1
|
Abuduaini Y, Chen W, Kong XZ. Handedness in Alzheimer's disease: A systematic review. Brain Res 2024; 1840:149131. [PMID: 39053686 DOI: 10.1016/j.brainres.2024.149131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/22/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Handedness has traditionally been employed as a proxy of brain lateralization in research. Alzheimer's disease (AD) manifests as a neurodegenerative disorder characterized by impairments across various neuropsychological functions, including visuospatial and language, many of which exhibit lateralization in the human brain. While previous studies have investigated the relationship between AD and handedness, findings have been inconsistent. This article aims to provide an up-to-date overview of studies investigating hand preference in AD and the subtypes, specifically early- and late-onset AD. Through a synthesis of these studies, we conclude that handedness currently lacks utility as a diagnostic biomarker for AD and its subtypes, and this is further supported by the meta-analytic results based on data from over 10,000 AD patients. We emphasize the necessity for future research endeavors, particularly those leveraging advanced neuroimaging techniques to explore the role of brain asymmetry in AD.
Collapse
Affiliation(s)
- Yilamujiang Abuduaini
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiang-Zhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China; Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Li YB, Fu Q, Guo M, Du Y, Chen Y, Cheng Y. MicroRNAs: pioneering regulators in Alzheimer's disease pathogenesis, diagnosis, and therapy. Transl Psychiatry 2024; 14:367. [PMID: 39256358 PMCID: PMC11387755 DOI: 10.1038/s41398-024-03075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
This article delves into Alzheimer's disease (AD), a prevalent neurodegenerative condition primarily affecting the elderly. It is characterized by progressive memory and cognitive impairments, severely disrupting daily life. Recent research highlights the potential involvement of microRNAs in the pathogenesis of AD. MicroRNAs (MiRNAs), short non-coding RNAs comprising 20-24 nucleotides, significantly influence gene regulation by hindering translation or promoting degradation of target genes. This review explores the role of specific miRNAs in AD progression, focusing on their impact on β-amyloid (Aβ) peptide accumulation, intracellular aggregation of hyperphosphorylated tau proteins, mitochondrial dysfunction, neuroinflammation, oxidative stress, and the expression of the APOE4 gene. Our insights contribute to understanding AD's pathology, offering new avenues for identifying diagnostic markers and developing novel therapeutic targets.
Collapse
Affiliation(s)
- Yao-Bo Li
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Qiang Fu
- Institute of National Security, Minzu University of China, Beijing, China
| | - Mei Guo
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Institute of National Security, Minzu University of China, Beijing, China
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China.
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
- Institute of National Security, Minzu University of China, Beijing, China.
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China.
| |
Collapse
|
3
|
Zamboni G, Maramotti R, Salemme S, Tondelli M, Adani G, Vinceti G, Carbone C, Filippini T, Vinceti M, Pagnoni G, Chiari A. Age-specific prevalence of the different clinical presentations of AD and FTD in young-onset dementia. J Neurol 2024; 271:4326-4335. [PMID: 38643445 PMCID: PMC11233291 DOI: 10.1007/s00415-024-12364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Studies have shown that the prevalence of all-variants Alzheimer's disease (AD) and frontotemporal dementia (FTD) both increase with age, even before the age of 65. However, it is not known whether their different clinical presentations all increase in prevalence with age in the same way. METHODS We studied the prevalence of the different clinical presentations of young-onset AD and FTD by 5-year age groups in a population-based study identifying all dementia patients with a diagnosis of AD and FTD and symptoms onset before age 65 in the Modena province, Italy. By using regression models of cumulative occurrences, we also estimated age-specific prevalence and compared the growth curves of the clinical presentations. RESULTS The prevalence of all-variants AD increased with age, from 18/1,000,000 in the 40-44 age group to 1411/1,000,000 in the 60-64 age group. The prevalence of all-variants FTD also increased with age, from 18/1,000,000 to 866/1,000,000. An estimation of age-specific prevalence functions of each clinical presentation showed that atypical non-amnestic AD and aphasic FTD grew the most in early ages, followed by the behavioural variant of FTD (bvFTD). Then, around the age of 60, amnestic AD took over and its age-specific prevalence continued to increase disproportionally compared to all the other clinical variants of AD and FTD, which, instead, started to decrease in prevalence. CONCLUSIONS Amnestic AD is the clinical presentation that increases the most with advancing age, followed by bvFTD, suggesting that there is a differential vulnerability to the effect of ageing within the same neurodegenerative disease.
Collapse
Affiliation(s)
- Giovanna Zamboni
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Via Giardini 1355, 41126, Modena, Italy.
- Neurologia, Azienda Ospedaliero Universitaria di Modena, Modena, Italy.
| | - Riccardo Maramotti
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Via Giardini 1355, 41126, Modena, Italy
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, Modena, Italy
| | - Simone Salemme
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Via Giardini 1355, 41126, Modena, Italy
| | - Manuela Tondelli
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Via Giardini 1355, 41126, Modena, Italy
- Neurologia, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Giorgia Adani
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Via Giardini 1355, 41126, Modena, Italy
| | - Giulia Vinceti
- Neurologia, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Chiara Carbone
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Via Giardini 1355, 41126, Modena, Italy
| | - Tommaso Filippini
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Via Giardini 1355, 41126, Modena, Italy
| | - Marco Vinceti
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Via Giardini 1355, 41126, Modena, Italy
| | - Giuseppe Pagnoni
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Via Giardini 1355, 41126, Modena, Italy
| | - Annalisa Chiari
- Neurologia, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| |
Collapse
|
4
|
Volkmer A, Cross L, Highton L, Jackson C, Smith C, Brotherhood E, Harding EV, Mummery C, Rohrer J, Weil R, Yong K, Crutch S, Hardy CJD. 'Communication is difficult': Speech, language and communication needs of people with young onset or rarer forms of non-language led dementia. INTERNATIONAL JOURNAL OF LANGUAGE & COMMUNICATION DISORDERS 2024; 59:1553-1577. [PMID: 38329409 DOI: 10.1111/1460-6984.13018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND People with behavioural variant frontotemporal dementia, Lewy body dementia, posterior cortical atrophy and young onset Alzheimer's disease may experience language and communication difficulties. However, the role of speech and language interventions for people with these non-language led dementias has received little attention. AIMS This study aimed to explore the experiences and perspectives of people living with these conditions, and their families, regarding their language and communication difficulties and how speech and language therapy could address these needs. METHODS This study employed a qualitative design to explore the experiences of people living with or caring for somebody with behavioural variant frontotemporal dementia, Lewy body dementia, posterior cortical atrophy or young onset Alzheimer's disease, and to understand their opinions about speech and language therapy. Participants were recruited from a support service connected to a dementia clinic to attend one of five focus group meetings. Videorecorded focus groups and interviews were transcribed, and reflexive thematic analysis was used to analyse data from people affected by each type of dementia. RESULTS A total of 25 participants were recruited to the study, with representation across the different forms of non-language led dementias. The four main themes identified were: (1) communication difficulties as a key difficulty, (2) loss and loneliness, (3) speech and language therapy, and (4) the role of the caregiver. Sixteen subthemes were also identified which highlighted individual issues across disease types. DISCUSSION Although all the forms of dementia studied here are not considered to be language-led, people with these conditions and/or their care partners identified speech, language and communication as common challenges. These communication difficulties were reported to have a negative impact on their social participation and mental health and participants felt speech and language interventions could help. There is a need for research exploring speech and language interventions developed for and with people with non-language led dementias and their care partners, to ensure they meet the needs of the people they are designed for. WHAT THIS PAPER ADDS What is already known on the subject People with primary progressive aphasia present with speech, language and communication difficulties, and several speech and language interventions have been developed to meet the needs of this population. However, people with non-language led dementias may also experience speech, language and communication difficulties, and little is known about interventions that may address these difficulties. What this paper adds to existing knowledge People living with or caring for somebody with behavioural variant frontotemporal dementia, Lewy body dementia, posterior cortical atrophy and young onset Alzheimer's disease report experiencing speech, language and communication difficulties that impact on the person with dementia's social participation and mood. Participants in this study also shared their opinions about how speech and language interventions could help, from the earliest stages of the disease. What are the potential or actual clinical implications of this work? Speech and language therapists need to address the individual speech, language and communication needs of people with dementias, even those that are not thought to be language-led. Current speech and language therapy service provision does not meet the needs of people with non-language led dementias and further research is required to develop interventions and services to meet these needs.
Collapse
Affiliation(s)
- Anna Volkmer
- Psychology and Language Sciences, University College London, London, UK
| | - Lisa Cross
- Psychology and Language Sciences, University College London, London, UK
- King's College Hospital NHS Foundation Trust, London, UK
| | - Lily Highton
- Psychology and Language Sciences, University College London, London, UK
- Whittington Health NHS Trust, London, UK
| | - Connie Jackson
- Psychology and Language Sciences, University College London, London, UK
- Guys and St Thomas' NHS Foundation Trust, London, UK
| | - Chloe Smith
- Psychology and Language Sciences, University College London, London, UK
- Guys and St Thomas' NHS Foundation Trust, London, UK
| | - Emilie Brotherhood
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Emma V Harding
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Cath Mummery
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jonathan Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rimona Weil
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Keir Yong
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sebastian Crutch
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Chris J D Hardy
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
5
|
Phillips JS, Adluru N, Chung MK, Radhakrishnan H, Olm CA, Cook PA, Gee JC, Cousins KAQ, Arezoumandan S, Wolk DA, McMillan CT, Grossman M, Irwin DJ. Greater white matter degeneration and lower structural connectivity in non-amnestic vs. amnestic Alzheimer's disease. Front Neurosci 2024; 18:1353306. [PMID: 38567286 PMCID: PMC10986184 DOI: 10.3389/fnins.2024.1353306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Multimodal evidence indicates Alzheimer's disease (AD) is characterized by early white matter (WM) changes that precede overt cognitive impairment. WM changes have overwhelmingly been investigated in typical, amnestic mild cognitive impairment and AD; fewer studies have addressed WM change in atypical, non-amnestic syndromes. We hypothesized each non-amnestic AD syndrome would exhibit WM differences from amnestic and other non-amnestic syndromes. Materials and methods Participants included 45 cognitively normal (CN) individuals; 41 amnestic AD patients; and 67 patients with non-amnestic AD syndromes including logopenic-variant primary progressive aphasia (lvPPA, n = 32), posterior cortical atrophy (PCA, n = 17), behavioral variant AD (bvAD, n = 10), and corticobasal syndrome (CBS, n = 8). All had T1-weighted MRI and 30-direction diffusion-weighted imaging (DWI). We performed whole-brain deterministic tractography between 148 cortical and subcortical regions; connection strength was quantified by tractwise mean generalized fractional anisotropy. Regression models assessed effects of group and phenotype as well as associations with grey matter volume. Topological analyses assessed differences in persistent homology (numbers of graph components and cycles). Additionally, we tested associations of topological metrics with global cognition, disease duration, and DWI microstructural metrics. Results Both amnestic and non-amnestic patients exhibited lower WM connection strength than CN participants in corpus callosum, cingulum, and inferior and superior longitudinal fasciculi. Overall, non-amnestic patients had more WM disease than amnestic patients. LvPPA patients had left-lateralized WM degeneration; PCA patients had reductions in connections to bilateral posterior parietal, occipital, and temporal areas. Topological analysis showed the non-amnestic but not the amnestic group had more connected components than controls, indicating persistently lower connectivity. Longer disease duration and cognitive impairment were associated with more connected components and fewer cycles in individuals' brain graphs. Discussion We have previously reported syndromic differences in GM degeneration and tau accumulation between AD syndromes; here we find corresponding differences in WM tracts connecting syndrome-specific epicenters. Determining the reasons for selective WM degeneration in non-amnestic AD is a research priority that will require integration of knowledge from neuroimaging, biomarker, autopsy, and functional genetic studies. Furthermore, longitudinal studies to determine the chronology of WM vs. GM degeneration will be key to assessing evidence for WM-mediated tau spread.
Collapse
Affiliation(s)
- Jeffrey S. Phillips
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Moo K. Chung
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Hamsanandini Radhakrishnan
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher A. Olm
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Philip A. Cook
- Penn Image Computing and Science Laboratory, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - James C. Gee
- Penn Image Computing and Science Laboratory, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Katheryn A. Q. Cousins
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sanaz Arezoumandan
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David A. Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Memory Center, University of Pennsylvania Health System, Philadelphia, PA, United States
| | - Corey T. McMillan
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David J. Irwin
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
6
|
Kovalenko EA, Makhnovich EV, Bogolepova AN, Osinovskaya NA, Beregov MM. [Features of the clinical and neuroimaging picture in patients with early-onset Alzheimer's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:56-63. [PMID: 38696152 DOI: 10.17116/jnevro202412404256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The most common cause of severe cognitive impairment in adults is Alzheimer's disease (AD). Depending on the age of onset, AD is divided into early (<65 years) and late (≥65 years) forms. Early-onset AD (EOAD) is significantly less common than later-onset AD (LOAD) and accounts for only about 5-10% of cases. However, its medical and social significance, as a disease leading to loss of ability to work and legal capacity, as well as premature death in patients aged 40-64 years, is extremely high. Patients with EOAD compared with LOAD have a greater number of atypical clinical variants - 25% and 6-12.5%, respectively, which complicates the differential diagnosis of EOAD with other neurodegenerative diseases. However, the typical classical amnestic variant predominates in both EOAD and LOAD. Also, patients with EOAD have peculiarities according to neuroimaging data: when performing MRI of the brain, patients with EOAD often have more pronounced parietal atrophy and less pronounced hippocampal atrophy compared to patients with LOAD. The article pays attention to the features of the clinical and neuroimaging data in patients with EOAD; a case of a patient with EOAD is presented.
