1
|
Şengelen A, Önay-Uçar E. Rosmarinic acid attenuates glioblastoma cells and spheroids' growth and EMT/stem-like state by PTEN/PI3K/AKT downregulation and ERK-induced apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156060. [PMID: 39341126 DOI: 10.1016/j.phymed.2024.156060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/30/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Glioblastoma (GB) is a highly malignant type of brain cancer with a poor prognosis. Therapeutic strategies for GB are still limited. Rosmarinic acid (RA), a polyphenolic compound, is a promising experimental anticancer agent, but its specific protein targets for GB remain unclear. PURPOSE This study aimed to elucidate the anticancer effects of RA in 2D- and 3D-GB cells and the underlying mechanisms. METHODS 3D-tumor spheroids (mimics in vivo tumors) were obtained by the hanging-drop/agarose method. RA's anti-glioma activity on U-87MG (p53-wt/PTEN-mt) and LN229 (p53-mt/PTEN-wt) cells was evaluated through cell viability, colony-formation, migration/invasion/angiogenesis assays, fluorescence imaging, and spheroid growth analysis. The underlying mechanism of the anticancer effects of RA was investigated by Western blot and immunofluorescence analysis. The MEK inhibitor U0126 was used to block ERK phosphorylation. RESULTS RA treatments exerted anti-proliferative and pro-apoptotic effects on human GB cells. RA dose-dependently reduced angiogenesis and intracellular ROS levels, suppressed glioma growth, and migration/invasion in 2D-culture and cancer stem cell (CSC)-like 3D-spheroid culture (SPC). Repeated therapy in SPC was more effective by leading to disrupted structure than a single treatment. Treatments in SPC also suppressed epithelial-mesenchymal transition (EMT) and CSC-like properties. Strikingly, RA downregulated the SIRT1/FOXO1/NF-κB axis independently of p53 or PTEN function in both gliomas. Immunofluorescence labeling revealed decreased SIRT1 and NF-κB-p65 and increased FOXO1 and GAPDH proteins in nuclear location (associated with apoptosis). Surprisingly, RA increased p-ERK1/2 levels, but priming with U0126 abolished RA-mediated p-ERK upregulation; thus, autophagy and apoptosis induction in GB cells were prevented, and the growth of GB spheroids accelerated. Specifically, RA also inhibited the PTEN/PI3K/AKT pathway in U-87MG cells. Due to genetic differences in cells, U-87MG cells were more sensitive to RA treatments than LN229 cells. Meanwhile, our positive control drug trial results with FDA-approved temozolomide (TMZ) used in GB treatment showed that our test compound rosmarinic acid exhibited higher therapeutic effects than TMZ at lower doses. CONCLUSION Suppression of EMT, downregulation of SIRT1/FOXO1/NF-κB axis, inhibition of PTEN/PI3K/AKT signaling pathway, and ERK-induced apoptosis and autophagy were determined to be involved in stopping glioma progression. Our findings for the first time, revealed that RA may have potential therapeutic use by having multiple targets in human brain cancer with further clinical studies.
Collapse
Affiliation(s)
- Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkiye.
| | - Evren Önay-Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye
| |
Collapse
|
2
|
Patel T, Jain N. Multicellular tumor spheroids: A convenient in vitro model for translational cancer research. Life Sci 2024; 358:123184. [PMID: 39490437 DOI: 10.1016/j.lfs.2024.123184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
In the attempts to mitigate uncertainties in the results of monolayer culture for the identification of cancer therapeutic targets and compounds, there has been a growing interest in using 3D cancer spheroid models, which include tumorospheres (TSs), tissue-derived tumor spheres (TDTSs), organotypic multicellular tumor spheroids (OMSs), and multicellular tumor spheroids (MCTSs). The MCTSs, either Mono-MCTSs or Hetero-MCTSs, with or without scaffold, in particular, offer numerous advantages over other spheroid models, including easy cultivation, high reproducibility, accessibility, high throughput, controllable size, well-rounded shape, simplicity of genetic manipulation, economical and availability of various biological methods for their development. In this review, we have attempted to discuss the role of MCTSs concerning various aspects of translational cancer research, such as drug response and penetration, cell-cell interaction, and invasion and metastasis. However, the Mono-MCTSs, either scaffold-free or scaffold-based, may not adequately represent the cellular heterogeneity and complexity of clinical tumors, limiting their utility in translational cancer research. Conversely, Hetero-MCTS models, both scaffold-free and scaffold-based, show better suitability due to the presence of a similar in vivo type tumor microenvironment. Nonetheless, scaffold-based Hetero-MCTS models show batch variability and challenges in performing quantitative assays due to difficulties extracting spheroids and cells from scaffolds. Further, incorporating stromal cells with cancer cells in a more precise ratio to develop Hetero-MCTSs can enhance the model's relevance, yielding more clinically reliable outcomes for drug candidates and improving insights into tumor biology.
Collapse
Affiliation(s)
- Tushar Patel
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa 388 421, India
| | - Neeraj Jain
- Dr. K C Patel Research and Development Centre, University Research Centre(s), Charotar University of Science and Technology (CHARUSAT), Changa 388 421, India.
| |
Collapse
|
3
|
Bila NM, Vaso CO, Belizário JA, Assis LR, Regasini LO, Fontana CR, Fusco-Almeida AM, Costa-Orlandi CB, Mendes-Giannini MJS. Toxicological Assessment of 2-Hydroxychalcone-Mediated Photodynamic Therapy: Comparative In Vitro and In Vivo Approaches. Pharmaceutics 2024; 16:1523. [PMID: 39771502 PMCID: PMC11728496 DOI: 10.3390/pharmaceutics16121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a treatment modality that uses light to activate a photosensitizing agent, destroying target cells. The growing awareness of the necessity to reduce or eliminate the use of mammals in research has prompted the search for safer toxicity testing models aligned with the new global guidelines and compliant with the relevant regulations. OBJECTIVE The objective of this study was to assess the impact of PDT on alternative models to mammals, including in vitro three-dimensional (3D) cultures and in vivo, in invertebrate animals, utilizing a potent photosensitizer, 2-hydroxychalcone. METHODS Cytotoxicity was assessed in two cellular models: monolayer (2D) and 3D. For this purpose, spheroids of two cell lines, primary dermal fibroblasts (HDFa) and adult human epidermal cell keratinocytes (HaCat), were developed and characterized following criteria on cell viability, shape, diameter, and number of cells. The survival percentages of Caenorhabditis elegans and Galleria mellonella were evaluated at 1 and 7 days, respectively. RESULTS The findings indicated that all the assessed platforms are appropriate for investigating PDT toxicity. Furthermore, 2-hydroxychalcone demonstrated low toxicity in the absence of light and when mediated by PDT across a range of in vitro (2D and 3D cultures) and in vivo (invertebrate animal models, including G. mellonella and C. elegans) models. CONCLUSION There was a strong correlation between the in vitro and in vivo tests, with similar toxicity results, particularly in the 3D models and C. elegans, where the concentration for 50% viability was approximately 100 µg/mL.
Collapse
Affiliation(s)
- Níura Madalena Bila
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
- Department of Public Health, School of Veterinary, Universidade Eduardo Modlane (UEM), Maputo 257, Mozambique
| | - Carolina Orlando Vaso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Jenyffie Araújo Belizário
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Letícia Ribeiro Assis
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Universidade Estaudal Paulista (UNESP), São José do Rio Preto 01049-010, SP, Brazil; (L.R.A.); (L.O.R.)
| | - Luís Octávio Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Universidade Estaudal Paulista (UNESP), São José do Rio Preto 01049-010, SP, Brazil; (L.R.A.); (L.O.R.)
| | - Carla Raquel Fontana
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Caroline Barcelos Costa-Orlandi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| |
Collapse
|
4
|
Brambillasca S, Cera MR, Andronache A, Dey SK, Fagá G, Fancelli D, Frittoli E, Pasi M, Robusto M, Varasi M, Scita G, Mercurio C. Novel selective inhibitors of macropinocytosis-dependent growth in pancreatic ductal carcinoma. Biomed Pharmacother 2024; 177:116991. [PMID: 38906021 PMCID: PMC11287759 DOI: 10.1016/j.biopha.2024.116991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Macropinocytosis is a cellular process that enables cells to engulf extracellular material, such as nutrients, growth factors, and even whole cells. It is involved in several physiological functions as well as pathological conditions. In cancer cells, macropinocytosis plays a crucial role in promoting tumor growth and survival under nutrient-limited conditions. In particular KRAS mutations have been identified as main drivers of macropinocytosis in pancreatic, breast, and non-small cell lung cancers. We performed a high-content screening to identify inhibitors of macropinocytosis in pancreatic ductal adenocarcinoma (PDAC)-derived cells, aiming to prevent nutrient scavenging of PDAC tumors. The screening campaign was conducted in a well-known pancreatic KRAS-mutated cell line (MIAPaCa-2) cultured under nutrient deprivation and using FITC-dextran to precisely quantify macropinocytosis. We assembled a collection of 3584 small molecules, including drugs approved by the Food and Drug Administration (FDA), drug-like molecules against molecular targets, kinase-targeted compounds, and molecules designed to hamper protein-protein interactions. We identified 28 molecules that inhibited macropinocytosis, with potency ranging from 0.4 to 29.9 μM (EC50). A few of them interfered with other endocytic pathways, while 11 compounds did not and were therefore considered specific "bona fide" macropinocytosis inhibitors and further characterized. Four compounds (Ivermectin, Tyrphostin A9, LY2090314, and Pyrvinium Pamoate) selectively hampered nutrient scavenging in KRAS-mutated cancer cells. Their ability to impair albumin-dependent proliferation was replicated both in different 2D cell culture systems and 3D organotypic models. These findings provide a new set of compounds specifically targeting macropinocytosis, which could have therapeutic applications in cancer and infectious diseases.
Collapse
Affiliation(s)
- Silvia Brambillasca
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy.
| | - Maria Rosaria Cera
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Adrian Andronache
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Sumit Kumar Dey
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giovanni Fagá
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Daniele Fancelli
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Maurizio Pasi
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Michela Robusto
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mario Varasi
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giorgio Scita
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy.
| | - Ciro Mercurio
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
5
|
da Gama Oliveira V, Muxfeldt M, Muniz da Paz M, Silva Coutinho M, Eduardo dos Santos R, Diniz da Silva Ferretti G, Ferraz da Costa DC, Fonseca Regufe P, Lelis Gama I, da Costa Santos Boechat F, Silva Lima E, Ferreira VF, de Moraes MC, Bastos Vieira de Souza MC, Netto Batalha P, Pereira Rangel L. Naphthoquinone-Quinolone Hybrids with Antitumor Effects on Breast Cancer Cell Lines-From the Synthesis to 3D-Cell Culture Effects. Int J Mol Sci 2024; 25:6490. [PMID: 38928197 PMCID: PMC11203957 DOI: 10.3390/ijms25126490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer stands as one of the foremost cause of cancer-related deaths globally, characterized by its varied molecular subtypes. Each subtype requires a distinct therapeutic strategy. Although advancements in treatment have enhanced patient outcomes, significant hurdles remain, including treatment toxicity and restricted effectiveness. Here, we explore the anticancer potential of novel 1,4-naphthoquinone/4-quinolone hybrids on breast cancer cell lines. The synthesized compounds demonstrated selective cytotoxicity against Luminal and triple-negative breast cancer (TNBC) cells, which represent the two main molecular types of breast cancer that depend most on cytotoxic chemotherapy, with potency comparable to doxorubicin, a standard chemotherapeutic widely used in breast cancer treatment. Notably, these derivatives exhibited superior selectivity indices (SI) when compared to doxorubicin, indicating lower toxicity towards non-tumor MCF10A cells. Compounds 11a and 11b displayed an improvement in IC50 values when compared to their precursor, 1,4-naphthoquinone, for both MCF-7 and MDA-MB-231 and a comparable value to doxorubicin for MCF-7 cells. Also, their SI values were superior to those seen for the two reference compounds for both cell lines tested. Mechanistic studies revealed the ability of the compounds to induce apoptosis and inhibit clonogenic potential. Additionally, the irreversibility of their effects on cell viability underscores their promising therapeutic utility. In 3D-cell culture models, the compounds induced morphological changes indicative of reduced viability, supporting their efficacy in a more physiologically relevant model of study. The pharmacokinetics of the synthesized compounds were predicted using the SwissADME webserver, indicating that these compounds exhibit favorable drug-likeness properties and potential as antitumor agents. Overall, our findings underscore the promise of these hybrid compounds as potential candidates for breast cancer chemotherapy, emphasizing their selectivity and efficacy.
