1
|
Kew J, Stalder T, Kirschbaum C, Seedat S, van den Heuvel LL. Investigating the association between hair progesterone, anxiety, sleep quality, and other determinants in South African females. Psychoneuroendocrinology 2024; 171:107223. [PMID: 39471540 DOI: 10.1016/j.psyneuen.2024.107223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Anxiety symptoms and poor sleep quality are common in women. The role of sex hormones, particularly progesterone, in anxiety and sleep quality in women is understudied. Measurement of hair progesterone concentrations (HPC) is a promising method to investigate the effects of progesterone on anxiety symptoms and sleep quality in women. OBJECTIVES We analysed sociodemographic, hair-related, and clinical factors associated with HPC and investigated the association between HPC and anxiety severity and sleep quality in a sample of 159 South African women (mean age: 46.5 years; range: 18-79 years). METHODS Data were obtained from control participants from the SHARED ROOTS study. HPC were determined using an established liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Unadjusted and adjusted multiple linear regression models were used to investigate whether sleep quality, measured with the Pittsburgh Sleep Quality Index (PSQI), and anxiety, measured with the Spielberger State-Trait Anxiety Inventory (STAI), were associated with HPC. Significant sociodemographic, hair-related, and clinical factors were adjusted for. RESULTS HPC was significantly associated with age, duration of sample storage, hormonal treatment, postmenopausal status, and the number of different types of trauma exposures in adjusted models. Neither anxiety severity nor sleep quality was significantly associated with HPC. CONCLUSIONS Certain demographic, hair related, and clinical factors were associated with HPC and need to be considered in future research using HPC. Although anxiety and sleep were not associated with HPC, greater trauma exposure was associated with higher HPC, suggesting an association between severe stress and hypothalamic-pituitary-gonadal (HPG) axis functioning.
Collapse
Affiliation(s)
- Jessica Kew
- Department of Psychiatry, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa.
| | - Tobias Stalder
- Clinical Psychology, University of Siegen, Adolf-Reichwein-Straße 2, Siegen 57068, Germany.
| | - Clemens Kirschbaum
- Biological Psychology, TU Dresden, Zellescher Weg 19, Dresden D-01062, Germany.
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa; Genomics of Brain Disorders, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| | - Leigh Luella van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa; Genomics of Brain Disorders, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
2
|
Michel S, Kervezee L. One seasonal clock fits all? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:641-647. [PMID: 37947808 PMCID: PMC11226558 DOI: 10.1007/s00359-023-01680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Adaptation of physiology and behavior to seasonal changes in the environment are for many organisms essential for survival. Most of our knowledge about the underlying mechanisms comes from research on photoperiodic regulation of reproduction in plants, insects and mammals. However, even humans, who mostly live in environments with minimal seasonal influences, show annual rhythms in physiology (e.g., immune activity, brain function), behavior (e.g., sleep-wake cycles) and disease prevalence (e.g., infectious diseases). As seasonal variations in environmental conditions may be drastically altered due to climate change, the understanding of the mechanisms underlying seasonal adaptation of physiology and behavior becomes even more relevant. While many species have developed specific solutions for dedicated tasks of photoperiodic regulation, we find a number of common principles and mechanisms when comparing insect and mammalian systems: (1) the circadian system contributes to photoperiodic regulation; (2) similar signaling molecules (VIP and PDF) are used for transferring information from the circadian system to the neuroendocrine system controlling the photoperiodic response; (3) the hormone melatonin participates in seasonal adaptation in insects as well as mammals; and (4) changes in photoperiod affect neurotransmitter function in both animal groups. The few examples of overlap elaborated in this perspective article, as well as the discussion on relevance for humans, should be seen as encouragement to unravel the machinery of seasonal adaptation in a multitude of organisms.
Collapse
Affiliation(s)
- Stephan Michel
- Department of Cell and Chemical Biology, Leiden University Medical Center, Postzone S5-P, 2300 RC, PO Box 9600, Leiden, The Netherlands.
| | - Laura Kervezee
- Department of Cell and Chemical Biology, Leiden University Medical Center, Postzone S5-P, 2300 RC, PO Box 9600, Leiden, The Netherlands
| |
Collapse
|
3
|
Lammouchi Z, Guelmami N, Abedelmalek S, Saidane M, Ghouili H, Rebhi M, Fessi MS, Aissa MB, Bedhioufi H, Saad HB, Dergaa I. Investigating the association between the lunar cycle and sleep, physiological, cognitive, and physical performance in children with Down syndrome. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2024; 13:111. [PMID: 38726075 PMCID: PMC11081453 DOI: 10.4103/jehp.jehp_1733_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/28/2023] [Indexed: 05/12/2024]
Abstract
BACKGROUND Children with Down syndrome (DS) offer a compelling context within the fieldof human biology for examining potential lunar influences. While the exact mechanisms governing lunar effects are still under investigation, a growing body of scientific inquiry suggests possible connections between lunar phases and physiological, physical, and cognitive parameters. This investigation holds promise for uncovering the intricate interplay between lunar cycles (LCs) and the unique biology of children with DS. This study investigated the potential influence of the LC on physiological, physical, and cognitive parameters in children with DS, focusing on sleep patterns, physical performance, and cognitive abilities. MATERIALS AND METHODS Seventeen children with DS participated in this study. Sleep data, physical performance metrics, and cognitive test results were collected throughout the LC, including the new moon (NM), first quarter, full moon (FM), and third quarter. Statistical analyses were conducted to assess the differences in these parameters across lunar phases. RESULTS Significant differences were observed in sleep patterns, with reduced total sleep time (P < 0.01) and sleep efficiency (P < 0.001) during the FM phase. Heart rates (HRs) before (P < 0.001) and after (P < 0.01) exercise also displayed pronounced changes during LC. Additionally, the reaction time (RT) exhibited a significant difference (P < 0.01) across the lunar phases. However, physical performance metrics, including squat jump (SJ), sprint, and 6-minute walk distance (6MWD), did not show significant variations. CONCLUSION This study suggests that LC may have a moderating effect on sleep patterns, HR, and cognitive performance in children with DS. These findings have practical implications for caregivers and educators and highlight the importance of considering lunar-associated variations in planning schedules and interventions for children with DS.
Collapse
Affiliation(s)
- Zohra Lammouchi
- Department of Human Sciences, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Noomen Guelmami
- Department of Human and Social Sciences, High Institute of Sport and Physical Education of Kef, University of Jendouba, Jendouba, Tunisia
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Salma Abedelmalek
- Department of Sport Science and Physical Activity, College of Education, Ha'il University, Saudi Arabia
| | - Mouna Saidane
- Department of Human and Social Sciences, High Institute of Sport and Physical Education of Kef, University of Jendouba, Jendouba, Tunisia
- Higher Institute of Nursing Sciences of Kef, University of Jendouba, Jendouba, Tunisia
| | - Hatem Ghouili
- Department of Human and Social Sciences, High Institute of Sport and Physical Education of Kef, University of Jendouba, Jendouba, Tunisia
| | - Mahmoud Rebhi
- Department of Human and Social Sciences, High Institute of Sport and Physical Education of Kef, University of Jendouba, Jendouba, Tunisia
| | - Mohamed Saifedine Fessi
- Department of Human Sciences, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Mohamed Ben Aissa
- Department of Human and Social Sciences, High Institute of Sport and Physical Education of Kef, University of Jendouba, Jendouba, Tunisia
| | - Hafsi Bedhioufi
- Department of Human Sciences, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Helmi Ben Saad
- Department of Sport Science and Physical Activity, College of Education, Ha'il University, Saudi Arabia
- Department of Physiology and Functional Explorations, Farhat HACHED Hospital, University of Sousse, Sousse, Tunisia
| | - Ismail Dergaa
- Department of Human and Social Sciences, High Institute of Sport and Physical Education of Kef, University of Jendouba, Jendouba, Tunisia
- Department of Preventive Health, Primary Health Care Corporation (PHCC), Doha, Qatar
- Research Laboratory Education, Motricité, Sport et Santé (EM2S) LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
4
|
Chang J, Xu Y, Fu Y, Liu J, Jiang D, Pan J, Ouyang H, Liu W, Xu J, Tian Y, Huang Y, Ruan J, Shen X. The dynamic landscape of chromatin accessibility and active regulatory elements in the mediobasal hypothalamus influences the seasonal activation of the reproductive axis in the male quail under long light exposure. BMC Genomics 2024; 25:197. [PMID: 38373887 PMCID: PMC10877898 DOI: 10.1186/s12864-024-10097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND In cold and temperate zones, seasonal reproduction plays a crucial role in the survival and reproductive success of species. The photoperiod influences reproductive processes in seasonal breeders through the hypothalamic-pituitary-gonadal (HPG) axis, in which the mediobasal hypothalamus (MBH) serves as the central region responsible for transmitting light information to the endocrine system. However, the cis-regulatory elements and the transcriptional activation mechanisms related to seasonal activation of the reproductive axis in MBH remain largely unclear. In this study, an artificial photoperiod program was used to induce the HPG axis activation in male quails, and we compared changes in chromatin accessibility changes during the seasonal activation of the HPG axis. RESULTS Alterations in chromatin accessibility occurred in the mediobasal hypothalamus (MBH) and stabilized at LD7 during the activation of the HPG axis. Most open chromatin regions (OCRs) are enriched mainly in introns and distal intergenic regions. The differentially accessible regions (DARs) showed enrichment of binding motifs of the RFX, NKX, and MEF family of transcription factors that gained-loss accessibility under long-day conditions, while the binding motifs of the nuclear receptor (NR) superfamily and BZIP family gained-open accessibility. Retinoic acid signaling and GTPase-mediated signal transduction are involved in adaptation to long days and maintenance of the HPG axis activation. According to our footprint analysis, three clock-output genes (TEF, DBP, and HLF) and the THRA were the first responders to long days in LD3. THRB, NR3C2, AR, and NR3C1 are the key players associated with the initiation and maintenance of the activation of the HPG axis, which appeared at LD7 and tended to be stable under long-day conditions. By integrating chromatin and the transcriptome, three genes (DIO2, SLC16A2, and PDE6H) involved in thyroid hormone signaling showed differential chromatin accessibility and expression levels during the seasonal activation of the HPG axis. TRPA1, a target of THRB identified by DAP-seq, was sensitive to photoactivation and exhibited differential expression levels between short- and long-day conditions. CONCLUSION Our data suggest that trans effects were the main factors affecting gene expression during the seasonal activation of the HPG axis. This study could lead to further research on the seasonal reproductive behavior of birds, particularly the role of MBH in controlling seasonal reproductive behavior.
Collapse
Affiliation(s)
- Jianye Chang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yanglong Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yuting Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiaxin Liu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Danli Jiang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jianqiu Pan
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Hongjia Ouyang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Wenjun Liu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510642, China
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Jue Ruan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Xu Shen
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
5
|
Just N, Chevillard PM, Batailler M, Dubois JP, Vaudin P, Pillon D, Migaud M. Multiparametric MR Evaluation of the Photoperiodic Regulation of Hypothalamic Structures in Sheep. Neuroscience 2023; 535:142-157. [PMID: 37913859 DOI: 10.1016/j.neuroscience.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Most organisms on earth, humans included, have developed strategies to cope with environmental day-night and seasonal cycles to survive. For most of them, their physiological and behavioral functions, including the reproductive function, are synchronized with the annual changes of day length, to ensure winter survival and subsequent reproductive success in the following spring. Sheep are sensitive to photoperiod, which also regulates natural adult neurogenesis in their hypothalamus. We postulate that the ovine model represents a good alternative to study the functional and metabolic changes occurring in response to photoperiodic changes in hypothalamic structures of the brain. Here, the impact of the photoperiod on the neurovascular coupling and the metabolism of the hypothalamic structures was investigated at 3T using BOLD fMRI, perfusion-MRI and proton magnetic resonance spectroscopy (1H-MRS). A longitudinal study involving 8 ewes was conducted during long days (LD) and short days (SD) revealing significant BOLD, rCBV and metabolic changes in hypothalamic structures of the ewe brain between LD and SD. More specifically, the transition between LD and SD revealed negative BOLD responses to hypercapnia at the beginning of SD period followed by significant increases in BOLD, rCBV, Glx and tNAA concentrations towards the end of the SD period. These observations suggest longitudinal mechanisms promoting the proliferation and differentiation of neural stem cells within the hypothalamic niche of breeding ewes. We conclude that multiparametric MRI studies including 1H-MRS could be promising non-invasive translational techniques to investigate the existence of natural adult neurogenesis in-vivo in gyrencephalic brains.
