1
|
Danilenko AV, Volov AN, Volov NA, Platonova YB, Savilov SV. Design, synthesis and biological evaluation of novel indole-3-carboxylic acid derivatives with antihypertensive activity. Bioorg Med Chem Lett 2023; 90:129349. [PMID: 37236375 DOI: 10.1016/j.bmcl.2023.129349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Molecular design, synthesis, in vitro and in vivo studies of novel derivatives of indole-3-carboxylic acid - new series of angiotensin II receptor 1 antagonists is presented. Radioligand binding studies using [125I]-angiotensin II displayed that new derivatives of indole-3-carboxylic acid have a high nanomolar affinity for the angiotensin II receptor (AT1 subtype) on a par with the known pharmaceuticals such as losartan. Biological studies of synthesized compounds in spontaneously hypertensive rats have demonstrated that compounds can lower blood pressure when administered orally. Maximum the decrease in blood pressure was 48 mm Hg with oral administration of 10 mg/kg and antihypertensive effect was observed for 24 hours, which is superior to losartan.
Collapse
Affiliation(s)
- Andrey V Danilenko
- Department of Chemistry, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119991, Russian Federation
| | - Alexander N Volov
- Department of Chemistry, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119991, Russian Federation.
| | - Nikolai A Volov
- Pirogov Russian National Research Medical University, Ostrovitianov str. 1, Moscow, 117997, Russian Federation
| | - Yana B Platonova
- Department of Chemistry, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119991, Russian Federation
| | - Serguei V Savilov
- Department of Chemistry, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119991, Russian Federation; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prospect, Moscow, 119071, Russian Federation
| |
Collapse
|
2
|
Bošković M, Živković M, Koricanac G, Tepavcevic S, Zec M, Debeljak-Martacic J, Stanković A. Walnut supplementation after fructose-rich diet is associated with a beneficial fatty acid ratio and increased ACE2 expression in the rat heart. Front Physiol 2022; 13:942459. [PMID: 36213224 PMCID: PMC9533082 DOI: 10.3389/fphys.2022.942459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Increased fructose consumption has been linked with chronic inflammation and metabolic syndrome (MetS). Activation of the renin-angiotensin system (RAS) and NF-κB have been detected in MetS. Walnuts are a rich source of polyunsaturated omega-3 fatty acids (n-3 PUFA) that were suggested to exert anti-inflammatory effects related to cardio-metabolic health. We hypothesized that walnut supplementation has the capacity to revert unfavorable fructose-rich diet (FRD)-induced activation of cardiac RAS and NF-κB in male rats. Due to the lack of similar studies, we investigated the effects of walnut supplementation (6 weeks) on the expression of four RAS molecules (ACE, ACE2, AT1R, and AT2R) and NF-κB in rat heart after FRD (10% w/v, 9 weeks). In addition, we followed the changes in the n-6/n-3 PUFA ratio in the total pool of heart lipids after both treatments to elucidate the walnut effects on fatty acids in the heart. 36 animals (9 per group) participated in the experiment. FRD significantly increased the ACE protein level in the heart (p < 0.001). Walnut supplementation significantly increased the ACE2 protein level in the heart of FRD (p < 0.001). In addition, walnut supplementation showed a significant main effect on the arachidonic acid/eicosapentaenoic acid ratio (p = 0.004). Walnut supplementation significantly reduced this ratio, in comparison with both, the control group (C vs. FW, p < 0.05) and the FRD group (F vs. FW, p < 0.05). However, walnut treatment failed to revert the significant effect of fructose (p < 0.001) on the elevation of NF-κB protein level. Our results suggest a beneficial effect of walnut supplementation on ACE2 protein level and n-6/n-3 PUFA level in the heart of the animal model of MetS. Such results highlight the approach of omega-3-rich walnut supplementation in the stimulation of endogenous production of favorable molecules in the heart which could be an affordable nutritional treatment formaintenance of cardio-metabolic health.
Collapse
Affiliation(s)
- Maja Bošković
- Laboratory for Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja Živković
- Laboratory for Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Goran Koricanac
- Laboratory for Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Snezana Tepavcevic
- Laboratory for Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Manja Zec
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States
| | - Jasmina Debeljak-Martacic
- Centre of Excellence in Nutrition and Metabolism Research, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stanković
- Laboratory for Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
- *Correspondence: Aleksandra Stanković,
| |
Collapse
|
3
|
Timaru-Kast R, Garcia Bardon A, Luh C, Coronel-Castello SP, Songarj P, Griemert EV, Krämer TJ, Sebastiani A, Steckelings UM, Thal SC. AT2 activation does not influence brain damage in the early phase after experimental traumatic brain injury in male mice. Sci Rep 2022; 12:14280. [PMID: 35995819 PMCID: PMC9395341 DOI: 10.1038/s41598-022-18338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Antagonism of the angiotensin II type 1 receptor (AT1) improves neurological function and reduces brain damage after experimental traumatic brain injury (TBI), which may be partly a result of enhanced indirect angiotensin II type 2 receptor (AT2) stimulation. AT2 stimulation was demonstrated to be neuroprotective via anti-inflammatory, vasodilatory, and neuroregenerative mechanisms in experimental cerebral pathology models. We recently demonstrated an upregulation of AT2 after TBI suggesting a protective mechanism. The present study investigated the effect of post-traumatic (5 days after TBI) AT2 activation via high and low doses of a selective AT2 agonist, compound 21 (C21), compared to vehicle-treated controls. No differences in the extent of the TBI-induced lesions were found between both doses of C21 and the controls. We then tested AT2-knockdown animals for secondary brain damage after experimental TBI. Lesion volume and neurological outcomes in AT2-deficient mice were similar to those in wild-type control mice at both 24 h and 5 days post-trauma. Thus, in contrast to AT1 antagonism, AT2 modulation does not influence the initial pathophysiological mechanisms of TBI in the first 5 days after the insult, indicating that AT2 plays only a minor role in the early phase following trauma-induced brain damage.
Collapse
Affiliation(s)
- Ralph Timaru-Kast
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Andreas Garcia Bardon
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Clara Luh
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Shila P Coronel-Castello
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany.,Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Phuriphong Songarj
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany.,Department of Anesthesiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Prannok Road Bangkoknoi, Bangkok, 10700, Thailand
| | - Eva-Verena Griemert
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tobias J Krämer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany.,Faculty of Health, University of Witten/Herdecke, Witten, Germany
| | - Anne Sebastiani
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany.,Department of Anesthesiology, HELIOS University Hospital Wuppertal University of Witten/Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany
| | - Ulrike Muscha Steckelings
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany.,Department of Anesthesiology, HELIOS University Hospital Wuppertal University of Witten/Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany
| |
Collapse
|
4
|
Kilmister EJ, Tan ST. Insights Into Vascular Anomalies, Cancer, and Fibroproliferative Conditions: The Role of Stem Cells and the Renin-Angiotensin System. Front Surg 2022; 9:868187. [PMID: 35574555 PMCID: PMC9091963 DOI: 10.3389/fsurg.2022.868187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Cells exhibiting embryonic stem cell (ESC) characteristics have been demonstrated in vascular anomalies (VAs), cancer, and fibroproliferative conditions, which are commonly managed by plastic surgeons and remain largely unsolved. The efficacy of the mTOR inhibitor sirolimus, and targeted therapies that block the Ras/BRAF/MEK/ERK1/2 and PI3KCA/AKT/mTOR pathways in many types of cancer and VAs, further supports the critical role of ESC-like cells in the pathogenesis of these conditions. ESC-like cells in VAs, cancer, and fibroproliferative conditions express components of the renin-angiotensin system (RAS) – a homeostatic endocrine signaling cascade that regulates cells with ESC characteristics. ESC-like cells are influenced by the Ras/BRAF/MEK/ERK1/2 and PI3KCA/AKT/mTOR pathways, which directly regulate cellular proliferation and stemness, and interact with the RAS at multiple points. Gain-of-function mutations affecting these pathways have been identified in many types of cancer and VAs, that have been treated with targeted therapies with some success. In cancer, the RAS promotes tumor progression, treatment resistance, recurrence, and metastasis. The RAS modulates cellular invasion, migration, proliferation, and angiogenesis. It also indirectly regulates ESC-like cells via its direct influence on the tissue microenvironment and by its interaction with the immune system. In vitro studies show that RAS inhibition suppresses the hallmarks of cancer in different experimental models. Numerous epidemiological studies show a reduced incidence of cancer and improved survival outcomes in patients taking RAS inhibitors, although some studies have shown no such effect. The discovery of ESC-like cells that express RAS components in infantile hemangioma (IH) underscores the paradigm shift in the understanding of its programmed biologic behavior and accelerated involution induced by β-blockers and angiotensin-converting enzyme inhibitors. The findings of SOX18 inhibition by R-propranolol suggests the possibility of targeting ESC-like cells in IH without β-adrenergic blockade, and its associated side effects. This article provides an overview of the current knowledge of ESC-like cells and the RAS in VAs, cancer, and fibroproliferative conditions. It also highlights new lines of research and potential novel therapeutic approaches for these unsolved problems in plastic surgery, by targeting the ESC-like cells through manipulation of the RAS, its bypass loops and converging signaling pathways using existing low-cost, commonly available, and safe oral medications.
Collapse
Affiliation(s)
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Swee T. Tan
| |
Collapse
|
5
|
Tsilosani A, Gao C, Zhang W. Aldosterone-Regulated Sodium Transport and Blood Pressure. Front Physiol 2022; 13:770375. [PMID: 35197862 PMCID: PMC8859437 DOI: 10.3389/fphys.2022.770375] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aldosterone is a major mineralocorticoid steroid hormone secreted by glomerulosa cells in the adrenal cortex. It regulates a variety of physiological responses including those to oxidative stress, inflammation, fluid disruption, and abnormal blood pressure through its actions on various tissues including the kidney, heart, and the central nervous system. Aldosterone synthesis is primarily regulated by angiotensin II, K+ concentration, and adrenocorticotrophic hormone. Elevated serum aldosterone levels increase blood pressure largely by increasing Na+ re-absorption in the kidney through regulating transcription and activity of the epithelial sodium channel (ENaC). This review focuses on the signaling pathways involved in aldosterone synthesis and its effects on Na+ reabsorption through ENaC.