Collapse
Affiliation(s)
- Vanessa da Gama Oliveira
- Instituto Nacional de Infectologia, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil;
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
| | - Marcelly Muxfeldt
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (M.M.); (M.M.d.P.); (R.E.d.S.)
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Manaus 69067-005, AM, Brazil;
| | - Mariana Muniz da Paz
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (M.M.); (M.M.d.P.); (R.E.d.S.)
| | - Mayra Silva Coutinho
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
| | - Raissa Eduardo dos Santos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (M.M.); (M.M.d.P.); (R.E.d.S.)
| | - Giulia Diniz da Silva Ferretti
- Instituto de Bioquimica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | | | - Pedro Fonseca Regufe
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
| | - Ivson Lelis Gama
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
- Faculdade da Amazônia Legal, Colider 78500-000, MT, Brazil
| | - Fernanda da Costa Santos Boechat
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
| | - Emersom Silva Lima
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Manaus 69067-005, AM, Brazil;
| | | | - Marcela Cristina de Moraes
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
| | - Maria Cecília Bastos Vieira de Souza
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
| | - Pedro Netto Batalha
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
| | - Luciana Pereira Rangel
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (M.M.); (M.M.d.P.); (R.E.d.S.)
| |
Collapse
|
6
|
Nelson A, McMullen N, Gebremeskel S, De Antueno R, Mackenzie D, Duncan R, Johnston B. Fusogenic vesicular stomatitis virus combined with natural killer T cell immunotherapy controls metastatic breast cancer. Breast Cancer Res 2024; 26:78. [PMID: 38750591 PMCID: PMC11094881 DOI: 10.1186/s13058-024-01818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/30/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Metastatic breast cancer is a leading cause of cancer death in woman. Current treatment options are often associated with adverse side effects and poor outcomes, demonstrating the need for effective new treatments. Immunotherapies can provide durable outcomes in many cancers; however, limited success has been achieved in metastatic triple negative breast cancer. We tested whether combining different immunotherapies can target metastatic triple negative breast cancer in pre-clinical models. METHODS Using primary and metastatic 4T1 triple negative mammary carcinoma models, we examined the therapeutic effects of oncolytic vesicular stomatitis virus (VSVΔM51) engineered to express reovirus-derived fusion associated small transmembrane proteins p14 (VSV-p14) or p15 (VSV-p15). These viruses were delivered alone or in combination with natural killer T (NKT) cell activation therapy mediated by adoptive transfer of α-galactosylceramide-loaded dendritic cells. RESULTS Treatment of primary 4T1 tumors with VSV-p14 or VSV-p15 alone increased immunogenic tumor cell death, attenuated tumor growth, and enhanced immune cell infiltration and activation compared to control oncolytic virus (VSV-GFP) treatments and untreated mice. When combined with NKT cell activation therapy, oncolytic VSV-p14 and VSV-p15 reduced metastatic lung burden to undetectable levels in all mice and generated immune memory as evidenced by enhanced in vitro recall responses (tumor killing and cytokine production) and impaired tumor growth upon rechallenge. CONCLUSION Combining NKT cell immunotherapy with enhanced oncolytic virotherapy increased anti-tumor immune targeting of lung metastasis and presents a promising treatment strategy for metastatic breast cancer.
Collapse
Affiliation(s)
- Adam Nelson
- Department of Microbiology and Immunology, Dalhousie University, B3H 4R2, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, B3H 4R2, Halifax, NS, Canada
| | - Nichole McMullen
- Department of Microbiology and Immunology, Dalhousie University, B3H 4R2, Halifax, NS, Canada
| | - Simon Gebremeskel
- Department of Microbiology and Immunology, Dalhousie University, B3H 4R2, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, B3H 4R2, Halifax, NS, Canada
| | - Roberto De Antueno
- Department of Microbiology and Immunology, Dalhousie University, B3H 4R2, Halifax, NS, Canada
| | - Duncan Mackenzie
- Department of Microbiology and Immunology, Dalhousie University, B3H 4R2, Halifax, NS, Canada
| | - Roy Duncan
- Department of Microbiology and Immunology, Dalhousie University, B3H 4R2, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, B3H 4R2, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, B3H 4R2, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, B3H 4R2, Halifax, NS, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, B3H 4R2, Halifax, NS, Canada.
- Beatrice Hunter Cancer Research Institute, B3H 4R2, Halifax, NS, Canada.
- Department of Pathology, Dalhousie University, B3H 4R2, Halifax, NS, Canada.
| |
Collapse
|
7
|
Infante Cruz A, Coronel JV, Saibene Vélez P, Remes Lenicov F, Iturrizaga J, Abelleyro M, Rosato M, Shiromizu CM, Candolfi M, Vermeulen M, Jancic C, Yasuda E, Berner S, Villaverde MS, Salamone GV. Relevance of Thymic Stromal Lymphopoietin on the Pathogenesis of Glioblastoma: Role of the Neutrophil. Cell Mol Neurobiol 2024; 44:31. [PMID: 38557942 PMCID: PMC10984908 DOI: 10.1007/s10571-024-01462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
Glioblastoma multiforme (GBM) is the most predominant and malignant primary brain tumor in adults. Thymic stromal lymphopoietin (TSLP), a cytokine primarily generated by activated epithelial cells, has recently garnered attention in cancer research. This study was aimed to elucidate the significance of TSLP in GBM cells and its interplay with the immune system, particularly focused on granulocyte neutrophils. Our results demonstrate that the tumor produces TSLP when stimulated with epidermal growth factor (EGF) in both the U251 cell line and the GBM biopsy (GBM-b). The relevance of the TSLP function was evaluated using a 3D spheroid model. Spheroids exhibited increased diameter, volume, and proliferation. In addition, TSLP promoted the generation of satellites surrounding the main spheroids and inhibited apoptosis in U251 treated with temozolomide (TMZ). Additionally, the co-culture of polymorphonuclear (PMN) cells from healthy donors with the U251 cell line in the presence of TSLP showed a reduction in apoptosis and an increase in IL-8 production. TSLP directly inhibited apoptosis in PMN from GBM patients (PMN-p). Interestingly, the vascular endothelial growth factor (VEGF) production was elevated in PMN-p compared with PMN from healthy donors. Under these conditions, TSLP also increased VEGF production, in PMN from healthy donors. Moreover, TSLP upregulated programed death-ligand 1 (PDL-1) expression in PMN cultured with U251. On the other hand, according to our results, the analysis of RNA-seq datasets from Illumina HiSeq 2000 sequencing platform performed with TIMER2.0 webserver demonstrated that the combination of TSLP with neutrophils decreases the survival of the patient. In conclusion, our results position TSLP as a possible new growth factor in GBM and indicate its modulation of the tumor microenvironment, particularly through its interaction with PMN.
Collapse
Affiliation(s)
- Alejandra Infante Cruz
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Juan Valentin Coronel
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Paula Saibene Vélez
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Remes Lenicov
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires - CONICET, Paraguay 2155, Buenos Aires, Argentina
| | - Juan Iturrizaga
- División Neurocirugía, Instituto de Investigaciones Médicas A Lanari, Universidad de Buenos Aires, Av. Combatientes de Malvinas 3150, Buenos Aires, Argentina
| | - Martín Abelleyro
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Micaela Rosato
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Maiumi Shiromizu
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mónica Vermeulen
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Carolina Jancic
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel Yasuda
- Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Berner
- Servicio de Neurocirugía de la Clínica y Maternidad Santa Isabel, Buenos Aires, Argentina
| | - Marcela Solange Villaverde
- Unidad de Transferencia Genética, Área Investigación, Instituto de Oncología Ángel H. Roffo, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Verónica Salamone
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina.
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Zingales V, Esposito MR, Quagliata M, Cimetta E, Ruiz MJ. Comparative Study of Spheroids (3D) and Monolayer Cultures (2D) for the In Vitro Assessment of Cytotoxicity Induced by the Mycotoxins Sterigmatocystin, Ochratoxin A and Patulin. Foods 2024; 13:564. [PMID: 38397541 PMCID: PMC10887621 DOI: 10.3390/foods13040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Mycotoxins are secondary metabolites produced by filamentous fungi associated with a variety of acute and chronic foodborne diseases. Current toxicology studies mainly rely on monolayer cell cultures and animal models, which are undeniably affected by several limitations. To bridge the gap between the current in vitro toxicology approach and the in vivo predictability of the data, we here investigated the cytotoxic effects induced by the mycotoxins sterigmatocystin (STE), ochratoxin A (OTA) and patulin (PAT) on different 2D and 3D cell cultures. We focused on human tumours (neuroblastoma SH-SY5Y cells and epithelial breast cancer MDA-MB-213 cells) and healthy cells (bone marrow-derived mesenchymal stem cells, BM-MSC, and umbilical vein endothelial cells, HUVECs). The cytotoxicity of STE, OTA, and PAT was determined after 24, 48 and 72 h of exposure using an ATP assay in both culture models. Three-dimensional spheroids' morphology was also analysed using the MATLAB-based open source software AnaSP 1.4 version. Our results highlight how each cell line and different culture models showed specific sensitivities, reinforcing the importance of using more complex models for toxicology studies and a multiple cell line approach for an improved and more comprehensive risk assessment.
Collapse
Affiliation(s)
- Veronica Zingales
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), 46100 Valencia, Spain;
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (M.Q.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Maria Rosaria Esposito
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (M.Q.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Martina Quagliata
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (M.Q.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (M.Q.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - María-José Ruiz
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), 46100 Valencia, Spain;
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
| |
Collapse
|
9
|
Chen Z, Han S, Kim S, Lee C, Sanny A, Tan AHM, Park S. A 3D hanging spheroid-filter plate for high-throughput drug testing and CAR T cell cytotoxicity assay. Analyst 2024; 149:475-481. [PMID: 38050728 DOI: 10.1039/d3an01904g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Tumour spheroids are widely used in immune cell cytotoxicity assays and anticancer drug testing, providing a physiologically relevant model replicating the tumour microenvironment. However, co-culture of immune and tumour cells complicates quantification of immune cell killing efficiency. We present a novel 3D hanging spheroid-filter plate that efficiently facilitates spheroid formation and separates unbound/dead cells during cytotoxicity assays. Optical imaging directly measures the cytotoxic effects of anti-cancer drugs on tumour spheroids, eliminating the need for live/dead fluorescent staining. This approach enables cost-effective evaluation of T-cell cytotoxicity with specific chimeric antigen receptors (CARs), enhancing immune cell-based assays and drug testing in three-dimensional tumour models.
