1
|
Gupta A, Vejapi M, Knezevic NN. The role of nitric oxide and neuroendocrine system in pain generation. Mol Cell Endocrinol 2024; 591:112270. [PMID: 38750811 DOI: 10.1016/j.mce.2024.112270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Previous studies have indicated a complex interplay between the nitric oxide (NO) pain signaling pathways and hormonal signaling pathways in the body. This article delineates the role of nitric oxide signaling in neuropathic and inflammatory pain generation and subsequently discusses how the neuroendocrine system is involved in pain generation. Hormonal systems including the hypothalamic-pituitary axis (HPA) generation of cortisol, the renin-angiotensin-aldosterone system, calcitonin, melatonin, and sex hormones could potentially contribute to the generation of nitric oxide involved in the sensation of pain. Further research is necessary to clarify this relationship and may reveal therapeutic targets involving NO signaling that alleviate neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Aayush Gupta
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Rosalind Franklin University of Medicine and Science, USA
| | - Maja Vejapi
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Department of Anesthesiology, University of Illinois, Chicago, IL, USA; Department of Surgery, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
2
|
Dengri C, Koriesh A, Babi MA, Mayberry W, Goldstein ED, Pervez M, Nouh A. Testosterone supplementation and stroke in young adults: a review of the literature. Front Neurol 2024; 15:1422931. [PMID: 39286801 PMCID: PMC11402820 DOI: 10.3389/fneur.2024.1422931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Testosterone supplementation has increased in recent years for both treatment of hypogonadism and recreational use. Strokes in young adults have similarly increased with a larger proportion of patients in this age group having a stroke due to early onset of cardiovascular risk factors or unrelated to conventional risks. Hormonal treatments are associated with increased stroke risk amongst women, with some studies indicating an increase in stroke risk as high as 40% when compared to non-users. However, less is known about male sex hormones and risks associated with increased stroke. Limited data evaluates the relationship between testosterone supplementation and stroke in young adults. In this review, we analyze the literature and plausible underlying pathophysiological mechanisms associated with increased risks in patients using exogenous testosterone. Furthermore, we highlight the gaps in research about safety and long-term effects on young patients.
Collapse
Affiliation(s)
- Chetna Dengri
- Department of Neurology, Cleveland Clinic Florida, Weston, FL, United States
| | - Ahmed Koriesh
- Department of Neurology, Cleveland Clinic Florida, Weston, FL, United States
| | - Marc A Babi
- Department of Neurology, Cleveland Clinic Florida, Weston, FL, United States
- Department of Neurology, Cleveland Clinic Florida, Port St. Lucie, FL, United States
| | - Whitney Mayberry
- Department of Neurology, Cleveland Clinic Florida, Port St. Lucie, FL, United States
| | - Eric D Goldstein
- Department of Neurology, Brown University, Providence, RI, United States
| | - Mubashir Pervez
- Department of Neurology, Cleveland Clinic Florida, Weston, FL, United States
| | - Amre Nouh
- Department of Neurology, Cleveland Clinic Florida, Weston, FL, United States
| |
Collapse
|
3
|
Tran J, Jackman RP, Muench MO, Hazegh K, Bean SW, Thomas KA, Fang F, Page G, O’Connor K, Roubinian N, Anawalt BD, Kanias T. Testosterone supplementation increases red blood cell susceptibility to oxidative stress, decreases membrane deformability, and decreases survival after cold storage and transfusion. Transfusion 2024; 64:1469-1480. [PMID: 38884364 PMCID: PMC11316632 DOI: 10.1111/trf.17922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Blood collection from donors on testosterone therapy (TT) is restricted to red blood cell (RBC) concentrates to avoid patient exposure to supraphysiological testosterone (T). The objective of this study was to identify TT-related changes in RBC characteristics relevant to transfusion effectiveness in patients. STUDY DESIGN This was a two-part study with cohorts of patients and blood donors on TT. In part 1, we conducted longitudinal evaluation of RBCs collected before and at three time points after initiation of T. RBC assays included storage and oxidative hemolysis, membrane deformability (elongation index), and oximetry. In part 2, we evaluated the fate of transfused RBCs from TT donors in immunodeficient mice and by retrospective analyses of NIH's vein-to-vein databases. RESULTS TT increased oxidative hemolysis (1.45-fold change) and decreased RBC membrane deformability. Plasma free testosterone was positively correlated with oxidative hemolysis (r = .552) and negatively correlated with the elongation index (r = -.472). Stored and gamma-irradiated RBCs from TT donors had lower posttransfusion recovery in mice compared to controls (41.6 ± 12 vs. 55.3 ± 20.5%). Recipients of RBCs from male donors taking T had 25% lower hemoglobin increments compared to recipients of RBCs from non-TT male donors, and had increased incidence (OR, 1.80) of requiring additional RBC transfusions within 48 h of the index transfusion event. CONCLUSIONS TT is associated with altered RBC characteristics and transfusion effectiveness. These results suggest that clinical utilization of TT RBCs may be less effective in recipients who benefit from longer RBC survival, such as chronically transfused patients.