Collapse
Affiliation(s)
- Akaki Tsilosani
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Chao Gao
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Wenzheng Zhang
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
6
|
González-Blázquez R, Alcalá M, Cárdenas-Rebollo JM, Viana M, Steckelings UM, Boisvert WA, Unger T, Fernández-Alfonso MS, Somoza B, Gil-Ortega M. AT2R stimulation with C21 prevents arterial stiffening and endothelial dysfunction in the abdominal aorta from mice fed a high-fat diet. Clin Sci (Lond) 2021; 135:2763-2780. [PMID: 34854902 DOI: 10.1042/cs20210971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022]
Abstract
The aim of the present study was to evaluate the effect of Compound 21 (C21), a selective AT2R agonist, on the prevention of endothelial dysfunction, extracellular matrix (ECM) remodeling and arterial stiffness associated with diet-induced obesity (DIO). Five-week-old male C57BL/6J mice were fed a standard (Chow) or high-fat diet (HF) for 6 weeks. Half of the animals of each group were simultaneously treated with C21 (1 mg/kg/day, in the drinking water), generating four groups: Chow C, Chow C21, HF C, and HF C21. Vascular function and mechanical properties were determined in the abdominal aorta. To evaluate ECM remodeling, collagen deposition and TGF-β1 concentrations were determined in the abdominal aorta and the activity of metalloproteinases (MMP) 2 and 9 was analyzed in the plasma. Abdominal aortas from HF C mice showed endothelial dysfunction as well as enhanced contractile but reduced relaxant responses to Ang II. This effect was abrogated with C21 treatment by preserving NO availability. A left-shift in the tension-stretch relationship, paralleled by an augmented β-index (marker of intrinsic arterial stiffness), and enhanced collagen deposition and MMP-2/-9 activities were also detected in HF mice. However, when treated with C21, HF mice exhibited lower TGF-β1 levels in abdominal aortas together with reduced MMP activities and collagen deposition compared with HF C mice. In conclusion, these data demonstrate that AT2R stimulation by C21 in obesity preserves NO availability and prevents unhealthy vascular remodeling, thus protecting the abdominal aorta in HF mice against the development of endothelial dysfunction, ECM remodeling and arterial stiffness.
Collapse
Affiliation(s)
- Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Martín Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28925, Madrid, Spain
| | - José Miguel Cárdenas-Rebollo
- Departamento de Matemática Aplicada y Estadística. Facultad de Ciencias Económicas y Empresariales. Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Marta Viana
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28925, Madrid, Spain
| | - Ulrike Muscha Steckelings
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB311, Honolulu, HI 96813, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., Kazan 420008, Russia
| | - Thomas Unger
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar, Unidad de Cartografía Cerebral, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| |
Collapse
|
7
|
González-Blázquez R, Alcalá M, Fernández-Alfonso MS, Steckelings UM, Lorenzo MP, Viana M, Boisvert WA, Unger T, Gil-Ortega M, Somoza B. C21 preserves endothelial function in the thoracic aorta from DIO mice: role for AT2, Mas and B2 receptors. Clin Sci (Lond) 2021; 135:1145-1163. [PMID: 33899912 DOI: 10.1042/cs20210049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Compound 21 (C21), a selective agonist of angiotensin II type 2 receptor (AT2R), induces vasodilation through NO release. Since AT2R seems to be overexpressed in obesity, we hypothesize that C21 prevents the development of obesity-related vascular alterations. The main goal of the present study was to assess the effect of C21 on thoracic aorta endothelial function in a model of diet-induced obesity (DIO) and to elucidate the potential cross-talk among AT2R, Mas receptor (MasR) and/or bradykinin type 2 receptor (B2R) in this response. Five-week-old male C57BL6J mice were fed a standard (CHOW) or a high-fat diet (HF) for 6 weeks and treated daily with C21 (1 mg/kg p.o) or vehicle, generating four groups: CHOW-C, CHOW-C21, HF-C, HF-C21. Vascular reactivity experiments were performed in thoracic aorta rings. Human endothelial cells (HECs; EA.hy926) were used to elucidate the signaling pathways, both at receptor and intracellular levels. Arteries from HF mice exhibited increased contractions to Ang II than CHOW mice, effect that was prevented by C21. PD123177, A779 and HOE-140 (AT2R, Mas and B2R antagonists) significantly enhanced Ang II-induced contractions in CHOW but not in HF-C rings, suggesting a lack of functionality of those receptors in obesity. C21 prevented those alterations and favored the formation of AT2R/MasR and MasR/B2R heterodimers. HF mice also exhibited impaired relaxations to acetylcholine (ACh) due to a reduced NO availability. C21 preserved NO release through PKA/p-eNOS and AKT/p-eNOS signaling pathways. In conclusion, C21 favors the interaction among AT2R, MasR and B2R and prevents the development of obesity-induced endothelial dysfunction by stimulating NO release through PKA/p-eNOS and AKT/p-eNOS signaling pathways.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Diet, High-Fat
- Drug Evaluation, Preclinical
- Endothelium, Vascular/drug effects
- Human Umbilical Vein Endothelial Cells
- Humans
- Imidazoles/pharmacology
- Imidazoles/therapeutic use
- Male
- Mice, Inbred C57BL
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Obesity/complications
- Obesity/metabolism
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor Cross-Talk
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/metabolism
- Receptor, Bradykinin B2/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Renin-Angiotensin System/drug effects
- Signal Transduction/drug effects
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Thiophenes/pharmacology
- Thiophenes/therapeutic use
- Vascular Diseases/etiology
- Vascular Diseases/metabolism
- Vascular Diseases/prevention & control
- Mice
Collapse
Affiliation(s)
- Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid 28925, Spain
| | - Martín Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, Madrid 28925, Spain
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar, Unidad de Cartografía Cerebral, Universidad Complutense de Madrid, Madrid 28040, Spain
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Ulrike Muscha Steckelings
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - M Paz Lorenzo
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, Madrid 28925, Spain
| | - Marta Viana
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, Madrid 28925, Spain
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB311, Honolulu, HI 96813, U.S.A
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., Kazan 420008, Russia
| | - Thomas Unger
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid 28925, Spain
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid 28925, Spain
| |
Collapse
|
8
|
Wannberg J, Gising J, Lindman J, Salander J, Gutiérrez-de-Terán H, Ablahad H, Hamid S, Grönbladh A, Spizzo I, Gaspari TA, Widdop RE, Hallberg A, Backlund M, Leśniak A, Hallberg M, Larhed M. N-(Methyloxycarbonyl)thiophene sulfonamides as high affinity AT2 receptor ligands. Bioorg Med Chem 2020; 29:115859. [PMID: 33309749 DOI: 10.1016/j.bmc.2020.115859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/14/2022]
Abstract
A series of meta-substituted acetophenone derivatives, encompassing N-(alkyloxycarbonyl)thiophene sulfonamide fragments have been synthesized. Several selective AT2 receptor ligands were identified, among those a tert-butylimidazole derivative (20) with a Ki of 9.3 nM, that demonstrates a high stability in human liver microsomes (t½ = 62 min) and in human hepatocytes (t½ = 194 min). This methyloxycarbonylthiophene sulfonamide is a 20-fold more potent binder to the AT2 receptor and is considerably more stable in human liver microsomes, than a previously reported and broadly studied structurally related AT2R prototype antagonist 3 (C38). Ligand 20 acts as an AT2R agonist and caused an AT2R mediated concentration-dependent vasorelaxation of pre-contracted mouse aorta. Furthermore, in contrast to imidazole derivative C38, the tert-butylimidazole derivative 20 is a poor inhibitor of CYP3A4, CYP2D6 and CYP2C9. It is demonstrated herein that smaller alkyloxycarbonyl groups make the ligands in this series of AT2R selective compounds less prone to degradation and that a high AT2 receptor affinity can be retained after truncation of the alkyloxycarbonyl group. Binding modes of the most potent AT2R ligands were explored by docking calculations combined with molecular dynamics simulations.
Collapse
Affiliation(s)
- Johan Wannberg
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | - Johan Gising
- The Beijer Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC, Box 591, 751 24 Uppsala, Sweden
| | - Jens Lindman
- The Beijer Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC, Box 591, 751 24 Uppsala, Sweden
| | - Jessica Salander
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Hanin Ablahad
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, BMC, Box 591, 751 24 Uppsala, Sweden; Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Selin Hamid
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, BMC, Box 591, 751 24 Uppsala, Sweden; Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Alfhild Grönbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, BMC, Box 591, 751 24 Uppsala, Sweden
| | - Iresha Spizzo
- Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Tracey A Gaspari
- Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Robert E Widdop
- Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Anders Hallberg
- Department of Medicinal Chemistry, Uppsala University, BMC, Box 574, 751 23 Uppsala, Sweden
| | - Maria Backlund
- Department of Pharmacy, Uppsala University, Uppsala, Sweden; Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Science for Life Laboratory, Uppsala, Sweden
| | - Anna Leśniak
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1B Str., 02-097 Warsaw, Poland
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, BMC, Box 591, 751 24 Uppsala, Sweden
| | - Mats Larhed
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden; The Beijer Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC, Box 591, 751 24 Uppsala, Sweden.
| |
Collapse
|
9
|
Patel SN, Fatima N, Ali R, Hussain T. Emerging Role of Angiotensin AT2 Receptor in Anti-Inflammation: An Update. Curr Pharm Des 2020; 26:492-500. [PMID: 31939729 DOI: 10.2174/1381612826666200115092015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022]
Abstract
The hyperactive RAS and inflammation are closely associated. The angiotensin-II/AT1R axis of the RAS has been explored extensively for its role in inflammation and a plethora of pathological conditions. Understanding the role of AT2R in inflammation is an emerging area of research. The AT2R is expressed on a variety of immune and non-immune cells, which upon activation triggers the release of a host of cytokines and has multiple effects that coalesce to anti-inflammation and prevents maladaptive repair. The anti-inflammatory outcomes of AT2R activation are linked to its well-established signaling pathways involving formation of nitric oxide and activation of phosphatases. Collectively, these effects promote cell survival and tissue function. The consideration of AT2R as a therapeutic target requires further investigations.
Collapse
Affiliation(s)
- Sanket N Patel
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Naureen Fatima
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Riyasat Ali
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Tahir Hussain
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| |
Collapse
|
10
|
Ahmed HA, Ishrat T. The Brain AT2R-a Potential Target for Therapy in Alzheimer's Disease and Vascular Cognitive Impairment: a Comprehensive Review of Clinical and Experimental Therapeutics. Mol Neurobiol 2020; 57:3458-3484. [PMID: 32533467 PMCID: PMC8109287 DOI: 10.1007/s12035-020-01964-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
Dementia is a potentially avertable tragedy, currently considered among the top 10 greatest global health challenges of the twenty-first century. Dementia not only robs individuals of their dignity and independence, it also has a ripple effect that starts with the inflicted individual's family and projects to the society as a whole. The constantly growing number of cases, along with the lack of effective treatments and socioeconomic impact, poses a serious threat to the sustainability of our health care system. Hence, there is a worldwide effort to identify new targets for the treatment of Alzheimer's disease (AD), the leading cause of dementia. Due to its multifactorial etiology and the recent clinical failure of several novel amyloid-β (Aβ) targeting therapies, a comprehensive "multitarget" approach may be most appropriate for managing this condition. Interestingly, renin angiotensin system (RAS) modulators were shown to positively impact all the factors involved in the pathophysiology of dementia including vascular dysfunction, Aβ accumulation, and associated cholinergic deficiency, in addition to tau hyperphosphorylation and insulin derangements. Furthermore, for many of these drugs, the preclinical evidence is also supported by epidemiological data and/or preliminary clinical trials. The purpose of this review is to provide a comprehensive update on the major causes of dementia including the risk factors, current diagnostic criteria, pathophysiology, and contemporary treatment strategies. Moreover, we highlight the angiotensin II receptor type 2 (AT2R) as an effective drug target and present ample evidence supporting its potential role and clinical applications in cognitive impairment to encourage further investigation in the clinical setting.
Collapse
Affiliation(s)
- Heba A Ahmed
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA.
