1
|
Williams JS, Wiley E, Cheng JL, Stone JC, Bostad W, Cherubini JM, Gibala MJ, Tang A, MacDonald MJ. Differences in cardiovascular risk factors associated with sex and gender identity, but not gender expression, in young, healthy cisgender adults. Front Cardiovasc Med 2024; 11:1374765. [PMID: 39318832 PMCID: PMC11420989 DOI: 10.3389/fcvm.2024.1374765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/10/2024] [Indexed: 09/26/2024] Open
Abstract
Background Sex differences exist in cardiovascular disease risk factors including elevated blood pressure and arterial stiffness, and decreased endothelial function in males compared to females. Feminine gender expression may be associated with elevated risk of acute coronary syndrome. However, no study has investigated the associations between sex, gender identity, and gender expression and cardiovascular disease risk factors in young adults. Methods One hundred and thirty participants (22 ± 3 years) underwent assessments of hemodynamics, arterial stiffness [pulse wave velocity (PWV)], and brachial artery endothelial function (flow-mediated dilation; %FMD). Participants completed a questionnaire capturing sex category (50 male/80 female), gender identity category (49 men/79 women/2 non-binary), and aspects of gender expression assessed by the Bem Sex Role Inventory-30 (39 androgynous/33 feminine/29 masculine/29 undifferentiated). Sex/gender identity category groups were compared using unpaired t-tests and gender expression groups compared using one-way ANOVAs. Results Resting systolic and mean arterial pressure (p < 0.01) were elevated in males vs. females. Central PWV was elevated in males [median (interquartile range): 6.4 (1.8) vs. 5.8 (2.2) m/s, p = 0.02]; however, leg and arm PWV were not different between sexes. %FMD was elevated in males vs. females, after accounting for a larger baseline artery diameter in males (8.8 ± 3.3% vs. 7.2 ± 3.1%, p = 0.02); since the majority of participants were cisgender, the same results were found examining gender identity (men vs. women). There were no differences across gender expression groups (p > 0.05). Conclusions Sex/gender identity category, but not gender expression, influence cardiovascular risk factors (blood pressure, arterial stiffness, endothelial function) in cisgender adults; further research is needed in gender-diverse populations.
Collapse
Affiliation(s)
- Jennifer S. Williams
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Elise Wiley
- School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
| | - Jem L. Cheng
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Jenna C. Stone
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - William Bostad
- Human Performance Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Joshua M. Cherubini
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Martin J. Gibala
- Human Performance Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Ada Tang
- School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
| | - Maureen J. MacDonald
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
2
|
Sidnawi B, Zhou B, Chen Z, Sehgal C, Santhanam S, Wu Q. A comprehensive physics-based model for the brachial Artery's full flow mediated dilation (FMD) response observed during the FMD test. Comput Biol Med 2024; 179:108900. [PMID: 39029430 PMCID: PMC11324374 DOI: 10.1016/j.compbiomed.2024.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
In this study, a physics-based model is developed to describe the entire flow mediated dilation (FMD) response. A parameter quantifying the arterial wall's tendency to recover arises from the model, thereby providing a more elaborate description of the artery's physical state, in concert with other parameters characterizing mechanotransduction and structural aspects of the arterial wall. The arterial diameter's behavior throughout the full response is successfully reproduced by the model. Experimental FMD response data were obtained from healthy volunteers. The model's parameters are then adjusted to yield the closest match to the observed experimental response, hence delivering the parameter values pertaining to each subject. This study establishes a foundation based on which future potential clinical applications can be introduced, where endothelial function and general cardiovascular health are inexpensively and noninvasively quantified.
Collapse
Affiliation(s)
- Bchara Sidnawi
- Department of Mechanical Engineering, Villanova University, PA, 19085, USA; Cellular Biomechanics and Sport Science Laboratory, Villanova University, PA, 19085, USA
| | - Bingjie Zhou
- Department of Mechanical Engineering, Villanova University, PA, 19085, USA; Cellular Biomechanics and Sport Science Laboratory, Villanova University, PA, 19085, USA
| | - Zhen Chen
- Department of Radiology, University of Pennsylvania, PA, 19104, USA
| | - Chandra Sehgal
- Department of Radiology, University of Pennsylvania, PA, 19104, USA
| | - Sridhar Santhanam
- Department of Mechanical Engineering, Villanova University, PA, 19085, USA
| | - Qianhong Wu
- Department of Mechanical Engineering, Villanova University, PA, 19085, USA; Cellular Biomechanics and Sport Science Laboratory, Villanova University, PA, 19085, USA.
| |
Collapse
|
3
|
Talbot JS, Perkins DR, Dawkins TG, Lord RN, Oliver JL, Lloyd RS, McManus AM, Stembridge M, Pugh CJA. Flow-mediated dilation is modified by exercise training status during childhood and adolescence: preliminary evidence of the youth athlete's artery. Am J Physiol Heart Circ Physiol 2024; 327:H331-H339. [PMID: 38847760 DOI: 10.1152/ajpheart.00287.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024]
Abstract
Chronic exercise training is associated with an "athlete's artery" phenotype in young adults and an attenuated age-related decline in endothelium-dependent arterial function. Adolescence is associated with an influx of sex-specific hormones that may exert divergent effects on endothelial function, but whether training adaptations interact with biological maturation to produce a "youth athlete's artery" has not been explored. We investigated the influence of exercise-training status on endothelium-dependent arterial function during childhood and adolescence. Brachial artery flow-mediated dilation (FMD) was assessed in n = 102 exercise-trained (males, n = 25; females, n = 29) and untrained (males, n = 23; females, n = 25) youths, characterized as pre (males, n = 25; females, n = 26)- or post (males, n = 23; females, n = 28)-predicted age at peak height velocity (PHV). Baseline brachial artery diameter was larger in post- compared with pre-PHV youths (P ≤ 0.001), males compared with females (P ≤ 0.001), and trained compared with untrained youths (3.26 ± 0.51 vs. 3.11 ± 0.42 mm; P = 0.041). Brachial FMD was similar in pre- and post-PHV youths (P = 0.298), and males and females (P = 0.946). However, exercise-trained youths demonstrated higher FMD when compared with untrained counterparts (5.3 ± 3.3 vs. 3.0 ± 2.6%; P ≤ 0.001). Furthermore, brachial artery diameter (r2 = 0.142; P = 0.007 vs. r2 = 0.004; P = 0.652) and FMD (r2 = 0.138; P = 0.008 vs. r2 = 0.003; P = 0.706) were positively associated with cardiorespiratory fitness in post-, but not pre-PHV youths, respectively. Collectively, our data indicate that exercise training is associated with brachial artery remodeling and enhanced endothelial function during youth. However, arterial remodeling and endothelium-dependent function are only associated with elevated cardiorespiratory fitness during later stages of adolescence.NEW & NOTEWORTHY We report preliminary evidence of the "youth athlete's artery," characterized by training-related arterial remodeling and elevated endothelium-dependent arterial function in children and adolescents. However, training-related adaptations in brachial artery diameter and flow-mediated dilation (FMD) were associated with cardiorespiratory fitness in adolescents, but not in children. Our findings indicate that endothelium-dependent arterial function is modifiable with chronic exercise training during childhood, but the association between FMD and elevated cardiorespiratory fitness is only apparent during later stages of adolescence.
Collapse
Affiliation(s)
- Jack S Talbot
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
- Centre for Health, Activity and Wellbeing Research, Cardiff Metropolitan University, Cardiff, United Kingdom
- Cardiometabolic Health and Exercise Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Dean R Perkins
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Tony G Dawkins
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Rachel N Lord
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
- Centre for Health, Activity and Wellbeing Research, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Jon L Oliver
- Youth Physical Development Centre, Cardiff Metropolitan University, Cardiff, United Kingdom
- Sports Performance Research Institute New Zealand, AUT University, Auckland, New Zealand
| | - Rhodri S Lloyd
- Youth Physical Development Centre, Cardiff Metropolitan University, Cardiff, United Kingdom
- Sports Performance Research Institute New Zealand, AUT University, Auckland, New Zealand
- Centre for Sport Science and Human Performance, Waikato Institute of Technology, Waikato, New Zealand
| | - Ali M McManus
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
- Youth Physical Development Centre, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Christopher J A Pugh
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
- Centre for Health, Activity and Wellbeing Research, Cardiff Metropolitan University, Cardiff, United Kingdom
| |
Collapse
|
4
|
Sadeghi M, Sadeghifar M, Golshahi J, Khani A, Rouhani S, Shokri K, Rabiei K. Exposure to occupational air pollution and vascular endothelial dysfunction in workers of the steel industry in Iran. Toxicol Ind Health 2024; 40:425-431. [PMID: 38743474 DOI: 10.1177/07482337241254630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Air pollution is recognized as a risk factor for cardiovascular diseases; however, the precise underlying mechanisms remain unclear. This study investigated the impact of occupational air pollution exposure on endothelial function in workers within the steel industry. Specifically, we examined male employees in the coke-making division of the Isfahan Steel Company in Iran, as well as those in administrative roles with no known history of cardiovascular risk. Data on age, body mass index, duration of employment, blood pressure, fasting blood sugar, and lipid profile were collected. To assess endothelial function, flow-mediated dilation (FMD) was measured. The baseline brachial artery diameter was greater (mean difference [95% CI] = 0.068 mm [0.008 to 0.128]), while the FMD was lower (mean difference [95% CI] = -0.908 % [-1.740 to -0.075]) in the coke-making group than in the control group. After controlling for potential confounding variables, it was observed that working in the coke-making sector of the industry was associated with lower FMD (F = 3.954, p = .049). These findings indicated that occupational air pollution exposure among workers in the steel industry is linked to impaired endothelium-dependent vasodilation.
Collapse
Affiliation(s)
- Masoumeh Sadeghi
- Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mostafa Sadeghifar
- Isfahan Cardiovascular Research Centre, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jafar Golshahi
- Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azam Khani
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Rouhani
- Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kasra Shokri
- Chamran Cardiovascular Medical and Research Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Katayoun Rabiei
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Coverdale NS, Champagne AA, Allen MD, Tremblay JC, Ethier TS, Fernandez-Ruiz J, Marshall RA, MacPherson REK, Pyke KE, Cook DJ, Olver TD. Brain atrophy, reduced cerebral perfusion, arterial stiffening, and wall thickening with aging coincide with stimulus-specific changes in fMRI-BOLD responses. Am J Physiol Regul Integr Comp Physiol 2024; 326:R346-R356. [PMID: 38406844 DOI: 10.1152/ajpregu.00270.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
The aim of this study was to investigate how aging affects blood flow and structure of the brain. It was hypothesized older individuals would have lower gray matter volume (GMV), resting cerebral blood flow (CBF0), and depressed responses to isometabolic and neurometabolic stimuli. In addition, increased carotid-femoral pulse-wave velocity (PWV), carotid intima-media thickness (IMT), and decreased brachial flow-mediated dilation (FMD) would be associated with lower CBF0, cerebrovascular reactivity (CVR), and GMV. Brain scans (magnetic resonance imaging) and cardiovascular examinations were conducted in young (age = 24 ± 3 yr, range = 22-28 yr; n = 13) and old (age = 71 ± 4 yr; range = 67-82 yr, n = 14) participants, and CBF0, CVR [isometabolic % blood oxygen level-dependent (BOLD) in response to a breath hold (BH)], brain activation patterns during a working memory task (neurometabolic %BOLD response to N-back trial), GMV, PWV, IMT, and FMD were measured. CBF0 and to a lesser extent CVRBH were lower in the old group (P ≤ 0.050); however, the increase in the %BOLD response to the memory task was not blunted (P ≥ 0.2867). Age-related differential activation patterns during the working memory task were characterized by disinhibition of the default mode network in the old group (P < 0.0001). Linear regression analyses revealed PWV, and IMT were negatively correlated with CBF0, CVRBH, and GMV across age groups, but within the old group alone only the relationships between PWV-CVRBH and IMT-GMV remained significant (P ≤ 0.0183). These findings suggest the impacts of age on cerebral %BOLD responses are stimulus specific, brain aging involves alterations in cerebrovascular and possibly neurocognitive control, and arterial stiffening and wall thickening may serve a role in cerebrovascular aging.NEW & NOTEWORTHY Cerebral perfusion was lower in old versus young adults. %Blood oxygen level-dependent (BOLD) responses to an isometabolic stimulus and gray matter volume were decreased in old versus young adults and associated with arterial stiffening and wall thickening. The increased %BOLD response to a neurometabolic stimulus appeared unaffected by age; however, the old group displayed disinhibition of the default mode network during the stimulus. Thus, age-related alterations in cerebral %BOLD responses were stimulus specific and related to arterial remodeling.
Collapse
Affiliation(s)
- Nicole S Coverdale
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Allen A Champagne
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Matti D Allen
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, Ontario, Canada
| | - Joshua C Tremblay
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Tarrah S Ethier
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Juan Fernandez-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Rory A Marshall
- Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
- Department of Biomedical Sciences, Western College of Veterinary Medicine, the University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Kyra E Pyke
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Surgery, Queen's University, Kingston, Ontario, Canada
| | - T Dylan Olver
- Department of Biomedical Sciences, Western College of Veterinary Medicine, the University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
6
|
Sakamoto R, Kamoda T, Sato K, Ogoh S, Katayose M, Neki T, Iwamoto E. Acute aerobic exercise enhances cerebrovascular shear-mediated dilation in young adults: the role of cerebral shear. J Appl Physiol (1985) 2024; 136:535-548. [PMID: 38153849 DOI: 10.1152/japplphysiol.00543.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023] Open
Abstract
Exercise-induced increases in shear rate (SR) acutely improve peripheral endothelial function, but the presence of this mechanism in cerebral arteries remains unclear. Thus, we evaluated shear-mediated dilation of the internal carotid artery (ICA), which is an index of cerebrovascular endothelial function, before and after exercise. Shear-mediated dilation was measured with 30 s of hypercapnia in 16 young adults before and 10 min after 30 min of sitting rest (CON) or three cycling exercises on four separate days. The target exercise intensity was 80% of oxygen uptake at the ventilatory threshold. To manipulate the ICA SR during exercise, participants breathed spontaneously (ExSB, SR increase) or hyperventilated without (ExHV, no increase in SR) or with ([Formula: see text], restoration of SR increase) addition of CO2 to inspiratory air. Shear-mediated dilation was calculated as a percent increase in diameter from baseline. Doppler ultrasound measures ICA velocity and diameter. The CON trial revealed that 30 min of sitting did not alter shear-mediated dilation (4.34 ± 1.37% to 3.44 ± 1.23%, P = 0.052). ICA dilation after exercise compared with preexercise levels increased in the ExSB trial (3.32 ± 1.37% to 4.74 ± 1.84%, P < 0.01), remained unchanged in the ExHV trial (4.07 ± 1.55% to 3.21 ± 1.48%, P = 0.07), but was elevated in the [Formula: see text] trial (3.35 ± 1.15% to 4.33 ± 2.12%, P = 0.04). Our results indicate that exercise-induced increases in cerebral shear may play a crucial role in improving cerebrovascular endothelial function after acute exercise in young adults.NEW & NOTEWORTHY We found that 30-min cycling (target intensity was 80% of the ventilatory threshold) with increasing shear of the internal carotid artery (ICA) enhanced transient hypercapnia-induced shear-mediated dilation of the ICA, reflecting improved cerebrovascular endothelial function. This enhancement of ICA dilation was diminished by suppressing the exercise-induced increase in ICA shear via hyperventilation. Our results indicate that increases in cerebral shear may be a key stimulus for improving cerebrovascular endothelial function after exercise in young adults.