Collapse
Affiliation(s)
- Johnson Tran
- Vitalant Research Institute, San Francisco, CA, USA
- Departments of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Rachael P. Jackman
- Vitalant Research Institute, San Francisco, CA, USA
- Departments of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Marcus O. Muench
- Vitalant Research Institute, San Francisco, CA, USA
- Departments of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Kimberly A. Thomas
- Vitalant Research Institute, Denver, CO, USA
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Fang Fang
- Genomics and Translational Research Center, RTI International, NC, USA
| | - Grier Page
- Genomics and Translational Research Center, RTI International, NC, USA
- Fellow program, RTI International, Atlanta, GA, USA
| | - Kim O’Connor
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Nareg Roubinian
- Vitalant Research Institute, San Francisco, CA, USA
- Departments of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Kaiser Permanente Northern California Division of Research, Oakland, CA
| | - Bradley D. Anawalt
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Tamir Kanias
- Vitalant Research Institute, Denver, CO, USA
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
Alves JV, da Costa RM, Awata WMC, Bruder-Nascimento A, Singh S, Tostes RC, Bruder-Nascimento T. NADPH oxidase 4-derived hydrogen peroxide counterbalances testosterone-induced endothelial dysfunction and migration. Am J Physiol Endocrinol Metab 2024; 327:E1-E12. [PMID: 38690939 PMCID: PMC11390122 DOI: 10.1152/ajpendo.00365.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
High levels of testosterone (Testo) are associated with cardiovascular risk by increasing reactive oxygen species (ROS) formation. NADPH oxidases (NOX) are the major source of ROS in the vasculature of cardiovascular diseases. NOX4 is a unique isotype, which produces hydrogen peroxide (H2O2), and its participation in cardiovascular biology is controversial. So far, it is unclear whether NOX4 protects from Testo-induced endothelial injury. Thus, we hypothesized that supraphysiological levels of Testo induce endothelial NOX4 expression to attenuate endothelial injury. Human mesenteric vascular endothelial cells (HMECs) and human umbilical vein endothelial cells (HUVEC) were treated with Testo (10-7 M) with or without a NOX4 inhibitor [GLX351322 (10-4 M)] or NOX4 siRNA. In vivo, 10-wk-old C57Bl/6J male mice were treated with Testo (10 mg/kg) for 30 days to study endothelial function. Testo increased mRNA and protein levels of NOX4 in HMECs and HUVECs. Testo increased superoxide anion (O2-) and H2O2 production, which were abolished by NOX1 and NOX4 inhibition, respectively. Testo also attenuated bradykinin-induced NO production, which was further impaired by NOX4 inhibition. In vivo, Testo decreased H2O2 production in aortic segments and triggered endothelial dysfunction [decreased relaxation to acetylcholine (ACh)], which was further impaired by GLX351322 and by a superoxide dismutase and catalase mimetic (EUK134). Finally, Testo led to a dysregulated endothelial cell migration, which was exacerbated by GLX351322. These data indicate that supraphysiological levels of Testo increase the endothelial expression and activity of NOX4 to counterbalance the deleterious effects caused by Testo in endothelial function.NEW & NOTEWORTHY By inducing ROS formation, high levels of testosterone play a major role in the pathogenesis of cardiovascular disease. NOXs are the major sources of ROS in the vasculature of cardiovascular diseases. Herein, we describe a novel compensatory mechanism by showing that NOX4 is a protective oxidant enzyme and counterbalances the deleterious effects of testosterone in endothelial cells by modulating hydrogen peroxide formation.
Collapse
Affiliation(s)
- Juliano V Alves
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Rafael M da Costa
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Special Academic Unit of Health Sciences, Federal University of Jatai, Jatai, Brazil
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Wanessa M C Awata
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ariane Bruder-Nascimento
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shubhnita Singh
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Thiago Bruder-Nascimento
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
5
|
Fyksen TS, Seljeflot I, Vanberg P, Atar D, Halvorsen S. Platelet activity, coagulation, and fibrinolysis in long-term users of anabolic-androgenic steroids compared to strength-trained athletes. Thromb Res 2024; 238:60-66. [PMID: 38676967 DOI: 10.1016/j.thromres.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
INTRODUCTION Use of anabolic-androgenic steroids (AAS) is associated with adverse cardiovascular (CV) effects, including potential prothrombotic effects. This study aimed to assess platelet activation and aggregation, coagulation, and fibrinolysis, in long-term AAS users compared to non-using strength-trained athletes. MATERIALS AND METHODS Thirty-seven strength-trained men using AAS were compared to seventeen non-using professional strength-trained athletes at similar age (median 33 years). AAS use was verified by blood and urine analyses. Platelet Function Analyzer 100 (PFA-100) and whole blood impedance aggregometry with thrombin, arachidonic acid, and ADP as agonists, were performed to evaluate platelet aggregation. ELISA methods were used for markers of platelet activation. Fibrinogen, D-dimer, the coagulation inhibitors protein S and C activity, and antithrombin were measured by routine. Fibrinolysis was evaluated by Plasminogen Activator Inhibitor-1 (PAI-1) activity. RESULTS There were no significant differences in platelet aggregation between the two groups. Von Willebrand factor was lower among the AAS users (p < 0.01), and P-Selectin was slightly higher (p = 0.05), whereas CD40 Ligand, β-thromboglobulin, and thrombospondin did not differ significantly. No differences were found in the assessed coagulation inhibitors. Higher D-dimer levels (p < 0.01) and lower PAI-1 activity (p < 0.01) were found among the AAS users. CONCLUSIONS The investigated long-term users of AAS did not exhibit elevated platelet activity compared to strength-trained non-using athletes. However, AAS use was associated with higher D-dimer levels and lower PAI-1 activity. These findings suggest that any prothrombotic effect of long-term AAS use may predominantly involve other aspects of the hemostatic system than blood platelets.