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
11
|
Vasile S, Hallberg A, Sallander J, Hallberg M, Åqvist J, Gutiérrez-de-Terán H. Evolution of Angiotensin Peptides and Peptidomimetics as Angiotensin II Receptor Type 2 (AT2) Receptor Agonists. Biomolecules 2020; 10:E649. [PMID: 32340100 PMCID: PMC7226584 DOI: 10.3390/biom10040649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/01/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
Angiotensin II receptor type 1 and 2 (AT1R and AT2R) are two G-protein coupled receptors that mediate most biological functions of the octapeptide Angiotensin II (Ang II). AT2R is upregulated upon tissue damage and its activation by selective AT2R agonists has become a promising approach in the search for new classes of pharmaceutical agents. We herein analyzed the chemical evolution of AT2R agonists starting from octapeptides, through shorter peptides and peptidomimetics to the first drug-like AT2R-selective agonist, C21, which is in Phase II clinical trials and aimed for idiopathic pulmonary fibrosis. Based on the recent crystal structures of AT1R and AT2R in complex with sarile, we identified a common binding model for a series of 11 selected AT2R agonists, consisting of peptides and peptidomimetics of different length, affinity towards AT2R and selectivity versus AT1R. Subsequent molecular dynamics simulations and free energy perturbation (FEP) calculations of binding affinities allowed the identification of the bioactive conformation and common pharmacophoric points, responsible for the key interactions with the receptor, which are maintained by the drug-like agonists. The results of this study should be helpful and facilitate the search for improved and even more potent AT2R-selective drug-like agonists.
Collapse
Affiliation(s)
- Silvana Vasile
- Sweden and Science for Life Laboratory, Department of Cell and Molecular Biology, BMC (H.G.T.), Biomedical Centre (BMC), Uppsala University, P.O. BOX 596, SE-751 24 Uppsala, Sweden; (S.V.); (J.S.); (J.Å.)
| | - Anders Hallberg
- Department of Medicinal Chemistry, Division of Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden;
| | - Jessica Sallander
- Sweden and Science for Life Laboratory, Department of Cell and Molecular Biology, BMC (H.G.T.), Biomedical Centre (BMC), Uppsala University, P.O. BOX 596, SE-751 24 Uppsala, Sweden; (S.V.); (J.S.); (J.Å.)
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, BMC, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden;
| | - Johan Åqvist
- Sweden and Science for Life Laboratory, Department of Cell and Molecular Biology, BMC (H.G.T.), Biomedical Centre (BMC), Uppsala University, P.O. BOX 596, SE-751 24 Uppsala, Sweden; (S.V.); (J.S.); (J.Å.)
| | - Hugo Gutiérrez-de-Terán
- Sweden and Science for Life Laboratory, Department of Cell and Molecular Biology, BMC (H.G.T.), Biomedical Centre (BMC), Uppsala University, P.O. BOX 596, SE-751 24 Uppsala, Sweden; (S.V.); (J.S.); (J.Å.)
| |
Collapse
|
12
|
Abstract
The active hormone of the renin-angiotensin system (RAS), angiotensin II (Ang II), is involved in several human diseases, driving the development and clinical use of several therapeutic drugs, mostly angiotensin I converting enzyme (ACE) inhibitors and angiotensin receptor type I (AT1R) antagonists. However, angiotensin peptides can also bind to receptors different from AT1R, in particular, angiotensin receptor type II (AT2R), resulting in biological and physiological effects different, and sometimes antagonistic, of their binding to AT1R. In the present Perspective, the components of the RAS and the therapeutic tools developed to control it will be reviewed. In particular, the characteristics of AT2R and tools to modulate its functions will be discussed. Agonists or antagonists to AT2R are potential therapeutics in cardiovascular diseases, for agonists, and in the control of pain, for antagonists, respectively. However, controlling their binding properties and their targeting to the target tissues must be optimized.
Collapse
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Chemin des Boveresses 155, CH1011 Lausanne, Switzerland
| |
Collapse
|
13
|
Direct stimulation of angiotensin II type 2 receptor reduces nitric oxide production in lipopolysaccharide treated mouse macrophages. Eur J Pharmacol 2020; 868:172855. [DOI: 10.1016/j.ejphar.2019.172855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 11/23/2022]
|
14
|
Quiroga DT, Miquet JG, Gonzalez L, Sotelo AI, Muñoz MC, Geraldes PM, Giani JF, Dominici FP. Mice lacking angiotensin type 2 receptor exhibit a sex-specific attenuation of insulin sensitivity. Mol Cell Endocrinol 2019; 498:110587. [PMID: 31539597 PMCID: PMC6903409 DOI: 10.1016/j.mce.2019.110587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/28/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022]
Abstract
The renin-angiotensin system modulates insulin action. Pharmacological stimulation of angiotensin type 2 receptor (AT2R) was shown to have beneficial metabolic effects in various animal models of insulin resistance and type 2 diabetes and also to increase insulin sensitivity in wild type mice. In this study we further explored the role of the AT2R on insulin action and glucose homeostasis by investigating the glycemic profile and in vivo insulin signaling status in insulin-target tissues from both male and female AT2R knockout (KO) mice. When compared to the respective wild-type (WT) group, glycemia and insulinemia was unaltered in AT2RKO mice regardless of sex. However, female AT2RKO mice displayed decreased insulin sensitivity compared to their WT littermates. This was accompanied by a compensatory increase in adiponectinemia and with a specific attenuation of the activity of main insulin signaling components (insulin receptor, Akt and ERK1/2) in adipose tissue with no apparent alterations in insulin signaling in either liver or skeletal muscle. These parameters remained unaltered in male AT2RKO mice as compared to male WT mice. Present data show that the AT2R has a physiological role in the conservation of insulin action in female but not in male mice. Our results suggest a sexual dimorphism in the control of insulin action and glucose homeostasis by the AT2R and reinforce the notion that pharmacological modulation of the balance between the AT1R and AT2R receptor could be important for treatment of metabolic syndrome and type 2 diabetes.
Collapse
Affiliation(s)
- Diego T Quiroga
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Johanna G Miquet
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Lorena Gonzalez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Ana I Sotelo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Marina C Muñoz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Pedro M Geraldes
- Research Center of the CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada; Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Fernando P Dominici
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
15
|
Garcia-Garrote M, Perez-Villalba A, Garrido-Gil P, Belenguer G, Parga JA, Perez-Sanchez F, Labandeira-Garcia JL, Fariñas I, Rodriguez-Pallares J. Interaction between Angiotensin Type 1, Type 2, and Mas Receptors to Regulate Adult Neurogenesis in the Brain Ventricular-Subventricular Zone. Cells 2019; 8:E1551. [PMID: 31801296 PMCID: PMC6952803 DOI: 10.3390/cells8121551] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 12/30/2022] Open
Abstract
The renin-angiotensin system (RAS), and particularly its angiotensin type-2 receptors (AT2), have been classically involved in processes of cell proliferation and maturation during development. However, the potential role of RAS in adult neurogenesis in the ventricular-subventricular zone (V-SVZ) and its aging-related alterations have not been investigated. In the present study, we analyzed the role of major RAS receptors on neurogenesis in the V-SVZ of adult mice and rats. In mice, we showed that the increase in proliferation of cells in this neurogenic niche was induced by activation of AT2 receptors but depended partially on the AT2-dependent antagonism of AT1 receptor expression, which restricted proliferation. Furthermore, we observed a functional dependence of AT2 receptor actions on Mas receptors. In rats, where the levels of the AT1 relative to those of AT2 receptor are much lower, pharmacological inhibition of the AT1 receptor alone was sufficient in increasing AT2 receptor levels and proliferation in the V-SVZ. Our data revealed that interactions between RAS receptors play a major role in the regulation of V-SVZ neurogenesis, particularly in proliferation, generation of neuroblasts, and migration to the olfactory bulb, both in young and aged brains, and suggest potential beneficial effects of RAS modulators on neurogenesis.
Collapse
MESH Headings
- Age Factors
- Angiotensin II/metabolism
- Animals
- Immunohistochemistry
- Lateral Ventricles/metabolism
- Male
- Mice
- Mice, Knockout
- Models, Biological
- Neural Stem Cells/metabolism
- Neurogenesis/genetics
- Protein Binding
- Rats
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
Collapse
Affiliation(s)
- Maria Garcia-Garrote
- Laboratorio de Neurobiología Celular y Molecular de la Enfermedad de Parkinson, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Dpto. Ciencias Morfolóxicas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Ana Perez-Villalba
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Faculty of Psychology, Universidad Católica de Valencia, Valencia, 46100 Burjassot, Spain
| | - Pablo Garrido-Gil
- Laboratorio de Neurobiología Celular y Molecular de la Enfermedad de Parkinson, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Dpto. Ciencias Morfolóxicas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - German Belenguer
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Juan A Parga
- Laboratorio de Neurobiología Celular y Molecular de la Enfermedad de Parkinson, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Dpto. Ciencias Morfolóxicas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Francisco Perez-Sanchez
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Jose Luis Labandeira-Garcia
- Laboratorio de Neurobiología Celular y Molecular de la Enfermedad de Parkinson, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Dpto. Ciencias Morfolóxicas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Isabel Fariñas
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Jannette Rodriguez-Pallares
- Laboratorio de Neurobiología Celular y Molecular de la Enfermedad de Parkinson, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Dpto. Ciencias Morfolóxicas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
16
|
ACE inhibitor suppresses cardiac remodeling after myocardial infarction by regulating dendritic cells and AT 2 receptor-mediated mechanism in mice. Biomed Pharmacother 2019; 114:108660. [PMID: 30974387 DOI: 10.1016/j.biopha.2019.108660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 01/10/2023] Open
Abstract
Dendritic cells (DCs) play a complex role in the progression of myocardial infarction (MI). The impact of angiotensin-converting enzyme (ACE) inhibitor therapy, partly via affecting DCs maturation and recruitment, was tested on a MI mouse model. Furthermore, the cardioprotective effects of ACEI were enhanced through attenuating migration of DCs from the spleen into peripheral circulation, thereby inhibiting DCs maturation and tissue inflammation. ACEI repress DCs immune inflammatory response through down-regulating DCs maturation surface markers and regulating inflammatory cytokines, which led to a higher survival rate, improved function and remodeling through decreased inflammatory response after MI. However, inhibition of AT2R activation, resulted in a reduction of ACEI effects on DCs. The potent anti-inflammatory effect of ACEI can partially be attributed to its impact on DCs through activation of AT2R, which may provide a new target mechanism for ACEI therapy after MI.