Collapse
Affiliation(s)
- E A Kovalenko
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - E V Makhnovich
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - A N Bogolepova
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - N A Osinovskaya
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - M M Beregov
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| |
Collapse
|
7
|
AlWazan BA, Garcia-Cordero I, Couto B, Monteiro ML, Tsang MY, Antwi J, Sasitharan J, Bhakta P, Kovacs GG, Fox S, Tang-Wai DF, Lang AE, Tartaglia MC. Investigating differences in young- and late-onset progressive supranuclear palsy. J Neurol 2023; 270:6103-6112. [PMID: 37670149 DOI: 10.1007/s00415-023-11976-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND The impact of age of onset on the presentation of progressive supranuclear palsy phenotypes is not well studied. We hypothesized that there is difference in presentation and phenotype between young- and late-onset PSP. OBJECTIVES Our aim was to compare phenotypes and rate of change in disability between young-onset PSP (YOPSP) and late-onset PSP (LOPSP). METHODS Retrospective data of patients seen in the Rossy PSP Centre from March 2014 to April 2022 with clinical diagnosis of PSP as per the MDS 2017 diagnostic criteria were examined. We used cut-off age of 65 years to categorize the patients into YOPSP and LOPSP. We compared the prevalence of phenotypes, presenting symptoms, and MDS core criteria between the two groups. The severity of disease between the two groups was measured using PSP-RS. RESULTS We found 107 patients with clinical diagnosis of PSP as per MDS criteria, a third were defined as YOPSP. PSP speech/language (SL) phenotype was more prevalent in YOPSP (18% vs 0%, p < 0.001). Aphasia was significantly higher in YOPSP (16% vs 1.4%, p = 0.03). The speech and language dysfunction (C1) core criteria were more prevalent in YOPSP (33.3% vs 12.2%, p = 0.05). Longitudinal analysis of PSP-RS showed worsening of bulbar total score at 6 months in YOPSP (t (38) = 2.87; p = 0.05). CONCLUSION Our study revealed that YOPSP are more likely to present with a speech and language variant. Our results highlight that age of onset may predict PSP phenotypes, which holds both clinical and prognostic importance.
Collapse
Affiliation(s)
- Batoul A AlWazan
- Memory Clinic, Toronto Western Hospital, Toronto, ON, Canada.
- Geriatric Unit, Department of Medicine, Mubarak Al Kabeer- Hospital, Jabriya, Kuwait.
| | - Indira Garcia-Cordero
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Blas Couto
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO-CONICET-Favaloro University Hospital, Buenos Aires, Argentina
| | - Marta Lamartine Monteiro
- Memory Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Neurology Department, CHU Tivoli, La Louvière, Belgium
| | - Michelle Y Tsang
- Division of Neurology, Department of Medicine, University Health Network and the University of Toronto, 399 Bathurst St. WW 5-449, Toronto, ON, M5T 2S8, Canada
| | - Jeffrey Antwi
- Edmond J. Safra Program in Parkinson's Disease, Rossy Progressive Supranuclear Palsy Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Jonathan Sasitharan
- Edmond J. Safra Program in Parkinson's Disease, Rossy Progressive Supranuclear Palsy Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Puja Bhakta
- Edmond J. Safra Program in Parkinson's Disease, Rossy Progressive Supranuclear Palsy Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, University Health Network and the University of Toronto, 399 Bathurst St. WW 5-449, Toronto, ON, M5T 2S8, Canada
- Edmond J. Safra Program in Parkinson's Disease, Rossy Progressive Supranuclear Palsy Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Susan Fox
- Division of Neurology, Department of Medicine, University Health Network and the University of Toronto, 399 Bathurst St. WW 5-449, Toronto, ON, M5T 2S8, Canada
- Edmond J. Safra Program in Parkinson's Disease, Rossy Progressive Supranuclear Palsy Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - David F Tang-Wai
- Division of Neurology, Department of Medicine, University Health Network and the University of Toronto, 399 Bathurst St. WW 5-449, Toronto, ON, M5T 2S8, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Toronto Dementia Research Alliance, Toronto, ON, Canada
- Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Rossy Progressive Supranuclear Palsy Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Maria Carmela Tartaglia
- Division of Neurology, Department of Medicine, University Health Network and the University of Toronto, 399 Bathurst St. WW 5-449, Toronto, ON, M5T 2S8, Canada.
- Edmond J. Safra Program in Parkinson's Disease, Rossy Progressive Supranuclear Palsy Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada.
- Neurology Department, CHU Tivoli, La Louvière, Belgium.
| |
Collapse
|
8
|
Hammers DB, Eloyan A, Taurone A, Thangarajah M, Beckett L, Gao S, Kirby K, Aisen P, Dage JL, Foroud T, Griffin P, Grinberg LT, Jack CR, Kramer J, Koeppe R, Kukull WA, Mundada NS, Joie RL, Soleimani-Meigooni DN, Iaccarino L, Murray ME, Nudelman K, Polsinelli AJ, Rumbaugh M, Toga A, Touroutoglou A, Vemuri P, Atri A, Day GS, Duara R, Graff-Radford NR, Honig LS, Jones DT, Masdeu J, Mendez MF, Womack K, Musiek E, Onyike CU, Riddle M, Rogalski E, Salloway S, Sha SJ, Turner RS, Wingo TS, Wolk DA, Carrillo MC, Dickerson BC, Rabinovici GD, Apostolova LG. Profiling baseline performance on the Longitudinal Early-Onset Alzheimer's Disease Study (LEADS) cohort near the midpoint of data collection. Alzheimers Dement 2023; 19 Suppl 9:S8-S18. [PMID: 37256497 PMCID: PMC10806768 DOI: 10.1002/alz.13160] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/01/2023]
Abstract
OBJECTIVE The Longitudinal Early-Onset Alzheimer's Disease Study (LEADS) seeks to provide comprehensive understanding of early-onset Alzheimer's disease (EOAD; onset <65 years), with the current study profiling baseline clinical, cognitive, biomarker, and genetic characteristics of the cohort nearing the data-collection mid-point. METHODS Data from 371 LEADS participants were compared based on diagnostic group classification (cognitively normal [n = 89], amyloid-positive EOAD [n = 212], and amyloid-negative early-onset non-Alzheimer's disease [EOnonAD; n = 70]). RESULTS Cognitive performance was worse for EOAD than other groups, and EOAD participants were apolipoprotein E (APOE) ε4 homozygotes at higher rates. An amnestic presentation was common among impaired participants (81%), with several clinical phenotypes present. LEADS participants generally consented at high rates to optional trial procedures. CONCLUSIONS We present the most comprehensive baseline characterization of sporadic EOAD in the United States to date. EOAD presents with widespread cognitive impairment within and across clinical phenotypes, with differences in APOE ε4 allele carrier status appearing to be relevant. HIGHLIGHTS Findings represent the most comprehensive baseline characterization of sporadic early-onset Alzheimer's disease (EOAD) to date. Cognitive impairment was widespread for EOAD participants and more severe than other groups. EOAD participants were homozygous apolipoprotein E (APOE) ε4 carriers at higher rates than the EOnonAD group. Amnestic presentation predominated in EOAD and EOnonAD participants, but other clinical phenotypes were present.
Collapse
Affiliation(s)
- Dustin B. Hammers
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ani Eloyan
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Providence, Rhode Island, USA
| | - Alexander Taurone
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Providence, Rhode Island, USA
| | - Maryanne Thangarajah
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Providence, Rhode Island, USA
| | - Laurel Beckett
- Department of Public Health Sciences, University of California – Davis, Davis, California, USA
| | - Sujuan Gao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kala Kirby
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Paul Aisen
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego, California, USA
| | - Jeffrey L. Dage
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Percy Griffin
- Medical & Scientific Relations Division, Alzheimer’s Association, Chicago, Illinois, USA
| | - Lea T. Grinberg
- Department of Pathology, University of California – San Francisco, San Francisco, California, USA
- Department of Neurology, University of California – San Francisco, San Francisco, California, USA
| | | | - Joel Kramer
- Department of Neurology, University of California – San Francisco, San Francisco, California, USA
| | - Robert Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Walter A. Kukull
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Nidhi S Mundada
- Department of Neurology, University of California – San Francisco, San Francisco, California, USA
| | - Renaud La Joie
- Department of Neurology, University of California – San Francisco, San Francisco, California, USA
| | | | - Leonardo Iaccarino
- Department of Neurology, University of California – San Francisco, San Francisco, California, USA
| | | | - Kelly Nudelman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Angelina J. Polsinelli
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Malia Rumbaugh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Arthur Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Gregory S. Day
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Ranjan Duara
- Wien Center for Alzheimer’s Disease and Memory Disorders, Mount Sinai Medical Center, Miami, Florida, USA
| | | | - Lawrence S. Honig
- Taub Institute and Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - David T. Jones
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joseph Masdeu
- Nantz National Alzheimer Center, Houston Methodist and Weill Cornell Medicine, Houston, Texas, USA
| | - Mario F. Mendez
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kyle Womack
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Erik Musiek
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Chiadi U. Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Meghan Riddle
- Department of Neurology, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Emily Rogalski
- Department of Psychiatry and Behavioral Sciences, Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Steven Salloway
- Department of Neurology, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Sharon J. Sha
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, California, USA
| | | | - Thomas S. Wingo
- Department of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David A. Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria C. Carrillo
- Medical & Scientific Relations Division, Alzheimer’s Association, Chicago, Illinois, USA
| | - Bradford C. Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gil D. Rabinovici
- Department of Neurology, University of California – San Francisco, San Francisco, California, USA
| | - Liana G. Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine Indianapolis, Indianapolis, Indiana, USA
| | | |
Collapse
|
9
|
Yliranta A, Karjalainen VL, Nuorva J, Ahmasalo R, Jehkonen M. Apraxia testing to distinguish early Alzheimer's disease from psychiatric causes of cognitive impairment. Clin Neuropsychol 2023; 37:1629-1650. [PMID: 36829305 DOI: 10.1080/13854046.2023.2181223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023]
Abstract
Objective: Mood- and stress-related disorders commonly cause attentional and memory impairments in middle-aged individuals. In memory testing, these impairments can be mistakenly interpreted as symptoms of dementia; thus, more reliable diagnostic approaches are needed. The present work defines the discriminant accuracy of the Dementia Apraxia Test (DATE) between psychiatric conditions and early-onset Alzheimer's disease (AD) on its own and in combination with memory tests. Method: The consecutive sample included 50-70-year-old patients referred to dementia investigations for recent cognitive and/or affective symptoms. The DATE was administered and scored as a blinded measurement, and a receiver operating curve analysis was used to define the optimal diagnostic cut-off score. Results: A total of 24 patients were diagnosed with probable AD (mean age 61 ± 4) and 23 with a psychiatric condition (mean age 57 ± 4). The AD patients showed remarkable limb apraxia, but the psychiatric patients mainly performed at a healthy level on the DATE. The test showed a total discriminant accuracy of 87% for a total sum cut-off of 47 (sensitivity 79% and specificity 96%). The limb subscale alone reached an accuracy of 91% for a cut-off of 20 (sensitivity 83% and specificity 100%). All memory tests were diagnostically less accurate, while the combination of the limb praxis subscale and a verbal episodic memory test suggested a correct diagnosis in all but one patient. Conclusions: Apraxia testing may improve the accuracy of differentiation between AD and psychiatric aetiologies. Its potential in severe and chronic psychiatric conditions should be examined in the future.
Collapse
Affiliation(s)
- Aino Yliranta
- Faculty of Social Sciences, Tampere University
- Neurology Clinic, Lapland Central Hospital
| | | | | | | | | |
Collapse
|
10
|
Mantyh WG, Cochran JN, Taylor JW, Broce IJ, Geier EG, Bonham LW, Anderson AG, Sirkis DW, Joie RL, Iaccarino L, Chaudhary K, Edwards L, Strom A, Grant H, Allen IE, Miller ZA, Gorno‐Tempini ML, Kramer JH, Miller BL, Desikan RS, Rabinovici GD, Yokoyama JS. Early-onset Alzheimer's disease explained by polygenic risk of late-onset disease? ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12482. [PMID: 37780862 PMCID: PMC10535074 DOI: 10.1002/dad2.12482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Early-onset Alzheimer's disease (AD) is highly heritable, yet only 10% of cases are associated with known pathogenic mutations. For early-onset AD patients without an identified autosomal dominant cause, we hypothesized that their early-onset disease reflects further enrichment of the common risk-conferring single nucleotide polymorphisms associated with late-onset AD. We applied a previously validated polygenic hazard score for late-onset AD to 193 consecutive patients diagnosed at our tertiary dementia referral center with symptomatic early-onset AD. For comparison, we included 179 participants with late-onset AD and 70 healthy controls. Polygenic hazard scores were similar in early- versus late-onset AD. The polygenic hazard score was not associated with age-of-onset or disease biomarkers within early-onset AD. Early-onset AD does not represent an extreme enrichment of the common single nucleotide polymorphisms associated with late-onset AD. Further exploration of novel genetic risk factors of this highly heritable disease is warranted.Highlights: There is a unique genetic architecture of early- versus late-onset Alzheimer's disease (AD).Late-onset AD polygenic risk is not an explanation for early-onset AD.Polygenic risk of late-onset AD does not predict early-onset AD biology.Unique genetic architecture of early- versus late-onset AD parallels AD heterogeneity.
Collapse
Affiliation(s)
- William G. Mantyh
- Department of NeurologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | | | - Iris J. Broce
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Ethan G. Geier
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Luke W. Bonham
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | - Daniel W. Sirkis
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Renaud La Joie
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Leonardo Iaccarino
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kiran Chaudhary
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lauren Edwards
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Amelia Strom
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Harli Grant
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Isabel E. Allen
- Department of Epidemiology and BiostatisticsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Zachary A. Miller
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Marilu L. Gorno‐Tempini
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Joel H. Kramer
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Bruce L. Miller
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Rahul S. Desikan
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Gil D. Rabinovici
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Life Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Jennifer S. Yokoyama
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
11
|
Collins JD, Henley SMD, Suárez-González A. A systematic review of the prevalence of depression, anxiety, and apathy in frontotemporal dementia, atypical and young-onset Alzheimer's disease, and inherited dementia. Int Psychogeriatr 2023; 35:457-476. [PMID: 32684177 DOI: 10.1017/s1041610220001118] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Depression, anxiety, and apathy are the most commonly reported neuropsychiatric symptoms (NPS) in Alzheimer's disease (AD). Understanding their prevalence in rarer dementias such as frontotemporal dementia (FTD), primary progressive aphasia (PPA), posterior cortical atrophy (PCA), young-onset AD (YOAD), and inherited dementias has implications for both clinical practice and research. In this study, we aimed to examine the current state of knowledge of the prevalence of these three NPS in less prevalent dementias. DESIGN We conducted a systematic review based on searches of EMBASE, PsycINFO, and PubMed up to September 2019. RESULTS 47 articles meeting inclusion criteria were identified. Depression, anxiety, and apathy were commonly reported across the phenotypes studied but their prevalence showed large variation between studies. Apathy showed the highest reported frequency in FTD (50-100% across studies), behavioral variant frontotemporal dementia (bvFTD) (73-100%), and YOAD (44-100%). Anxiety was frequently reported in FTD (0-100%) and bvFTD (19-63%). Depression showed the highest prevalence in FTD (7-69%) and YOAD (11-55%). Among the three variants of PPA, sv-PPA is the one most investigated (seven articles). Three or fewer articles were identified examining NPS in the remaining PPA variants, PCA, familial AD, and familial FTD. Inconsistency in the tools used to measure symptoms and small sample sizes were common methodological limitations. CONCLUSIONS Future studies should consider the inclusion of larger sample sizes (e.g. through multicenter collaborations) and the use of harmonized protocols that include the combination of caregiver and patient-derived measures and symptom-specific questionnaires. More research is needed on the phenotype-specific barriers and facilitators for people living with dementia to successfully engage in self-reports of NPS.