Collapse
Affiliation(s)
- Tea Sætereng Fyksen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway.
| | - Ingebjørg Seljeflot
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Paul Vanberg
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Dan Atar
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Sigrun Halvorsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| |
Collapse
|
6
|
Wenbo Z, Yan Z. The Uses of Anabolic Androgenic Steroids Among Athletes; Its Positive and Negative Aspects- A Literature Review. J Multidiscip Healthc 2023; 16:4293-4305. [PMID: 38170017 PMCID: PMC10759908 DOI: 10.2147/jmdh.s439384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
The use of anabolic androgenic steroids (AAS) for strength training and muscle building is a widespread practice among athletes and young individuals. Athletes and bodybuilders are using these substances for various purposes, such as enhancing muscle mass, strengthening their bodies, and enhancing their performances. AAS exert a wide range of physiological effects that result in the activation of central signaling, resulting in adverse effects. Moreover, excessive use of AAS which can be categorized as AAS abuse; is linked to biological and psychological pathologies, which can lead to mortality. Complications arising from steroid abuse involve both cellular and physiological complications. Cellular complications arise when activation of signaling proteins like mTOR, Akt, etc. leads to alteration in protein synthesis pathways, cell cycle, oxidative stress, and apoptosis, contributing to damage at the cellular level. Physiological complications are evident with cardiovascular pathologies, including an altered lipid profile, cardiac hypertrophy, hypogonadism after discontinuation of AAS, and modulation of GABA receptors in the brain, all contributed by the androgen receptor signaling. Clinical complications budding from these altered physiological processes lead to clinical effects like testicular dysfunction, acne, gynecomastia, and neuropsychiatric disorders. Despite potential therapeutic benefits, AAS use is prohibited by the World Anti-Doping Agency (WADA) due to concerns over adverse health effects. This review highlights the molecular mechanisms, physiological processes, and clinical complications arising from the excessive use of AAS among athletes.
Collapse
Affiliation(s)
- Zhang Wenbo
- Department of Physical Education, Changchun Institute of Education, Changchun, Jilin, 130033, People’s Republic of China
| | - Zhang Yan
- School of Physical Education, Inner Mongolia Minzu University, Tongliao, Neimeng, 028000, People’s Republic of China
| |
Collapse
|
7
|
Hall E, Vrolijk MF. Androgen Receptor and Cardiovascular Disease: A Potential Risk for the Abuse of Supplements Containing Selective Androgen Receptor Modulators. Nutrients 2023; 15:3330. [PMID: 37571268 PMCID: PMC10420890 DOI: 10.3390/nu15153330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
The androgen receptor (AR) is a member of the family of ligand-activated transcription factors. Selective androgen receptor modulators (SARMs) exert their biological function through complex interactions with the AR. It has been speculated that overexertion of AR signaling cascades as a result of SARM abuse can be a risk factor for the development of various cardiovascular diseases. The present literature review explores the implications of the interaction between SARMs and the AR on cardiovascular health by focusing on the AR structure, function, and mechanisms of action, as well as the current clinical literature on various SARMs. It is shown that SARMs may increase the risk of cardiovascular diseases through implications on the renin-angiotensin system, smooth muscle cells, sympathetic nervous system, lipid profile, inflammation, platelet activity, and various other factors. More research on this topic is necessary as SARM abuse is becoming increasingly common. There is a noticeable lack of clinical trials and literature on the relationship between SARMs, cardiovascular diseases, and the AR. Future in vivo and in vitro studies within this field are vital to understand the mechanisms that underpin these complex interactions and risk factors.
Collapse
Affiliation(s)
| | - Misha F. Vrolijk
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
8
|
Zhao YN, Chen WW, Yan XY, Liu K, Liu GH, Yang P. What is responsible for acute myocardial infarction in combination with aplastic anemia? A case report and literature review. World J Clin Cases 2022; 10:11955-11966. [PMID: 36405262 PMCID: PMC9669861 DOI: 10.12998/wjcc.v10.i32.11955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/01/2022] [Accepted: 10/18/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Aplastic anemia (AA) complicated with myocardial infarction (MI) is rare and associated with poor prognosis. Here, we present a case of AA with recurrent acute MI (AMI) in a patient treated with cyclosporine A (CsA) and stanozolol. In this patient, we suspect the long-term use of medication linked to platelets hyperfunction.
CASE SUMMARY In 2017, a 45-year-old man was rushed to the emergency department of China-Japan Union Hospital due to precordial pain for 5 h. Based on his symptoms, medical history, blood tests, and findings from coronary angiography (CAG), the patient was diagnosed with acute anterior wall, ST-segment elevated MI, Killip II grade, AA, and dyslipidemia. In 2021, the patient was readmitted to the hospital for 2 h due to chest pain. Because the patient’s platelet count was 30 × 109/L and he had severe thrombocytopenia, we performed CAG following platelet transfusion. Optical coherence tomography revealed lipid plaque and thrombus mass in his right coronary artery. The antithrombotic approach was adjusted to employ only anticoagulants (factor Xa inhibitors) and adenosine diphosphate inhibitors (clopidogrel) after assessing the risk of bleeding/thrombotic events. Long-term follow-up revealed that the patient had made a good recovery.
CONCLUSION Patients with AA should be closely monitored for the risk of thrombosis and cardiovascular events, particularly when taking stanozolol or CsA for an extended period of time.