Collapse
Affiliation(s)
- Zhenzhong Chen
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Seokgyu Han
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Sein Kim
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Chanyang Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Arleen Sanny
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore 138668, Republic of Singapore
| | - Andy Hee-Meng Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore 138668, Republic of Singapore
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
| |
Collapse
|
10
|
Saleh NA, Rode MP, Cisilotto J, Silva AH, Prigol AN, da Luz Efe F, Winter E, Filippin-Monteiro FB, Creczynski-Pasa TB. MicroRNA-Mediated Antiproliferative Effects of M1 Macrophage-Derived Extracellular Vesicles on Melanoma Cells. Immunol Invest 2024; 53:70-89. [PMID: 37981469 DOI: 10.1080/08820139.2023.2278774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Research in tumor treatment has shown promising results using extracellular vesicles (EVs) derived from immune cells. EVs derived from M1 macrophages (proinflammatory), known as M1-EVs, have properties that suppress tumor growth, making them a promising treatment tool for immune susceptible tumors such as melanoma. Here, small unaltered M1-EVs (M1-sEVs) were employed in a 3D mouse melanoma model (melanospheres) to evaluate such activity. METHODS Macrophages were polarized and EVs were isolated by ultracentrifugation. The EVs obtained were characterized based on size, with measurements performed by dynamic light scattering and electron microscopy, and the expression profiles of microRNAs were analyzed by microarray and PCR. Melanospheres were used to evaluate the cytotoxicity of M1-sEVs. Pondering a possible future transposition from the animal model to the human, human melanoma cells were transfected with a specific miRNA, and the impact on cell proliferation was evaluated. RESULTS The isolated EVs showed a size distribution between 50-400 nm in diameter, but preeminently in a range of 70-90 nm. M1-sEVs demonstrated a remarkable ability to reduce cell proliferation and viability in the melanospheres, leading to a decrease in their volume. M1-sEVs contained unique miRNAs, including miR-29a-3p, which exhibited significant antitumor activities according to bioinformatics analysis. Validation of the antitumor effects of miR-29a-3p was obtained by a functional evaluation, i.e., by inducing miRNA overexpression in human melanoma cells (SK-MEL-28). CONCLUSION Although further research would be advisable, the study provides evidence supporting the potential of M1-sEVs and their miRNA load as a possible targeted immune therapy for melanoma.
Collapse
Affiliation(s)
- Najla Adel Saleh
- Postgraduate Program in Prharmacy, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Michele Patrícia Rode
- Postgraduate Program in Prharmacy, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Júlia Cisilotto
- Postgraduate Program in Prharmacy, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Adny Henrique Silva
- Postgraduate Program in Prharmacy, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Anne Natalie Prigol
- Postgraduate Program in Prharmacy, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Fernanda da Luz Efe
- Postgraduate Program in Prharmacy, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Evelyn Winter
- Department of Agriculture, Biodiversity and Forest, Federal University of Santa Catarina, Curitibanos, Brazil
| | - Fabíola Branco Filippin-Monteiro
- Postgraduate Program in Prharmacy, Federal University of Santa Catarina, Florianópolis, Brazil
- Department of Clinical Analysis, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Tânia Beatriz Creczynski-Pasa
- Postgraduate Program in Prharmacy, Federal University of Santa Catarina, Florianópolis, Brazil
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
11
|
Zavareh VA, Gharibi S, Hosseini Rizi M, Nekookar A, Mirhendi H, Rahimmalek M, Szumny A. Satureja bachtiarica Induces Cancer Cell Death in Breast and Glioblastoma Cancer in 2D/3D Models and Suppresses Breast Cancer Stem Cells. Cells 2023; 12:2713. [PMID: 38067141 PMCID: PMC10706021 DOI: 10.3390/cells12232713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Overcoming drug resistance and specifically targeting cancer stem cells (CSCs) are critical challenges in improving cancer therapy. Nowadays, the use of novel and native medicinal plants can provide new sources for further investigations for this purpose. The aim of this study was to assess the potential of S. bachtiarica, an endemic plant with diverse medicinal applications, in suppressing and targeting cancer and cancer stem cells in glioblastoma and breast cancer. The effect of S. bachtiarica on viability, migration, invasion, and clonogenic potential of MDAMB-231 and U87-MG cells was assessed in both two- and three-dimensional cell culture models. Additionally, we evaluated its effects on the self-renewal capacity of mammospheres. The experimental outcomes indicated that S. bachtiarica decreased the viability and growth rate of cells and spheroids by inducing apoptosis and inhibited colony formation, migration, and invasion of cells and spheroids. Additionally, colony and sphere-forming ability, as well as the expression of genes associated with EMT and stemness were reduced in mammospheres treated with S. bachtiarica. In conclusion, this study provided valuable insights into the anti-cancer effects of S. bachtiarica, particularly in relation to breast CSCs. Therefore, S. bachtiarica may be a potential adjuvant for the treatment of cancer.
Collapse
Affiliation(s)
- Vajihe Azimian Zavareh
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran; (V.A.Z.); (S.G.); (M.H.R.); (A.N.); (H.M.)
| | - Shima Gharibi
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran; (V.A.Z.); (S.G.); (M.H.R.); (A.N.); (H.M.)
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, 50-367 Wrocław, Poland
| | - Mahnaz Hosseini Rizi
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran; (V.A.Z.); (S.G.); (M.H.R.); (A.N.); (H.M.)
| | - Abdolhossein Nekookar
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran; (V.A.Z.); (S.G.); (M.H.R.); (A.N.); (H.M.)
| | - Hossein Mirhendi
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran; (V.A.Z.); (S.G.); (M.H.R.); (A.N.); (H.M.)
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mehdi Rahimmalek
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| |
Collapse
|
12
|
Engrácia DM, Pinto CIG, Mendes F. Cancer 3D Models for Metallodrug Preclinical Testing. Int J Mol Sci 2023; 24:11915. [PMID: 37569291 PMCID: PMC10418685 DOI: 10.3390/ijms241511915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Despite being standard tools in research, the application of cellular and animal models in drug development is hindered by several limitations, such as limited translational significance, animal ethics, and inter-species physiological differences. In this regard, 3D cellular models can be presented as a step forward in biomedical research, allowing for mimicking tissue complexity more accurately than traditional 2D models, while also contributing to reducing the use of animal models. In cancer research, 3D models have the potential to replicate the tumor microenvironment, which is a key modulator of cancer cell behavior and drug response. These features make cancer 3D models prime tools for the preclinical study of anti-tumoral drugs, especially considering that there is still a need to develop effective anti-cancer drugs with high selectivity, minimal toxicity, and reduced side effects. Metallodrugs, especially transition-metal-based complexes, have been extensively studied for their therapeutic potential in cancer therapy due to their distinctive properties; however, despite the benefits of 3D models, their application in metallodrug testing is currently limited. Thus, this article reviews some of the most common types of 3D models in cancer research, as well as the application of 3D models in metallodrug preclinical studies.
Collapse
Affiliation(s)
- Diogo M. Engrácia
- Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal; (D.M.E.); (C.I.G.P.)
| | - Catarina I. G. Pinto
- Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal; (D.M.E.); (C.I.G.P.)
| | - Filipa Mendes
- Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal; (D.M.E.); (C.I.G.P.)
- Department of Nuclear Sciences and Engineering, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
13
|
Manduca N, Maccafeo E, De Maria R, Sistigu A, Musella M. 3D cancer models: One step closer to in vitro human studies. Front Immunol 2023; 14:1175503. [PMID: 37114038 PMCID: PMC10126361 DOI: 10.3389/fimmu.2023.1175503] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer immunotherapy is the great breakthrough in cancer treatment as it displayed prolonged progression-free survival over conventional therapies, yet, to date, in only a minority of patients. In order to broad cancer immunotherapy clinical applicability some roadblocks need to be overcome, first among all the lack of preclinical models that faithfully depict the local tumor microenvironment (TME), which is known to dramatically affect disease onset, progression and response to therapy. In this review, we provide the reader with a detailed overview of current 3D models developed to mimick the complexity and the dynamics of the TME, with a focus on understanding why the TME is a major target in anticancer therapy. We highlight the advantages and translational potentials of tumor spheroids, organoids and immune Tumor-on-a-Chip models in disease modeling and therapeutic response, while outlining pending challenges and limitations. Thinking forward, we focus on the possibility to integrate the know-hows of micro-engineers, cancer immunologists, pharmaceutical researchers and bioinformaticians to meet the needs of cancer researchers and clinicians interested in using these platforms with high fidelity for patient-tailored disease modeling and drug discovery.
Collapse
Affiliation(s)
- Nicoletta Manduca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ester Maccafeo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario ‘A. Gemelli’ - Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Martina Musella
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
14
|
Erthal LCS, Shi Y, Sweeney KJ, Gobbo OL, Ruiz-Hernandez E. Nanocomposite formulation for a sustained release of free drug and drug-loaded responsive nanoparticles: an approach for a local therapy of glioblastoma multiforme. Sci Rep 2023; 13:5094. [PMID: 36991081 PMCID: PMC10060267 DOI: 10.1038/s41598-023-32257-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Malignant gliomas are a type of primary brain tumour that originates in glial cells. Among them, glioblastoma multiforme (GBM) is the most common and the most aggressive brain tumour in adults, classified as grade IV by the World Health Organization. The standard care for GBM, known as the Stupp protocol includes surgical resection followed by oral chemotherapy with temozolomide (TMZ). This treatment option provides a median survival prognosis of only 16-18 months to patients mainly due to tumour recurrence. Therefore, enhanced treatment options are urgently needed for this disease. Here we show the development, characterization, and in vitro and in vivo evaluation of a new composite material for local therapy of GBM post-surgery. We developed responsive nanoparticles that were loaded with paclitaxel (PTX), and that showed penetration in 3D spheroids and cell internalization. These nanoparticles were found to be cytotoxic in 2D (U-87 cells) and 3D (U-87 spheroids) models of GBM. The incorporation of these nanoparticles into a hydrogel facilitates their sustained release in time. Moreover, the formulation of this hydrogel containing PTX-loaded responsive nanoparticles and free TMZ was able to delay tumour recurrence in vivo after resection surgery. Therefore, our formulation represents a promising approach to develop combined local therapies against GBM using injectable hydrogels containing nanoparticles.
Collapse
Affiliation(s)
- Luiza C S Erthal
- School of Pharmacy and Pharmaceutical Sciences and Trinity St. James's Cancer Institute, Panoz Institute, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Forckenbeckstrasse 55, 52074, Aachen, Germany
| | - Kieron J Sweeney
- National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland
- Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Oliviero L Gobbo
- School of Pharmacy and Pharmaceutical Sciences and Trinity St. James's Cancer Institute, Panoz Institute, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Eduardo Ruiz-Hernandez
- School of Pharmacy and Pharmaceutical Sciences and Trinity St. James's Cancer Institute, Panoz Institute, Trinity College Dublin, College Green, Dublin 2, Ireland.
| |
Collapse
|
15
|
Chitturi Suryaprakash RT, Shearston K, Farah CS, Fox SA, Iqbal MM, Kadolsky U, Zhong X, Saxena A, Kujan O. A Novel Preclinical In Vitro 3D Model of Oral Carcinogenesis for Biomarker Discovery and Drug Testing. Int J Mol Sci 2023; 24:ijms24044096. [PMID: 36835505 PMCID: PMC9967961 DOI: 10.3390/ijms24044096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
This study aimed to develop an in vitro three-dimensional (3D) cell culture model of oral carcinogenesis for the rapid, scalable testing of chemotherapeutic agents. Spheroids of normal (HOK) and dysplastic (DOK) human oral keratinocytes were cultured and treated with 4-nitroquinoline-1-oxide (4NQO). A 3D invasion assay using Matrigel was performed to validate the model. RNA was extracted and subjected to transcriptomic analysis to validate the model and assess carcinogen-induced changes. The VEGF inhibitors pazopanib and lenvatinib were tested in the model and were validated by a 3D invasion assay, which demonstrated that changes induced by the carcinogen in spheroids were consistent with a malignant phenotype. Further validation was obtained by bioinformatic analyses, which showed the enrichment of pathways associated with hallmarks of cancer and VEGF signalling. Overexpression of common genes associated with tobacco-induced oral squamous cell carcinoma (OSCC), such as MMP1, MMP3, MMP9, YAP1, CYP1A1, and CYP1B1, was also observed. Pazopanib and lenvatinib inhibited the invasion of transformed spheroids. In summary, we successfully established a 3D spheroid model of oral carcinogenesis for biomarker discovery and drug testing. This model is a validated preclinical model for OSCC development and would be suitable for testing a range of chemotherapeutic agents.