Collapse
Affiliation(s)
- Jessica D Collins
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Susie M D Henley
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Aida Suárez-González
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
12
|
Seath P, Macedo-Orrego LE, Velayudhan L. Clinical characteristics of early-onset versus late-onset Alzheimer's disease: a systematic review and meta-analysis. Int Psychogeriatr 2023:1-17. [PMID: 37431284 DOI: 10.1017/s1041610223000509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
OBJECTIVES A number of studies have compared Alzheimer's disease (AD), the commonest form of dementia, based on their age of onset, i.e. before the age of 65 years (early-onset AD, EO-AD) to those developing after 65 years of age (late-onset AD, LO-AD), but the differences are not clear. We performed a systematic review and meta-analysis to compare clinical characteristics between EO-AD and LO-AD. DESIGN, MEASUREMENTS, AND PARTICIPANTS Medline, Embase, PsycINFO, and CINAHL databases were systematically searched for studies comparing time to diagnosis, cognitive scores, annual cognitive decline, activities of daily living (ADLs), neuropsychiatric symptoms (NPS), quality of life (QoL), and survival time for EO-AD and LO-AD patients. RESULTS Forty-two studies were included (EO-AD participants n = 5,544; LO-AD participants n = 16,042). An inverse variance method with random effects models was used to calculate overall effect estimates for each outcome. People with EO-AD had significantly poorer baseline cognitive performance and faster cognitive decline but longer survival times than people with LO-AD. There was no evidence that EO-AD patients differ from people with LO-AD in terms of symptom onset to diagnosis time, ADLs, and NPS. There were insufficient data to estimate overall effects of differences in QoL in EO-AD compared to LO-AD. CONCLUSIONS Our findings suggest that EO-AD differs from LO-AD in baseline cognition, cognitive decline, and survival time but otherwise has similar clinical characteristics to LO-AD. Larger studies using standardized questionnaires focusing on the clinical presentations are needed to better understand the impact of age of onset in AD.
Collapse
Affiliation(s)
- Paige Seath
- Academic Psychiatry Division, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Luis Enrique Macedo-Orrego
- Departamento de Psiquiatría, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Departamento de atencion especializada de adultos mayores, Instituto Nacional de Salud Mental, Lima, Peru
| | - Latha Velayudhan
- Academic Psychiatry Division, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Cost-effectiveness of Alzheimer's disease CSF biomarkers and amyloid-PET in early-onset cognitive impairment diagnosis. Eur Arch Psychiatry Clin Neurosci 2023; 273:243-252. [PMID: 35710952 DOI: 10.1007/s00406-022-01439-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
This study aimed at determining the cost-effectiveness of amyloid-positron emission tomography (PET) compared to Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers (amyloid-β42, total-Tau and phosphorylated-Tau) for the diagnosis of AD in patients with early-onset cognitive impairment. A decision tree model using a national health care perspective was developed to compare the costs and effectiveness associated with Amyloid-PET and AD CSF biomarkers. Available evidence from the literature and primary data from Hospital Clínic de Barcelona were used to inform the model and calculate the efficiency of these diagnostic alternatives. Medical visits and diagnostic procedures were considered and reported in €2020. We calculated the incremental cost-effectiveness ratio to measure the cost per % of correct diagnoses detected and we perform one-way deterministic and probabilistic sensitivity analyses to assess the uncertainty of these results. Compared with AD CSF biomarkers, Amyloid-PET resulted in 7.40% more correctly diagnosed cases of AD, with an incremental total mean cost of €146,854.80 per 100 cases. We found a 50% of probability that Amyloid-PET was cost-effective for a willingness to pay (WTP) of €19,840.39 per correct case detected. Using a WTP of €75,000, the probability that it is cost-effective reached a maximum of 76.9%, thus leading to a conclusion that Amyloid-PET is not a cost-effective technique compared to AD CSF biomarkers, unless the funder is willing to pay a minimum of €19,840.39 to detect one more correct case. Furthermore, obtaining CSF provides simultaneous information on amyloid β and tau biomarkers and allows other biomarkers to be analyzed at a relatively low cost.
Collapse
|
14
|
Cheyuo C, Germann J, Yamamoto K, Vetkas A, Loh A, Sarica C, Milano V, Zemmar A, Flouty O, Harmsen IE, Hodaie M, Kalia SK, Tang-Wai D, Lozano AM. Connectomic neuromodulation for Alzheimer's disease: A systematic review and meta-analysis of invasive and non-invasive techniques. Transl Psychiatry 2022; 12:490. [PMID: 36411282 PMCID: PMC9678946 DOI: 10.1038/s41398-022-02246-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
Abstract
Deep brain stimulation (DBS) and non-invasive neuromodulation are currently being investigated for treating network dysfunction in Alzheimer's Disease (AD). However, due to heterogeneity in techniques and targets, the cognitive outcome and brain network connectivity remain unknown. We performed a systematic review, meta-analysis, and normative functional connectivity to determine the cognitive outcome and brain networks of DBS and non-invasive neuromodulation in AD. PubMed, Embase, and Web of Science were searched using three concepts: dementia, brain connectome, and brain stimulation, with filters for English, human studies, and publication dates 1980-2021. Additional records from clinicaltrials.gov were added. Inclusion criteria were AD study with DBS or non-invasive neuromodulation and a cognitive outcome. Exclusion criteria were less than 3-months follow-up, severe dementia, and focused ultrasound intervention. Bias was assessed using Centre for Evidence-Based Medicine levels of evidence. We performed meta-analysis, with subgroup analysis based on type and age at neuromodulation. To determine the patterns of neuromodulation-induced brain network activation, we performed normative functional connectivity using rsfMRI of 1000 healthy subjects. Six studies, with 242 AD patients, met inclusion criteria. On fixed-effect meta-analysis, non-invasive neuromodulation favored baseline, with effect size -0.40(95% [CI], -0.73, -0.06, p = 0.02), while that of DBS was 0.11(95% [CI] -0.34, 0.56, p = 0.63), in favor of DBS. In patients ≥65 years old, DBS improved cognitive outcome, 0.95(95% [CI] 0.31, 1.58, p = 0.004), whereas in patients <65 years old baseline was favored, -0.17(95% [CI] -0.93, 0.58, p = 0.65). Functional connectivity regions were in the default mode (DMN), salience (SN), central executive (CEN) networks, and Papez circuit. The subgenual cingulate and anterior limb of internal capsule (ALIC) showed connectivity to all targets of neuromodulation. This meta-analysis provides level II evidence of a difference in response of AD patients to DBS, based on age at intervention. Brain stimulation in AD may modulate DMN, SN, CEN, and Papez circuit, with the subgenual cingulate and ALIC as potential targets.
Collapse
Affiliation(s)
- Cletus Cheyuo
- grid.231844.80000 0004 0474 0428Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON Canada
| | - Jurgen Germann
- grid.231844.80000 0004 0474 0428Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON Canada ,grid.231844.80000 0004 0474 0428Krembil Research Institute, Toronto, ON Canada
| | - Kazuaki Yamamoto
- grid.231844.80000 0004 0474 0428Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON Canada ,Functional Neurosurgery Center, Shonan Fujisawa Tokushukai Hospital, Fujisawa, Kanagawa Japan
| | - Artur Vetkas
- grid.231844.80000 0004 0474 0428Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON Canada ,grid.412269.a0000 0001 0585 7044Neurology Clinic, Department of Neurosurgery, Tartu University Hospital, University of Tartu, Tartu, Estonia
| | - Aaron Loh
- grid.231844.80000 0004 0474 0428Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON Canada
| | - Can Sarica
- grid.231844.80000 0004 0474 0428Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON Canada
| | - Vanessa Milano
- grid.414997.60000 0004 0450 2040JFK Neuroscience Institute, Edison, NJ USA
| | - Ajmal Zemmar
- grid.266623.50000 0001 2113 1622Department of Neurosurgery, University of Louisville, School of Medicine, Louisville, KY USA
| | - Oliver Flouty
- grid.170693.a0000 0001 2353 285XDepartment of Neurosurgery, University of South Florida, College of Medicine, Tampa, FL USA
| | - Irene E. Harmsen
- grid.231844.80000 0004 0474 0428Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON Canada
| | - Mojgan Hodaie
- grid.231844.80000 0004 0474 0428Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON Canada ,grid.231844.80000 0004 0474 0428Krembil Research Institute, Toronto, ON Canada
| | - Suneil K. Kalia
- grid.231844.80000 0004 0474 0428Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON Canada ,grid.231844.80000 0004 0474 0428Krembil Research Institute, Toronto, ON Canada
| | - David Tang-Wai
- grid.17063.330000 0001 2157 2938Department of Neurology, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON Canada
| | - Andres M. Lozano
- grid.231844.80000 0004 0474 0428Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON Canada ,grid.231844.80000 0004 0474 0428Krembil Research Institute, Toronto, ON Canada
| |
Collapse
|
15
|
Hyperconnectivity matters in early-onset Alzheimer's disease: a resting-state EEG connectivity study. Neurophysiol Clin 2022; 52:459-471. [DOI: 10.1016/j.neucli.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
|
16
|
Bolton CJ, Tam JW. Differential Involvement of the Locus Coeruleus in Early- and Late-Onset Alzheimer's Disease: A Potential Mechanism of Clinical Differences? J Geriatr Psychiatry Neurol 2022; 35:733-739. [PMID: 34496652 DOI: 10.1177/08919887211044755] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Sporadic early-onset Alzheimer's disease (sEOAD) is often associated with atypical clinical features, yet the cause of this heterogeneity remains unclear. This study investigated post-mortem atrophy of the locus coeruleus (LC) in sEOAD and late-onset Alzheimer's disease (LOAD). Levels of LC atrophy, as estimated by pathologist-rating of hypopigmentation, were compared between sEOAD (n = 115) and LOAD (n = 672) participants while controlling for other measures of pathological progression. Subsequent analyses compared low vs. high LC atrophy sEOAD subgroups on neuropsychological test performance. Results show nearly 4 times greater likelihood of higher LC atrophy in sEOAD as compared to LOAD (p < .005). sEOAD participants with greater LC atrophy displayed significantly worse performance on various baseline measures of attentional functioning (p < .05), despite similar global cognition (p = .25). These findings suggest the LC is an important potential driver of clinical and pathological heterogeneity in sEOAD.
Collapse
Affiliation(s)
- Corey J Bolton
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joyce W Tam
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
17
|
Pizzini FB, Conti E, Bianchetti A, Splendiani A, Fusco D, Caranci F, Bozzao A, Landi F, Gandolfo N, Farina L, Miele V, Trabucchi M, Frisoni GB, Bastianello S. Radiological assessment of dementia: the Italian inter-society consensus for a practical and clinically oriented guide to image acquisition, evaluation, and reporting. LA RADIOLOGIA MEDICA 2022; 127:998-1022. [PMID: 36070064 PMCID: PMC9508052 DOI: 10.1007/s11547-022-01534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Radiological evaluation of dementia is expected to increase more and more in routine practice due to both the primary role of neuroimaging in the diagnostic pathway and the increasing incidence of the disease. Despite this, radiologists often do not follow a disease-oriented approach to image interpretation, for several reasons, leading to reports of limited value to clinicians. In our work, through an intersocietal consensus on the main mandatory knowledge about dementia, we proposed a disease-oriented protocol to optimize and standardize the acquisition/evaluation/interpretation and reporting of radiological images. Our main purpose is to provide a practical guideline for the radiologist to help increase the effectiveness of interdisciplinary dialogue and diagnostic accuracy in daily practice. RESULTS We defined key clinical and imaging features of the dementias (A), recommended MRI protocol (B), proposed a disease-oriented imaging evaluation and interpretation (C) and report (D) with a glimpse to future avenues (E). The proposed radiological practice is to systematically evaluate and score atrophy, white matter changes, microbleeds, small vessel disease, consider the use of quantitative measures using commercial software tools critically, and adopt a structured disease-oriented report. In the expanding field of cognitive disorders, the only effective assessment approach is the standardized disease-oriented one, which includes a multidisciplinary integration of the clinical picture, MRI, CSF and blood biomarkers and nuclear medicine.
Collapse
Affiliation(s)
- Francesca B. Pizzini
- Radiology, Department of Diagnostic and Public Health, University of Verona, Piazzale L.A. Scuro, 10, 37100 Verona, Italy
| | - Enrico Conti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Angelo Bianchetti
- Department of Medicine and Rehabilitation, Clinical Institute S. Anna-Gruppo San Donato, Brescia, Italy
- Italian Society of Gerontology and Geriatrics (SIGG), Florence, Italy
- Italian Association of Psychogeriatrics (AIP), Brescia, Italy
| | - Alessandra Splendiani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Domenico Fusco
- Foundation Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ferdinando Caranci
- Department of Medicine of Precision, School of Medicine, “Luigi Vanvitelli” University of Campania, 80147 Naples, Italy
| | - Alessandro Bozzao
- NESMOS, Department of Neuroradiology, S. Andrea Hospital, University Sapienza, Rome, Italy
| | - Francesco Landi
- Foundation Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, Genoa, Italy
| | - Lisa Farina
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Vittorio Miele
- Dipartimento Di Radiodiagnostica Emergenza-Urgenza, Azienda Universitaria Careggi, Florence, Italy
| | - Marco Trabucchi
- Italian Society of Gerontology and Geriatrics (SIGG), Florence, Italy
- Italian Association of Psychogeriatrics (AIP), Brescia, Italy
- University of “Tor Vergata”, Rome, Italy
| | - Giovanni B. Frisoni
- Centre de La Mémoire, Geneva University and University Hospitals, 1205 Geneva, Switzerland
| | - Stefano Bastianello
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
18
|
Alegret M, Sotolongo-Grau O, de Antonio EE, Pérez-Cordón A, Orellana A, Espinosa A, Gil S, Jiménez D, Ortega G, Sanabria A, Roberto N, Hernández I, Rosende-Roca M, Tartari JP, Alarcon-Martin E, de Rojas I, Montrreal L, Morató X, Cano A, Rentz DM, Tárraga L, Ruiz A, Valero S, Marquié M, Boada M. Automatized FACEmemory® scoring is related to Alzheimer's disease phenotype and biomarkers in early-onset mild cognitive impairment: the BIOFACE cohort. Alzheimers Res Ther 2022; 14:43. [PMID: 35303916 PMCID: PMC8933921 DOI: 10.1186/s13195-022-00988-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/10/2022] [Indexed: 11/13/2022]
Abstract
Background FACEmemory® is the first computerized, self-administered verbal episodic memory test with voice recognition. It can be conducted under minimal supervision and contains an automatic scoring system to avoid administrator errors. Moreover, it is suitable for discriminating between cognitively healthy and amnestic mild cognitive impairment (MCI) individuals, and it is associated with Alzheimer’s disease (AD) cerebrospinal fluid (CSF) biomarkers. This study aimed to determine whether FACEmemory scoring is related to performance on classical memory tests and to AD biomarkers of brain magnetic resonance imaging (MRI) and CSF in patients with early-onset MCI (EOMCI). Methods Ninety-four patients with EOMCI from the BIOFACE study completed FACEmemory, classical memory tests (the Spanish version of the Word Free and Cued Selective Reminding Test -FCSRT-, the Word List from the Wechsler Memory Scale, third edition, and the Spanish version of the Rey–Osterrieth Complex Figure Test), and a brain MRI. Eighty-two individuals also underwent a lumbar puncture. Results FACEmemory scoring was moderately correlated with FCSRT scoring. With regard to neuroimaging MRI results, worse execution on FACEmemory was associated with lower cortical volume in the right prefrontal and inferior parietal areas, along with the left temporal and associative occipital areas. Moreover, the total FACEmemory score correlated with CSF AD biomarkers (Aβ1-42/Aβ1-40 ratio, p181-tau, and Aβ1-42/p181-tau ratio). When performance on FACEmemory was compared among the ATN classification groups, significant differences between the AD group and normal and SNAP groups were found. Conclusions FACEmemory is a promising tool for detecting memory deficits sensitive to early-onset AD, but it also allows the detection of memory-impaired cases due to other etiologies. Our findings suggest that FACEmemory scoring can detect the AD endophenotype and that it is also associated with AD-related changes in MRI and CSF in patients with EOMCI. The computerized FACEmemory tool might be an opportunity to facilitate early detection of MCI in younger people than 65, who have a growing interest in new technologies.