Collapse
Affiliation(s)
- Rintaro Sakamoto
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tatsuki Kamoda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Kohei Sato
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe, Japan
| | - Masaki Katayose
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Toru Neki
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Erika Iwamoto
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
7
|
King TJ, Petrick HL, Millar PJ, Burr JF. Acute oral antioxidant consumption does not alter brachial artery flow mediated dilation in young adults independent of exercise training status. Appl Physiol Nutr Metab 2024; 49:375-384. [PMID: 37944127 DOI: 10.1139/apnm-2023-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Endothelium-dependent vasodilation can be tested using a variety of shear stress paradigms, some of which may involve the production of reactive oxygen species. The purpose of this study was to compare different methods for assessing endothelial function and their specific involvement of reactive oxygen species and influence of aerobic training status. Twenty-nine (10 F) young and healthy participants (VO2max: 34-74 mL·kg-1·min-1) consumed either an antioxidant cocktail (AOC; vitamin C, vitamin E, α-lipoic acid) or placebo (PLA) on each of two randomized visits. Endothelial function was measured via three different brachial artery flow-mediated dilation (FMD) tests: reactive hyperemia (RH-FMD: 5 min cuff occlusion and release), sustained shear (SS-FMD: 6 min rhythmic handgrip), and progressive sustained shear (P-SS-FMD: three intensities of 3 min of rhythmic handgrip). Baseline artery diameter decreased (all tests: 3.8 ± 0.5 to 3.7 ± 0.6 mm, p = 0.004), and shear rate stimulus increased (during RH-FMD test, p = 0.021; during SS-FMD test, p = 0.36; during P-SS-FMD test, p = 0.046) following antioxidant consumption. However, there was no difference in FMD following AOC consumption (RH-FMD, PLA: 8.1 ± 2.6%, AOC: 8.2 ± 3.5%, p = 0.92; SS-FMD, PLA: 6.9 ± 3.9%, AOC: 7.8 ± 5.2%, p = 0.15) or FMD per shear rate slope (P-SS-FMD: PLA: 0.0039 ± 0.0035 mm·s-1, AOC: 0.0032 ± 0.0017 mm·s-1, p = 0.28) and this was not influenced by training status/fitness (all p > 0.60). Allometric scaling did not alter these outcomes (all p > 0.40). Reactive oxygen species may not be integral to endothelium-dependent vasodilation tested using reactive, sustained, or progressive shear protocols in young males and females, regardless of fitness level.
Collapse
Affiliation(s)
- Trevor J King
- Human Performance and Health Research Laboratory, Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
- Department of Health and Physical Education, Mount Royal University, Calgary, AB, Canada
| | - Heather L Petrick
- Human Performance and Health Research Laboratory, Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Philip J Millar
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| | - Jamie F Burr
- Human Performance and Health Research Laboratory, Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Brocherie F, Racinais S, Cocking S, Townsend N, Couderc A, Piscione J, Girard O. Repeated-Sprint Training at 5000-m Simulated Altitude in Preparation for the World Rugby Women's Sevens Series: Too High? Med Sci Sports Exerc 2023; 55:1923-1932. [PMID: 37259251 DOI: 10.1249/mss.0000000000003226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PURPOSE The objective of this study is to investigate the effectiveness of novel repeated-sprint training in hypoxia (RSH) protocol, likely maximizing hypoxic stimulus (higher than commonly used) while preserving training quality (interset rest in normoxia). METHODS Twenty-three world-class female rugby sevens players performed four repeated-sprint training sessions (4 sets of 5 × 5-s cycle sprints-25-s intersprint recovery and 3-min interset rest) under normobaric hypoxia (RSH, exercise and interset rest at FiO 2 of 10.6% and 20.9%, respectively; n = 12) or normoxia (repeated-sprint training in normoxia; exercise and interset rest at FiO 2 of 20.9%; n = 11) during a 9-d training camp before international competition. Repeated-sprint ability (8 × 5-s treadmill sprints-25-s recovery), on-field aerobic capacity, and brachial endothelial function were assessed pre- and postintervention. RESULTS Arterial oxygen saturation (pooled data: 87.0% ± 3.1% vs 96.7% ± 2.9%, P < 0.001) and peak and mean power outputs (sets 1 to 4 average decrease: -21.7% ± 7.2% vs -12.0% ± 3.8% and -24.9% ± 8.1% vs -14.9% ± 3.5%; both P < 0.001) were lower in RSH versus repeated-sprint training in normoxia. The cumulated repeated-sprint distance covered significantly increased from pre- to postintervention (+1.9% ± 3.0%, P = 0.019), irrespective of the condition ( P = 0.149). On-field aerobic capacity did not change (all P > 0.45). There was no significant interaction (all P > 0.240) or condition main effect (all P > 0.074) for any brachial artery endothelial function variable. Only peak diameter increased ( P = 0.026), whereas baseline and peak shear stress decreased ( P = 0.014 and 0.019, respectively), from pre- to postintervention. CONCLUSIONS In world-class female rugby sevens players, only four additional repeated-sprint sessions before competition improve repeated-sprint ability and brachial endothelial function. However, adding severe hypoxic stress during sets of repeated sprints only did not provide supplementary benefits.
Collapse
Affiliation(s)
- Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, FRANCE
| | - Sebastien Racinais
- Research and Scientific Support, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, QATAR
| | | | - Nathan Townsend
- Research and Scientific Support, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, QATAR
| | - Anthony Couderc
- Research Department, French Rugby Union Federation (FFR), Marcoussis, FRANCE
| | - Julien Piscione
- Research Department, French Rugby Union Federation (FFR), Marcoussis, FRANCE
| | | |
Collapse
|
9
|
Debray A, Gravel H, Garceau L, Bartlett AA, Chaseling GK, Barry H, Behzadi P, Ravanelli N, Iglesies-Grau J, Nigam A, Juneau M, Gagnon D. Finnish sauna bathing and vascular health of adults with coronary artery disease: a randomized controlled trial. J Appl Physiol (1985) 2023; 135:795-804. [PMID: 37650138 DOI: 10.1152/japplphysiol.00322.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Regular Finnish sauna use is associated with a reduced risk of cardiovascular mortality. However, physiological mechanisms underlying this association remain unknown. This study determined if an 8-wk Finnish sauna intervention improves peripheral endothelial function, microvascular function, central arterial stiffness, and blood pressure in adults with coronary artery disease (CAD). Forty-one adults (62 ± 6 yr, 33 men/8 women) with stable CAD were randomized to 8 wk of Finnish sauna use (n = 21, 4 sessions/wk, 20-30 min/session, 79°C, 13% relative humidity) or a control intervention (n = 20, lifestyle maintenance). Brachial artery flow-mediated dilation (FMD), carotid-femoral pulse wave velocity (cf-PWV), total (area under the curve) and peak postocclusion forearm reactive hyperemia, and blood pressure (automated auscultation) were measured before and after the intervention. After the sauna intervention, resting core temperature was lower (-0.27°C [-0.54, -0.01], P = 0.046) and sweat rate during sauna exposure was greater (0.3 L/h [0.1, 0.5], P = 0.003). The change in brachial artery FMD did not differ between interventions (control: 0.07% [-0.99, +1.14] vs. sauna: 0.15% [-0.89, +1.19], interaction P = 0.909). The change in total (P = 0.031) and peak (P = 0.024) reactive hyperemia differed between interventions due to a nonsignificant decrease in response to the sauna intervention and an increase in response to control. The change in cf-PWV (P = 0.816), systolic (P = 0.951), and diastolic (P = 0.292) blood pressure did not differ between interventions. These results demonstrate that four sessions of Finnish sauna bathing per week for 8 wk does not improve markers of vascular health in adults with stable CAD.NEW & NOTEWORTHY This study determined if unsupervised Finnish sauna bathing for 8 wk improves markers of vascular health in adults with coronary artery disease. Finnish sauna bathing reduced resting core temperature and improved sweating capacity, indicative of heat acclimation. Despite evidence of heat acclimation, Finnish sauna bathing did not improve markers of endothelial function, microvascular function, arterial stiffness, or blood pressure.
Collapse
Affiliation(s)
- Amélie Debray
- Montreal Heart Institute, Montreal, Quebec, Canada
- School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Hugo Gravel
- Montreal Heart Institute, Montreal, Quebec, Canada
- School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | - Audrey-Ann Bartlett
- Montreal Heart Institute, Montreal, Quebec, Canada
- School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Georgia K Chaseling
- Engagement and Co-design Research Hub, School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | | | - Nicholas Ravanelli
- School of Kinesiology, Lakehead University, Thunder Bay, Ontario, Canada
| | | | - Anil Nigam
- Montreal Heart Institute, Montreal, Quebec, Canada
| | | | - Daniel Gagnon
- Montreal Heart Institute, Montreal, Quebec, Canada
- School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Sakamoto R, Sato K, Ogoh S, Kamoda T, Neki T, Katayose M, Iwamoto E. Dynamic resistance exercise-induced pressor response does not alter hypercapnia-induced cerebral vasodilation in young adults. Eur J Appl Physiol 2023; 123:781-796. [PMID: 36454281 DOI: 10.1007/s00421-022-05096-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/12/2022] [Indexed: 12/05/2022]
Abstract
Excessive arterial pressure elevation induced by resistance exercise (RE) attenuates peripheral vasodilatory function, but its effect on cerebrovascular function is unknown. We aimed to evaluate the effect of different pressor responses to RE on hypercapnia-induced vasodilation of the internal carotid artery (ICA), an index of cerebrovascular function. To manipulate pressor responses to RE, 15 healthy young adults (11M/4F) performed two RE: high intensity with low repetitions (HL) and low intensity with high repetitions (LH) dynamic knee extension. ICA dilation, induced by 3 min of hypercapnia, was measured before and 10 min after RE using Doppler ultrasound. HL exercise elicited a greater pressor response than LH exercise. In relaxation phases of RE, ICA blood velocity increased in both HL and LH trials. However, ICA shear rate did not significantly increase in either trial (P = 0.06). Consequently, neither exercise altered post-exercise hypercapnia-induced ICA dilation (HL, 3.9 ± 1.9% to 5.1 ± 1.7%; LH, 4.6 ± 1.4% to 4.8 ± 1.8%; P > 0.05 for all). When viewed individually, the changes in ICA shear rate were positively correlated with changes in end-tidal partial pressure of carbon dioxide (PETCO2) (r = 0.46, P < 0.01) than with mean arterial pressure (r = 0.32, P = 0.02). These findings suggest that the effects of RE-induced pressor response on cerebrovascular function may be different from peripheral arteries. An increase in PETCO2 during the relaxation phase may play a more crucial role than elevated pressure in increasing cerebral shear during dynamic RE.
Collapse
Affiliation(s)
- Rintaro Sakamoto
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kohei Sato
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe, Japan
| | - Tatsuki Kamoda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Toru Neki
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Masaki Katayose
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Erika Iwamoto
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Japan.
| |
Collapse
|
11
|
Carr JMJR, Howe CA, Gibbons TD, Tymko MM, Steele AR, Vizcardo-Galindo GA, Tremblay JC, Ainslie PN. Cerebral endothelium-dependent function and reactivity to hypercapnia: the role of α 1-adrenoreceptors. J Appl Physiol (1985) 2022; 133:1356-1367. [PMID: 36326471 DOI: 10.1152/japplphysiol.00400.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We assessed hypercapnic cerebrovascular reactivity (CVR) and endothelium-dependent function [cerebral shear-mediated dilation (cSMD)] in the internal carotid artery (ICA) with and without systemic α1-adrenoreceptor blockade via Prazosin. We hypothesized that CVR would be reduced, whereas cSMD would remain unchanged, after Prazosin administration when compared with placebo. In 15 healthy adults (3 female, 26 ± 4 years), we conducted ICA duplex ultrasound during CVR [target +10 mmHg partial pressure of end-tidal carbon dioxide ([Formula: see text]) above baseline, 5 min] and cSMD (+9 mmHg [Formula: see text] above baseline, 30 s) using dynamic end-tidal forcing with and without α1-adrenergic blockade (Prazosin; 0.05 mg/kg) in a placebo-controlled, double-blind, and randomized design. The CVR in the ICA was not different between placebo and Prazosin (P = 0.578). During CVR, the reactivities of mean arterial pressure and cerebrovascular conductance to hypercapnia were also not different between conditions (P = 0.921 and P = 0.664, respectively). During Prazosin, cSMD was lower (1.1 ± 2.0% vs 3.8 ± 3.0%; P = 0.032); however, these data should be interpreted with caution due to the elevated baseline diameter (+1.3 ± 3.6%; condition: P = 0.0498) and lower shear rate (-14.5 ± 23.0%; condition: P < 0.001). Therefore, lower cSMD post α1-adrenoreceptor blockade might not indicate a reduction in cerebral endothelial function per se, but rather, that α1-adrenoreceptors contribute to resting cerebral vascular restraint at the level of the ICA.NEW & NOTEWORTHY We assessed steady-state hypercapnic cerebrovascular reactivity and cerebral endothelium-dependent function, with and without α1-adrenergic blockade (Prazosin), in a placebo-controlled, double-blind, and randomized study, to assess the contribution of α1-adrenergic receptors to cerebrovascular CO2 regulation. After administration of Prazosin, cerebrovascular reactivity to CO2 was not different compared with placebo despite lower blood flow, whereas cerebral endothelium-dependent function was reduced, likely due to elevated baseline internal carotid arterial diameter. These findings suggest that α1-adrenoreceptor activity does not influence cerebral blood flow regulation to CO2 and cerebral endothelial function.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Travis D Gibbons
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada.,Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew R Steele
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Gustavo A Vizcardo-Galindo
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| |
Collapse
|
12
|
The Percentage of Mature Height as a Morphometric Index of Somatic Growth: A Formal Scrutiny of Conventional Simple Ratio Scaling Assumptions. Pediatr Exerc Sci 2022; 35:107-115. [PMID: 36126945 DOI: 10.1123/pes.2022-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To assess conventional assumptions that underpin the percentage of mature height index as the simple ratio of screening height (numerator) divided by actual or predicted adult height (denominator). METHODS We examined cross-sectional data from 99 academy youth soccer players (chronological age range, 11.5 to 17.7 y) skeletally immature at the screening time and with adult height measurements available at follow-up. RESULTS The y-intercept value of -60 cm (95% confidence interval, -115 to -6 cm) from linear regression between screening height and adult height indicated the failure to meet the zero y-intercept assumption. The correlation coefficient between present height and adult height of .64 (95% confidence interval, .50 to .74) was not equal to the ratio of coefficient of variations between these variables (CVx/CVy = 0.46) suggesting Tanner's special circumstance was violated. The non-zero correlation between the ratio and the denominator of .21 (95% confidence interval, .01 to .39) indicated that the percentage of mature height was biased low for players with generally shorter adult height, and vice versa. CONCLUSION For the first time, we have demonstrated that the percentage of mature height is an inconsistent statistic for determining the extent of completed growth, leading to potentially biased inferences for research and applied purposes.
