, and neurodegenerative diseases. Recent years have seen extensive efforts to develop useful ligands for molecular imaging of subtypes of the ionotropic (N-methyl-D-aspartate (NMDA), kainate, and AMPA/quisqualate receptors) and metabotropic glutamate receptors (types I, II, and III mGluRs). We now review the state of development of radioligands for glutamate receptor imaging, placing main emphasis on the suitability of available ligands for reliable in vivo applications. We give a brief account of the radiosynthetic approach for selected molecules. In general, with the exception of ligands for the GluN2B subunit of NMDA receptors, there has been little success in developing radiotracers for imaging ionotropic glutamate receptors; failure of ligands for the PCP/MK801 binding site in vivo doubtless relates their dependence on the open, unblocked state of the ion channel. Many AMPA and kainite receptor ligands with good binding properties in vitro have failed to give measurable specific binding in the living brain. This may reflect the challenge of developing brain-penetrating ligands for amino acid receptors, compounded by conformational differences in vivo. The situation is better with respect to mGluR imaging, particularly for the mGluR5 subtype. Several successful PET ligands serve for investigations of mGluRs in conditions such as schizophrenia, depression, substance abuse and aging. Considering the centrality and diversity of glutamatergic signaling in brain function, we have relatively few selective and sensitive tools for molecular imaging of ionotropic and metabotropic glutamate receptors. Further radiopharmaceutical research targeting specific subtypes and subunits of the glutamate receptors may yet open up new investigational vistas with broad applications in basic and clinical research.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
- Gachon Advanced Institute for Health Science and Technology, Graduate School, Incheon 21565, Korea
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: (J.-H.K.); (P.C.); Tel.: +41-31-664-0498 (P.C.); Fax: +41-31-632-7663 (P.C.)
| | - János Marton
- ABX Advanced Biochemical Compounds, Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Strasse 10-14, D-1454 Radeberg, Germany;
| | - Simon Mensah Ametamey
- Centre for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland;
| | - Paul Cumming
- Department of Nuclear Medicine, University of Bern, Inselspital, Freiburgstrasse 18, CH-3010 Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane QLD 4059, Australia
- Correspondence: (J.-H.K.); (P.C.); Tel.: +41-31-664-0498 (P.C.); Fax: +41-31-632-7663 (P.C.)
| |
Collapse
|
25
|
Association between human gray matter metabotropic glutamate receptor-5 availability in vivo and white matter properties: a [ 11C]ABP688 PET and diffusion tensor imaging study. Brain Struct Funct 2020; 225:1805-1816. [PMID: 32495131 DOI: 10.1007/s00429-020-02094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
Excitatory corticofugal projections in the subcortical white matter (WM) convey signals arising from local neuronal activity in the gray matter (GM). We hypothesized that metabotropic glutamate receptor-5 (mGluR5) availability in GM, as a surrogate marker for local glutamatergic neuronal activity, correlates with WM properties in healthy brain. We examined the relationship in healthy individuals between GM mGluR5 availability measured in vivo using [11C]ABP688 positron emission tomography (PET) and WM properties measured as fractional anisotropy (FA) using diffusion tensor imaging (DTI). Twenty-three healthy volunteers underwent this multimodal imaging. We calculated mGluR5 availability, [11C]ABP688 binding potential (BPND), using the simplified reference tissue model, and generated DTI FA maps using FMRIB's Diffusion Toolbox (FDT) along with Tract-Based Spatial Statistics (TBSS). To investigate the relationship between mGluR5 availability and FA, we performed voxel-wise and region of interest (ROI)-based analyses. The voxel-wise analysis showed significant positive correlations between the whole cerebral GM [11C]ABP688 BPND and the FA in widespread WM regions including the corpus callosum body, internal capsule, and corona radiata (FWE corrected p < 0.05). The ROI-based analysis also revealed significant positive correlations (Bonferroni-corrected threshold p < 0.00021) between [11C]ABP688 BPND in the frontal and parietal cortical GM and FA in the internal capsule (anterior limb and retrolenticular part). Using a novel multimodal imaging interrogation, we provide the first evidence that GM mGluR5 availability is significantly positively associated with WM properties in healthy subjects. Future comparison studies could determine whether this relationship is perturbed in neuropsychiatric disorders with dysregulated mGluR5 signaling.