Collapse
Affiliation(s)
- Nathalie Just
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France; Danish Research Centre for Magnetic Resonance (DRCMR), Hvidovre, Denmark.
| | - Pierre Marie Chevillard
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Martine Batailler
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Jean-Philippe Dubois
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Pascal Vaudin
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Delphine Pillon
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Martine Migaud
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| |
Collapse
|
6
|
Georgelin M, Ferreira VHB, Cornilleau F, Meurisse M, Poissenot K, Beltramo M, Keller M, Lansade L, Dardente H, Calandreau L. Short photoperiod modulates behavior, cognition and hippocampal neurogenesis in male Japanese quail. Sci Rep 2023; 13:951. [PMID: 36653419 PMCID: PMC9849226 DOI: 10.1038/s41598-023-28248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
The mechanisms underlying the photoperiodic control of reproduction in mammals and birds have been recently clarified. In contrast, the potential impact of photoperiod on more complex, integrative processes, such as cognitive behaviors, remains poorly characterized. Here, we investigated the impact of contrasted long and short photoperiods (LP, 16 h light/day and SP, 8 h light/day, respectively) on learning, spatial orientation abilities, and emotional reactivity in male Japanese quail. In addition, we quantified cell proliferation and young cell maturation/migration within the hippocampus, a brain region involved in spatial orientation. Our study reveals that, in male quail, SP increases emotional responses and spatial orientation abilities, compared to LP. Behaviorally, SP birds were found to be more fearful than LP birds, exhibiting more freezing in the open field and taking longer to exit the dark compartment in the emergence test. Furthermore, SP birds were significantly less aggressive than LP birds in a mirror test. Cognitively, SP birds were slower to habituate and learn a spatial orientation task compared to LP birds. However, during a recall test, SP birds performed better than LP birds. From a neuroanatomical standpoint, SP birds had a significantly lower density of young neurons, and also tended to have a lower density of mature neurons within the hippocampus, compared to LP birds. In conclusion, our data reveal that, beyond breeding control, photoperiod also exerts a profound influence on behavior, cognition, and brain plasticity, which comprise the seasonal program of this species.
Collapse
Affiliation(s)
- Marion Georgelin
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Vitor Hugo Bessa Ferreira
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Fabien Cornilleau
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Maryse Meurisse
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Kévin Poissenot
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Massimiliano Beltramo
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Matthieu Keller
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Léa Lansade
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Hugues Dardente
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Ludovic Calandreau
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France.
| |
Collapse
|
7
|
Chu T, Wang D, Yu T, Zhai J. Effects of seasonal variations and meteorological factors on IVF pregnancy outcomes: a cohort study from Henan Province, China. Reprod Biol Endocrinol 2022; 20:113. [PMID: 35933344 PMCID: PMC9356437 DOI: 10.1186/s12958-022-00986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/24/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE To investigate whether seasonal variations and meteorological factors influence pregnancy outcomes in women undergoing in vitro fertilization-embryo transfer (IVF-ET) treatment. DESIGN Retrospective cohort study. SETTING University-affiliated reproductive medical center. SUBJECTS Women aged < 35 years undergoing IVF from June 1, 2015, to June 1, 2019. INTERVENTIONS Cycles were divided into four groups according to the date of the beginning of ovulation induction: spring (659 cycles), summer (578 cycles), autumn (519 cycles), and winter (534 cycles). RESULTS The high-quality embryo rate was higher in autumn and winter than in cycles in which ovulation induction occurred in spring and summer (58.70% vs. 58.78% vs. 62.67% vs. 63.42%; P < 0.001). The results of linear regression analysis showed that the high-quality embryo rate was significantly correlated with the daily average temperature of ovulation induction (P = 0.037). The clinical pregnancy rates of cycles starting ovulation induction in spring, summer, and autumn were significantly higher than those starting in winter (70.71% vs. 73.18% vs. 70.13% vs. 65.17%; P = 0.031), while the biochemical pregnancy rate, early abortion rate, and live birth rate were not significantly different (P > 0.050). Multivariate logistic regression analysis showed significant seasonal variation in clinical pregnancy (OR = 1.643, 95% CI = 1.203-2.243; P = 0.002), and that a higher daily average temperature at the time of ovulation induction increased the clinical pregnancy rate (OR = 1.012, 95% CI = 1.001-1.022; P = 0.031). CONCLUSIONS In women younger than 35 years who undergo IVF treatment, the season and ambient temperature on the date of the beginning of ovulation induction may have an impact on embryo development and clinical pregnancy.
Collapse
Affiliation(s)
- Ting Chu
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- grid.412633.10000 0004 1799 0733Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Di Wang
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- grid.412633.10000 0004 1799 0733Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ting Yu
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- grid.412633.10000 0004 1799 0733Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Zhai
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- grid.412633.10000 0004 1799 0733Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Straub L, Minnameyer A, Camenzind D, Kalbermatten I, Tosi S, Van Oystaeyen A, Wäckers F, Neumann P, Strobl V. Thiamethoxam as an inadvertent anti-aphrodisiac in male bees. Toxicol Rep 2022; 9:36-45. [PMID: 34987978 PMCID: PMC8693414 DOI: 10.1016/j.toxrep.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/03/2022] Open
Abstract
There is consensus that neonicotinoids can impact non-target animal fertility. Thiamethoxam reduced both mating success and sperm physiology in bumblebees. Queens mated by exposed males had 50% less total living sperm in their spermatheca. Thiamethoxam may act as anti-aphrodisiac, thereby limiting conservation efforts.
Sexual reproduction is common to almost all multi-cellular organisms and can be compromised by environmental pollution, thereby affecting entire populations. Even though there is consensus that neonicotinoid insecticides can impact non-target animal fertility, their possible impact on male mating success is currently unknown in bees. Here, we show that sublethal exposure to a neonicotinoid significantly reduces both mating success and sperm traits of male bumblebees. Sexually mature male Bombus terrestris exposed to a field-realistic concentration of thiamethoxam (20 ng g−1) or not (controls) were mated with virgin gynes in the laboratory. The results confirm sublethal negative effects of thiamethoxam on sperm quantity and viability. While the latency to mate was reduced, mating success was significantly impaired in thiamethoxam-exposed males by 32% probably due to female choice. Gynes mated by exposed males revealed impaired sperm traits compared to their respective controls, which may lead to severe constraints for colony fitness. Our laboratory findings demonstrate for the first time that neonicotinoid insecticides can negatively affect male mating success in bees. Given that holds true for the field, this provides a plausible mechanism contributing to declines of wild bee populations globally. The widespread prophylactic use of neonicotinoids may therefore have previously overlooked inadvertent anti-aphrodisiac effects on non-target animals, thereby limiting conservation efforts.
Collapse
Affiliation(s)
- Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Angela Minnameyer
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Domenic Camenzind
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Simone Tosi
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Italy
| | | | | | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Klerman EB, Barbato G, Czeisler CA, Wehr TA. Can People Sleep Too Much? Effects of Extended Sleep Opportunity on Sleep Duration and Timing. Front Physiol 2021; 12:792942. [PMID: 35002775 PMCID: PMC8727775 DOI: 10.3389/fphys.2021.792942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
Many people are concerned about whether they are getting "enough" sleep, and if they can "sleep too much." These concerns can be approached scientifically using experiments probing long-term (i.e., multi-night) sleep homeostatic processes, since homeostatic processes move the system toward its physiological setpoint (i.e., between "not enough" and "too much"). We analyzed sleep data from two human studies with sleep opportunities much longer than people usually stay in bed (i.e., conditions in which sleep homeostatic responses could be documented): sleep opportunities were 14-16 h per day for 3-28 days. Across the nights of the extended sleep opportunities, total sleep duration, Rapid Eye Movement (REM) sleep duration and non-REM sleep durations decreased and sleep latency increased. Multiple nights were required to reach approximately steady-state values. These results suggest a multi-day homeostatic sleep process responding to self-selected insufficient sleep duration prior to the study. Once steady state-values were reached, there were large night-to-night variations in total sleep time and other sleep metrics. Our results therefore answer these concerns about sleep amount and are important for understanding the basic physiology of sleep and for two sleep-related topics: (i) the inter-individual and intra-individual variability are relevant to understanding "normal" sleep patterns and for people with insomnia and (ii) the multiple nights of sleep required for recovery from insufficient sleep from self-selected sleep loss is important for public health and other efforts for reducing the adverse effects of sleep loss on multiple areas of physiology.
Collapse
Affiliation(s)
- Elizabeth B. Klerman
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Giuseppe Barbato
- Department of Psychology, University degli Studi della Campania Luigi Vanvitelli, Campania, Italy
| | - Charles A. Czeisler
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Thomas A. Wehr
- Intramural Research Program, NIMH, Bethesda, MD, United States
| |
Collapse
|
10
|
Barrero JA, Mockus I. Early menarche in visually impaired girls: evidence and hypothesis of light-dark cycle disruption and blindness effect on puberty onset. Chronobiol Int 2021; 39:409-420. [PMID: 34814789 DOI: 10.1080/07420528.2021.1998103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Puberty onset is tightly regulated by a broad spectrum of neuroendocrine signals and peripheral stimuli which coordinate the hypothalamic-pituitary-gonadal (HPG) axis activation. Numerous studies suggest that light stimulation influences HPG axis function; however, the effect of blindness on puberty timing remains controversial. Given that menarche is a suitable marker for sexual development initiation, the evaluation of the age at which blind girls attain it allows to indirectly assess the effect of light-dark cycle disruption on pubertal development. The present investigation aimed to review the evidence regarding menarcheal age drift in visually impaired girls, as well as to discuss the findings based on the existing hypotheses of the physiological mechanisms linking the light-dark cycle and photic sensitivity loss to the onset of puberty. Eleven studies were retrieved from a literature search conducted in PubMed, Scopus, ScienceDirect, SpringerLink, and Google Scholar databases. Eight studies concluded that light perception impairment is related to a moderately earlier age at menarche. Moreover, the evidence gathered in this review suggests a positive association between the degree of light perception loss and precocious menarcheal onset; yet, no conclusive outcomes were found regarding menarche advancement in acquired versus congenital blindness. We encourage further research aiming to elucidate the physiological mechanism underlying photosensitive regulation and blindness effect on the neuroendocrine pathways involved in human sexual maturation.
Collapse
Affiliation(s)
- Jorge A Barrero
- Lipids and Diabetes Division, Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia Lipids and Diabetes Division, Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Ismena Mockus
- Lipids and Diabetes Division, Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia Lipids and Diabetes Division, Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
11
|
Beltran-Frutos E, Casarini L, Santi D, Brigante G. Seasonal reproduction and gonadal function: A focus on humans starting from animal studies. Biol Reprod 2021; 106:47-57. [PMID: 34718419 DOI: 10.1093/biolre/ioab199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photoperiod impacts reproduction in many species of mammals. Mating occurs at specific seasons to achieve reproductive advantages, such as optimization of offspring survival. Light is the main regulator of these changes during the photoperiod. Seasonally breeding mammals detect and transduce light signals through extraocular photoreceptor, regulating downstream melatonin-dependent peripheral circadian events. In rodents, hormonal reduction and gonadal atrophy occur quickly, and consensually with short-day periods. It remains unclear whether photoperiod influences human reproduction. Seasonal fluctuations of sex hormones have been described in humans, although they seem to not imply adaptative seasonal pattern in human gonads. This review discusses current knowledge about seasonal changes in the gonadal function of vertebrates, including humans. The photoperiod-dependent regulation of hypothalamic-pituitary-gonadal axis, as well as morphological and functional changes of the gonads are evaluated herein. Endocrine and morphological variations of reproductive functions, in response to photoperiod, are of interest as they may reflect the nature of past population selection for adaptative mechanisms that occurred during evolution.
Collapse
Affiliation(s)
- Ester Beltran-Frutos
- Department of Cell Biology and Histology, Aging Institute, IMIB-Arrixaca. School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia. Spain
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Giulia Brigante
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| |
Collapse
|
12
|
Verón GL, Tissera AD, Bello R, Estofan GM, Hernández M, Beltramone F, Molina RI, Vazquez-Levin MH. Association between meteorological variables and semen quality: a retrospective study. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:1399-1414. [PMID: 33834291 DOI: 10.1007/s00484-021-02112-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Spermatogenesis is a temperature-dependent process, and high summer temperatures have been linked to lower sperm concentration and count. However, reports describing the association between other meteorological variables and semen quality are scarce. This study evaluated the association between semen quality and temperature, humidity, pressure, apparent temperature (AT), temperature-humidity index (THI), simplified wet-bulb global temperature (sWBGT), and sunshine duration. Semen samples were obtained at the Laboratorio de Andrología y Reproducción (LAR, Argentina), from men undergoing routine andrology examination (n=11657) and computer-assisted sperm analysis (n=4705) following WHO 2010 criteria. Meteorological variables readings were obtained from the Sistema Meteorológico Nacional. Sperm quality parameters were negatively affected in summer when compared to winter. Additionally, there was a significant decrease in sperm kinematics between winter and spring. Branch and bound variable selection followed by multiple regression analysis revealed a significant association between semen quality and meteorological variables. Specifically, changes in sunshine duration and humidity reinforced the prognosis of semen quality. Highest/lowest sunshine duration and humidity quantiles resulted in decreased sperm concentration, count, motility, vitality and membrane competence, nuclear maturity, and sperm kinematics associated to highest sunshine duration and lowest humidity. Findings from this report highlight the relevance of environmental studies for predicting alterations in male reproductive health associated to variations in meteorological variables, especially considering the current climate changes around the planet due to global warming and its consequences for human health.