Collapse
|
13
|
Effect of heat-moisture treated brown rice crackers on postprandial flow-mediated dilation in adults with mild endothelial dysfunction. Heliyon 2022; 8:e10284. [PMID: 36051263 PMCID: PMC9424955 DOI: 10.1016/j.heliyon.2022.e10284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/22/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background Endothelial dysfunction is an early pathophysiological feature and independent predictor of a poor prognosis in most forms of cardiovascular disease. We evaluated the effect of brown rice crackers (BR-C) on endothelial function. Methods Effect of heat-moisture treated (HMT) -BR-C on postprandial flow-mediated dilation (FMD) in adults with mild endothelial dysfunction was compared with that of BR-C and white rice crackers (WR-C) in 12 adults with mild endothelial dysfunction (less than 7.0% of FMD) by a randomized, single-blind, three-treatment three-period crossover trial (UMIN 000034898). Since we considered that the FMD increase was associated with the treatment of HMT-BR-C, we examined the effect of three possible factors: postprandial glucose levels, polyphenol content, and polyphenol release from the food matrix. Results Mean pre-intake baseline FMD values of HMT-BR-C, BR-C, and WR-C were 4.9%, 5.1%, and 4.9%, respectively, and those values 1 h post-intake were 6.3%, 5.1%, and 4.8%, respectively. There was no difference in intergroup comparisons of FMD using Dunnett's multiple comparison test. There was a significant increase in FMD only in HMT-BR-C in intragroup comparisons (P = 0.042 by paired-t test). In comparison with BR-C, no significant difference was noted in the postprandial glucose level nor in the content of total polyphenols and ferulic acid derivatives in HMT-BR-C. However, the 70% ethanol extracted from HMT-BR-C contained a significantly larger amount of free and bound ferulic acids than from BR-C. Conclusion HMT-BR-C intake increased the postprandial FMD response.
Collapse
|
14
|
Janssen EBNJ, Hooijschuur MCE, Lopes van Balen VA, Morina-Shijaku E, Spaan JJ, Mulder EG, Hoeks AP, Reesink KD, van Kuijk SMJ, van't Hof A, van Bussel BCT, Spaanderman MEA, Ghossein-Doha C. No accelerated arterial aging in relatively young women after preeclampsia as compared to normotensive pregnancy. Front Cardiovasc Med 2022; 9:911603. [PMID: 35966519 PMCID: PMC9371444 DOI: 10.3389/fcvm.2022.911603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction Preeclampsia, an endothelial disorder of pregnancy, predisposes to remote cardiovascular diseases (CVD). Whether there is an accelerated effect of aging on endothelial decline in former preeclamptic women is unknown. We investigated if the arterial aging regarding endothelial-dependent and -independent vascular function is more pronounced in women with a history of preeclampsia as compared to women with a history of solely normotensive gestation(s). Methods Data was used from the Queen of Hearts study (ClinicalTrials.gov Identifier NCT02347540); a large cross-sectional study on early detection of cardiovascular disease among young women (≥18 years) with a history of preeclampsia and a control group of low-risk healthy women with a history of uncomplicated pregnancies. Brachial artery flow-mediated dilation (FMD; absolute, relative and allometric) and sublingually administered nitroglycerine-mediated dilation (NGMD; absolute and relative) were measured using ultrasound. Cross-sectional associations of age with FMD and NGMD were investigated by linear regression. Models were adjusted for body mass index, smoking, antihypertensive drug use, mean arterial pressure, fasting glucose, menopausal state, family history of CVD and stress stimulus during measurement. Effect modification by preeclampsia was investigated by including an interaction term between preeclampsia and age in regression models. Results Of the 1,217 included women (age range 22–62 years), 66.0% had a history of preeclampsia and 34.0% of normotensive pregnancy. Advancing age was associated with a decrease in relative FMD and NGMD (unadjusted regression coefficient: FMD: −0.48%/10 years (95% CI:−0.65 to −0.30%/10 years), NGMD: −1.13%/10 years (−1.49 to −0.77%/10 years)) and increase in brachial artery diameter [regression coefficient = 0.16 mm/10 years (95% CI 0.13 to 0.19 mm/10 years)]. Similar results were found when evaluating FMD and NGMD as absolute increase or allometrically, and after confounder adjustments. These age-related change were comparable in former preeclamptic women and controls (p-values interaction ≥0.372). Preeclampsia itself was independently associated with consistently smaller brachial artery diameter, but not with FMD and NGMD. Conclusion In young- to middle-aged women, vascular aging in terms of FMD and NGMD was not accelerated in women after preeclampsia compared to normotensive pregnancies, even though former preeclamptic women consistently have smaller brachial arteries.
Collapse
Affiliation(s)
- Emma B. N. J. Janssen
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- *Correspondence: Emma B. N. J. Janssen
| | - Mieke C. E. Hooijschuur
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Veronica A. Lopes van Balen
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Erjona Morina-Shijaku
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Julia. J. Spaan
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Eva G. Mulder
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Arnold P. Hoeks
- Department of Biomedical Engineering, MUMC+, Maastricht, Netherlands
| | - Koen D. Reesink
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- Department of Biomedical Engineering, MUMC+, Maastricht, Netherlands
| | - Sander M. J. van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, MUMC+, Maastricht, Netherlands
| | - Arnoud van't Hof
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- Department of Cardiology, MUMC+, Maastricht, Netherlands
- Department of Cardiology, Zuyderland Medical Centre, Heerlen, Netherlands
| | - Bas C. T. van Bussel
- Department of Intensive Care Medicine, MUMC+, Maastricht, Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, Netherlands
| | - Marc E. A. Spaanderman
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Chahinda Ghossein-Doha
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- Department of Cardiology, MUMC+, Maastricht, Netherlands
| |
Collapse
|
15
|
Ogoh S, Washio T, Stacey BS, Tsukamoto H, Iannetelli A, Owens TS, Calverley TA, Fall L, Marley CJ, Bailey DM. Effects of continuous hypoxia on flow-mediated dilation in the cerebral and systemic circulation: on the regulatory significance of shear rate phenotype. J Physiol Sci 2022; 72:16. [PMID: 35858836 DOI: 10.1186/s12576-022-00841-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022]
Abstract
Emergent evidence suggests that cyclic intermittent hypoxia increases cerebral arterial shear rate and endothelial function, whereas continuous exposure decreases anterior cerebral oxygen (O2) delivery. To examine to what extent continuous hypoxia impacts cerebral shear rate, cerebral endothelial function, and consequent cerebral O2 delivery (CDO2), eight healthy males were randomly assigned single-blind to 7 h passive exposure to both normoxia (21% O2) and hypoxia (12% O2). Blood flow in the brachial and internal carotid arteries were determined using Duplex ultrasound and included the combined assessment of systemic and cerebral endothelium-dependent flow-mediated dilatation. Systemic (brachial artery) flow-mediated dilatation was consistently lower during hypoxia (P = 0.013 vs. normoxia), whereas cerebral flow-mediated dilation remained preserved (P = 0.927 vs. normoxia) despite a reduction in internal carotid artery antegrade shear rate (P = 0.002 vs. normoxia) and CDO2 (P < 0.001 vs. normoxia). Collectively, these findings indicate that the reduction in CDO2 appears to be independent of cerebral endothelial function and contrasts with that observed during cyclic intermittent hypoxia, highlighting the regulatory importance of (hypoxia) dose duration and flow/shear rate phenotype.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe, Saitama, Japan.,Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 4AT, UK
| | - Takuro Washio
- Department of Biomedical Engineering, Toyo University, Kawagoe, Saitama, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 4AT, UK
| | - Hayato Tsukamoto
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 4AT, UK.,Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Angelo Iannetelli
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 4AT, UK
| | - Thomas S Owens
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 4AT, UK
| | - Thomas A Calverley
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 4AT, UK
| | - Lewis Fall
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 4AT, UK
| | - Christopher J Marley
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 4AT, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 4AT, UK. .,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.
| |
Collapse
|
16
|
Marôco JL, Pinto M, Santa-Clara H, Fernhall B, Melo X. Flow-mediated slowing shows poor repeatability compared with flow-mediated dilation in non-invasive assessment of brachial artery endothelial function. PLoS One 2022; 17:e0267287. [PMID: 35609038 PMCID: PMC9129018 DOI: 10.1371/journal.pone.0267287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
Pulse wave velocity (PWV) deceleration to reactive hyperemia–flow-mediated slowing (FMS)–has been suggested as an alternative method to flow-mediated dilation (FMD) to evaluate brachial artery endothelial function. FMS is suggested to address major caveats of the FMD procedure including its suboptimal repeatability and high-operator dependency. However, the repeatability of FMS has not been thoroughly examined, especially given the plethora of methods claiming to measure PWV. We assessed and compared the intra- and inter-day repeatability of FMS as measured by piezoelectric pressure mechanotransducers placed in the carotid and radial arteries, and brachial artery FMD as measured by echo-tracking. Twenty-four healthy male participants aged 23–75 yr, were examined on three separate days to assess intra and inter-day repeatability. All FMD and FMS examinations were conducted simultaneously by the same researcher complying with standardized guidelines. Repeatability was examined with intraclass correlation coefficient (ICC; >0.80), coefficient of variation (CV; <15%), and limits of agreement (95% LOA). Relative (%) FMD and FMS were scaled for baseline brachial artery diameter and PWV, respectively. Intra- (ICC: 0.72; CV: 136%; 95% LOA: -19.38 to 29.19%) and Inter-day (ICC: 0.69; CV: 145%, 95% LOA: -49.50 to 46.08%) repeatability of %FMS was poor, whereas %FMD demonstrated moderate-to-good intra- (ICC: 0.93; CV: 18%, 95% LOA: -3.02 to 3.75%) and inter-day repeatability (ICC: 0.74; CV: 25%, 95% LOA: -9.16 to 7.04%). Scaling FMD reduced the intra-day CV (-5%), and the uncertainty of the 95% LOA (- 37.64 to 35.69%) estimates of FMS. Carotid-radial artery FMS showed poorer repeatability compared to FMD.
Collapse
Affiliation(s)
- João Luís Marôco
- Ginásio Clube Português, Research & Development Department, GCP Lab, Lisboa, Portugal
- Centro Interdisciplinar de Estudo da Performance Humana, Faculdade de Motricidade Humana, Universidade de Lisboa, Oeiras, Portugal
| | - Marco Pinto
- Ginásio Clube Português, Research & Development Department, GCP Lab, Lisboa, Portugal
| | - Helena Santa-Clara
- Centro Interdisciplinar de Estudo da Performance Humana, Faculdade de Motricidade Humana, Universidade de Lisboa, Oeiras, Portugal
| | - Bo Fernhall
- College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Xavier Melo
- Ginásio Clube Português, Research & Development Department, GCP Lab, Lisboa, Portugal
- Centro Interdisciplinar de Estudo da Performance Humana, Faculdade de Motricidade Humana, Universidade de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
17
|
Bailey DM, Culcasi M, Filipponi T, Brugniaux JV, Stacey BS, Marley CJ, Soria R, Rimoldi SF, Cerny D, Rexhaj E, Pratali L, Salmòn CS, Jáuregui CM, Villena M, Villafuerte F, Rockenbauer A, Pietri S, Scherrer U, Sartori C. EPR spectroscopic evidence of iron-catalysed free radical formation in chronic mountain sickness: Dietary causes and vascular consequences. Free Radic Biol Med 2022; 184:99-113. [PMID: 35398201 DOI: 10.1016/j.freeradbiomed.2022.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
Abstract
Chronic mountain sickness (CMS) is a high-altitude (HA) maladaptation syndrome characterised by elevated systemic oxidative-nitrosative stress (OXNOS) due to a free radical-mediated reduction in vascular nitric oxide (NO) bioavailability. To better define underlying mechanisms and vascular consequences, this study compared healthy male lowlanders (80 m, n = 10) against age/sex-matched highlanders born and bred in La Paz, Bolivia (3600 m) with (CMS+, n = 10) and without (CMS-, n = 10) CMS. Cephalic venous blood was assayed using electron paramagnetic resonance spectroscopy and reductive ozone-based chemiluminescence. Nutritional intake was assessed via dietary recall. Systemic vascular function and structure were assessed via flow-mediated dilatation, aortic pulse wave velocity and carotid intima-media thickness using duplex ultrasound and applanation tonometry. Basal systemic OXNOS was permanently elevated in highlanders (P = <0.001 vs. lowlanders) and further exaggerated in CMS+, reflected by increased hydroxyl radical spin adduct formation (P = <0.001 vs. CMS-) subsequent to liberation of free 'catalytic' iron consistent with a Fenton and/or nucleophilic addition mechanism(s). This was accompanied by elevated global protein carbonylation (P = 0.046 vs. CMS-) and corresponding reduction in plasma nitrite (P = <0.001 vs. lowlanders). Dietary intake of vitamins C and E, carotene, magnesium and retinol were lower in highlanders and especially deficient in CMS + due to reduced consumption of fruit and vegetables (P = <0.001 to 0.028 vs. lowlanders/CMS-). Systemic vascular function and structure were also impaired in highlanders (P = <0.001 to 0.040 vs. lowlanders) with more marked dysfunction observed in CMS+ (P = 0.035 to 0.043 vs. CMS-) in direct proportion to systemic OXNOS (r = -0.692 to 0.595, P = <0.001 to 0.045). Collectively, these findings suggest that lifelong exposure to iron-catalysed systemic OXNOS, compounded by a dietary deficiency of antioxidant micronutrients, likely contributes to the systemic vascular complications and increased morbidity/mortality in CMS+. TRIAL REGISTRY: ClinicalTrials.gov; No: NCT01182792; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK.
| | - Marcel Culcasi
- Aix Marseille Univ, CNRS, ICR, UMR, 7273, Marseille, France
| | - Teresa Filipponi
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK
| | - Julien V Brugniaux
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK; HP2 Laboratory, INSERM U1300, Grenoble Alpes University, Grenoble, France
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK
| | - Christopher J Marley
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK
| | - Rodrigo Soria
- Department of Cardiology and Biomedical Research, University Hospital, Bern, Switzerland
| | - Stefano F Rimoldi
- Department of Cardiology and Biomedical Research, University Hospital, Bern, Switzerland
| | - David Cerny
- Department of Cardiology and Biomedical Research, University Hospital, Bern, Switzerland
| | - Emrush Rexhaj
- Department of Cardiology and Biomedical Research, University Hospital, Bern, Switzerland
| | | | | | | | | | - Francisco Villafuerte
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, 1117, Budapest, Hungary
| | - Sylvia Pietri
- Aix Marseille Univ, CNRS, ICR, UMR, 7273, Marseille, France
| | - Urs Scherrer
- Department of Cardiology and Biomedical Research, University Hospital, Bern, Switzerland; Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Arica, Chile
| | - Claudio Sartori
- Department of Internal Medicine, University Hospital, UNIL-Lausanne, Switzerland
| |
Collapse
|
18
|
Hemingway HW, Richey RE, Moore AM, Olivencia-Yurvati AH, Kline GP, Romero SA. Acute heat exposure protects against endothelial ischemia-reperfusion injury in aged humans. Am J Physiol Regul Integr Comp Physiol 2022; 322:R360-R367. [PMID: 35200050 PMCID: PMC8993535 DOI: 10.1152/ajpregu.00336.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022]
Abstract
Nonpharmacological therapies that protect against endothelial ischemia-reperfusion injury (I/R) remain limited in aged adults. Acute heat exposure protects against endothelial I/R injury in young adults, but its efficacy has never been explored in aged adults. Therefore, we tested the hypothesis that acute heat exposure would prevent the attenuation of endothelium-dependent vasodilation after I/R injury in aged adults. Nine (2 men, 69 ± 8 yr) aged adults were exposed to a thermoneutral control condition or whole body passive heating (water-perfused suit) sufficient to increase body core temperature by 1.2°C. Experiments were separated by at least 7 days. Heat exposure was always performed first to time match the thermoneutral control condition. Endothelium-dependent vasodilation was assessed via flow-mediated dilation of the brachial artery before (pre-I/R) and after I/R injury (post-I/R), which was induced by 20 min of arm ischemia followed by 20 min of reperfusion. Flow-mediated dilation was reduced following I/R injury for the thermoneutral control condition (pre-I/R, 4.5 ± 2.9% vs. post-I/R, 0.9 ± 2.8%, P < 0.01), but was well maintained with prior heat exposure (pre-I/R, 4.4 ± 2.8% vs. post-I/R, 3.5 ± 2.8%, P = 0.5). Taken together, acute heat exposure protects against endothelial I/R injury in aged adults. These results highlight the therapeutic potential of heat therapy to prevent endothelial dysfunction associated with I/R injury in aged adults who are most at risk for an ischemic event.