Collapse
Affiliation(s)
- Ya-Nan Zhao
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin Province, China
- Department of Cardiology, Jilin Provincial Cardiovascular Research Institute, Changchun 130000, Jilin Province, China
- Department of Cardiology, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun 130000, Jilin Province, China
| | - Wei-Wei Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin Province, China
- Department of Cardiology, Jilin Provincial Cardiovascular Research Institute, Changchun 130000, Jilin Province, China
- Department of Cardiology, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun 130000, Jilin Province, China
| | - Xiao-Yu Yan
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin Province, China
- Department of Cardiology, Jilin Provincial Cardiovascular Research Institute, Changchun 130000, Jilin Province, China
- Department of Cardiology, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun 130000, Jilin Province, China
| | - Kun Liu
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin Province, China
- Department of Cardiology, Jilin Provincial Cardiovascular Research Institute, Changchun 130000, Jilin Province, China
- Department of Cardiology, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun 130000, Jilin Province, China
| | - Guo-Hui Liu
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin Province, China
- Department of Cardiology, Jilin Provincial Cardiovascular Research Institute, Changchun 130000, Jilin Province, China
- Department of Cardiology, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun 130000, Jilin Province, China
| | - Ping Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin Province, China
- Department of Cardiology, Jilin Provincial Cardiovascular Research Institute, Changchun 130000, Jilin Province, China
- Department of Cardiology, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun 130000, Jilin Province, China
| |
Collapse
|
9
|
Kataoka T, Fukamoto A, Hotta Y, Sanagawa A, Maeda Y, Furukawa-Hibi Y, Kimura K. Effect of High Testosterone Levels on Endothelial Function in Aorta and Erectile Function in Rats. Sex Med 2022; 10:100550. [PMID: 35939869 PMCID: PMC9537240 DOI: 10.1016/j.esxm.2022.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Testosterone is an important hormone for the physical and mental health of men; however testosterone administration has also been suggested to adversely affect the cardiovascular system. AIM To investigate the effects of excessive testosterone administration on vascular endothelial and erectile function in rats. METHODS A total of seventy-five 12-week-old rats were divided into the following groups: Sham, castrated (Cast), castrated with subcutaneous administration of 100 mg/kg/month testosterone (Cast + T1), and castrated with subcutaneous administration of 100 mg/kg/week testosterone (Cast + T4). To observe the changes in testosterone level after the administration, rats were further divided into the following groups: control; T(6.25), wherein the rats were subcutaneously injected with 6.25 mg/kg testosterone; T(25) per week, wherein the rats were subcutaneously injected with 25 mg/kg testosterone per week; and T(100), wherein the rats were subcutaneously injected with 100 mg/kg testosterone per week. The relaxation responses of aorta were measured in these rats using standardized methods, and their erectile function was also evaluated. Statistical analysis of the obtained data was performed using two-way analysis of variance (ANOVA), Tukey-Kramer's multiple comparison test, or Student's t-test. OUTCOMES At the end of the study period, endothelial function was evaluated through measurement of isometric tension, while erectile function was assessed using intracavernosal pressure (ICP), mean arterial pressure (MAP), and the expression of endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), sirtuin 1 (Sirt1) and vascular endothelial growth factor A. RESULTS The ICP/MAP ratio in the Cast group (0.42 ± 0.04) was significantly lower than that in the Sham group (0.79 ± 0.07). The ICP/MAP ratio in the Cast + T1 group (0.73 ± 0.06) was significantly higher than that in the Cast group (P < .01) and that of the Cast + T4 (0.38 ± 0.01) group was unchanged (P > .05). The T(25) and T(100) groups exhibited significantly lower responses to ACh than the control group at 4 weeks (P < .01). Meanwhile, the ICP/MAP ratios in the T(25) group (0.44 ± 0.07) and T(100) group (0.47 ± 0.03) were significantly lower than that in the control group (0.67 ± 0.05) at stimulation frequencies of 16 Hz (P < .05). The expression of androgen receptor, Sirt1, and eNOS were significantly lower while that of iNOS was higher in the T(25) group compared with the control group (P < .05). CLINICAL TRANSLATION The results based on this animal model indicate that extremely high testosterone levels may affect endothelial and erectile function. STRENGTHS AND LIMITATIONS We found that high-dose testosterone administration decreased endothelial function in aorta and erectile function in rats. A major limitation of this study is that the blood concentration may not be representative of that in humans, and further research is needed. CONCLUSION The findings suggest that high doses of testosterone may cause endothelial dysfunction in the aorta and erectile dysfunction in rats and that the blood concentration should be monitored after testosterone administration. Kataoka T, Fukamoto A, Hotta Y, et al. Effect of High Testosterone Levels on Endothelial Function in Aorta and Erectile Function in Rats. Sex Med 2022;10:100550.
Collapse
Affiliation(s)
- Tomoya Kataoka
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan; Department of Pharmacology, Kataoka's lab, Graduate School of Pharmaceutical Sciences, Chiba Institute of Science, Chiba, Japan.