Collapse
|
17
|
Järve A, Todiras M, Kny M, Fischer FI, Kraemer JF, Wessel N, Plehm R, Fielitz J, Alenina N, Bader M. Angiotensin-(1-7) Receptor Mas in Hemodynamic and Thermoregulatory Dysfunction After High-Level Spinal Cord Injury in Mice: A Pilot Study. Front Physiol 2019; 9:1930. [PMID: 30687131 PMCID: PMC6336833 DOI: 10.3389/fphys.2018.01930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/21/2018] [Indexed: 01/12/2023] Open
Abstract
Spinal cord injury (SCI) above mid-thoracic levels leads to autonomic dysfunction affecting both the cardiovascular system and thermoregulation. The renin-angiotensin system (RAS) which is a potent regulator of blood pressure, including its novel beneficial arm with the receptor Mas could be an interesting target in post-SCI hemodynamics. To test the hypothesis that hemodynamics, activity and diurnal patterns of those are more affected in the Mas deficient mice post-SCI we used a mouse model of SCI with complete transection of spinal cord at thoracic level 4 (T4-Tx) and performed telemetric monitoring of blood pressure (BP) and heart rate (HR). Our data revealed that hypothermia deteriorated physiological BP and HR control. Preserving normothermia by keeping mice at 30°C prevented severe hypotension and bradycardia post-SCI. Moreover, it facilitated rapid return of diurnal regulation of BP, HR and activity in wild type (WT) mice. In contrast, although Mas deficient mice had comparable reacquisition of diurnal HR rhythm, they showed delayed recovery of diurnal rhythmicity in BP and significantly lower nocturnal activity. Exposing mice with T4-Tx (kept in temperature-controlled cages) to 23°C room temperature for one hour at different time-points post-SCI, demonstrated their inability to maintain core body temperature, Mas deficient mice being significantly more impaired than WT littermates. We conclude that Mas deficient mice were more resistant to acute hypotension, delayed nocturnal recovery, lower activity and more severely impaired thermoregulation. The ambient temperature had significant effect on hemodynamics and, thus it should be taken into account when assessing cardiovascular parameters post-SCI in mice.
Collapse
Affiliation(s)
- Anne Järve
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Partner Site Berlin, German Centre for Cardiovascular Research, Berlin, Germany
| | - Mihail Todiras
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Melanie Kny
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Falk I Fischer
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jan F Kraemer
- Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Niels Wessel
- Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ralph Plehm
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jens Fielitz
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Partner Site Greifswald, German Centre for Cardiovascular Research, Greifswald, Germany.,Klinik und Poliklinik für Innere Medizin B, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Partner Site Berlin, German Centre for Cardiovascular Research, Berlin, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Partner Site Berlin, German Centre for Cardiovascular Research, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Institute of Biology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
18
|
Isaksson R, Lindman J, Wannberg J, Sallander J, Backlund M, Baraldi D, Widdop R, Hallberg M, Åqvist J, Gutierrez de Teran H, Gising J, Larhed M. A Series of Analogues to the AT 2R Prototype Antagonist C38 Allow Fine Tuning of the Previously Reported Antagonist Binding Mode. ChemistryOpen 2019; 8:114-125. [PMID: 30697513 PMCID: PMC6346239 DOI: 10.1002/open.201800282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/02/2019] [Indexed: 01/09/2023] Open
Abstract
We here report on our continued studies of ligands binding to the promising drug target angiotensin II type 2 receptor (AT2R). Two series of compounds were synthesized and investigated. The first series explored the effects of adding small substituents to the phenyl ring of the known selective nonpeptide AT2R antagonist C38, generating small but significant shifts in AT2R affinity. One compound in the first series was equipotent to C38 and showed similar kinetic solubility, and stability in both human and mouse liver microsomes. The second series was comprised of new bicyclic derivatives, amongst which one ligand exhibited a five-fold improved affinity to AT2R as compared to C38. The majority of the compounds in the second series, including the most potent ligand, were inferior to C38 with regard to stability in both human and mouse microsomes. In contrast to our previously reported findings, ligands with shorter carbamate alkyl chains only demonstrated slightly improved stability in microsomes. Based on data presented herein, a more adequate, tentative model of the binding modes of ligand analogues to the prototype AT2R antagonist C38 is proposed, as deduced from docking redefined by molecular dynamic simulations.
Collapse
Affiliation(s)
- Rebecka Isaksson
- Department of Medicinal ChemistryUppsala UniversitySE-751 23UppsalaSWEDEN
| | - Jens Lindman
- Department of Medicinal ChemistryUppsala UniversitySE-751 23UppsalaSWEDEN
| | - Johan Wannberg
- SciLifeLab Drug Discovery & Development Platform, Medicinal Chemistry – Lead Identification, Department of Medicinal ChemistryUppsala UniversitySE-751 23UppsalaSWEDEN
| | - Jessica Sallander
- Department of Cell and Molecular BiologyUppsala UniversitySE-751 23UppsalaSWEDEN
| | - Maria Backlund
- SciLifeLab Drug Discovery & Development Platform, ADME of Therapeutics, Department of PharmacyUppsala UniversitySE-751 23UppsalaSWEDEN
| | - Dhaniel Baraldi
- Department of PharmacologyMonash UniversityClayton, Victoria3800AUSTRALIA
| | - Robert Widdop
- Department of PharmacologyMonash UniversityClayton, Victoria3800AUSTRALIA
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical BiosciencesUppsala UniversitySE-751 24UppsalaSWEDEN
| | - Johan Åqvist
- Department of Cell and Molecular BiologyUppsala UniversitySE-751 23UppsalaSWEDEN
| | | | - Johan Gising
- Department of Medicinal ChemistryUppsala UniversitySE-751 23UppsalaSWEDEN
| | - Mats Larhed
- Department of Medicinal ChemistryUppsala UniversitySE-751 23UppsalaSWEDEN
| |
Collapse
|
19
|
Angiotensin II type 2 receptor (AT2R) in renal and cardiovascular disease. Clin Sci (Lond) 2017; 130:1307-26. [PMID: 27358027 DOI: 10.1042/cs20160243] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/06/2016] [Indexed: 12/14/2022]
Abstract
Angiotensin II (Ang II) is well-considered to be the principal effector of the renin-angiotensin system (RAS), which binds with strong affinity to the angiotensin II type 1 (AT1R) and type 2 (AT2R) receptor subtype. However, activation of both receptors is likely to stimulate different signalling mechanisms/pathways and produce distinct biological responses. The haemodynamic and non-haemodynamic effects of Ang II, including its ability to regulate blood pressure, maintain water-electrolyte balance and promote vasoconstriction and cellular growth are well-documented to be mediated primarily by the AT1R. However, its biological and functional effects mediated through the AT2R subtype are still poorly understood. Recent studies have emphasized that activation of the AT2R regulates tissue and organ development and provides in certain context a potential counter-regulatory mechanism against AT1R-mediated actions. Thus, this review will focus on providing insights into the biological role of the AT2R, in particular its actions within the renal and cardiovascular system.
Collapse
|
20
|
Than A, Xu S, Li R, Leow MKS, Sun L, Chen P. Angiotensin type 2 receptor activation promotes browning of white adipose tissue and brown adipogenesis. Signal Transduct Target Ther 2017; 2:17022. [PMID: 29263921 PMCID: PMC5661636 DOI: 10.1038/sigtrans.2017.22] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023] Open
Abstract
Brown adipose tissue dissipates energy in the form of heat. Recent studies have shown that adult humans possess both classical brown and beige adipocytes (brown-like adipocytes in white adipose tissue, WAT), and stimulating brown and beige adipocyte formation can be a new avenue to treat obesity. Angiotensin II (AngII) is a peptide hormone that plays important roles in energy metabolism via its angiotensin type 1 or type 2 receptors (AT1R and AT2R). Adipose tissue is a major source of AngII and expresses both types of its receptors, implying the autocrine and paracrine role of AngII in regulating adipose functions and self-remodeling. Here, based on the in vitro studies on primary cultures of mouse white adipocytes, we report that, AT2R activation, either by AngII or AT2R agonist (C21), induces white adipocyte browning, by increasing PPARγ expression, at least in part, via ERK1/2, PI3kinase/Akt and AMPK signaling pathways. It is also found that AngII–AT2R enhances brown adipogenesis. In the in vivo studies on mice, administration of AT1R antagonist (ZD7155) or AT2R agonist (C21) leads to the increase of WAT browning, body temperature and serum adiponectin, as well as the decrease of WAT mass and the serum levels of TNFα, triglycerides and free fatty acids. In addition, AT2R-induced browning effect is also observed in human white adipocytes, as evidenced by the increased UCP1 expression and oxygen consumption. Finally, we provide evidence that AT2R plays important roles in hormone T3-induced white adipose browning. This study, for the first time, reveals the browning and brown adipogenic effects of AT2R and suggests a potential therapeutic target to combat obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Aung Than
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Shaohai Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Ru Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Lei Sun
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
21
|
Hallberg M, Sumners C, Steckelings UM, Hallberg A. Small-molecule AT2 receptor agonists. Med Res Rev 2017; 38:602-624. [DOI: 10.1002/med.21449] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/03/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, BMC; Uppsala University; P.O. Box 591 SE751 24 Uppsala Sweden
| | - Colin Sumners
- Department of Physiology and Functional Genomics, University of Florida; College of Medicine and McKnight Brain Institute; Gainesville FL 32611
| | - U. Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research; University of Southern Denmark; P.O. Box 5230 Odense Denmark
| | - Anders Hallberg
- Department of Medicinal Chemistry, BMC; Uppsala University; P.O. Box 574 SE-751 23 Uppsala Sweden
| |
Collapse
|
22
|
Pignatti E, Leng S, Carlone DL, Breault DT. Regulation of zonation and homeostasis in the adrenal cortex. Mol Cell Endocrinol 2017; 441:146-155. [PMID: 27619404 PMCID: PMC5235909 DOI: 10.1016/j.mce.2016.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 12/23/2022]
Abstract
The adult adrenal cortex is organized into concentric zones, each specialized to produce distinct steroid hormones. Cellular composition of the cortex is highly dynamic and subject to diverse signaling controls. Cortical homeostasis and regeneration rely on centripetal migration of steroidogenic cells from the outer to the inner cortex, which is accompanied by direct conversion of zona glomerulosa (zG) into zona fasciculata (zF) cells. Given the important impact of tissue structure and growth on steroidogenic function, it is essential to understand the mechanisms governing adrenal zonation and homeostasis. Towards this end, we review the distinctions between each zone by highlighting their morphological and ultra-structural features, discuss key signaling pathways influencing zonal identity, and evaluate current evidence for long-term self-renewing stem cells in the adult cortex. Finally, we review data supporting zG-to-zF transdifferentiation/direct conversion as a major mechanism of adult cortical renewal.
Collapse
Affiliation(s)
- Emanuele Pignatti
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sining Leng
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
23
|
Interferon regulatory factor 1 attenuates vascular remodeling; roles of angiotensin II type 2 receptor. ACTA ACUST UNITED AC 2016; 10:811-818. [DOI: 10.1016/j.jash.2016.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/11/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022]
|
24
|
Faubert J, Battista MC, Baillargeon JP. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Insulin action and lipotoxicity in the development of polycystic ovary syndrome: A review1. J Anim Sci 2016; 94:1803-11. [DOI: 10.2527/jas.2015-0089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
25
|
Menk M, Graw JA, von Haefen C, Sifringer M, Schwaiberger D, Unger T, Steckelings U, Spies CD. Stimulation of the Angiotensin II AT2 Receptor is Anti-inflammatory in Human Lipopolysaccharide-Activated Monocytic Cells. Inflammation 2016; 38:1690-9. [PMID: 25758542 DOI: 10.1007/s10753-015-0146-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, AT2 receptors have been discovered on the surface of human immunocompetent cells such as monocytes. Data on regulative properties of this receptor on the cellular immune response are poor. We hypothesized that direct stimulation of the AT2 receptor mediates anti-inflammatory responses in these cells. Human monocytic THP-1 and U937 cells were stimulated with lipopolysaccharide (LPS) and the selective AT2 receptor agonist Compound 21 (C21). Expression of pro- and anti-inflammatory cytokines IL-6, IL-10, tumor necrosis factor-α (TNFα), and IL-1β were analyzed on both the transcriptional and the translational level over course of time. Treatment with C21 attenuated the expression of TNFα, IL-6, and IL-10 after LPS challenge in both cell lines in a time- and dose-dependent manner. We conclude that selective AT2 receptor stimulation acts anti-inflammatory in human monocytes. Modulation of cytokine response by AT2 receptor activation might be a beneficial and novel treatment concept in inflammatory conditions.