Collapse
Affiliation(s)
- Holden W Hemingway
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rauchelle E Richey
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Amy M Moore
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Albert H Olivencia-Yurvati
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
- Department of Surgery, University of North Texas Health Science Center, Fort Worth, Texas
| | - Geoffrey P Kline
- Department of Internal Medicine and Geriatrics, University of North Texas Health Science Center, Fort Worth, Texas
| | - Steven A Romero
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
19
|
Chang CR, Astell-Burt T, Russell BM, Francois ME. Personalising activity to target peak hyperglycaemia and improve cardiometabolic health in people with type 2 diabetes: protocol for a randomised controlled trial. BMJ Open 2022; 12:e057183. [PMID: 35351723 PMCID: PMC8966572 DOI: 10.1136/bmjopen-2021-057183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION The benefits of physical activity for glycaemic control in type 2 diabetes (T2D) are well-known. However, whether established glycaemic and cardiovascular benefits can be maximised by exercising at a certain time of day is unknown. Given postprandial glucose peaks contribute to worsening glycated haemoglobin (HbA1c) and cardiovascular risk factors, and that exercise immediately lowers blood glucose, prescribing exercise at a specific time of day to attenuate peak hyperglycaemia may improve glycaemic control and reduce the burden of cardiovascular disease in people with T2D. METHODS AND ANALYSIS A single-centre randomised controlled trial will be conducted by the University of Wollongong, Australia. Individuals with T2D (n=70, aged 40-75 years, body mass index (BMI): 27-40 kg/m2) will be recruited and randomly allocated (1:1), stratified for sex and insulin, to one of three groups: (1) exercise at time of peak hyperglycaemia (ExPeak, personalised), (2) exercise not at time of peak hyperglycaemia (NonPeak) or (3) waitlist control (WLC, standard care). The trial will be 5 months, comprising an 8-week intervention and 3-month follow-up. Primary outcome is the change in HbA1c preintervention to postintervention. Secondary outcomes include vascular function (endothelial function and arterial stiffness), metabolic control (blood lipids and inflammation) and body composition (anthropometrics and dual-energy X-ray absorptiometry (DEXA)). Tertiary outcomes will examine adherence. ETHICS AND DISSEMINATION The joint UOW and ISLHD Ethics Committee approved protocol (2019/ETH09856) prospectively registered at the Australian New Zealand Clinical Trials Registry. Written informed consent will be obtained from all eligible individuals prior to commencement of the trial. Study results will be published as peer-reviewed articles, presented at national/international conferences and media reports. TRIAL REGISTRATION NUMBER ACTRN12619001049167.
Collapse
Affiliation(s)
- Courtney R Chang
- School of Medicine, Faculty of Science, Medicine and Health,University of Wollongong, Wollongong, New South Wales, Australia
| | - Thomas Astell-Burt
- Faculty of Health and Behavioural Sciences, School of Science and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Brooke M Russell
- School of Medicine, Faculty of Science, Medicine and Health,University of Wollongong, Wollongong, New South Wales, Australia
| | - Monique E Francois
- School of Medicine, Faculty of Science, Medicine and Health,University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
20
|
Akins JD, Martin ZT, Patik JC, Curtis BM, Campbell JC, Olvera G, Brothers RM. Young, non-hispanic black men and women exhibit divergent peripheral and cerebral vascular reactivity. Exp Physiol 2022; 107:450-461. [PMID: 35344241 PMCID: PMC9058228 DOI: 10.1113/ep090168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/21/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of the study? Does peripheral and cerebral vascular function differ in young, non-Hispanic Black men and women? What is the main finding and its importance? The non-Hispanic, Black women in this study presented greater peripheral conduit artery and cerebrovascular reactivity, yet similar peripheral microvascular function relative to the non-Hispanic, Black men. These preliminary findings suggest that young, Black women and men possess divergent vascular function, possibly contributing to the unique non-Hispanic Black sex differences in cardiovascular and cerebrovascular diseases. ABSTRACT In the U.S., cardiovascular and cerebrovascular diseases remain more prominent in the non-Hispanic Black (BL) population relative to other racial/ethnic groups. Typically, sex differences emerge in the manifestation of these diseases, though these differences may not fully materialize in the BL population. While numerous mechanisms are implicated, differences in vascular function likely contribute. Research has demonstrated blunted vasodilation in several vascular regions in BL versus non-Hispanic White individuals, though much of this work did not assess sex differences. Therefore, this study aimed to ascertain if indices of vascular function are different between young, BL women (BW) and men (BM). Eleven BW and 15 BM (22 (4) vs. 23 (3) y) participated in this study. Each participant underwent testing for brachial artery flow-mediated dilation (FMD), post-occlusive reactive hyperemia (RH), and cerebral vasomotor reactivity during rebreathing-induced hypercapnia. BW exhibited greater adjusted FMD than BM (P < 0.05 for all), but similar or lower RH when assessed as blood velocity (P > 0.39 for all) or blood flow reactivity (P < 0.05 for all), respectively. Across a range of hypercapnia, BW had greater middle cerebral artery blood velocity and cerebrovascular conductance index than BM (P < 0.001 for both). These preliminary data suggest that young, BW have greater vascular function relative to young, BM, though this was inconsistent across different indices. These findings provide insight into the divergent epidemiological findings between BM and BW. Further research is needed to elucidate possible mechanisms and relate these physiological responses to epidemiological observations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- John D Akins
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - Zachary T Martin
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - Jordan C Patik
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA.,Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Bryon M Curtis
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA.,Institute for Exercise and Environmental Medicine, Dallas, TX, USA
| | - Jeremiah C Campbell
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - Guillermo Olvera
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA.,Institute for Exercise and Environmental Medicine, Dallas, TX, USA
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
21
|
Behzadi P, Ravanelli N, Gravel H, Barry H, Debray A, Chaseling GK, Jacquemet V, Neagoe PE, Nigam A, Carpentier AC, Sirois MG, Gagnon D. Acute effect of passive heat exposure on markers of cardiometabolic function in adults with type 2 diabetes mellitus. J Appl Physiol (1985) 2022; 132:1154-1166. [PMID: 35323077 DOI: 10.1152/japplphysiol.00800.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AIM Heat therapy is a promising strategy to improve cardiometabolic health. This study evaluated the acute physiological responses to hot water immersion in adults with type 2 diabetes mellitus (T2DM). METHODS On separate days in randomized order, 13 adults with T2DM (8 males/5 females, 62 ± 12 yrs, BMI: 30.1 ± 4.6 kg/m2) were immersed in thermoneutral (34°C, 90 minutes) or hot (41°C, core temperature ≥38.5°C for 60 minutes) water. Insulin sensitivity was quantified via the minimal oral model during an oral glucose tolerance test (OGTT) performed 60 minutes after immersion. Brachial artery flow-mediated dilation (FMD) and reactive hyperemia were evaluated before and 40 minutes after immersion. Blood samples were drawn to quantify protein concentrations and mRNA levels of HSP70 and 90, and circulating concentrations of cytokines. RESULTS Relative to thermoneutral water immersion, hot water immersion increased core temperature (+1.66°C [+1.47, +1.87], P<0.01), heart rate (+34 bpm [+24, +44], P<0.01), antegrade shear rate (+96 s-1 [+57, +134], P<0.01), and IL-6 (+1.38 pg/mL [+0.31, +2.45], P=0.01). Hot water immersion did not exert an acute change in insulin sensitivity (-0.3 dl/kg/min/μU/ml [-0.9, +0.2], P=0.18), FMD (-1.0% [-3.6, +1.6], P=0.56), peak (+0.36 mL/min/mmHg [-0.71, +1.43], P=0.64) and total (+0.11 mL/min/mmHg x min [-0.46, +0.68], P=0.87) reactive hyperemia. There was also no change in eHSP70 (P=0.64), iHSP70 (P=0.06), eHSP90 (P=0.80), iHSP90 (P=0.51), IL1-RA (P=0.11), GLP-1 (P=0.59) and NFkB (P=0.56) after hot water immersion. CONCLUSION The physiological responses elicited by hot water immersion do not acutely improve markers of cardiometabolic function in adults with T2DM.
Collapse
Affiliation(s)
- Parya Behzadi
- Montreal Heart Institute, Montreal, Canada.,Department of pharmacology and physiology, Université de Montréal, Montréal, Canada
| | | | - Hugo Gravel
- Montreal Heart Institute, Montreal, Canada.,School of Kinesiology and Exercise Science, Université de Montréal, Montréal, Canada
| | - Hadiatou Barry
- Montreal Heart Institute, Montreal, Canada.,Department of pharmacology and physiology, Université de Montréal, Montréal, Canada
| | - Amelie Debray
- Montreal Heart Institute, Montreal, Canada.,Department of Medicine, Université de Montréal, Montréal, Canada
| | - Georgia K Chaseling
- Montreal Heart Institute, Montreal, Canada.,Department of pharmacology and physiology, Université de Montréal, Montréal, Canada
| | - Vincent Jacquemet
- Department of pharmacology and physiology, Université de Montréal, Montréal, Canada
| | | | - Anil Nigam
- Montreal Heart Institute, Montreal, Canada.,Department of Medicine, Université de Montréal, Montréal, Canada
| | - André C Carpentier
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada
| | - Martin G Sirois
- Montreal Heart Institute, Montreal, Canada.,Department of pharmacology and physiology, Université de Montréal, Montréal, Canada
| | - Daniel Gagnon
- Montreal Heart Institute, Montreal, Canada.,Department of pharmacology and physiology, Université de Montréal, Montréal, Canada.,School of Kinesiology and Exercise Science, Université de Montréal, Montréal, Canada
| |
Collapse
|
22
|
Cardiovascular Health Does Not Change Following High-Intensity Interval Training in Women with Polycystic Ovary Syndrome. J Clin Med 2022; 11:jcm11061626. [PMID: 35329952 PMCID: PMC8953804 DOI: 10.3390/jcm11061626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction: polycystic ovary syndrome (PCOS) is associated with cardiovascular disease (CVD) risk factors. First-line therapy for PCOS is lifestyle changes including exercise. We compared CVD risk factors between women with and without PCOS and examined the responses to high-intensity interval training (HIIT). Methods: women with PCOS were randomized to HIIT (n = 41) or a non-exercise control group (n = 23) for 16 weeks. Women without PCOS (n = 15) were age- and BMI-matched to participants with PCOS and completed 16 weeks of HIIT. CVD markers included blood pressure, heart rate, flow mediated dilatation (FMD), carotid intima-media thickness (IMT), and circulating concentrations of lipids, glucose, insulin, and matrix metalloproteinase-9 (MMP-9). Results: resting heart rate was higher in women with PCOS than without PCOS (p =0.011) and was reduced after HIIT in women with PCOS (−2.8 beats/min, 95% CI: −5.4, −0.2, p = 0.037). FMD was not significantly different between women with PCOS (5.5%, SD 4.1) and those without PCOS (8.2%, SD 3.9) at baseline. HIIT reduced time-to-peak dilatation of the brachial artery in women with PCOS compared with women without PCOS (−55 s, 95% CI: −96, −13, p = 0.012). Conclusions: we found little difference in CVD risk factors between women with and without PCOS at baseline, but some indications of endothelial dysfunction in women with PCOS.
Collapse
|
23
|
Aortic haemodynamics: the effects of habitual endurance exercise, age and muscle sympathetic vasomotor outflow in healthy men. Eur J Appl Physiol 2022; 122:801-813. [PMID: 35034204 PMCID: PMC8854282 DOI: 10.1007/s00421-021-04883-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/28/2021] [Indexed: 01/09/2023]
Abstract
PURPOSE We determined the effect of habitual endurance exercise and age on aortic pulse wave velocity (aPWV), augmentation pressure (AP) and systolic blood pressure (aSBP), with statistical adjustments of aPWV and AP for heart rate and aortic mean arterial pressure, when appropriate. Furthermore, we assessed whether muscle sympathetic nerve activity (MSNA) correlates with AP in young and middle-aged men. METHODS Aortic PWV, AP, aortic blood pressure (applanation tonometry; SphygmoCor) and MSNA (peroneal microneurography) were recorded in 46 normotensive men who were either young or middle-aged and endurance-trained runners or recreationally active nonrunners (10 nonrunners and 13 runners within each age-group). Between-group differences and relationships between variables were assessed via ANOVA/ANCOVA and Pearson product-moment correlation coefficients, respectively. RESULTS Adjusted aPWV and adjusted AP were similar between runners and nonrunners in both age groups (all, P > 0.05), but higher with age (all, P < 0.001), with a greater effect size for the age-related difference in AP in runners (Hedges' g, 3.6 vs 2.6). aSBP was lower in young (P = 0.009; g = 2.6), but not middle-aged (P = 0.341; g = 1.1), runners compared to nonrunners. MSNA burst frequency did not correlate with AP in either age group (young: r = 0.00, P = 0.994; middle-aged: r = - 0.11, P = 0.604). CONCLUSION There is an age-dependent effect of habitual exercise on aortic haemodynamics, with lower aSBP in young runners compared to nonrunners only. Statistical adjustment of aPWV and AP markedly influenced the outcomes of this study, highlighting the importance of performing these analyses. Further, peripheral sympathetic vasomotor outflow and AP were not correlated in young or middle-aged normotensive men.