Collapse
|
26
|
Characterization of [ 11C]PXT012253 as a PET Radioligand for mGlu 4 Allosteric Modulators in Nonhuman Primates. Mol Imaging Biol 2020; 21:500-508. [PMID: 30066121 DOI: 10.1007/s11307-018-1257-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Modulation of presynaptic metabotropic glutamate receptor 4 (mGlu4) by an allosteric ligand has been proposed as a promising therapeutic target in Parkinson's disease and levodopa-induced dyskinesia. A positron emission tomography (PET) ligand for an allosteric site of mGlu4 may provide evidence that a clinical drug candidate reaches and binds the target. A carbon-11-labeled PET radioligand binding an allosteric site of mGlu4, [11C]PXT012253, has been recently developed. Here, we describe the detailed characterization of this novel radiolabeled mGlu4 ligand in nonhuman primates. PROCEDURES [11C]PXT012253 binding in the brain of cynomolgus monkeys, under the baseline and blocking conditions with the structurally different mGlu4 allosteric ligand PXT002331, currently in clinical trials for Parkinson's disease, was quantified with compartment and graphical modeling approaches using a radiometabolite-corrected plasma input function. Whole-body biodistribution of [11C]PXT012253 was then assessed using PET/x-ray computed tomography to estimate the human effective doses of [11C]PXT012253 for further clinical studies. RESULTS [11C]PXT012253 displayed binding in mGlu4-expressing regions in the brain of cynomolgus monkeys. Brain regional time-activity curves of [11C]PXT012253 were well described in the two-tissue compartment model (2TC). Total distribution volume was stably estimated using Logan plot and multilinear analysis (MA1) although 2TC showed unstable values in some cases. Competition with PXT002331 showed high specific binding in the total distribution volume. Whole-body PET showed high accumulation of [11C]PXT012253 in the liver, kidney, heart, and brain in the initial phase. The radioligand was excreted through both the gastrointestinal and the urinary tracts. Effective dose of [11C]PXT012253 was estimated to be 0.0042 mSv/MBq. CONCLUSIONS [11C]PXT012253 was shown to be a promising PET radioligand for mGlu4 allosteric modulators in the monkey brain. MA1 would be the choice of quantitative method. Further development of [11C]PXT012253 in human subjects is warranted.
Collapse
|
27
|
Régio Brambilla C, Veselinović T, Rajkumar R, Mauler J, Orth L, Ruch A, Ramkiran S, Heekeren K, Kawohl W, Wyss C, Kops ER, Scheins J, Tellmann L, Boers F, Neumaier B, Ermert J, Herzog H, Langen K, Jon Shah N, Lerche C, Neuner I. mGluR5 receptor availability is associated with lower levels of negative symptoms and better cognition in male patients with chronic schizophrenia. Hum Brain Mapp 2020; 41:2762-2781. [PMID: 32150317 PMCID: PMC7294054 DOI: 10.1002/hbm.24976] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/29/2022] Open
Abstract
Consistent findings postulate disturbed glutamatergic function (more specifically a hypofunction of the ionotropic NMDA receptors) as an important pathophysiologic mechanism in schizophrenia. However, the role of the metabotropic glutamatergic receptors type 5 (mGluR5) in this disease remains unclear. In this study, we investigated their significance (using [11C]ABP688) for psychopathology and cognition in male patients with chronic schizophrenia and healthy controls. In the patient group, lower mGluR5 binding potential (BPND) values in the left temporal cortex and caudate were associated with higher general symptom levels (negative and depressive symptoms), lower levels of global functioning and worse cognitive performance. At the same time, in both groups, mGluR5 BPND were significantly lower in smokers (F[27,1] = 15.500; p = .001), but without significant differences between the groups. Our findings provide support for the concept that the impaired function of mGluR5 underlies the symptoms of schizophrenia. They further supply a new perspective on the complex relationship between tobacco addiction and schizophrenia by identifying glutamatergic neurotransmission—in particularly mGluR5—as a possible connection to a shared vulnerability.
Collapse
Affiliation(s)
- Cláudia Régio Brambilla
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Tanja Veselinović
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Ravichandran Rajkumar
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
- JARA – BRAIN – Translational MedicineAachenGermany
| | - Jörg Mauler
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Linda Orth
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Andrej Ruch
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Shukti Ramkiran
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Karsten Heekeren
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity Hospital of PsychiatryZürichSwitzerland
| | - Wolfram Kawohl
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity Hospital of PsychiatryZürichSwitzerland
| | - Christine Wyss
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity Hospital of PsychiatryZürichSwitzerland
| | - Elena Rota Kops
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Jürgen Scheins
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Lutz Tellmann
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Frank Boers
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Bernd Neumaier
- INM‐5, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Johannes Ermert
- INM‐5, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Hans Herzog
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Karl‐Josef Langen
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- JARA – BRAIN – Translational MedicineAachenGermany
- Department of Nuclear MedicineRWTH Aachen UniversityAachenGermany
| | - N. Jon Shah
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- JARA – BRAIN – Translational MedicineAachenGermany
- INM‐11, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of NeurologyRWTH Aachen UniversityAachenGermany
| | - Christoph Lerche
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Irene Neuner
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
- JARA – BRAIN – Translational MedicineAachenGermany
| |
Collapse
|
28
|