Collapse
Affiliation(s)
- Montserrat Alegret
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain. .,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Oscar Sotolongo-Grau
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ester Esteban de Antonio
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain
| | - Alba Pérez-Cordón
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain
| | - Adelina Orellana
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Espinosa
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Gil
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Jiménez
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain
| | - Gemma Ortega
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Angela Sanabria
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia Roberto
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Hernández
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Maitee Rosende-Roca
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain
| | - Juan Pablo Tartari
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain
| | - Emilio Alarcon-Martin
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Montrreal
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain
| | - Xavier Morató
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain
| | - Amanda Cano
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain
| | - Dorene M Rentz
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Lluís Tárraga
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Agustín Ruiz
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergi Valero
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Marquié
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Gran Via de Carles III, 85 bis, 08028, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
19
|
Mi Y, Qin Q, Xing Y, Tang Y. Capgras Syndrome as the Core Manifestation of Early-Onset Alzheimer’s Disease. J Alzheimers Dis 2022; 87:155-160. [PMID: 35253758 DOI: 10.3233/jad-215565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Capgras syndrome (CS) was usually considered a symptom of a functional disorder in the young, most commonly schizophrenia, or an organic disorder in the elderly. The occurrence of CS among early-onset Alzheimer’s disease (EOAD) is extremely rare. We describe a case in which the unrecognition of CS as part of EOAD resulted in a wrong psychiatric diagnosis and inappropriate treatment. This paper aims to acknowledge CS as an early or core manifestation and highlight EOAD as a differential diagnosis of mental disorders in young people, even without a remarkable family history.
Collapse
Affiliation(s)
- Yingxin Mi
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Yi Xing
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| |
Collapse
|
20
|
Smirnov DS, Salmon DP, Galasko D, Goodwill VS, Hansen LA, Zhao Y, Edland SD, Léger GC, Peavy GM, Jacobs DM, Rissman R, Pizzo DP, Hiniker A. Association of Neurofibrillary Tangle Distribution With Age at Onset-Related Clinical Heterogeneity in Alzheimer Disease: An Autopsy Study. Neurology 2022; 98:e506-e517. [PMID: 34810247 PMCID: PMC8826459 DOI: 10.1212/wnl.0000000000013107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/04/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Patients with earlier age at onset of sporadic Alzheimer disease (AD) are more likely than those with later onset to present with atypical clinical and cognitive features. We sought to determine whether this age-related clinical and cognitive heterogeneity is mediated by different topographic distributions of tau-aggregate neurofibrillary tangles (NFTs) or by variable amounts of concomitant non-AD neuropathology. METHODS The relative distribution of NFT density in hippocampus and midfrontal neocortex was calculated, and α-synuclein, TAR DNA binding protein 43 (TDP-43), and microvascular copathologies were staged, in patients with severe AD and age at onset of 51-60 (n = 40), 61-70 (n = 41), and >70 (n = 40) years. Regression, mediation, and mixed effects models examined relationships of pathologic findings with clinical features and longitudinal cognitive decline. RESULTS Patients with later age at onset of AD were less likely to present with nonmemory complaints (odds ratio [OR] 0.46 per decade, 95% confidence interval [CI] 0.22-0.88), psychiatric symptoms (β = -0.66, 95% CI -1.15 to -0.17), and functional impairment (β = -1.25, 95% CI -2.34 to -0.16). TDP-43 (OR 2.00, 95% CI 1.23-3.35) and microvascular copathology (OR 2.02, 95% CI 1.24-3.40) were more common in later onset AD, and α-synuclein copathology was not related to age at onset. NFT density in midfrontal cortex (β = -0.51, 95% CI -0.72 to -0.31) and midfrontal/hippocampal NFT ratio (β = -0.18, 95% CI -0.26 to -0.10) were lower in those with later age at onset. Executive function (β = 0.48, 95% CI 0.09-0.90) and visuospatial cognitive deficits (β = 0.97, 95% CI 0.46-1.46) were less impaired in patients with later age at onset. Mediation analyses showed that the effect of age at onset on severity of executive function deficits was mediated by midfrontal/hippocampal NFT ratio (β = 0.21, 95% CI 0.08-0.38) and not by concomitant non-AD pathologies. Midfrontal/hippocampal NFT ratio also mediated an association between earlier age at onset and faster decline on tests of global cognition, executive function, and visuospatial abilities. DISCUSSION Worse executive dysfunction and faster cognitive decline in people with sporadic AD with earlier rather than later age at onset is mediated by greater relative midfrontal neocortical to hippocampal NFT burden and not by concomitant non-AD neuropathology.
Collapse
Affiliation(s)
- Denis S Smirnov
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - David P Salmon
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Douglas Galasko
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Vanessa S Goodwill
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Lawrence A Hansen
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Yu Zhao
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Steven D Edland
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Gabriel C Léger
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Guerry M Peavy
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Diane M Jacobs
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Robert Rissman
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Donald P Pizzo
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Annie Hiniker
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA.
| |
Collapse
|
21
|
Differential associations between neocortical tau pathology and blood flow with cognitive deficits in early-onset vs late-onset Alzheimer's disease. Eur J Nucl Med Mol Imaging 2022; 49:1951-1963. [PMID: 34997294 PMCID: PMC9016024 DOI: 10.1007/s00259-021-05669-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022]
Abstract
Purpose Early-onset Alzheimer’s disease (EOAD) and late-onset Alzheimer’s disease (LOAD) differ in neuropathological burden and type of cognitive deficits. Assessing tau pathology and relative cerebral blood flow (rCBF) measured with [18F]flortaucipir PET in relation to cognition may help explain these differences between EOAD and LOAD. Methods Seventy-nine amyloid-positive individuals with a clinical diagnosis of AD (EOAD: n = 35, age-at-PET = 59 ± 5, MMSE = 23 ± 4; LOAD: n = 44, age-at-PET = 71 ± 5, MMSE = 23 ± 4) underwent a 130-min dynamic [18F]flortaucipir PET scan and extensive neuropsychological assessment. We extracted binding potentials (BPND) and R1 (proxy of rCBF) from parametric images using receptor parametric mapping, in medial and lateral temporal, parietal, occipital, and frontal regions-of-interest and used nine neuropsychological tests covering memory, attention, language, and executive functioning. We first examined differences between EOAD and LOAD in BPND or R1 using ANOVA (region-of-interest analysis) and voxel-wise contrasts. Next, we performed linear regression models to test for potential interaction effects between age-at-onset and BPND/R1 on cognition. Results Both region-of-interest and voxel-wise contrasts showed higher [18F]flortaucipir BPND values across all neocortical regions in EOAD. By contrast, LOAD patients had lower R1 values (indicative of more reduced rCBF) in medial temporal regions. For both tau and flow in lateral temporal, and occipitoparietal regions, associations with cognitive impairment were stronger in EOAD than in LOAD (EOAD BPND − 0.76 ≤ stβ ≤ − 0.48 vs LOAD − 0.18 ≤ stβ ≤ − 0.02; EOAD R1 0.37 ≤ stβ ≤ 0.84 vs LOAD − 0.25 ≤ stβ ≤ 0.16). Conclusions Compared to LOAD, the degree of lateral temporal and occipitoparietal tau pathology and relative cerebral blood-flow is more strongly associated with cognition in EOAD. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05669-6.
Collapse
|
22
|
Duara R, Barker W. Heterogeneity in Alzheimer's Disease Diagnosis and Progression Rates: Implications for Therapeutic Trials. Neurotherapeutics 2022; 19:8-25. [PMID: 35084721 PMCID: PMC9130395 DOI: 10.1007/s13311-022-01185-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 01/03/2023] Open
Abstract
The clinical presentation and the pathological processes underlying Alzheimer's disease (AD) can be very heterogeneous in severity, location, and composition including the amount and distribution of AB deposition and spread of neurofibrillary tangles in different brain regions resulting in atypical clinical patterns and the existence of distinct AD variants. Heterogeneity in AD may be related to demographic factors (such as age, sex, educational and socioeconomic level) and genetic factors, which influence underlying pathology, the cognitive and behavioral phenotype, rate of progression, the occurrence of neuropsychiatric features, and the presence of comorbidities (e.g., vascular disease, neuroinflammation). Heterogeneity is also manifest in the individual resilience to the development of neuropathology (brain reserve) and the ability to compensate for its cognitive and functional impact (cognitive and functional reserve). The variability in specific cognitive profiles and types of functional impairment may be associated with different progression rates, and standard measures assessing progression may not be equivalent for individual cognitive and functional profiles. Other factors, which may govern the presence, rate, and type of progression of AD, include the individuals' general medical health, the presence of specific systemic conditions, and lifestyle factors, including physical exercise, cognitive and social stimulation, amount of leisure activities, environmental stressors, such as toxins and pollution, and the effects of medications used to treat medical and behavioral conditions. These factors that affect progression are important to consider while designing a clinical trial to ensure, as far as possible, well-balanced treatment and control groups.
Collapse
Affiliation(s)
- Ranjan Duara
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
- Departments of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Warren Barker
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA.
| |
Collapse
|
23
|
Apostolova LG, Aisen P, Eloyan A, Fagan A, Fargo KN, Foroud T, Gatsonis C, Grinberg LT, Jack CR, Kramer J, Koeppe R, Kukull WA, Murray ME, Nudelman K, Rumbaugh M, Toga A, Vemuri P, Trullinger A, Iaccarino L, Day GS, Graff‐Radford NR, Honig LS, Jones DT, Masdeu J, Mendez M, Musiek E, Onyike CU, Rogalski E, Salloway S, Wolk DA, Wingo TS, Carrillo MC, Dickerson BC, Rabinovici GD. The Longitudinal Early-onset Alzheimer's Disease Study (LEADS): Framework and methodology. Alzheimers Dement 2021; 17:2043-2055. [PMID: 34018654 PMCID: PMC8939858 DOI: 10.1002/alz.12350] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Patients with early-onset Alzheimer's disease (EOAD) are commonly excluded from large-scale observational and therapeutic studies due to their young age, atypical presentation, or absence of pathogenic mutations. The goals of the Longitudinal EOAD Study (LEADS) are to (1) define the clinical, imaging, and fluid biomarker characteristics of EOAD; (2) develop sensitive cognitive and biomarker measures for future clinical and research use; and (3) establish a trial-ready network. LEADS will follow 400 amyloid beta (Aβ)-positive EOAD, 200 Aβ-negative EOnonAD that meet National Institute on Aging-Alzheimer's Association (NIA-AA) criteria for mild cognitive impairment (MCI) or AD dementia, and 100 age-matched controls. Participants will undergo clinical and cognitive assessments, magnetic resonance imaging (MRI), [18 F]Florbetaben and [18 F]Flortaucipir positron emission tomography (PET), lumbar puncture, and blood draw for DNA, RNA, plasma, serum and peripheral blood mononuclear cells, and post-mortem assessment. To develop more effective AD treatments, scientists need to understand the genetic, biological, and clinical processes involved in EOAD. LEADS will develop a public resource that will enable future planning and implementation of EOAD clinical trials.
Collapse
|
24
|
Phillips JS, Nitchie FJ, Da Re F, Olm CA, Cook PA, McMillan CT, Irwin DJ, Gee JC, Dubroff JG, Grossman M, Nasrallah IM. Rates of longitudinal change in 18 F-flortaucipir PET vary by brain region, cognitive impairment, and age in atypical Alzheimer's disease. Alzheimers Dement 2021; 18:1235-1247. [PMID: 34515411 PMCID: PMC9292954 DOI: 10.1002/alz.12456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 01/12/2023]
Abstract
Introduction Longitudinal positron emission tomography (PET) studies of tau accumulation in Alzheimer's disease (AD) have noted reduced increases or frank decreases in tau signal. We investigated how such reductions related to analytical confounds and disease progression markers in atypical AD. Methods We assessed regional and interindividual variation in longitudinal change on 18F‐flortaucipir PET imaging in 24 amyloid beta (Aβ)+ patients with atypical, early‐onset amnestic or non‐amnestic AD plus 62 Aβ– and 132 Aβ+ Alzheimer's Disease Neuroimaging Initiative (ADNI) participants. Results In atypical AD, 18F‐flortaucipir uptake slowed or declined over time in areas with high baseline signal and older, more impaired individuals. ADNI participants had reduced longitudinal change in early Braak stage regions relative to late‐stage areas. Discussion Results suggested radioligand uptake plateaus or declines in advanced neurodegeneration. Further research should investigate whether results generalize to other radioligands and whether they relate to changes of the radioligand binding site structure or accessibility.