Collapse
|
24
|
Hemingway HW, Richey RE, Moore AM, Shokraeifard AM, Thomas GC, Olivencia-Yurvati AH, Romero SA. Shear stress induced by acute heat exposure is not obligatory to protect against endothelial ischemia-reperfusion injury in humans. J Appl Physiol (1985) 2022; 132:199-208. [PMID: 34941435 PMCID: PMC8759960 DOI: 10.1152/japplphysiol.00748.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Acute heat exposure protects against endothelial ischemia-reperfusion (I/R) injury in humans. However, the mechanism/s mediating this protective effect remain unclear. We tested the hypothesis that inhibiting the increase in shear stress induced by acute heat exposure would attenuate the protection of endothelial function following I/R injury. Nine (3 women) young healthy participants were studied under three experimental conditions: 1) thermoneutral control; 2) whole body heat exposure to increase body core temperature by 1.2°C; and 3) heat exposure + brachial artery compression to inhibit the temperature-dependent increase in shear stress. Endothelial function was assessed via brachial artery flow-mediated dilatation before (pre-I/R) and after (post-I/R) 20 min of arm ischemia followed by 20 min of reperfusion. Brachial artery shear rate was increased during heat exposure (681 ± 359 s-1), but not for thermoneutral control (140 ± 63 s-1; P < 0.01 vs. heat exposure) nor for heat + brachial artery compression (139 ± 60 s-1; P < 0.01 vs. heat exposure). Ischemia-reperfusion injury reduced flow-mediated dilatation following thermoneutral control (pre-I/R, 5.5 ± 2.9% vs. post-I/R, 3.8 ± 2.9%; P = 0.06), but was protected following heat exposure (pre-I/R, 5.8 ± 2.9% vs. post-I/R, 6.1 ± 2.9%; P = 0.5) and heat + arterial compression (pre-I/R, 4.4 ± 2.8% vs. post-I/R, 5.8 ± 2.8%; P = 0.1). Contrary to our hypothesis, our findings demonstrate that shear stress induced by acute heat exposure is not obligatory to protect against endothelial I/R injury in humans.NEW & NOTEWORTHY Acute heat exposure protects against endothelial ischemia-reperfusion injury in humans. However, the mechanism/s mediating this protective effect remain unclear. We utilized arterial compression to inhibit the temperature-dependent increase in brachial artery blood velocity that occurs during acute heat exposure to isolate the contribution of shear stress to the protection of endothelial function following ischemia-reperfusion injury. Our findings demonstrate that shear stress induced by acute heat exposure is not obligatory to protect against endothelial I/R injury.
Collapse
Affiliation(s)
- Holden W. Hemingway
- 1Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rauchelle E. Richey
- 1Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Amy M. Moore
- 1Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Austin M. Shokraeifard
- 1Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Gabriel C. Thomas
- 1Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Albert H. Olivencia-Yurvati
- 1Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas,2Department of Surgery, University of North Texas Health Science Center, Fort Worth, Texas
| | - Steven A. Romero
- 1Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
25
|
An efficient, localised approach for the simulation of elastic blood vessels using the lattice Boltzmann method. Sci Rep 2021; 11:24260. [PMID: 34930939 PMCID: PMC8688478 DOI: 10.1038/s41598-021-03584-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/01/2021] [Indexed: 11/08/2022] Open
Abstract
Many numerical studies of blood flow impose a rigid wall assumption due to the simplicity of its implementation compared to a full coupling with a solid mechanics model. In this paper, we present a localised method for incorporating the effects of elastic walls into blood flow simulations using the lattice Boltzmann method implemented by the open-source code HemeLB. We demonstrate that our approach is able to more accurately capture the flow behaviour expected in elastic walled vessels than ones with rigid walls. Furthermore, we show that this can be achieved with no loss of computational performance and remains strongly scalable on high performance computers. We finally illustrate that our approach captures the same trends in wall shear stress distribution as those observed in studies using a rigorous coupling between fluid dynamics and solid mechanics models to solve flow in personalised vascular geometries. These results demonstrate that our model can be used to efficiently and effectively represent flows in elastic blood vessels.
Collapse
|
26
|
Hoiland RL, Caldwell HG, Carr JMJR, Howe CA, Stacey BS, Dawkins T, Wakeham DJ, Tremblay JC, Tymko MM, Patrician A, Smith KJ, Sekhon MS, MacLeod DB, Green DJ, Bailey DM, Ainslie PN. Nitric oxide contributes to cerebrovascular shear-mediated dilatation but not steady-state cerebrovascular reactivity to carbon dioxide. J Physiol 2021; 600:1385-1403. [PMID: 34904229 DOI: 10.1113/jp282427] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
Cerebrovascular CO2 reactivity (CVR) is often considered a bioassay of cerebrovascular endothelial function. We recently introduced a test of cerebral shear-mediated dilatation (cSMD) that may better reflect endothelial function. We aimed to determine the nitric oxide (NO)-dependency of CVR and cSMD. Eleven volunteers underwent a steady-state CVR test and transient CO2 test of cSMD during intravenous infusion of the NO synthase inhibitor NG -monomethyl-l-arginine (l-NMMA) or volume-matched saline (placebo; single-blinded and counter-balanced). We measured cerebral blood flow (CBF; duplex ultrasound), intra-arterial blood pressure and P aC O 2 . Paired arterial and jugular venous blood sampling allowed for the determination of trans-cerebral NO2 - exchange (ozone-based chemiluminescence). l-NMMA reduced arterial NO2 - by ∼25% versus saline (74.3 ± 39.9 vs. 98.1 ± 34.2 nM; P = 0.03). The steady-state CVR (20.1 ± 11.6 nM/min at baseline vs. 3.2 ± 16.7 nM/min at +9 mmHg P aC O 2 ; P = 0.017) and transient cSMD tests (3.4 ± 5.9 nM/min at baseline vs. -1.8 ± 8.2 nM/min at 120 s post-CO2 ; P = 0.044) shifted trans-cerebral NO2 - exchange towards a greater net release (a negative value indicates release). Although this trans-cerebral NO2 - release was abolished by l-NMMA, CVR did not differ between the saline and l-NMMA trials (57.2 ± 14.6 vs. 54.1 ± 12.1 ml/min/mmHg; P = 0.49), nor did l-NMMA impact peak internal carotid artery dilatation during the steady-state CVR test (6.2 ± 4.5 vs. 6.2 ± 5.0% dilatation; P = 0.960). However, l-NMMA reduced cSMD by ∼37% compared to saline (2.91 ± 1.38 vs. 4.65 ± 2.50%; P = 0.009). Our findings indicate that NO is not an obligatory regulator of steady-state CVR. Further, our novel transient CO2 test of cSMD is largely NO-dependent and provides an in vivo bioassay of NO-mediated cerebrovascular function in humans. KEY POINTS: Emerging evidence indicates that a transient CO2 stimulus elicits shear-mediated dilatation of the internal carotid artery, termed cerebral shear-mediated dilatation. Whether or not cerebrovascular reactivity to a steady-state CO2 stimulus is NO-dependent remains unclear in humans. During both a steady-state cerebrovascular reactivity test and a transient CO2 test of cerebral shear-mediated dilatation, trans-cerebral nitrite exchange shifted towards a net release indicating cerebrovascular NO production; this response was not evident following intravenous infusion of the non-selective NO synthase inhibitor NG -monomethyl-l-arginine. NO synthase blockade did not alter cerebrovascular reactivity in the steady-state CO2 test; however, cerebral shear-mediated dilatation following a transient CO2 stimulus was reduced by ∼37% following intravenous infusion of NG -monomethyl-l-arginine. NO is not obligatory for cerebrovascular reactivity to CO2 , but is a key contributor to cerebral shear-mediated dilatation.
Collapse
Affiliation(s)
- Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Hannah G Caldwell
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Jay M J R Carr
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Connor A Howe
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Tony Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Denis J Wakeham
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Joshua C Tremblay
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Michael M Tymko
- Neurovascular Health Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander Patrician
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Kurt J Smith
- Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois, Chicago, IL, USA.,Cerebrovascular Health, Exercise, and Environmental Research Science (CHEERS) Laboratory, School of Exercise Science, Physical and Health Education, Faculty of Education, University of Victoria, Victoria, British Columbia, Canada
| | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - David B MacLeod
- Human Pharmacology and Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Sciences), University of Western Australia, Nedlands, Western Australia, Australia
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
27
|
Cherubini JM, MacDonald MJ. Statistical Inferences Using Effect Sizes in Human Endothelial Function Research. Artery Res 2021; 27:176-185. [PMID: 34966462 PMCID: PMC8654719 DOI: 10.1007/s44200-021-00006-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/07/2021] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Magnitudes of change in endothelial function research can be articulated using effect size statistics. Effect sizes are commonly used in reference to Cohen's seminal guidelines of small (d = 0.2), medium (d = 0.5), and large (d = 0.8). Quantitative analyses of effect size distributions across various research disciplines have revealed values differing from Cohen's original recommendations. Here we examine effect size distributions in human endothelial function research, and the magnitude of small, medium, and large effects for macro and microvascular endothelial function. METHODS Effect sizes reported as standardized mean differences were extracted from meta research available for endothelial function. A frequency distribution was constructed to sort effect sizes. The 25th, 50th, and 75th percentiles were used to derive small, medium, and large effects. Group sample sizes and publication year from primary studies were also extracted to observe any potential trends, related to these factors, in effect size reporting in endothelial function research. RESULTS Seven hundred fifty-two effect sizes were extracted from eligible meta-analyses. We determined small (d = 0.28), medium (d = 0.69), and large (d = 1.21) effects for endothelial function that corresponded to the 25th, 50th, and 75th percentile of the data distribution. CONCLUSION Our data indicate that direct application of Cohen's guidelines would underestimate the magnitude of effects in human endothelial function research. This investigation facilitates future a priori power analyses, provides a practical guiding benchmark for the contextualization of an effect when no other information is available, and further encourages the reporting of effect sizes in endothelial function research.
Collapse
Affiliation(s)
- Joshua M. Cherubini
- Department of Kinesiology, Vascular Dynamics Lab, McMaster University, Ivor Wynne Centre, Room E210, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
| | - Maureen J. MacDonald
- Department of Kinesiology, Vascular Dynamics Lab, McMaster University, Ivor Wynne Centre, Room E210, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
| |
Collapse
|
28
|
Russell BM, Smith L, Chang CR, Roach LA, Christie HE, Francois ME. Impact of whole-body resistance exercise timing on mitigating hyperglycaemia-induced vascular dysfunction. Exp Physiol 2021; 106:2385-2390. [PMID: 34676616 DOI: 10.1113/ep089615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/11/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is the estrous cycle affected during disuse atrophies and if so, how do estrous cycle changes relate to musculoskeletal outcomes? What is the main finding and its importance? Rodent estrous cycles are altered during disuse atrophy, which corresponds to musculoskeletal outcomes. However, the estrous cycle does not appear changed in Lewis Lung Carcinoma, which corresponded to no differences in muscle size compared to healthy controls. These findings suggest a relationship between estrous cycle and muscle size during atrophic pathologies. ABSTRACT Hyperglycemia can cause disruptions in vascular function, whereas exercise has been shown to restore vascular function. The primary aim of this study is to investigate the effect of performing whole-body resistance exercise, 30-min before, immediately following, or 30- or 60-min after a high carbohydrate meal, on endothelial function, measured by flow-mediated dilation (FMD). Healthy adults will be recruited to this randomized crossover trial to compare the postprandial glycaemic and vascular responses to four different exercise timing conditions and a control: i) C- control, high carbohydrate meal/no exercise, ii) 30Pre- 30 min of resistance exercises (~30% of 1RM [Repetition Maximum]), 30 min before a high carbohydrate meal, iii) IP- 30 min of resistance exercises (~30% of 1RM), immediately following a high carbohydrate meal, iv) 30Post- 30 min of resistance exercises, 30 min after a high carbohydrate meal and v) 60Post- 30 min of resistance exercises, 60 min after a high carbohydrate meal. Measures of metabolic and vascular function will be assessed at baseline and for two hours following the carbohydrate-based breakfast meal.
Collapse
Affiliation(s)
- Brooke M Russell
- School of Medicine, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Portsmouth, UK
| | - Laura Smith
- School of Medicine, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Portsmouth, UK
| | - Courtney R Chang
- School of Medicine, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Portsmouth, UK
| | - Lauren A Roach
- School of Medicine, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Portsmouth, UK
| | - Hannah E Christie
- School of Medicine, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Portsmouth, UK
| | - Monique E Francois
- School of Medicine, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Portsmouth, UK
| |
Collapse
|
29
|
Mascone SE, Chesney CA, Eagan LE, Ranadive SM. Similar inflammatory response and conduit artery vascular function between sexes following induced inflammation. Exp Physiol 2021; 106:2276-2285. [PMID: 34605100 DOI: 10.1113/ep089913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022]
Abstract
NEW FINDINGS What is the central question of this study? Are there sex differences in vascular function following induced inflammation when oestrogen is typically similar between sexes? What is the main finding and its importance? The present study suggests no sex differences in conduit artery vascular responses to acutely induced inflammation during the low-oestrogen phase of the menstrual cycle in premenopausal women. However, women exhibit lower microvascular function than men. Overall, the results underpin the role of oestrogen in previously observed sex differences and the importance of reporting the phase in the hormonal cycle when women are studied. ABSTRACT Sex differences in cardiovascular disease incidence in premenopausal women and age-matched men have been attributed to the cardioprotective influence of oestrogen. However, limited knowledge exists regarding sex differences following acute inflammation when oestrogen concentrations are lower in women. We evaluated sex differences in vascular responses to induced inflammation when oestrogen concentrations are typically lower in women (early follicular phase or placebo phase of hormonal contraception). In 15 women and 14 men, interleukin-6 (IL-6) concentrations and vascular function [via brachial artery flow-mediated dilatation (FMD)] were assessed at baseline (BL) and 24 (24H) and 48 hours (48H) after administration of influenza vaccine. After induction of inflammation, both sexes exhibited an increase in IL-6 concentrations at 24H [mean (SD) BL vs. 24H: women, 0.563 (0.50) vs. 1.141 (0.65) pg/ml; men, 0.385 (0.17) vs. 1.113 (0.69) pg/ml; P < 0.05] that returned to near-baseline concentrations by 48H (BL vs. 48H, P > 0.05). There were no sex differences in FMD, allometrically scaled FMD or IL-6 concentrations at any time point (P > 0.05). Notably, women exhibited significantly lower microvascular function than men at every time point [P < 0.05; reactive hyperaemic area under the curve (in arbitrary units): women, BL 35,512 (14,916), 24H 34,428 (14,292) and 48H 39,467 (13,936); men, BL 61,748 (27,324), 24H 75,028 (29,051) and 48H 59,532 (13,960)]. When oestrogen concentrations are typically lower in women, women exhibit a similar inflammatory response and conduit artery function, but lower microvascular response to reactive hyperaemia, in comparison to age-matched men.
Collapse
Affiliation(s)
- Sara E Mascone
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Catalina A Chesney
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Lauren E Eagan
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Sushant M Ranadive
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
30
|
Lalande S, Hemingway HW, Jarrard CP, Moore AM, Olivencia-Yurvati AH, Richey RE, Romero SA. Influence of ischemia-reperfusion injury on endothelial function in men and women with similar serum estradiol concentrations. Am J Physiol Regul Integr Comp Physiol 2021; 321:R273-R278. [PMID: 34259042 DOI: 10.1152/ajpregu.00147.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prior data suggest that, relative to the early follicular phase, women in the late follicular phase are protected against endothelial ischemia-reperfusion (I/R) injury when estradiol concentrations are highest. In addition, endothelial I/R injury is consistently observed in men with naturally low endogenous estradiol concentrations that are similar to those of women in the early follicular phase. Therefore, the purpose of this study was to determine whether the vasodeleterious effect of I/R injury differs between women in the early follicular phase of the menstrual cycle and age-matched men. We tested the hypothesis that I/R injury would attenuate endothelium-dependent vasodilation to the same extent in women and age-matched men with similar circulating estradiol concentrations. Endothelium-dependent vasodilation was assessed via brachial artery flow-mediated dilation (duplex ultrasound) in young healthy men (n = 22) and women (n = 12) before (pre-I/R) and immediately after (post-I/R) I/R injury, which was induced via 20 min of arm circulatory arrest followed by 20-min reperfusion. Serum estradiol concentrations did not differ between sexes (men 115.0 ± 33.9 pg·mL-1 vs. women 90.5 ± 40.8 pg·mL-1; P = 0.2). The magnitude by which I/R injury attenuated endothelium-dependent vasodilation did not differ between men (pre-I/R 5.4 ± 2.4% vs. post-I/R 3.0 ± 2.7%) and women (pre-I/R 6.1 ± 2.8% vs. post-I/R 3.7 ± 2.7%; P = 0.9). Our data demonstrate that I/R injury similarly reduces endothelial function in women in the early follicular phase of the menstrual cycle and age-matched men with similar estradiol concentrations.