Collapse
Affiliation(s)
- Gustavo Luis Verón
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (National Research Council of Argentina; CONICET)-Fundación IBYME (FIBYME), Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Ricardo Bello
- Departamento de Metodología, Estadística y Matemática, Universidad de Tres de Febrero, Sáenz Peña, Buenos Aires, Argentina
| | | | - Mariana Hernández
- Centro Integral de Ginecología, Obstetricia y Reproducción (CIGOR), Córdoba, Argentina
| | - Fernando Beltramone
- Centro Integral de Ginecología, Obstetricia y Reproducción (CIGOR), Córdoba, Argentina
| | | | - Mónica Hebe Vazquez-Levin
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (National Research Council of Argentina; CONICET)-Fundación IBYME (FIBYME), Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
13
|
Butruille L, Vancamp P, Demeneix BA, Remaud S. Thyroid hormone regulation of adult neural stem cell fate: A comparative analysis between rodents and primates. VITAMINS AND HORMONES 2021; 116:133-192. [PMID: 33752817 DOI: 10.1016/bs.vh.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thyroid hormone (TH) signaling, a highly conserved pathway across vertebrates, is crucial for brain development and function throughout life. In the adult mammalian brain, including that of humans, multipotent neural stem cells (NSCs) proliferate and generate neuronal and glial progenitors. The role of TH has been intensively investigated in the two main neurogenic niches of the adult mouse brain, the subventricular and the subgranular zone. A key finding is that T3, the biologically active form of THs, promotes NSC commitment toward a neuronal fate. In this review, we first discuss the roles of THs in the regulation of adult rodent neurogenesis, as well as how it relates to functional behavior, notably olfaction and cognition. Most research uncovering these roles of TH in adult neurogenesis was conducted in rodents, whose genetic background, brain structure and rate of neurogenesis are considerably different from that of humans. To bridge the phylogenetic gap, we also explore the similarities and divergences of TH-dependent adult neurogenesis in non-human primate models. Lastly, we examine how photoperiodic length changes TH homeostasis, and how that might affect adult neurogenesis in seasonal species to increase fitness. Several aspects by which TH acts on adult NSCs seem to be conserved among mammals, while we only start to uncover the molecular pathways, as well as how other in- and extrinsic factors are intertwined. A multispecies approach delivering more insights in the matter will pave the way for novel NSC-based therapies to combat neurological disorders.
Collapse
Affiliation(s)
- Lucile Butruille
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Pieter Vancamp
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Barbara A Demeneix
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Remaud
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France.
| |
Collapse
|
14
|
Kuzmenko NV, Tsyrlin VA, Pliss MG, Galagudza MM. Seasonal variations in levels of human thyroid-stimulating hormone and thyroid hormones: a meta-analysis. Chronobiol Int 2021; 38:301-317. [PMID: 33535823 DOI: 10.1080/07420528.2020.1865394] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Seasonal dynamics in biological functions of mammals is regulated by melatonin-mediated circannual fluctuations in the secretion of thyroid-stimulating hormone (TSH) and thyroid hormones. Most anatomical and molecular structures responsive to photoperiod and melatonin secretion changes and the associated receptors are preserved in modern humans. This work aimed to determine the seasonal dynamics of TSH and thyroid hormone levels (total triiodothyronine (T3), free triiodothyronine (FT3), thyroxine (T4), free thyroxine (FT4) and to investigate the dependence of these variations on gender, age and amplitude of meteorological fluctuations. A meta-analysis of 13 panel and 7 cross-sectional studies was performed using Review Manager 5.3 (Cochrane Library). We found that circulating TSH levels were higher in winter than in other seasons, and FT4 levels were higher in autumn than in winter. T4 level had no pronounced seasonal dynamics. The level of circulating T3 was significantly higher in winter than in summer and FT3 levels were lower in summer than in autumn and spring. In addition, analysis of TSH seasonal dynamics (winter vs summer) accounting for gender differences showed pronounced increases in TSH levels during winter in women, but not in men; and also significant increases in FT4 levels during summer in men, but not in women. Seasonal dynamics of FT3 and T4 did not depend on gender. Seasonal dynamics of TSH did not change with respect to age. We also found that the extent of the seasonal dynamics of TSH is influenced by the extent of the annual dynamics of the partial density of oxygen in the air, as well as the magnitude of the annual dynamic of meteorological factors that determine it (atmospheric pressure and relative humidity).
Collapse
Affiliation(s)
- N V Kuzmenko
- Department for Experimental Physiology and Pharmacology, Almazov National Medical Research Centre, St. Petersburg, Russia.,Laboratory of Byophysics of Blood Circulation, First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia
| | - V A Tsyrlin
- Department for Experimental Physiology and Pharmacology, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - M G Pliss
- Department for Experimental Physiology and Pharmacology, Almazov National Medical Research Centre, St. Petersburg, Russia.,Laboratory of Byophysics of Blood Circulation, First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia
| | - M M Galagudza
- Department for Experimental Physiology and Pharmacology, Almazov National Medical Research Centre, St. Petersburg, Russia
| |
Collapse
|
15
|
Kronfeld-Schor N, Stevenson TJ, Nickbakhsh S, Schernhammer ES, Dopico XC, Dayan T, Martinez M, Helm B. Drivers of Infectious Disease Seasonality: Potential Implications for COVID-19. J Biol Rhythms 2021; 36:35-54. [PMID: 33491541 PMCID: PMC7924107 DOI: 10.1177/0748730420987322] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Not 1 year has passed since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). Since its emergence, great uncertainty has surrounded the potential for COVID-19 to establish as a seasonally recurrent disease. Many infectious diseases, including endemic human coronaviruses, vary across the year. They show a wide range of seasonal waveforms, timing (phase), and amplitudes, which differ depending on the geographical region. Drivers of such patterns are predominantly studied from an epidemiological perspective with a focus on weather and behavior, but complementary insights emerge from physiological studies of seasonality in animals, including humans. Thus, we take a multidisciplinary approach to integrate knowledge from usually distinct fields. First, we review epidemiological evidence of environmental and behavioral drivers of infectious disease seasonality. Subsequently, we take a chronobiological perspective and discuss within-host changes that may affect susceptibility, morbidity, and mortality from infectious diseases. Based on photoperiodic, circannual, and comparative human data, we not only identify promising future avenues but also highlight the need for further studies in animal models. Our preliminary assessment is that host immune seasonality warrants evaluation alongside weather and human behavior as factors that may contribute to COVID-19 seasonality, and that the relative importance of these drivers requires further investigation. A major challenge to predicting seasonality of infectious diseases are rapid, human-induced changes in the hitherto predictable seasonality of our planet, whose influence we review in a final outlook section. We conclude that a proactive multidisciplinary approach is warranted to predict, mitigate, and prevent seasonal infectious diseases in our complex, changing human-earth system.
Collapse
Affiliation(s)
| | - T. J. Stevenson
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - S. Nickbakhsh
- Institute of Infection, Immunity & Inflammation, MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - E. S. Schernhammer
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
- Channing Division of Network Medicine, Harvard Medical School, Boston, MA, USA
| | - X. C. Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - T. Dayan
- School of Zoology, The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | - M. Martinez
- School of Public Health, Columbia University, New York City, NY, USA
| | - B. Helm
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Szpręgiel I, Wronska D. The role of photoperiod and melatonin in the control of seasonal reproduction in mammals. ROCZNIKI NAUKOWE POLSKIEGO TOWARZYSTWA ZOOTECHNICZNEGO 2020. [DOI: 10.5604/01.3001.0014.6071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
<b>Melatonin secreted by pineal cells is a hormone whose biosynthesis is coordinated by neurons of the master clock located in the hypothalamic suprachiasmatic nuclei (SCN), characterized by the generation of a 24-hour rhythm. In many species of mammals, fluctuations in melatonin secretion affect reproductive functions, e.g. by regulating the frequency and amount of pulsatile secretion of hypothalamic and gonadotropic hormones. Seasonal breeding is a common adaptive strategy among mammals, allowing them to reproduce during the periods of the year that are most favourable for the later survival and growth of the offspring. This type of reproduction is characteristic of sheep, with winter reproductive activity, and hamsters, with summer reproductive activity. In these animals, melatonin synthesis is largely regulated by the photoperiod, which indirectly influences the period of reproductive activity or passivity. The aim of this study was to gather available knowledge on melatonin as a key element controlling seasonal reproduction. The paper presents the general shape of the circadian rhythm and the neuroendocrine mechanism regulating animal reproduction depending on the variable photoperiod. The collected results suggest that melatonin, kisspeptins, gonadotropin-releasing hormone (GnRH), sex hormones and thyroid hormones participate in the regulation of seasonal reproduction in mammals. </b>
Collapse
Affiliation(s)
- Izabela Szpręgiel
- University of Agriculture in Krakow Faculty of Animal Sciences Department of Animal Physiology and Endocrinology
| | - Danuta Wronska
- University of Agriculture in Krakow Faculty of Animal Sciences Department of Animal Physiology and Endocrinology
| |
Collapse
|
17
|
Heldstab SA, van Schaik CP, Müller DWH, Rensch E, Lackey LB, Zerbe P, Hatt JM, Clauss M, Matsuda I. Reproductive seasonality in primates: patterns, concepts and unsolved questions. Biol Rev Camb Philos Soc 2020; 96:66-88. [PMID: 32964610 DOI: 10.1111/brv.12646] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 01/23/2023]
Abstract
Primates, like other mammals, exhibit an annual reproductive pattern that ranges from strictly seasonal breeding to giving birth in all months of the year, but factors mediating this variation are not fully understood. We applied both a categorical description and quantitative measures of the birth peak breadth based on daily observations in zoos to characterise reproductive seasonality in 141 primate species with an average of 941 birth events per species. Absolute day length at the beginning of the mating season in seasonally reproducing species was not correlated between populations from natural habitats and zoos. The mid-point of latitudinal range was a major factor associated with reproductive seasonality, indicating a correlation with photoperiod. Gestation length, annual mean temperature, natural diet and Malagasy origin were other important factors associated with reproductive seasonality. Birth seasons were shorter with increasing latitude of geographical origin, corresponding to the decreasing length of the favourable season. Species with longer gestation periods were less seasonal than species with shorter ones, possibly because shorter gestation periods more easily facilitate the synchronisation of reproductive activity with annual cycles. Habitat conditions with higher mean annual temperature were also linked to less-seasonal reproduction, independently of the latitude effect. Species with a high percentage of leaves in their natural diet were generally non-seasonal, potentially because the availability of mature leaves is comparatively independent of seasons. Malagasy primates were more seasonal in their births than species from other regions. This might be due to the low resting metabolism of Malagasy primates, the comparatively high degree of temporal predictability of Malagasy ecosystems, or historical constraints peculiar to Malagasy primates. Latitudinal range showed a weaker but also significant association with reproductive seasonality. Amongst species with seasonal reproduction in their natural habitats, smaller primate species were more likely than larger species to shift to non-seasonal breeding in captivity. The percentage of species that changed their breeding pattern in zoos was higher in primates (30%) than in previous studies on Carnivora and Ruminantia (13 and 10%, respectively), reflecting a higher concentration of primate species in the tropics. When comparing only species that showed seasonal reproduction in natural habitats at absolute latitudes ≤11.75°, primates did not differ significantly from these two other taxa in the proportion of species that changed to a less-seasonal pattern in zoos. However, in this latitude range, natural populations of primates and Carnivora had a significantly higher proportion of seasonally reproducing species than Ruminantia, suggesting that in spite of their generally more flexible diets, both primates and Carnivora are more exposed to resource fluctuation than ruminants.