Collapse
Affiliation(s)
| | | | - Fulvio Da Re
- University of Milan-Bicocca Faculty of Medicine and Surgery, Universita degli Studi di Milano-Bicocca Dipartimento di Medicina e Chirurgia, Milan, Italy
| | | | - Philip A Cook
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - David J Irwin
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James C Gee
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
25
|
Pollet M, Skrobala E, Lopes R, Kuchcinski G, Bordier C, Rollin-Sillaire A, Bombois S, Pasquier F, Delbeuck X. A multimodal, longitudinal study of cognitive heterogeneity in early-onset Alzheimer's disease. Eur J Neurol 2021; 28:3990-3998. [PMID: 34490682 DOI: 10.1111/ene.15097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Alzheimer's disease (AD) is a heterogeneous pathology. Young patients with AD are particularly likely to have an atypical presentation. The objectives of the present cluster analysis were to determine whether patients with early-onset AD (EOAD) had several distinct cognitive profiles and to compare the resulting clusters with regard to clinical, neuroimaging, and laboratory characteristics. METHODS We collected cognitive, behavioural, functional, neuroimaging, and laboratory data on 72 patients meeting the criteria for probable mild EOAD. The patients were first classified into clinical phenotype groups by a multidisciplinary board of clinicians. The patients' cognitive and functional decline was monitored for 24 months. A k-means clustering analysis was then used to determine clusters on the basis of the patients' neuropsychological test results. RESULTS Two distinct clusters were identified: the patients in the first cluster (C1, n = 38) had a predominant memory impairment, whereas patients in the second (C2, n = 34) did not. Dyslipidaemia and the presence of ɛ4 apolipoprotein E allele were more frequent in C1, whereas the cognitive and functional decline was faster in the patients in C2. Moreover, posterior brain abnormalities were more severe in patients in C2 than in patients in C1. CONCLUSIONS By applying a k-means clustering analysis, we identified two clusters of patients in an EOAD cohort. The clusters differed with regard to certain clinical, imaging, and laboratory characteristics. This clustering procedure might be of value for managing patients with EOAD in general and for identifying those at risk of more rapid decline in particular.
Collapse
Affiliation(s)
- Marianne Pollet
- Department of Neurology, Lille University Hospital Centre, Memory Centre, Reference Centre for Early-Onset Alzheimer Disease and Related Disorders, Lille, France
| | - Emilie Skrobala
- Lille University Hospital Centre, DISTALZ, Development of Innovative Strategies for a Transdisciplinary Approach to Alzheimer's Disease, Lille, France
| | - Renaud Lopes
- University of Lille, French National Institute of Health and Medical Research U1172, Lille Neuroscience & Cognition, Degenerative and Vascular Cognitive Disorders, Lille, France.,Department of Neuroradiology, Lille University Hospital Centre, Lille, France.,University of Lille, French National Centre for Scientific Research, French National Institute of Health and Medical Research, Pasteur Institute of Lille, US41-UMS 2014 - PLBS, Lille, France
| | - Grégory Kuchcinski
- Lille University Hospital Centre, DISTALZ, Development of Innovative Strategies for a Transdisciplinary Approach to Alzheimer's Disease, Lille, France.,University of Lille, French National Institute of Health and Medical Research U1172, Lille Neuroscience & Cognition, Degenerative and Vascular Cognitive Disorders, Lille, France.,Department of Neuroradiology, Lille University Hospital Centre, Lille, France
| | - Cécile Bordier
- University of Lille, French National Institute of Health and Medical Research U1172, Lille Neuroscience & Cognition, Degenerative and Vascular Cognitive Disorders, Lille, France.,Department of Neuroradiology, Lille University Hospital Centre, Lille, France
| | - Adeline Rollin-Sillaire
- Department of Neurology, Lille University Hospital Centre, Memory Centre, Reference Centre for Early-Onset Alzheimer Disease and Related Disorders, Lille, France.,Lille University Hospital Centre, DISTALZ, Development of Innovative Strategies for a Transdisciplinary Approach to Alzheimer's Disease, Lille, France.,University of Lille, French National Institute of Health and Medical Research U1172, Lille Neuroscience & Cognition, Degenerative and Vascular Cognitive Disorders, Lille, France
| | - Stéphanie Bombois
- Department of Neurology, Lille University Hospital Centre, Memory Centre, Reference Centre for Early-Onset Alzheimer Disease and Related Disorders, Lille, France.,University of Lille, French National Institute of Health and Medical Research U1172, Lille Neuroscience & Cognition, Degenerative and Vascular Cognitive Disorders, Lille, France
| | - Florence Pasquier
- Department of Neurology, Lille University Hospital Centre, Memory Centre, Reference Centre for Early-Onset Alzheimer Disease and Related Disorders, Lille, France.,Lille University Hospital Centre, DISTALZ, Development of Innovative Strategies for a Transdisciplinary Approach to Alzheimer's Disease, Lille, France.,University of Lille, French National Institute of Health and Medical Research U1172, Lille Neuroscience & Cognition, Degenerative and Vascular Cognitive Disorders, Lille, France
| | - Xavier Delbeuck
- Department of Neurology, Lille University Hospital Centre, Memory Centre, Reference Centre for Early-Onset Alzheimer Disease and Related Disorders, Lille, France.,University of Lille, French National Institute of Health and Medical Research U1172, Lille Neuroscience & Cognition, Degenerative and Vascular Cognitive Disorders, Lille, France
| |
Collapse
|
26
|
Mendez MF, Khattab YI, Yerstein O. Impaired visual search in posterior cortical atrophy vs. typical Alzheimer's disease. J Neurol Sci 2021; 428:117574. [PMID: 34271285 DOI: 10.1016/j.jns.2021.117574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Posterior cortical atrophy (PCA) is a neurocognitive disorder characterized by difficulty localizing in space. Recognizing PCA is important because it is usually missed early in its course and may result from a number of neurological disorders other than Alzheimer's disease (AD). OBJECTIVE This study aimed to clarify whether impaired visual search tasks of spatial localization distinguished patients with PCA from those with other more typical dementias as well as from healthy control (HC) subjects. METHODS Twelve patients meeting neuroimaging-supported Consensus Criteria for PCA, 12 comparably advanced patients with amnestic-predominant typical AD (tAD), and 24 HC participants were compared on tests of untimed and timed visual search, spatial neglect, mental rotation, environmental orientation, visuospatial construction, and face recognition. RESULTS Only abnormalities in untimed and timed visual search and environmental orientation distinguished the PCA patients from both the tAD group and the HC group without also distinguishing the tAD patients from HC's. The PCA patients also had a tendency to greater difficulty scanning left hemispace compared to HC's. Visuospatial constructions, although worse in PCA, and face recognition were impaired in both dementia groups. CONCLUSIONS These findings support the concept of PCA as a disorder of spatial processing and localization, indicating that visual search tasks are particularly sensitive and specific for detecting PCA and distinguishing it from more typical dementia syndromes.
Collapse
Affiliation(s)
- Mario F Mendez
- Departments of Neurology, David Geffen School of Medicine, University of California Los Angeles (UCLA), USA; Psychiatry and Behavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), USA; Neurology Service, Neurobehavior Unit, V.A. Greater Los Angeles Healthcare System, USA.
| | - Youssef I Khattab
- Departments of Neurology, David Geffen School of Medicine, University of California Los Angeles (UCLA), USA
| | - Oleg Yerstein
- Department of Neurology, Lahey Hospital and Medical Center, USA.
| |
Collapse
|
27
|
Smirnov DS, Galasko D, Hiniker A, Edland SD, Salmon DP. Age-at-Onset and APOE-Related Heterogeneity in Pathologically Confirmed Sporadic Alzheimer Disease. Neurology 2021; 96:e2272-e2283. [PMID: 33722993 PMCID: PMC8166435 DOI: 10.1212/wnl.0000000000011772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/28/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To characterize age-related clinical heterogeneity in Alzheimer disease (AD) and determine whether it is modified by APOE genotype or concomitant non-AD pathology, we analyzed data from 1,750 patients with sporadic, pathologically confirmed severe AD. METHODS In this retrospective cohort study, regression and mixed effects models assessed effects of estimated age at onset, APOE genotype, and their interaction on standardized clinical, cognitive, and pathologic outcome measures from the National Alzheimer's Coordinating Center database. RESULTS A bimodal distribution of age at onset frequency in APOE ε4- cases showed best separation at age 63. Using this age cutoff, cases were grouped as ε4- early-onset AD (EOAD) (n = 169), ε4+ EOAD (n = 273), ε4- late-onset AD (LOAD) (n = 511), and ε4+ LOAD (n = 797). Patients with EOAD were more likely than patients with LOAD to present with noncognitive behavioral or motor symptoms or nonmemory cognitive complaints, and had more executive dysfunction, but less language impairment on objective cognitive testing. Age at onset and ε4- genotype were independently associated with lower baseline Mini-Mental State Examination scores and greater functional impairment and patients with EOAD had faster cognitive and functional decline than patients with LOAD regardless of APOE genotype. Patients with EOAD were more likely than patients with LOAD to receive a non-AD clinical diagnosis even though they were more likely to have pure AD without concomitant vascular or other non-AD neurodegenerative pathology. CONCLUSIONS Early-onset sporadic AD is associated with a greater likelihood of an atypical, non-memory-dominant clinical presentation, especially in the absence of the APOE ε4 allele, which may lead to misattribution to non-AD underlying pathology.
Collapse
Affiliation(s)
- Denis S Smirnov
- From the Departments of Neurosciences (D. Smirnov, D.G., A.H., D. Salmon), Pathology (A.H.), and Family Medicine and Public Health (S. Edland), University of California San Diego
| | - Douglas Galasko
- From the Departments of Neurosciences (D. Smirnov, D.G., A.H., D. Salmon), Pathology (A.H.), and Family Medicine and Public Health (S. Edland), University of California San Diego
| | - Annie Hiniker
- From the Departments of Neurosciences (D. Smirnov, D.G., A.H., D. Salmon), Pathology (A.H.), and Family Medicine and Public Health (S. Edland), University of California San Diego
| | - Steven D Edland
- From the Departments of Neurosciences (D. Smirnov, D.G., A.H., D. Salmon), Pathology (A.H.), and Family Medicine and Public Health (S. Edland), University of California San Diego
| | - David P Salmon
- From the Departments of Neurosciences (D. Smirnov, D.G., A.H., D. Salmon), Pathology (A.H.), and Family Medicine and Public Health (S. Edland), University of California San Diego.
| |
Collapse
|
28
|
Different Patterns of Gray Matter Volume Reduction in Early-onset and Late-onset Alzheimer Disease. Cogn Behav Neurol 2021; 33:253-258. [PMID: 33264152 DOI: 10.1097/wnn.0000000000000245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Individuals with early-onset Alzheimer disease (EOAD) differ from those with late-onset Alzheimer disease (LOAD) not only in genetics and age at onset but also in their clinical symptoms. OBJECTIVE To differentiate the neuropathological and neurocognitive features of EOAD and LOAD by comparing the pattern of regional gray matter volume (GMV) reduction and its symptomatic correlates. METHOD Three-dimensional T1-weighted MRIs and Mini-Mental State Examination (MMSE) scores were obtained from 12 individuals with EOAD, 65 with LOAD, and 49 healthy controls (HC). Regional GMV reduction between the three groups was assessed using voxel-based morphometry. Multiple regression analyses were conducted with MMSE total score as an independent variable. RESULTS Compared to the HC, both AD groups showed a significant GMV reduction in the bilateral hippocampus and the left temporoparietal junction; in addition, the LOAD group showed one in the bilateral anterior temporal lobes. Multiple regression analyses revealed a positive correlation between MMSE total score and GMV in the left anterior temporal lobe in both AD groups; that is, lower scores were associated with reduced GMV. Interestingly, a positive correlation in hippocampal GMV was revealed only in the LOAD group. CONCLUSION MMSE total score is associated with the anterior temporal lobe volume in individuals with AD. Hippocampal volume and its relationship with MMSE total score are associated with LOAD pathophysiology but not EOAD pathophysiology. The hippocampal volume reduction and low MMSE scores are hallmarks of LOAD but are less specific to EOAD, which may cause a delay in diagnosis.
Collapse
|
29
|
Pillai JA, Bena J, Bonner-Jackson A, Leverenz JB. Impact of APOE ε4 genotype on initial cognitive symptoms differs for Alzheimer's and Lewy body neuropathology. ALZHEIMERS RESEARCH & THERAPY 2021; 13:31. [PMID: 33485373 PMCID: PMC7825215 DOI: 10.1186/s13195-021-00771-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/07/2021] [Indexed: 11/10/2022]
Abstract
Background APOE ε4 carrier status is known to increase odds of amnestic presentations with Alzheimer’s pathology. It is unknown how APOE ε4 carrier status impacts odds of specific initial cognitive symptoms in the presence of Lewy body pathology. Here we evaluate the impact of APOE ε4 genotype on initial cognitive symptoms among those with Alzheimer’s disease pathology (ADP) and Lewy-related pathology (LRP). Methods A retrospective cohort study of 2288 participants with neuropathology confirmed ADP or LRP in the National Alzheimer’s Coordinating Center database, who had initial cognitive symptoms documented and had a Clinical Dementia Rating-Global (CDR-G) score ≤ 1 (cognitively normal, MCI, or early dementia). Unadjusted and adjusted logistic regression models taking into account age at evaluation, sex, and education examined the relationship between APOE ε4 genotype and initial symptoms (memory, executive, language visuospatial) among ADP with LRP and ADP-LRP groups. Results One thousand three hundred three participants met criteria for ADP alone, 90 for LRP alone, and 895 for co-existing ADP and LRP (ADP-LRP). Younger age increased odds of non-amnestic symptoms across all three groups. In the adjusted model among ADP, APOE ε4 carriers had higher odds of amnestic initial symptoms 1.5 [95% CI, 1.7–2.14, p = 0.003] and lower odds of initial language symptoms 0.67 [95% CI, 0.47–0.96, p = 0.03] than non-carriers. The odds for these two symptoms were not different between ADP and mixed ADP-LRP groups. Female sex and higher education increased odds of initial language symptoms in the ADP group in the adjusted model. In the unadjusted model, APOE ε4 carriers with LRP had a higher odds of visuospatial initial symptoms 21.96 [95% CI, 4.02–110.62, p < 0.0001], while no difference was noted for initial executive/attention symptoms. Among LRP, the odds of APOE ε4 on amnestic symptom was not significant; however, the interaction effect evaluating the difference in odds ratios of amnestic symptom between ADP and LRP groups also did not reach statistical significance. Conclusions The odds of specific initial cognitive symptoms differed between ADP and LRP among APOE ε4 carriers compared to non-carriers. The odds of initial amnestic symptom was higher among ADP APOE ε4 carriers and the odds of visuospatial initial symptom was higher with LRP APOE ε4 carriers. This supports the hypothesis that APOE ε4 differentially impacts initial cognitive symptoms together with underlying neuropathology. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00771-1.