| | - Ayako Fukamoto
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuji Hotta
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Akimasa Sanagawa
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yasuhiro Maeda
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoko Furukawa-Hibi
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan; Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazunori Kimura
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan; Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
10
|
Saleki K, Banazadeh M, Saghazadeh A, Rezaei N. Aging, testosterone, and neuroplasticity: friend or foe? Rev Neurosci 2022; 34:247-273. [PMID: 36017670 DOI: 10.1515/revneuro-2022-0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/03/2022] [Indexed: 11/15/2022]
Abstract
Neuroplasticity or neural plasticity implicates the adaptive potential of the brain in response to extrinsic and intrinsic stimuli. The concept has been utilized in different contexts such as injury and neurological disease. Neuroplasticity mechanisms have been classified into neuroregenerative and function-restoring processes. In the context of injury, neuroplasticity has been defined in three post-injury epochs. Testosterone plays a key yet double-edged role in the regulation of several neuroplasticity alterations. Research has shown that testosterone levels are affected by numerous factors such as age, stress, surgical procedures on gonads, and pharmacological treatments. There is an ongoing debate for testosterone replacement therapy (TRT) in aging men; however, TRT is more useful in young individuals with testosterone deficit and more specific subgroups with cognitive dysfunction. Therefore, it is important to pay early attention to testosterone profile and precisely uncover its harms and benefits. In the present review, we discuss the influence of environmental factors, aging, and gender on testosterone-associated alterations in neuroplasticity, as well as the two-sided actions of testosterone in the nervous system. Finally, we provide practical insights for further study of pharmacological treatments for hormonal disorders focusing on restoring neuroplasticity.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,USERN Office, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| | - Mohammad Banazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, 76169 13555 Kerman, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 14176 13151 Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| |
Collapse
|
11
|
Choy DMY, Voon LW, Teoh SCB. UNUSUAL CAUSE OF BRANCH RETINAL ARTERY OCCLUSION: POLYCYTHEMIA IN A TRANSGENDER MAN FROM UNREGULATED TESTOSTERONE USE. Retin Cases Brief Rep 2022; 16:145-148. [PMID: 31464822 DOI: 10.1097/icb.0000000000000924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE We report a transgender patient with branch retinal artery occlusion who had secondary polycythemia from unregulated testosterone injections and review the literature on the mechanisms of supraphysiologic and standard doses of testosterone causing a hypercoagulable state. METHODS Case report. RESULTS A 45-year-old Chinese transgender man with no medical history presented with a 1-week history of a scotoma in his left eye vision. Ophthalmologic examination revealed retinal pallor and edema along the superotemporal arteriole in the left eye. Optical coherence tomography showed increased thickness of the inner retinal layers of the superotemporal retina. Fluorescein angiography demonstrated an arm-retina time of 1 minute and 43 seconds, with no vascular sheathing and capillary fallout. A diagnosis of left superotemporal branch retinal artery occlusion was made. Initial blood tests revealed a hemoglobin level of 19.3 g/dL (11.8-14.6 g/dL), hematocrit of 62% (34.3-43.0%), and erythrocytes of 6.56 × 1012/L (3.7-4.8 × 1012/L). He revealed later that he had been on weekly testosterone injections (testosterone enanthate 250-mg depot injection) since 2011. He was also exposed to a moderately high altitude, when his symptoms occurred, raising the possibility of worsening hypercoagulability resulting in his thrombotic event. CONCLUSION To the best of our knowledge, this is the first documented case of a trans man who developed branch retinal artery occlusion after self-administering supraphysiological doses of testosterone. In a young patient with no history of cardiovascular risk factors who develops retinal arterial occlusion, other causes such as hypercoagulable syndromes must be excluded. This case warns of the dangers of unregulated testosterone use, especially at supraphysiologic doses, and the risks of thrombotic events from secondary polycythemia.
Collapse
Affiliation(s)
| | | | - Stephen C B Teoh
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
- Eagle Eye Centre, Mt Alvernia Hospital, Singapore
| |
Collapse
|
12
|
Koukoulis GN, Filiponi M, Gougoura S, Befani C, Liakos P, Bargiota Α. Testosterone and dihydrotestosterone modulate the redox homeostasis of endothelium. Cell Biol Int 2022; 46:660-670. [DOI: 10.1002/cbin.11768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/26/2021] [Accepted: 01/02/2022] [Indexed: 12/08/2022]
Affiliation(s)
- George N Koukoulis
- Research Laboratory, Department of Endocrinology and Metabolic Diseases, Larissa University Hospital, Faculty of Medicine, University of Thessaly41500BiopolisLarissaGreece
| | - Maria Filiponi
- Research Laboratory, Department of Endocrinology and Metabolic Diseases, Larissa University Hospital, Faculty of Medicine, University of Thessaly41500BiopolisLarissaGreece
| | - Sofia Gougoura
- Research Laboratory, Department of Endocrinology and Metabolic Diseases, Larissa University Hospital, Faculty of Medicine, University of Thessaly41500BiopolisLarissaGreece
| | - Christina Befani
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly41500BiopolisLarissaGreece
| | - Panagiotis Liakos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly41500BiopolisLarissaGreece
| | - Αlexandra Bargiota
- Research Laboratory, Department of Endocrinology and Metabolic Diseases, Larissa University Hospital, Faculty of Medicine, University of Thessaly41500BiopolisLarissaGreece
| |
Collapse
|
13
|