Kim JH, Joo YH, Son YD, Kim JH, Kim YK, Kim HK, Lee SY, Ido T. In vivo metabotropic glutamate receptor 5 availability-associated functional connectivity alterations in drug-naïve young adults with major depression. Eur Neuropsychopharmacol 2019; 29:278-290. [PMID: 30553696 DOI: 10.1016/j.euroneuro.2018.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 11/20/2018] [Accepted: 12/01/2018] [Indexed: 12/17/2022]
Abstract
There has been increasing interest in glutamatergic neurotransmission as a putative underlying mechanism of depressive disorders. We performed [11C]ABP688 positron emission tomography (PET) and resting-state functional magnetic resonance imaging (rs-fMRI) in drug-naïve young adult patients with major depression to examine alterations in metabotropic glutamate receptor-5 (mGluR5) availability, and to investigate their functional significance relating to neural systems-level changes in major depression. Sixteen psychotropic drug-naïve patients with major depression without comorbidity (median age: 22.8 years) and fifteen matched healthy controls underwent [11C]ABP688 PET imaging and 3-T MRI. For mGluR5 availability, we quantified [11C]ABP688 binding potential (BPND) using the simplified reference tissue model. Seed-based functional connectivity analysis was performed using rs-fMRI data with regions derived from quantitative [11C]ABP688 PET analysis as seeds. In region-of-interest (ROI)-based and voxel-based analyses, the [11C]ABP688 BPND was significantly lower in patients than in controls in the prefrontal cortex ROI and in voxel clusters within the prefrontal, temporal, and parietal cortices, and supramarginal gyrus. The [11C]ABP688 BPND seed-based functional connectivity analysis showed significantly less negative connectivity from the inferior parietal cortex seed to the fusiform gyrus and inferior occipital cortex in patients than in controls. The correlation patterns between [11C]ABP688 BPND and functional connectivity strength (β) for the superior prefrontal cortex seed were opposite in the depression and control groups. In conclusion, using a novel approach combining [11C]ABP688 PET and rs-fMRI analyses, our study provides a first evidence of lower mGluR5 availability and related functional connectivity alterations in drug-naïve young adults with major depression without comorbidity.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Gachon University, 1198 Guwol-dong, Namdong-gu, Incheon 405-760, South Korea; Neuroscience Research Institute, Gachon University, Incheon, South Korea; Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, South Korea.
| | - Yo-Han Joo
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
| | - Young-Don Son
- Neuroscience Research Institute, Gachon University, Incheon, South Korea; Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, South Korea; Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, South Korea
| | - Jeong-Hee Kim
- Neuroscience Research Institute, Gachon University, Incheon, South Korea; Research Institute for Advanced Industrial Technology, Korea University, Sejong, South Korea
| | - Yun-Kwan Kim
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
| | - Hang-Keun Kim
- Neuroscience Research Institute, Gachon University, Incheon, South Korea; Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, South Korea; Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, South Korea
| | - Sang-Yoon Lee
- Neuroscience Research Institute, Gachon University, Incheon, South Korea; Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, South Korea; Department of Neuroscience, Gachon University College of Medicine, Gachon University, Incheon, South Korea
| | - Tatsuo Ido
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
| |
Collapse
|
29
|
Aguilar DD, Strecker RE, Basheer R, McNally JM. Alterations in sleep, sleep spindle, and EEG power in mGluR5 knockout mice. J Neurophysiol 2019; 123:22-33. [PMID: 31747354 DOI: 10.1152/jn.00532.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The type 5 metabotropic glutamate receptor (mGluR5) represents a novel therapeutic target for schizophrenia and other disorders. Schizophrenia is associated with progressive abnormalities in cortical oscillatory processes including reduced spindles (8-15 Hz) during sleep and increased delta (0.5-4 Hz)- and gamma-band activity (30-80 Hz) during wakefulness. mGluR5 knockout (KO) mice demonstrate many schizophrenia-like behaviors, including abnormal sleep. To examine the effects of mGluR5 on the maintenance of the neocortical circuitry responsible for such neural oscillations, we analyzed sleep/wake electroencephalographic (EEG) activity of mGluR5 KO mice at baseline, after 6 h of sleep deprivation, and during a visual method of cortical entrainment (visual steady state response). We hypothesized mGluR5-KO mice would exhibit translationally relevant abnormalities in sleep and neural oscillations that mimic schizophrenia. Power spectral and spindle density analyses were performed across 24-h EEG recordings in mGluR5-KO mice and wild-type (WT) controls. Novel findings in mGluR5 KO mice include deficits in sleep spindle density, wake alpha power, and 40-Hz visual task-evoked gamma power and phase locking. Sigma power (10-15 Hz), an approximation of spindle activity, was also reduced during non-rapid eye movement sleep transitions. Our observations on abnormal sleep/wake are generally in agreement with previous reports, although we did not replicate changes in rapid eye movement sleep. The timing of these phenotypes may suggest an impaired circadian process in mGluR5 KO mice. In conclusion, EEG phenotypes in mGluR5 KO mice resemble deficits observed in patients with schizophrenia. These findings implicate mGluR5-mediated pathways in several translationally relevant phenotypes associated with schizophrenia, and suggest that agents targeting this receptor may have harmful consequences on sleep health and daily patterns of EEG power.NEW & NOTEWORTHY Metabotropic glutamate receptor type 5 (mGluR5) knockout (KO) mice show several translationally relevant abnormalities in neural oscillatory activity associated with schizophrenia. These include deficits in sleep spindle density, sigma and alpha power, and 40-Hz task-evoked gamma power. The timing of these phenotypes suggests an impaired circadian process in these mice. Previously reported rapid eye movement sleep deficits in this model were not observed. These findings suggest mGluR5-enhancing drugs may improve sleep stability and sleep spindle density, which could impact memory and cognition.
