1
|
Rabelo ACS, Andrade AKDL, Costa DC. The Role of Oxidative Stress in Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Preclinical Studies. Nutrients 2024; 16:1174. [PMID: 38674865 PMCID: PMC11055095 DOI: 10.3390/nu16081174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Alcoholic Fatty Liver Disease (AFLD) is characterized by the accumulation of lipids in liver cells owing to the metabolism of ethanol. This process leads to a decrease in the NAD+/NADH ratio and the generation of reactive oxygen species. A systematic review and meta-analysis were conducted to investigate the role of oxidative stress in AFLD. A total of 201 eligible manuscripts were included, which revealed that animals with AFLD exhibited elevated expression of CYP2E1, decreased enzymatic activity of antioxidant enzymes, and reduced levels of the transcription factor Nrf2, which plays a pivotal role in the synthesis of antioxidant enzymes. Furthermore, animals with AFLD exhibited increased levels of lipid peroxidation markers and carbonylated proteins, collectively contributing to a weakened antioxidant defense and increased oxidative damage. The liver damage in AFLD was supported by significantly higher activity of alanine and aspartate aminotransferase enzymes. Moreover, animals with AFLD had increased levels of triacylglycerol in the serum and liver, likely due to reduced fatty acid metabolism caused by decreased PPAR-α expression, which is responsible for fatty acid oxidation, and increased expression of SREBP-1c, which is involved in fatty acid synthesis. With regard to inflammation, animals with AFLD exhibited elevated levels of pro-inflammatory cytokines, including TNF-a, IL-1β, and IL-6. The heightened oxidative stress, along with inflammation, led to an upregulation of cell death markers, such as caspase-3, and an increased Bax/Bcl-2 ratio. Overall, the findings of the review and meta-analysis indicate that ethanol metabolism reduces important markers of antioxidant defense while increasing inflammatory and apoptotic markers, thereby contributing to the development of AFLD.
Collapse
Affiliation(s)
- Ana Carolina Silveira Rabelo
- Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35402-163, Brazil
- Department of Biochemistry, Federal University of Alfenas, Alfenas 37130-001, Brazil
| | | | - Daniela Caldeira Costa
- Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35402-163, Brazil
| |
Collapse
|
2
|
Wang Y, Guo D, Winkler R, Lei X, Wang X, Messina J, Luo J, Lu H. Development of novel liver-targeting glucocorticoid prodrugs. MEDICINE IN DRUG DISCOVERY 2024; 21:100172. [PMID: 38390434 PMCID: PMC10883687 DOI: 10.1016/j.medidd.2023.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Background Glucocorticoids (GCs) are widely used in the treatment of inflammatory liver diseases and sepsis, but GC's various side effects on extrahepatic tissues limit their clinical benefits. Liver-targeting GC therapy may have multiple advantages over systemic GC therapy. The purpose of this study was to develop novel liver-targeting GC prodrugs as improved treatment for inflammatory liver diseases and sepsis. Methods A hydrophilic linker or an ultra-hydrophilic zwitterionic linker carboxylic betaine (CB) was used to bridge cholic acid (CA) and dexamethasone (DEX) to generate transporter-dependent liver-targeting GC prodrugs CA-DEX and the highly hydrophilic CA-CB-DEX. The efficacy of liver-targeting DEX prodrugs and DEX were determined in primary human hepatocytes (PHH), macrophages, human whole blood, and/or mice with sepsis induced by cecal ligation and puncture. Results CA-DEX was moderately water soluble, whereas CA-CB-DEX was highly water soluble. CA-CB-DEX and CA-DEX displayed highly transporter-dependent activities in reporter assays. Data mining found marked dysregulation of many GR-target genes important for lipid catabolism, cytoprotection, and inflammation in patients with severe alcoholic hepatitis. These key GR-target genes were similarly and rapidly (within 6 h) induced or down-regulated by CA-CB-DEX and DEX in PHH. CA-CB-DEX had much weaker inhibitory effects than DEX on endotoxin-induced cytokines in mouse macrophages and human whole blood. In contrast, CA-CB-DEX exerted more potent anti-inflammatory effects than DEX in livers of septic mice. Conclusions CA-CB-DEX demonstrated good hepatocyte-selectivity in vitro and better anti-inflammatory effects in vivo. Further test of CA-CB-DEX as a novel liver-targeting GC prodrug for inflammatory liver diseases and sepsis is warranted.
Collapse
Affiliation(s)
- Yazheng Wang
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Dandan Guo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Rebecca Winkler
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiaohong Lei
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiaojing Wang
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Jennifer Messina
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| |
Collapse
|
3
|
Zhang J, Chen Y, Zou L, Jin L, Yang B, Shu Y, Gong R. Dose-response relationship between dietary antioxidant intake and diabetic kidney disease in the US adults with diabetes. Acta Diabetol 2023; 60:1365-1375. [PMID: 37347448 DOI: 10.1007/s00592-023-02125-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023]
Abstract
AIM The effects of dietary antioxidants on numerous diseases have been widely studied. However, the evidence regarding composite dietary antioxidant index (CDAI) and diabetic kidney disease (DKD) in individuals with diabetes is scarce. This study aimed to investigate the associations of CDAI with DKD and mortality in adults with diabetes mellitus (DM). METHODS This study utilized data from 5676 adult DM participants from the National Health and Nutrition Examination Survey (NHANES) of 2007-2018. The study followed up on death outcomes by linking the data to records from the National Death Index until December 31, 2019. CDAI was evaluated using a well-established method that included six food-sourced antioxidants derived from 24-h dietary recall: selenium, zinc, vitamin A, vitamin C, vitamin E and carotenoids. The regression models were used to estimate the relationships of CDAI with DKD and mortality in diabetic individuals. RESULTS The weighted mean CDAI level for the 5676 participants, which represented 31.36 million noninstitutionalized residents of the US, was 0.33. Based on CDAI quartiles, participants were classified into four groups. CDAI levels were significantly associated with age, gender, race, physical activity, estimated glomerular filtration rate and the prevalence of albuminuria, DKD and hyperuricemia. DKD occurred in 36.44% of diabetic participants, and higher CDAI levels were independently associated with a lower risk of DKD (OR 0.74, 95%CI 0.59-0.94, p for trend = 0.004) in diabetic individuals after multivariate adjustment. During a median follow-up of 67 months (38-104 months), a total of 1065 (15.80%) diabetic individuals died from all causes. Diabetic individuals with higher CDAI levels (Q4) demonstrated a lower risk of all-cause mortality (HR 0.67, 95% CI: 0.52-0.86, p for trend = 0.01) after adjusting for age, gender and race. CONCLUSIONS Maintaining an adequate antioxidant diet, as reflected in higher CDAI levels, may lower the risk of DKD and mortality in diabetic individuals. These findings offer a promising approach to managing diabetes and highlight the potential of food-based antioxidants as a preventative measure. Further research is warranted to explore the underlying mechanism linking dietary antioxidants and DKD and mortality in diabetic individuals.
Collapse
Affiliation(s)
- Junlin Zhang
- Department of Nephrology, The Third People's Hospital of Chengdu, Southwest Jiaotong University, No. 37, Qinglong Street, Chengdu, 610014, Sichuan Province, China
| | - Yao Chen
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Zou
- Department of Nephrology, The Third People's Hospital of Chengdu, Southwest Jiaotong University, No. 37, Qinglong Street, Chengdu, 610014, Sichuan Province, China
| | - Lizhu Jin
- Department of Nephrology, The Third People's Hospital of Chengdu, Southwest Jiaotong University, No. 37, Qinglong Street, Chengdu, 610014, Sichuan Province, China
| | - Bo Yang
- Department of Nephrology, The Third People's Hospital of Chengdu, Southwest Jiaotong University, No. 37, Qinglong Street, Chengdu, 610014, Sichuan Province, China
| | - Ying Shu
- Department of Nephrology, The Third People's Hospital of Chengdu, Southwest Jiaotong University, No. 37, Qinglong Street, Chengdu, 610014, Sichuan Province, China
| | - Rong Gong
- Department of Nephrology, The Third People's Hospital of Chengdu, Southwest Jiaotong University, No. 37, Qinglong Street, Chengdu, 610014, Sichuan Province, China.
| |
Collapse
|
4
|
Narrative Review: Glucocorticoids in Alcoholic Hepatitis—Benefits, Side Effects, and Mechanisms. J Xenobiot 2022; 12:266-288. [PMID: 36278756 PMCID: PMC9589945 DOI: 10.3390/jox12040019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Alcoholic hepatitis is a major health and economic burden worldwide. Glucocorticoids (GCs) are the only first-line drugs recommended to treat severe alcoholic hepatitis (sAH), with limited short-term efficacy and significant side effects. In this review, I summarize the major benefits and side effects of GC therapy in sAH and the potential underlying mechanisms. The review of the literature and data mining clearly indicate that the hepatic signaling of glucocorticoid receptor (GR) is markedly impaired in sAH patients. The impaired GR signaling causes hepatic down-regulation of genes essential for gluconeogenesis, lipid catabolism, cytoprotection, and anti-inflammation in sAH patients. The efficacy of GCs in sAH may be compromised by GC resistance and/or GC’s extrahepatic side effects, particularly the side effects of intestinal epithelial GR on gut permeability and inflammation in AH. Prednisolone, a major GC used for sAH, activates both the GR and mineralocorticoid receptor (MR). When GC non-responsiveness occurs in sAH patients, the activation of MR by prednisolone might increase the risk of alcohol abuse, liver fibrosis, and acute kidney injury. To improve the GC therapy of sAH, the effort should be focused on developing the biomarker(s) for GC responsiveness, liver-targeting GR agonists, and strategies to overcome GC non-responsiveness and prevent alcohol relapse in sAH patients.
Collapse
|
5
|
Ojeda ML, Nogales F, Del Carmen Gallego-López M, Carreras O. Binge drinking during the adolescence period causes oxidative damage-induced cardiometabolic disorders: A possible ameliorative approach with selenium supplementation. Life Sci 2022; 301:120618. [PMID: 35533761 DOI: 10.1016/j.lfs.2022.120618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022]
Abstract
Binge drinking (BD) is the most common alcohol consumption model among adolescents. BD exposure during adolescence disrupts the nervous system function, being involved in the major mortality causes at this age: motor vehicle accidents, homicides and suicides. Recent studies have also shown that BD consumption during adolescence affects liver, renal and cardiovascular physiology, predisposing adolescents to future adult cardiometabolic damage. BD is a particularly pro-oxidant alcohol consumption pattern, because it leads to the production of a great source of reactive oxygen species (ROS) via the microsomal ethanol oxidizing system, also decreasing the antioxidant activity of glutathione peroxidase (GPx). Selenium (Se) is a mineral which plays a pivotal role against oxidation; it forms part of the catalytic center of different antioxidant selenoproteins such as GPxs (GPx1, GPx4, GPx3) and selenoprotein P (SelP). Specifically, GPx4 has an essential role in mitochondria, preventing their oxidation, apoptosis and NFkB-inflamative response, being this function even more relevant in heart's tissue. Se serum levels are decreased in acute and chronic alcoholic adult patients, being correlated to the severity of oxidation, liver damage and metabolic profile. Experimental studies have described that Se supplementation to alcohol exposed mice clearly decreases oxidative and liver damage. However, clinical BD effects on Se homeostasis and selenoproteins' tissue distribution related to oxidation during adolescence are not yet studied. In this narrative review we will describe the use of sodium selenite supplementation as an antioxidant therapy in adolescent BD rats in order to analyze Se homeostasis implication during BD exposure, oxidative balance, apoptosis and inflammation, mainly in liver, kidney, and heart. These biomolecular changes and the cardiovascular function will be analyzed. Se supplementation therapies could be a good strategy to prevent the oxidation, inflammation and apoptosis generated in tissues by BD during adolescence, such as liver, kidney and heart, improving cardiovascular functioning.