Collapse
Affiliation(s)
- Sophie Lalande
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Holden W Hemingway
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Caitlin P Jarrard
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Amy M Moore
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Albert H Olivencia-Yurvati
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas.,Department of Surgery, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rauchelle E Richey
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Steven A Romero
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
31
|
Sakamoto R, Katayose M, Yamada Y, Neki T, Kamoda T, Tamai K, Yamazaki K, Iwamoto E. High-but not moderate-intensity exercise acutely attenuates hypercapnia-induced vasodilation of the internal carotid artery in young men. Eur J Appl Physiol 2021; 121:2471-2485. [PMID: 34028613 DOI: 10.1007/s00421-021-04721-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Exercise-induced increases in shear rate (SR) across different exercise intensities may differentially affect hypercapnia-induced vasodilation of the internal carotid artery (ICA), a potential index of cerebrovascular function. We aimed to elucidate the effects of exercise intensity on ICA SR during exercise and post-exercise hypercapnia-induced vasodilation of the ICA in young men. METHODS Twelve healthy men completed 30 min of cycling at moderate [MIE; 65 ± 5% of age-predicted maximal heart rate (HRmax)] and high (HIE; 85 ± 5% HRmax) intensities. Hypercapnia-induced vasodilation was induced by 3 min of hypercapnia (target end-tidal partial pressure of CO2 + 10 mmHg) and was assessed at pre-exercise, 5 min and 60 min after exercise. Doppler ultrasound was used to measure ICA diameter and blood velocity during exercise and hypercapnia tests. RESULTS SR was not altered during either exercise (interaction and main effects of time; both P > 0.05). ICA conductance decreased during HIE from resting values (5.1 ± 1.3 to 3.2 ± 1.0 mL·min-1·mmHg-1; P < 0.01) but not during MIE (5.0 ± 1.3 to 4.0 ± 0.8 mL·min-1·mmHg-1; P = 0.11). Consequently, hypercapnia-induced vasodilation declined immediately after HIE (6.9 ± 1.7% to 4.0 ± 1.4%; P < 0.01), but not after MIE (7.2 ± 2.1% to 7.3 ± 1.8%; P > 0.05). Sixty minutes after exercise, hypercapnia-induced vasodilation returned to baseline values in both trials (MIE 8.0 ± 3.1%; HIE 6.4 ± 2.9%; both P > 0.05). CONCLUSION The present study showed blunted hypercapnia-induced vasodilation of the ICA immediately after high-intensity exercise, but not a moderate-intensity exercise in young men. Given that the acute response is partly linked to the adaptive response in the peripheral endothelial function, the effects of aerobic training on cerebrovascular health may vary depending on exercise intensity.
Collapse
Affiliation(s)
- Rintaro Sakamoto
- Department of Physical Therapy, Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Masaki Katayose
- School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Yutaka Yamada
- Department of Physical Therapy, Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Toru Neki
- School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Tatsuki Kamoda
- School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Katsuyuki Tamai
- School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Kotomi Yamazaki
- School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Erika Iwamoto
- School of Health Science, Sapporo Medical University, Sapporo, Japan.
| |
Collapse
|
32
|
Friend AT, Rogan M, Rossetti GMK, Lawley JS, Mullins PG, Sandoo A, Macdonald JH, Oliver SJ. Bilateral regional extracranial blood flow regulation to hypoxia and unilateral duplex ultrasound measurement error. Exp Physiol 2021; 106:1535-1548. [PMID: 33866627 DOI: 10.1113/ep089196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/14/2021] [Indexed: 02/05/2023]
Abstract
NEW FINDINGS What is the central question of this study? Is blood flow regulation to hypoxia different between the internal carotid arteries (ICAs) and vertebral arteries (VAs), and what is the measurement error in unilateral extracranial artery assessments compared to bilateral? What is the main finding and its importance? ICA and VA blood flow regulation to hypoxia is comparable when factoring for vessel type and vessel side. Compared to bilateral assessment, vessels assessed unilaterally had individual measurement errors of up to 37%. Assessing the vessel with the larger resting blood flow, not the left or right vessel, reduces unilateral measurement error. ABSTRACT Whether blood flow regulation to hypoxia is similar between left and right internal carotid arteries (ICAs) and vertebral arteries (VAs) is unclear. Extracranial blood flow is regularly calculated by doubling a unilateral assessment; however, lateral artery differences may lead to measurement error. This study aimed to determine extracranial blood flow regulation to hypoxia when factoring for vessel type (ICAs or VAs) and vessel side (left or right) effects, and to investigate unilateral assessment measurement error compared to bilateral assessment. In a repeated-measures crossover design, extracranial arteries of 44 participants were assessed bilaterally by duplex ultrasound during 90 min of normoxic and poikilocapnic hypoxic (12.0% fraction of inspired oxygen) conditions. Linear mixed model analyses revealed no Condition × Vessel Type × Vessel Side interaction for blood flow, vessel diameter and flow velocity (all P > 0.05) indicating left and right ICA and VA blood flow regulation to hypoxia was similar. Bilateral hypoxic reactivity was comparable (ICAs, 1.4 (1.0) vs. VAs, 1.7 (1.1) Δ%·Δ S p O 2 -1 ; P = 0.12). Compared to bilateral assessment, unilateral mean measurement error of the relative blood flow response to hypoxia was up to 5%, but individual errors reached 37% and were greatest in ICAs and VAs with the smaller resting blood flow due to a ratio-scaling problem. In conclusion, left and right ICA and VA regulation to hypoxia is comparable when factoring for vessel type and vessel side. Assessing the ICA and VA vessels with the larger resting blood flow, not the left or right vessel, reduces unilateral measurement error.
Collapse
Affiliation(s)
- Alexander T Friend
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| | - Matthew Rogan
- Bangor Imaging Unit, School of Psychology, College of Human Sciences, Bangor University, Bangor, UK
| | - Gabriella M K Rossetti
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK.,Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Justin S Lawley
- Department of Sport Science, Division of Physiology, University of Innsbruck, Innsbruck, Austria
| | - Paul G Mullins
- Bangor Imaging Unit, School of Psychology, College of Human Sciences, Bangor University, Bangor, UK
| | - Aamer Sandoo
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| | - Jamie H Macdonald
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| | - Samuel J Oliver
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| |
Collapse
|
33
|
Paterson C, Fryer S, Zieff G, Stone K, Credeur DP, Barone Gibbs B, Padilla J, Parker JK, Stoner L. The Effects of Acute Exposure to Prolonged Sitting, With and Without Interruption, on Vascular Function Among Adults: A Meta-analysis. Sports Med 2021; 50:1929-1942. [PMID: 32757163 DOI: 10.1007/s40279-020-01325-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Exposure to acute prolonged sitting can result in vascular dysfunction, particularly within the legs. This vascular dysfunction, assessed using flow-mediated dilation (FMD), is likely the consequence of decreased blood flow-induced shear stress. With mixed success, several sitting interruption strategies have been trialled to preserve vascular function. OBJECTIVES The objectives of this meta-analysis were to (1) assess the effects of acute prolonged sitting exposure on vascular function in the upper- and lower-limb arteries, and (2) evaluate the effectiveness of sitting interruption strategies in preserving vascular function. Sub-group analyses were conducted to determine whether artery location or interruption modality explain heterogeneity. DATA SOURCES Electronic databases (PubMed, Web of Science, SPORTDiscus, and Google Scholar) were searched from inception to January 2020. Reference lists of eligible studies and relevant reviews were also checked. STUDY SELECTION Inclusion criteria for objective (1) were: (i) FMD% was assessed pre- and post-sitting; (ii) studies were either randomised-controlled, randomised-crossover, or quasi-experimental trials; (iii) the sitting period was ≥ 1 h; and (iv) participants were healthy non-smoking adults (≥ 18 years), and free of vascular-acting medication and disease at the time of testing. Additional inclusion criteria for objective (2) were: (i) the interruption strategy must have been during the sitting period; (ii) there was a control (uninterrupted sitting) group/arm; and (iii) the interruption strategy must have involved the participants actively moving their lower- or upper-limbs. APPRAISAL AND SYNTHESIS METHODS One thousand eight hundred and two articles were identified, of which 17 (22 trials, n = 269) met inclusion criteria for objective (1). Of those 17 articles, 6 studies (9 trials, n = 127) met the inclusion criteria for objective (2). Weighted mean differences (WMD), 95% confidence intervals (95% CI), and standardised mean difference (SMD) were calculated for all trials using random-effects meta-analysis modelling. SMD was used to determine the magnitude of effect, where < 0.2, 0.2, 0.5, and 0.8 was defined as trivial, small, moderate, and large respectively. RESULTS (1) Random-effects modelling showed uninterrupted bouts of prolonged sitting resulted in a significant decrease in FMD% (WMD = - 2.12%, 95% CI - 2.66 to - 1.59, SMD = 0.84). Subgroup analysis revealed reductions in lower- but not upper-limb FMD%. (2) Random-effects modelling showed that interrupting bouts of sitting resulted in a significantly higher FMD% compared to uninterrupted sitting (WMD = 1.91%, 95% CI 0.40 to 3.42, SMD = 0.57). Subgroup analyses failed to identify an optimum interruption strategy but revealed moderate non-significant effects for aerobic interventions (WMD = 2.17%, 95% CI - 0.34 to 4.67, SMD = 0.69) and simple resistance activities (WMD = 2.40%, 95% CI - 0.08 to 4.88, SMD = 0.55) and a trivial effect for standing interruptions (WMD = 0.24%, 95% CI - 0.90 to 1.38, SMD = 0.16). CONCLUSIONS Exposure to acute prolonged sitting leads to significant vascular dysfunction in arteries of the lower, but not upper, limbs. The limited available data indicate that vascular dysfunction can be prevented by regularly interrupting sitting, particularly with aerobic or simple resistance activities.
Collapse
Affiliation(s)
- Craig Paterson
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK.
| | - Simon Fryer
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| | - Gabriel Zieff
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keeron Stone
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| | | | - Bethany Barone Gibbs
- Department of Health and Physical Activity, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - John K Parker
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| | - Lee Stoner
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
34
|
Gravel H, Behzadi P, Cardinal S, Barry H, Neagoe PE, Juneau M, Nigam A, Sirois MG, Gagnon D. Acute Vascular Benefits of Finnish Sauna Bathing in Patients With Stable Coronary Artery Disease. Can J Cardiol 2021; 37:493-499. [DOI: 10.1016/j.cjca.2020.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/26/2020] [Accepted: 06/25/2020] [Indexed: 01/20/2023] Open
|
35
|
Peddie MC, Kessell C, Bergen T, Gibbons TD, Campbell HA, Cotter JD, Rehrer NJ, Thomas KN. The effects of prolonged sitting, prolonged standing, and activity breaks on vascular function, and postprandial glucose and insulin responses: A randomised crossover trial. PLoS One 2021; 16:e0244841. [PMID: 33395691 PMCID: PMC7781669 DOI: 10.1371/journal.pone.0244841] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
The objective of this study was to compare acute effects of prolonged sitting, prolonged standing and sitting interrupted with regular activity breaks on vascular function and postprandial glucose metabolism. In a randomized cross-over trial, 18 adults completed: 1. Prolonged Sitting; 2. Prolonged Standing and 3. Sitting with 2-min walking (5 km/h, 10% incline) every 30 min (Regular Activity Breaks). Flow mediated dilation (FMD) was measured in the popliteal artery at baseline and 6 h. Popliteal artery hemodynamics, and postprandial plasma glucose and insulin were measured over 6 h. Neither raw nor allometrically-scaled FMD showed an intervention effect (p = 0.285 and 0.159 respectively). Compared to Prolonged Sitting, Regular Activity Breaks increased blood flow (overall effect of intervention p<0.001; difference = 80%; 95% CI 34 to 125%; p = 0.001) and net shear rate (overall effect of intervention p<0.001; difference = 72%; 95% CI 30 to 114%; p = 0.001) at 60 min. These differences were then maintained for the entire 6 h. Prolonged Standing increased blood flow at 60 min only (overall effect of intervention p<0.001; difference = 62%; 95% CI 28 to 97%; p = 0.001). Regular Activity Breaks decreased insulin incremental area under the curve (iAUC) when compared to both Prolonged Sitting (overall effect of intervention P = 0.001; difference = 28%; 95% CI 14 to 38%; p<0.01) and Prolonged Standing (difference = 19%; 95% CI 4 to 32%, p = 0.015). There was no intervention effect on glucose iAUC or total AUC (p = 0.254 and 0.450, respectively). In normal-weight participants, Regular Activity Breaks induce increases in blood flow, shear stress and improvements in postprandial metabolism that are associated with beneficial adaptations. Physical activity and sedentary behaviour messages should perhaps focus more on the importance of frequent movement rather than simply replacing sitting with standing.
Collapse
Affiliation(s)
- Meredith C. Peddie
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Chris Kessell
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Tom Bergen
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Travis D. Gibbons
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Holly A. Campbell
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - James D. Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Nancy J. Rehrer
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Kate N. Thomas
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
36
|
Coombs GB, Tremblay JC, Shkredova DA, Carr JMJR, Wakeham DJ, Patrician A, Ainslie PN. Distinct contributions of skin and core temperatures to flow-mediated dilation of the brachial artery following passive heating. J Appl Physiol (1985) 2021; 130:149-159. [DOI: 10.1152/japplphysiol.00502.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The primary determinant of vascular adaptations to lifestyle interventions, such as exercise and heat therapy, is repeated elevations in vascular shear stress. Whether skin or core temperatures also modulate the vascular adaptation to acute heat exposure is unknown, likely due to difficulty in dissociating the thermal and hemodynamic responses to heat. We found that skin and core temperatures modify the acute vascular responses to passive heating irrespective of the magnitude of increase in shear stress.