Mendes ABA, Motta NAV, Lima GF, Autran LJ, Brazão SC, Magliano DC, Sepúlveda-Fragoso V, Scaramello CBV, Graceli JB, Miranda-Alves L, Brito FCF. Evaluation of the effects produced by subacute tributyltin administration on vascular reactivity of male wistar rats. Toxicology 2022; 465:153067. [PMID: 34902535 DOI: 10.1016/j.tox.2021.153067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022]
Abstract
Tributyltin chloride (TBT) is an organotin compound widely used in several high biocides for agroindustrial applications, such as fungicides, and marine antifouling paints leading to endocrine disrupting actions, such as imposex development in mollusks. In female rats, TBT has been shown to promote ovarian dysfunction, reduction of estrogen protective effect in the vascular morphophysiology, at least in part by oxidative stress consequences. Estrogen causes coronary endothelium-dependent and independent vasodilation. However, the TBT effects on cardiovascular system of male rats are not fully understood. The aim of this study was to evaluate the effects of subacute TBT exposure in aorta vascular reactivity from male wistar rats. Rats were randomly divided into three groups: control (C), TBT 500 ng/kg/day and TBT 1000 ng/kg/day. TBT was administered daily for 30 days by oral gavage. We found that TBT exposure enhanced testosterone serum levels and it was also observed obesogenic properties. TBT exposure evoked an increase in endothelium-dependent and independent phenylephrine-induced contraction, associated to an inhibition in eNOS activity. On the other hand, it was observed an enhancement of iNOS and NF-kB protein expression. We also observed an increase in oxidative stress parameters, such as superoxide dismutase (SOD) and catalase expression, and also an increase in malondialdehyde production. Finally, TBT exposure produced aortic intima-media thickness. Taken together, these data suggest a potential cardiovascular toxicological effect after subacute TBT exposure in male rats.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Lipid Peroxidation/drug effects
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NF-kappa B/metabolism
- Nitric Oxide Synthase Type II/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Oxidative Stress/drug effects
- Phosphorylation
- Rats, Wistar
- Testosterone/blood
- Trialkyltin Compounds/toxicity
- Vasoconstriction/drug effects
- Rats
Collapse
Affiliation(s)
- Ana Beatriz Araújo Mendes
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Niteroi, RJ, Brazil; Postgraduate Program in Endocrinology, Faculty of Medicine, Postgraduate Program in Pharmacology and Medicinal Chemistry and Postgraduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio De Janeiro (UFRJ), Brazil
| | - Nadia Alice Vieira Motta
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Niteroi, RJ, Brazil
| | - Gabriel Ferreira Lima
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Niteroi, RJ, Brazil
| | - Lis Jappour Autran
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Niteroi, RJ, Brazil
| | - Stephani Correia Brazão
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Niteroi, RJ, Brazil
| | - D'Angelo Carlo Magliano
- Laboratory of Morphological and Metabolic Analyses, Department of Morphology Biomedical Institute, Fluminense Federal University (UFF), Brazil
| | - Vinícius Sepúlveda-Fragoso
- Laboratory of Morphological and Metabolic Analyses, Department of Morphology Biomedical Institute, Fluminense Federal University (UFF), Brazil
| | - Christianne Brêtas Vieira Scaramello
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Niteroi, RJ, Brazil
| | - Jones Bernardes Graceli
- Laboratory of Endocrinology and Cell Toxicology, Department of Morphology/ CCS, Federal University of Espírito Santo (UFES), Brazil
| | - Leandro Miranda-Alves
- Postgraduate Program in Endocrinology, Faculty of Medicine, Postgraduate Program in Pharmacology and Medicinal Chemistry and Postgraduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio De Janeiro (UFRJ), Brazil
| | - Fernanda Carla Ferreira Brito
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Niteroi, RJ, Brazil.
| |
Collapse
|
14
|
Musicki B, Burnett AL. Testosterone Deficiency in Sickle Cell Disease: Recognition and Remediation. Front Endocrinol (Lausanne) 2022; 13:892184. [PMID: 35592776 PMCID: PMC9113536 DOI: 10.3389/fendo.2022.892184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
Hypogonadism is common in men with sickle cell disease (SCD) with prevalence rates as high as 25%. Testicular failure (primary hypogonadism) is established as the principal cause for this hormonal abnormality, although secondary hypogonadism and compensated hypogonadism have also been observed. The underlying mechanism for primary hypogonadism was elucidated in a mouse model of SCD, and involves increased NADPH oxidase-derived oxidative stress in the testis, which reduces protein expression of a steroidogenic acute regulatory protein and cholesterol transport to the mitochondria in Leydig cells. In all men including those with SCD, hypogonadism affects physical growth and development, cognition and mental health, sexual function, as well as fertility. However, it is not understood whether declines in physical, psychological, and social domains of health in SCD patients are related to low testosterone, or are consequences of other abnormalities of SCD. Priapism is one of only a few complications of SCD that has been studied in the context of hypogonadism. In this pathologic condition of prolonged penile erection in the absence of sexual excitement or stimulation, hypogonadism exacerbates already impaired endothelial nitric oxide synthase/cGMP/phosphodiesterase-5 molecular signaling in the penis. While exogenous testosterone alleviates priapism, it disadvantageously decreases intratesticular testosterone production. In contrast to treatment with exogenous testosterone, a novel approach is to target the mechanisms of testosterone deficiency in the SCD testis to drive endogenous testosterone production, which potentially decreases further oxidative stress and damage in the testis, and preserves sperm quality. Stimulation of translocator protein within the transduceosome of the testis of SCD mice reverses both hypogonadism and priapism, without affecting intratesticular testosterone production and consequently fertility. Ongoing research is needed to define and develop therapies that restore endogenous testosterone production in a physiologic, mechanism-specific fashion without affecting fertility in SCD men.