Collapse
Affiliation(s)
- María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| | | | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain
| |
Collapse
|
6
|
Kim CG, Chang SN, Park SM, Hwang BS, Kang SA, Kim KS, Park JG. Moringa oleifera mitigates ethanol-induced oxidative stress, fatty degeneration and hepatic steatosis by promoting Nrf2 in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154037. [PMID: 35358929 DOI: 10.1016/j.phymed.2022.154037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/04/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Moringa oleifera (M. oleifera) is cultivated throughout the world and it is known by numerous regional names and is consumed as medication for various diseases such as hypertension, diabetes, HIV and is potential source of nutrients and natural antioxidants making it among the most useful trees. METHODS We evaluated the therapeutic potential of M. oleifera on ethanol-induced fatty liver. The mice were treated with 30% ethanol (EtOH) alone or in combination with different concentration of M. oleifera extracts (100, 200 and 400 mg/kg). We performed biochemical estimation for the serum of important liver damage markers such as aspartate aminotransferase (AST), alanine aminotransferase (ALT) and triglyceride (TG). We performed histopathological analysis from the liver tissues of different mice groups. We also performed ELISA assay, western blotting analysis and SPECT imaging to obtain our results. RESULTS The results for serum (AST, p < 0.0001), (ALT, p < 0.0006) and triglyceride (TG, p < 0.0003) were found to be significantly reduced in all doses of M. oleifera extract treatment groups in comparison with the ethanol group. H&E staining analysis and scoring revealed a significant reduction in lipid droplet accumulation and a significant reduction of liver steatosis (p < 0.0001), lobular inflammation (p < 0.0013), ballooning (p < 0.0004) and immunohistochemistry for TNF-α. M. oleifera also ameliorated ethanol-induced oxidative stress evaluated through MDA (p < 0.0001), H2DCFDA, JC-1 staining and a significant down-regulation of CYP2E1 enzyme (p < 0.0001) in the 200 and 400 mg/kg groups in comparison with EtOH groups. M. oleifera extract also boosted the antioxidant response evaluated through total GSH assay (p < 0.0001) and nuclear translocation of Nrf2. Furthermore, we performed SPECT imaging and evaluated the liver uptake value (LUV) to assess the extent of liver damage. LUV was observed to be lower in the ethanol group, whereas LUV was higher in control and M. olifera treated groups. CONCLUSION In summary, from this experiment we conclude that M. oleifera extract has the potential to ameliorate ethanol-induced liver damage.
Collapse
Affiliation(s)
- Chang Geon Kim
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang, Gyeongbuk, 37668, Republic of Korea; School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712749, Republic of Korea
| | - Sukkum Ngullie Chang
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang, Gyeongbuk, 37668, Republic of Korea; Department of Biotechnology, Daegu University, Gyeongsan, 38453, Republic of Korea
| | - Seon Min Park
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang, Gyeongbuk, 37668, Republic of Korea; Department of Veterinary Toxicology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Buyng Su Hwang
- Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea
| | - Sung-A Kang
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang, Gyeongbuk, 37668, Republic of Korea
| | - Kil Soo Kim
- Department of Veterinary Toxicology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea.
| | - Jae Gyu Park
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang, Gyeongbuk, 37668, Republic of Korea.
| |
Collapse
|
7
|
RNA-Seq Analysis of Protection against Chronic Alcohol Liver Injury by Rosa roxburghii Fruit Juice (Cili) in Mice. Nutrients 2022; 14:nu14091974. [PMID: 35565941 PMCID: PMC9104053 DOI: 10.3390/nu14091974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Rosa roxburghii Tratt. fruit juice (Cili) is used as a medicinal and edible resource in China due to its antioxidant and hypolipidemic potentials. The efficacy of Cili in protecting alcohol-induced liver injury and its underlying mechanism was investigated. C57BL/6J mice received a Lieber-DeCarli liquid diet containing alcohol to produce liver injury. After the mice were adapted gradually to 5% alcohol, Cili (4 mL and 8 mL/kg/day for 4 weeks) were gavaged for treatment. The serum enzyme activities, triglyceride levels, histopathology and Oil-red O staining were examined. The RNA-Seq and qPCR analyses were performed to determine the protection mechanisms. Cili decreased serum and liver triglyceride levels in mice receiving alcohol. Hepatocyte degeneration and steatosis were improved by Cili. The RNA-Seq analyses showed Cili brought the alcohol-induced aberrant gene pattern towards normal. The qPCR analysis verified that over-activation of CAR and PXR (Cyp2a4, Cyp2b10 and Abcc4) was attenuated by Cili. Cili alleviated overexpression of oxidative stress responsive genes (Hmox1, Gsta1, Gstm3, Nqo1, Gclc, Vldlr, and Cdkn1a), and rescued alcohol-downregulated metabolism genes (Angptl8, Slc10a2, Ces3b, Serpina12, C6, and Selenbp2). Overall, Cili was effective against chronic alcohol liver injury, and the mechanisms were associated with decreased oxidative stress, improved lipid metabolism through modulating nuclear receptor CAR-, PXR-and Nrf2-mediated pathways.
Collapse
|
8
|
Gembillo G, Visconti L, Giuffrida AE, Labbozzetta V, Peritore L, Lipari A, Calabrese V, Piccoli GB, Torreggiani M, Siligato R, Santoro D. Role of Zinc in Diabetic Kidney Disease. Nutrients 2022; 14:nu14071353. [PMID: 35405968 PMCID: PMC9003285 DOI: 10.3390/nu14071353] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetic Kidney Disease (DKD) represents the most common cause of Chronic Kidney Disease (CKD) in developed countries. Approximately 30% to 40% of diabetes mellitus (DM) subjects develop DKD, and its presence significantly increases the risk for morbidity and mortality. In this context, Zinc seems to have a potential role in kidney and body homeostasis in diabetic individuals as well as in patients at a high risk of developing this condition. This essential element has functions that may counteract diabetes-related risk factors and complications, which include stabilization of insulin hexamers and pancreatic insulin storage and improved glycemic control. In our review, we analyzed the current knowledge on the role of zinc in the management of renal impairment in course of DM. Several studies underline the critical role of zinc in reducing oxidative stress levels, which is considered the common denominator of the mechanisms responsible for the progression of kidney disease. Reaching and maintaining a proper serum zinc level could represent a valuable target to reduce symptoms related to DM complications and contrast the progression of kidney impairment in patients with the high risk of developing end-stage renal disease. In conclusion, analyzing the beneficial role of zinc in this review would advance our knowledge on the possible strategies of DM and DKD treatment.
Collapse
Affiliation(s)
- Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.E.G.); (V.L.); (L.P.); (A.L.); (V.C.)
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy;
- Correspondence: (G.G.); (D.S.)
| | - Luca Visconti
- Unit of Nephrology and Dialysis, Ospedali Riuniti Villa Sofia Cervello, University of Palermo, 90146 Palermo, Italy;
| | - Alfio Edoardo Giuffrida
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.E.G.); (V.L.); (L.P.); (A.L.); (V.C.)
| | - Vincenzo Labbozzetta
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.E.G.); (V.L.); (L.P.); (A.L.); (V.C.)
| | - Luigi Peritore
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.E.G.); (V.L.); (L.P.); (A.L.); (V.C.)
| | - Antonella Lipari
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.E.G.); (V.L.); (L.P.); (A.L.); (V.C.)
| | - Vincenzo Calabrese
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.E.G.); (V.L.); (L.P.); (A.L.); (V.C.)
| | - Giorgina Barbara Piccoli
- Néphrologie Et Dialyse, Centre Hospitalier Le Mans, 194 Avenue Rubillard, 72000 Le Mans, France; (G.B.P.); (M.T.)
| | - Massimo Torreggiani
- Néphrologie Et Dialyse, Centre Hospitalier Le Mans, 194 Avenue Rubillard, 72000 Le Mans, France; (G.B.P.); (M.T.)
| | - Rossella Siligato
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy;
- Unit of Nephrology, Azienda Ospedaliera Universitaria Sant’Anna, 44124 Ferrara, Italy
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.E.G.); (V.L.); (L.P.); (A.L.); (V.C.)
- Correspondence: (G.G.); (D.S.)
| |
Collapse
|
9
|
Darbar S, Saha S, Pramanik K, Chattopadhyay A. Antioxidant and immunomodulatory effect of AKSS16-LIV01 – a multi herbal formulation against ethanol induced liver dysfunction in mice. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Liver complication arises commonly due to high alcohol consumption rate. Majority of the people residing in both developed and under developed countries consuming alcohol face various liver complications such as liver fibrosis, fatty liver, liver cirrhosis and even hepatocellular carcinoma. Invention of safe and symptomatic medication to overcome this situation is a new challenge worldwide. The main objective of the study is to deliver a safe and symptomatic medication to reduce the ethanol induced liver dysfunction.
Methods
In this study we have developed a multi herbal formulation (AKSS-16-LIV01) which minimised liver damage against various toxicants. Swiss albino mice were divided into seven groups where ethanol induced damage was observed for weeks followed by sanative response observation by our herbal formulation. The groups are normal control group, ethanol treated group (50% v/v), AKSS16-LIV01 low dose (75 mg/kg/day) pre-treated group, AKSS16-LIV01 middle dose (150 mg/kg/day) pre-treated group, AKSS16-LIV01 high dose (300 mg/kg/day) pre-treated group, Sylimarin pre-treated group (100 mg/kg/day) and only AKSS16-LIV01 (300 mg/kg/day) treated group.
Results
The results potrayed significant elevation of various biochemical parameters, lipid profile parameters, lipid peroxidation, nitric oxide (NO) concentration, nitric oxide synthase level and pro inflammatory cytokines level i.e. tumor necrosis factor (TNF-α) and transforming growth factor (TGF-β1) in the ethanol induced mice. On the other hand serum total protein, total albumin, albumin globulin ratio and level of tissue antioxidant enzymes activity (SOD, CAT, GSH and GPx) were significantly reduced by ethanol. Dose depended therapeutic application of the formulation (AKSS16-LIV01) significantly suppressed all the relevant above parameters and protected the liver from ethanol induced fibrogenesis. Apart from this gross morphology of the liver, H&E liver histology and massontrichrome&serius red examination of the liver section strongly supported the hepatoprotive effect of the formulation as compared with standard drug Sylimarin. Result of the study implies that developed multi herbal formulation (AKSS16-LIV01) at a dose of 300 mg/kg/day gave the best optimum response to reduce the ethanol intoxication.
Conclusion
Result clearly depict that AKSS16-LIV01 may be a safe and nontoxic medication which protect the liver against ethanol induced oxidative injury and maintained pro inflammatory cytokines level in the future.