Collapse
Affiliation(s)
- Geoff B. Coombs
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Joshua C. Tremblay
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Daria A. Shkredova
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
- Department of Physiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jay M. J. R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Denis J. Wakeham
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Alexander Patrician
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Philip N. Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
37
|
Engan B, Engan M, Greve G, Vollsæter M, Hufthammer KO, Leirgul E. Vascular Endothelial Function Assessed by Flow-Mediated Vasodilatation in Young Adults Born Very Preterm or With Extremely Low Birthweight: A Regional Cohort Study. Front Pediatr 2021; 9:734082. [PMID: 34631630 PMCID: PMC8500064 DOI: 10.3389/fped.2021.734082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 01/26/2023] Open
Abstract
Background: Preterm birth and low birthweight have been associated with increased risk of cardiovascular disease in young adults. Endothelial dysfunction is established as an early marker for development of atherosclerotic cardiovascular disease. Previous studies of endothelial function in young adults born very preterm or with extremely low birthweight have, however, shown diverging results. Objective: We aimed to evaluate the risk of cardiovascular disease as measured by vascular endothelial function in young adults born very preterm (<29 weeks of gestation) or with extremely low birthweight (<1,000 g), compared with term-born controls. Methods: This study included 50 young adults born very preterm or with extremely low birthweight and 49 term-born controls born in Norway in the periods 1982-1985, 1991-1992, and 1999-2000 at mean age 28 (±6) years. The endothelial function was assessed by ultrasound measured flow-mediated dilatation (FMD) of the right brachial artery. The arterial diameter was measured at baseline, after release of 5 min of occlusion, and after sublingual administration of nitroglycerine. FMD was reported as absolute and percentage diameter change from baseline and relative to nitroglycerine-induced dilatation. Results: The participants were mainly normal weight non-smokers, without hypertension, diabetes, or established cardiovascular disease. The cases and controls had mean blood pressure 112/71 (SD 12/9) and 112/69 (SD 11/8) mmHg, body mass index 24.0 (SD 4.2) and 24.4 (SD 4.5) kg/m2, and HbA1c 32.7 (SD 2.5) and 33.0 (SD 2.6) mmol/mol, respectively. For both groups, 4 (8%) were smokers. Mean FMD for the adults born very preterm or with extremely low birthweight was 0.17 mm (95% CI 0.14, 0.21) vs. 0.24 mm (95% CI 0.20, 0.28) for the controls (p = 0.01), corresponding to a percentage increase of 5.4% (95% CI 4.2, 6.6) and 7.6% (95% CI 6.2, 8.9), respectively (p = 0.02). The FMD relative to maximal nitroglycerine-induced dilatation was 20% and 31%, respectively (p = 0.001). Conclusions: Young adults born very preterm or with extremely low birthweight have significantly lower FMD compared with the term-born controls suggesting an increased risk of cardiovascular disease.
Collapse
Affiliation(s)
- Britt Engan
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Mette Engan
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatric and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | - Gottfried Greve
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Maria Vollsæter
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatric and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | | | - Elisabeth Leirgul
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
38
|
Brislane Á, Jones H, Holder SM, Low DA, Hopkins ND. The Effect of Exercise During Pregnancy on Maternal and Offspring Vascular Outcomes: a Pilot Study. Reprod Sci 2020; 28:510-523. [PMID: 33258064 PMCID: PMC7808996 DOI: 10.1007/s43032-020-00302-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/20/2020] [Indexed: 01/28/2023]
Abstract
The aim of this pilot study is to obtain estimates for the change in maternal cerebrovascular (primary) and offspring vascular structure (secondary) during healthy pregnancy that includes structured exercise. Eighteen pregnant women self-assigned to a moderate-intensity aerobic exercise intervention or a control group. Maternal cerebral blood flow (CBF) at the middle cerebral artery, cerebro- and peripheral-vascular function was assessed at the end of each trimester. Offspring carotid artery intima-media thickness (IMT) was measured within 12 weeks of birth. For exploratory purposes, we performed statistical analysis to provide estimates of the change for primary and secondary outcome variables. Maternal CBF reduced (− 8 cm s−1 [− 14 to − 2]) with evidence of change to cerebral autoregulation (normalised gain: 0.12 %cm s−1% mmHg−1mmHg/% [− 0.18 to 0.40]) during pregnancy. Offspring carotid IMT was smaller in the exercise group (− 0.04 mm [− 0.12–0.03]) compared with controls. Based upon this data, a sample size of 33 and 57 in each group is required for low-frequency normalised gain and offspring IMT, respectively. This would provide 90% power to detect statistically significant (P < 0.05) between group differences in a randomised controlled trial. CBF is reduced in pregnancy, possibly due to reduced vascular resistance and altered maternal cerebral autoregulation. Maternal exercise had negligible effects on cerebrovascular adaptation to pregnancy, but we observed lower offspring carotid artery wall thickness following maternal exercise. Our directional findings and sample size estimations should be explored in a fully powered randomised control trial. Clinical trial registration: The trial was registered on March 14th at https://register.clinicaltrials.gov (NCT03079258). Participant enrolment began on 3rd April 2016.
Collapse
Affiliation(s)
- Áine Brislane
- Research Institute of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
- School of Sport, York St. John University, Lord Mayor's Walk, York, YO31 7EX, UK.
| | - Helen Jones
- Research Institute of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Sophie M Holder
- Research Institute of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - David A Low
- Research Institute of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Nicola D Hopkins
- Research Institute of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| |
Collapse
|
39
|
Babcock MC, DuBose LE, Witten TL, Brubaker A, Stauffer BL, Hildreth KL, Moreau KL. Assessment of macrovascular and microvascular function in aging males. J Appl Physiol (1985) 2020; 130:96-103. [PMID: 33151774 DOI: 10.1152/japplphysiol.00616.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aging is associated with reductions in endothelial function, observations primarily reported using brachial artery ultrasound. There is growing interest in the use of peripheral artery tonometry (PAT) of microvessels in the fingertip to assess endothelial function because it is less technically demanding and has a high sensitivity and specificity for assessing coronary endothelial function. Moreover, similar to brachial artery flow-mediated dilation (FMD), PAT predicts cardiovascular disease outcomes. However, the relationship between PAT and FMD have yet to be examined in the context of aging. To address this question, reactive hyperemic index (RHI) using EndoPAT and FMD using brachial artery ultrasound were assessed after 5 min of forearm ischemia in 20 younger (18-40 yr old; 29 ± 4 yr) and 20 older (60-75 yr old; 65 ± 4 yr) healthy adult men. Higher values of both FMD and RHI indicate better endothelial function. Endothelial function assessed via brachial artery FMD was lower in older (4.8 ± 2.1%), compared with younger (7.5 ± 1.6%) men (P < 0.001). In contrast, the RHI assessed via PAT was greater in older (2.2 ± 0.6), compared with younger (1.8 ± 0.5) men (P = 0.014). FMD and RHI were not correlated (r = -0.15; P = 0.35). We conclude that PAT may not be an appropriate measure to evaluate age-associated changes in endothelial function.NEW & NOTEWORTHY Microvessel endothelial function assessed via finger plethysmography may not reflect age-associated reductions in large artery endothelial function assessed via brachial artery flow-mediated dilation.
Collapse
Affiliation(s)
- Matthew C Babcock
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lyndsey E DuBose
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Teresa L Witten
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ashley Brubaker
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Brian L Stauffer
- Division of Cardiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Division of Cardiology, Denver Health Medical Center, Denver, Colorado
| | - Kerry L Hildreth
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kerrie L Moreau
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Veterns Affairs Eastern Colorado Geriatric Research, Educational and Clinical Center, Denver, Colorado
| |
Collapse
|
40
|
Romero SA, Moralez G, Jaffery MF, Huang MU, Engelland RE, Cramer MN, Crandall CG. Exercise Training Improves Microvascular Function in Burn Injury Survivors. Med Sci Sports Exerc 2020; 52:2430-2436. [PMID: 33064412 DOI: 10.1249/mss.0000000000002379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Vasodilator function is impaired in individuals with well-healed burn injuries; however, therapeutic interventions that lessen or reverse this maladaptation are lacking. The purpose of this study was to test the hypothesis that a 6-month community-based exercise training program would increase microvascular dilator function in individuals with well-healed burn injuries, irrespective of the magnitude of the injured body surface area. Further, we hypothesize that macrovascular dilator function would remain unchanged posttraining. METHODS Microvascular function (forearm reactive hyperemia), macrovascular function (brachial artery flow-mediated dilation), and the maximal vasodilatory response after ischemic handgrip exercise (an estimate of microvascular remodeling) were assessed before and after exercise training in nonburned control subjects (n = 11) and individuals with burn injuries covering a moderate body surface area (26% ± 7%; n = 13) and a high body surface area (59% ± 15%; n = 19). RESULTS Peak vascular conductance and area under the curve during postocclusive reactive hyperemia increased from pretraining to posttraining in control and burn injury groups (both P < 0.05), the magnitude of which did not differ between groups (both P = 0.6). Likewise, the maximal vasodilatory response after ischemic handgrip exercise increased in all groups after exercise training (P < 0.05). Macrovascular dilator function did not differ across time or between groups (P = 0.8). CONCLUSIONS These data suggest that a community-based exercise training program improves microvascular function in individuals with well-healed burn injuries, which may be due in part to vascular remodeling.
Collapse
Affiliation(s)
| | - Gilbert Moralez
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
| | - Manall F Jaffery
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
| | - M U Huang
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
| | | | - Matthew N Cramer
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
| | - Craig G Crandall
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
| |
Collapse
|
41
|
Hemingway HW, Moore AM, Olivencia-Yurvati AH, Romero SA. Effect of endoplasmic reticulum stress on endothelial ischemia-reperfusion injury in humans. Am J Physiol Regul Integr Comp Physiol 2020; 319:R666-R672. [PMID: 33074709 DOI: 10.1152/ajpregu.00257.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Endoplasmic reticulum stress contributes to ischemia-reperfusion (I/R) injury in rodent and cell models. However, the contribution of endoplasmic reticulum stress in the pathogenesis of endothelial I/R injury in humans is unknown. We tested the hypothesis that compared with placebo, inhibition of endoplasmic reticulum stress via ingestion of tauroursodeoxycholic acid would prevent the attenuation of endothelium-dependent vasodilation following I/R injury. Twelve young adults (6 women) were studied following ingestion of a placebo or 1,500 mg tauroursodeoxycholic acid (TUDCA). Endothelium-dependent vasodilation was assessed via brachial artery flow-mediated dilation (duplex ultrasonography) before and after I/R injury, which was induced by 20 min of arm ischemia followed by 20 min of reperfusion. Endothelium-independent vasodilation (glyceryl trinitrate-mediated vasodilation) was also assessed after I/R injury. Compared with placebo, TUDCA ingestion increased circulating plasma concentrations by 145 ± 90 ng/ml and increased concentrations of the taurine unconjugated form, ursodeoxycholic acid, by 560 ± 156 ng/ml (both P < 0.01). Ischemia-reperfusion injury attenuated endothelium-dependent vasodilation, an effect that did not differ between placebo (pre-I/R, 5.0 ± 2.1% vs. post-I/R, 3.5 ± 2.2%) and TUDCA (pre-I/R, 5.6 ± 2.1% vs. post-I/R, 3.9 ± 2.1%; P = 0.8) conditions. Similarly, endothelium-independent vasodilation did not differ between conditions (placebo, 19.6 ± 4.8% vs. TUDCA, 19.7 ± 6.1%; P = 0.9). Taken together, endoplasmic reticulum stress does not appear to contribute to endothelial I/R injury in healthy young adults.
Collapse
Affiliation(s)
- Holden W Hemingway
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Amy M Moore
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Albert H Olivencia-Yurvati
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas.,Department of Surgery, University of North Texas Health Science Center, Fort Worth, Texas
| | - Steven A Romero
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
42
|
Carr JMJR, Hoiland RL, Caldwell HG, Coombs GB, Howe CA, Tremblay JC, Green DJ, Ainslie PN. Internal carotid and brachial artery shear‐dependent vasodilator function in young healthy humans. J Physiol 2020; 598:5333-5350. [DOI: 10.1113/jp280369] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jay M. J. R. Carr
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia – Okanagan Campus Kelowna British Columbia Canada
| | - Ryan L. Hoiland
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia – Okanagan Campus Kelowna British Columbia Canada
- Department of Anesthesiology Pharmacology and Therapeutics Vancouver General Hospital University of British Columbia Vancouver British Columbia Canada
| | - Hannah G. Caldwell
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia – Okanagan Campus Kelowna British Columbia Canada
| | - Geoff B. Coombs
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia – Okanagan Campus Kelowna British Columbia Canada
| | - Connor A. Howe
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia – Okanagan Campus Kelowna British Columbia Canada
| | - Joshua C. Tremblay
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia – Okanagan Campus Kelowna British Columbia Canada
| | - Daniel J. Green
- School of Human Sciences (Sport and Exercise Sciences) The University of Western Australia Crawley Western Australia Australia
| | - Philip N. Ainslie
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia – Okanagan Campus Kelowna British Columbia Canada
| |
Collapse
|
43
|
Miura K, Kashima H, Morimoto M, Namura S, Yamaoka Endo M, Oue A, Fukuba Y. Effects of Unilateral Arm Warming or Cooling on the Modulation of Brachial Artery Shear Stress and Endothelial Function during Leg Exercise in Humans. J Atheroscler Thromb 2020; 28:271-282. [PMID: 32595193 PMCID: PMC8049146 DOI: 10.5551/jat.55731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We examined the effect of modulating the shear stress (SS) profile using forearm warming and cooling on subsequent endothelial function in the brachial artery (BA) during exercise. Methods: Twelve healthy young subjects immersed their right forearm in water (15°C or 42°C) during a leg cycling exercise at 120–130 bpm for 60 min. The same exercise without water immersion served as a control. The BA diameter and blood velocity were simultaneously recorded using Doppler ultrasonography to evaluate the antegrade, retrograde, and mean shear rates (SRs, an estimate of SS) before, during, and after exercise. The endothelial function in the right BA was evaluated using flow-mediated dilation (FMD) (%) using two-dimensional high-resolution ultrasonography before (baseline) and 15 and 60 min after exercise. Results: During exercise, compared with the control trial, higher antegrade and mean SRs and lower retrograde SRs were observed in the warm trial; conversely, lower antegrade and mean SRs and higher retrograde SRs were observed in the cool trial. At 15 min postexercise, no significant change was observed in the FMD from baseline in the warm (Δ%FMD: +1.6%, tendency to increase; p = 0.08) and control trials (Δ %FMD: +1.1%). However, in the cool trial, the postexercise FMD at 60 min decreased from baseline (Δ%FMD: −2.7%) and was lower than that of the warm (Δ%FMD: +1.5%) and control (Δ%FMD: +1.2%) trials. Accumulated changes in each SR during and after exercise were significantly correlated with postexercise FMD changes. Conclusion: Modulation of shear profiles in the BA during exercise appears to be associated with subsequent endothelial function.
Collapse
Affiliation(s)
- Kohei Miura
- Department of Exercise Science and Physiology, School of Health Sciences, Prefectural University of Hiroshima.,Department of Health and Nutrition, Faculty of Health Sciences, University of Hiroshima Shudo
| | - Hideaki Kashima
- Department of Exercise Science and Physiology, School of Health Sciences, Prefectural University of Hiroshima
| | - Marina Morimoto
- Department of Exercise Science and Physiology, School of Health Sciences, Prefectural University of Hiroshima
| | - Saki Namura
- Department of Exercise Science and Physiology, School of Health Sciences, Prefectural University of Hiroshima
| | - Masako Yamaoka Endo
- Department of Exercise Science and Physiology, School of Health Sciences, Prefectural University of Hiroshima
| | - Anna Oue
- Faculty of Food and Nutritional Sciences, Toyo University
| | - Yoshiyuki Fukuba
- Department of Exercise Science and Physiology, School of Health Sciences, Prefectural University of Hiroshima
| |
Collapse
|
44
|
Gravel H, Coombs GB, Behzadi P, Marcoux-Clément V, Barry H, Juneau M, Nigam A, Gagnon D. Acute effect of Finnish sauna bathing on brachial artery flow-mediated dilation and reactive hyperemia in healthy middle-aged and older adults. Physiol Rep 2020; 7:e14166. [PMID: 31293098 PMCID: PMC6640592 DOI: 10.14814/phy2.14166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Regular Finnish sauna bathing is associated with a reduced risk of all‐cause and cardiovascular mortality in middle‐aged and older adults. Potential acute physiological adaptations induced by sauna bathing that underlie this relationship remain to be fully elucidated. The purpose of this study was to determine if typical Finnish sauna sessions acutely improve brachial artery flow‐mediated dilation (FMD) and reactive hyperemia (RH) in healthy middle‐aged and older adults. Using a randomized crossover design, FMD and RH were evaluated in 21 healthy adults (66 ± 6 years, 10 men/11 women) before and after each of the following conditions: (1) 1 × 10 min of Finnish sauna bathing (80.2 ± 3.2°C, 23 ± 2% humidity); (2) 2 × 10 min of sauna bathing separated by 10 min of rest outside the sauna; (3) a time control period (10 min of seated rest outside the sauna). FMD was taken as the peak change from baseline in brachial artery diameter following 5 min of forearm ischemia, whereas RH was quantified as both peak and area‐under‐the‐curve forearm vascular conductance postischemia. FMD was statistically similar pre to post 1 × 10 min (4.69 ± 2.46 to 5.41 ± 2.64%, P = 0.20) and 2 × 10 min of sauna bathing (4.16 ± 1.79 to 4.55 ± 2.14%, P = 0.58). Peak and area‐under‐the‐curve forearm vascular conductance were also similar following both sauna interventions. These results suggest that typical Finnish sauna bathing sessions do not acutely improve brachial artery FMD and RH in healthy middle‐aged and older adults.