Collapse
Affiliation(s)
- David D Aguilar
- Department of Psychiatry, Veterans Affairs Boston Healthcare System and Harvard Medical School, West Roxbury, Massachusetts
| | - Robert E Strecker
- Department of Psychiatry, Veterans Affairs Boston Healthcare System and Harvard Medical School, West Roxbury, Massachusetts
| | - Radhika Basheer
- Department of Psychiatry, Veterans Affairs Boston Healthcare System and Harvard Medical School, West Roxbury, Massachusetts
| | - James M McNally
- Department of Psychiatry, Veterans Affairs Boston Healthcare System and Harvard Medical School, West Roxbury, Massachusetts
| |
Collapse
|
30
|
Bdair H, Tsai IH, Smart K, Benkelfat C, Leyton M, Kostikov A. Radiosynthesis of the diastereomerically pure (E)-[ 11 C]ABP688. J Labelled Comp Radiopharm 2019; 62:860-864. [PMID: 31418468 DOI: 10.1002/jlcr.3802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 11/12/2022]
Abstract
We report an efficient protocol for the radiosynthesis of diastereomerically pure (E)-[11 C]ABP688, a positron emission tomography (PET) tracer for metabotropic glutamate type 5 (mGlu5) receptor imaging. The protocol reliably provides sterile and pyrogen-free formulation of (E)-[11 C]ABP688 suitable for preclinical and clinical PET imaging with >99% diastereomeric excess (d.e.), >99% overall radiochemical purity (RCP), 14.9 ± 4.3% decay-corrected radiochemical yield (RCY), and 148.86 ± 79.8 GBq/μmol molar activity in 40 minutes from the end of bombardment.
Collapse
Affiliation(s)
- Hussein Bdair
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada.,McGill University, Department of Psychiatry, Montreal, Quebec, Canada
| | - I-Huang Tsai
- McGill University, McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Kelly Smart
- Yale University School of Medicine, Yale PET Center, New Haven, Connecticut
| | - Chawki Benkelfat
- McGill University, Department of Psychiatry, Montreal, Quebec, Canada
| | - Marco Leyton
- McGill University, Department of Psychiatry, Montreal, Quebec, Canada
| | - Alexey Kostikov
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada.,McGill University, McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Decoding neuropathic pain severity using distinct patterns of corticolimbic metabotropic glutamate receptor 5. Neuroimage 2019; 190:303-312. [DOI: 10.1016/j.neuroimage.2018.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/08/2018] [Accepted: 07/06/2018] [Indexed: 12/27/2022] Open
|
32
|
Kosten L, Verhaeghe J, Wyffels L, Stroobants S, Staelens S. Acute Ketamine Infusion in Rat Does Not Affect In Vivo [ 11C]ABP688 Binding to Metabotropic Glutamate Receptor Subtype 5. Mol Imaging 2019; 17:1536012118788636. [PMID: 30213221 PMCID: PMC6144515 DOI: 10.1177/1536012118788636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Detecting changes in metabotropic glutamate receptor 5 (mGluR5) availability through molecular imaging with the positron emission tomography (PET) tracer [11C]ABP688 is valuable for studying dysfunctional glutamate transmission associated with neuropsychiatric disorders. Using an infusion protocol in rats, we visualized the acute effect of subanesthetic doses of ketamine on mGluR5 in rat brain. Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist known to increase glutamate release. Imaging was performed with a high-affinity PET ligand [11C]ABP688, a negative allosteric modulator of mGluR5. Binding did not change significantly from baseline to ketamine in any region, thereby confirming previous literature with other NMDA receptor antagonists in rodents. Hence, in rats, we could not reproduce the findings in a human setup showing significant decreases in the [11C]ABP688 binding after a ketamine bolus followed by ketamine infusion. Species differences may have contributed to the different findings in the present study of rats. In conclusion, we could not confirm in rats that endogenous glutamate increases by ketamine infusion are reflected in [11C]ABP688 binding decreases as was previously shown for humans.