Collapse
Affiliation(s)
- Sandra A Heldstab
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland.,Department of Anthropology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Carel P van Schaik
- Department of Anthropology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Dennis W H Müller
- Zoological Garden Halle (Saale), Fasanenstrasse 5a, 06114, Halle (Saale), Germany
| | - Eberhard Rensch
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
| | - Laurie Bingaman Lackey
- World Association of Zoos and Aquariums (WAZA), Carrer de Roger de Llúria, 2, 2-2, Barcelona, Spain
| | - Philipp Zerbe
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
| | - Jean-Michel Hatt
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
| | - Ikki Matsuda
- Chubu University Academy of Emerging Sciences, 1200, Matsumoto-cho, Kasugai-shi, Aichi, 487-8501, Japan.,Wildlife Research Center of Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto, 606-8203, Japan.,Japan Monkey Centre, Inuyama, Aichi, 484-0081, Japan.,Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
18
|
Balashova SN, Samodova AV, Dobrodeeva LK, Belisheva NK. Hematological reactions in the inhabitants of the Arctic on a polar night and a polar day. Immun Inflamm Dis 2020; 8:415-422. [PMID: 32558272 PMCID: PMC7416016 DOI: 10.1002/iid3.323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 01/01/2023] Open
Abstract
PURPOSE The purpose of this study is to identify the features of hematological reactions in the inhabitants of the Arctic territory of the Kola Peninsula on a polar night and a polar day. METHODS The study included determining the hemogram, neutrograms, monocytograms, lymphocytograms, and phagocytic activity neutrophil granulocytes, enzyme immunoassay, flow cytometry. RESULTS It was established that during the polar night, there is an increase in the activity of migration of leukocytes from the marginal pool to the circulating pool, an increase in the intensity of phagocytosis by neutrophils, an increase in the concentrations of noradrenaline, cortisol, as well as an increase in hyperergic reactions involving immunoglobulin E and inhibitory processes due to an increase in interleukin-10. CONCLUSION A prolonged lack of sunlight causes a decrease in the reserve capacity for regulating homeostasis and forces the body to use proliferative reactions, which is reflected in the increase in stab neutrophils, large lymphocytes in the structure of the lymphocytogram and CD10+ lymphocytes. In winters, the frequency of neutropenia registration also increases to 13% of cases, the deficit of phagocytic activity of neutrophils; lymphopenia is recorded in 20% with T-helper deficiency (37%). A part of the population probably has a relatively high degree of vulnerability to the action of natural environmental factors and is not able to completely restore the initial levels of the effectiveness of adaptation reactions in the summer. So at the end of the polar day in 8% of adults born in the north, neutropenia is recorded and in 21%-lymphopenia.
Collapse
Affiliation(s)
| | - Anna V. Samodova
- N. Laverov Federal Center for Integrated Arctic ResearchArkhangelskRussia
| | | | - Natalya K. Belisheva
- Research Centre for Human Adaptation in the ArcticBranch of the Federal Research Centre "Kola Science Centre of the Russian Academy of Sciences"ApatityRussia
| |
Collapse
|
19
|
Tackenberg MC, Hughey JJ, McMahon DG. Distinct Components of Photoperiodic Light Are Differentially Encoded by the Mammalian Circadian Clock. J Biol Rhythms 2020; 35:353-367. [PMID: 32527181 DOI: 10.1177/0748730420929217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Seasonal light cycles influence multiple physiological functions and are mediated through photoperiodic encoding by the circadian system. Despite our knowledge of the strong connection between seasonal light input and downstream circadian changes, less is known about the specific components of seasonal light cycles that are encoded and induce persistent changes in the circadian system. Using combinations of 3 T cycles (23, 24, 26 h) and 2 photoperiods per T cycle (long and short, with duty cycles scaled to each T cycle), we investigate the after-effects of entrainment to these 6 light cycles. We measure locomotor behavior duration (α), period (τ), and entrained phase angle (ψ) in vivo and SCN phase distribution (σφ), τ, and ψ ex vivo to refine our understanding of critical light components for influencing particular circadian properties. We find that both photoperiod and T-cycle length drive determination of in vivo ψ but differentially influence after-effects in α and τ, with photoperiod driving changes in α and photoperiod length and T-cycle length combining to influence τ. Using skeleton photoperiods, we demonstrate that in vivo ψ is determined by both parametric and nonparametric components, while changes in α are driven nonparametrically. Within the ex vivo SCN, we find that ψ and σφ of the PER2∷LUCIFERASE rhythm follow closely with their likely behavioral counterparts (ψ and α of the locomotor activity rhythm) while also confirming previous reports of τ after-effects of gene expression rhythms showing negative correlations with behavioral τ after-effects in response to T cycles. We demonstrate that within-SCN σφ changes, thought to underlie α changes in vivo, are induced primarily nonparametrically. Taken together, our results demonstrate that distinct components of seasonal light input differentially influence ψ, α, and τ and suggest the possibility of separate mechanisms driving the persistent changes in circadian behaviors mediated by seasonal light.
Collapse
Affiliation(s)
| | - Jacob J Hughey
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee.,Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Douglas G McMahon
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee.,Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
20
|
Intensity of Agricultural Workload and the Seasonality of Births in Italy. EUROPEAN JOURNAL OF POPULATION = REVUE EUROPEENNE DE DEMOGRAPHIE 2020; 36:141-169. [PMID: 32116482 DOI: 10.1007/s10680-019-09524-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/04/2019] [Indexed: 10/27/2022]
Abstract
According to "the energy balance mechanism" theory, female ovarian function is strongly hindered by even a modest negative energy balance (the difference between calorie intake and calorie consumption). Agriculture-based economies were characterized by periods of extremely intense workload (especially in summer when grain was harvested) without sufficient nutrition. We analyze the role of the intensity of agricultural workload (proxied by marriage seasonality) on seasonal oscillations in births. Using data at the regional level, from Italian Unification to the eve of the World War I, we find some empirical support for the energy balance theory. In particular, we find the strength of the relationship between marriage seasonality and birth seasonality to be lower in the more developed Northern part of the Italian country, in which some signs of industrialization had already been present.
Collapse
|
21
|
Akram F, Gragnoli C, Raheja UK, Snitker S, Lowry CA, Sterns-Yoder KA, Hoisington AJ, Brenner LA, Saunders E, Stiller JW, Ryan KA, Rohan KJ, Mitchell BD, Postolache TT. Seasonal affective disorder and seasonal changes in weight and sleep duration are inversely associated with plasma adiponectin levels. J Psychiatr Res 2020; 122:97-104. [PMID: 31981963 PMCID: PMC7024547 DOI: 10.1016/j.jpsychires.2019.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022]
Abstract
Overlapping pathways between mood and metabolic regulation have increasingly been reported. Although impaired regulation of adiponectin, a major metabolism-regulating hormone, has been implicated in major depressive disorder, its role in seasonal changes in mood and seasonal affective disorder-winter type (SAD), a disorder characterized by onset of mood impairment and metabolic dysregulation (e.g., carbohydrate craving and weight gain) in fall/winter and spontaneous alleviation in spring/summer, has not been previously studied. We studied a convenience sample of 636 Old Order Amish (mean (± SD), 53.6 (±14.8) years; 50.1% males), a population with self-imposed restriction on network electric light at home, and low prevalence of total SAD (t-SAD = syndromal + subsyndromal). We calculated the global seasonality score (GSS), estimated SAD and subsyndromal-SAD after obtaining Seasonal Pattern Assessment Questionnaires (SPAQs), and measured overnight fasting plasma adiponectin levels. We then tested associations between plasma adiponectin levels and GSS, t-SAD, winter-summer difference in self-reported sleep duration, and self-reported seasonal weight change, by using analysis of co-variance (ANCOVA) and linear regression analysis after adjusting for age, gender, and BMI. Participants with t-SAD (N = 14; 2.2%) had significantly lower plasma adiponectin levels (mean ± SEM, 8.76 ± 1.56 μg/mL) than those without t-SAD (mean ± SEM, 11.93 ± 0.22 μg/mL) (p = 0.035). In addition, there was significant negative association between adiponectin levels and winter-summer difference in self-reported sleep duration (p = 0.025) and between adiponectin levels and self-reported seasonal change in weight (p = 0.006). There was no significant association between GSS and adiponectin levels (p = 0.88). To our knowledge, this is the first study testing the association of SAD with adiponectin levels. Replication and extension of our findings longitudinally and, then, interventionally, may implicate low adiponectin as a novel target for therapeutic intervention in SAD.
Collapse
Affiliation(s)
- Faisal Akram
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA,Saint Elizabeths Hospital, DC Department of Behavioral Health, Washington, DC, USA
| | - Claudia Gragnoli
- Division of Endocrinology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA,Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA,Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome, Italy
| | - Uttam K. Raheja
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA,Saint Elizabeths Hospital, DC Department of Behavioral Health, Washington, DC, USA
| | - Soren Snitker
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA,Amish Research Clinic of the University of Maryland, Lancaster, PA, USA
| | - Christopher A. Lowry
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA,Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA,Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Kelly A. Sterns-Yoder
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA,Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew J. Hoisington
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA,Department of Systems Engineering, Air Force Institute of Technology, Wright-Patterson AFB, OH, USA
| | - Lisa A. Brenner
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA,Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA,Departments of Psychiatry & Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Erika Saunders
- Department of Psychiatry, Penn State University, Hershey, PA, USA
| | - John W. Stiller
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA,Saint Elizabeths Hospital, DC Department of Behavioral Health, Washington, DC, USA
| | - Kathleen A. Ryan
- Program for Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland, School of Medicine, Baltimore, MD, USA,Geriatrics Research and Education Clinical Center, Baltimore, MD, USA,Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Kelly J. Rohan
- Department of Psychological Science, University of Vermont, Burlington, VT, USA
| | - Braxton D. Mitchell
- Program for Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland, School of Medicine, Baltimore, MD, USA,Geriatrics Research and Education Clinical Center, Baltimore, MD, USA,Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Teodor T. Postolache
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA,Saint Elizabeths Hospital, DC Department of Behavioral Health, Washington, DC, USA,Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA,Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
22
|
Suppression of voluntary ethanol intake in mice under constant light and constant darkness. Alcohol 2020; 83:37-46. [PMID: 31175946 DOI: 10.1016/j.alcohol.2019.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 05/03/2019] [Accepted: 05/29/2019] [Indexed: 11/22/2022]
Abstract
Seasonal variations in photoperiod are associated with alterations in human mood and behavior. Similarly, manipulation of the environmental lighting regimen can exert pronounced effects on affective behavior in experimental animals. These observations may be due, in part, to light-induced alterations in circadian rhythms, but it seems likely that other, non-circadian factors also contribute. Several studies have shown that voluntary alcohol (ethanol) consumption can be affected by lighting conditions in rodents, suggesting that photoperiodic variation may account for seasonal and geographic patterns of human alcohol consumption. Nevertheless, the existing animal data are somewhat inconsistent, and little work in this area has been performed in mice. In the present study, we monitored circadian activity rhythms and voluntary ethanol consumption under standard 12:12 light-dark (LD) cycles, and in constant light (LL) and constant darkness (DD). Experiment 1 employed male C3H/He inbred mice, while Experiment 2 employed males and females from a genetically heterogeneous line (WSC). Relative to LD conditions, ethanol intake and ethanol preference were reduced under both LL and DD in both experiments. Because similar effects were seen in both LL and DD, neither circadian disruption nor a classical photoperiodic mechanism are likely to account fully for these findings. Instead, we suggest that the absence of circadian entrainment may function as a mild stressor, resulting in reduced ethanol consumption.
Collapse
|
23
|
Santi D, Spaggiari G, Granata ARM, Setti M, Tagliavini S, Trenti T, Simoni M. Seasonal Changes of Serum Gonadotropins and Testosterone in Men Revealed by a Large Data Set of Real-World Observations Over Nine Years. Front Endocrinol (Lausanne) 2020; 10:914. [PMID: 31998242 PMCID: PMC6965064 DOI: 10.3389/fendo.2019.00914] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/16/2019] [Indexed: 12/04/2022] Open
Abstract
Environmental rhythmicity is able to affect the hypothalamic-pituitary-gonadal axis in several animals to achieve reproductive advantages. However, conflicting results were obtained when assessing the environmental-dependent rhythmicity on reproductive hormone secretion in humans. This study was designed to evaluate seasonal fluctuations of the main hormones involved in the hypothalamic-pituitary-gonadal axis in men, using a big data approach. An observational, retrospective, big data trial was carried out, including all testosterone, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) measurements performed in a single laboratory between January 2010 and January 2019 using Chemiluminescent Microparticle Immunoassay. Subjects presenting any factor interfering with the hypothalamic-pituitary-gonadal axis were excluded. The trend and seasonal distributions were analyzed using autoregressive integrated moving average (ARIMA) models. A total of 12,033 data, accounting for 7,491 men (mean age 47.46 ± 13.51 years, range 18-91 years) were included. Testosterone serum levels (mean 5.34 ± 2.06 ng/dL, range 1.70-15.80 ng/dL) showed a seasonal distribution with higher levels in summer and a direct correlation to environmental temperatures and daylight duration. LH levels (mean 4.64 ± 2.54 IU/L, range 1.00-15.00 IU/L) presented 2 peaks of secretion in autumn and spring, independently from environmental parameters. FSH levels (mean 5.51 ± 3.24 IU/L) did not show any seasonal distribution. A clear seasonal fluctuation of both LH and testosterone was demonstrated in a large cohort of adult men, although a circannual seasonality of hypothalamic-pituitary-gonadal hormones in humans could be not strictly evolutionarily required. Testosterone seasonality seems independent from LH fluctuations, which could be regulated by cyclic central genes expression, and more sensible to environmental temperatures and daylight duration.