Collapse
Affiliation(s)
| | - Kate Shearston
- UWA Dental School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Camile S. Farah
- Australian Centre for Oral Oncology Research and Education, Nedlands, WA 6009, Australia
| | - Simon A. Fox
- UWA Dental School, The University of Western Australia, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Muhammad Munir Iqbal
- Genomics WA, Harry Perkins Institute of Medical Research, Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Ulrich Kadolsky
- Genomics WA, Harry Perkins Institute of Medical Research, Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Xiao Zhong
- Genomics WA, Harry Perkins Institute of Medical Research, Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Alka Saxena
- Genomics WA, Harry Perkins Institute of Medical Research, Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Nedlands, WA 6009, Australia
- Correspondence:
| |
Collapse
|
16
|
Ju FN, Kim CH, Lee KH, Kim CD, Lim J, Lee T, Park CG, Kim TH. Gold nanostructure-integrated conductive microwell arrays for uniform cancer spheroid formation and electrochemical drug screening. Biosens Bioelectron 2023; 222:115003. [PMID: 36525711 DOI: 10.1016/j.bios.2022.115003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Cancer spheroids, which mimic distinct cell-to-cell and cell-extracellular matrix interactions of solid tumors in vitro, have emerged as a promising tumor model for drug screening. However, owing to the unique characteristics of spheroids composed of three-dimensionally densely-packed cells, the precise characterizations of cell viability and function with conventional colorimetric assays are challenging. Herein, we report gold nanostructure-integrated conductive microwell arrays (GONIMA) that enable both highly efficient uniform cancer spheroid formation and precise electrochemical detection of cell viability. A nanostructured gold on indium tin oxide (ITO) substrate facilitated the initial cell aggregation and further 3D cell growth, while the non-cytophilic polymer microwell arrays restricted the size and shape of the spheroids. As a result, approximately 150 human glioblastoma spheroids were formed on a chip area of 1.13 cm2 with an average diameter of 224 μm and a size variation of only 5% (±11.36 μm). The high uniformity of cancer spheroids contributed to the stability of electrical signals measuring cell viability. Using the fabricated GONIMA, the effects of a representative chemotherapeutic agent, hydroxyurea, on the glioblastoma spheroids were precisely monitored under conditions of varying drug concentrations (0-0.3 mg/mL) and incubation times (24-48 h). Therefore, we conclude that the newly developed platform is highly useful for rapid and precise in vitro drug screening, as well as for the pharmacokinetic analyses of specific drugs using 3D cellular cancer models.
Collapse
Affiliation(s)
- Fu Nan Ju
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Cheol-Hwi Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kwang-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Chang-Dae Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea.
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea. https://bestlaboratory.wixsite.com/best
| |
Collapse
|
17
|
Alves SR, Calori IR, Bi H, Tedesco AC. Characterization of glioblastoma spheroid models for drug screening and phototherapy assays. OPENNANO 2023. [DOI: 10.1016/j.onano.2022.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Pulugu P, Arya N, Kumar P, Srivastava A. Polystyrene-Based Slippery Surfaces Enable the Generation and Easy Retrieval of Tumor Spheroids. ACS APPLIED BIO MATERIALS 2022; 5:5582-5594. [PMID: 36445173 DOI: 10.1021/acsabm.2c00620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multicellular tumor spheroids are the most well-characterized organotypic models for cancer research. Generally, scaffold-based and scaffold-free techniques are widely used for culturing spheroids. In scaffold-free techniques, the hanging drop (HD) method is a more versatile technique, but the retrieval of three-dimensional (3D) cell spheroids in the hanging drop method is usually labor-intensive. We developed oil-coated polystyrene nanofiber-based reusable slippery surfaces for the generation and easy retrieval of 3D spheroids. The developed slippery surfaces facilitated the rolling and gliding of the cell medium drops as well as holding the hydrophilic drops for more than 72 h by the virtue of surface tension as in the hanging drop method. In this study, polystyrene nanofibers were developed by the facile technique of electrospinning and the morphological evaluation was performed by scanning electron microscopy (SEM) and cryo-FESEM. We modeled the retrieval process of 3D spheroids with the ingredients of 3D spheroid generation, such as water, cell culture media, collagen, and hyaluronic acid solution, demonstrating the faster and easy retrieval of 3D spheroids within a few seconds. We created MCF-7 spheroids as a proof of concept with a developed slippery surface. 3D spheroids were characterized for their size, homogeneity, reactive oxygen species, proliferative marker (Ki-67), and hypoxic inducing factor 1ά (HIF-1ά). These 3D tumor spheroids were further tested for evaluating the cellular toxicity of the doxorubicin drug. Hence, the proposed slippery surfaces demonstrated the potential alternative of culturing 3D tumor spheroids with an easy retrieval process with intact 3D spheroids.
Collapse
Affiliation(s)
- Priyanka Pulugu
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Neha Arya
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Prasoon Kumar
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Akshay Srivastava
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
19
|
Yoon J, Lee M, Ali AA, Oh YR, Choi YS, Kim S, Lee N, Jang SG, Park S, Chung JH, Kwok SK, Hyon JY, Cha S, Lee YJ, Im SG, Kim Y. Mitochondrial double-stranded RNAs as a pivotal mediator in the pathogenesis of Sjӧgren's syndrome. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:257-269. [PMID: 36284513 PMCID: PMC9576540 DOI: 10.1016/j.omtn.2022.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/23/2022] [Indexed: 05/13/2023]
Abstract
Sjӧgren's syndrome (SS) is a systemic autoimmune disease that targets the exocrine glands, resulting in impaired saliva and tear secretion. To date, type I interferons (I-IFNs) are increasingly recognized as pivotal mediators in SS, but their endogenous drivers have not been elucidated. Here, we investigate the role of mitochondrial double-stranded RNAs (mt-dsRNAs) in regulating I-IFNs and other glandular phenotypes of SS. We find that mt-dsRNAs are elevated in the saliva and tears of SS patients (n = 73 for saliva and n = 16 for tears) and in salivary glands of non-obese diabetic mice with salivary dysfunction. Using the in-house-developed 3D culture of immortalized human salivary gland cells, we show that stimulation by exogenous dsRNAs increase mt-dsRNAs, activate the innate immune system, trigger I-IFNs, and promote glandular phenotypes. These responses are mediated via the Janus kinase 1 (JAK1)/signal transducer and activator of transcription (STAT) pathway. Indeed, a small chemical inhibitor of JAK1 attenuates mtRNA elevation and immune activation. We further show that muscarinic receptor ligand acetylcholine ameliorates autoimmune characteristics by preventing mt-dsRNA-mediated immune activation. Last, direct suppression of mt-dsRNAs reverses the glandular phenotypes of SS. Altogether, our study underscores the significance of mt-dsRNA upregulation in the pathogenesis of SS and suggests mt-dsRNAs as propagators of a pseudo-viral signal in the SS target tissue.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Minseok Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ahsan Ausaf Ali
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ye Rim Oh
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Yong Seok Choi
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Sujin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Namseok Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Se Gwang Jang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seonghyeon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jin-Haeng Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Joon Young Hyon
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Seunghee Cha
- Department of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Corresponding author Seunghee Cha, Department of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA.
| | - Yun Jong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Internal Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Corresponding author Yun Jong Lee: Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury (KINC), KAIST, Daejeon 34141, Republic of Korea
- Corresponding author Sung Gap Im, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), KAIST, Daejeon 34141, Republic of Korea
- KAIST Institute for BioCentury (KIB), KAIST, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea
- Corresponding author Yoosik Kim, KAIST Institute for Health Science and Technology (KIHST), KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
20
|
Firouzi J, Sotoodehnejadnematalahi F, Shokouhifar A, Rahimi M, Sodeifi N, Sahranavardfar P, Azimi M, Janzamin E, Safa M, Ebrahimi M. Silibinin exhibits anti-tumor effects in a breast cancer stem cell model by targeting stemness and induction of differentiation and apoptosis. BIOIMPACTS : BI 2022; 12:415-429. [PMID: 36381630 PMCID: PMC9596878 DOI: 10.34172/bi.2022.23336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/27/2021] [Accepted: 09/18/2021] [Indexed: 06/16/2023]
Abstract
Introduction: Malignant breast cancer (BC) frequently contains a rare population of cells called cancer stem cells which underlie tumor relapse and metastasis, and targeting these cells may improve treatment options and outcomes for patients with BC. The aim of the present study was to determine the effect of silibinin on the self-renewal capacity, tumorgenicity, and metastatic potential of mammospheres. Methods: The effect of silibinin on viability and proliferation of MCF-7, MDA-MB-231 mammospheres, and MDA-MB-468 cell aggregation was determined after 72-120 hours of treatment. Colony and sphere formation ability, and the expression of stemness, differentiation, and epithelial-mesenchymal-transition (EMT)-associated genes were assessed by reverse transcription-quantitative polymerase chain reaction (qRT-PCR) in mammospheres treated with an IC50 dose of silibinin. Additionally, the antitumor capacity of silibinin was assessed in vivo, in mice. Results: The results of the present study showed that silibinin decreased the viability of all mammospheres derived from MCF-7, MDA-MB-231, and MDA-MB-468 cell aggregation in a dose-dependent manner. Colony and sphere-forming ability, as well as the expression of genes associated with EMT were reduced in mammospheres treated with silibinin. Additionally, the expression of genes associated with stemness and metastasis was also decreased and the expression of genes associated with differentiation were increased. Intra-tumoral injection of 2 mg/kg silibinin decreased tumor volumes in mice by 2.8 fold. Conclusion: The present study demonstrated that silibinin may have exerted its anti-tumor effects in BC by targeting the BC stem cells, reducing the tumorgenicity and metastasis. Therefore, silibinin may be a potential adjuvant for treatment of BC.
Collapse
Affiliation(s)
- Javad Firouzi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148
| | | | - Alireza Shokouhifar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148
| | - Mahsa Rahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148
| | - Niloufar Sodeifi
- Department of Pathology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran 16635-148, Iran
| | - Parisa Sahranavardfar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148
| | - Masoumeh Azimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148
| | - Ehsan Janzamin
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148
| | - Majid Safa
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148
| |
Collapse
|
21
|
Arora L, Kalia M, Dasgupta S, Singh N, Verma AK, Pal D. Development of a Multicellular 3D Tumor Model to Study Cellular Heterogeneity and Plasticity in NSCLC Tumor Microenvironment. Front Oncol 2022; 12:881207. [PMID: 35837091 PMCID: PMC9273950 DOI: 10.3389/fonc.2022.881207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
Heterogeneity is a characteristic feature of solid tumors. Intra-tumor heterogeneity includes phenotypic diversity, epigenetic abnormalities, cell proliferation, and plasticity that eventually drives disease progression. Studying tumor heterogeneity in 2D culture is challenging as it cannot simulate the microenvironmental features, such as hypoxia, nutrient unavailability, and cell-ECM interactions. We propose the development of multicellular (tri-culture) 3D spheroids using a hanging drop method to study the non-tumorigenic (BEAS-2B) vs. tumorigenic NSCLC (A549/NCI-H460)cells’ interaction with lung fibroblasts (MRC-5) and monocytes (THP-1). Unlike the non-tumorigenic model, the tumorigenic 3D spheroids show significant induction of cell proliferation, hypoxia, pluripotency markers, notable activation of cancer-associated fibroblasts, and tumor-associated macrophages. CD68+ macrophages isolated from tumorigenic spheroids exhibited profound induction of phenotypic endothelial characteristics. The results are zebrafish tumor xenograft model and by using human patient samples. This multicellular 3D tumor model is a promising tool to study tumor-stroma interaction and cellular plasticity, targeting tumor heterogeneity, and facilitating cancer therapy success against NSCLC.