Collapse
Affiliation(s)
- Mario Menk
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Tao L, Qiu Y, Fu X, Lin R, Lei C, Wang J, Lei B. Angiotensin-converting enzyme 2 activator diminazene aceturate prevents lipopolysaccharide-induced inflammation by inhibiting MAPK and NF-κB pathways in human retinal pigment epithelium. J Neuroinflammation 2016; 13:35. [PMID: 26862037 PMCID: PMC4748536 DOI: 10.1186/s12974-016-0489-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/20/2016] [Indexed: 01/10/2023] Open
Abstract
Background Retinal inflammation is a devastating pathological process in ocular diseases. Functional impairment of retinal pigment epithelium (RPE) is associated with inflammatory retinal diseases. Enhancing the protective axis namely ACE2/Ang-(1-7)/Mas by activation of ACE2 presents anti-inflammatory properties. We investigated whether diminazene aceturate (DIZE), an angiotensin-converting enzyme 2 (ACE2) activator, prevented lipopolysaccharide (LPS)-induced inflammatory response by activating the protective axis and whether the effect was mediated by inhibiting the mitogen-activated protein kinase (MAPK) and the nuclear factor-κB (NF-κB) pathways. Methods Cell counting kit-8 (CCK-8) assay and real-time PCR were used to determine the optimum concentration and incubation time of DIZE. ARPE-19 cells and primary cultured human retinal pigment epithelia (hRPE) were incubated with or without 10 μg/mL DIZE for 6 h before stimulated with 5 μg/mL LPS for 24 h. The mRNA expression of inflammatory cytokines, AT1R, and AT2R was analyzed. The protein level of inflammatory cytokines, Ang II, and Ang-(1-7) was detected. Phosphorylation of p38 MAPK, extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphorylated transcription inhibition factor-κB-α (p-IκB-α) were measured. Inhibitors of MAPKs and NF-κB were added to verify the involvement of these pathways. A small interfering RNA (siRNA) targeted to ACE2 and a selective Ang-(1-7) antagonist A779 was used to confirm the role of ACE2 and the involvement of ACE2/Ang-(1-7)/Mas axis. Results DIZE remarkably increased the expression of ACE2 and inhibited the expression of IL-6, IL-8, and MCP-1 at both mRNA and protein levels in both RPE cell lines stimulated with LPS. Inhibitors of p38, ERK1/2, JNK, and NF-κB significantly decreased LPS-induced overproduction of IL-6, IL-8, and MCP-1. DIZE reduced the expression of Ang II and AT1R, whereas increased Ang-(1-7). Furthermore, DIZE downregulated the phosphorylation of p38MAPK, ERK1/2, JNK, and the activation of NF-κB upon stimulation with LPS. Downregulating ACE2 and pre-treatment with A779 abrogated the effects of DIZE on production of cytokines, the expression of Ang II, Ang-(1-7), AT1R, phosphorylation of MAPKs and activation of NF-κB. Conclusions DIZE inhibits LPS-induced inflammatory response by activating ACE2/Ang-(1-7)/Mas axis in human RPE cells. The protective effect is mediated by inhibiting the p38MAPK, ERK1/2, JNK, and NF-κB pathways.
Collapse
Affiliation(s)
- Lifei Tao
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China.
| | - Yiguo Qiu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China.
| | - Xinyu Fu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China.
| | - Ru Lin
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China.
| | - Chunyan Lei
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China.
| | - Jiaming Wang
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China.
| | - Bo Lei
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China.
| |
Collapse
|
27
|
Noll C, Labbé SM, Pinard S, Shum M, Bilodeau L, Chouinard L, Phoenix S, Lecomte R, Carpentier AC, Gallo-Payet N. Postprandial fatty acid uptake and adipocyte remodeling in angiotensin type 2 receptor-deficient mice fed a high-fat/high-fructose diet. Adipocyte 2016; 5:43-52. [PMID: 27144096 DOI: 10.1080/21623945.2015.1115582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 12/16/2022] Open
Abstract
The role of the angiotensin type-2 receptor in adipose physiology remains controversial. The aim of the present study was to demonstrate whether genetic angiotensin type-2 receptor-deficiency prevents or worsens metabolic and adipose tissue morphometric changes observed following a 6-week high-fat/high-fructose diet with injection of a small dose of streptozotocin. We compared tissue uptake of nonesterified fatty acid and dietary fatty acid in wild-type and angiotensin type-2 receptor-deficient mice by using the radiotracer 14(R,S)-[(1) (8)F]-fluoro-6-thia-heptadecanoic acid in mice fed a standard or high-fat diet. Postprandial fatty acid uptake in the heart, liver, skeletal muscle, kidney and adipose tissue was increased in wild-type mice after a high-fat diet and in angiotensin type-2 receptor-deficient mice on both standard and high-fat diets. Compared to the wild-type mice, angiotensin type-2 receptor-deficient mice had a lower body weight, an increase in fasting blood glucose and a decrease in plasma insulin and leptin levels. Mice fed a high-fat diet exhibited increased adipocyte size that was prevented by angiotensin type-2 receptor-deficiency. Angiotensin type-2 receptor-deficiency abolished the early hypertrophic adipocyte remodeling induced by a high-fat diet. The small size of adipocytes in the angiotensin type-2 receptor-deficient mice reflects their inability to store lipids and explains the increase in fatty acid uptake in non-adipose tissues. In conclusion, a genetic deletion of the angiotensin type-2 receptor is associated with metabolic dysfunction of white adipose depots, and indicates that adipocyte remodeling occurs before the onset of insulin resistance in the high-fat fed mouse model.
Collapse
|
28
|
|
29
|
Raymer B, Ebner D. Small molecule and peptide therapies for chronic heart failure: a patent review (2011 - 2014). Expert Opin Ther Pat 2015; 25:1175-90. [PMID: 26173447 DOI: 10.1517/13543776.2015.1061997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Chronic heart failure (CHF) is the long-term inability of the heart to meet circulatory demands under normal conditions. Effects of CHF can include increased blood volume, increased vascular resistance and compromised contractility leading to fluid retention, dyspnea and fatigue. Current standard of care for chronic systolic heart failure is directed towards managing hypoperfusion through the renin-angiotensin-aldosterone and sympathetic nervous systems. Treatment may also involve reversal of maladaptive cardiac remodeling and prevention of life-threatening arrhythmias. AREAS COVERED This review highlights small molecule and peptidic agents for the treatment of CHF with patents published between 2011 and 2014. Targets are subdivided into inotropic agents, ventricular remodeling, diuretics and the renin-angiotensin-aldosterone system. EXPERT OPINION CHF represents a large, unmet medical need where improved therapies are needed. The renin-angiotensin-aldosterone system pathway continues to be a major source of new therapies for CHF with new inotropic therapies emerging. Promising initial clinical results for a few approaches combined with the expectation of additional clinical results in the near future make this an exciting time in the pursuit of new treatments for CHF.
Collapse
Affiliation(s)
- Brian Raymer
- a Cardiovascular, Metabolic, and Endocrine Diseases Chemistry, Pfizer Worldwide Research and Development , Cambridge, MA, USA +1 617 551 3414 ; +1 617 551 3082 ;
| | - David Ebner
- a Cardiovascular, Metabolic, and Endocrine Diseases Chemistry, Pfizer Worldwide Research and Development , Cambridge, MA, USA +1 617 551 3414 ; +1 617 551 3082 ;
| |
Collapse
|
30
|
Anand U, Yiangou Y, Sinisi M, Fox M, MacQuillan A, Quick T, Korchev YE, Bountra C, McCarthy T, Anand P. Mechanisms underlying clinical efficacy of Angiotensin II type 2 receptor (AT2R) antagonist EMA401 in neuropathic pain: clinical tissue and in vitro studies. Mol Pain 2015; 11:38. [PMID: 26111701 PMCID: PMC4482278 DOI: 10.1186/s12990-015-0038-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/11/2015] [Indexed: 12/20/2022] Open
Abstract
Background The clinical efficacy of the Angiotensin II (AngII) receptor AT2R antagonist EMA401, a novel peripherally-restricted analgesic, was reported recently in post-herpetic neuralgia. While previous studies have shown that AT2R is expressed by nociceptors in human DRG (hDRG), and that EMA401 inhibits capsaicin responses in cultured hDRG neurons, the expression and levels of its endogenous ligands AngII and AngIII in clinical neuropathic pain tissues, and their signalling pathways, require investigation. We have immunostained AngII, AT2R and the capsaicin receptor TRPV1 in control post-mortem and avulsion injured hDRG, control and injured human nerves, and in cultured hDRG neurons. AngII, AngIII, and Ang-(1-7) levels were quantified by ELISA. The in vitro effects of AngII, AT2R agonist C21, and Nerve growth factor (NGF) were measured on neurite lengths; AngII, NGF and EMA401 effects on expression of p38 and p42/44 MAPK were measured using quantitative immunofluorescence, and on capsaicin responses using calcium imaging. Results AngII immunostaining was observed in approximately 75% of small/medium diameter neurons in control (n = 5) and avulsion injured (n = 8) hDRG, but not large neurons i.e. similar to TRPV1. AngII was co-localised with AT2R and TRPV1 in hDRG and in vitro. AngII staining by image analysis showed no significant difference between control (n = 12) and injured (n = 13) human nerves. AngII levels by ELISA were also similar in control human nerves (4.09 ± 0.36 pmol/g, n = 31), injured nerves (3.99 ± 0.79 pmol/g, n = 7), and painful neuromas (3.43 ± 0.73 pmol/g, n = 12); AngIII and Ang-(1-7) levels were undetectable (<0.03 and 0.05 pmol/g respectively). Neurite lengths were significantly increased in the presence of NGF, AngII and C21 in cultured DRG neurons. AngII and, as expected, NGF significantly increased signal intensity of p38 and p42/44 MAPK, which was reversed by EMA401. AngII mediated sensitization of capsaicin responses was not observed in the presence of MAP kinase inhibitor PD98059, and the kinase inhibitor staurosporine. Conclusion The major AT2R ligand in human peripheral nerves is AngII, and its levels are maintained in injured nerves. EMA401 may act on paracrine/autocrine mechanisms at peripheral nerve terminals, or intracrine mechanisms, to reduce neuropathic pain signalling in AngII/NGF/TRPV1-convergent pathways.