Collapse
Affiliation(s)
- Jagan A Pillai
- Department of Neurology, Lou Ruvo Center for Brain Health, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Ave / U10, Cleveland, OH, 44195, USA. .,Cleveland Clinic, Neurological Institute, Cleveland, OH, 44195, USA. .,Department of Neurology, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - James Bena
- Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Aaron Bonner-Jackson
- Department of Neurology, Lou Ruvo Center for Brain Health, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Ave / U10, Cleveland, OH, 44195, USA.,Cleveland Clinic, Neurological Institute, Cleveland, OH, 44195, USA.,Department of Neurology, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - James B Leverenz
- Department of Neurology, Lou Ruvo Center for Brain Health, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Ave / U10, Cleveland, OH, 44195, USA.,Cleveland Clinic, Neurological Institute, Cleveland, OH, 44195, USA.,Department of Neurology, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
30
|
Bolton CJ, Tam JW. Differential Involvement of the Locus Coeruleus in Early- and Late-Onset Alzheimer's Disease: A Potential Mechanism of Clinical Differences? MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.11.01.20224139. [PMID: 33173930 PMCID: PMC7654926 DOI: 10.1101/2020.11.01.20224139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Early-onset Alzheimer's disease (EOAD) has been associated with an increased likelihood of atypical clinical manifestations such as attentional impairment, yet the cause of this heterogeneity remains unclear. The locus coeruleus (LC) is implicated early in Alzheimer's disease pathology and is associated with attentional functioning. This study investigated post-mortem atrophy of the LC in EOAD and late-onset Alzheimer's disease (LOAD) in a large, well-characterized sample. Results show nearly four times greater likelihood of higher LC atrophy in EOAD as compared to LOAD after controlling for other measures of pathological progression ( p < .005). Follow-up analyses within the EOAD group revealed that compared to those who displayed mild or no LC atrophy at autopsy, those with moderate-severe atrophy of the LC displayed significantly worse performance on various baseline measures of attentional functioning ( p < .05), despite similar overall cognition ( p = .25). These findings suggest the LC is an important potential driver of clinical and pathological heterogeneity in EOAD.
Collapse
Affiliation(s)
- Corey J. Bolton
- Vanderbilt Memory & Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Deparment of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Joyce W. Tam
- Deparment of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
31
|
Abbate C, Trimarchi PD, Inglese S, Damanti S, Dolci GAM, Ciccone S, Rossi PD, Mari D, Arosio B, Bagarolo R, Giunco F, Cesari M. Does the Right Focal Variant of Alzheimer's Disease Really Exist? A Literature Analysis. J Alzheimers Dis 2020; 71:405-420. [PMID: 31381515 DOI: 10.3233/jad-190338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a clinically heterogeneous disease. Multiple atypical syndromes, distinct from the usual amnesic phenotype, have been described. In this context, the existence of a right variant of AD (RAD), characterized by enduring visuospatial impairment associated with right-sided asymmetric brain damage, has been proposed. However, to date, this phenotype remains controversial. In particular, its peculiar characteristics and the independence from more prevalent cases (especially the posterior cortical atrophy syndrome) have to be demonstrated. OBJECTIVE To explore the existence of focal RAD on the basis of existing literature. METHODS We performed a literature search for the description of atypical AD presentations, potentially evoking cases of focal RAD. To be considered as affected by RAD, the described cases had to present: 1) well documented right-sided asymmetry at neuroimaging; 2) predominant cognitive deficits localizable on the right hemisphere; 3) no specific diagnosis of a known variant of AD. RESULTS Twenty-one cases were found in the literature, but some of them were subsequently excluded because some features of a different clinical syndrome were overlapped with the clinical features of RAD. Thirteen positive cases, three of them with pathologically confirmed AD, remained. A common right clinical-radiological syndrome, characterized by memory and visuospatial impairment with temporal and parietal involvement, consistently emerged. However, the heterogeneity among the reports prevented a definitive and univocal description of the syndrome. CONCLUSION Even if sporadic observations strongly support the existence of a focal RAD, no definitive conclusions can still be drawn about it as an independent condition.
Collapse
Affiliation(s)
- Carlo Abbate
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Silvia Inglese
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sarah Damanti
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Simona Ciccone
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo D Rossi
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Mari
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Beatrice Arosio
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | | | - Matteo Cesari
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
32
|
Piras IS, Krate J, Delvaux E, Nolz J, Mastroeni DF, Persico AM, Jepsen WM, Beach TG, Huentelman MJ, Coleman PD. Transcriptome Changes in the Alzheimer's Disease Middle Temporal Gyrus: Importance of RNA Metabolism and Mitochondria-Associated Membrane Genes. J Alzheimers Dis 2020; 70:691-713. [PMID: 31256118 DOI: 10.3233/jad-181113] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We used Illumina Human HT-12 v4 arrays to compare RNA expression of middle temporal gyrus (MTG; BA21) in Alzheimer's disease (AD = 97) and non-demented controls (ND = 98). A total of 938 transcripts were highly differentially expressed (adj p < 0.01; log2 FC ≥ |0.500|, with 411 overexpressed and 527 underexpressed in AD. Our results correlated with expression profiling in neurons from AD and ND obtained by laser capture microscopy in MTG from an independent dataset (log2 FC correlation: r = 0.504; p = 2.2e-16). Additionally, selected effects were validated by qPCR. ANOVA analysis yielded no difference between genders in response to AD, but some gender specific genes were detected (e.g., IL8 and AGRN in males, and HSPH1 and GRM1 in females). Several transcripts were associated with Braak staging (e.g., AEBP1 and DNALI1), antemortem MMSE (e.g., AEBP1 and GFAP), and tangle density (e.g., RNU1G2, and DNALI1). At the pathway level, we detected enrichment of synaptic vesicle processes and GABAergic transmission genes. Finally, applying the Weighted Correlation Network Analysis, we identified four expression modules enriched for neuronal and synaptic genes, mitochondria-associated membrane, chemical stimulus and olfactory receptor and non-coding RNA metabolism genes. Our results represent an extensive description of MTG mRNA profiling in a large sample of AD and ND. These data provide a list of genes associated with AD, and correlated to neurofibrillary tangles density. In addition, these data emphasize the importance of mitochondrial membranes and transcripts related to olfactory receptors in AD.
Collapse
Affiliation(s)
- Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Jonida Krate
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Elaine Delvaux
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Jennifer Nolz
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Diego F Mastroeni
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Antonio M Persico
- Unit of Child and Adolescent Neuropsychiatry, "Gaetano Martino" University Hospital, University of Messina, Messina, Italy.,Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| | - Wayne M Jepsen
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Thomas G Beach
- Civin Laboratory of Neuropathology at Banner Sun Health Research Institute, Sun City, AZ, US
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Paul D Coleman
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
33
|
Chiari A, Vinceti G, Adani G, Tondelli M, Galli C, Fiondella L, Costa M, Molinari MA, Filippini T, Zamboni G, Vinceti M. Epidemiology of early onset dementia and its clinical presentations in the province of Modena, Italy. Alzheimers Dement 2020; 17:81-88. [DOI: 10.1002/alz.12177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Annalisa Chiari
- U.O. di Neurologia Azienda Ospedaliero Universitaria di Modena Modena Italy
| | - Giulia Vinceti
- U.O. di Neurologia Azienda Ospedaliero Universitaria di Modena Modena Italy
- Dipartimento di Scienze Biomediche Metaboliche e Neuroscienze Università di Modena e Reggio Emilia Modena Italy
- Centro Interdipartimentale di Neuroscienze e Neurotecnologie Università di Modena e Reggio Emilia Modena Italy
| | - Giorgia Adani
- Dipartimento di Scienze Biomediche Metaboliche e Neuroscienze Università di Modena e Reggio Emilia Modena Italy
- Centro Interdipartimentale di Neuroscienze e Neurotecnologie Università di Modena e Reggio Emilia Modena Italy
| | | | - Chiara Galli
- Dipartimento di cure primarie AUSL Modena Modena Italy
- NeuroFARBA Dipartimento di Neuroscienze Psicologia Area del Farmaco e Salute del Bambino Università degli Studi di Firenze Italy
| | - Luigi Fiondella
- U.O. di Neurologia Azienda Ospedaliero Universitaria di Modena Modena Italy
- Dipartimento di Scienze Biomediche Metaboliche e Neuroscienze Università di Modena e Reggio Emilia Modena Italy
| | - Manuela Costa
- Neurologia Ospedale di Carpi AUSL Modena Modena Italy
| | | | - Tommaso Filippini
- Dipartimento di Scienze Biomediche Metaboliche e Neuroscienze Università di Modena e Reggio Emilia Modena Italy
- Centro Interdipartimentale di Neuroscienze e Neurotecnologie Università di Modena e Reggio Emilia Modena Italy
| | - Giovanna Zamboni
- U.O. di Neurologia Azienda Ospedaliero Universitaria di Modena Modena Italy
- Dipartimento di Scienze Biomediche Metaboliche e Neuroscienze Università di Modena e Reggio Emilia Modena Italy
- Centro Interdipartimentale di Neuroscienze e Neurotecnologie Università di Modena e Reggio Emilia Modena Italy
- Nuffield Department of Clinical Neurosciences University of Oxford Oxford UK
| | - Marco Vinceti
- Dipartimento di Scienze Biomediche Metaboliche e Neuroscienze Università di Modena e Reggio Emilia Modena Italy
- Department of Epidemiology Boston University School of Public Health Boston Massachusetts USA
| |
Collapse
|
34
|
Prosser A, Tossici-Bolt L, Kipps C. The impact of regional 99mTc-HMPAO single-photon-emission computed tomography (SPECT) imaging on clinician diagnostic confidence in a mixed cognitive impairment sample. Clin Radiol 2020; 75:714.e7-714.e14. [DOI: 10.1016/j.crad.2020.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/28/2020] [Indexed: 11/17/2022]
|
35
|
Lesman-Segev OH, Edwards L, Rabinovici GD. Chronic Traumatic Encephalopathy: A Comparison with Alzheimer's Disease and Frontotemporal Dementia. Semin Neurol 2020; 40:394-410. [PMID: 32820492 DOI: 10.1055/s-0040-1715134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The clinical diagnosis of chronic traumatic encephalopathy (CTE) is challenging due to heterogeneous clinical presentations and overlap with other neurodegenerative dementias. Depending on the clinical presentation, the differential diagnosis of CTE includes Alzheimer's disease (AD), behavioral variant frontotemporal dementia (bvFTD), Parkinson's disease, amyotrophic lateral sclerosis, primary mood disorders, posttraumatic stress disorder, and psychotic disorders. The aim of this article is to compare the clinical aspects, genetics, fluid biomarkers, imaging, treatment, and pathology of CTE to those of AD and bvFTD. A detailed clinical evaluation, neurocognitive assessment, and structural brain imaging can inform the differential diagnosis, while molecular biomarkers can help exclude underlying AD pathology. Prospective studies that include clinicopathological correlations are needed to establish tools that can more accurately determine the cause of neuropsychiatric decline in patients at risk for CTE.
Collapse
Affiliation(s)
- Orit H Lesman-Segev
- Department of Neurology, University of California San Francisco, San Francisco, California
| | - Lauren Edwards
- Department of Neurology, University of California San Francisco, San Francisco, California
| | - Gil D Rabinovici
- Department of Neurology, University of California San Francisco, San Francisco, California.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,Weill Neuroscience Institute, University of California San Francisco, San Francisco, California
| |
Collapse
|
36
|
Townley RA, Polsinelli AJ, Fields JA, Machulda MM, Jones DT, Graff-Radford J, Kantarci KM, Lowe VJ, Rademakers RV, Baker MC, Kumar N, Boeve BF. Longitudinal clinical, neuropsychological, and neuroimaging characterization of a kindred with a 12-octapeptide repeat insertion in PRNP: the next generation. Neurocase 2020; 26:211-219. [PMID: 32602775 PMCID: PMC7426006 DOI: 10.1080/13554794.2020.1787458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/18/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND Highly penetrant inherited mutations in the prion protein gene (PRNP) offer a window to study the pathobiology of prion disorders. METHOD Clinical, neuropsychological, and neuroimaging characterization of a kindred. RESULTS Three of four mutation carriers have progressed to a frontotemporal dementia phenotype. Declines in neuropsychological function coincided with changes in FDG-PET at the identified onset of cognitive impairment. CONCLUSIONS AND RELEVANCE Gene silencing treatments are on the horizon and when they become available, early detection will be crucial. Longitudinal studies involving familial mutation kindreds can offer important insights into the initial neuropsychological and neuroimaging changes necessary for early detection.
Collapse
Affiliation(s)
- Ryan A. Townley
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160
| | | | - Julie A. Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA 55902
| | - Mary M. Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA 55902
| | - David T. Jones
- Department of Neurology, Indiana University School of Medicine, IN, USA 46202
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN, USA 55902
| | | | - Kejal M. Kantarci
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN, USA 55902
| | - Val J. Lowe
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN, USA 55902
| | | | - Matt C. Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA 32224
| | - Neeraj Kumar
- Department of Neurology, Indiana University School of Medicine, IN, USA 46202
| | - Bradley F. Boeve
- Department of Neurology, Indiana University School of Medicine, IN, USA 46202
| |
Collapse
|
37
|
Townley RA, Graff-Radford J, Mantyh WG, Botha H, Polsinelli AJ, Przybelski SA, Machulda MM, Makhlouf AT, Senjem ML, Murray ME, Reichard RR, Savica R, Boeve BF, Drubach DA, Josephs KA, Knopman DS, Lowe VJ, Jack CR, Petersen RC, Jones DT. Progressive dysexecutive syndrome due to Alzheimer's disease: a description of 55 cases and comparison to other phenotypes. Brain Commun 2020; 2:fcaa068. [PMID: 32671341 PMCID: PMC7325839 DOI: 10.1093/braincomms/fcaa068] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/13/2020] [Accepted: 04/15/2020] [Indexed: 02/05/2023] Open
Abstract
We report a group of patients presenting with a progressive dementia syndrome characterized by predominant dysfunction in core executive functions, relatively young age of onset and positive biomarkers for Alzheimer's pathophysiology. Atypical frontal, dysexecutive/behavioural variants and early-onset variants of Alzheimer's disease have been previously reported, but no diagnostic criteria exist for a progressive dysexecutive syndrome. In this retrospective review, we report on 55 participants diagnosed with a clinically defined progressive dysexecutive syndrome with 18F-fluorodeoxyglucose-positron emission tomography and Alzheimer's disease biomarkers available. Sixty-two per cent of participants were female with a mean of 15.2 years of education. The mean age of reported symptom onset was 53.8 years while the mean age at diagnosis was 57.2 years. Participants and informants commonly referred to initial cognitive symptoms as 'memory problems' but upon further inquiry described problems with core executive functions of working memory, cognitive flexibility and cognitive inhibitory control. Multi-domain cognitive impairment was evident in neuropsychological testing with executive dysfunction most consistently affected. The frontal and parietal regions which overlap with working memory networks consistently demonstrated hypometabolism on positron emission tomography. Genetic testing for autosomal dominant genes was negative in all eight participants tested and at least one APOE ε4 allele was present in 14/26 participants tested. EEG was abnormal in 14/17 cases with 13 described as diffuse slowing. Furthermore, CSF or neuroimaging biomarkers were consistent with Alzheimer's disease pathophysiology, although CSF p-tau was normal in 24% of cases. Fifteen of the executive predominate participants enrolled in research neuroimaging protocols and were compared to amnestic (n = 110), visual (n = 18) and language (n = 7) predominate clinical phenotypes of Alzheimer's disease. This revealed a consistent pattern of hypometabolism in parieto-frontal brain regions supporting executive functions with relative sparing of the medial temporal lobe (versus amnestic phenotype), occipital (versus visual phenotype) and left temporal (versus language phenotype). We propose that this progressive dysexecutive syndrome should be recognized as a distinct clinical phenotype disambiguated from behavioural presentations and not linked specifically to the frontal lobe or a particular anatomic substrate without further study. This clinical presentation can be due to Alzheimer's disease but is likely not specific for any single aetiology. Diagnostic criteria are proposed to facilitate additional research into this understudied clinical presentation.