Graphical Abstract
Collapse
|
10
|
Han M, Böhlke M, Maher T, Kim J. Alcohol exposure increases manganese accumulation in the brain and exacerbates manganese-induced neurotoxicity in mice. Arch Toxicol 2021; 95:3665-3679. [PMID: 34590183 DOI: 10.1007/s00204-021-03166-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Environmental and occupational exposure to heavy metals remains one of the major concerns in public health. Increased levels of manganese (Mn) pollution are associated with profound neurotoxic effects, including neurobehavioral deficits and disturbances resembling Parkinson's disease. While Mn absorption is in part mediated by iron transporters, recent studies have shown that the levels of iron transporters are modified by alcohol and that chronic alcohol consumption increases body iron stores. However, it is largely unexplored whether alcohol exposure influences the transport and neurotoxicity of Mn. To address this question, we exposed mice to ethanol (10%; v/v) by drinking water for 4 weeks, during which period MnCl2 (5 mg/kg) or saline solutions were administered daily by intranasal instillation. Ethanol consumption in mice increased brain Mn levels in a dose-dependent manner after Mn instillation, determined by inductively-coupled plasma mass spectrometry, which was accompanied by up-regulation of iron transporters, as assessed by western blotting and qPCR. In addition, alcohol drinking increased hypoxic response and decreased hepcidin expression, providing the molecular mechanism of increased iron transporters and Mn uptake upon alcohol consumption. Moreover, brain dopamine levels, analyzed by HPLC, were decreased after intranasal Mn instillation, which was worsened by alcohol. Likewise, alcohol-Mn co-exposure synergistically altered dopaminergic protein expression. Finally, alcohol binge-drinking, which resembles alcohol drinking manner in humans, increased brain Mn content along with upregulation of iron transporters. Our study suggests that individuals who consume alcohol may have a higher risk of Mn neurotoxicity upon Mn exposure.
Collapse
Affiliation(s)
- Murui Han
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Mark Böhlke
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, USA
| | - Timothy Maher
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA. .,Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, 3 Solomont Way, Suite 4, Lowell, MA, 01854, USA.
| |
Collapse
|
11
|
Kim MC, Lee JI, Kim JH, Kim HJ, Cho YK, Jeon WK, Kim BI, Sohn W. Serum zinc level and hepatic fibrosis in patients with nonalcoholic fatty liver disease. PLoS One 2020; 15:e0240195. [PMID: 33095789 PMCID: PMC7584204 DOI: 10.1371/journal.pone.0240195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
This study aimed to investigate the relationship between serum zinc level and hepatic fibrosis in patients with nonalcoholic fatty liver disease (NAFLD). A cross-sectional study was conducted using nationally representative samples from the Korea National Health and Nutrition Examination Survey 2010. Significant hepatic fibrosis was defined as Fibrosis-4 (FIB-4) index>1.3. Zinc level was measured using inductively coupled plasma mass spectrometry. Univariable and multivariable logistic regression analyses were performed to assess risk factors for significant hepatic fibrosis in patients with NAFLD. A total of 300 patients with NAFLD were analyzed in this study. The mean serum zinc level was 139.8±29.9 μg/dL. FIB-4 index was significantly increased as the serum zinc level decreased (Adjusted correlation coefficient = -0.177, p = 0.003). Significant liver fibrosis was observed in 62 patients (21%). The multivariable analysis showed that significant liver fibrosis in NAFLD was associated with diabetes mellitus (odds ratio [OR], 3.25; 95% confidence interval [CI], 1.71–6.19; p<0.001), male (OR, 2.59; 95% CI, 1.31–5.12; p = 0.006), and zinc level <140 μg/dL (OR, 2.14; 95% CI, 1.16–3.94; p = 0.015). There was an inverse relationship between serum zinc level and FIB-4 index in NAFLD. Low levels of serum zinc were an independent risk factor for significant hepatic fibrosis in NAFLD.
Collapse
Affiliation(s)
- Min Chul Kim
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeong In Lee
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Hee Kim
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Dongtan, Gyeonngi-do, Republic of Korea
- * E-mail: (WS); (JHK)
| | - Hong Joo Kim
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong Kyun Cho
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Woo Kyu Jeon
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Byung Ik Kim
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Sohn
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- * E-mail: (WS); (JHK)
| |
Collapse
|
12
|
Ma J, Cao H, Rodrigues RM, Xu M, Ren T, He Y, Hwang S, Feng D, Ren R, Yang P, Liangpunsakul S, Sun J, Gao B. Chronic-plus-binge alcohol intake induces production of proinflammatory mtDNA-enriched extracellular vesicles and steatohepatitis via ASK1/p38MAPKα-dependent mechanisms. JCI Insight 2020; 5:136496. [PMID: 32544093 DOI: 10.1172/jci.insight.136496] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Alcohol-associated liver disease is a spectrum of liver disorders with histopathological changes ranging from simple steatosis to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Recent data suggest that chronic-plus-binge ethanol intake induces steatohepatitis by promoting release by hepatocytes of proinflammatory mitochondrial DNA-enriched (mtDNA-enriched) extracellular vesicles (EVs). The aim of the present study was to investigate the role of the stress kinase apoptosis signal-regulating kinase 1 (ASK1) and p38 mitogen-activated protein kinase (p38) in chronic-plus-binge ethanol-induced steatohepatitis and mtDNA-enriched EV release. Microarray analysis revealed the greatest hepatic upregulation of metallothionein 1 and 2 (Mt1/2), which encode 2 of the most potent antioxidant proteins. Genetic deletion of the Mt1 and Mt2 genes aggravated ethanol-induced liver injury, as evidenced by elevation of serum ALT, neutrophil infiltration, oxidative stress, and ASK1/p38 activation in the liver. Inhibition or genetic deletion of Ask1 or p38 ameliorated ethanol-induced liver injury, inflammation, ROS levels, and expression of phagocytic oxidase and ER stress markers in the liver. In addition, inhibition of ASK1 or p38 also attenuated ethanol-induced mtDNA-enriched EV secretion from hepatocytes. Taken together, these findings indicate that induction of hepatic mtDNA-enriched EVs by ethanol is dependent on ASK1 and p38, thereby promoting alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Jing Ma
- State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Haixia Cao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Robim M Rodrigues
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Mingjiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Tianyi Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Ruixue Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Peixin Yang
- Department of Obstetrics and Gynecology Science, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, and.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Jian Sun
- State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Giammanco M, Di Liegro CM, Schiera G, Di Liegro I. Genomic and Non-Genomic Mechanisms of Action of Thyroid Hormones and Their Catabolite 3,5-Diiodo-L-Thyronine in Mammals. Int J Mol Sci 2020; 21:ijms21114140. [PMID: 32532017 PMCID: PMC7312989 DOI: 10.3390/ijms21114140] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Since the realization that the cellular homologs of a gene found in the retrovirus that contributes to erythroblastosis in birds (v-erbA), i.e. the proto-oncogene c-erbA encodes the nuclear receptors for thyroid hormones (THs), most of the interest for THs focalized on their ability to control gene transcription. It was found, indeed, that, by regulating gene expression in many tissues, these hormones could mediate critical events both in development and in adult organisms. Among their effects, much attention was given to their ability to increase energy expenditure, and they were early proposed as anti-obesity drugs. However, their clinical use has been strongly challenged by the concomitant onset of toxic effects, especially on the heart. Notably, it has been clearly demonstrated that, besides their direct action on transcription (genomic effects), THs also have non-genomic effects, mediated by cell membrane and/or mitochondrial binding sites, and sometimes triggered by their endogenous catabolites. Among these latter molecules, 3,5-diiodo-L-thyronine (3,5-T2) has been attracting increasing interest because some of its metabolic effects are similar to those induced by T3, but it seems to be safer. The main target of 3,5-T2 appears to be the mitochondria, and it has been hypothesized that, by acting mainly on mitochondrial function and oxidative stress, 3,5-T2 might prevent and revert tissue damages and hepatic steatosis induced by a hyper-lipid diet, while concomitantly reducing the circulating levels of low density lipoproteins (LDL) and triglycerides. Besides a summary concerning general metabolism of THs, as well as their genomic and non-genomic effects, herein we will discuss resistance to THs and the possible mechanisms of action of 3,5-T2, also in relation to its possible clinical use as a drug.
Collapse
Affiliation(s)
- Marco Giammanco
- Department of Surgical, Oncological and Oral Sciences (Discipline Chirurgiche, Oncologiche e Stomatologiche), University of Palermo, 90127 Palermo, Italy;
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (Bi.N.D.)), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-091-2389-7415 or +39-091-2389-7446
| |
Collapse
|
14
|
Kim HG, Huang M, Xin Y, Zhang Y, Zhang X, Wang G, Liu S, Wan J, Ahmadi AR, Sun Z, Liangpunsakul S, Xiong X, Dong XC. The epigenetic regulator SIRT6 protects the liver from alcohol-induced tissue injury by reducing oxidative stress in mice. J Hepatol 2019; 71:960-969. [PMID: 31295533 PMCID: PMC6801027 DOI: 10.1016/j.jhep.2019.06.019] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/29/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS As a nicotinamide adenine dinucleotide-dependent deacetylase and a key epigenetic regulator, sirtuin 6 (SIRT6) has been implicated in the regulation of metabolism, DNA repair, and inflammation. However, the role of SIRT6 in alcohol-related liver disease (ALD) remains unclear. The aim of this study was to investigate the function and mechanism of SIRT6 in ALD pathogenesis. METHODS We developed and characterized Sirt6 knockout (KO) and transgenic mouse models that were treated with either control or ethanol diet. Hepatic steatosis, inflammation, and oxidative stress were analyzed using biochemical and histological methods. Gene regulation was analyzed by luciferase reporter and chromatin immunoprecipitation assays. RESULTS The Sirt6 KO mice developed severe liver injury characterized by a remarkable increase of oxidative stress and inflammation, whereas the Sirt6 transgenic mice were protected from ALD via normalization of hepatic lipids, inflammatory response, and oxidative stress. Our molecular analysis has identified a number of novel Sirt6-regulated genes that are involved in antioxidative stress, including metallothionein 1 and 2 (Mt1 and Mt2). Mt1/2 genes were downregulated in the livers of Sirt6 KO mice and patients with alcoholic hepatitis. Overexpression of Mt1 in the liver of Sirt6 KO mice improved ALD by reducing hepatic oxidative stress and inflammation. We also identified a critical link between SIRT6 and metal regulatory transcription factor 1 (Mtf1) via a physical interaction and functional coactivation. Mt1/2 promoter reporter assays showed a strong synergistic effect of SIRT6 on the transcriptional activity of Mtf1. CONCLUSIONS Our data suggest that SIRT6 plays a critical protective role against ALD and it may serve as a potential therapeutic target for ALD. LAY SUMMARY The liver, the primary organ for ethanol metabolism, can be damaged by the byproducts of ethanol metabolism, including reactive oxygen species. In this study, we have identified a key epigenetic regulator SIRT6 that plays a critical role in protecting the liver from oxidative stress-induced liver injury. Thus, our data suggest that SIRT6 may be a potential therapeutic target for alcohol-related liver disease.
Collapse
Affiliation(s)
- Hyeong Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Menghao Huang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Yue Xin
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China,Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Yang Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Xinge Zhang
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China,Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Gaihong Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.,Center of Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Ali Reza Ahmadi
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Zhaoli Sun
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, Indiana 46202, USA
| | - Xiwen Xiong
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
| | - Xiaocheng Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
15
|
Trabelsi W, Chetoui I, Fouzai C, Bejaoui S, Rabeh I, Telahigue K, Chalghaf M, El Cafsi M, Soudani N. Redox status and fatty acid composition of Mactra corallina digestive gland following exposure to acrylamide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22197-22208. [PMID: 31148000 DOI: 10.1007/s11356-019-05492-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Acrylamide (ACR), a ubiquitous agent, has various chemical and industrial applications, and it is found in backed or fried carbohydrate-rich food. It has been related to multiple toxicological effects, and it causes high cytotoxicity through oxidative stress. The present study aimed to investigate the potential effect of ACR toxicity administered at different concentrations (5, 10, and 20 mg/L), during 5 days, in order to evaluate the fatty acid (FA) composition and redox state in the digestive gland of Mactra corallina. The results showed, in ACR-treated clams, a significant increase in malondialdehyde, hydrogen peroxide, protein carbonyl, and metallothionein levels, as well as an alteration of the enzymatic (superoxide dismutase, glutathione peroxidase, and catalase) and non-enzymatic (reduced glutathione and ascorbic acid) antioxidant status. However, acetylcholinesterase activity was inhibited in a concentration-dependent manner. In our experiment, the n-3 (Omega-3) and n-6 (Omega-6) polyunsaturated fatty acid levels were significantly changed in all ACR-treated groups. A decrease in eicosapentaenoic acid (C20:5n-3, EPA) and docosahexaenoic acid (C22:6n-3, DHA) was observed in 10-mg/L and 20-mg/L ACR-treated groups. Nevertheless, arachidonic acid (C20:4n-6, ARA) and its precursor linoleic acid (C18:2n-6, LA) were increased. Besides oxidative stress parameters, FA composition may be an additional tool for assessing ACR contamination.