Collapse
Affiliation(s)
- Hugo Gravel
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada.,Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Canada
| | - Geoff B Coombs
- School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, Canada
| | - Parya Behzadi
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada.,Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Canada
| | - Virginie Marcoux-Clément
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada.,Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Canada
| | - Hadiatou Barry
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada.,Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Canada
| | - Martin Juneau
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada
| | - Anil Nigam
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada
| | - Daniel Gagnon
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada.,Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Canada
| |
Collapse
|
45
|
Sörensen BM, van der Heide FC, Houben AJ, Koster A, T.J.M. Berendschot T, S.A.G. Schouten J, Kroon AA, van der Kallen CJ, Henry RM, van Dongen MC, J.P.M. Eussen S, H.C.M. Savelberg H, van der Berg JD, Schaper NC, Schram MT, Stehouwer CD. Higher levels of daily physical activity are associated with better skin microvascular function in type 2 diabetes-The Maastricht Study. Microcirculation 2020; 27:e12611. [PMID: 31997430 PMCID: PMC7317394 DOI: 10.1111/micc.12611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/19/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Physical activity may provide a means for the prevention of cardiovascular disease via improving microvascular function. Therefore, this study investigated whether physical activity is associated with skin and retinal microvascular function. METHODS In The Maastricht Study, a population-based cohort study enriched with type 2 diabetes (n = 1298, 47.3% women, aged 60.2 ± 8.1 years, 29.5% type 2 diabetes), we studied whether accelerometer-assessed physical activity and sedentary time associate with skin and retinal microvascular function. Associations were studied by linear regression and adjusted for major cardiovascular risk factors. In addition, we investigated whether associations were stronger in type 2 diabetes. RESULTS In individuals with type 2 diabetes, total physical activity and higher-intensity physical activity were independently associated with greater heat-induced skin hyperemia (regression coefficients per hour), respectively, 10 (95% CI: 1; 18) and 36 perfusion units (14; 58). In individuals without type 2 diabetes, total physical activity and higher-intensity physical activity were not associated with heat-induced skin hyperemia. No associations with retinal arteriolar %-dilation were identified. CONCLUSION Higher levels of total and higher-intensity physical activity were associated with greater skin microvascular vasodilation in individuals with, but not in those without, type 2 diabetes.
Collapse
Affiliation(s)
- Ben M. Sörensen
- CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
- Department of Internal MedicineMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Frank C.T. van der Heide
- CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
- Department of Internal MedicineMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Alfons J.H.M. Houben
- CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
- Department of Internal MedicineMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Annemarie Koster
- CAPHRI Care and Public Health Research InstituteMaastricht UniversityMaastrichtThe Netherlands
- Department of Social MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Tos T.J.M. Berendschot
- University Eye Clinic MaastrichtMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Jan S.A.G. Schouten
- University Eye Clinic MaastrichtMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Abraham A. Kroon
- CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
- Department of Internal MedicineMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Carla J.H. van der Kallen
- CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
- Department of Internal MedicineMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Ronald M.A. Henry
- CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
- Department of Internal MedicineMaastricht University Medical Center+MaastrichtThe Netherlands
- Heart and Vascular CenterMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Martien C.J.M van Dongen
- CAPHRI Care and Public Health Research InstituteMaastricht UniversityMaastrichtThe Netherlands
- Department of EpidemiologyMaastricht UniversityMaastrichtThe Netherlands
| | - Simone J.P.M. Eussen
- CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
- NUTRIM School for Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands
| | - Hans. H.C.M. Savelberg
- NUTRIM School for Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands
- Department of Human Movement SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Julianne D. van der Berg
- CAPHRI Care and Public Health Research InstituteMaastricht UniversityMaastrichtThe Netherlands
- Department of Social MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Nicolaas C. Schaper
- CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
- Department of Internal MedicineMaastricht University Medical Center+MaastrichtThe Netherlands
- CAPHRI Care and Public Health Research InstituteMaastricht UniversityMaastrichtThe Netherlands
| | - Miranda T. Schram
- CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
- Department of Internal MedicineMaastricht University Medical Center+MaastrichtThe Netherlands
- Heart and Vascular CenterMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Coen D.A. Stehouwer
- CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
- Department of Internal MedicineMaastricht University Medical Center+MaastrichtThe Netherlands
| |
Collapse
|
46
|
Cerebral and peripheral vascular differences between pre- and postmenopausal women. ACTA ACUST UNITED AC 2020; 27:170-182. [DOI: 10.1097/gme.0000000000001442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Engelland RE, Hemingway HW, Tomasco OG, Olivencia-Yurvati AH, Romero SA. Acute lower leg hot water immersion protects macrovascular dilator function following ischaemia-reperfusion injury in humans. Exp Physiol 2019; 105:302-311. [PMID: 31707732 DOI: 10.1113/ep088154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS • What is the central question of this study? What is the effect of lower leg hot water immersion on vascular ischaemia-reperfusion injury induced in the arm of young healthy humans? • What is the main finding and its importance? Lower leg hot water immersion successfully protects against vascular ischaemia-reperfusion injury in humans. This raises the possibility that targeted heating of the lower legs may be an alternative therapeutic approach to whole-body heating that is equally efficacious at protecting against vascular ischaemia-reperfusion injury. ABSTRACT Reperfusion that follows a period of ischaemia paradoxically reduces vasodilator function in humans and contributes to the tissue damage associated with an ischaemic event. Acute whole-body hot water immersion protects against vascular ischaemia-reperfusion (I-R) injury in young healthy humans. However, the effect of acute lower leg heating on I-R injury is unclear. Therefore, the purpose of this study was to test the hypothesis that, compared with thermoneutral control immersion, acute lower leg hot water immersion would prevent the decrease in macro- and microvascular dilator functions following I-R injury in young healthy humans. Ten young healthy subjects (5 female) immersed their lower legs into a circulated water bath for 60 min under two randomized conditions: (1) thermoneutral control immersion (∼33°C) and (2) hot water immersion (∼42°C). Macrovascular (brachial artery flow-mediated dilatation) and microvascular (forearm reactive hyperaemia) dilator functions were assessed using Doppler ultrasound at three time points: (1) pre-immersion, (2) 60 min post-immersion, and (3) post-I/R (20 min of arm ischaemia followed by 20 min of reperfusion). Ischaemia-reperfusion injury reduced macrovascular dilator function following control immersion (pre-immersion 6.0 ± 2.1% vs. post-I/R 3.6 ± 2.1%; P < 0.05), but was well-maintained with prior hot water immersion (pre-immersion 5.8 ± 2.1% vs. post-I/R 5.3 ± 2.1%; P = 0.8). Microvascular dilator function did not differ between conditions or across time. Taken together, acute lower leg hot water immersion prevents the decrease in macrovascular dilator function that occurs following I-R injury in young healthy humans.
Collapse
Affiliation(s)
- Rachel E Engelland
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Holden W Hemingway
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Olivia G Tomasco
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Albert H Olivencia-Yurvati
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA.,Department of Surgery, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Steven A Romero
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
48
|
Hao Y, Zhang L, Zhang Z, Chen L, He N, Zhu S. Tai Chi exercise and functional electrical stimulation of lower limb muscles for rehabilitation in older adults with chronic systolic heart failure: a non-randomized clinical trial. Braz J Med Biol Res 2019; 52:e8786. [PMID: 31778439 PMCID: PMC6886363 DOI: 10.1590/1414-431x20198786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/12/2019] [Indexed: 12/28/2022] Open
Abstract
Exercise-based training decreases hospitalizations in heart failure patients but such patients have exercise intolerance. The objectives of the study were to evaluate the effect of 12 weeks of Tai Chi exercise and lower limb muscles' functional electrical stimulation in older chronic heart failure adults. A total of 1,084 older adults with chronic systolic heart failure were included in a non-randomized clinical trial (n=271 per group). The control group did not receive any kind of intervention, one group received functional electrical stimulation of lower limb muscles (FES group), another group practiced Tai Chi exercise (TCE group), and another received functional electrical stimulation of lower limb muscles and practiced Tai Chi exercise (FES & TCE group). Quality of life and cardiorespiratory functions of all patients were evaluated. Compared to the control group, only FES group had increased Kansas City Cardiomyopathy Questionnaire (KCCQ) score (P<0.0001, q=9.06), only the TCE group had decreased heart rate (P<0.0001, q=5.72), and decreased peak oxygen consumption was reported in the TCE group (P<0.0001, q=9.15) and FES & TCE group (P<0.0001, q=10.69). FES of lower limb muscles and Tai Chi exercise can recover the quality of life and cardiorespiratory functions of older chronic heart failure adults (trial registration: Research Registry 4474, January 1, 2015).
Collapse
Affiliation(s)
- Yi Hao
- Department of Cardiac Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Long Zhang
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zhenhua Zhang
- Department of Cardiac Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Lin Chen
- Department of Cardiac Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ning He
- Department of Cardiac Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Shuai Zhu
- Department of Cardiac Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
49
|
O’Brien MW, Johns JA, Williams TD, Kimmerly DS. Sex does not influence impairments in popliteal endothelial-dependent vasodilator or vasoconstrictor responses following prolonged sitting. J Appl Physiol (1985) 2019; 127:679-687. [DOI: 10.1152/japplphysiol.00887.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An acute bout of prolonged sitting (PS) impairs the popliteal artery flow-mediated dilation (FMD) response. Despite equivocal reductions in mean shear rate, young women demonstrate an attenuated decline in popliteal FMD versus young men. However, it is uncertain whether popliteal endothelial-dependent vasoconstrictor responses [low-flow-mediated constriction (L-FMC)] are similarly affected by PS and/or whether sex differences exist. We tested the hypothesis that women would have attenuated reductions in both popliteal FMD and L-FMC responses following an acute bout of PS. Popliteal FMD and L-FMC responses were assessed via duplex ultrasonography before and after a 3-h bout of PS. These responses were then compared between 10 men (24 ± 2 yr) and 10 women (23 ± 2 yr) with similar ( P > 0.13) levels of objectively measured habitual physical activity (via PiezoRx) and sedentary time (via activPAL). At baseline, men and women exhibited similar ( P > 0.46) popliteal FMD (4.8 ± 1.2 vs. 4.5 ± 0.6%) and L-FMC (–1.7 ± 1.0 vs. –1.9 ± 0.9%) responses. Both sexes experienced identical (group: P > 0.76; time: P < 0.001) PS-induced impairments in popliteal FMD (–2.8 ± 1.4 vs. –2.6 ± 0.9%) and L-FMC (1.3 ± 0.7% vs. 1.4 ± 0.7%). In young adults, sex did not influence the negative PS-induced FMD, L-FMC, or microvascular responses in the lower limb. As such, our findings suggest that young men and women are similarly susceptible to the acute negative vascular effects of PS. Future studies should extend these findings to older, less physically active adults and/or patients with vascular disease. NEW & NOTEWORTHY We compared changes in popliteal artery endothelial function to a single 3-h bout of sitting between young men and women. Both groups exhibited similar endothelial-dependent vasodilation (i.e., flow-mediated dilation) and endothelial-dependent vasoconstrictor responses (i.e., low-flow-mediated constriction) at baseline and equivocal impairments in these measures of endothelial function following prolonged sitting. These findings demonstrate that acute impairments in conduit artery endothelial health associated with uninterrupted sitting are not influenced by sex in young, healthy adults.
Collapse
Affiliation(s)
- Myles W. O’Brien
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jarrett A. Johns
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tanner D. Williams
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Derek S. Kimmerly
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
50
|
O’Brien MW, Johns JA, Robinson SA, Mekary S, Kimmerly DS. Relationship between brachial and popliteal artery low-flow-mediated constriction in older adults: impact of aerobic fitness on vascular endothelial function. J Appl Physiol (1985) 2019; 127:134-142. [DOI: 10.1152/japplphysiol.00092.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We previously observed that brachial artery (BA) low-flow-mediated constriction (L-FMC) is inversely related to aerobic fitness (i.e., V̇o2peak) in older adults (OA). However, it is unclear if an L-FMC response is elicited in the popliteal artery (POP) or if a similar inverse relationship with aerobic fitness exists. Considering that the POP experiences larger shear stress fluctuations during sedentary behaviors and traditional lower limb modes of aerobic exercise, we tested the hypotheses that 1) heterogeneous L-FMC responses exist between the BA versus POP of OA, and 2) that aerobic fitness will be inversely related to POP L-FMC. L-FMC was assessed in 47 healthy OA (30 women, 67 ± 5 yr) using duplex ultrasonography and quantified as the percent decrease in diameter (from baseline) during the last 30 s of a 5-min distal cuff occlusion period. When allometrically scaled to baseline diameter, the BA exhibited a greater L-FMC response than the POP (–1.3 ± 1.6 vs. –0.4 ± 1.6%; P = 0.03). Furthermore, L-FMC responses in the BA and POP were not correlated ( r = 0.22; P = 0.14). V̇o2peak was strongly correlated to POP L-FMC ( r = –0.73; P < 0.001). The heterogeneous BA versus POP L-FMC data indicate that upper limb L-FMC responses do not represent a systemic measure of endothelial-dependent vasoconstrictor capacity in OA. The strong association between V̇o2peak and POP L-FMC suggests that localized shear stress patterns, perhaps induced by lower limb dominant modes of aerobic exercise, may result in greater vasoconstrictor responsiveness in healthy OA. NEW & NOTEWORTHY We compared low-flow-mediated constriction responses between the brachial and popliteal arteries of healthy older adults. Vasoconstrictor responses were not correlated between arteries. A strong relationship between aerobic fitness and low-flow-mediated vasoconstriction was observed in the popliteal artery. These findings suggest that brachial vasoconstrictor responsiveness is not reflective of the popliteal artery, which is exposed to larger shear stress fluctuations during bouts of sedentary behavior and traditional lower limb modes of exercise.
Collapse
Affiliation(s)
- Myles W. O’Brien
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jarrett A. Johns
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Susan A. Robinson
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Said Mekary
- School of Kinesiology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Derek S. Kimmerly
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|