Collapse
Affiliation(s)
- Ryan A Townley
- Department of Neurology Mayo Clinic, Rochester, MN 55902, USA
| | | | | | - Hugo Botha
- Department of Neurology Mayo Clinic, Rochester, MN 55902, USA
| | | | - Scott A Przybelski
- Department of Biomedical Statistics, Mayo Clinic, Rochester, MN 55902, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55902, USA
| | - Ahmed T Makhlouf
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55902, USA
| | - Matthew L Senjem
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55902, USA
| | - Melissa E Murray
- Department of Molecular Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ross R Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Rodolfo Savica
- Department of Neurology Mayo Clinic, Rochester, MN 55902, USA
| | - Bradley F Boeve
- Department of Neurology Mayo Clinic, Rochester, MN 55902, USA
| | | | - Keith A Josephs
- Department of Neurology Mayo Clinic, Rochester, MN 55902, USA
| | - David S Knopman
- Department of Neurology Mayo Clinic, Rochester, MN 55902, USA
| | - Val J Lowe
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55902, USA
| | - Clifford R Jack
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55902, USA
| | | | - David T Jones
- Department of Neurology Mayo Clinic, Rochester, MN 55902, USA
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
38
|
Li CH, Fan SP, Chen TF, Chiu MJ, Yen RF, Lin CH. Frontal variant of Alzheimer's disease with asymmetric presentation mimicking frontotemporal dementia: Case report and literature review. Brain Behav 2020; 10:e01548. [PMID: 31989779 PMCID: PMC7066333 DOI: 10.1002/brb3.1548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 01/01/2020] [Accepted: 01/04/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Frontal variant of Alzheimer's disease (fvAD) is a rare nonamnestic syndrome of Alzheimer's disease (AD). Differentiating it from behavior variant of frontotemporal dementia (bvFTD), which has implications for treatment responses and prognosis, remains a clinical challenge. METHODS Molecular neuroimaging and biofluid markers were performed for the index patient for accurate premortem diagnosis of fvAD. The clinical, neuroimaging, and biofluid characteristics of the patient were compared to those reported in previous studies of fvAD from 1999 to 2019. RESULTS A 66-year-old man presented with progressive executive dysfunction, personality and behavioral changes, and memory decline since age 59. He had no family history of neurodegenerative disorders. A stimulus-sensitive myoclonus was noted over his left upper extremity. Neuropsychological assessment revealed moderate dementia with a Mini-Mental State Exam score of 10/30 and compromised executive and memory performance. Brain imaging showed asymmetrical atrophy and hypometabolism over the right frontal and temporal areas, mimicking bvFTD. However, we observed increased tau depositions based on 18 F-labeled T807 Tau PET in these areas and diffusely increased amyloid deposition based on 11 C-labeled Pittsburgh compound B positron emission tomography (PET). Plasma biomarker measures indicated an AD profile with increased Aβ1-42 (18.66 pg/ml; cutoff: 16.42 pg/ml), Aβ1-42/Aβ1-40 ratio (0.45; cutoff: 0.30), total tau (29.78 pg/ml; cutoff: 23.89 pg/ml), and phosphorylated tau (4.11 pg/ml; cutoff: 3.08 pg/ml). These results supported a diagnosis of fvAD. CONCLUSIONS Our results with asymmetrical presentations extend current knowledge about this rare AD variant. Application of biofluid and molecular imaging markers could assist in early, accurate diagnosis.
Collapse
Affiliation(s)
- Cheng-Hsuan Li
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Hsinchu, Taiwan
| | - Sung-Pin Fan
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Biomedical Engineering and Bioinformatics, National Taiwan University, Taipei, Taiwan.,Graduate institute of Psychology, National Taiwan University, Taipei, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
39
|
Ryan JJ, Kreiner DS, Paolo AM. Handedness of healthy elderly and patients with Alzheimer’s disease. Int J Neurosci 2020; 130:875-883. [DOI: 10.1080/00207454.2019.1707824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Joseph J. Ryan
- Department of Psychology, School of Kinesiology, Nutrition, and Psychological Science, University of Central Missouri, Warrensburg, MO, USA
| | - David S. Kreiner
- Department of Psychology, School of Kinesiology, Nutrition, and Psychological Science, University of Central Missouri, Warrensburg, MO, USA
| | - Anthony M. Paolo
- Office of Medical Education, The University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
40
|
Phillips ML, Stage EC, Lane KA, Gao S, Risacher SL, Goukasian N, Saykin AJ, Carrillo MC, Dickerson BC, Rabinovici GD, Apostolova LG. Neurodegenerative Patterns of Cognitive Clusters of Early-Onset Alzheimer's Disease Subjects: Evidence for Disease Heterogeneity. Dement Geriatr Cogn Disord 2020; 48:131-142. [PMID: 31901905 PMCID: PMC7031037 DOI: 10.1159/000504341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/24/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Alzheimer's disease (AD) with onset before 65 (early-onset AD [EOAD]) occurs in approximately 6% of cases and can affect nonmemory domains. Here, we analyze patterns of impairment in amnestic EOAD individuals using data-driven statistical analyses. METHODS Cognitive data of 146 EOAD subjects were Z-normalized to 395 cognitively normal (CN) individuals. Domain-averaged Z-scores were adjusted for age, sex, and education followed by Wald cluster analysis of residuals. Magnetic resonance imaging and positron emission tomography comparisons of EOAD clusters to age-matched CN were done using Statistic Parametric Mapping 8. Cluster-level-family-wise error (p < 0.05) correction was applied. Mixed-effect models were used to compute longitudinal change across clusters. RESULTS Scree plot using the pseudo-T-squared suggested a 4-cluster solution. Cluster 1 (memory-predominant impairment) showed atrophy/hypometabolism in medial/lateral temporal, lateral parietal, and posterior cingulate regions. Cluster 2 (memory/visuospatial-predominant) showed atrophy/hypometabolism of medial temporal, temporoparietal, and frontal cortices. Cluster 3 (memory, language, and executive function) and Cluster 4 (globally impaired) manifested atrophy and hypometabolism throughout the brain. Longitudinally between-cluster differences in the visuospatial and language/executive domains were significant, suggesting phenotypic variation. CONCLUSION We observed significant heterogeneity in cognitive presentation among amnestic EOAD subjects and patterns of atrophy/hypometabolism in each cluster in agreement with the observed cognitive phenotype.
Collapse
Affiliation(s)
- Meredith L Phillips
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, Indiana, USA,
| | - Eddie C Stage
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kathleen A Lane
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sujuan Gao
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shannon L Risacher
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Andrew J Saykin
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Network Science Institute, Indianapolis, Indiana, USA
| | | | | | - Gil D Rabinovici
- University of California San Francisco, San Francisco, California, USA
| | - Liana G Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Network Science Institute, Indianapolis, Indiana, USA
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Early-onset Alzheimer disease (AD) is defined as having an age of onset younger than 65 years. While early-onset AD is often overshadowed by the more common late-onset AD, recognition of the differences between early- and late-onset AD is important for clinicians. RECENT FINDINGS Early-onset AD comprises about 5% to 6% of cases of AD and includes a substantial percentage of phenotypic variants that differ from the usual amnestic presentation of typical AD. Characteristics of early-onset AD in comparison to late-onset AD include a larger genetic predisposition (familial mutations and summed polygenic risk), more aggressive course, more frequent delay in diagnosis, higher prevalence of traumatic brain injury, less memory impairment and greater involvement of other cognitive domains on presentation, and greater psychosocial difficulties. Neuroimaging features of early-onset AD in comparison to late-onset AD include greater frequency of hippocampal sparing and posterior neocortical atrophy, increased tau burden, and greater connectomic changes affecting frontoparietal networks rather than the default mode network. SUMMARY Early-onset AD differs substantially from late-onset AD, with different phenotypic presentations, greater genetic predisposition, and differences in neuropathologic burden and topography. Early-onset AD more often presents with nonamnestic phenotypic variants that spare the hippocampi and with greater tau burden in posterior neocortices. The early-onset AD phenotypic variants involve different neural networks than typical AD. The management of early-onset AD is similar to that of late-onset AD but with special emphasis on targeting specific cognitive areas and more age-appropriate psychosocial support and education.
Collapse
|
42
|
Bouter C, Hansen N, Timäus C, Wiltfang J, Lange C. Case Report: The Role of Neuropsychological Assessment and Imaging Biomarkers in the Early Diagnosis of Lewy Body Dementia in a Patient With Major Depression and Prolonged Alcohol and Benzodiazepine Dependence. Front Psychiatry 2020; 11:684. [PMID: 32760301 PMCID: PMC7373778 DOI: 10.3389/fpsyt.2020.00684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/30/2020] [Indexed: 11/13/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is the second most common form of dementia and is assumed to be often under- or misdiagnosed, especially in early stages. Here we present a complex case of probable DLB with major depression and alcohol and benzodiazepine dependence in which DLB was ruled out initially. This case highlights the challenging diagnostic workup of DLB patients. Core clinical features can be missing and indicative biomarkers can be negative, especially in early stages of the disease. Initially, Fluorodeoxyglucose positron emission tomography as well as neuropsychological assessment were suspicious for a possible DLB diagnosis in our patient while core clinical criteria were missing and the indicative biomarker 123I-FP-CIT SPECT was negative. Follow up was performed two years later and the patients showed several core and supportive clinical features of DLB and 123I-FP-CIT SPECT showed a pathological pattern. Extensive neuropsychological assessment in combination with PET imaging might provide crucial evidence for DLB even in early stages. If neuropsychology and PET imaging point to an early DLB diagnosis careful follow-up should be performed as core symptoms and indicative biomarkers might appear in later stages of the disease.
Collapse
Affiliation(s)
- Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), Georg-August-University, Goettingen, Germany
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Goettingen, Germany
| | - Charles Timäus
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Goettingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Goettingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany.,Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Claudia Lange
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Goettingen, Germany
| |
Collapse
|
43
|
Baillon S, Gasper A, Wilson-Morkeh F, Pritchard M, Jesu A, Velayudhan L. Prevalence and Severity of Neuropsychiatric Symptoms in Early- Versus Late-Onset Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2019; 34:433-438. [PMID: 30935215 PMCID: PMC10653372 DOI: 10.1177/1533317519841191] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
BACKGROUND The study aimed to compare neuropsychiatric symptoms (NPS) in people with early-onset Alzheimer's disease (EOAD) and late-onset AD (LOAD). METHODS Fifty-six participants with LOAD and 24 participants with EOAD having mild dementia were assessed for NPS for their frequency, severity, and caregiver distress as measured by Neuropsychiatry Inventory (NPI) along with assessments of cognition and functional dependence. RESULTS Participants with EOAD and LOAD were not significantly different for total NPI score (P = .057). Early-onset Alzheimer disease had greater prevalence of all the NPS except apathy. Participants with EOAD were significantly worse on anxiety (P = .03), irritability (P = .01), and sleep (P < .01) subscales and their carers significantly more distressed by their irritability (P = .002) and sleeping patterns (P = .005). Regression analysis showed that higher NPI score was associated with longer duration of illness in EOAD and higher functional dependence in LOAD. CONCLUSIONS The NPS severity was similar between EOAD and LOAD although EOAD had higher symptom prevalence and carer distress.