Collapse
|
15
|
Lau LHY, Nano J, Prehn C, Cecil A, Rathmann W, Zeller T, Lechner A, Adamski J, Peters A, Thorand B. Associations of endogenous androgens and sex hormone-binding globulin with kidney function and chronic kidney disease. Front Endocrinol (Lausanne) 2022; 13:1000650. [PMID: 36601008 PMCID: PMC9807167 DOI: 10.3389/fendo.2022.1000650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION The role of endogenous androgens in kidney function and disease has not been extensively explored in men and women. RESEARCH DESIGN AND METHODS We analyzed data from the observational KORA F4 study and its follow-up examination KORA FF4 (median follow-up time 6.5 years) including 1293 men and 650 peri- and postmenopausal women, not using exogenous sex hormones. We examined the associations between endogenous androgens (testosterone [T], dihydrotestosterone [DHT], free T [fT], free DHT [fDHT], and T/DHT), with estimated glomerular filtration rate (eGFR) at baseline and follow-up, prevalent, and incident chronic kidney disease (CKD) adjusting for common CKD risk factors. RESULTS At baseline, 73 men (5.7%) and 54 women (8.4%) had prevalent CKD. Cross-sectionally, no significant associations between androgens and kidney function were observed among men. In women, elevated T (β=-1.305, [95% CI -2.290; -0.320]) and fT (β=-1.423, [95% CI -2.449; -0.397]) were associated with lower eGFR. Prospectively, 81 men (8.8%) and 60 women (15.2%) developed incident CKD. In women, a reverse J-shaped associations was observed between DHT and incident CKD (Pnon-linear=0.029), while higher fDHT was associated with lower incident CKD risk (odds ratio per 1 standard deviation=0.613, [95% CI 0.369; 0.971]. Among men, T/DHT (β=-0.819, [95% CI -1.413; -0.226]) and SHBG (Pnon-linear=0.011) were associated with eGFR at follow-up but not with incident CKD. Some associations appeared to be modified by type 2 diabetes (T2D). CONCLUSION Suggestive associations are observed of androgens and SHBG with kidney impairment among men and women. However, larger well-phenotyped prospective studies are required to further elucidate the potential of androgens, SHBG, and T2D as modifiable risk factors for kidney function and CKD.
Collapse
Affiliation(s)
- Lina Hui Ying Lau
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Ludwig-Maximilians-Universität (LMU), Munich, Germany
- International Helmholtz Research School for Diabetes, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jana Nano
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Cornelia Prehn
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alexander Cecil
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Partner Site Düsseldorf, Düsseldorf, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine Universität, Düsseldorf, Germany
| | - Tanja Zeller
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, Department of Cardiology, University Medical Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site, Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Andreas Lechner
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität (LMU), München, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, München, Germany
- German Center for Diabetes Research (DZD), Partner Site Munich-Neuherberg, Neuherberg, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Partner Site Munich-Neuherberg, Neuherberg, Germany
- *Correspondence: Barbara Thorand,
| |
Collapse
|
16
|
El Deib MM, El-Sharkawy NI, Beheiry RR, Abd-Elhakim YM, Ismail SA, Fahmy EM, Saber T, Saber TM. Boldenone undecylenate disrupts the immune system and induces autoimmune clinical hypothyroidism in rats: Vitamin C ameliorative effects. Int Immunopharmacol 2021; 99:107939. [PMID: 34224995 DOI: 10.1016/j.intimp.2021.107939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/07/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
The present study was designed to evaluate the effects of boldenone undecylenate (BL) abuse alone and in combination with vitamin C (VC) on the immune responses and thyroid structure and function in rats. Thirty adult male Wistar rats were randomly divided into five equal groups and were subjected to various treatment regimens for eight weeks as follows: control group, vehicle control group, VC group orally received VC (120 mg/Kg BW/day), BL-treated group intramuscularly injected with BL (5 mg/kg BW, once/week), and BL+VC group received BL and VC. At the end of this experiment, blood and tissue samples (thyroid, thymus, and spleen) were subjected to hematological evaluation, biochemical analysis, histopathological, and immunohistochemical examinations. In comparison to controls, BL significantly increased the levels of serum proinflammatory interleukins (IL-1 β and IL-6), immunoglobulins (IgG and IgM), and complement 3 but reduced anti-inflammatory interleukin-10, lysosome, and nitric oxide. Besides, altered platelet count and leukogram were evident in BL-injected rats. BL notably disturbed thyroid profile as revealed by a significant increase of thyroid-stimulating hormone and thyroid peroxidase antibody. In contrast, both total and free forms of thyroid hormones (tri-iodothyronine and thyroxine), thyroglobulin, and thyroid peroxidase, were significantly decreased. Moreover, BL caused histopathological changes in the thyroid, thymus, and spleen tissues.CD4+ immuno-expression was reduced, but CD8+ immunolabelling was increased in both spleen and thymus. The daily dosing of VC to BL-exposed rats significantly corrected most of the deviations in immune parameters. It restored most of the thyroid architecture and function, revealing a significant protective effect of this vitamin. This experimental study demonstrates that BL abusing disrupts the immune system by different mechanisms and addresses BL, for the first time, as an autoimmune clinical hypothyroidism inducer drug. Additionally, VC is helpful in the management of BL abuse.
Collapse
Affiliation(s)
- Maha M El Deib
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nabela I El-Sharkawy
- Department of Forensic Medicine and Toxicology Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Rasha R Beheiry
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology Faculty of Veterinary Medicine, Zagazig University, Egypt.