Collapse
Affiliation(s)
- Lauren Kosten
- 1 Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Jeroen Verhaeghe
- 1 Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Leonie Wyffels
- 1 Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium.,2 Department of Nuclear Medicine, University Hospital Antwerp, Antwerp, Belgium
| | - Sigrid Stroobants
- 1 Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium.,2 Department of Nuclear Medicine, University Hospital Antwerp, Antwerp, Belgium
| | - Steven Staelens
- 1 Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
33
|
van der Aart J, Golla SSV, van der Pluijm M, Schwarte LA, Schuit RC, Klein PJ, Metaxas A, Windhorst AD, Boellaard R, Lammertsma AA, van Berckel BNM. First in human evaluation of [ 18F]PK-209, a PET ligand for the ion channel binding site of NMDA receptors. EJNMMI Res 2018; 8:69. [PMID: 30054846 PMCID: PMC6063804 DOI: 10.1186/s13550-018-0424-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/06/2018] [Indexed: 12/05/2022] Open
Abstract
Background Efforts to develop suitable positron emission tomography (PET) tracers for the ion channel site of human N-methyl-d-aspartate (NMDA) receptors have had limited success. [18F]PK-209 is a GMOM derivative that binds to the intrachannel phencyclidine site with high affinity and selectivity. Primate PET studies have shown that the volume of distribution in the brain was reduced by administration of the NMDA receptor antagonist MK-801, consistent with substantial specific binding. The purpose of the present study was to evaluate [18F]PK-209 in 10 healthy humans by assessing test–retest reproducibility and binding specificity following intravenous S-ketamine administration (0.5 mg ∙ kg−1). Five healthy subjects underwent a test–retest protocol, and five others a baseline-ketamine protocol. In all cases dynamic, 120-min PET scans were acquired together with metabolite-corrected arterial plasma input functions. Additional input functions were tested based on within-subject and population-average parent fractions. Results Best fits of the brain time-activity curves were obtained using an irreversible two-tissue compartment model with additional blood volume parameter. Mean test–retest variability of the net rate of influx Ki varied between 7 and 24% depending on the input function. There were no consistent changes in [18F]PK-209 PET parameters following ketamine administration, which may be a consequence of the complex endogenous ligand processes that affect channel gating. Conclusions The molecular interaction between [18F]PK-209 and the binding site within the NMDA receptor ion channel is insufficiently reproducible and specific to be a reliable imaging agent for its quantification. Trial registration EudraCT 2014-001735-36. Registered 28 April 2014
Collapse
Affiliation(s)
- Jasper van der Aart
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands. .,Centre for Human Drug Research, Leiden, The Netherlands.
| | - Sandeep S V Golla
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Marieke van der Pluijm
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Lothar A Schwarte
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Robert C Schuit
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Pieter J Klein
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Athanasios Metaxas
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Smart K, Cox SML, Nagano-Saito A, Rosa-Neto P, Leyton M, Benkelfat C. Test-retest variability of [ 11 C]ABP688 estimates of metabotropic glutamate receptor subtype 5 availability in humans. Synapse 2018; 72:e22041. [PMID: 29935121 DOI: 10.1002/syn.22041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022]
Abstract
[11 C]ABP688 is a positron emission tomography (PET) radioligand that binds selectively to metabotropic glutamate type 5 receptors (mGluR5). The use of this tracer has identified receptor binding changes in clinical populations, and has been informative in drug occupancy studies. However, previous studies have found significant increases in [11 C]ABP688 binding in the later scan of same-day comparisons, and estimates of test-retest reliability under consistent scanning conditions are not available. The objective of this study was to assess the variability of [11 C]ABP688 binding in healthy people in scans performed at the same time of day. Two [11 C]ABP688 scans were acquired in eight healthy volunteers (6 women, 2 men) using a high-resolution research tomograph (HRRT). Scans were acquired 3 weeks apart with start times between 10:00am and 1:30pm. Mean mGluR5 binding potential (BPND ) values were calculated across cortical, striatal and limbic brain regions. Participants reported on subjective mood state after each scan and blood samples were drawn for cortisol analysis. No significant change in BPND between scans was observed. Variability in BPND values of 11-21% was observed across regions, with the greatest change in the hippocampus and amygdala. Reliability was low to moderate. BPND was not statistically related to scan start time, subjective anxiety, serum cortisol levels, or menstrual phase in women. Overall, [11 C]ABP688 BPND estimates show moderate variability in healthy people. Reliability is fair in cortical and striatal regions, and lower in limbic regions. Future research using this ligand should account for this in study design and analysis.