Collapse
Affiliation(s)
- Uma Anand
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, Area A, Ground Floor, Du Cane Rd, London, W12 ONN, UK. .,Nanomedicine Research Laboratory, Division of Medicine, Hammersmith Hospital, Imperial College London, BN5 Commonwealth Building, London, W12 0NN, UK.
| | - Yiangos Yiangou
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, Area A, Ground Floor, Du Cane Rd, London, W12 ONN, UK.
| | - Marco Sinisi
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, Area A, Ground Floor, Du Cane Rd, London, W12 ONN, UK. .,Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK.
| | - Michael Fox
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, Area A, Ground Floor, Du Cane Rd, London, W12 ONN, UK. .,Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK.
| | - Anthony MacQuillan
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, Area A, Ground Floor, Du Cane Rd, London, W12 ONN, UK. .,Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK.
| | - Tom Quick
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, Area A, Ground Floor, Du Cane Rd, London, W12 ONN, UK. .,Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK.
| | - Yuri E Korchev
- Nanomedicine Research Laboratory, Division of Medicine, Hammersmith Hospital, Imperial College London, BN5 Commonwealth Building, London, W12 0NN, UK.
| | - Chas Bountra
- University of Oxford Structural Genomics Consortium, Old Road, Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK.
| | - Tom McCarthy
- Spinifex Pharmaceuticals Pty Ltd, Corporate One, Suite G5, 84 Hotham St, Preston, VIC, 3072, Australia.
| | - Praveen Anand
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, Area A, Ground Floor, Du Cane Rd, London, W12 ONN, UK.
| |
Collapse
|
31
|
Hallberg M. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors. Med Res Rev 2015; 35:464-519. [PMID: 24894913 DOI: 10.1002/med.21323] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals. However, as discussed herein relatively few examples have so far been disclosed of successful attempts to create bioavailable, drug-like agonists or antagonists, starting from the structure of endogenous peptide fragments and applying procedures relying on stepwise manipulations and simplifications of the peptide structures.
Collapse
Affiliation(s)
- Mathias Hallberg
- Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
32
|
Kellici TF, Tzakos AG, Mavromoustakos T. Rational drug design and synthesis of molecules targeting the angiotensin II type 1 and type 2 receptors. Molecules 2015; 20:3868-97. [PMID: 25738535 PMCID: PMC6272512 DOI: 10.3390/molecules20033868] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/06/2015] [Accepted: 02/15/2015] [Indexed: 02/07/2023] Open
Abstract
The angiotensin II (Ang II) type 1 and type 2 receptors (AT1R and AT2R) orchestrate an array of biological processes that regulate human health. Aberrant function of these receptors triggers pathophysiological responses that can ultimately lead to death. Therefore, it is important to design and synthesize compounds that affect beneficially these two receptors. Cardiovascular disease, which is attributed to the overactivation of the vasoactive peptide hormone Αng II, can now be treated with commercial AT1R antagonists. Herein, recent achievements in rational drug design and synthesis of molecules acting on the two AT receptors are reviewed. Quantitative structure activity relationships (QSAR) and molecular modeling on the two receptors aim to assist the search for new active compounds. As AT1R and AT2R are GPCRs and drug action is localized in the transmembrane region the role of membrane bilayers is exploited. The future perspectives in this field are outlined. Tremendous progress in the field is expected if the two receptors are crystallized, as this will assist the structure based screening of the chemical space and lead to new potent therapeutic agents in cardiovascular and other diseases.
Collapse
Affiliation(s)
- Tahsin F Kellici
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Greece
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Andreas G Tzakos
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Greece.
| |
Collapse
|
33
|
Angiotensin type 2 receptors: blood pressure regulation and end organ damage. Curr Opin Pharmacol 2015; 21:115-21. [PMID: 25677800 DOI: 10.1016/j.coph.2015.01.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 12/15/2022]
Abstract
In most situations, the angiotensin AT2-receptor (AT2R) mediates physiological actions opposing those mediated by the AT1-receptor (AT1R), including a vasorelaxant effect. Nevertheless, experimental evidence vastly supports that systemic application of AT2R-agonists is blood pressure neutral. However, stimulation of AT2R locally within the brain or the kidney apparently elicits a systemic blood pressure lowering effect. A systemic effect of AT2R stimulation on blood pressure can also be achieved, when the prevailing effect of continuous background AT1R-stimulation is attenuated by low-dose AT1R blockade. Despite a lack of effect on blood pressure, AT2R stimulation still protects from hypertensive end-organ damage. Current data and evidence therefore suggest that AT2R agonists will not be suitable as future anti-hypertensive drugs, but that they may well be useful for end-organ protection in combination with established anti-hypertensives.
Collapse
|
34
|
Abstract
The purpose of this article is to review fundamentals in adrenal gland histophysiology. Key findings regarding the important signaling pathways involved in the regulation of steroidogenesis and adrenal growth are summarized. We illustrate how adrenal gland morphology and function are deeply interconnected in which novel signaling pathways (Wnt, Sonic hedgehog, Notch, β-catenin) or ionic channels are required for their integrity. Emphasis is given to exploring the mechanisms and challenges underlying the regulation of proliferation, growth, and functionality. Also addressed is the fact that while it is now well-accepted that steroidogenesis results from an enzymatic shuttle between mitochondria and endoplasmic reticulum, key questions still remain on the various aspects related to cellular uptake and delivery of free cholesterol. The significant progress achieved over the past decade regarding the precise molecular mechanisms by which the two main regulators of adrenal cortex, adrenocorticotropin hormone (ACTH) and angiotensin II act on their receptors is reviewed, including structure-activity relationships and their potential applications. Particular attention has been given to crucial second messengers and how various kinases, phosphatases, and cytoskeleton-associated proteins interact to ensure homeostasis and/or meet physiological demands. References to animal studies are also made in an attempt to unravel associated clinical conditions. Many of the aspects addressed in this article still represent a challenge for future studies, their outcome aimed at providing evidence that the adrenal gland, through its steroid hormones, occupies a central position in many situations where homeostasis is disrupted, thus highlighting the relevance of exploring and understanding how this key organ is regulated. © 2014 American Physiological Society. Compr Physiol 4:889-964, 2014.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of Endocrinology, Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, and Centre de Recherche Clinique Étienne-Le Bel of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Quebec, Canada
| | | |
Collapse
|
35
|
Guimond MO, Hallberg M, Gallo-Payet N, Wallinder C. Saralasin and Sarile Are AT2 Receptor Agonists. ACS Med Chem Lett 2014; 5:1129-32. [PMID: 25313325 DOI: 10.1021/ml500278g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/18/2014] [Indexed: 01/14/2023] Open
Abstract
Saralasin and sarile, extensively studied over the past 40 years as angiotensin II (Ang II) receptor blockers, induce neurite outgrowth in a NG108-15 cell assay to a similar extent as the endogenous Ang II. In their undifferentiated state, these cells express mainly the AT2 receptor. The neurite outgrowth was inhibited by preincubation with the AT2 receptor selective antagonist PD 123,319, which suggests that the observed outgrowth was mediated by the AT2 receptor. Neither saralasin nor sarile reduced the neurite outgrowth induced by Ang II proving that the two octapeptides do not act as antagonists at the AT2 receptor and may be considered as AT2 receptor agonists.
Collapse
Affiliation(s)
- Marie-Odile Guimond
- Service
of Endocrinology and Department of Physiology and Biophysics, Faculty
of Medicine, Université de Sherbrooke, Sherbrooke, J1H 5N4 Quebec, Canada
| | - Mathias Hallberg
- Beijer
Laboratory, Department of Pharmaceutical Biosciences, BMC, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Nicole Gallo-Payet
- Service
of Endocrinology and Department of Physiology and Biophysics, Faculty
of Medicine, Université de Sherbrooke, Sherbrooke, J1H 5N4 Quebec, Canada
| | - Charlotta Wallinder
- Department
of Medicinal Chemistry, BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
36
|
Namsolleck P, Recarti C, Foulquier S, Steckelings UM, Unger T. AT(2) receptor and tissue injury: therapeutic implications. Curr Hypertens Rep 2014; 16:416. [PMID: 24414230 PMCID: PMC3906548 DOI: 10.1007/s11906-013-0416-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The renin-angiotensin system (RAS) plays an important role in the initiation and progression of tissue injuries in the cardiovascular and nervous systems. The detrimental actions of the AT1 receptor (AT1R) in hypertension and vascular injury, myocardial infarction and brain ischemia are well established. In the past twenty years, protective actions of the RAS, not only in the cardiovascular, but also in the nervous system, have been demonstrated. The so-called protective arm of the RAS includes AT2-receptors and Mas receptors (AT2R and MasR) and is characterized by effects different from and often opposing those of the AT1R. These include anti-inflammation, anti-fibrosis, anti-apoptosis and neuroregeneration that can counterbalance pathological processes and enable recovery from disease. The recent development of novel, small-molecule AT2R agonists offers a therapeutic potential in humans with a variety of clinical indications.
Collapse
Affiliation(s)
- Pawel Namsolleck
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Leblanc S, Battista MC, Noll C, Hallberg A, Gallo-Payet N, Carpentier AC, Vine DF, Baillargeon JP. Angiotensin II type 2 receptor stimulation improves fatty acid ovarian uptake and hyperandrogenemia in an obese rat model of polycystic ovary syndrome. Endocrinology 2014; 155:3684-93. [PMID: 24971613 DOI: 10.1210/en.2014-1185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is mainly defined by hyperandrogenism but is also characterized by insulin resistance (IR). Studies showed that overexposure of nonadipose tissues to nonesterified fatty acids (NEFA) may explain both IR and hyperandrogenism. Recent studies indicate that treatment with an angiotensin II type 2 receptor (AT2R)-selective agonist improves diet-induced IR. We thus hypothesized that PCOS hyperandrogenism is triggered by ovarian NEFA overexposure and is improved after treatment with an AT2R agonist. Experiments were conducted in 12-week-old female JCR:LA-cp/cp rats, which are characterized by visceral obesity, IR, hyperandrogenism, and polycystic ovaries. Control JCR:LA +/? rats have a normal phenotype. Rats were treated for 8 days with saline or the selective AT2R agonist C21/M24 and then assessed for: 1) fasting testosterone, NEFA, and insulin levels; and 2) an iv 14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid test to determine NEFA ovarian tissue uptake (Km). Compared with controls, saline-treated PCOS/cp rats displayed higher insulin (100 vs 5.6 μU/mL), testosterone (0.12 vs 0.04 nmol/L), NEFA (0.98 vs 0.48 mmol/L), and Km (20.7 vs 12.9 nmol/g·min) (all P < .0001). In PCOS/cp rats, C21/M24 did not significantly improve insulin or NEFA but normalized testosterone (P = .004) and Km (P = .009), which were strongly correlated together in all PCOS/cp rats (ρ = 0.74, P = .009). In conclusion, in an obese PCOS rat model, ovarian NEFA uptake and testosterone levels are strongly associated and are both significantly reduced after short-term C21/M24 therapy. These findings provide new information on the role of NEFA in PCOS hyperandrogenemia and suggest a potential role for AT2R agonists in the treatment of PCOS.