Collapse
Affiliation(s)
- Sarah Baillon
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- Evington Centre, Leicestershire Partnership NHS Trust, Leicester, United Kingdom
| | - Amy Gasper
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | | | - Megan Pritchard
- South London & Maudsley NHS Foundation Trust, London, United Kingdom
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neurosciences, King’s College London, London, United Kingdom
| | - Amala Jesu
- Evington Centre, Leicestershire Partnership NHS Trust, Leicester, United Kingdom
| | - Latha Velayudhan
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- South London & Maudsley NHS Foundation Trust, London, United Kingdom
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neurosciences, King’s College London, London, United Kingdom
| |
Collapse
|
44
|
Lacour M, Quenez O, Rovelet-Lecrux A, Salomon B, Rousseau S, Richard AC, Quillard-Muraine M, Pasquier F, Rollin-Sillaire A, Martinaud O, Zarea A, de la Sayette V, Boutoleau-Bretonniere C, Etcharry-Bouyx F, Chauviré V, Sarazin M, le Ber I, Epelbaum S, Jonveaux T, Rouaud O, Ceccaldi M, Godefroy O, Formaglio M, Croisile B, Auriacombe S, Magnin E, Sauvée M, Marelli C, Gabelle A, Pariente J, Paquet C, Boland A, Deleuze JF, Campion D, Hannequin D, Nicolas G, Wallon D. Causative Mutations and Genetic Risk Factors in Sporadic Early Onset Alzheimer’s Disease Before 51 Years. J Alzheimers Dis 2019; 71:227-243. [DOI: 10.3233/jad-190193] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Morgane Lacour
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Olivier Quenez
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Anne Rovelet-Lecrux
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Bruno Salomon
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Stephane Rousseau
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Anne-Claire Richard
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | | | - Florence Pasquier
- Department of Neurology and CNR-MAJ, Lille University Hospital, Lille, France
- Univ Lille, Inserm UMR-S 1171, Distalz, Lille, France
| | - Adeline Rollin-Sillaire
- Department of Neurology and CNR-MAJ, Lille University Hospital, Lille, France
- Univ Lille, Inserm UMR-S 1171, Distalz, Lille, France
| | | | - Aline Zarea
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | | | | | | | - Valérie Chauviré
- Department of Neurology, Angers University Hospital, Angers, France
| | - Marie Sarazin
- Department of Neurology, Saint Anne University Hospital, Paris, France
| | - Isabelle le Ber
- National Reference Center for Rare or Early Dementias and Center of Excellence of Neurodegenerative Disease (CoEN), Institute of Memory and Alzheimer’s Disease (IM2A), APHP, Hôpital Pitié-Salpêtrière, Paris, and Sorbonne Universités, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, Brain and Spine Institute (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphane Epelbaum
- National Reference Center for Rare or Early Dementias and Center of Excellence of Neurodegenerative Disease (CoEN), Institute of Memory and Alzheimer’s Disease (IM2A), APHP, Hôpital Pitié-Salpêtrière, Paris, and Sorbonne Universités, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, Brain and Spine Institute (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Thérèse Jonveaux
- Department of Geriatrics and CMRR, Nancy University Hospital, Nancy, France
| | - Olivier Rouaud
- Department of Neurology, Dijon University Hospital, Dijon, France
| | - Mathieu Ceccaldi
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Service de Neurologie et de Neuropsychologie, CHU de la Timone, APHM, Marseille, France
| | - Olivier Godefroy
- Departments of Neurology, Amiens University Hospital, and Laboratory of Functional Neurosciences1, 6 (EA 4559), Jules Verne University of Picardie, Amiens, France
| | - Maite Formaglio
- Service de Neuropsychologie and CMRR, Lyon University Hospital, Lyon, France
| | - Bernard Croisile
- Service de Neuropsychologie and CMRR, Lyon University Hospital, Lyon, France
| | - Sophie Auriacombe
- Department of Neurology, Bordeaux University Hospital, Bordeaux, France
| | - Eloi Magnin
- Department of Neurology, Besançon University Hospital, Besançon, France
| | - Mathilde Sauvée
- Department of Neurology, Grenoble University Hospital, Grenoble, France
| | - Cecilia Marelli
- Department of Neurology, Montpellier, University Hospital, Montpellier, France
| | - Audrey Gabelle
- Department of Neurology, Montpellier, University Hospital, Montpellier, France
| | - Jeremie Pariente
- CMRR Department of Neurology, Toulouse University Hospital, Toulouse, France
| | - Claire Paquet
- Cognitive Neurology Center/CMRR Paris Nord Ile de France, Lariboisière Fernand-Widal Hospital Université de Paris, INSERMU1144, Paris
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Dominique Campion
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
- Department of Research, Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Didier Hannequin
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Gael Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - David Wallon
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | | |
Collapse
|
45
|
Barnes J, Bartlett JW, Wolk DA, van der Flier WM, Frost C. Disease Course Varies According to Age and Symptom Length in Alzheimer's Disease. J Alzheimers Dis 2019; 64:631-642. [PMID: 29914016 DOI: 10.3233/jad-170841] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Health-care professionals, patients, and families seek as much information as possible about prognosis for patients with Alzheimer's disease (AD); however, we do not yet have a robust understanding of how demographic factors predict prognosis. We evaluated associations between age at presentation, age of onset, and symptom length with cognitive decline as measured using the Mini-Mental State Examination (MMSE) and Clinical Dementia Rating sum-of-boxes (CDR-SOB) in a large dataset of AD patients. Age at presentation was associated with post-presentation decline in MMSE (p < 0.001), with younger patients showing faster decline. There was little evidence of an association with change in CDR-SOB. Symptom length, rather than age, was the strongest predictor of MMSE and CDR-SOB at presentation, with increasing symptom length associated with worse outcomes. The evidence that younger AD patients have a more aggressive disease course implies that early diagnosis is essential.
Collapse
Affiliation(s)
- Josephine Barnes
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | | | - David A Wolk
- Penn Memory Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Wiesje M van der Flier
- Alzheimer Center, Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.,Department of Epidemiology and Biostatistics, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Chris Frost
- Department of Medical Statistics, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
46
|
Mendez MF, Moheb N, Desarzant RE, Teng EH. The Progressive Acalculia Presentation of Parietal Variant Alzheimer's Disease. J Alzheimers Dis 2019; 63:941-948. [PMID: 29710718 DOI: 10.3233/jad-180024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Many patients with early-onset Alzheimer's disease (EOAD; age of onset <65 years) have non-amnestic presentations involving language (logopenic primary progressive aphasia, lvPPA), visuospatial abilities (posterior cortical atrophy, PCA), and even asymmetric symptoms consistent with corticobasal syndrome (CBS). An inferior parietal lobule variant of EOAD commonly presents with progressive difficulty with calculations. METHODS We reviewed 276 EOAD patients for presentations with predominant acalculia. These patients were diagnosed with clinically probable Alzheimer's disease (AD) verified by positron emission tomography (PET) or cerebrospinal fluid amyloid-β or tau biomarkers. RESULTS We identified 18 (9M/9F) (6.5%) EOAD patients with progressive acalculia that did not meet most criteria for lvPPA, visual PCA, or CBS. Their ages of onset and presentation were 56.6 (5.0) and 59.4 (6.5), respectively. Their acalculia was consistent with a primary acalculia ("anarithmetia") not explained by language or visuospatial impairments. Many also had anomia (14/18), ideomotor apraxia (13/18), and the complete Gerstmann's syndrome (7/18). Visual analysis of their diverse magnetic resonance imaging disclosed biparietal atrophy, disproportionately worse on the left. CONCLUSIONS Primary acalculia may be the most common manifestation of an inferior parietal presentation of EOAD affecting the left intraparietal sulcus. This parietal variant also commonly involves progressive anomia, ideomotor apraxia, and other elements of Gerstmann's syndrome. The early recognition of patients with this variant, which is distinguishable from lvPPA, visual PCA, or CBS, would be facilitated by its recognition as a unique subtype of EOAD.
Collapse
Affiliation(s)
- Mario F Mendez
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Neurobehavior Unit, V.A. Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Negar Moheb
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Randy E Desarzant
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Neurobehavior Unit, V.A. Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Edmond H Teng
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Neurobehavior Unit, V.A. Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Alzheimer disease (AD) is the most common cause of late-onset dementia. This article describes the epidemiology, genetic and environmental risk factors, clinical diagnosis, biomarkers, and treatment of late-onset AD, defined by age of onset of 65 years or older. RECENT FINDINGS An estimated 5.7 million Americans are living with AD dementia, with the number of affected individuals growing rapidly because of an aging population. Vascular risk factors, sleep disorders, and traumatic brain injury are associated with an increased risk of AD, while increased cognitive and physical activity throughout the lifespan reduce the risk of disease. The primary genetic risk factor for late-onset AD is the apolipoprotein E (APOE) ε4 allele. AD typically presents with early and prominent episodic memory loss, although this clinical syndrome is neither sensitive nor specific for underlying AD neuropathology. Emerging CSF and imaging biomarkers can now detect the key neuropathologic features of the disease (amyloid plaques, neurofibrillary tangles, and neurodegeneration) in living people, allowing for characterization of patients based on biological measures. A comprehensive treatment plan for AD includes use of symptomatic medications, optimal treatment of comorbid conditions and neuropsychiatric symptoms, counseling about safety and future planning, and referrals to community resources. SUMMARY AD is very common in older neurologic patients. Neurologists should set the standard for the diagnosis and care of patients with AD and should be familiar with emerging biomarkers that have transformed AD research and are primed to enter the clinical arena.
Collapse
|
48
|
Kim J, Park S, Yoo H, Jang H, Kim Y, Kim KW, Jang YK, Lee JS, Kim ST, Kim S, Lee JM, Ki CS, Na DL, Seo SW, Kim HJ. The Impact of APOE ɛ4 in Alzheimer's Disease Differs According to Age. J Alzheimers Dis 2019; 61:1377-1385. [PMID: 29376853 DOI: 10.3233/jad-170556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We evaluated how the impact of apolipoprotein E4 (APOE4) differs according to age in Alzheimer's disease (AD) patients. We recruited 846 AD patients and 815 cognitively normal controls and categorized into three groups with respect to their age (<65, 65-74, and ≥75 years). We evaluated the risk of AD in APOE4 carriers and compared cortical thickness and cognitive function according to APOE4 status in each age group. At the point of this study, in young (<65 years) AD, APOE4 noncarriers had the most severe frontal and perisylvian atrophy, while in old (≥75 years) AD, APOE4 carriers had the most severe medial temporal atrophy. In AD under 75 years, APOE4 noncarriers and heterozygotes showed worse performance in language, visuospatial, and frontal function compared to homozygotes, while, in old (≥75 years) AD, APOE4 homozygotes showed worse performance in memory compared to noncarriers. As the detrimental effects of APOE4 seen in older AD patients were not found in younger AD patients, we suggest that some unrevealed factors are associated with cortical atrophy and non-amnestic cognitive dysfunction in young AD with APOE4 noncarriers.
Collapse
Affiliation(s)
- Jaeho Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Seongbeom Park
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Heejin Yoo
- Biostatistics and Clinical Epidemiology Center, Samsung Medical Center, Seoul, Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Yeshin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Ko Woon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Chonbuk National University Hospital, Chonbuk National University Medical school, JeonJu, Korea
| | - Young Kyoung Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jin San Lee
- Department of Neurology, Kyung Hee University Hospital, Seoul, Korea
| | - Sung Tae Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seonwoo Kim
- Biostatistics team, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Jong Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
49
|
Bier N, El-Samra A, Bottari C, Vallet G, Carignan M, Paquette G, Brambati S, Demers L, Génier-Marchand D, Rouleau I. Posterior cortical atrophy: Impact on daily living activities and exploration of a cognitive rehabilitation approach. COGENT PSYCHOLOGY 2019. [DOI: 10.1080/23311908.2019.1634911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- N. Bier
- School of rehabilitation, Université de Montréal, Montréal, Canada
- Centre de recherche, Institut universitaire de gériatrie de Montréal, CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montreal, Canada
| | - A. El-Samra
- School of rehabilitation, Université de Montréal, Montréal, Canada
| | - C. Bottari
- School of rehabilitation, Université de Montréal, Montréal, Canada
- Centre de recherche en réadaptation du Montréal Métropolitain (CRIR), Montreal, Canada
| | - G.T. Vallet
- Centre de recherche, Institut universitaire de gériatrie de Montréal, CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montreal, Canada
| | - M. Carignan
- Centre de recherche en réadaptation du Montréal Métropolitain (CRIR), Montreal, Canada
- Institut Nazareth et Louis Braille, CISSS de la Montérégie-Centre, Montreal, Canada
| | - G. Paquette
- Centre de recherche, Institut universitaire de gériatrie de Montréal, CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montreal, Canada
- Centre de recherche en réadaptation du Montréal Métropolitain (CRIR), Montreal, Canada
| | - S. Brambati
- Centre de recherche, Institut universitaire de gériatrie de Montréal, CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montreal, Canada
- Department of psychology, Université de Montréal, Montreal, Canada
| | - L. Demers
- School of rehabilitation, Université de Montréal, Montréal, Canada
- Centre de recherche, Institut universitaire de gériatrie de Montréal, CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montreal, Canada
| | - D. Génier-Marchand
- Department of psychology, Université du Québec à Montréal, Montreal, Canada
| | - I. Rouleau
- Department of psychology, Université du Québec à Montréal, Montreal, Canada
| |
Collapse
|
50
|
Jaillard A, Vanhoutte M, Maureille A, Schraen S, Skrobala E, Delbeuck X, Rollin-Sillaire A, Pasquier F, Bombois S, Semah F. The relationship between CSF biomarkers and cerebral metabolism in early-onset Alzheimer's disease. Eur J Nucl Med Mol Imaging 2018; 46:324-333. [PMID: 30155553 DOI: 10.1007/s00259-018-4113-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/27/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE One can reasonably suppose that cerebrospinal spinal fluid (CSF) biomarkers can identify distinct subgroups of Alzheimer's disease (AD) patients. In order to better understand differences in CSF biomarker patterns, we used FDG PET to assess cerebral metabolism in CSF-based subgroups of AD patients. METHODS Eighty-five patients fulfilling the criteria for probable early-onset AD (EOAD) underwent lumbar puncture, brain 18F-FDG PET and MRI. A cluster analysis was performed, with the CSF biomarkers for AD as variables. Vertex-wise, partial-volume-corrected metabolic maps were computed for the patients and compared between the clusters of patients. Linear correlations between each CSF biomarker and the metabolic maps were assessed. RESULTS Three clusters emerged. The "Aβ42" cluster contained 32 patients with low levels of Aβ42, while tau and p-tau remained within the normal range. The "Aβ42 + tau" cluster contained 41 patients with low levels of Aβ42 and high levels of tau and p-tau. Lastly, the "tau" cluster contained 12 patients with very high levels of tau and p-tau and low-normal levels of Aβ42. There were no inter-cluster differences in age, sex ratio, educational level, APOE genotype, disease duration or disease severity. The "Aβ42 + tau" and "tau" clusters displayed more marked frontal hypometabolism than the "Aβ42" cluster did, and frontal metabolism was significantly negatively correlated with the CSF tau level. The "Aβ42" and "Aβ42 + tau" clusters displayed more marked hypometabolism in the left occipitotemporal region than the "tau" cluster did, and metabolism in this region was significantly and positively correlated with the CSF Aβ42 level. CONCLUSION The CSF biomarkers can be used to identify metabolically distinct subgroups of patients with EOAD. Future research should seek to establish whether these biochemical differences have clinical consequences.
Collapse
Affiliation(s)
- Alice Jaillard
- Nuclear Medicine Department, CHU Lille, F-59000, Lille, France.
- Inserm, U1171, F-59000, Lille, France.
| | | | | | - Susanna Schraen
- Department of Biology and Pathology, CHU Lill, F-59000, Lille, France
| | | | | | | | - Florence Pasquier
- Inserm, U1171, F-59000, Lille, France
- Neurology Department, CHU Lille, F-59000, Lille, France
| | - Stéphanie Bombois
- Inserm, U1171, F-59000, Lille, France
- Neurology Department, CHU Lille, F-59000, Lille, France
| | - Franck Semah
- Nuclear Medicine Department, CHU Lille, F-59000, Lille, France
- Inserm, U1171, F-59000, Lille, France
| |
Collapse
|