Collapse
Affiliation(s)
- Wafa Trabelsi
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, 2092, Tunis, Tunisia.
| | - Imene Chetoui
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Chaima Fouzai
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Safa Bejaoui
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Imen Rabeh
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Khaoula Telahigue
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Mohamed Chalghaf
- Aquatic Environment Exploitation Resources Unit, Higher Institute Fishing and Fish Farming of Bizerte, Bizerte, Tunisia
| | - Mhamed El Cafsi
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Nejla Soudani
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, 2092, Tunis, Tunisia
| |
Collapse
|
16
|
Ginseng ( Panax ginseng Meyer) Oligopeptides Protect Against Binge Drinking-Induced Liver Damage through Inhibiting Oxidative Stress and Inflammation in Rats. Nutrients 2018; 10:nu10111665. [PMID: 30400371 PMCID: PMC6266439 DOI: 10.3390/nu10111665] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/11/2022] Open
Abstract
Panax ginseng C.A. Meyer (ginseng) is an edible and traditional medicinal herb, which is reported to have a wide range of biological activity and pharmaceutical properties. There were more studies on ginsenoside and polysaccharides, but fewer on ginseng oligopeptides (GOPs), which are small molecule oligopeptides extracted from ginseng. The present study was designed to investigate the effects and underlying mechanism of ginseng oligopeptide (GOPs) on binge drinking-induced alcohol damage in rats. Sprague Dawley rats were randomly assigned to six groups (n = 10), rats in normal control group and alcohol model group was administered distilled water; rats in four GOPs intervention groups (at a dose of 0.0625, 0.125, 0.25, 0.5 g/kg of body weight, respectively) were administered GOPs once a day for 30 days. Experiment rats were intragastrically administered ethanol at a one-time dose of 7 g/kg of body weight after 30 days. The liver injury was measured through traditional liver enzymes, inflammatory cytokines, expression of oxidative stress markers, and histopathological examination. We found that the GOPs treatment could significantly improve serum alanine aminotransferase and aspartate aminotransferase, plasma lipopolysaccharide, and inflammatory cytokine levels, as well as the oxidative stress markers that were altered by alcohol. Moreover, GOPs treatment inhibited the protein expression of toll-like receptor 4, and repressed the inhibitor kappa Bα and nuclear factor-κB p65 in the liver. These findings suggested that GOPs have a significant protective effect on binge drinking-induced liver injury, and the mechanism possibly mediated by the partial inhibition of lipopolysaccharide-toll-like receptor 4-nuclear factor-κB p65 signaling in the liver.
Collapse
|
17
|
Ali H, Assiri MA, Shearn CT, Fritz KS. Lipid peroxidation derived reactive aldehydes in alcoholic liver disease. CURRENT OPINION IN TOXICOLOGY 2018; 13:110-117. [PMID: 31263795 DOI: 10.1016/j.cotox.2018.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipid peroxidation is a known consequence of oxidative stress and is thought to play a key role in numerous disease pathologies, including alcoholic liver disease (ALD). The overaccumulation of lipid peroxidation products during chronic alcohol consumption results in pathogenic lesions on protein, DNA, and lipids throughout the cell. Molecular adducts due to secondary end products of lipid peroxidation impact a host of biochemical processes, including inflammation, antioxidant defense, and metabolism. The aggregate burden of lipid peroxidation which occurs due to chronic alcohol metabolism, including downstream signaling events, contributes to the development and progression of ALD. In this current opinion we highlight recent studies and approaches relating cellular mechanisms of lipid peroxidation to the pathogenesis of alcoholic liver disease.
Collapse
Affiliation(s)
- Hadi Ali
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Mohammed A Assiri
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Colin T Shearn
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kristofer S Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
18
|
Ghorbel I, Elwej A, Chaabene M, Boudawara O, Marrakchi R, Jamoussi K, Boudawara TS, Zeghal N. Effects of acrylamide graded doses on metallothioneins I and II induction and DNA fragmentation: Bochemical and histomorphological changes in the liver of adult rats. Toxicol Ind Health 2017; 33:611-622. [PMID: 28490250 DOI: 10.1177/0748233717696613] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study investigates the toxic effects of acrylamide (ACR) administered to rats at two doses on (i) oxidative stress and disruption of pro-oxidant/antioxidant balance in hepatic cells and (ii) its correlation with metallothioneins (MTs) genes expression, DNA damage and histomorphological changes. Treated rats with 20 and 40 mg/kg body weight of ACR led to an increase in malondialdehyde, hydrogen peroxide, advanced oxidation protein products, protein carbonyl levels as well as an alteration in the antioxidant status. Total MT content in the liver and MT I and MT II genes induction were increased. Plasma transaminases activities, albumin, total protein and glucose levels were also increased, while alkaline phosphatase activity was decreased. Moreover, total cholesterol (TC), triglyceride, low-density lipoprotein cholesterol (LDL-C) levels, TC/high-density lipoprotein cholesterol (HDL-C) and LDL-C/HDL-C ratios were increased, while HDL-C decreased in a dose-dependent manner. A random DNA degradation was observed only in the liver of ACR-treated rats with the highest dose. These changes were confirmed by histopathological observations.
Collapse
Affiliation(s)
- Imen Ghorbel
- 1 Animal Physiology Laboratory, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Awatef Elwej
- 1 Animal Physiology Laboratory, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Mariem Chaabene
- 1 Animal Physiology Laboratory, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Ons Boudawara
- 2 Anatomopathology Laboratory, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Rim Marrakchi
- 3 Biochemistry Laboratory, CHU Hedi Chaker, University of Sfax, Sfax, Tunisia
| | - Kamel Jamoussi
- 3 Biochemistry Laboratory, CHU Hedi Chaker, University of Sfax, Sfax, Tunisia
| | | | - Najiba Zeghal
- 1 Animal Physiology Laboratory, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
19
|
Lian Y, Zhao J, Wang YM, Zhao J, Peng SQ. Metallothionein protects against isoniazid-induced liver injury through the inhibition of CYP2E1-dependent oxidative and nitrosative impairment in mice. Food Chem Toxicol 2017; 102:32-38. [DOI: 10.1016/j.fct.2017.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 01/08/2023]
|
20
|
Uchio R, Higashi Y, Kohama Y, Kawasaki K, Hirao T, Muroyama K, Murosaki S. A hot water extract of turmeric ( Curcuma longa) suppresses acute ethanol-induced liver injury in mice by inhibiting hepatic oxidative stress and inflammatory cytokine production. J Nutr Sci 2017; 6:e3. [PMID: 28620478 PMCID: PMC5465857 DOI: 10.1017/jns.2016.43] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 11/20/2016] [Accepted: 11/28/2016] [Indexed: 01/10/2023] Open
Abstract
Turmeric (Curcuma longa) is a widely used spice that has various biological effects, and aqueous extracts of turmeric exhibit potent antioxidant activity and anti-inflammatory activity. Bisacurone, a component of turmeric extract, is known to have similar effects. Oxidative stress and inflammatory cytokines play an important role in ethanol-induced liver injury. This study was performed to evaluate the influence of a hot water extract of C. longa (WEC) or bisacurone on acute ethanol-induced liver injury. C57BL/6 mice were orally administered WEC (20 mg/kg body weight; BW) or bisacurone (60 µg/kg BW) at 30 min before a single dose of ethanol was given by oral administration (3·0 g/kg BW). Plasma levels of aspartate aminotransferase and alanine aminotransferase were markedly increased in ethanol-treated mice, while the increase of these enzymes was significantly suppressed by prior administration of WEC. The increase of alanine aminotransferase was also significantly suppressed by pretreatment with bisacurone. Compared with control mice, animals given WEC had higher hepatic tissue levels of superoxide dismutase and glutathione, as well as lower hepatic tissue levels of thiobarbituric acid-reactive substances, TNF-α protein and IL-6 mRNA. These results suggest that oral administration of WEC may have a protective effect against ethanol-induced liver injury by suppressing hepatic oxidation and inflammation, at least partly through the effects of bisacurone.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- BW, body weight
- Bisacurone
- Ethanol-induced liver injury
- GSH, glutathione
- GSSG, oxidised glutathione
- Inflammatory cytokines
- O2•−, superoxide anion radical
- Oxidative stress
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- TBARS, thiobarbituric acid-reactive substances
- Turmeric (Curcuma longa)
- WEC, hot water extract of Curcuma longa
Collapse
Affiliation(s)
- Ryusei Uchio
- Research & Development Institute, House Wellness Foods Corporation, 3–20 Imoji, Itami 664-0011, Japan
| | - Yohei Higashi
- Research & Development Institute, House Wellness Foods Corporation, 3–20 Imoji, Itami 664-0011, Japan
| | - Yusuke Kohama
- Central Research & Development Institute, House Foods Group Inc., 1–4 Takanodai, Yotsukaido 284-0033, Japan
| | - Kengo Kawasaki
- Research & Development Institute, House Wellness Foods Corporation, 3–20 Imoji, Itami 664-0011, Japan
| | - Takashi Hirao
- Central Research & Development Institute, House Foods Group Inc., 1–4 Takanodai, Yotsukaido 284-0033, Japan
| | - Koutarou Muroyama
- Research & Development Institute, House Wellness Foods Corporation, 3–20 Imoji, Itami 664-0011, Japan
| | - Shinji Murosaki
- Research & Development Institute, House Wellness Foods Corporation, 3–20 Imoji, Itami 664-0011, Japan
| |
Collapse
|
21
|
Lynes MA, Zaffuto K, Unfricht DW, Marusov G, Samson JS, Yin X. The Physiological Roles of Extracellular Metallothionein. Exp Biol Med (Maywood) 2016; 231:1548-54. [PMID: 17018879 DOI: 10.1177/153537020623100915] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Metallothionein (MT) is a low-molecular-weight protein with a number of roles to play in cellular homeostasis. MT is synthesized as a consequence of a variety of cellular stressors, and has been found in both intracellular compartments and in extracellular spaces. The intracellular pool of this cysteine-rich protein can act as a reservoir of essential heavy metals, as a scavenger of reactive oxygen and nitrogen species, as an antagonist of toxic metals and organic molecules, and as a regulator of transcription factor activity. The presence of MT outside of cells due to the Influence of stressors suggests that this protein may make important contributions as a “danger signal” that influences the management of responses to cellular damage. While conventional wisdom has held that extracellular MT is the result of cell death or leakage from stressed cells, there are numerous examples of selective release of proteins by nontraditional mechanisms, including stress response proteins. This suggests that MT may similarly be selectively released, and that the pool of extracellular MT represents an important regulator of various cellular functions. For example, extracellular MT has effects both on the severity of autoimmune disease, and on the development of adaptive immune functions. Extracellular MT may operate as a chemotactic factor that governs the trafficking of inflammatory cells that move to resolve damaged tissues, as a counter to extracellular oxidant-mediated damage, and as a signal that influences the functional behavior of wounded cells. A thorough understanding of the mechanisms of MT release from cells, the conditions under which MT is released to the extracellular environment, and the ways in which MT Interacts with sensitive cells may both illuminate our understanding of an important control mechanism that operates in stressful conditions, and should indicate new opportunities for therapeutic management via the manipulation of this pool of extracellular MT.