Collapse
Affiliation(s)
- Kelly Smart
- Department of Psychiatry, McGill University, 1033 Pine Ave W, Montreal, Quebec, H3A 1A1, Canada
| | - Sylvia M L Cox
- Department of Psychiatry, McGill University, 1033 Pine Ave W, Montreal, Quebec, H3A 1A1, Canada
| | - Atsuko Nagano-Saito
- Department of Psychiatry, McGill University, 1033 Pine Ave W, Montreal, Quebec, H3A 1A1, Canada
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Ave, Montreal, Quebec, H3A 2B4, Canada.,Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, 6825 Boulevard LaSalle, Verdun, Quebec, H4H 1R3, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, 1033 Pine Ave W, Montreal, Quebec, H3A 1A1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Ave, Montreal, Quebec, H3A 2B4, Canada
| | - Chawki Benkelfat
- Department of Psychiatry, McGill University, 1033 Pine Ave W, Montreal, Quebec, H3A 1A1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Ave, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
35
|
Esterlis I, Holmes SE, Sharma P, Krystal JH, DeLorenzo C. Metabotropic Glutamatergic Receptor 5 and Stress Disorders: Knowledge Gained From Receptor Imaging Studies. Biol Psychiatry 2018; 84:95-105. [PMID: 29100629 PMCID: PMC5858955 DOI: 10.1016/j.biopsych.2017.08.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 12/28/2022]
Abstract
The metabotropic glutamatergic receptor subtype 5 (mGluR5) may represent a promising therapeutic target for stress-related psychiatric disorders. Here, we describe mGluR5 findings in stress disorders, particularly major depressive disorder (MDD), highlighting insights from positron emission tomography studies. Positron emission tomography studies report either no differences or lower mGluR5 in MDD, potentially reflecting MDD heterogeneity. Unlike the rapidly acting glutamatergic agent ketamine, mGluR5-specific modulation has not yet shown antidepressant efficacy in MDD and bipolar disorder. Although we recently showed that ketamine may work, in part, through significant mGluR5 modulation, the specific role of mGluR5 downregulation in ketamine's antidepressant response is unclear. In contrast to MDD, there has been much less investigation of mGluR5 in bipolar disorder, yet initial studies indicate that mGluR5-specific treatments may aid in both depressed and manic mood states. The direction of modulation needed may be state dependent, however, limiting clinical feasibility. There has been relatively little study of posttraumatic stress disorder or obsessive-compulsive disorder to date, although there is evidence for the upregulation of mGluR5 in these disorders. However, while antagonism of mGluR5 may reduce fear conditioning, it may also reduce fear extinction. Therefore, studies are needed to determine the role mGluR5 modulation might play in the treatment of these conditions. Further challenges in modulating this prevalent neurotransmitter system include potential induction of significant side effects. As such, more research is needed to identify level and type (positive/negative allosteric modulation or full antagonism) of mGluR5 modulation required to translate existing knowledge into improved therapies.
Collapse
Affiliation(s)
- Irina Esterlis
- Department of Psychiatry, Yale University, New Haven, Connecticut; US Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, Veteran's Affairs Connecticut Healthcare System, West Haven, Connecticut.
| | | | - Priya Sharma
- Department of Psychiatry, Schulich School of Medicine and Dentistry; Western University- London, Ontario, Canada; London Health Sciences Centre- Victoria Hospital
| | - John H. Krystal
- Yale University, Department of Psychiatry,Yale University, Department of Neuroscience,U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System
| | - Christine DeLorenzo
- Stony Brook University, Department of Psychiatry,Stony Brook University, Department of Biomedical Engineering
| |
Collapse
|
36
|
Verhaeghe J, Bertoglio D, Kosten L, Thomae D, Verhoye M, Van Der Linden A, Wyffels L, Stroobants S, Wityak J, Dominguez C, Mrzljak L, Staelens S. Noninvasive Relative Quantification of [ 11C]ABP688 PET Imaging in Mice Versus an Input Function Measured Over an Arteriovenous Shunt. Front Neurol 2018; 9:516. [PMID: 30013509 PMCID: PMC6036254 DOI: 10.3389/fneur.2018.00516] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/11/2018] [Indexed: 11/22/2022] Open
Abstract
Impairment of the metabotropic glutamate receptor 5 (mGluR5) has been implicated with various neurologic disorders. Although mGluR5 density can be quantified with the PET radiotracer [11C]ABP688, the methods for reproducible quantification of [11C]ABP688 PET imaging in mice have not been thoroughly investigated yet. Thus, this study aimed to assess and validate cerebellum as reference region for simplified reference tissue model (SRTM), investigate the feasibility of a noninvasive cardiac image-derived input function (IDIF) for relative quantification, to validate the use of a PET template instead of an MRI template for spatial normalization, and to determine the reproducibility and within-subject variability of [11C]ABP688 PET imaging in mice. Blocking with the mGluR5 antagonist MPEP resulted in a reduction of [11C]ABP688 binding of 41% in striatum (p < 0.0001), while no significant effect could be found in cerebellum (−4.8%, p > 0.99) indicating cerebellum as suitable reference region for mice. DVR-1 calculated using a noninvasive IDIF and an arteriovenous input function correlated significantly when considering the cerebellum as the reference region (striatum: DVR-1, r = 0.978, p < 0.0001). Additionally, strong correlations between binding potential calculated from SRTM (BPND) with DVR-1 based on IDIF (striatum: r = 0.980, p < 0.0001) and AV shunt (striatum: r = 0.987, p < 0.0001). BPND displayed higher discrimination power than VT values in determining differences between wild-types and heterozygous Q175 mice, an animal model of Huntington's disease. Furthermore, we showed high agreement between PET- and MRI-based spatial normalization approaches (striatum: r = 0.989, p < 0.0001). Finally, both spatial normalization approaches did not reveal any significant bias between test-retest scans, with a relative difference below 5%. This study indicates that noninvasive quantification of [11C]ABP688 PET imaging is reproducible and cerebellum can be used as reference region in mice.