Collapse
Affiliation(s)
- Leena Arora
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, India
| | - Moyna Kalia
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, India
| | - Suman Dasgupta
- Department of Molecular Biology & Biotechnology, Tezpur University, Assam, India
| | - Navneet Singh
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Anita K. Verma
- Department of Zoology, Kirori Mal College, University of Delhi, Delhi, India
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, India
- *Correspondence: Durba Pal, ; orcid.org/0000-0001-7672-3529
| |
Collapse
|
22
|
Germain N, Dhayer M, Dekiouk S, Marchetti P. Current Advances in 3D Bioprinting for Cancer Modeling and Personalized Medicine. Int J Mol Sci 2022; 23:3432. [PMID: 35408789 PMCID: PMC8998835 DOI: 10.3390/ijms23073432] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Tumor cells evolve in a complex and heterogeneous environment composed of different cell types and an extracellular matrix. Current 2D culture methods are very limited in their ability to mimic the cancer cell environment. In recent years, various 3D models of cancer cells have been developed, notably in the form of spheroids/organoids, using scaffold or cancer-on-chip devices. However, these models have the disadvantage of not being able to precisely control the organization of multiple cell types in complex architecture and are sometimes not very reproducible in their production, and this is especially true for spheroids. Three-dimensional bioprinting can produce complex, multi-cellular, and reproducible constructs in which the matrix composition and rigidity can be adapted locally or globally to the tumor model studied. For these reasons, 3D bioprinting seems to be the technique of choice to mimic the tumor microenvironment in vivo as closely as possible. In this review, we discuss different 3D-bioprinting technologies, including bioinks and crosslinkers that can be used for in vitro cancer models and the techniques used to study cells grown in hydrogels; finally, we provide some applications of bioprinted cancer models.
Collapse
Affiliation(s)
- Nicolas Germain
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche Contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (S.D.)
- Banque de Tissus, Centre de Biologie-Pathologie, CHU Lille, F-59000 Lille, France
| | - Melanie Dhayer
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche Contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (S.D.)
| | - Salim Dekiouk
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche Contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (S.D.)
| | - Philippe Marchetti
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche Contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (S.D.)
- Banque de Tissus, Centre de Biologie-Pathologie, CHU Lille, F-59000 Lille, France
| |
Collapse
|
23
|
Enhanced antitumor effect of L-buthionine sulfoximine or ionizing radiation by copper complexes with 2,2´-biquinoline and sulfonamides on A549 2D and 3D lung cancer cell models. J Biol Inorg Chem 2022; 27:329-343. [PMID: 35247094 DOI: 10.1007/s00775-022-01933-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/07/2022] [Indexed: 12/28/2022]
Abstract
Two ternary copper(II) complexes with 2,2'-biquinoline (BQ) and with sulfonamides: sulfamethazine (SMT) or sulfaquinoxaline (SDQ) whose formulae are Cu(SMT)(BQ)Cl and Cu(SDQ)(BQ)Cl·CH3OH, in what follows SMTCu and SDQCu, respectively, induced oxidative stress by increasing ROS level from 1.0 μM and the reduction potential of the couple GSSG/GSH2. The co-treatment with L-buthionine sulfoximine (BSO), which inhibits the production of GSH, enhanced the effect of copper complexes on tumor cell viability and on oxidative damage. Both complexes generated DNA strand breaks given by-at least partially-the oxidation of pyrimidine bases, which caused the arrest of the cell cycle in the G2/M phase. These phenomena triggered processes of apoptosis proven by activation of caspase 3 and externalization of phosphatidylserine and loss of cell integrity from 1.0 μM. The combination with BSO induced a marked increase in the apoptotic population. On the other hand, an improved cell proliferation effect was observed when combining SDQCu with a radiation dose of 2 Gy from 1.0 μM or with 6 Gy from 1.5 μM. Finally, studies in multicellular spheroids demonstrated that even though copper(II) complexes did not inhibit cell invasion in collagen gels up to 48 h of treatment at the higher concentrations, multicellular resistance outperformed several drugs currently used in cancer treatment. Overall, our results reveal an antitumor effect of both complexes in monolayer and multicellular spheroids and an improvement with the addition of BSO. However, only SDQCu was the best adjuvant of ionizing radiation treatment.
Collapse
|
24
|
Zhang R, Lu W, Yao Y, Tu L, Yu T, Luan T, Chen B. Metabolomics analysis of the 3D L-02 cell cultures revealing the key role of metabolism of amino acids in ameliorating hepatotoxicity of perfluorooctanoic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150438. [PMID: 34562763 DOI: 10.1016/j.scitotenv.2021.150438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
To simulate the real cell status and morphology in the living systems is substantial for using cell models to address the detrimental effects of toxic contaminants. In this study, the comparative profiles of metabolites in three-dimensional (3D) human normal liver (L-02) cell spheroids with perfluorooctanoic acid (PFOA) treatment were analyzed using a metabolomic approach. The uniform 3D cell spheroids were well formed in 3 days (e.g., sphericity index >0.9) and stably maintained over the subsequent 11 days. The cytotoxicity of PFOA to the 3D L-02 cell spheroids was highly dependent on both exposure concentration and duration. Comparative analysis of metabolomes showed that the number of differential metabolites in the 3D cell spheroids treated with 300 μM PFOA for 10 days (n = 59) was greater than those with a 4-day exposure to 300 μM PFOA (n = 17). Six metabolic pathways related to amino acids metabolism were only found in the 3D cell spheroids with a 10-day treatment of 300 μM PFOA, which could not be found in the 2D monolayer cells and those 3D cell spheroids with a 4-day exposure. The suppression of PFOA on glutamine metabolism substantially decreased glutathione (GSH) production and accordingly increased the level of reactive oxygen species in the 3D cell spheroids. On the contrary, the supplementation of glutamine increased GSH production and the viability of cell spheroids, indicating that glutamine metabolism played a critical role in the chronic toxic effects of PFOA. Our study strongly suggested that comprehensive toxicological methodologies based on the 3D cell models could currently be robust and suitable for addressing the chronic adverse effects of toxic contaminants.
Collapse
Affiliation(s)
- Ruijia Zhang
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wenhua Lu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yao Yao
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lanyin Tu
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tiantian Yu
- Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 540080, China
| | - Tiangang Luan
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China.
| |
Collapse
|
25
|
Barbosa MAG, Xavier CPR, Pereira RF, Petrikaitė V, Vasconcelos MH. 3D Cell Culture Models as Recapitulators of the Tumor Microenvironment for the Screening of Anti-Cancer Drugs. Cancers (Basel) 2021; 14:190. [PMID: 35008353 PMCID: PMC8749977 DOI: 10.3390/cancers14010190] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Today, innovative three-dimensional (3D) cell culture models have been proposed as viable and biomimetic alternatives for initial drug screening, allowing the improvement of the efficiency of drug development. These models are gaining popularity, given their ability to reproduce key aspects of the tumor microenvironment, concerning the 3D tumor architecture as well as the interactions of tumor cells with the extracellular matrix and surrounding non-tumor cells. The development of accurate 3D models may become beneficial to decrease the use of laboratory animals in scientific research, in accordance with the European Union's regulation on the 3R rule (Replacement, Reduction, Refinement). This review focuses on the impact of 3D cell culture models on cancer research, discussing their advantages, limitations, and compatibility with high-throughput screenings and automated systems. An insight is also given on the adequacy of the available readouts for the interpretation of the data obtained from the 3D cell culture models. Importantly, we also emphasize the need for the incorporation of additional and complementary microenvironment elements on the design of 3D cell culture models, towards improved predictive value of drug efficacy.
Collapse
Affiliation(s)
- Mélanie A. G. Barbosa
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Cristina P. R. Xavier
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Rúben F. Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Biofabrication Group, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, A. Mickevičiaus g 9, LT-44307 Kaunas, Lithuania;
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - M. Helena Vasconcelos
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
26
|
Aguilar Cosme JR, Gagui DC, Bryant HE, Claeyssens F. Morphological Response in Cancer Spheroids for Screening Photodynamic Therapy Parameters. Front Mol Biosci 2021; 8:784962. [PMID: 34869604 PMCID: PMC8637197 DOI: 10.3389/fmolb.2021.784962] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022] Open
Abstract
Photodynamic therapy (PDT) is a treatment which uses light-activated compounds to produce reactive oxygen species, leading to membrane damage and cell death. Multicellular cancer spheroids are a preferable alternative for PDT evaluation in comparison to monolayer cell cultures due to their ability to better mimic in vivo avascular tumour characteristics such as hypoxia and cell-cell interactions, low cost, and ease of production. However, inconsistent growth kinetics and drug responsiveness causes poor experimental reproducibility and limits their usefulness. Herein, we used image analysis to establish a link between human melanoma C8161 spheroid morphology and drug responsiveness. Spheroids were pre-selected based on sphericity, area, and diameter, reducing variation in experimental groups before treatment. Spheroid morphology after PDT was analyzed using AnaSP and ReViSP, MATLAB-based open-source software, obtaining nine different parameters. Spheroids displayed a linear response between biological assays and morphology, with area (R2 = 0.7219) and volume (R2 = 0.6138) showing the best fit. Sphericity, convexity, and solidity were confirmed as poor standalone indicators of spheroid viability. Our results indicate spheroid morphometric parameters can be used to accurately screen inefficient treatment combinations of novel compounds.
Collapse
Affiliation(s)
- Jose R Aguilar Cosme
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Dan C Gagui
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom.,Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Helen E Bryant
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
27
|
EL-Shahid ZA, Abd EL-Hady FK, Fayad W, Abdel-Aziz MS, Abd EL-Azeem EM, Ahmed EK. Antimicrobial, Cytotoxic, and α-Glucosidase Inhibitory Potentials Using the One Strain Many Compounds Technique for Red Sea Soft Corals Associated Fungi’ Secondary Metabolites and Chemical Composition Correlations. JOURNAL OF BIOLOGICALLY ACTIVE PRODUCTS FROM NATURE 2021; 11:467-489. [DOI: 10.1080/22311866.2021.1978862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 09/01/2023]
Affiliation(s)
- Zeinab A. EL-Shahid
- Chemistry of Natural and Microbial Products Department, National Research Centre, Giza, Egypt
| | - Faten K. Abd EL-Hady
- Chemistry of Natural and Microbial Products Department, National Research Centre, Giza, Egypt
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Giza, Egypt
| | | | | | - Emad K. Ahmed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
28
|
Jayme CC, Pires AF, Fernandes DS, Bi H, Tedesco AC. DNA polymer films used as drug delivery systems to early-stage diagnose and treatment of breast cancer using 3D tumor spheroids as a model. Photodiagnosis Photodyn Ther 2021; 37:102575. [PMID: 34628073 DOI: 10.1016/j.pdpdt.2021.102575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 12/31/2022]
Abstract
The present study examines the designer of DNA polymeric films (DNA-PFs) associated with aluminum chloride phthalocyanine (AlClPc) (DNA-PFs-AlClPc), as a promising drug delivery system (DDS), applicable for breast cancer treatment and early-stage diagnosis using photodynamic therapy (PDT). This study starts evaluating (MCF7) as a model for breast cancer cell behavior associated with DNA-PFs. Analyses of the morphological behaviors, biochemical reaction, and MCF7 cell adhesion profile on DNA-PFs were evaluated. SEM and AFM analysis allowed the morphological characterization of the DNA-PFs. Cell viability and cell cycle kinetics studies indicate highly biocompatible material capable of anchoring MCF7 cells, allowing the attachment and support of cell in the same structure where the insertion of AlClPc (DNA-PFs-AlClPc). The application of visible light photoactivation based on classical PDT protocol over the DNA-PFs-AlClPc showed a reduction in cell viability with increased cell death proportional to the fluency energy range from 600, 900, and 1800 mJ cm-2. The 3D organoid system mimics the tumor microenvironment which was precisely observed in human breast cancer in early-stage progression in the body. The results observed indicate that the viability was reduced by more than 80% in monolayer culture and around 50% in the 3D organoid cell culture at the highest energy fluency (1800 mJ cm-2). We could also point out that with low energy fluency (100 mJ cm-2,), the DNA-PFs-AlClPc did not show a cytotoxic effect on MCF7 cells, enabling this user dose for the photodiagnosis of early-stage human breast cancer detection in the initial stage of progression.