Collapse
Affiliation(s)
- Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Kannan M, Wang L, Kang YJ. Myocardial Oxidative Stress and Toxicity Induced by Acute Ethanol Exposure in Mice. Exp Biol Med (Maywood) 2016; 229:553-9. [PMID: 15169975 DOI: 10.1177/153537020422900614] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Alcoholic cardiomyopathy has been known for a long time, but there is little mechanistic insight into this important clinical problem. The present study was undertaken using a mouse model to test the hypothesis that alcohol exposure induces cardiac injury through induction of oxidative stress. Adult female Friend Virius B-type (FVB) mice were treated with ethanol by gavage at a dose of 5 g/kg. Six hours after the treatment, ethanol-induced myocardial injury was observed, as indicated by a significant increase in serum creatine phosphokinase activity, a common biomarker of myocardial injury, and myocardial ultrastructural alterations, predominantly mitochondrial swelling and cristae disarray and reduction in numbers. The myocardial injury was associated with a significant increase in the myocardial lipid peroxidation, determined by measuring thiobarbituric acid reactive substances (TBARS), and a significant increase in protein oxidation as measured by a protein carbonyl content assay. Acute alcohol exposure decreased glutathione (GSH) content in the heart, more so in the mitochondria than in the cytosol. These alcohol-induced myocardial injuries and oxidative stresses were all significantly inhibited by supplementation with N-acetyl-L-cysteine (NAC) prior to alcohol exposure. However, NAC did not affect the rise in blood alcohol concentrations following alcohol exposure. This study thus demonstrates that acute alcohol administration causes myocardial injury through, at least in part, the induction of oxidative stress. A rapid decrease in mitochondrial GSH content may be partially responsible for the observed mitochondrial damage.
Collapse
Affiliation(s)
- Muralidhar Kannan
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Kentucky 40202,USA
| | | | | |
Collapse
|
23
|
Jiang S, Hu L, Ping L, Sun F, Wang X. Glutathione protects against hepatic injury in a murine model of primary Sjögren's syndrome. Bosn J Basic Med Sci 2016; 16:227-31. [PMID: 27186973 DOI: 10.17305/bjbms.2016.1059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/03/2016] [Accepted: 03/05/2016] [Indexed: 12/19/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease which may cause complications such as hepatic dysfunction and injury. As an important antioxidant, reduced glutathione (GSH) has been reported protecting against hepatic injury induced by some diseases, but the role of GSH in pSS is poorly understood. This study aims at investigating the role of GSH in hepatic injury during pSS. A murine model of pSS, non-obese diabetic (NOD) mice, was used for GSH administration via tail intravenous injection. Enzyme-linked immunosorbent assay (ELISA) was performed to detect serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), as well as the levels of GSH, tumor necrosis factor, interleukin (IL) 10, integrin alpha M, IL1B, malondialdehyde, nicotinamide adenine dinucleotide phosphate oxidase 4, and superoxide dismutases in hepatocyte homogenates. Hematoxylin-eosin staining was performed to observe hepatic histology. The results showed that serum AST and ALT levels were up-regulated in the NOD mice (p = 0.0021 and 0.0048), but were significantly recovered after the GSH administration (p = 0.0081 and 0.0263). The NOD mice exhibited disturbed hepatic tissue structure, which was attenuated by GSH. The GSH administration could also promote the production of GSH in the hepatocytes (p = 0.0264), and control the levels of inflammatory factors and oxidative stress-related factors. These results indicate that GSH has significant effects on protecting against the hepatic injury during pSS, which may be associated with its regulation of the inflammatory factors and oxidative stress-related factors. This study suggests that GSH is a promising therapeutic strategy for controlling hepatic injury during pSS and offers valuable information for further research.
Collapse
Affiliation(s)
- Shuhua Jiang
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, Hebei, China.
| | | | | | | | | |
Collapse
|
24
|
Kim D, Kim GW, Lee SH, Han GD. Ligularia fischeri extract attenuates liver damage induced by chronic alcohol intake. PHARMACEUTICAL BIOLOGY 2016; 54:1465-1473. [PMID: 26799831 DOI: 10.3109/13880209.2015.1104701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context Ligularia fischeri (Ledebour) Turcz. (Compositae) has been used as a leafy vegetable and in traditional medicine to treat hepatic disorder in East Asia. Objective The present study explores the antioxidant activity of LF aqueous extract on EtOH-induced oxidative stress accompanied by hepatotoxicity both in vitro and in vivo. Materials and methods In vitro study using the mouse liver NCTC-1469 cell line was conducted to estimate the cytotoxicity as well as the inhibitory effect of LF extract against alcohol-treated cell damage. In vivo study used an alcohol-fed Wister rat model orally administered EtOH (3.95 g/kg of body weight/d) with or without LF extract (100 or 200 mg/kg body weight) for 6 weeks. Serum and liver tissue were collected to evaluate hepatic injury and antioxidant-related enzyme activity. Results The EC50 value for the DPPH radical scavenging capacity of LF extract was 451.5 μg/mL, whereas the IC50 value of LF extract in terms of EtOH-induced reactive oxygen species (ROS) generation was 98.3 μg/mL without cell cytotoxicity. LF extract (200 mg/kg body weight) significantly reduced the triglyceride content of serum (33%) as well as hepatic lipid peroxidation (36%), whereas SOD activity was elevated three-fold. LF extract suppressed expression of CYP2E1 and TNF-α, and attenuated alcohol-induced abnormal morphological changes. Discussion and conclusion LF extract attenuated liver damage induced by alcoholic oxidative stress through inhibition of ROS generation, down-regulation of CYP2E1, and activation of hepatic antioxidative enzymes. Homeostasis of the antioxidative defence system in the liver by LF extract mitigated hepatic disorder following chronic alcohol intake.
Collapse
Affiliation(s)
- Dongyeop Kim
- a Department of Food Science and Technology , Yeungnam University , Gyeongsan , Republic of Korea
- b Biofilm Research Labs, Department of Orthodontics, Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Gyeong-Woo Kim
- a Department of Food Science and Technology , Yeungnam University , Gyeongsan , Republic of Korea
| | - Seon-Ho Lee
- a Department of Food Science and Technology , Yeungnam University , Gyeongsan , Republic of Korea
| | - Gi Dong Han
- a Department of Food Science and Technology , Yeungnam University , Gyeongsan , Republic of Korea
| |
Collapse
|
25
|
Cho I, Kim J, Jung J, Sung S, Kim J, Lee N, Ku S. Hepatoprotective effects of hoveniae semen cum fructus extracts in ethanol intoxicated mice. J Exerc Nutrition Biochem 2016; 20:49-64. [PMID: 27298813 PMCID: PMC4899896 DOI: 10.20463/jenb.2016.03.20.1.4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 12/17/2022] Open
Abstract
[Purpose] The objective of this study was to evaluate the hepatoprotective effects of Hoveniae Semen Cum Fructus extract in ethanol induced hepatic damages. [Methods] Hepatic damages were induced by oral administration of ethanol and then Hoveniae Semen Cum Fructus extract was administered. [Results] Following Hoveniae Semen Cum Fructus extract administration, body and liver weights were increased, while aspartate aminotransferase, alanine aminotransferase, albumin, γ-glutamyl transferase, and triglyceride levels in the serum, triglyceride contents, tumor necrosis factor -α level, cytochrome (CY) P450 2E1 activity in the liver and mRNA expression of hepatic lipogenic genes, and Nitrotyrosine and 4-HNE-immunolabelled hepatocytes were decreased. However, mRNA expression of genes involved in fatty acid oxidation was increased. Also, as a protective mechanism for hepatic antioxidant defense systems, decreased liver MDA contents, increased glutathione contents, increased dismutase and catalase activities were observed when compared to the ethanol control. [Conclusion] Hoveniae Semen Cum Fructus extract favorably protected against liver damages, mediated by its potent anti-inflammatory and anti-steatosis properties through the augmentation of the hepatic antioxidant defense system by NF-E2-related factor-2 activation, and down-regulation of the mRNA expression of hepatic lipogenic genes or up-regulation of the mRNA expression of genes involved in fatty acid oxidation.
Collapse
Affiliation(s)
- Ilje Cho
- Department of Anatomy and Histology, Daegu Haany University, Gyeongsan-si Republic of Korea
| | - Joowan Kim
- Aribio Central Research Institute, Aribio Inc., Sungnam-si Republic of Korea
| | - Jaijun Jung
- Aribio Central Research Institute, Aribio Inc., Sungnam-si Republic of Korea
| | - Soohyun Sung
- Aribio Central Research Institute, Aribio Inc., Sungnam-si Republic of Korea
| | - Jongkyu Kim
- Aribio Central Research Institute, Aribio Inc., Sungnam-si Republic of Korea
| | - Namju Lee
- Department of Sports Medicine, Jungwon University, Goesan-gun Republic of Korea
| | - Saekwang Ku
- Department of Anatomy and Histology, Daegu Haany University, Gyeongsan-si Republic of Korea
| |
Collapse
|
26
|
Lam P, Cheung F, Tan HY, Wang N, Yuen MF, Feng Y. Hepatoprotective Effects of Chinese Medicinal Herbs: A Focus on Anti-Inflammatory and Anti-Oxidative Activities. Int J Mol Sci 2016; 17:465. [PMID: 27043533 PMCID: PMC4848921 DOI: 10.3390/ijms17040465] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022] Open
Abstract
The liver is intimately connected to inflammation, which is the innate defense system of the body for removing harmful stimuli and participates in the hepatic wound-healing response. Sustained inflammation and the corresponding regenerative wound-healing response can induce the development of fibrosis, cirrhosis and eventually hepatocellular carcinoma. Oxidative stress is associated with the activation of inflammatory pathways, while chronic inflammation is found associated with some human cancers. Inflammation and cancer may be connected by the effect of the inflammation-fibrosis-cancer (IFC) axis. Chinese medicinal herbs display abilities in protecting the liver compared to conventional therapies, as many herbal medicines have been shown as effective anti-inflammatory and anti-oxidative agents. We review the relationship between oxidative stress and inflammation, the development of hepatic diseases, and the hepatoprotective effects of Chinese medicinal herbs via anti-inflammatory and anti-oxidative mechanisms. Moreover, several Chinese medicinal herbs and composite formulae, which have been commonly used for preventing and treating hepatic diseases, including Andrographis Herba, Glycyrrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, Lycii Fructus, Coptidis Rhizoma, curcumin, xiao-cha-hu-tang and shi-quan-da-bu-tang, were selected for reviewing their hepatoprotective effects with focus on their anti-oxidative and ant-inflammatory activities. This review aims to provide new insight into how Chinese medicinal herbs work in therapeutic strategies for liver diseases.