Collapse
Affiliation(s)
- Jeroen Verhaeghe
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium
| | - Daniele Bertoglio
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium
| | - Lauren Kosten
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium
| | - David Thomae
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | | | | | - Leonie Wyffels
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - John Wityak
- CHDI Foundation, Princeton, NJ, United States
| | | | | | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
37
|
Barnes SA, Sheffler DJ, Semenova S, Cosford NDP, Bespalov A. Metabotropic Glutamate Receptor 5 as a Target for the Treatment of Depression and Smoking: Robust Preclinical Data but Inconclusive Clinical Efficacy. Biol Psychiatry 2018; 83:955-962. [PMID: 29628194 PMCID: PMC5953810 DOI: 10.1016/j.biopsych.2018.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022]
Abstract
The ability of novel pharmacological compounds to improve outcomes in preclinical models is often not translated into clinical efficacy. Psychiatric disorders do not have biological boundaries, and identifying mechanisms to improve the translational bottleneck between preclinical and clinical research domains is an important and challenging task. Glutamate transmission is disrupted in several neuropsychiatric disorders. Metabotropic glutamate (mGlu) receptors represent a diverse class of receptors that contribute to excitatory neurotransmission. Given the wide, yet region-specific manner of expression, developing pharmacological compounds to modulate mGlu receptor activity provides an opportunity to subtly and selectively modulate excitatory neurotransmission. This review focuses on the potential involvement of mGlu5 receptor disruption in major depressive disorder and substance and/or alcohol use disorders. We provide an overview of the justification of targeting mGlu5 receptors in the treatment of these disorders, summarize the preclinical evidence for negatively modulating mGlu5 receptors as a therapeutic target for major depressive disorders and nicotine dependence, and highlight the outcomes of recent clinical trials. While the evidence of mGlu5 receptor negative allosteric modulation has been promising in preclinical investigations, these beneficial effects have not translated into clinical efficacy. In this review, we identify key challenges that may contribute to poor clinical translation and provide suggested approaches moving forward to potentially improve the translation from preclinical to clinical domains. Such approaches may increase the success of clinical trials and may reduce the translational bottleneck that exists in drug discovery for psychiatric disorders.
Collapse
Affiliation(s)
- Samuel A. Barnes
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0603, La Jolla, CA 92093, USA
| | - Douglas J. Sheffler
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Svetlana Semenova
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0603, La Jolla, CA 92093, USA,PAREXEL International, 1560 E Chevy Chase Dr, suite 140, Glendale, CA 91206, USA
| | - Nicholas D. P. Cosford
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Anton Bespalov
- EXCIVA, Heidelberg, Germany; Valdman Institute of Pharmacology, Pavlov Medical University, St. Petersburg, Russia.
| |
Collapse
|
38
|
Bertoglio D, Kosten L, Verhaeghe J, Thomae D, Wyffels L, Stroobants S, Wityak J, Dominguez C, Mrzljak L, Staelens S. Longitudinal Characterization of mGluR5 Using 11C-ABP688 PET Imaging in the Q175 Mouse Model of Huntington Disease. J Nucl Med 2018; 59:1722-1727. [DOI: 10.2967/jnumed.118.210658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/22/2018] [Indexed: 11/16/2022] Open
|
39
|
Esterlis I, DellaGioia N, Pietrzak RH, Matuskey D, Nabulsi N, Abdallah CG, Yang J, Pittenger C, Sanacora G, Krystal JH, Parsey RV, Carson RE, DeLorenzo C. Ketamine-induced reduction in mGluR5 availability is associated with an antidepressant response: an [ 11C]ABP688 and PET imaging study in depression. Mol Psychiatry 2018; 23:824-832. [PMID: 28397841 PMCID: PMC5636649 DOI: 10.1038/mp.2017.58] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/28/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
The mechanisms of action of the rapid antidepressant effects of ketamine, an N-methyl-D-aspartate glutamate receptor antagonist, have not been fully elucidated. This study examined the effects of ketamine on ligand binding to a metabotropic glutamatergic receptor (mGluR5) in individuals with major depressive disorder (MDD) and healthy controls. Thirteen healthy and 13 MDD nonsmokers participated in two [11C]ABP688 positron emission tomography (PET) scans on the same day-before and during intravenous ketamine administration-and a third scan 1 day later. At baseline, significantly lower [11C]ABP688 binding was detected in the MDD as compared with the control group. We observed a significant ketamine-induced reduction in mGluR5 availability (that is, [11C]ABP688 binding) in both MDD and control subjects (average of 14±9% and 19±22%, respectively; P<0.01 for both), which persisted 24 h later. There were no differences in ketamine-induced changes between MDD and control groups at either time point (P=0.8). A significant reduction in depressive symptoms was observed following ketamine administration in the MDD group (P<0.001), which was associated with the change in binding (P<0.04) immediately after ketamine. We hypothesize that glutamate released after ketamine administration moderates mGluR5 availability; this change appears to be related to antidepressant efficacy. The sustained decrease in binding may reflect prolonged mGluR5 internalization in response to the glutamate surge.