Collapse
Affiliation(s)
- Cristiano Ceron Jayme
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Ananda Ferreira Pires
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Daniela Silvestrini Fernandes
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Hong Bi
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, China
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14040-901, Brazil; School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, China.
| |
Collapse
|
29
|
Min TJ, Kim MJ, Kang KJ, Jeoung YJ, Oh SH, Jang YJ. 3D Spheroid Formation Using BMP-Loaded Microparticles Enhances Odontoblastic Differentiation of Human Dental Pulp Stem Cells. Stem Cells Int 2021; 2021:9326298. [PMID: 34512768 PMCID: PMC8429013 DOI: 10.1155/2021/9326298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/31/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Human dental pulp stem cells (hDPSCs) are the primary cells responsible for dentin regeneration. Typically, in order to allow for odontoblastic differentiation, hDPSCs are cultured over weeks with differentiation-inducing factors in a typical monolayered culture. However, monolayered cultures have significant drawbacks including inconsistent differentiation efficiency, require a higher BMP concentration than should be necessary, and require periodic treatment with BMPs for weeks to see results. To solve these problems, we developed a 3D-cell spheroid culture system for odontoblastic differentiation using microparticles with leaf-stacked structure (LSS), which allow for the sustained release of BMPs and adequate supply of oxygen in cell spheroids. BMPs were continuously released and maintained an effective concentration over 37 days. hDPSCs in the spheroid maintained their viability for 5 weeks, and the odontoblastic differentiation efficiency was increased significantly compared to monolayered cells. Finally, dentin-related features were detected in the spheroids containing BMPs-loaded microparticles after 5 weeks, suggesting that these hDPSC-LSS spheroids might be useful for dentin tissue regeneration.
Collapse
Affiliation(s)
- Tae-Jun Min
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Min Ji Kim
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Kyung-Jung Kang
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Yeoung Jo Jeoung
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Laboratory of Oral Biochemistry, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
30
|
Suckert T, Nexhipi S, Dietrich A, Koch R, Kunz-Schughart LA, Bahn E, Beyreuther E. Models for Translational Proton Radiobiology-From Bench to Bedside and Back. Cancers (Basel) 2021; 13:4216. [PMID: 34439370 PMCID: PMC8395028 DOI: 10.3390/cancers13164216] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
The number of proton therapy centers worldwide are increasing steadily, with more than two million cancer patients treated so far. Despite this development, pending questions on proton radiobiology still call for basic and translational preclinical research. Open issues are the on-going discussion on an energy-dependent varying proton RBE (relative biological effectiveness), a better characterization of normal tissue side effects and combination treatments with drugs originally developed for photon therapy. At the same time, novel possibilities arise, such as radioimmunotherapy, and new proton therapy schemata, such as FLASH irradiation and proton mini-beams. The study of those aspects demands for radiobiological models at different stages along the translational chain, allowing the investigation of mechanisms from the molecular level to whole organisms. Focusing on the challenges and specifics of proton research, this review summarizes the different available models, ranging from in vitro systems to animal studies of increasing complexity as well as complementing in silico approaches.
Collapse
Affiliation(s)
- Theresa Suckert
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sindi Nexhipi
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01309 Dresden, Germany
| | - Antje Dietrich
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Robin Koch
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Emanuel Bahn
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, 69120 Heidelberg, Germany
| | - Elke Beyreuther
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiation Physics, 01328 Dresden, Germany
| |
Collapse
|
31
|
Villasante A, Robinson ST, Cohen AR, Lock R, Guo XE, Vunjak-Novakovic G. Human Serum Enhances Biomimicry of Engineered Tissue Models of Bone and Cancer. Front Bioeng Biotechnol 2021; 9:658472. [PMID: 34327193 PMCID: PMC8313998 DOI: 10.3389/fbioe.2021.658472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
For decades, fetal bovine serum (FBS) has been used routinely for culturing many cell types, based on its empirically demonstrated effects on cell growth, and the lack of suitable non-xenogeneic alternatives. The FBS-based culture media do not represent the human physiological conditions, and can compromise biomimicry of preclinical models. To recapitulate in vitro the features of human bone and bone cancer, we investigated the effects of human serum and human platelet lysate on modeling osteogenesis, osteoclastogenesis, and bone cancer in two-dimensional (2D) and three-dimensional (3D) settings. For monitoring tumor growth within tissue-engineered bone in a non-destructive fashion, we generated cancer cell lines expressing and secreting luciferase. Culture media containing human serum enhanced osteogenesis and osteoclasts differentiation, and provided a more realistic in vitro mimic of human cancer cell proliferation. When human serum was used for building 3D engineered bone, the tissue recapitulated bone homeostasis and response to bisphosphonates observed in native bone. We found disparities in cell behavior and drug responses between the metastatic and primary cancer cells cultured in the bone niche, with the effectiveness of bisphosphonates observed only in metastatic models. Overall, these data support the utility of human serum for bioengineering of bone and bone cancers.
Collapse
Affiliation(s)
- Aranzazu Villasante
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Samuel T. Robinson
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Andrew R. Cohen
- Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, PA, United States
| | - Roberta Lock
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - X. Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Department of Medicine, Columbia University, New York, NY, United States
- College of Dental Medicine, Columbia University, New York, NY, United States
| |
Collapse
|
32
|
Nik Nabil WN, Xi Z, Song Z, Jin L, Zhang XD, Zhou H, De Souza P, Dong Q, Xu H. Towards a Framework for Better Understanding of Quiescent Cancer Cells. Cells 2021; 10:cells10030562. [PMID: 33807533 PMCID: PMC7999675 DOI: 10.3390/cells10030562] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
Quiescent cancer cells (QCCs) are cancer cells that are reversibly suspended in G0 phase with the ability to re-enter the cell cycle and initiate tumor growth, and, ultimately, cancer recurrence and metastasis. QCCs are also therapeutically challenging due to their resistance to most conventional cancer treatments that selectively act on proliferating cells. Considering the significant impact of QCCs on cancer progression and treatment, better understanding of appropriate experimental models, and the evaluation of QCCs are key questions in the field that have direct influence on potential pharmacological interventions. Here, this review focuses on existing and emerging preclinical models and detection methods for QCCs and discusses their respective features and scope for application. By providing a framework for selecting appropriate experimental models and investigative methods, the identification of the key players that regulate the survival and activation of QCCs and the development of more effective QCC-targeting therapeutic agents may mitigate the consequences of QCCs.
Collapse
Affiliation(s)
- Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (W.N.N.N.); (Z.X.); (Z.S.)
- Pharmaceutical Services Programme, Ministry of Health, Petaling Jaya 46200, Malaysia
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (W.N.N.N.); (Z.X.); (Z.S.)
| | - Zejia Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (W.N.N.N.); (Z.X.); (Z.S.)
| | - Lei Jin
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW 2308, Australia;
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW 2308, Australia;
| | - Hua Zhou
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Paul De Souza
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia;
| | - Qihan Dong
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Correspondence: (Q.D.); (H.X.)
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
- Correspondence: (Q.D.); (H.X.)
| |
Collapse
|
33
|
Vej-Nielsen JM, Rogowska-Wrzesinska A. 3D-ViaFlow: A Quantitative Viability Assay for Multicellular Spheroids. Methods Mol Biol 2021; 2273:159-171. [PMID: 33604852 DOI: 10.1007/978-1-0716-1246-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Three-dimensional cell culture became an essential method in molecular and cell biology research. Accumulating results show that cells grown in 3D, display increased functionality and are capable of recapitulating physiological functions that are not observed in classical in vitro models. Spheroid-based cell culture allows the cells to establish their own extracellular matrix and intricate intercellular connections promoting a tissue-like growth environment.In this paper we present the 3D-ViaFlow method that combines an optimised dual live-dead cell staining with flow cytometry to deliver a quantitative estimation of viability of cells in multicellular spheroids. The method is optimised for monolayer cultures and multicellular spheroids created from HepG2/C3A human hepatocytes or coculture of HepG2/C3A and endothelial cell line HMEC-1. It includes protocol for spheroids disassembling, labeling of cells with fluorescein diacetate and propidium iodide and instructions for flow cytometry gating optimized for analysis of heterogeneous cell populations form spheroids.
Collapse
Affiliation(s)
- Joel Mario Vej-Nielsen
- Institute for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
34
|
Pinto CIG, Bucar S, Alves V, Fonseca A, Abrunhosa AJ, da Silva CL, Guerreiro JF, Mendes F. Copper-64 Chloride Exhibits Therapeutic Potential in Three-Dimensional Cellular Models of Prostate Cancer. Front Mol Biosci 2020; 7:609172. [PMID: 33335914 PMCID: PMC7736412 DOI: 10.3389/fmolb.2020.609172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the second most common cancer type in men, and in advanced metastatic stages is considerable incurable. This justifies the need for efficient early diagnostic methods and novel therapies, particularly radiopharmaceuticals with the potential for simultaneous diagnosis and therapy (theranostics). We have previously demonstrated, using monolayer-cultured cells, that copper-64 chloride, a promising theranostic agent for PCa, has the potential to induce significant damage in cancer cells while having minimal side effects in healthy tissues. Here, we further explored this compound for its theranostic applications using more advanced PCa cellular models, specifically multicellular spheroids. Namely, we evaluated the cellular uptake of 64CuCl2 in three human PCa spheroids (derived from 22RV1, DU145, and LNCaP cells), and characterized the growth profile and viability of those spheroids as well as the clonogenic capacity of spheroid-derived cells after exposure to 64CuCl2. Furthermore, the populations of cancer stem cells (CSCs), known to be important for cancer resistance and recurrence, present in the spheroid models were also evaluated using two different markers (CD44 and CD117). 64CuCl2 was found to have significant detrimental effects in spheroids and spheroid-derived cells, being able to reduce their growth and impair the viability and reproductive ability of spheroids from both castration-resistant (22RV1 and DU145) and hormone-naïve PCa (LNCaP). Interestingly, resistance to 64CuCl2 treatment seemed to be related with the presence of a CSC population, since the most resistant spheroids, derived from the DU145 cell line, had the highest initial percentage of CSCs among the three cell lines under study. Altogether, these results clearly highlight the theranostic potential of 64CuCl2.
Collapse
Affiliation(s)
- Catarina I G Pinto
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Bucar
- Departamento de Bioengenharia, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Vítor Alves
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
| | - Alexandra Fonseca
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
| | - Antero J Abrunhosa
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
| | - Cláudia L da Silva
- Departamento de Bioengenharia, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joana F Guerreiro
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
35
|
Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research. Pharmaceutics 2020; 12:pharmaceutics12121186. [PMID: 33291351 PMCID: PMC7762220 DOI: 10.3390/pharmaceutics12121186] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Most cancer biologists still rely on conventional two-dimensional (2D) monolayer culture techniques to test in vitro anti-tumor drugs prior to in vivo testing. However, the vast majority of promising preclinical drugs have no or weak efficacy in real patients with tumors, thereby delaying the discovery of successful therapeutics. This is because 2D culture lacks cell–cell contacts and natural tumor microenvironment, important in tumor signaling and drug response, thereby resulting in a reduced malignant phenotype compared to the real tumor. In this sense, three-dimensional (3D) cultures of cancer cells that better recapitulate in vivo cell environments emerged as scientifically accurate and low cost cancer models for preclinical screening and testing of new drug candidates before moving to expensive and time-consuming animal models. Here, we provide a comprehensive overview of 3D tumor systems and highlight the strategies for spheroid construction and evaluation tools of targeted therapies, focusing on their applicability in cancer research. Examples of the applicability of 3D culture for the evaluation of the therapeutic efficacy of nanomedicines are discussed.
Collapse
|
36
|
Synthesis and biological evaluation of N-Alkylamide derivatives as anti-tumor agents. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
37
|
Meerang M, Kreienbühl J, Orlowski V, Müller SLC, Kirschner MB, Opitz I. Importance of Cullin4 Ubiquitin Ligase in Malignant Pleural Mesothelioma. Cancers (Basel) 2020; 12:cancers12113460. [PMID: 33233664 PMCID: PMC7699720 DOI: 10.3390/cancers12113460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/26/2022] Open
Abstract
Neurofibromatosis type 2 (NF2), the tumor suppressor frequently lost in malignant pleural mesothelioma (MPM), suppresses tumorigenesis in part by inhibiting the Cullin4 ubiquitin ligase (CUL4) complex in the nucleus. Here, we evaluated the importance of CUL4 in MPM progression and tested the efficacy of cullin inhibition by pevonedistat, a small molecule inhibiting cullin neddylation. CUL4 paralogs (CUL4A and CUL4B) were upregulated in MPM tumor specimens compared to nonmalignant pleural tissues. High gene and protein expressions of CUL4B was associated with a worse progression-free survival of MPM patients. Among 13 MPM cell lines tested, five (38%) were highly sensitive to pevonedistat (half maximal inhibitory concentration of cell survival IC50 < 0.5 µM). This remained true in a 3D spheroid culture. Pevonedistat treatment caused the accumulation of CDT1 and p21 in both sensitive and resistant cell lines. However, the treatment induced S/G2 cell cycle arrest and DNA rereplication predominantly in the sensitive cell lines. In an in vivo mouse model, the pevonedistat treatment significantly prolonged the survival of mice bearing both sensitive and resistant MPM tumors. Pevonedistat treatment reduced growth in sensitive tumors but increased apoptosis in resistant tumors. The mechanism in the resistant tumor model may be mediated by reduced macrophage infiltration, resulting from the suppression of macrophage chemotactic cytokines, C-C motif chemokine ligand 2 (CCL2), expression in tumor cells.