Collapse
Affiliation(s)
- Puiyan Lam
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Fan Cheung
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hor Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Man Fung Yuen
- Division of Gastroenterology and Hepatology, Queen Mary Hospital and Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
27
|
Ojeda ML, Rua RM, Murillo ML, Carreras O, Nogales F. Binge drinking during adolescence disrupts Se homeostasis and its main hepatic selenoprotein expression. Alcohol Clin Exp Res 2015; 39:818-26. [PMID: 25864381 DOI: 10.1111/acer.12707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/24/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Binge drinking (BD) is the most common ethanol (EtOH) intake consumption model among teenagers, but little is known about its effects on the liver. During its hepatic metabolism, acute alcohol exposure produces a great amount of reactive oxygen species which contributes to alcohol-induced liver injury. Selenium (Se) plays a key role in antioxidant defense as it forms part of selenoproteins, such as the antioxidant glutathione peroxidases (GPxs) or the selenoprotein P (SelP), synthesized mainly in liver. Chronic EtOH consumption decreases both Se deposits and this tissue's antioxidant activity. METHODS Two BD administration routes (oral and intraperitoneal) were used in adolescent rats to analyze Se homeostasis; the main hepatic selenoproteins' expression: GPx1, GPx4, and SelP, and their biological roles related to oxidation. Their relationship with inflammatory processes was also determined by analyzing the expression of the transcriptional factor nuclear factor-kappa beta (NF-κB). RESULTS It has been demonstrated for the first time that BD in adolescents alters Se homeostasis regardless of the administration route employed, despite the fact that the BD oral group ingested less Se in diet. This decrease of Se in serum and liver is directly related to a decrease in serum GPx3 and hepatic GPx1 activity, contributing to the oxidative imbalance found. The depletion of Se detected in liver affects GPx1 expression and, surprisingly, GPx4 expression. This could be related to the lower expression of the transcriptional factor NF-κB in the liver, a key player in the regulation of inflammatory processes. CONCLUSIONS Due to the above, and to find whether a Se supplementation therapy improves these situations, it would be interesting to explore in more depth the relationship between Se, the high oxidation found, and the depressed immune response reported in BD adolescents.
Collapse
Affiliation(s)
- María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, Seville University, Seville, Spain
| | | | | | | | | |
Collapse
|
28
|
Liang T, Zhang Q, Sun W, Xin Y, Zhang Z, Tan Y, Zhou S, Zhang C, Cai L, Lu X, Cheng M. Zinc treatment prevents type 1 diabetes-induced hepatic oxidative damage, endoplasmic reticulum stress, and cell death, and even prevents possible steatohepatitis in the OVE26 mouse model: Important role of metallothionein. Toxicol Lett 2015; 233:114-24. [PMID: 25617602 DOI: 10.1016/j.toxlet.2015.01.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/11/2015] [Accepted: 01/18/2015] [Indexed: 12/22/2022]
Abstract
Whether zinc is able to improve diabetes-induced liver injury remains unknown. Transgenic type 1 diabetic (OVE26) mice develop hyperglycemia at 3 weeks old; therefore therapeutic effect of zinc on diabetes-induced liver injury was investigated in OVE26 mice. Three-month old OVE26 and age-matched wild-type mice were treated by gavage with saline or zinc at 5mg/kg body-weight every other day for 3 months. Hepatic injury was examined by serum alanine aminotransferase (ALT) level with liver histopathological and biochemical changes. OVE26 mice at 6 months old showed significant increases in serum ALT level and hepatic oxidative damage, endoplasmic reticulum stress and associated cell death, mild inflammation, and fibrosis. However, all these hepatic morphological and functional changes were significantly prevented in 3-month zinc-treated OVE26 mice. Mechanistically, zinc treatment significantly increased hepatic metallothionein, a protein with known antioxidant activity, in both wild-type and OVE26 mice. These results suggest that there were significantly functional, structural and biochemical abnormalities in the liver of OVE26 diabetic mice at 6 months old; however, all these changes could be prevented with zinc treatment, which was associated with the upregulation of hepatic metallothionein expression.
Collapse
Affiliation(s)
- Tingting Liang
- Department of Infectious Diseases, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, China; The RuiAn Center of Chinese-American Research Institute for Diabetic Complications, The Department of Endocrinology of The Third Affiliated Hospital of Wenzhou Medical University, RuiAn, Zhejiang 325200, China; Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, Louisville, KY 40202, USA
| | - Quan Zhang
- Department of Infectious Diseases, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, China; Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, Louisville, KY 40202, USA
| | - Weixia Sun
- The RuiAn Center of Chinese-American Research Institute for Diabetic Complications, The Department of Endocrinology of The Third Affiliated Hospital of Wenzhou Medical University, RuiAn, Zhejiang 325200, China; The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Ying Xin
- The RuiAn Center of Chinese-American Research Institute for Diabetic Complications, The Department of Endocrinology of The Third Affiliated Hospital of Wenzhou Medical University, RuiAn, Zhejiang 325200, China; The Key Laboratory of Pathobiology of Ministry of Education at The Norman Bethune Medical College of Jilin University, Changchun, Jilin 130021, China
| | - Zhiguo Zhang
- Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, Louisville, KY 40202, USA; The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yi Tan
- The RuiAn Center of Chinese-American Research Institute for Diabetic Complications, The Department of Endocrinology of The Third Affiliated Hospital of Wenzhou Medical University, RuiAn, Zhejiang 325200, China; Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, Louisville, KY 40202, USA
| | - Shanshan Zhou
- Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, Louisville, KY 40202, USA; The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Chi Zhang
- The RuiAn Center of Chinese-American Research Institute for Diabetic Complications, The Department of Endocrinology of The Third Affiliated Hospital of Wenzhou Medical University, RuiAn, Zhejiang 325200, China
| | - Lu Cai
- The RuiAn Center of Chinese-American Research Institute for Diabetic Complications, The Department of Endocrinology of The Third Affiliated Hospital of Wenzhou Medical University, RuiAn, Zhejiang 325200, China; Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, Louisville, KY 40202, USA.
| | - Xuemian Lu
- The RuiAn Center of Chinese-American Research Institute for Diabetic Complications, The Department of Endocrinology of The Third Affiliated Hospital of Wenzhou Medical University, RuiAn, Zhejiang 325200, China
| | - Mingliang Cheng
- Department of Infectious Diseases, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, China.
| |
Collapse
|
29
|
Obogwu MB, Akindele AJ, Adeyemi OO. Hepatoprotective and in vivo antioxidant activities of the hydroethanolic leaf extract of Mucuna pruriens (Fabaceae) in antitubercular drugs and alcohol models. Chin J Nat Med 2015; 12:273-83. [PMID: 24863352 DOI: 10.1016/s1875-5364(14)60054-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Indexed: 12/20/2022]
Abstract
AIM Hepatotoxicity is a significantly increasing health problem worldwide, and the extent of the problem has stimulated interest in the search for hepatotherapeutic agents from plants. This study investigated the hepatoprotective and in vivo antioxidant activities of the hydroethanolic extract of Mucuna pruriens leaves in antitubercular and alcohol-induced hepatotoxicity assays in rats. METHOD In each of the models used, seven groups were allotted. The different groups received normal saline (10 mL·kg(-1), p.o.); hepatotoxicant (isoniazid-rifampicin, INH-RIF, 100 mg·kg(-1), i.p. or 20% ethanol 5 g·kg(-1), p.o.) and normal saline (10 mL·kg(-1), p.o.); hepatotoxicant and extract at doses of 100, 200, and 400 mg·kg(-1) p.o.; hepatotoxicant and silymarin 50 mg·kg(-1) p.o.; and extract at 400 mg·kg(-1) p.o. On the 21(st) day of treatment, blood was collected for assessment of serum biochemical parameters and harvested liver samples were assessed for antioxidants. RESULTS The hepatotoxicants significantly (P < 0.05-0.001) increased the levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), bilirubin, and malondialdehyde (MDA); and reduced the levels of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and reduced glutathione GSH compared to control. M. pruriens significantly reversed (P < 0.05-0.001) the elevation in the level of ALT, AST, ALP, and bilirubin caused by the hepatotoxicants. The extract (200 and 400 mg·kg(-1)) significantly reversed (P < 0.05) the diminution in the level of in vivo antioxidants and increased the level of MDA produced by INH-RIF. M. pruriens (100-400 mg·kg(-1)) elicited significant reduction (P < 0.001) in the level of MDA compared to the alcohol group. Silymarin also reversed the deleterious effects of the hepatotoxicants. CONCLUSION The hydroethanolic extract of Mucuna pruriens leaves possesses hepatoprotective activity with enhancement of in vivo antioxidants as a possible mechanism of action.
Collapse
Affiliation(s)
- Mercy B Obogwu
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, P.M.B. 12003 Lagos, Nigeria
| | - Abidemi J Akindele
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, P.M.B. 12003 Lagos, Nigeria.
| | - Olufunmilayo O Adeyemi
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, P.M.B. 12003 Lagos, Nigeria
| |
Collapse
|
30
|
Nogales F, Rua RM, Ojeda ML, Murillo ML, Carreras O. Oral or intraperitoneal binge drinking and oxidative balance in adolescent rats. Chem Res Toxicol 2014; 27:1926-33. [PMID: 25330177 DOI: 10.1021/tx5002628] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Oxidative imbalance is one of the most important mechanisms of alcohol-induced injury. Acute alcohol exposure induces a significant amount of reactive oxygen species during its hepatic metabolism via the microsomal ethanol oxidizing system. During adolescence, the physiological development is still taking place; therefore, ethanol's effects differ in adolescents compared to that in adults. Because binge drinking is the most important model of ethanol intake used by adolescents and because little is known about its effects on the liver, we have used two routes of acute ethanol administration (oral and intraperitoneal) in adolescent rats in order to analyze the oxidative damage caused in the periphery and liver. Here, it has been demonstrated for the first time that binge drinking in adolescents causes peripheral oxidation of lipid and DNA as well as lipid and protein hepatic oxidation, which are related to lower glutathione peroxidise (GPx) activity, higher catalase (CAT) activity, and higher expression of NADPHoxidase, contributing to hepatic damage. In addition, it is shown that the intraperitoneal administration route results in increased oxidative damage, which is probably related to the resulting general stress response that causes higher DNA and protein oxidation due to higher NADPHoxidase expression and higher CAT and superoxide dismutase (SOD) activities. According to these results, it is concluded that binge drinking induces hepatic damage during adolescence, at least in part, as consequence of oxidative stress because the antioxidant response was insufficient to avoid liver oxidation. Alcohol administered intraperitoneally provoked more DNA oxidation than that from the oral alcohol exposure model.
Collapse
Affiliation(s)
- Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, Seville University , 41012 Seville, Spain
| | | | | | | | | |
Collapse
|
31
|
Chen YY, Zhang CL, Zhao XL, Xie KQ, Zeng T. Inhibition of cytochrome P4502E1 by chlormethiazole attenuated acute ethanol-induced fatty liver. Chem Biol Interact 2014; 222:18-26. [DOI: 10.1016/j.cbi.2014.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/11/2014] [Accepted: 08/18/2014] [Indexed: 02/07/2023]
|
32
|
Camellia sinensis (L.) Kuntze Extract Ameliorates Chronic Ethanol-Induced Hepatotoxicity in Albino Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:787153. [PMID: 25254057 PMCID: PMC4164262 DOI: 10.1155/2014/787153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/04/2014] [Accepted: 06/09/2014] [Indexed: 01/11/2023]
Abstract
The goal of this study was to investigate the hepatoprotective effects of aqueous extract of Camellia sinensis or green tea extract (AQGTE) in chronic ethanol-induced albino rats. All animals were divided into 4 groups in the study for a 5-week duration. 50% ethanol was given orally to the rats with two doses (5 mg/kg bw and 10 mg/kg bw) of AQGTE. Ethanol administration caused a significant increase in the levels of plasma and serum enzymatic markers, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), and nonenzymatic markers (cholesterol and triglycerides), lipid peroxidation contents, malondialdehyde (MDA), and glutathione-S-transferase (GST), and decreased the activities of total proteins, albumin, and cellular antioxidant defense enzymes such as superoxide dismutase (SOD). The elevation and reduction in these biochemical enzymes caused the damage in hepatocytes histologically due to the high production of ROS, which retards the antioxidant defense capacity of cell. AQGTE was capable of recovering the level of these markers and the damaged hepatocytes to their normal structures. These results support the suggestion that AQGTE was able to enhance hepatoprotective and antioxidant effects in vivo against ethanol-induced toxicity.