Collapse
Affiliation(s)
- Daniele Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy
| | - Giorgia Spaggiari
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy
| | - Antonio R. M. Granata
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy
| | - Monica Setti
- Service of Clinical Engineering, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Simonetta Tagliavini
- Department of Laboratory Medicine and Anatomy Pathology, Azienda USL of Modena, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Anatomy Pathology, Azienda USL of Modena, Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy
| |
Collapse
|
24
|
Wirz-Justice A, Ajdacic V, Rössler W, Steinhausen HC, Angst J. Prevalence of seasonal depression in a prospective cohort study. Eur Arch Psychiatry Clin Neurosci 2019; 269:833-839. [PMID: 30022319 DOI: 10.1007/s00406-018-0921-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/09/2018] [Indexed: 11/28/2022]
Abstract
The prevalence of autumn/winter seasonality in depression has been documented in the longitudinal Zurich cohort study by five comprehensive diagnostic interviews at intervals over more than 20 years (N = 499). Repeated winter major depressive episodes (MDE-unipolar + bipolar) showed a prevalence of 3.44% (5× more women than men), whereas MDE with a single winter episode was much higher (9.96%). A total of 7.52% suffered from autumn/winter seasonality in major and minor depressive mood states. The clinical interviews revealed novel findings: high comorbidity of Social Anxiety Disorder and Agoraphobia within the repeated seasonal MDE group, high incidence of classic diurnal variation of mood (with evening improvement), as well as a high rate of oversensitivity to light, noise, or smell. Nearly twice as many of these individuals as in the other MDE groups manifested the syndrome of atypical depression (DSM-V), which supports the prior description of seasonal affective disorder (SAD) as presenting primarily atypical symptoms (which include hypersomnia and increase in appetite and weight). This long-term database of regular structured interviews provides important confirmation of SAD as a valid diagnosis, predominantly found in women, and with atypical vegetative symptoms.
Collapse
Affiliation(s)
- Anna Wirz-Justice
- Centre for Chronobiology, Psychiatric Clinics, University of Basel, Basel, Switzerland
| | - Vladeta Ajdacic
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Wulf Rössler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Department of Psychiatry and Psychotherapy, Charité University Medicine Berlin, Berlin, Germany
| | - Hans-Christoph Steinhausen
- Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
- Clinical Psychology and Epidemiology, Institute of Psychology, University of Basel, Basel, Switzerland
- Child and Adolescent Mental Health Centre, Capital Region Psychiatry, Copenhagen, Denmark
- Department of Child and Adolescent Psychiatry, University of Southern Denmark, Odense, Denmark
| | - Jules Angst
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Min J, Kim Y, Lee S, Jang TW, Kim I, Song J. The Fourth Industrial Revolution and Its Impact on Occupational Health and Safety, Worker's Compensation and Labor Conditions. Saf Health Work 2019; 10:400-408. [PMID: 31890322 PMCID: PMC6933166 DOI: 10.1016/j.shaw.2019.09.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 12/21/2022] Open
Abstract
The “fourth industrial revolution” (FIR) is an age of advanced technology based on information and communication. FIR has a more powerful impact on the economy than in the past. However, the prospects for the labor environment are uncertain. The purpose of this study is to anticipate and prepare for occupational health and safety (OHS) issues. In FIR, nonstandard employment will be common. As a result, it is difficult to receive OHS services and compensation. Excessive trust in new technologies can lead to large-scale or new forms of accidents. Global business networks will cause destruction of workers' biorhythms, some cancers, overwork, and task complexity. The social disconnection because of an independent work will be a risk for worker's mental health. The union bonds will weaken, and it will be difficult to apply standardized OHS regulations to multinational enterprises. To cope with the new OHS issues, we need to establish new concepts of "decent work” and standardize regulations, which apply to enterprises in each country, develop public health as an OHS service, monitor emerging OHS events and networks among independent workers, and nurture experts who are responsible for new OHS issues.
Collapse
Affiliation(s)
- Jeehee Min
- Department of Occupational and Environmental Medicine, Hanyang University Hospital, Republic of Korea
| | - Yangwoo Kim
- Department of Occupational and Environmental Medicine, Hanyang University Hospital, Republic of Korea
| | - Sujin Lee
- Department of Occupational and Environmental Medicine, Hanyang University Hospital, Republic of Korea
| | - Tae-Won Jang
- Department of Occupational and Environmental Medicine, Hanyang University, Republic of Korea
| | - Inah Kim
- Department of Occupational and Environmental Medicine, Hanyang University, Republic of Korea
| | - Jaechul Song
- Department of Occupational and Environmental Medicine, Hanyang University, Republic of Korea
- Corresponding author. Department of Occupational and Environmental Medicine, Hanyang University, Sungdong-ku, Seoul, 04763, Republic of Korea.
| |
Collapse
|
26
|
Labay LM, Kraner JC, Mock AR, Sozio TJ. The Importance of Melatonin Detection in Pediatric Deaths. Acad Forensic Pathol 2019; 9:24-32. [PMID: 34394788 DOI: 10.1177/1925362119851107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022]
Abstract
Melatonin is an endogenous hormone that regulates sleep patterns. It is available in varying formulations and dosages and is marketed as a natural substance that can alleviate insomnia. Recent news reports indicate that melatonin has been administered without appropriate authorization in daycare settings. Even though lethal outcomes have not been solely attributed to exogenous melatonin overdose, it has been relevant to select police and postmortem investigations. A quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed for the analysis of biological specimens. Results of 22 positive blood samples were evaluated based upon gender, age, and melatonin concentration from cases submitted by clinical, police, and death investigation agencies. Two cases are described. In Case 1, a 9-month-old was found unresponsive after cosleeping with a sibling. Allegations included exposure to an unspecified pesticide and dextromethorphan, and consumption of half a cigarette. There was admitted use of melatonin. Melatonin was quantified in blood and gastric fluid at concentrations of 13 ng/mL and 1200 ng/mL, respectively. In Case 2, a 13-month-old was found nonresponsive in a shared room. Melatonin was found within some of the sippy cups. The infant was extremely warm to the touch. Resuscitative efforts were unsuccessful and death was pronounce3d. Analysis showed a result of 210 ng/mL in blood. The presented quantitative LC-MS/MS method can successfully be applied to evaluate exposure to exogenous melatonin. Toxicology testing can assist in the investigation of these case types by substantiating the purposeful administration of melatonin.
Collapse
|
27
|
Chen Z, Zhang Q, Chen S, Wang W, Liu G, Deng H. Determination, intercorrelation and intraindividual stability of five steroids in hair, saliva and urine among chinese college students. Steroids 2019; 149:108418. [PMID: 31150683 DOI: 10.1016/j.steroids.2019.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/19/2019] [Accepted: 05/25/2019] [Indexed: 11/18/2022]
Abstract
Hair steroids and their ratios are believed to be reliable biomarkers reflecting the long-term exposure of circulating steroids. Hereinto, two underlying assumptions are that hair biomarkers have consistency with traditional biomarkers in saliva or urine, and good long-term intraindividual stability across a long time. However, these two assumptions have not been well verified for most of hair biomarkers except for hair cortisol. Thus, this study aimed to verify the two issues on eight hair biomarkers: cortisol, cortisone, dehydroepiandrosterone (DHEA), testosterone, progesterone, the ratios of cortisol to cortisone, DHEA and testosterone. The five steroids in hair, saliva and urine were measured with high performance chromatography tandem mass spectrometry. The results revealed that the hair biomarkers had significant correlations with the salivary biomarkers calculated by the mean area under curve (AUCg) in a matched time span (ps < 0.05) where the coefficients of correlations (r) were >0.3 (r = 0.322-0.616) except cortisone and progesterone (r = 0.177 and 0.212, respectively). It indicated that hair biomarkers had weak to moderate consistency with salivary ones. But only three biomarkers showed the consistency between hair and urine, such as testosterone (r = 0.352, p < 0.01), progesterone (r = 0.228, p < 0.05) and the ratio of cortisol to testosterone (r = 0.502, p < 0.01). Hair biomarkers showed no absolute stability, but moderate to high long-term relative stability across 12 months where interclass correlation coefficients ranged between 0.356 and 0.678 (ps < 0.01). These results implied that the eight biomarkers in hair could retrospectively reflect their cumulative exposure in vivo. Therefore, the hair biomarkers would be considerable reliable long-term biomarkers for psychological and physiological research.
Collapse
Affiliation(s)
- Zheng Chen
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, China; Institute of Child Development and Education, Southeast University, Nanjing 210096, China; Department of Brain and Learning Science, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Quan Zhang
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, China; Institute of Child Development and Education, Southeast University, Nanjing 210096, China; Department of Brain and Learning Science, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Shenghuo Chen
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, China; Institute of Child Development and Education, Southeast University, Nanjing 210096, China; Department of Brain and Learning Science, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weiwen Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoxiong Liu
- School of Psychology, Nanjing Normal University, Nanjing 210097, China
| | - Huihua Deng
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, China; Institute of Child Development and Education, Southeast University, Nanjing 210096, China; Department of Brain and Learning Science, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.; Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
28
|
Akram F, Jennings TB, Stiller JW, Lowry CA, Postolache TT. Mood Worsening on Days with High Pollen Counts is associated with a Summer Pattern of Seasonality. Pteridines 2019; 30:133-141. [PMID: 31631951 PMCID: PMC6800045 DOI: 10.1515/pteridines-2019-0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Summer/spring-type seasonal affective disorder (S-SAD) is the less common subtype of seasonal affective disorder and evidence regarding potential triggers of S-SAD is scarce. Recent reports support association of airborne-pollen with seasonal exacerbation of depression (mood seasonality) and timing of suicidal behavior. Therefore, we hypothesized that Old Order Amish (OOA) with summer/spring pattern of seasonality (abbreviated as summer pattern) and S-SAD will have significant mood worsening on high pollen days. Methods: A seasonal pattern of mood worsening and SAD parameters were estimated using Seasonal Pattern Assessment Questionnaire (SPAQ). Age- and gender-adjusted ANCOVAs and post hoc analyses were conducted to compare mood worsening on days with high pollen counts between summer-pattern vs no-summer-pattern of mood worsening, S-SAD vs no-S-SAD, winter-pattern vs no-winter-pattern of mood worsening, and W-SAD vs no-W-SAD groups. Results: The prevalence of S-SAD was 0.4%, while 4.5% of individuals had a summer pattern of mood seasonality. A statistically significant difference for mood worsening on high pollen days was observed between summer-pattern vs no-summer-pattern of mood worsening (p = 0.006). The significant association between S-SAD vs no-SAD groups (p = 0.032) for mood worsening on high pollen days did not withstand Bonferroni adjustment for multiple comparisons. No significant association was found for winter-pattern vs no-winter-pattern of mood worsening (p = 0.61) and for W-SAD vs no-W-SAD (p = 0.19) groups. Conclusion: Our results are consistent with previous studies implicating links between aeroallergen exposure and summer pattern of seasonality, but not the winter pattern of seasonality.
Collapse
Affiliation(s)
- Faisal Akram
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tyler B Jennings
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - John W Stiller
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, 80045, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA
| | - Teodor T Postolache
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Saint Elizabeths Hospital, Psychiatry Residency Training Program, Washington, DC, 20032, USA; Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, 80045, USA; Amish Research Clinic of the University of Maryland, Lancaster, PA, 17602, USA
| |
Collapse
|
29
|
Nehme PA, Amaral F, Lowden A, Skene DJ, Cipolla-Neto J, Moreno CRC. Reduced melatonin synthesis in pregnant night workers: Metabolic implications for offspring. Med Hypotheses 2019; 132:109353. [PMID: 31421432 DOI: 10.1016/j.mehy.2019.109353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
Several novel animal studies have shown that intrauterine metabolic programming can be modified in the event of reduced melatonin synthesis during pregnancy, leading to glucose intolerance and insulin resistance in the offspring. It is therefore postulated that female night workers when pregnant may expose the offspring to unwanted health threats. This may be explained by the fact that melatonin is essential for regulating energy metabolism and can influence reproductive activity. Moreover, the circadian misalignment caused by shift work affects fertility and the fetus, increasing the risk of miscarriage, premature birth and low birth weight, phenomena observed in night workers. Thus, we hypothesize that light-induced melatonin suppression as a result of night work may alter intrauterine metabolic programming in pregnant women, potentially leading to metabolic disorders in their offspring.