Collapse
|
38
|
Ceballos MP, Angel A, Delprato CB, Livore VI, Ferretti AC, Lucci A, Comanzo CG, Alvarez MDL, Quiroga AD, Mottino AD, Carrillo MC. Sirtuin 1 and 2 inhibitors enhance the inhibitory effect of sorafenib in hepatocellular carcinoma cells. Eur J Pharmacol 2020; 892:173736. [PMID: 33220273 DOI: 10.1016/j.ejphar.2020.173736] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) counteracts the efficiency of sorafenib, an important first-line therapy for hepatocellular carcinoma (HCC). Sirtuins (SIRTs) 1 and 2 are associated with tumor progression and MDR. We treated 2D and 3D cultures (which mimic the features of in vivo tumors) from HCC cells with sorafenib alone or in the presence of SIRTs 1 and 2 inhibitors (cambinol or EX-527; combined treatments). Cultures subjected to combined treatments showed a greater fall in cellular viability, proliferation (PCNA, cyclin D1 and Ki-67 expression and cell cycle analysis), migration and invasion when compared with cultures treated only with sorafenib. Similarly, combined treatments produced more apoptosis (annexin V/PI, caspase-3/7 activity) than sorafenib alone. Since cell cycle dysregulation and apoptotic blockage are reported mechanisms of MDR, the modulation found in PCNA, cyclin D1, Ki-67 and caspase-3/7 proteins by cambinol and EX-527 are probably playing a role in enhancing the sensitivity of HCC cell lines to sorafenib. EX-527 reduced MRP3 and BCRP expression in sorafenib-treated HCC cells. Since ABC transporters contribute to MDR, MRP3 and BCRP could be also influencing in the response of HCC cells to sorafenib. Overall, 2D and 3D cultures behave similarly except that 3D cultures were less sensitive to treatments, reinforcing the clinical relevance of the current study. Findings presented in this manuscript support a potential application for SIRTs 1 and 2 inhibitors since we demonstrated that these compounds enhance the inhibitory effect of sorafenib upon treatment of hepatocellular carcinoma cells lines.
Collapse
Affiliation(s)
- María Paula Ceballos
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570, 2000, Rosario, Argentina.
| | - Antonella Angel
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570, 2000, Rosario, Argentina.
| | - Carla Beatriz Delprato
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570, 2000, Rosario, Argentina.
| | - Verónica Inés Livore
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570, 2000, Rosario, Argentina.
| | - Anabela Cecilia Ferretti
- Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipacha 570, 2000, Rosario, Argentina.
| | - Alvaro Lucci
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570, 2000, Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipacha 570, 2000, Rosario, Argentina.
| | - Carla Gabriela Comanzo
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570, 2000, Rosario, Argentina.
| | - María de Luján Alvarez
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570, 2000, Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipacha 570, 2000, Rosario, Argentina.
| | - Ariel Darío Quiroga
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570, 2000, Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipacha 570, 2000, Rosario, Argentina.
| | - Aldo Domingo Mottino
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570, 2000, Rosario, Argentina.
| | - María Cristina Carrillo
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570, 2000, Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipacha 570, 2000, Rosario, Argentina.
| |
Collapse
|
39
|
Wade SJ, Sahin Z, Piper A, Talebian S, Aghmesheh M, Foroughi J, Wallace GG, Moulton SE, Vine KL. Dual Delivery of Gemcitabine and Paclitaxel by Wet-Spun Coaxial Fibers Induces Pancreatic Ductal Adenocarcinoma Cell Death, Reduces Tumor Volume, and Sensitizes Cells to Radiation. Adv Healthc Mater 2020; 9:e2001115. [PMID: 33000905 DOI: 10.1002/adhm.202001115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, with surgical resection of the tumor in conjunction with systemic chemotherapy the only potential curative therapy. Up to 80% of diagnosed cases are deemed unresectable, prompting the need for alternative treatment approaches. Herein, coaxial polymeric fibers loaded with two chemotherapeutic agents, gemcitabine (Gem) and paclitaxel (Ptx), are fabricated to investigate the effect of local drug delivery on PDAC cell growth in vitro and in vivo. A wet-spinning fabrication method to form a coaxial fiber with a polycaprolactone shell and alginate core loaded with Ptx and Gem, respectively, is used. In vitro, Gem+Ptx fibers display significant cytotoxicity as well as radiosensitizing properties toward PDAC cell lines greater than the equivalent free drugs, which may be attributed to a radiosensitizing effect of the polymers. In vivo studies assessing Gem+Ptx fiber efficacy found that Gem+Ptx fibers reduce tumor volume in a xenograft mouse model of PDAC. Importantly, no difference in mouse weight, circulating cytokines, or liver function is observed in mice treated with Gem+Ptx fibers compared to the empty fiber controls confirming the safety of the implant approach. With further development, Gem+Ptx fibers can improve the treatment of unresectable PDAC in the future.
Collapse
Affiliation(s)
- Samantha J. Wade
- School of Chemistry and Molecular Bioscience Molecular Horizons University of Wollongong Wollongong NSW 2522 Australia
- Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW 2522 Australia
- CONCERT CINSW Translational Cancer Research Centre NSW Australia
| | - Zeliha Sahin
- School of Chemistry and Molecular Bioscience Molecular Horizons University of Wollongong Wollongong NSW 2522 Australia
- Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW 2522 Australia
| | - Ann‐Katrin Piper
- School of Chemistry and Molecular Bioscience Molecular Horizons University of Wollongong Wollongong NSW 2522 Australia
- Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW 2522 Australia
| | - Sepehr Talebian
- ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong Wollongong NSW 2500 Australia
| | - Morteza Aghmesheh
- CONCERT CINSW Translational Cancer Research Centre NSW Australia
- Illawarra Cancer Care Centre Illawarra Shoalhaven Local Area Health District Wollongong Hospital Wollongong NSW 2500 Australia
| | - Javad Foroughi
- ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong Wollongong NSW 2500 Australia
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong Wollongong NSW 2500 Australia
| | - Simon E. Moulton
- ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong Wollongong NSW 2500 Australia
- Biomedical Engineering Faculty of Science Engineering and Technology Swinburne University of Technology Hawthorn Vic 3122 Australia
| | - Kara L. Vine
- School of Chemistry and Molecular Bioscience Molecular Horizons University of Wollongong Wollongong NSW 2522 Australia
- Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW 2522 Australia
- CONCERT CINSW Translational Cancer Research Centre NSW Australia
| |
Collapse
|
40
|
Doctor A, Seifert V, Ullrich M, Hauser S, Pietzsch J. Three-Dimensional Cell Culture Systems in Radiopharmaceutical Cancer Research. Cancers (Basel) 2020; 12:cancers12102765. [PMID: 32993034 PMCID: PMC7600608 DOI: 10.3390/cancers12102765] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
In preclinical cancer research, three-dimensional (3D) cell culture systems such as multicellular spheroids and organoids are becoming increasingly important. They provide valuable information before studies on animal models begin and, in some cases, are even suitable for reducing or replacing animal experiments. Furthermore, they recapitulate microtumors, metastases, and the tumor microenvironment much better than monolayer culture systems could. Three-dimensional models show higher structural complexity and diverse cell interactions while reflecting (patho)physiological phenomena such as oxygen and nutrient gradients in the course of their growth or development. These interactions and properties are of great importance for understanding the pathophysiological importance of stromal cells and the extracellular matrix for tumor progression, treatment response, or resistance mechanisms of solid tumors. Special emphasis is placed on co-cultivation with tumor-associated cells, which further increases the predictive value of 3D models, e.g., for drug development. The aim of this overview is to shed light on selected 3D models and their advantages and disadvantages, especially from the radiopharmacist's point of view with focus on the suitability of 3D models for the radiopharmacological characterization of novel radiotracers and radiotherapeutics. Special attention is paid to pancreatic ductal adenocarcinoma (PDAC) as a predestined target for the development of new radionuclide-based theranostics.
Collapse
Affiliation(s)
- Alina Doctor
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Verena Seifert
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
- Correspondence: ; Tel.: +49-351-260-2622
| |
Collapse
|
41
|
Balaji P, Murugadas A, Ramkumar A, Thirumurugan R, Shanmugaapriya S, Akbarsha MA. Characterization of Hen's Egg White To Use It as a Novel Platform To Culture Three-Dimensional Multicellular Tumor Spheroids. ACS OMEGA 2020; 5:19760-19770. [PMID: 32803071 PMCID: PMC7424746 DOI: 10.1021/acsomega.0c02508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
We are standardizing protocols to develop egg white (EW) as a cost-effective platform for culture of three-dimensional (3-D) multicellular tumor spheroids for application in understanding tumor microenvironments and drug screening. In this article, we describe several physical and physiological characteristics of EW to use it as 3-D cell culture platform. Field emission scanning electron microscopy revealed the presence of different microstructures. Hydrodynamic size distribution data indicated nano- and micron-sized particles. Rheological measurements revealed the viscosity and viscoelastic behavior appropriate for maintaining cell viability and supporting 3-D cell growth under high-sheer conditions. It was found that thereis no autofluorescence, a requirement for imparting transparency and for microscopic observations of the spheroids. The EW facilitated the development of 3-D tumor spheroids, with an emphasis of difference in cell proliferation and intercellular cytoskeletal organization between two-dimensional and 3-D spheroid cultures. Put together, EW proves to be a cost-affordable and simple platform for 3-D culture of tumor spheroids.
Collapse
Affiliation(s)
- Perumalsamy Balaji
- Department of Biomedical
Science, Bharathidasan University, Tiruchirapalli 620024, India
- National
Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Anbazhagan Murugadas
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
- National
Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Arunachalam Ramkumar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirapalli 620024, India
- National
Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Ramasamy Thirumurugan
- Department of Animal Science, Bharathidasan University, Tiruchirapalli 620024, India
- National
Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli 620 024, India
| | | | - Mohammad Abdulkader Akbarsha
- National
College (Autonomous), Tiruchirappalli 620001, India
- Mahatma Gandhi-Doerenkamp
Centre for Alternatives, Bharathidasan University, Tiruchirappalli 620 024, India
| |
Collapse
|
42
|
Santos PW, Machado ART, De Grandis R, Ribeiro DL, Tuttis K, Morselli M, Aissa AF, Pellegrini M, Antunes LMG. Effects of sulforaphane on the oxidative response, apoptosis, and the transcriptional profile of human stomach mucosa cells in vitro. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 854-855:503201. [PMID: 32660825 DOI: 10.1016/j.mrgentox.2020.503201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022]
Abstract
Oxidative stress is a critical factor in the pathogenesis of several gastrointestinal diseases. Sulforaphane (SFN), a bioactive compound found in cruciferous vegetables, activates the redox-sensitive nuclear erythroid 2-related factor 2 (NRF2). In addition to its protective role, SFN exerts cytotoxic effects on cancer cells. However, there is a lack of information concerning the toxicity of SFN in normal cells. We investigated the effects of SFN on cell viability, antioxidant defenses, and gene expression in human stomach mucosa cells (MNP01). SFN reduced ROS formation and protected the cells against induced oxidative stress but high concentrations increased apoptosis. An intermediate SFN concentration (8 μM) was chosen for RNA sequencing studies. We observed upregulation of genes of the NRF2 (antioxidant) pathway, the DNA damage response, and apoptosis signaling; whereas SFN downregulated cell cycle and DNA repair pathway genes. SFN may be cytoprotective at low concentrations and cytotoxic at high concentrations.