Collapse
|
33
|
Chua LS. Review on Liver Inflammation and Antiinflammatory Activity of Andrographis paniculata
for Hepatoprotection. Phytother Res 2014; 28:1589-98. [DOI: 10.1002/ptr.5193] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/25/2014] [Accepted: 05/29/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Lee Suan Chua
- Metabolites Profiling Laboratory, Institute of Bioproduct Development; Universiti Teknologi Malaysia; UTM Skudai 81310 Johor Bahru Johor Malaysia
| |
Collapse
|
34
|
Develi S, Evran B, Betül Kalaz E, Koçak-Toker N, Erata GÖ. Protective effect of Nigella sativa oil against binge ethanol-induced oxidative stress and liver injury in rats. Chin J Nat Med 2014; 12:495-9. [DOI: 10.1016/s1875-5364(14)60077-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Indexed: 12/20/2022]
|
35
|
Aloe veraGel Extract Attenuates Ethanol-Induced Hepatic Lipid Accumulation by Suppressing the Expression of Lipogenic Genes in Mice. Biosci Biotechnol Biochem 2014; 76:2049-54. [DOI: 10.1271/bbb.120393] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Maotai ameliorates diethylnitrosamine-initiated hepatocellular carcinoma formation in mice. PLoS One 2014; 9:e93599. [PMID: 24690765 PMCID: PMC3972115 DOI: 10.1371/journal.pone.0093599] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/04/2014] [Indexed: 12/20/2022] Open
Abstract
Consumption of alcohol is closely related to liver disease, such as hepatic fibrosis or even hepatocellular carcinoma (HCC). However, epidemiological and experimental studies indicated that consumption of Maotai, one of the famous liquors in China, exhibits no significant correlation with hepatic fibrosis or cirrhosis as other beverage sources do. This study detected the relationship of Maotai consumption and HCC development in a diethylnitrosamine (DEN)-initiated HCC animal model. DEN was given to mice at a dose of 100 mg/kg, ip, and 50 mg/kg, ip in the following week. Mice were simultaneously given Maotai or an equal amount of ethanol (53%, 5 ml/kg/day, 5days/week for up to 35weeks). At 3-week and 35- week of the experiment, serum and livers were collected for biochemical and histopathological examination of liver injury and incidence of HCC. Real-time RT-PCR, immunohistochemistry and Western blotting were used to examine the expression of metallothionein-1/2 (MT-1/2), NF-E2-related factor 2 (Nrf2), glutamate-cysteine ligase catalytic subunit (GCLC) and modified subunit (GCLM). We identified tissue damage and dysfunction of liver in ethanol + DEN-treated mice, whereas the extent of injury was reduced in Maotai+ DEN –treated mice. Significant Glypican-3(GPC3) expression and precancerous injury or HCC were seen in approximately 50% of mice with ethanol+ DEN, but barely be seen in Maotai + DEN-treated mice. A higher expression of MT-1/2, Nrf2 and GCLC could be seen in Maotai + DEN-treated mice. Thus, Maotai liquor ameliorates the formation of DEN-induced HCC in mice, and the protection mechanism is possibly related with the activation of anti-oxidation factors, such as MTs, Nrf2 and GCLC.
Collapse
|
37
|
Effects of binge ethanol on lipid homeostasis and oxidative stress in a rat model of nonalcoholic fatty liver disease. J Physiol Biochem 2014; 70:341-53. [PMID: 24481563 DOI: 10.1007/s13105-013-0308-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/10/2013] [Indexed: 02/06/2023]
Abstract
Excess fat accumulation renders the liver more vulnerable to ethanol, but it is still unclear how alcohol enhances lipid dysmetabolism and oxidative stress in a pre-existing steatosis condition. The effects produced by binge ethanol consumption in the liver of male Wistar rats fed a standard (Ctrl) or a high-fat diet HFD were compared. The liver status was checked through tissue histology and standard serum parameters. Alteration of hepatic lipid homeostasis and consequent oxidative unbalance were assessed by quantifying the mRNA expression of the lipid-regulated peroxisome proliferator-activated receptors (PPARs), of the cytochromes CYP2E1 and CYP4A1, and of some antioxidant molecules such as the metallothionein isoforms MT1 and MT2 and the enzymes catalase and superoxide dismutase. The number of adipose differentiation-related protein (ADRP)-positive lipid droplets (LDs) was evaluated by immunohistochemical staining. As a response to the double insult of diet and ethanol the rat liver showed: (1) a larger increase in fat accumulation within ADRP-positive LDs; (2) stimulation of lipid oxidation in the attempt to limit excess fat accumulation; (3) induction of antioxidant proteins (MT2, in particular) to protect the liver from the ethanol-induced overproduction of oxygen radicals. The data indicate an increased susceptibility of fatty liver to ethanol and suggest that the synergistic effect of diet and ethanol on lipid dysmetabolism might be mediated, at least in part, by PPARs and cytochromes CYP4A1 and CYP2E1.
Collapse
|
38
|
Protective effect of phosphatidylcholine on restoration of ethanol-injured hepatocytes related with caveolin-1. J Membr Biol 2013; 247:73-80. [PMID: 24292666 DOI: 10.1007/s00232-013-9613-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 11/08/2013] [Indexed: 01/01/2023]
Abstract
The absorption of phospholipid may improve the fluidity of membrane and enzyme activities. Phospholipids also play a role in promoting Caveolae formation and membrane synthesis. Caveolin-1 has a significant effect on signaling pathways involved in regulating cell proliferation and stress responsiveness. Thus, we can speculate that Caveolin-1 could affect the sense of environmental stress. We use Chang liver cell line to investigate the ability of Caveolin-1 to modulate the cellular response to ethanol injury. Caveolin-1 downregulate cells (Cav-1(-/-)) were established by stable transfecting with psiRNA-CAV1 plasmids, which were more sensitive to toxic effects of ethanol than the untransfected parental cells (WT). Releasing of ALT and electric conductivity were changed significantly in Cav-1(-/-) cells compared with WT. Caveolin-1 gene silencing could obviously down-regulate the activities of protein kinase C-α (PKC-α) and phospho-p42/44 MAP kinase, indicating cell proliferation and self-repairing abilities were inhibited. However, the levels of Caveolin-1 and PKC-α were increased by phosphatidylcholine administration. The results indicated that the inhibition of lipid peroxidation by phosphatidylcholine could lead to the prevention of membrane disruption, which closely correlated with the level of Caveolin-1. Since the protective effects of phosphatidylcholine against ethanol-induced lipid peroxidation might be regulated by phospholipid-PKC-α signaling pathway, related with Caveolin-1, the potential effects of phosphatidylcholine on membranes need to be verified.
Collapse
|
39
|
Lian Y, Zhao J, Xu P, Wang Y, Zhao J, Jia L, Fu Z, Jing L, Liu G, Peng S. Protective effects of metallothionein on isoniazid and rifampicin-induced hepatotoxicity in mice. PLoS One 2013; 8:e72058. [PMID: 23967274 PMCID: PMC3742471 DOI: 10.1371/journal.pone.0072058] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 07/08/2013] [Indexed: 01/05/2023] Open
Abstract
Isoniazid (INH) and Rifampicin (RFP) are widely used in the world for the treatment of tuberculosis, but the hepatotoxicity is a major concern during clinical therapy. Previous studies showed that these drugs induced oxidative stress in liver, and several antioxidants abated this effect. Metallothionein (MT), a member of cysteine-rich protein, has been proposed as a potent antioxidant. This study attempts to determine whether endogenous expression of MT protects against INH and RFP-induced hepatic oxidative stress in mice. Wild type (MT+/+) and MT-null (MT−/−) mice were treated intragastrically with INH (150 mg/kg), RFP (300 mg/kg), or the combination (150 mg/kg INH +300 mg/kg RFP) for 21 days. The results showed that MT−/− mice were more sensitive than MT+/+ mice to INH and RFP-induced hepatic injuries as evidenced by hepatic histopathological alterations, increased serum AST levels and liver index, and hepatic oxidative stress as evidenced by the increase of MDA production and the change of liver antioxidant status. Furthermore, INH increased the protein expression of hepatic CYP2E1 and INH/RFP (alone or in combination) decreased the expression of hepatic CYP1A2. These findings clearly demonstrate that basal MT provides protection against INH and RFP-induced toxicity in hepatocytes. The CYP2E1 and CYP1A2 were involved in the pathogenesis of INH and RFP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yong Lian
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
- Department of Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Jing Zhao
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Peiyu Xu
- Department of Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Yimei Wang
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
- * E-mail: (SP); (YW)
| | - Jun Zhao
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Li Jia
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Ze Fu
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Li Jing
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Gang Liu
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Shuangqing Peng
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
- * E-mail: (SP); (YW)
| |
Collapse
|
40
|
Abstract
Chronic alcohol consumption is a leading cause of chronic liver disease worldwide, leading to cirrhosis and hepatocellular carcinoma. Currently, the most widely used model for alcoholic liver injury is ad libitum feeding with the Lieber-DeCarli liquid diet containing ethanol for 4-6 weeks; however, this model, without the addition of a secondary insult, only induces mild steatosis, slight elevation of serum alanine transaminase (ALT) and little or no inflammation. Here we describe a simple mouse model of alcoholic liver injury by chronic ethanol feeding (10-d ad libitum oral feeding with the Lieber-DeCarli ethanol liquid diet) plus a single binge ethanol feeding. This protocol for chronic-plus-single-binge ethanol feeding synergistically induces liver injury, inflammation and fatty liver, which mimics acute-on-chronic alcoholic liver injury in patients. This feeding protocol can also be extended to chronic feeding for longer periods of time up to 8 weeks plus single or multiple binges. Chronic-binge ethanol feeding leads to high blood alcohol levels; thus, this simple model will be very useful for the study of alcoholic liver disease (ALD) and of other organs damaged by alcohol consumption.
Collapse
|
41
|
Miao X, Sun W, Miao L, Fu Y, Wang Y, Su G, Liu Q. Zinc and diabetic retinopathy. J Diabetes Res 2013; 2013:425854. [PMID: 23671870 PMCID: PMC3647550 DOI: 10.1155/2013/425854] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/08/2013] [Indexed: 02/02/2023] Open
Abstract
Zinc (Zn) is an important nutrient that is involved in various physiological metabolisms. Zn dyshomeostasis is often associated with various pathogeneses of chronic diseases, such as metabolic syndrome, diabetes, and related complications. Zn is present in ocular tissue in high concentrations, particularly in the retina and choroid. Zn deficiencies have been shown to affect ocular development, cataracts, age-related macular degeneration, and even diabetic retinopathy. However, the mechanism by which Zn deficiency increases the prevalence of diabetic retinopathy remains unclear. In addition, due to the negative effect of Zn deficiency on the eye, Zn supplementation should prevent diabetic retinopathy; however, limited available data do not always support this notion. Therefore, the goal of this paper was to summarize these pieces of available information regarding Zn prevention of diabetic retinopathy. Current theories and possible mechanisms underlying the role of Zn in the eye-related diseases are discussed. The possible factors that affect the preventive effect of Zn supplementation on diabetic retinopathy were also discussed.