Collapse
Affiliation(s)
- P A Nehme
- School of Public Health, University of São Paulo, Brazil
| | - F Amaral
- Department of Physiology, Federal University of São Paulo, Brazil
| | - A Lowden
- Stress Research Institute, University of Stockholm, Sweden
| | - D J Skene
- Faculty of Health and Medical Sciences, University of Surrey, UK
| | - J Cipolla-Neto
- Department of Physiology and Biophysics Neurobiology Lab, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - C R C Moreno
- School of Public Health, University of São Paulo, Brazil; Stress Research Institute, University of Stockholm, Sweden.
| |
Collapse
|
30
|
Schwartz PJ. Chris Cornell, the Black Hole Sun, and the Seasonality of Suicide. Neuropsychobiology 2019; 78:38-47. [PMID: 30921807 PMCID: PMC6549453 DOI: 10.1159/000498868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 02/12/2019] [Indexed: 02/01/2023]
Abstract
PURPOSE Seattle-inspired rock and roll superstar Chris Cornell died by suicide in May 2017. In the northern hemisphere, May represents the peak of the widely replicated but still unexplained seasonal spring rhythm in suicide. Years earlier, Cornell had suffered openly from recurrent bouts of severe depression, and his early musical lyrics do indeed suggest an enduring sensitivity to the vicissitudes of depressed and suicidal states. Cornell's most famous song, Black Hole Sun, suggests a mixed mood state, the incidence of which also peaks in the spring. The present work explores Cornell's May suicide from a chronobiologic perspective. METHODS Review of Cornell's lyrics and literature on suicide. RESULTS Cornell's lyrics contain clear indicators of mixed depressive and seasonal imagery, highlighting 3 fundamental axioms of suicidology: (1) the yearly suicide rhythm peaks in May in the northern hemisphere, (2) mixed depressive states are particularly lethal, and (3) the suicide risk increases dramatically when recovering from depression and mood turns mixed. CONCLUSIONS Cornell, in his life and music, left us with a novel and important hypothesis about the spring seasonality of suicide, namely, that the yearly suicide risk becomes maximal when winter turns to spring and there emerges a deadly mixed mood state under a May photoperiod, i.e., the suicide risk is maximal when a Black Hole Sun occurs in May. It is hoped that Cornell's legacy and sensitive hypothesis inspire research into the etiology and treatment of the spring seasonality of suicide risk and mixed mood states. LIMITATIONS The Cornell hypothesis was formulated based in part on several speculative inferences regarding the course of his functioning just prior to his suicide.
Collapse
|
31
|
Kernbach ME, Hall RJ, Burkett-Cadena ND, Unnasch TR, Martin LB. Dim light at night: physiological effects and ecological consequences for infectious disease. Integr Comp Biol 2019; 58:995-1007. [PMID: 29939262 DOI: 10.1093/icb/icy080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Light pollution has emerged as a pervasive component of land development over the past century. Several detrimental impacts of this anthropogenic influence have been identified in night shift workers, laboratory rodents, and a plethora of wildlife species. Circadian, or daily, patterns are interrupted by the presence of light at night and have the capacity to alter rhythmic physiological or behavioral characteristics. Indeed, biorhythm disruption can lead to metabolic, reproductive, and immunological dysfunction depending on the intensity, timing, duration, and wavelength of light exposure. Light pollution, in many forms and by many pathways, is thus apt to affect the nature of host-pathogen interactions. However, no research has yet investigated this possibility. The goal of this manuscript is to outline how dim light at night, a relevant and common form of light pollution, may affect disease dynamics by interrupting circadian rhythms and regulation of immune responses as well as opportunities for host-parasite interactions and subsequent transmission risk including spillover into humans. We close by proposing some promising interventions including alternative lighting methods or vector control efforts.
Collapse
Affiliation(s)
| | - Richard J Hall
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - Thomas R Unnasch
- Department of Global Health, University of South Florida, Tampa, FL, USA
| | - Lynn B Martin
- Department of Global Health, University of South Florida, Tampa, FL, USA
| |
Collapse
|
32
|
Amaral FGD, Cipolla-Neto J. A brief review about melatonin, a pineal hormone. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2018; 62:472-479. [PMID: 30304113 PMCID: PMC10118741 DOI: 10.20945/2359-3997000000066] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022]
Abstract
Melatonin is a ubiquitous molecule in nature, being locally synthesized in several cells and tissues, besides being a hormone that is centrally produced in the pineal gland of vertebrates, particularly in mammals. Its pineal synthesis is timed by the suprachiasmatic nucleus, that is synchronized to the light-dark cycle via the retinohypothalamic tract, placing melatonin synthesis at night, provided its dark. This unique trait turns melatonin into an internal synchronizer that adequately times the organism's physiology to the daily and seasonal demands. Besides being amphiphilic, melatonin presents specific mechanisms and ways of action devoted to its role as a time-giving agent, being widely spread in the organism. The present review aims to focus on melatonin as a pineal hormone with specific mechanisms and ways of action, besides presenting the clinical syndromes related to its synthesis and/or function disruptions.
Collapse
Affiliation(s)
| | - José Cipolla-Neto
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brasil
| |
Collapse
|
33
|
Cipolla-Neto J, Amaral FGD. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr Rev 2018; 39:990-1028. [PMID: 30215696 DOI: 10.1210/er.2018-00084] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Melatonin is a ubiquitous molecule present in almost every live being from bacteria to humans. In vertebrates, besides being produced in peripheral tissues and acting as an autocrine and paracrine signal, melatonin is centrally synthetized by a neuroendocrine organ, the pineal gland. Independently of the considered species, pineal hormone melatonin is always produced during the night and its production and secretory episode duration are directly dependent on the length of the night. As its production is tightly linked to the light/dark cycle, melatonin main hormonal systemic integrative action is to coordinate behavioral and physiological adaptations to the environmental geophysical day and season. The circadian signal is dependent on its daily production regularity, on the contrast between day and night concentrations, and on specially developed ways of action. During its daily secretory episode, melatonin coordinates the night adaptive physiology through immediate effects and primes the day adaptive responses through prospective effects that will only appear at daytime, when melatonin is absent. Similarly, the annual history of the daily melatonin secretory episode duration primes the central nervous/endocrine system to the seasons to come. Remarkably, maternal melatonin programs the fetuses' behavior and physiology to cope with the environmental light/dark cycle and season after birth. These unique ways of action turn melatonin into a biological time-domain-acting molecule. The present review focuses on the above considerations, proposes a putative classification of clinical melatonin dysfunctions, and discusses general guidelines to the therapeutic use of melatonin.
Collapse
Affiliation(s)
- José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
34
|
Borisenkov MF, Kozlovskaya AV, Bojko ER. Geomagnetic activity and human reproduction in the Far North. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1513631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- M. F. Borisenkov
- Institute of Physiology of Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - A. V. Kozlovskaya
- Medical Institute of the Pitirim Sorokoin Syktyvkar State University, Syktyvkar, Russia
| | - E. R. Bojko
- Institute of Physiology of Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| |
Collapse
|
35
|
Wyse CA, Celis Morales CA, Ward J, Lyall D, Smith DJ, Mackay D, Curtis AM, Bailey MES, Biello S, Gill JMR, Pell JP. Population-level seasonality in cardiovascular mortality, blood pressure, BMI and inflammatory cells in UK biobank. Ann Med 2018; 50:410-419. [PMID: 29724143 DOI: 10.1080/07853890.2018.1472389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION The risk of mortality from cardiovascular disease (CVD) is higher in wintertime throughout the world, but it is not known if this reflects annual changes in diet or lifestyle, or an endogenous photoperiodic mechanism that is sensitive to changes in day length. METHODS Phenotypic data on cardiometabolic and lifestyle factors were collected throughout a 4 year time period from 502,642 middle-aged participants in UK Biobank. To assess the impact of seasonal environmental changes on cardiovascular risk factors, we linked these data to the outdoor temperature and day length at the time of assessment. Self-reported information on physical activity, diet and disease status were used to adjust for confounding factors related to health and lifestyle. RESULTS Mortality related to CVD was higher in winter, as were risk factors for this condition including blood pressure, markers of inflammation and body mass index (BMI). These seasonal rhythms were significantly related to day length after adjustment for other factors that might affect seasonality including physical activity, diet and outdoor temperature. CONCLUSIONS The risk of CVD may be modulated by day length at temperate latitudes, and the implications of seasonality should be considered in all studies of human cardiometabolic health. Key messages In this cross-sectional study in UK Biobank, we report annual variations in cardiovascular risk factors and mortality that were associated with day length independent of environmental and lifestyle factors. These seasonal changes in day length might contribute to annual patterns in cardiovascular disease and mortality.
Collapse
Affiliation(s)
- Cathy A Wyse
- a Department of Molecular and Cellular Therapeutics Department , Royal College of Surgeons in Ireland (RCSI) , Dublin , Ireland.,b Institute of Biodiversity, Animal Health and Comparative Medicine , University of Glasgow , Glasgow , UK
| | - Carlos A Celis Morales
- c Institute of Cardiovascular and Medical Sciences , University of Glasgow , Glasgow , UK
| | - Joey Ward
- d Institute of Health and Wellbeing , University of Glasgow , Glasgow , UK
| | - Donald Lyall
- d Institute of Health and Wellbeing , University of Glasgow , Glasgow , UK
| | - Daniel J Smith
- d Institute of Health and Wellbeing , University of Glasgow , Glasgow , UK
| | - Daniel Mackay
- d Institute of Health and Wellbeing , University of Glasgow , Glasgow , UK
| | - Annie M Curtis
- a Department of Molecular and Cellular Therapeutics Department , Royal College of Surgeons in Ireland (RCSI) , Dublin , Ireland
| | - Mark E S Bailey
- e School of Life Sciences , University of Glasgow , Glasgow , UK
| | - Stephany Biello
- f Institute of Neuroscience and Psychology , University of Glasgow , Glasgow , UK
| | - Jason M R Gill
- c Institute of Cardiovascular and Medical Sciences , University of Glasgow , Glasgow , UK
| | - J P Pell
- d Institute of Health and Wellbeing , University of Glasgow , Glasgow , UK
| |
Collapse
|
36
|
Wyse CA, Zhang X, McLaughlin M, Biello SM, Hough D, Bellingham M, Curtis AM, Robinson JE, Evans NP. Circadian rhythms of melatonin and behaviour in juvenile sheep in field conditions: Effects of photoperiod, environment and weaning. Physiol Behav 2018; 194:362-370. [PMID: 29894760 DOI: 10.1016/j.physbeh.2018.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/23/2018] [Accepted: 06/01/2018] [Indexed: 11/19/2022]
Abstract
Entrainment of circadian rhythms (CR) to the light dark cycle has been well described under controlled, experimental conditions. However, studies in rodents have reported that rhythms in the laboratory are not always reproduced under field conditions. The aim of this study was to characterise the CR of sheep maintained under conditions of standard UK farm animal husbandry and to investigate the effects of environmental challenges presented by season, weaning and changes in housing on CR. Male sheep (n = 9) were kept at pasture, or group housed in barns, under natural photoperiod for one year. CR in locomotor activity were monitored using accelerometry, and 24 h patterns in plasma cortisol and melatonin were measured every 4 h by ELISA. CR was measured before and after weaning, in summer and winter, and at pasture and by barn housing. Cosinor analysis revealed high amplitude, diurnal rhythms in locomotor activity that were disrupted by weaning and by barn housing. Rhythms in winter showed an interrupted night time activity pattern, but only when the sheep were kept at pasture. Cortisol and melatonin secretion followed typical circadian patterns in winter and summer. The CR of the sheep under the field conditions of this study were strikingly robust under basal conditions, but easily disrupted by environmental challenges. Interrupted patterns of activity during the long nights of wintertime, not previously reported for sheep kept in experimental conditions were recorded. Based on these findings, we propose that animals require exposure to more complex environments than the laboratory in order to exhibit their true circadian phenotype.
Collapse
Affiliation(s)
- C A Wyse
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom; Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in, Ireland, 123, St Stephens Green, Dublin.
| | - X Zhang
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - M McLaughlin
- School of Veterinary Medicine, University of Glasgow, G61 1QH, United Kingdom
| | - S M Biello
- School of Psychology, 58 Hillhead Street, Glasgow G12 8QB, United Kingdom
| | - D Hough
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - M Bellingham
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - A M Curtis
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in, Ireland, 123, St Stephens Green, Dublin
| | - J E Robinson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - N P Evans
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom
| |
Collapse
|
37
|
Milas G, Šupe-Domić D, Drmić-Hofman I, Rumora L, Klarić IM. Weather conditions: a neglected factor in human salivary cortisol research? INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:165-175. [PMID: 28884366 DOI: 10.1007/s00484-017-1436-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 08/24/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
There is ample evidence that environmental stressors such as extreme weather conditions affect animal behavior and that this process is in part mediated through the elevated activity of the hypothalamic pituitary adrenal axis which results in an increase in cortisol secretion. This relationship has not been extensively researched in humans, and weather conditions have not been analyzed as a potential confounder in human studies of stress. Consequently, the goal of this paper was to assess the relationship between salivary cortisol and weather conditions in the course of everyday life and to test a possible moderating effect of two weather-related variables, the climate region and timing of exposure to outdoors conditions. The sample consisted of 903 secondary school students aged 18 to 21 years from Mediterranean and Continental regions. Cortisol from saliva was sampled in naturalistic settings at three time points over the course of a single day. We found that weather conditions are related to salivary cortisol concentration and that this relationship may be moderated by both the specific climate and the anticipation of immediate exposure to outdoors conditions. Unpleasant weather conditions are predictive for the level of salivary cortisol, but only among individuals who anticipate being exposed to it in the immediate future (e.g., in students attending school in the morning shift). We also demonstrated that isolated weather conditions or their patterns may be relevant in one climate area (e.g., Continental) while less relevant in the other (e.g., Mediterranean). Results of this study draw attention to the importance of controlling weather conditions in human salivary cortisol research.