Collapse
Affiliation(s)
- Samuel Leblanc
- Division of Endocrinology (S.L., M.-C.B., C.N., N.G.-P., A.C.C., J.-P.B.), Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4; Department of Medicinal Chemistry (A.H.), Biomedicinska Centrum, Uppsala University, Uppsala, Sweden 751 23; Alberta Institute for Human Nutrition, Metabolic and Cardiovascular Disease Laboratory (D.F.V.), University of Alberta, Edmonton, Alberta, Canada T6G 2E1; and Centre de Recherche Étienne-Lebel (N.G.-P., A.C.C., J.-P.B.), Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Speth RC, Carrera EJ, Bretón C, Linares A, Gonzalez-Reiley L, Swindle JD, Santos KL, Schadock I, Bader M, Karamyan VT. Distribution of non-AT1, non-AT2 binding of 125I-sarcosine1, isoleucine8 angiotensin II in neurolysin knockout mouse brains. PLoS One 2014; 9:e105762. [PMID: 25147932 PMCID: PMC4141804 DOI: 10.1371/journal.pone.0105762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/13/2014] [Indexed: 11/18/2022] Open
Abstract
The recent identification of a novel binding site for angiotensin (Ang) II as the peptidase neurolysin (E.C. 3.4.24.16) has implications for the renin-angiotensin system (RAS). This report describes the distribution of specific binding of 125I-Sarcosine1, Isoleucine8 Ang II (125I-SI Ang II) in neurolysin knockout mouse brains compared to wild-type mouse brains using quantitative receptor autoradiography. In the presence of p-chloromercuribenzoic acid (PCMB), which unmasks the novel binding site, widespread distribution of specific (3 µM Ang II displaceable) 125I-SI Ang II binding in 32 mouse brain regions was observed. Highest levels of binding >700 fmol/g initial wet weight were seen in hypothalamic, thalamic and septal regions, while the lowest level of binding <300 fmol/g initial wet weight was in the mediolateral medulla. 125I-SI Ang II binding was substantially higher by an average of 85% in wild-type mouse brains compared to neurolysin knockout brains, suggesting the presence of an additional non-AT1, non-AT2, non-neurolysin Ang II binding site in the mouse brain. Binding of 125I-SI Ang II to neurolysin in the presence of PCMB was highest in hypothalamic and ventral cortical brain regions, but broadly distributed across all regions surveyed. Non-AT1, non-AT2, non-neurolysin binding was also highest in the hypothalamus but had a different distribution than neurolysin. There was a significant reduction in AT2 receptor binding in the neurolysin knockout brain and a trend towards decreased AT1 receptor binding. In the neurolysin knockout brains, the size of the lateral ventricles was increased by 56% and the size of the mid forebrain (−2.72 to +1.48 relative to Bregma) was increased by 12%. These results confirm the identity of neurolysin as a novel Ang II binding site, suggesting that neurolysin may play a significant role in opposing the pathophysiological actions of the brain RAS and influencing brain morphology.
Collapse
Affiliation(s)
- Robert C. Speth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Eduardo J. Carrera
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
- Farquhar College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - Catalina Bretón
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
- Farquhar College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - Andrea Linares
- Farquhar College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - Luz Gonzalez-Reiley
- Farquhar College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - Jamala D. Swindle
- Farquhar College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - Kira L. Santos
- Farquhar College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
- College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Ines Schadock
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Vardan T. Karamyan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
- Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
| |
Collapse
|
39
|
Faria-Costa G, Leite-Moreira A, Henriques-Coelho T. Cardiovascular effects of the angiotensin type 2 receptor. Rev Port Cardiol 2014; 33:439-49. [PMID: 25087493 DOI: 10.1016/j.repc.2014.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/02/2014] [Indexed: 02/06/2023] Open
Abstract
The angiotensin type 2 receptor, AT2R, has been described as having opposite effects to the angiotensin type 1 receptor, AT1R. Although the quantities of the AT2R found in the adult are low, its expression rises in pathological situations. The AT2R has three major signaling pathways: activation of serine/threonine phosphatases (promoting apoptosis and antioxidant effects), activation of the bradykinin/NO/cGMP pathway (promoting vasodilation), and activation of phospholipase A2 (associated with regulation of potassium currents). The AT2R appears to have effects in vascular remodeling, atherosclerosis prevention and blood pressure lowering (when associated with an AT1R inhibitor). After myocardial infarction, the AT2R appears to decrease infarct size, cardiac hypertrophy and fibrosis, and to improve cardiac function. However, its role in the heart is controversial. In the kidney, the AT2R promotes natriuresis. Until now, treatment directed at the renin-angiotensin-aldosterone system has been based on angiotensin-converting enzyme inhibitors or angiotensin type 1 receptor blockers. The study of the AT2R has been revolutionized by the discovery of a direct agonist, C21, which promises to become part of the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Gabriel Faria-Costa
- Departamento de Fisiologia e Cirurgia Cardiotorácica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- Departamento de Fisiologia e Cirurgia Cardiotorácica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Tiago Henriques-Coelho
- Departamento de Fisiologia e Cirurgia Cardiotorácica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
40
|
Umschweif G, Liraz-Zaltsman S, Shabashov D, Alexandrovich A, Trembovler V, Horowitz M, Shohami E. Angiotensin receptor type 2 activation induces neuroprotection and neurogenesis after traumatic brain injury. Neurotherapeutics 2014; 11:665-78. [PMID: 24957202 PMCID: PMC4121449 DOI: 10.1007/s13311-014-0286-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Angiotensin II receptor type 2 (AT(2)) agonists have been shown to limit brain ischemic insult and to improve its outcome. The activation of AT(2) was also linked to induced neuronal proliferation and differentiation in vitro. In this study, we examined the therapeutic potential of AT(2) activation following traumatic brain injury (TBI) in mice, a brain pathology that displays ischemia-like secondary damages. The AT(2) agonist CGP42112A was continuously infused immediately after closed head injury (CHI) for 3 days. We have followed the functional recovery of the injured mice for 35 days post-CHI, and evaluated cognitive function, lesion volume, molecular signaling, and neurogenesis at different time points after the impact. We found dose-dependent improvement in functional recovery and cognitive performance after CGP42112A treatment that was accompanied by reduced lesion volume and induced neurogenesis in the neurogenic niches of the brain and also in the injury region. At the cellular/molecular level, CGP42112A induced early activation of neuroprotective kinases protein kinase B (Akt) and extracellular-regulated kinases ½ (ERK½), and the neurotrophins nerve growth factor and brain-derived neurotrophic factor; all were blocked by treatment with the AT(2) antagonist PD123319. Our results suggest that AT(2) activation after TBI promotes neuroprotection and neurogenesis, and may be a novel approach for the development of new drugs to treat victims of TBI.
Collapse
Affiliation(s)
- Gali Umschweif
- />Department of Pharmacology, The Hebrew University, Jerusalem, Israel
- />Laboratory of Environmental Physiology, The Hebrew University, Jerusalem, Israel
| | | | - Dalia Shabashov
- />Department of Pharmacology, The Hebrew University, Jerusalem, Israel
| | | | | | - Michal Horowitz
- />Laboratory of Environmental Physiology, The Hebrew University, Jerusalem, Israel
| | - Esther Shohami
- />Department of Pharmacology, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
41
|
Faria-Costa G, Leite-Moreira A, Henriques-Coelho T. Cardiovascular effects of the angiotensin type 2 receptor. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2014. [DOI: 10.1016/j.repce.2014.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
42
|
Xu J, Sun Y, Carretero OA, Zhu L, Harding P, Shesely EG, Dai X, Rhaleb NE, Peterson E, Yang XP. Effects of cardiac overexpression of the angiotensin II type 2 receptor on remodeling and dysfunction in mice post-myocardial infarction. Hypertension 2014; 63:1251-9. [PMID: 24732892 DOI: 10.1161/hypertensionaha.114.03247] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The activation of angiotensin II type 2 receptor (AT2R) has been considered cardioprotective. However, there are controversial findings regarding the role of overexpressing AT2R in the heart. Using transgenic mice with different levels of AT2R gene overexpression in the heart (1, 4, or 9 copies of the AT2R transgene: Tg1, Tg4, or Tg9), we studied the effect of AT2R overexpression on left ventricular remodeling and dysfunction post-myocardial infarction (MI). Tg1, Tg4, Tg9, and their wild-type littermates were divided into (1) sham MI, (2) MI plus vehicle, and (3) MI plus AT2R antagonist. Treatments were started 4 weeks after MI and continued for 8 weeks. AT2R protein and mRNA expression in the heart was significantly increased in transgenic mice, and the increase positively correlated with copies of the transgene. AT1R protein and mRNA expression remained unchanged in Tg1 and Tg4 but slightly increased in Tg9 mice. Systolic blood pressure and cardiac phenotypes did not differ among strains under basal conditions. MI caused myocardial hypertrophy, interstitial fibrosis, ventricular dilatation, and dysfunction associated with increased protein expression of Nox2 and transforming growth factor β1. These pathological responses were diminished in Tg1 and Tg4 mice. Moreover, the protective effects of AT2R were abolished by AT2R antagonist and also absent in Tg9 mice. We thus conclude that whether overexpression of AT2R is beneficial or detrimental to the heart is largely dependent on expression levels and possibly via regulations of Nox2 and transforming growth factor β1 signaling pathways.
Collapse
Affiliation(s)
- Jiang Xu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, E&R 7081, 2799 W Grand Boulevard, Detroit, MI 48202-2689.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Behrends M, Wallinder C, Wieckowska A, Guimond MO, Hallberg A, Gallo-Payet N, Larhed M. N-Aryl Isoleucine Derivatives as Angiotensin II AT2 Receptor Ligands. ChemistryOpen 2014; 3:65-75. [PMID: 24808993 PMCID: PMC4000169 DOI: 10.1002/open.201300040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Indexed: 01/25/2023] Open
Abstract
A novel series of ligands for the recombinant human AT2 receptor has been synthesized utilizing a fast and efficient palladium-catalyzed procedure for aminocarbonylation as the key reaction. Molybdenum hexacarbonyl [Mo(CO)6] was employed as the carbon monoxide source, and controlled microwave heating was applied. The prepared N-aryl isoleucine derivatives, encompassing a variety of amide groups attached to the aromatic system, exhibit binding affinities at best with K i values in the low micromolar range versus the recombinant human AT2 receptor. Some of the new nonpeptidic isoleucine derivatives may serve as starting points for further structural optimization. The presented data emphasize the importance of using human receptors in drug discovery programs.