Collapse
Affiliation(s)
- Xiao Miao
- The Second Hospital of Jilin University, Changchun 130021, China
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Weixia Sun
- The First Hospital of Jilin University, Changchun 130021, China
| | - Lining Miao
- The Second Hospital of Jilin University, Changchun 130021, China
| | - Yaowen Fu
- The First Hospital of Jilin University, Changchun 130021, China
| | - Yonggang Wang
- The First Hospital of Jilin University, Changchun 130021, China
| | - Guanfang Su
- The Second Hospital of Jilin University, Changchun 130021, China
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- *Guanfang Su: and
| | - Quan Liu
- The First Hospital of Jilin University, Changchun 130021, China
- Department of Cardiovascular Disease, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- *Quan Liu:
| |
Collapse
|
42
|
Özcelik D, Nazıroglu M, Tunçdemir M, Çelik Ö, Öztürk M, Flores-Arce MF. Zinc supplementation attenuates metallothionein and oxidative stress changes in kidney of streptozotocin-induced diabetic rats. Biol Trace Elem Res 2012; 150:342-9. [PMID: 23054862 DOI: 10.1007/s12011-012-9508-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/18/2012] [Indexed: 12/21/2022]
Abstract
Zinc is an element that under physiological conditions preferentially binds to and is a potent inducer of metallothionein under physiological conditions. The present study was conducted to explore whether zinc supplementation morphologically and biochemically protects against diabetic nephropathy through modulation of kidney metallothionein induction and oxidative stress in streptozotocin-induced diabetic rats. Thirty-two Wistar albino male rats were equally divided into four groups. The first group was used as untreated controls and the second group was supplemented with 30 mg/kg/day zinc as zinc sulfate. The third group was treated with streptozotocin to induce diabetes and the fourth group was treated with streptozotocin and supplemented with zinc as described for group 2. The blood glucose and micro-albuminuria levels, body and kidney weights were measured during the 42-day experimental period. At the end of the experiment, the kidneys were removed from all animals from the four groups. Diabetes resulted in degenerative kidney morphological changes. The metallothionein immunoreactivity level was lower and the kidney lipid peroxidation levels were higher in the diabetes group than in the controls. The metallothionein immunoreactivity levels were higher in the tubules of the zinc-supplemented diabetic rats as compared to the non-supplemented diabetic group. The zinc and metallothionein concentrations in kidney tissue were higher in the supplemented diabetic group compared to the non-supplemented diabetes group. The activity of glutathione peroxidase did not change in any of the four groups. In conclusion, the present study shows that zinc has a protective effect against diabetic damage of kidney tissue through stimulation of metallothionein synthesis and regulation of the oxidative stress.
Collapse
Affiliation(s)
- Dervis Özcelik
- Departments of Biophysics, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
43
|
Tan X, Sun X, Li Q, Zhao Y, Zhong W, Sun X, Jia W, McClain CJ, Zhou Z. Leptin deficiency contributes to the pathogenesis of alcoholic fatty liver disease in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1279-86. [PMID: 22841822 DOI: 10.1016/j.ajpath.2012.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/29/2012] [Accepted: 06/11/2012] [Indexed: 02/06/2023]
Abstract
White adipose tissue (WAT) secretes adipokines, which critically regulate lipid metabolism. The present study investigated the effects of alcohol on adipokines and the mechanistic link between adipokine dysregulation and alcoholic fatty liver disease. Mice were fed alcohol for 2, 4, or 8 weeks to document changes in adipokines over time. Alcohol exposure reduced WAT mass and body weight in association with hepatic lipid accumulation. The plasma adiponectin concentration was increased at 2 weeks, but declined to normal at 4 and 8 weeks. Alcohol exposure suppressed leptin gene expression in WAT and reduced the plasma leptin concentration at all times measured. There is a highly positive correlation between plasma leptin concentration and WAT mass or body weight. To determine whether leptin deficiency mediates alcohol-induced hepatic lipid dyshomeostasis, mice were fed alcohol for 8 weeks with or without leptin administration for the last 2 weeks. Leptin administration normalized the plasma leptin concentration and reversed alcoholic fatty liver. Alcohol-perturbed genes involved in fatty acid β-oxidation, very low-density lipoprotein secretion, and transcriptional regulation were attenuated by leptin. Leptin also normalized alcohol-reduced phosphorylation levels of signal transducer Stat3 and adenosine monophosphate-activated protein kinase. These data demonstrated for the first time that leptin deficiency in association with WAT mass reduction contributes to the pathogenesis of alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Xiaobing Tan
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Noorani AA, Kale MK. Pretreatment of Albino Rats with Methanolic Fruit Extract of Randia Dumetorum (L.) Protects against Alcohol Induced Liver Damage. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:125-30. [PMID: 22563258 PMCID: PMC3339288 DOI: 10.4196/kjpp.2012.16.2.125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/21/2012] [Accepted: 04/04/2012] [Indexed: 11/15/2022]
Abstract
Alcohol abuse and its medical and social consequences are a major health problem in many areas of the world. The present study was conducted to evaluate the protective effect of methanolic fruit extract of Randia dumetorum (L.) on alcohol-induced liver damage in rats. Rats were divided into five different groups (n=6), group I served as a control, group II received ethanol (3 ml/100 g/day p.o.), group III served as standard group and received silymarin (50 mg/kg p.o.), group IV and V served as extract treatment groups and received 50 & 100 mg/kg methanolic extract of R. dumetorum. All the treatment protocols followed 30 days and after rats were sacrificed blood and liver were used for biochemical and histological studies, respectively. The activities serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), direct bilirubin (DB), total bilirubin (TB) and lipid peroxidation were statistically increased in rats exposed to alcohol while total protein and glutathione decreased compared to control rats. Treatment with R. dumetorum significantly decreased the elevated levels of ALT, AST, TG, DB, TB and lipid peroxidation compared to the group exposed to alcohol only. R. dumetorum significantly resulted in increased levels of total protein and reduced glutathione compared to the group that received alcohol only. Histology of the liver section of the animals treated with R. dumetorum improved the hepatotoxicity caused by alcohol. Hence the study concluded that R. dumetorum has potential hepatoprotective activity.
Collapse
Affiliation(s)
- Arshad Ali Noorani
- Department of Pharmacology, Mandsaur Institute of Pharmacy, MIT Campus, Mandsaur 458-001, Madhya Pradesh, India
| | | |
Collapse
|
45
|
ZHU H, JIA Z, MISRA H, LI YR. Oxidative stress and redox signaling mechanisms of alcoholic liver disease: updated experimental and clinical evidence. J Dig Dis 2012; 13:133-142. [PMID: 22356308 PMCID: PMC3297983 DOI: 10.1111/j.1751-2980.2011.00569.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alcoholic liver disease (ALD) is a major cause of morbidity and mortality in the United States and Europe. The spectrum of ALD ranges from fatty liver to alcoholic hepatitis and cirrhosis, which may eventually lead to hepatocellular carcinoma. In developed countries as well as developing nations, ALD is a major cause of end-stage liver disease that requires liver transplantation. The most effective therapy for ALD is alcohol abstinence; however, for individuals with severe ALD and those in whom alcohol abstinence is not achievable, targeted therapies are absolutely necessary. In this context, advances of our understanding of the pathophysiology of ALD over the past two decades have contributed to the development of therapeutic modalities (e.g., pentoxifylline and corticosteroids) for the disease although the efficacy of the available treatments remains limited. This article is intended to succinctly review the recent experimental and clinical findings of the involvement of oxidative stress and redox signaling in the pathophysiology of ALD and the development of mechanistically based antioxidant modalities targeting oxidative stress and redox signaling mechanisms. The biochemical and cellular sources of reactive oxygen and nitrogen species (ROS/RNS) and dysregulated redox signaling pathways associated with alcohol consumption are particularly discussed to provide insight into the molecular basis of hepatic cell dysfunction and destruction as well as tissue remodeling underlying ALD.
Collapse
Affiliation(s)
- Hong ZHU
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, Virginia, USA,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA,Correspondence should be addressed to: Y. Robert Li, MD, PhD, Professor and Department Chair, Phone: (540) 231-1465, Fax: (540) 231-8846, or H. Zhu, MD, MPH, Assistant Professor, Phone: (540) 231-1468, Fax: (540) 231-8846,
| | - Zhenquan JIA
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Hara MISRA
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, Virginia, USA,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Y. Robert LI
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, Virginia, USA,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA,Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences,, Blacksburg, Virginia, USA,Correspondence should be addressed to: Y. Robert Li, MD, PhD, Professor and Department Chair, Phone: (540) 231-1465, Fax: (540) 231-8846, or H. Zhu, MD, MPH, Assistant Professor, Phone: (540) 231-1468, Fax: (540) 231-8846,
| |
Collapse
|
46
|
Effect of binge ethanol treatment on prooxidant–antioxidant balance in rat heart tissue. PATHOPHYSIOLOGY 2012; 19:49-53. [DOI: 10.1016/j.pathophys.2012.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/05/2011] [Accepted: 01/06/2012] [Indexed: 11/20/2022] Open
|
47
|
CHA JAEYOUNG, SENEVIRATHNE MAHINDA, LEE BAEJIN, KANG YOUNGMI, KIM YOUNGMOG, KIM JINSOO, CHO YOUNGSU, JUNG WONKYO, AHN CHANGBUM, JE JAEYOUNG. FERMENTED SEA TANGLE (LAMINARIA JAPONICA) ATTENUATES ETHANOL-INDUCED OXIDATIVE STRESS IN SPRAGUE-DAWLEY RATS. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2011.00603.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Fang YJ, Chiu CH, Chang YY, Chou CH, Lin HW, Chen MF, Chen YC. Taurine ameliorates alcoholic steatohepatitis via enhancing self-antioxidant capacity and alcohol metabolism. Food Res Int 2011. [DOI: 10.1016/j.foodres.2011.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
49
|
Adaramoye OA, Aluko A, Oyagbemi AA. Cnidoscolus aconitifolius Leaf Extract Protects against Hepatic Damage Induced by Chronic Ethanol Administration in Wistar Rats. Alcohol Alcohol 2011; 46:451-8. [DOI: 10.1093/alcalc/agr060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
Jing L, Zhou LJ, Li WM, Zhang FM, Yuan L, Li S, Song J, Sang Y. Carnitine regulates myocardial metabolism by Peroxisome Proliferator-Activated Receptor-alpha (PPARalpha) in alcoholic cardiomyopathy. Med Sci Monit 2011; 17:BR1-9. [PMID: 21169901 PMCID: PMC3524687 DOI: 10.12659/msm.881311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Chronic alcohol intake exerts myocardial damage en route to the development of alcoholic cardiomyopathy (ACM), although the precise pathogenesis of ACM is unknown. Carnitine is known to participate in the regulation of metabolism in a number of heart diseases. This study was designed to examine the interplay between myocardial metabolism and carnitine in the development of ACM. MATERIAL/METHODS Experimental animals were divided into 3 groups: (i) group A: alcohol-fed. (ii) group B: alcohol/carnitine: (200mg/kg/d, p.o. by mixing carnitine in rat chow). (iii) group C: control. Blood levels of free fatty acid (FFA), total carnitine (TC) and free carnitine (FC) were monitored in rats receiving alcohol with or without carnitine. Mitochondrial adenine nucleotide translocator-1 (ANT1) activity, ATPase activity, high energy phosphate concentration, peroxisome proliferator-activated receptor-α (PPARα), carnitine-palmitoyl transferase I (CPT-I), medium-chain acyl-coenzyme A dehydrogenase (MCAD), ANT1 and ATPase mRNA and protein expression were also monitored in myocardial tissue. RESULTS Experimental animals received alcohol with or without carnitine for six 6 months. Our results indicated that FFA increased abruptly. TC and FC were significantly decreased in groups receiving alcohol at 4 months. The concentration of ATP, ADP and AMP in the myocardium decreased following 2 months of alcohol administration. mRNA and protein expression of PPARα, CPT-I, MCAD, ANT1 and ATPase expressions were gradually altered in groups following alcohol feeding. CONCLUSIONS These observations suggest that abnormal metabolism is present in the myocardium during the development of ACM. Carnitine may improve myocardial metabolism by elevating the content of PPARα, CPT-I and MCAD.
Collapse
Affiliation(s)
- Ling Jing
- Department of Cardiology, First Clinical College of Harbin Medical University, Harbin, China.
| | | | | | | | | | | | | | | |
Collapse
|