Collapse
Affiliation(s)
- Goran Milas
- Centre for Research on Interindividual Differences, Institute of Social Sciences "Ivo Pilar", Zagreb, Croatia
| | - Daniela Šupe-Domić
- Department of Medical Laboratory Diagnostics, University Hospital Centre Split, Split, Croatia
| | - Irena Drmić-Hofman
- Department of Pathology, Forensic Medicine and Cytology, University Hospital Centre Split, Split, Croatia
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, Split, Croatia
| | - Lada Rumora
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Irena Martinović Klarić
- Centre for Research in Social Inequalities and Sustainability, Institute for Social Research in Zagreb, Amruševa 11/II, 10000, Zagreb, Croatia.
| |
Collapse
|
38
|
Tackenberg MC, McMahon DG. Photoperiodic Programming of the SCN and Its Role in Photoperiodic Output. Neural Plast 2018; 2018:8217345. [PMID: 29552032 PMCID: PMC5818903 DOI: 10.1155/2018/8217345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/22/2017] [Indexed: 11/18/2022] Open
Abstract
Though the seasonal response of organisms to changing day lengths is a phenomenon that has been scientifically reported for nearly a century, significant questions remain about how photoperiod is encoded and effected neurobiologically. In mammals, early work identified the master circadian clock, the suprachiasmatic nuclei (SCN), as a tentative encoder of photoperiodic information. Here, we provide an overview of research on the SCN as a coordinator of photoperiodic responses, the intercellular coupling changes that accompany that coordination, as well as the SCN's role in a putative brain network controlling photoperiodic input and output. Lastly, we discuss the importance of photoperiodic research in the context of tangible benefits to human health that have been realized through this research as well as challenges that remain.
Collapse
Affiliation(s)
| | - Douglas G. McMahon
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
39
|
Bennett MM, Rinehart JP, Yocum GD, Doetkott C, Greenlee KJ. Cues for cavity nesters: investigating relevant zeitgebers for emerging leafcutting bees, Megachile rotundata. J Exp Biol 2018; 221:jeb.175406. [DOI: 10.1242/jeb.175406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/04/2018] [Indexed: 11/20/2022]
Abstract
Photoperiod is considered the universal zeitgeber, regulating physiological processes in numerous animals. However, for animals in light-restricted habitats (e.g. burrows or cavities), thermoperiod may be a more important cue. Our study tested this hypothesis in the alfalfa leafcutting bee, Megachile rotundata, which nests in cavities and undergoes development within a brood cell. We assessed the role of environmental cues (thermoperiod and photoperiod) on the process of adult emergence by examining: 1) if those cues direct circadian rhythms, 2) which cue is more dominant, and 3) how sensitive developing bees and emergence-ready adults are to cues. Although we found that 20% of light penetrates the brood cell, and bees respond to photoperiod by synchronizing emergence, thermoperiod is the dominant cue. When presented with a conflicting zeitgeber, bees entrained to the thermophase instead of the photophase. When temperature cues were removed, we observed free-running of emergence, indicating that underlying circadian mechanisms can be synchronized by daily fluctuations in temperature. We also found that emerging bees were highly sensitive to even small increases in temperature, entraining to a ramp speed of 0.33°C/hour. The response and sensitivity to temperature cues suggest that M. rotundata evolved a temperature-mediated clock to mediate emergence from light-restricted cavities.
Collapse
Affiliation(s)
- Meghan M. Bennett
- North Dakota State University, Department of Biological Sciences, P.O. Box 6050, Fargo, ND 58102, USA
| | - Joseph P. Rinehart
- USDA-ARS Red River Valley Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Boulevard North, Fargo, ND 58102, USA
| | - George D. Yocum
- USDA-ARS Red River Valley Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Boulevard North, Fargo, ND 58102, USA
| | - Curt Doetkott
- North Dakota State University, Department of Statistics, 1320 Albrecht Blvd, Fargo, ND 58102, USA
| | - Kendra J. Greenlee
- North Dakota State University, Department of Biological Sciences, P.O. Box 6050, Fargo, ND 58102, USA
| |
Collapse
|
40
|
Dimitrova TD, Reeves GM, Snitker S, Lapidus M, Sleemi AR, Balis TG, Manalai P, Tariq MM, Cabassa JA, Karim NN, Johnson MA, Langenberg P, Rohan KJ, Miller M, Stiller JW, Postolache TT. Prediction of outcome of bright light treatment in patients with seasonal affective disorder: Discarding the early response, confirming a higher atypical balance, and uncovering a higher body mass index at baseline as predictors of endpoint outcome. J Affect Disord 2017; 222:126-132. [PMID: 28692905 DOI: 10.1016/j.jad.2017.06.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/17/2017] [Accepted: 06/17/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND We tested the hypothesis that the early improvement in mood after the first hour of bright light treatment compared to control dim-red light would predict the outcome at six weeks of bright light treatment for depressed mood in patients with Seasonal Affective Disorder (SAD). We also analyzed the value of Body Mass Index (BMI) and atypical symptoms of depression at baseline in predicting treatment outcome. METHODS Seventy-eight adult participants were enrolled. The first treatment was controlled crossover, with randomized order, and included one hour of active bright light treatment and one hour of control dim-red light, with one-hour washout. Depression was measured on the Structured Interview Guide for the Hamilton Rating Scale for Depression-SAD version (SIGH-SAD). The predictive association of depression scores changes after the first session. BMI and atypical score balance with treatment outcomes at endpoint were assessed using multivariable linear and logistic regressions. RESULTS No significant prediction by changes in depression scores after the first session was found. However, higher atypical balance scores and BMI positively predicted treatment outcome. LIMITATIONS Absence of a control intervention for the six-weeks of treatment (only the first session in the laboratory was controlled). Exclusion of patients with comorbid substance abuse, suicidality and bipolar I disorder, and patients on antidepressant medications, reducing the generalizability of the study. CONCLUSION Prediction of outcome by early response to light treatment was not replicated, and the previously reported prediction of baseline atypical balance was confirmed. BMI, a parameter routinely calculated in primary care, was identified as a novel predictor, and calls for replication and then exploration of possible mediating mechanisms.
Collapse
Affiliation(s)
- Tzvetelina D Dimitrova
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201-1549, United States; Psychiatry Residency Training Program, St. Elizabeths Hospital, Washington, DC 20032, United States
| | - Gloria M Reeves
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201-1549, United States; Division of Child & Adolescent Psychiatry, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201-1549, United States
| | - Soren Snitker
- Division of Endocrinology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201-1549, United States
| | - Manana Lapidus
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201-1549, United States
| | - Aamar R Sleemi
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201-1549, United States; Psychiatry Residency Training Program, St. Elizabeths Hospital, Washington, DC 20032, United States
| | - Theodora G Balis
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201-1549, United States
| | - Partam Manalai
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201-1549, United States; Psychiatry Residency Training Program, St. Elizabeths Hospital, Washington, DC 20032, United States
| | - Muhammad M Tariq
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201-1549, United States; Psychiatry Residency Training Program, St. Elizabeths Hospital, Washington, DC 20032, United States
| | - Johanna A Cabassa
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201-1549, United States
| | - Naila N Karim
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201-1549, United States; Psychiatry Residency Training Program, St. Elizabeths Hospital, Washington, DC 20032, United States
| | - Mary A Johnson
- Department of Ophthalmology and Visual Science, University of Maryland School of Medicine, Baltimore, MD 21201-1549, United States
| | - Patricia Langenberg
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201-1549, United States
| | - Kelly J Rohan
- Department of Psychological Science, University of Vermont, Burlington, VT 05405-0134, United States
| | - Michael Miller
- Center for Preventive Cardiology, University of Maryland School of Medicine, Baltimore, MD 21201-1549, United States
| | - John W Stiller
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201-1549, United States; Psychiatry Residency Training Program, St. Elizabeths Hospital, Washington, DC 20032, United States; Department of Neurology, St. Elizabeths Hospital, Washington, DC 20032, United States
| | - Teodor T Postolache
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201-1549, United States; Rocky Mountain MIRECC, Denver, CO 80220, United States; VISN 5 MIRECC, Baltimore, MD 21201 United States.
| |
Collapse
|
41
|
Leypunskiy E, Lin J, Yoo H, Lee U, Dinner AR, Rust MJ. The cyanobacterial circadian clock follows midday in vivo and in vitro. eLife 2017; 6:e23539. [PMID: 28686160 PMCID: PMC5605227 DOI: 10.7554/elife.23539] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/06/2017] [Indexed: 01/20/2023] Open
Abstract
Circadian rhythms are biological oscillations that schedule daily changes in physiology. Outside the laboratory, circadian clocks do not generally free-run but are driven by daily cues whose timing varies with the seasons. The principles that determine how circadian clocks align to these external cycles are not well understood. Here, we report experimental platforms for driving the cyanobacterial circadian clock both in vivo and in vitro. We find that the phase of the circadian rhythm follows a simple scaling law in light-dark cycles, tracking midday across conditions with variable day length. The core biochemical oscillator comprised of the Kai proteins behaves similarly when driven by metabolic pulses in vitro, indicating that such dynamics are intrinsic to these proteins. We develop a general mathematical framework based on instantaneous transformation of the clock cycle by external cues, which successfully predicts clock behavior under many cycling environments.
Collapse
Affiliation(s)
- Eugene Leypunskiy
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, United States
| | - Jenny Lin
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Haneul Yoo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - UnJin Lee
- Department of Ecology and Evolution, The University of Chicago, Chicago, United States
| | - Aaron R Dinner
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, United States
- Department of Chemistry, The University of Chicago, Chicago, United States
- James Franck Institute, The University of Chicago, Chicago, United States
| | - Michael J Rust
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, United States
- Department of Ecology and Evolution, The University of Chicago, Chicago, United States
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
- Department of Physics, The University of Chicago, Chicago, United States
| |
Collapse
|
42
|
Lazzerini Ospri L, Prusky G, Hattar S. Mood, the Circadian System, and Melanopsin Retinal Ganglion Cells. Annu Rev Neurosci 2017; 40:539-556. [PMID: 28525301 DOI: 10.1146/annurev-neuro-072116-031324] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of a third type of photoreceptors in the mammalian retina, intrinsically photosensitive retinal ganglion cells (ipRGCs), has had a revolutionary impact on chronobiology. We can now properly account for numerous non-vision-related functions of light, including its effect on the circadian system. Here, we give an overview of ipRGCs and their function as it relates specifically to mood and biological rhythms. Although circadian disruptions have been traditionally hypothesized to be the mediators of light's effects on mood, here we present an alternative model that dispenses with assumptions of causality between the two phenomena and explains mood regulation by light via another ipRGC-dependent mechanism.
Collapse
Affiliation(s)
- Lorenzo Lazzerini Ospri
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Glen Prusky
- Department of Physiology and Biophysics, Cornell University, Ithaca, New York 10065
| | - Samer Hattar
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; .,Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
43
|
Couoh LR. Differences between biological and chronological age-at-death in human skeletal remains: A change of perspective. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 163:671-695. [DOI: 10.1002/ajpa.23236] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Lourdes R. Couoh
- Postgraduate Division, Faculty of Philosophy and Literature, Institute of Anthropological Research; The National Autonomous University of Mexico [UNAM]; Coyoacán, Mexico city 04510 Mexico
| |
Collapse
|
44
|
Beneficial Effects of Exogenous Melatonin in Acute Staphylococcus aureus and Escherichia coli Infection-Induced Inflammation and Associated Behavioral Response in Mice After Exposure to Short Photoperiod. Inflammation 2017; 39:2072-2093. [PMID: 27682182 DOI: 10.1007/s10753-016-0445-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The administration of melatonin during acute bacterial infection was evaluated in this study. Mice pre-exposed to normal photoperiodic (NP), short photoperiodic (SP), and long photoperiodic (LP) day lengths were infected separately with live Staphylococcus aureus (5 × 106 cells/ml) or Escherichia coli (2.5 × 107 colony-forming units/ml) and treated with melatonin (10 mg/kg body weight). Behavioral studies were performed before bacterial infection and after melatonin administration. In mice pre-exposed to SP, exogenous melatonin administration resulted in better clearance of bacteria from blood and behavioral improvement. Reduced glutathione content and superoxide dismutase activities were increased, with concomitant decrease in lipid peroxidation content and catalase activities in the liver, brain, and spleen after exogenous melatonin administration. The overproduction of tumor necrosis factor-α, interferon-γ, and interleukin-6 during acute bacterial infection in mice exposed to different photoperiods was probably regulated by the administration of exogenous melatonin, by reducing neutrophil recruitment to spleen, expression of inducible nitric oxide synthase and cyclooxygenase-2 in hypothalamus, and C-reactive protein in the serum, and was also associated with improved behavioral response. Photoperiodic variations in inflammatory and oxidative stress markers might be correlated to serum melatonin and corticosterone levels. This study suggests that the administration of melatonin during SP exposure is protective in infection-induced inflammation than NP and LP exposure.