Collapse
Affiliation(s)
- Malte Behrends
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University P.O. Box 574, SE-751 23 Uppsala (Sweden)
| | - Charlotta Wallinder
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University P.O. Box 574, SE-751 23 Uppsala (Sweden)
| | - Anna Wieckowska
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University P.O. Box 574, SE-751 23 Uppsala (Sweden)
| | - Marie-Odile Guimond
- Service of Endocrinology and Department of Physiology and Biophysics, Faculty of Medicine, University of Sherbrooke Sherbrooke, QC J1H 5N4 (Canada)
| | - Anders Hallberg
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University P.O. Box 574, SE-751 23 Uppsala (Sweden)
| | - Nicole Gallo-Payet
- Service of Endocrinology and Department of Physiology and Biophysics, Faculty of Medicine, University of Sherbrooke Sherbrooke, QC J1H 5N4 (Canada)
| | - Mats Larhed
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University P.O. Box 574, SE-751 23 Uppsala (Sweden)
| |
Collapse
|
44
|
Rodrigues T, Matafome P, Seiça R. A vascular piece in the puzzle of adipose tissue dysfunction: mechanisms and consequences. Arch Physiol Biochem 2014; 120:1-11. [PMID: 24063516 DOI: 10.3109/13813455.2013.838971] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the last years, several studies unravelled many aspects of adipose tissue pathophysiology in metabolic diseases. Some studies suggested hypoxia as one of such aspects, despite the exact mechanisms and pathophysiological significance is still partially unknown. Adipose tissue was shown to be hypoxic in obesity, mainly resulting from adipocyte hypertrophy, leading to increased activation of inflammatory pathways. In animal and cell models, hypoxia-induced inflammation was shown to lead to endocrine alterations and dysmetabolism. However, recent evidences suggest that instead of a simple low oxygenation theory, adipose tissue microvasculature may be regulated by a series of factors, including vasoactive factors like angiotensin II, angiogenesis and glycation, among others. This review summarizes the current knowledge about the role of these factors in the regulation of adipose tissue irrigation and the functional consequences of adipose tissue microvascular dysfunction.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Laboratory of Physiology, Faculty of Medicine, Institute of Biomedical Imaging and Life Sciences (IBILI), University of Coimbra , Portugal
| | | | | |
Collapse
|
45
|
Veron JB, Joshi A, Wallinder C, Larhed M, Odell LR. Synthesis and evaluation of isoleucine derived angiotensin II AT(2) receptor ligands. Bioorg Med Chem Lett 2013; 24:476-9. [PMID: 24388688 DOI: 10.1016/j.bmcl.2013.12.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
Abstract
Sixteen new C-terminally modified analogues of 2, a previously described potent and selective AT2R ligand, were designed, synthesized and evaluated for their affinity to the AT2R receptor. The introduction of large, hydrophobic substituents was shown to be beneficial and the most active compound (17, Ki=8.5 μM) was over 12-times more potent than the lead compound 2.
Collapse
Affiliation(s)
- Jean-Baptiste Veron
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, SE-751 23 Uppsala, Sweden
| | - Advait Joshi
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, SE-751 23 Uppsala, Sweden
| | - Charlotta Wallinder
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, SE-751 23 Uppsala, Sweden
| | - Mats Larhed
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, SE-751 23 Uppsala, Sweden
| | - Luke R Odell
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
46
|
Guimond MO, Battista MC, Nikjouitavabi F, Carmel M, Barres V, Doueik AA, Fazli L, Gleave M, Sabbagh R, Gallo-Payet N. Expression and role of the angiotensin II AT2 receptor in human prostate tissue: in search of a new therapeutic option for prostate cancer. Prostate 2013; 73:1057-68. [PMID: 23389987 DOI: 10.1002/pros.22653] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/16/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Evidence shows that angiotensin II type 1 receptor (AT1R) blockers may be associated with improved outcome in prostate cancer patients. It has been proposed that part of this effect could be due to angiotensin II type 2 receptor (AT2R) activation, the only active angiotensin II receptor in this situation. This study aimed to characterize the localization and expression of AT2R in prostate tissues and to assess its role on cell morphology and number in prostatic epithelial cells in primary culture. METHODS AT2R and its AT2R-interacting protein (ATIP) expression were assessed on non-tumoral and tumoral human prostate using tissue microarray immunohistochemistry, binding assay, and Western blotting. AT2R effect on cell number was measured in primary cultures of epithelial cells from non-tumoral human prostate. RESULTS AT2R was localized at the level of the acinar epithelial layer and its expression decreased in cancers with a Gleason score 6 or higher. In contrast, ATIP expression increased with cancer progression. Treatment of primary cell cultures from non-tumoral prostate tissues with C21/M024, a selective AT2R agonist, alone or in co-incubation with losartan, an AT1R antagonist, significantly decreased cell number compared to untreated cells. CONCLUSIONS AT2R and ATIP are present in non-tumoral human prostate tissues and differentially regulated according to Gleason score. The decrease in non-tumoral prostate cell number upon selective AT2R stimulation suggests that AT2R may have a protective role against prostate cancer development. Treatment with a selective AT2R agonist could represent a new approach for prostate cancer prevention or for patients on active surveillance.
Collapse
Affiliation(s)
- Marie-Odile Guimond
- Endocrinology Division, Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chao J, Yang L, Buch S, Gao L. Angiotensin II increased neuronal stem cell proliferation: role of AT2R. PLoS One 2013; 8:e63488. [PMID: 23691054 PMCID: PMC3655161 DOI: 10.1371/journal.pone.0063488] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/03/2013] [Indexed: 01/09/2023] Open
Abstract
Angiotensin II (Ang II), known a potent vasoactive substance in the renin-angiotensin system in the brain, plays a critical role in systemic blood pressure control. However, increasing evidence indicated that the physiological role of Ang II go beyond its vasoactive effect. In the present study, we demonstrated that Ang II type-1 receptor (AT1R) and type-2 receptor (AT2R) were expressed in primary rat hippocampal neuronal stem cells (NSCs). Treatment of rat hippocampal NSCs with Ang II increased cell proliferation. Pretreatment of NSCs with specific AT2R, but not AT1R, antagonist significantly suppressed Ang II-induced cell proliferation. Furthermore, Ang II stimulated ERK and Akt phosphorylation in NSCs. Pretreatment of MEK inhibitor, but not PI3K inhibitor, inhibited Ang II-induced ERK phosphorylation as well as cell proliferation. In addition, stimulation of NSCs with Ang II decreased expression of KV 1.2/KV 3.1 channels and blocked K+ currents which lie downstream of ERK activation. Taken together, these findings underpin the role of AT2R as a novel target that regulates cell proliferation mediated by Ang II with implications for therapeutic intervention for regulation of neurogenesis.
Collapse
Affiliation(s)
- Jie Chao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Lu Yang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
48
|
Cordazzo C, Neri T, Petrini S, Lombardi S, Balìa C, Cianchetti S, Carmazzi Y, Paggiaro P, Pedrinelli R, Celi A. Angiotensin II induces the generation of procoagulant microparticles by human mononuclear cells via an angiotensin type 2 receptor-mediated pathway. Thromb Res 2013; 131:e168-74. [PMID: 23414567 DOI: 10.1016/j.thromres.2013.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/01/2013] [Accepted: 01/15/2013] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Microparticles are small vesicles shed by cells upon activation and during apoptosis which participate in physiologically relevant phenomena, including blood coagulation. Intracellular calcium mobilization is one of the mechanisms of microparticle generation during cell activation. Because the renin-angiotensin system has been proposed as a link between hypertension and increased thrombotic risk, we investigated whether angiotensin II upregulates the generation of procoagulant microparticles by human mononuclear cells. MATERIALS AND METHODS Human mononuclear cells were exposed to angiotensin II for 15min. Intracellular calcium concentration was assessed by a Fluo 4 based kit. The supernatants were analyzed for both microparticle content, with a commercially available kit based on phosphatidylserine analysis, and microparticle-associated tissue factor, with a one-stage clotting assay. RESULTS Intracellular calcium concentration is increased upon exposure of mononuclear cells to angiotensin II. Incubation with angiotensin II stimulates microparticles release; microparticle-associated tissue factor is also upregulated. The effect is inhibited by an angiotensin receptor type 2 antagonist (PD123319) and not by two angiotensin type 1 antagonists (Losartan and Olmesartan). CONCLUSIONS Angiotensin receptor 2-mediated upregulation of tissue factor-bearing, procoagulant microparticle generation represents a novel mechanism linking the renin-angiotensin system to thrombosis.
Collapse
Affiliation(s)
- Cinzia Cordazzo
- Laboratorio di Biologia Cellulare Respiratoria; Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università degli Studi di Pisa e Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
AT2 Receptor-Interacting Proteins ATIPs in the Brain. Int J Hypertens 2013; 2013:513047. [PMID: 23431421 PMCID: PMC3566609 DOI: 10.1155/2013/513047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/22/2012] [Indexed: 12/13/2022] Open
Abstract
A complete renin-angiotensin system (RAS) is locally expressed in the brain and fulfills important functions. Angiotensin II, the major biologically active peptide of the RAS, acts via binding to two main receptor subtypes designated AT1 and AT2. The present paper focuses on AT2 receptors, which have been reported to have neuroprotective effects on stroke, degenerative diseases, and cognitive functions. Our group has identified a family of AT2 receptor interacting proteins (ATIPs) comprising three major members (ATIP1, ATIP3, and ATIP4) with different intracellular localization. Of interest, all ATIP members are expressed in brain tissues and carry a conserved domain able to interact with the AT2 receptor intracellular tail, suggesting a role in AT2-mediated brain functions. We summarize here current knowledge on the ATIP family of proteins, and we present new experimental evidence showing interaction defects between ATIP1 and two mutant forms of the AT2 receptor identified in cases of mental retardation. These studies point to a functional role of the AT2/ATIP1 axis in cognition.
Collapse
|
50
|
Shum M, Pinard S, Guimond MO, Labbé SM, Roberge C, Baillargeon JP, Langlois MF, Alterman M, Wallinder C, Hallberg A, Carpentier AC, Gallo-Payet N. Angiotensin II type 2 receptor promotes adipocyte differentiation and restores adipocyte size in high-fat/high-fructose diet-induced insulin resistance in rats. Am J Physiol Endocrinol Metab 2013; 304:E197-210. [PMID: 23149621 PMCID: PMC3543572 DOI: 10.1152/ajpendo.00149.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study was aimed at establishing whether specific activation of angiotensin II (ANG II) type 2 receptor (AT2R) modulates adipocyte differentiation and function. In primary cultures of subcutaneous (SC) and retroperitoneal (RET) preadipocytes, both AT2R and AT1R were expressed at the mRNA and protein level. Cells were stimulated with ANG II or the AT2R agonist C21/M24, alone or in the presence of the AT1R antagonist losartan or the AT2R antagonist PD123,319. During differentiation, C21/M24 increased PPARγ expression in both RET and SC preadipocytes while the number of small lipid droplets and lipid accumulation solely increased in SC preadipocytes. In mature adipocytes, C21/M24 decreased the mean size of large lipid droplets. Upon abolishment of AT2R expression using AT2R-targeted shRNAs, expressions of AT2R, aP2, and PPARγ remained very low, and cells were unable to differentiate. In Wistar rats fed a 6-wk high-fat/high-fructose (HFHF) diet, a significant shift toward larger adipocytes was observed in RET and SC adipose tissue depots. C21/M24 treatments for 6 wk restored normal adipocyte size distribution in both these tissue depots. Moreover, C21/M24 and losartan decreased hyperinsulinemia and improved insulin sensitivity impaired by HFHF diet. A strong correlation between adipocyte size area and glucose infusion rate during euglycemic-hyperinsulinemic clamp was observed. These results indicate that AT2R is involved in early adipocyte differentiation, while in mature adipocytes and in a model of insulin resistance AT2R activation restores normal adipocyte morphology and improves insulin sensitivity.
Collapse
MESH Headings
- Adipocytes/drug effects
- Adipocytes/metabolism
- Adipocytes/pathology
- Adipocytes/physiology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Size/drug effects
- Cells, Cultured
- Diet, High-Fat/adverse effects
- Dietary Carbohydrates/adverse effects
- Dietary Fats/adverse effects
- Fructose/adverse effects
- Insulin Resistance/genetics
- Insulin Resistance/physiology
- Male
- RNA, Small Interfering/pharmacology
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Receptor, Angiotensin, Type 2/physiology
Collapse
Affiliation(s)
- Michaël Shum
- Division of Endocrinology, Department of Medicine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|