Collapse
Affiliation(s)
- Irina Esterlis
- Yale University Department of Psychiatry
- Yale University Department of Radiology and Biomedical Imaging
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System
| | | | - Robert H. Pietrzak
- Yale University Department of Psychiatry
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System
| | - David Matuskey
- Yale University Department of Psychiatry
- Yale University Department of Radiology and Biomedical Imaging
| | - Nabeel Nabulsi
- Yale University Department of Radiology and Biomedical Imaging
| | - Chadi G. Abdallah
- Yale University Department of Psychiatry
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System
| | - Jie Yang
- Stony Brook University Department of Preventive Medicine
| | | | | | - John H. Krystal
- Yale University Department of Psychiatry
- Yale University Department of Neuroscience
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System
| | - Ramin V. Parsey
- Stony Brook University Department of Psychiatry
- Stony Brook University Department of Biomedical Engineering
- Stony Brook University Department of Radiology
| | - Richard E. Carson
- Yale University Department of Radiology and Biomedical Imaging
- Yale University Department of Biomedical Engineering
| | - Christine DeLorenzo
- Stony Brook University Department of Psychiatry
- Stony Brook University Department of Biomedical Engineering
| |
Collapse
|
40
|
Schifani C, Hafizi S, Da Silva T, Watts JJ, Khan MS, Mizrahi R. Using molecular imaging to understand early schizophrenia-related psychosis neurochemistry: a review of human studies. Int Rev Psychiatry 2017; 29:555-566. [PMID: 29219634 PMCID: PMC8011813 DOI: 10.1080/09540261.2017.1396205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Schizophrenia is a chronic psychiatric disorder generally preceded by a so-called prodromal phase, which is characterized by attenuated psychotic symptoms. Advances in clinical research have enabled prospective identification of those individuals who are at clinical high risk (CHR) for psychosis, with the power to predict psychosis onset within the near future. Changes in several brain neurochemical systems and molecular mechanisms are implicated in the pathophysiology of schizophrenia and the psychosis spectrum, including the dopaminergic, γ-aminobutyric acid (GABA)-ergic, glutamatergic, endocannabinoid, and immunologic (i.e. glial activation) system and other promising future directions such as synaptic density, which are possible to quantify in vivo using positron emission tomography (PET). This paper aims to review in vivo PET studies in the mentioned systems in the early course of psychosis (i.e. CHR and first-episode psychosis (FEP)). The results of reviewed studies are promising; however, the current understanding of the underlying pathology of psychosis is still limited. Importantly, promising efforts involve the development of novel PET radiotracers targeting systems with growing interest in schizophrenia, like the nociceptive system and synaptic density.
Collapse
Affiliation(s)
- Christin Schifani
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sina Hafizi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tania Da Silva
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jeremy Joseph Watts
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - M. Saad Khan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
41
|
Metabotropic Glutamate Receptor 5 and Glutamate Involvement in Major Depressive Disorder: A Multimodal Imaging Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:449-456. [PMID: 28993818 DOI: 10.1016/j.bpsc.2017.03.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Preclinical and postmortem studies have implicated the metabotropic glutamate receptor 5 (mGluR5) in the pathophysiology of major depressive disorder (MDD). The goal of the present study was to determine the role of mGluR5 in a large group of individuals with MDD compared to healthy controls (HC) in vivo with [18F]FPEB and positron emission tomography (PET). Furthermore, we sought to determine the role glutamate plays on mGluR5 availability in MDD. METHODS Sixty-five participants (30 MDD and 35 HC) completed [18F]FPEB PET to estimate the primary outcome measure - mGluR5 volume of distribution (VT), and the secondary outcome measure - mGluR5 distribution volume ratio (DVR). A subgroup of 39 participants (16 MDD and 23 HC) completed proton magnetic resonance spectroscopy (1H MRS) to estimate anterior cingulate (ACC) glutamate, glutamine, and Glx (glutamate + glutamine) levels relative to creatine (Cr). RESULTS No significant between-group differences were observed in mGluR5 VT or DVR. Compared to HC, individuals with MDD had higher ACC glutamate, glutamine, and Glx levels. Importantly, the ACC mGluR5 DVR negatively correlated with glutamate/Cr and Glx/Cr levels. CONCLUSIONS In this novel in vivo examination, we show an inverse relationship between mGluR5 availability and glutamate levels. These data highlight the need to further investigate the role of glutamatergic system in depression.
Collapse
|