Collapse
|
45
|
Xiang Z, Yang W, Qi X, Yao H, Grueter CC, Garber PA, Li B, Li M. An examination of factors potentially influencing birth distributions in golden snub-nosed monkeys ( Rhinopithecus roxellana). PeerJ 2017; 5:e2892. [PMID: 28149681 PMCID: PMC5267570 DOI: 10.7717/peerj.2892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/09/2016] [Indexed: 11/23/2022] Open
Abstract
Many species of primates are considered seasonal breeders, but the set of factors, such as food availability, day length and temperature, that influence the timing of reproductive events for both wild and captive individuals remains unclear. Here, we examine the role of factors in shaping breeding patterns in Rhinopithecus roxellana, a temperate colobine primate. We used circular statistics to describe and compare the patterns of reproductive seasonality among individuals in 13 captive groups and two free ranging but provisioned groups at various locations throughout China. Almost 90% of births occurred in March, April and May in adult females residing in both free ranging (n = 131) and captive groups (n = 407). Births occurred principally in 2-4 months prior to the peak of food availability, while conceptions occurred in 1-2 months after the peak of food availability in free ranging but provisioned groups. Day length (latitude) had a significant effect on the timing of reproduction. However, females that experienced a wide variation of temperature between the lowest and highest monthly average temperature had a later conception date. These results support that day length and temperature might be factor influencing the timing of reproductive activity.
Collapse
Affiliation(s)
- Zuofu Xiang
- College of Life Science and Technology, Central South University of Forestry & Technology, Changsha, Hunan, China
- Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wanji Yang
- College of Life Science and Technology, Central South University of Forestry & Technology, Changsha, Hunan, China
- Key Lab of Conservation Biology for Shennongjia Golden Monkey, Shennongjia Forest District, Hubei, China
| | - Xiaoguang Qi
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Hui Yao
- Key Lab of Conservation Biology for Shennongjia Golden Monkey, Shennongjia Forest District, Hubei, China
| | - Cyril C. Grueter
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, WA, Australia
| | - Paul A. Garber
- Department of Anthropology and Program in Ecology and Evolutionary Biology, University of Illinois, Urbana, IL, United States
| | - Baoguo Li
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Ming Li
- Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
46
|
Mohyuddin H, Georgiou P, Wadhawan A, Daue ML, Brenner LA, Gragnoli C, Saunders EFH, Fuchs D, Lowry CA, Postolache TT. Seasonality of blood neopterin levels in the Old Order Amish. Pteridines 2017; 28:163-176. [PMID: 29657362 DOI: 10.1515/pterid-2017-0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Seasonal changes in non-human animals and seasonal affective disorder (SAD) in humans are associated with immune activation in winter relative to summer. We intended to measure seasonal variation in neopterin, a marker of cellular immunity, and its interactions with gender and seasonality of mood. We studied 320 Amish from Lancaster, PA, USA (men = 128; 40%) with an average age [Standard deviation (SD)] of 56.7 (13.9) years. Blood neopterin level was measured with enzyme-linked immunosorbent assay (ELISA). Seasonality was measured with Seasonal Pattern Assessment Questionnaire (SPAQ). Statistical analysis included analysis of covariance (ANCOVAs) and multivariate linear regression. We also investigated interactions of seasonal differences in neopterin with gender, seasonality scores and estimation of SAD diagnosis. We found a significantly higher neopterin level in winter than in summer (p = 0.006). There were no significant gender or seasonality interactions. Our study confirmed the hypothesized higher neopterin level in winter. A cross sectional design was our major limitation. If this finding will be replicated by longitudinal studies in multiple groups, neopterin could be used to monitor immune status across seasons in demographically diverse samples, even if heterogeneous in gender distribution, and degree of seasonality of mood.
Collapse
Affiliation(s)
- Hira Mohyuddin
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Polymnia Georgiou
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; and Saint Elizabeths' Hospital, Psychiatry Residency Training Program, Washington, DC, USA
| | - Melanie L Daue
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; and Geriatrics Research and Education Clinical Center, Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Lisa A Brenner
- Departments of Psychiatry, Physical Medicine and Rehabilitation and Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Denver, CO, USA; and Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, USA
| | - Claudia Gragnoli
- Division of Endocrinology, Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA; and Molecular Biology Laboratory, Bios Biotech Multi Diagnostic Health Center, Rome, Italy
| | - Erika F H Saunders
- Department of Psychiatry, Penn State College of Medicine and Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Christopher A Lowry
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Denver, CO, USA; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, USA; Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA; and Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, USA; and Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, USA
| |
Collapse
|
47
|
Potter GDM, Skene DJ, Arendt J, Cade JE, Grant PJ, Hardie LJ. Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures. Endocr Rev 2016; 37:584-608. [PMID: 27763782 PMCID: PMC5142605 DOI: 10.1210/er.2016-1083] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Circadian (∼24-hour) timing systems pervade all kingdoms of life and temporally optimize behavior and physiology in humans. Relatively recent changes to our environments, such as the introduction of artificial lighting, can disorganize the circadian system, from the level of the molecular clocks that regulate the timing of cellular activities to the level of synchronization between our daily cycles of behavior and the solar day. Sleep/wake cycles are intertwined with the circadian system, and global trends indicate that these, too, are increasingly subject to disruption. A large proportion of the world's population is at increased risk of environmentally driven circadian rhythm and sleep disruption, and a minority of individuals are also genetically predisposed to circadian misalignment and sleep disorders. The consequences of disruption to the circadian system and sleep are profound and include myriad metabolic ramifications, some of which may be compounded by adverse effects on dietary choices. If not addressed, the deleterious effects of such disruption will continue to cause widespread health problems; therefore, implementation of the numerous behavioral and pharmaceutical interventions that can help restore circadian system alignment and enhance sleep will be important.
Collapse
Affiliation(s)
- Gregory D M Potter
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Debra J Skene
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Josephine Arendt
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Janet E Cade
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Peter J Grant
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Laura J Hardie
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
48
|
Stevenson TJ, Visser ME, Arnold W, Barrett P, Biello S, Dawson A, Denlinger DL, Dominoni D, Ebling FJ, Elton S, Evans N, Ferguson HM, Foster RG, Hau M, Haydon DT, Hazlerigg DG, Heideman P, Hopcraft JGC, Jonsson NN, Kronfeld-Schor N, Kumar V, Lincoln GA, MacLeod R, Martin SAM, Martinez-Bakker M, Nelson RJ, Reed T, Robinson JE, Rock D, Schwartz WJ, Steffan-Dewenter I, Tauber E, Thackeray SJ, Umstatter C, Yoshimura T, Helm B. Disrupted seasonal biology impacts health, food security and ecosystems. Proc Biol Sci 2016; 282:20151453. [PMID: 26468242 PMCID: PMC4633868 DOI: 10.1098/rspb.2015.1453] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The rhythm of life on earth is shaped by seasonal changes in the environment. Plants and animals show profound annual cycles in physiology, health, morphology, behaviour and demography in response to environmental cues. Seasonal biology impacts ecosystems and agriculture, with consequences for humans and biodiversity. Human populations show robust annual rhythms in health and well-being, and the birth month can have lasting effects that persist throughout life. This review emphasizes the need for a better understanding of seasonal biology against the backdrop of its rapidly progressing disruption through climate change, human lifestyles and other anthropogenic impact. Climate change is modifying annual rhythms to which numerous organisms have adapted, with potential consequences for industries relating to health, ecosystems and food security. Disconcertingly, human lifestyles under artificial conditions of eternal summer provide the most extreme example for disconnect from natural seasons, making humans vulnerable to increased morbidity and mortality. In this review, we introduce scenarios of seasonal disruption, highlight key aspects of seasonal biology and summarize from biomedical, anthropological, veterinary, agricultural and environmental perspectives the recent evidence for seasonal desynchronization between environmental factors and internal rhythms. Because annual rhythms are pervasive across biological systems, they provide a common framework for trans-disciplinary research.
Collapse
Affiliation(s)
- T J Stevenson
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - M E Visser
- Department of Animal Ecology, Nederlands Instituut voor Ecologie, Wageningen, The Netherlands
| | - W Arnold
- Research Institute of Wildlife Ecology, University of Vienna, Vienna, Austria
| | - P Barrett
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - S Biello
- School of Psychology, University of Glasgow, Glasgow, UK
| | - A Dawson
- Centre for Ecology and Hydrology, Penicuik, Midlothian, UK
| | - D L Denlinger
- Department of Entomology, Ohio State University, Columbus, OH, USA
| | - D Dominoni
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - F J Ebling
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - S Elton
- Department of Anthropology, Durham University, Durham, UK
| | - N Evans
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - H M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - R G Foster
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - M Hau
- Max Planck Institute for Ornithology, Seewiesen, Germany
| | - D T Haydon
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - D G Hazlerigg
- Department of Arctic and Marine Biology, University of Tromso, Tromso, Norway
| | - P Heideman
- Department of Biology, The College of William and Mary, Williamsburg, VA, USA
| | - J G C Hopcraft
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - N N Jonsson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | - V Kumar
- Department of Zoology, University of Delhi, Delhi, India
| | - G A Lincoln
- School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - R MacLeod
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - S A M Martin
- Department of Animal Ecology, Nederlands Instituut voor Ecologie, Wageningen, The Netherlands
| | - M Martinez-Bakker
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, MI, USA
| | - R J Nelson
- Department of Psychology, Ohio State University, Columbus, OH, USA
| | - T Reed
- Aquaculture and Fisheries Development Centre, University of College Cork, Cork, Ireland
| | - J E Robinson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - D Rock
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, Australia
| | - W J Schwartz
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - I Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, University of Wuerzburg, Wuerzburg, Germany
| | - E Tauber
- Department of Genetics, University of Leicester, Leicester, UK
| | - S J Thackeray
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - C Umstatter
- Agroscope, Tanikon, CH-8356 Ettenhausen, Switzerland
| | - T Yoshimura
- Department of Applied Molecular Biosciences, University of Nagoya, Nagoya, Japan
| | - B Helm
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
49
|
Abstract
Humans exhibit seasonal variation in a wide variety of behavioral and physiological processes, and numerous investigators have suggested that this might be because we are sensitive to seasonal variation in day length. The evidence supporting this hypothesis is inconsistent. A new hypothesis is offered here—namely, that some humans indeed are seasonally photoresponsive, but others are not, and that individual variation may be the cause of the inconsistencies that have plagued the study of responsiveness to photoperiod in the past. This hypothesis is examined in relation to seasonal changes in the reproductive activity of humans, and it is developed by reviewing and combining five bodies of knowledge: correlations of human birthrates with photoperiod; seasonal changes in the activity of the neuroendocrine pathway that could link photoperiod to gonadal steroid secretion in humans; what is known about photoperiod, latitude, and reproduction of nonhuman primates; documentation of individual variation in photoresponsiveness in rodents and humans; and what is known about the evolutionary ecology of humans.
Collapse
Affiliation(s)
- F H Bronson
- Center for Behavioral Neuroendocrinology, University of Texas at Austin, 78712, USA.
| |
Collapse
|
50
|
Abstract
Plants and animals use day or night length for seasonal control of reproduction and other biological functions. Overwhelming evidence suggests that this photoperiodic mechanism relies on a functional circadian system. Recent progress has defined how flowering time in plants is regulated by photoperiodic control of output pathways, but the underlying mechanisms of photoperiodism remain to be described. The authors investigate photoperiodism in a genetic model system for circadian rhythms research, Neurospora crassa. They find that both propagation and reproduction respond systematically to photoperiod. Furthermore, a nonreproductive light-regulated function is also enhanced under certain photoperiodic conditions. All of these photoperiodic responses require a functional circadian clock, in that they are absent in a clock mutant. Night break experiments show that measuring night length is one of the mechanisms used for photoperiod assessment. This represents the first formal report of photoperiodism in the fungi.
Collapse
Affiliation(s)
- Ying Tan
- Institute for Medical Psychology, University of Munich, Munich, Germany
| | | | | |
Collapse
|