Collapse
Affiliation(s)
- Patrick Wellington Santos
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Ana Rita Thomazela Machado
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Rone De Grandis
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Diego Luis Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Katiuska Tuttis
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Marco Morselli
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, CA, USA
| | - Alexandre Ferro Aissa
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, CA, USA
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil.
| |
Collapse
|
43
|
van den Brand D, van Lith SAM, de Jong JM, Gorris MAJ, Palacio-Castañeda V, Couwenbergh ST, Goldman MRG, Ebisch I, Massuger LF, Leenders WPJ, Brock R, Verdurmen WPR. EpCAM-Binding DARPins for Targeted Photodynamic Therapy of Ovarian Cancer. Cancers (Basel) 2020; 12:E1762. [PMID: 32630661 PMCID: PMC7409335 DOI: 10.3390/cancers12071762] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy due to late detection associated with dissemination throughout the abdominal cavity. Targeted photodynamic therapy (tPDT) aimed at epithelial cell adhesion molecule (EpCAM), overexpressed in over 90% of ovarian cancer metastatic lesions, is a promising novel therapeutic modality. Here, we tested the specificity and activity of conjugates of EpCAM-directed designed ankyrin repeat proteins (DARPins) with the photosensitizer IRDye 700DX in in vitro and in vivo ovarian cancer models. EpCAM-binding DARPins (Ec1: Kd = 68 pM; Ac2: Kd = 130 nM) and a control DARPin were site-specifically functionalized with fluorophores or IRDye 700DX. Conjugation of anti-EpCAM DARPins with fluorophores maintained EpCAM-specific binding in cell lines and patient-derived ovarian cancer explants. Penetration of DARPin Ec1 into tumor spheroids was slower than that of Ac2, indicative of a binding site barrier effect for Ec1. DARPin-IRDye 700DX conjugates killed EpCAM-expressing cells in a highly specific and illumination-dependent fashion in 2D and 3D cultures. Furthermore, they effectively homed to EpCAM-expressing subcutaneous OV90 xenografts in mice. In conclusion, the high activity and specificity observed in preclinical ovarian cancer models, combined with a high specificity in patient material, warrant a further investigation of EpCAM-targeted PDT for ovarian cancer.
Collapse
Affiliation(s)
- Dirk van den Brand
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands;
| | - Sanne A. M. van Lith
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands;
| | - Jelske M. de Jong
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Mark A. J. Gorris
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands;
| | - Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Stijn T. Couwenbergh
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Mark R. G. Goldman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Inge Ebisch
- Department of Obstetrics and Gynaecology, Canisius Wilhelmina Hospital, Weg door Jonkerbos 100, 6532 SZ Nijmegen, The Netherlands;
| | - Leon F. Massuger
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands;
| | - William P. J. Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Wouter P. R. Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| |
Collapse
|
44
|
Wang T, Wang L, Wang G, Zhuang Y. Leveraging and manufacturing in vitro multicellular spheroid-based tumor cell model as a preclinical tool for translating dysregulated tumor metabolism into clinical targets and biomarkers. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00325-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
45
|
Resazurin-Based Assay for Quantifying Living Cells during Alkaline Phosphatase (ALP) Release. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alkaline phosphatase (ALP) is an important reporter gene in the gene expression system, therefore monitoring cellular behavior including cell viability during ALP release is of significance. This assay produced a quantitative resazurin-based assay for cell viability in embryonic and cancer cells during alkaline phosphatase (ALP) release. A post-confluence culture method was applied to induce ALP in the cells of Balb/c 3T3, A549, MCF-7, and Ht-29. The density of each cell type was optimized using the standard cell culture assay. The main parameters affecting the results of resazurin involve the concentration of resazurin, incubation time, and cell number. The redox reaction, in which resazurin is reduced by the cells, was measured by fluorescence at 544 nm and 590 nm. The obtained data were compared with the hemocytometer assay. ALP release was determined using the optical active substrate p-nitrophenyl phosphate and colorimetric assay.
Collapse
|
46
|
Ramachandran E, Gandin V, Bertani R, Sgarbossa P, Natarajan K, Bhuvanesh NSP, Venzo A, Zoleo A, Mozzon M, Dolmella A, Albinati A, Castellano C, Reis Conceição N, C. Guedes da Silva MF, Marzano C. Synthesis, Characterization and Biological Activity of Novel Cu(II) Complexes of 6-Methyl-2-Oxo-1,2-Dihydroquinoline-3-Carbaldehyde-4n-Substituted Thiosemicarbazones. Molecules 2020; 25:E1868. [PMID: 32316698 PMCID: PMC7221752 DOI: 10.3390/molecules25081868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Three new 6-methyl-2-oxo-1,2-dihydroquinoline-3-carbaldehyde-thiosemicarbazones-N-4-substituted pro-ligands and their Cu(II) complexes (1, -NH2; 2, -NHMe; 3, -NHEt) have been prepared and characterized. In both the X-ray structures of 1 and 3, two crystallographically independent complex molecules were found that differ either in the nature of weakly metal-binding species (water in 1a and nitrate in 1b) or in the co-ligand (water in 3a and methanol in 3b). Electron Paramagnetic Resonance (EPR) measurements carried out on complexes 1 and 3 confirmed the presence of such different species in the solution. The electrochemical behavior of the pro-ligands and of the complexes was investigated, as well as their biological activity. Complexes 2 and 3 exhibited a high cytotoxicity against human tumor cells and 3D spheroids derived from solid tumors, related to the high cellular uptake. Complexes 2 and 3 also showed a high selectivity towards cancerous cell lines with respect to non-cancerous cell lines and were able to circumvent cisplatin resistance. Via the Transmission Electron Microscopy (TEM) imaging technique, preliminary insights into the biological activity of copper complexes were obtained.
Collapse
Affiliation(s)
- Eswaran Ramachandran
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.R.); (R.B.); (M.M.)
- Chemistry Research Center, National Engineering College, K. R. Nagar, Kovilpatti, Tamilnadu 628503, India
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (V.G.); (A.D.); (C.M.)
| | - Roberta Bertani
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.R.); (R.B.); (M.M.)
| | - Paolo Sgarbossa
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.R.); (R.B.); (M.M.)
| | - Karuppannan Natarajan
- Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, Tamil Nadu 641020, India
| | | | - Alfonso Venzo
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (A.V.); (A.Z.)
| | - Alfonso Zoleo
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (A.V.); (A.Z.)
| | - Mirto Mozzon
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.R.); (R.B.); (M.M.)
| | - Alessandro Dolmella
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (V.G.); (A.D.); (C.M.)
| | - Alberto Albinati
- Department of Chemistry, University of Milan, 20133 Milan, Italy; (A.A.); (C.C.)
| | - Carlo Castellano
- Department of Chemistry, University of Milan, 20133 Milan, Italy; (A.A.); (C.C.)
| | - Nuno Reis Conceição
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (N.R.C.); (M.F.C.G.d.S.)
| | - M. Fátima C. Guedes da Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (N.R.C.); (M.F.C.G.d.S.)
| | - Cristina Marzano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (V.G.); (A.D.); (C.M.)
| |
Collapse
|
47
|
Ezzat A, Fayad W, Ibrahim A, Kamel Z, El-Diwany AI, Shaker KH, Esawy MA. Combination treatment of MCF-7 spheroids by Pseudomonas aeruginosa HI1 levan and cisplatin. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
dos Santos PWDS, Machado ART, De Grandis RA, Ribeiro DL, Tuttis K, Morselli M, Aissa AF, Pellegrini M, Antunes LMG. Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol 2020; 136:111047. [DOI: 10.1016/j.fct.2019.111047] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
|
49
|
Bissoli I, Muscari C. Doxorubicin and α-Mangostin oppositely affect luminal breast cancer cell stemness evaluated by a new retinaldehyde-dependent ALDH assay in MCF-7 tumor spheroids. Biomed Pharmacother 2020; 124:109927. [PMID: 31982725 DOI: 10.1016/j.biopha.2020.109927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/29/2019] [Accepted: 12/29/2019] [Indexed: 02/08/2023] Open
Abstract
According to cancer stem cell theory, only a limited number of self-renewing and cloning cells are responsible for tumor relapse after a period of remittance. The aim of the present study was to investigate the effects of Doxorubicin and α-Mangostin, two antiproliferative drugs, on both tumor bulk and stem cells in multicellular tumor spheroids originated from the luminal MCF-7 breast cancer cell line. A new and original fluorimetric assay was used to selectively measure the activity of the retinaldehyde-dependent isoenzymes of aldehyde dehydrogenase (RALDH), which are markers of a subpopulation of breast cancer stem cells. The administration of 5 μg/ml (12.2 μM) α-Mangostin for 48 h provoked: i) a marked disaggregation of the spheroids, leading to a doubling of their volume (p < 0.01), ii) a 40 % decrease in cell viability (p < 0.01), evaluated by the acid phosphatase assay, and iii) a reduction by more than 90 % of RALDH activity. By contrast, Doxorubicin given for 48 h in the range of 0.1-40 μM did not significantly reduce cell viability and caused only a modest modification of the spheroid morphology. Moreover, 40 μM Doxorubicin increased RALDH activity 2.5-fold compared to the untreated sample. When the two drugs were administered together using 5 μg/ml α-Mangostin, the IC50 of Doxorubicin referred to cell viability decreased six-fold and the RALDH activity was further reduced. In conclusion, the combined administration of Doxorubicin and α-Mangostin provoked a significant cytotoxicity and a remarkable inhibition of RALDH activity in MCF-7 tumor spheroids, suggesting that these drugs could be effective in reducing cell stemness in luminal breast cancer.
Collapse
Affiliation(s)
- Irene Bissoli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Claudio Muscari
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| |
Collapse
|
50
|
Sousa ML, Ribeiro T, Vasconcelos V, Linder S, Urbatzka R. Portoamides A and B are mitochondrial toxins and induce cytotoxicity on the proliferative cell layer of in vitro microtumours. Toxicon 2019; 175:49-56. [PMID: 31887317 DOI: 10.1016/j.toxicon.2019.12.159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022]
Abstract
Cyanobacteria are known to produce many toxins and other secondary metabolites. The study of their specific mode of action may reveal the biotechnological potential of such compounds. Portoamides A and B (PAB) are cyclic peptides isolated from the cyanobacteria Phormidium sp. due to their growth repression effect on microalgae and were shown to be cytotoxic against certain cancer cell lines. In the present work, viability was assessed on HCT116 colon cancer cells grown as monolayer culture and as multicellular spheroids (MTS), non-carcinogenic cells and on zebrafish larvae. HCT116 cells and epithelial RPE-1hTERT cells showed very similar degrees of sensitivities to PAB. PAB were able to penetrate the MTS, showing a four-fold high IC50 compared to monolayer cultures. The toxicity of PAB was similar at 4 °C and 37 °C suggesting energy-independent uptake. PAB exposure decreased ATP production, mitochondrial maximal respiration rates and induced mitochondrial membrane hyperpolarization. PAB induced general organelle stress response, indicated by an increase of the mitochondrial damage sensor PINK-1, and of phosphorylation of eIF2α, characteristic for endoplasmic reticulum stress. In summary, these findings show general toxicity of PAB on immortalized cells, cancer cells and zebrafish embryos, likely due to mitochondrial toxicity.
Collapse
Affiliation(s)
- Maria Lígia Sousa
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal; FCUP - Faculty of Sciences of University of Porto, Porto, Portugal
| | - Tiago Ribeiro
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal; FCUP - Faculty of Sciences of University of Porto, Porto, Portugal
| | - Vítor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal; FCUP - Faculty of Sciences of University of Porto, Porto, Portugal
| | - Stig Linder
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institute, Stockholm, Sweden; Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Ralph Urbatzka
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal.
| |
Collapse
|