| | - Shimaa Aa Ismail
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Esraa M Fahmy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Taisir Saber
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Taghred M Saber
- Department of Forensic Medicine and Toxicology Faculty of Veterinary Medicine, Zagazig University, Egypt
| |
Collapse
|
17
|
Cignarelli A, Genchi VA, D’Oria R, Giordano F, Caruso I, Perrini S, Natalicchio A, Laviola L, Giorgino F. Role of Glucose-Lowering Medications in Erectile Dysfunction. J Clin Med 2021; 10:jcm10112501. [PMID: 34198786 PMCID: PMC8201035 DOI: 10.3390/jcm10112501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/11/2023] Open
Abstract
Erectile dysfunction (ED) is a long-term complication of type 2 diabetes (T2D) widely known to affect the quality of life. Several aspects of altered metabolism in individuals with T2D may help to compromise the penile vasculature structure and functions, thus exacerbating the imbalance between smooth muscle contractility and relaxation. Among these, advanced glycation end-products and reactive oxygen species derived from a hyperglycaemic state are known to accelerate endothelial dysfunction by lowering nitric oxide bioavailability, the essential stimulus of relaxation. Although several studies have explained the pathogenetic mechanisms involved in the generation of erectile failure, few studies to date have described the efficacy of glucose-lowering medications in the restoration of normal sexual activity. Herein, we will present current knowledge about the main starters of the pathophysiology of diabetic ED and explore the role of different anti-diabetes therapies in the potential remission of ED, highlighting specific pathways whose activation or inhibition could be fundamental for sexual care in a diabetes setting.
Collapse
|
18
|
Kresch E, Patel M, Lima TFN, Ramasamy R. An update on the available and emerging pharmacotherapy for adults with testosterone deficiency available in the USA. Expert Opin Pharmacother 2021; 22:1761-1771. [PMID: 33866902 DOI: 10.1080/14656566.2021.1918101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Testosterone deficiency (TD) is defined as low serum testosterone associated with symptoms and signs. There has been an increasing prevalence of TD in recent decades, especially in males aged 15-39. Many of these men will require long-term testosterone therapy (TT). Although the end-goals for all treatments are essentially the same, strategies for increasing serum testosterone should be decided individually.Areas covered: This review focuses on the pharmacological management of TD in adults which includes TT with different routes of administration, such as transdermal, buccal, intramuscular and subcutaneous injections, pellets, nasal gel, and oral (pills). The authors review the options for TT available in the USA with emphasis on newer therapies. Furthermore, they examine the efficacy of these therapies with comparison between potential advantages or disadvantages related to dosing, administration method, and adverse events.Expert opinion: Treating TD can be difficult due to the wide range of available medications, diverse side effects related to testosterone replacement and route-of-administration, and necessity for long-term therapy. The combination of pharmacological and non-pharmacological therapies can improve symptoms of TD and patient satisfaction. Each patient should be managed individually, and clinicians should consider available treatment regimens based on the route-of-administration, efficacy, safety, and cost based on a shared decision-making approach.
Collapse
Affiliation(s)
- Eliyahu Kresch
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Mehul Patel
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Thiago Fernandes Negris Lima
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Urology, Hospital Veredas, Maceió, Brazil
| | - Ranjith Ramasamy
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
19
|
Chung CC, Lin YK, Kao YH, Lin SH, Chen YJ. Physiological testosterone attenuates profibrotic activities of rat cardiac fibroblasts through modulation of nitric oxide and calcium homeostasis. Endocr J 2021; 68:307-315. [PMID: 33115984 DOI: 10.1507/endocrj.ej20-0344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Testosterone deficiency is associated with poor prognosis among patients with chronic heart failure (HF). Physiological testosterone improves the exercise capacity of patients with HF. In this study, we evaluated whether treatment with physiological testosterone contributes to anti-fibrogenesis by modifying calcium homeostasis in cardiac fibroblasts and we studied the underlying mechanisms. Nitric oxide (NO) analyses, calcium (Ca2+) fluorescence, and Western blotting were performed in primary isolated rat cardiac fibroblasts with or without (control cells) testosterone (10, 100, 1,000 nmol/L) treatment for 48 hours. Physiological testosterone (10 nmol/L) increased NO production and phosphorylation at the inhibitory site of the inositol trisphosphate (IP3) receptor, thereby reducing Ca2+ entry, phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) expression, type I and type III pro-collagen production. Non-physiological testosterone-treated fibroblasts exhibited similar NO and collagen production capabilities as compared to control (testosterone deficient) fibroblasts. These effects were blocked by co-treatment with NO inhibitor (L-NG-nitro arginine methyl ester [L-NAME], 100 μmol/L). In the presence of the IP3 receptor inhibitor (2-aminoethyl diphenylborinate [2-APB], 50 μmol/L), testosterone-deficient and physiological testosterone-treated fibroblasts exhibited similar phosphorylated CaMKII expression. When treated with 2-APB or CaMKII inhibitor (KN93, 10 μmol/L), testosterone-deficient and physiological testosterone-treated fibroblasts exhibited similar type I, and type III collagen production. In conclusion, physiological testosterone activates NO production, and attenuates the IP3 receptor/Ca2+ entry/CaMKII signaling pathway, thereby inhibiting the collagen production capability of cardiac fibroblasts.
Collapse
Affiliation(s)
- Cheng-Chih Chung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shyh-Hsiang Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
20
|
Nascimento-Gonçalves E, Seixas F, Silva M, Fardilha M, Ferreira R, Neuparth MJ, Faustino-Rocha AI, Colaço B, Venâncio C, Barros L, Ferreira ICFR, Oliveira MM, Peixoto F, Rosa E, Oliveira PA. The influence of Castanea sativa Mill. flower extract on hormonally and chemically induced prostate cancer in a rat model. Food Funct 2021; 12:2631-2643. [PMID: 33645604 DOI: 10.1039/d1fo00029b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prostate cancer (PCa) is one of the most common cancers in men, with a huge impact on their health. The use of Castanea sativa Mill. flowers (CFs) in beverages has been reported, through ancestral claims, as having health benefits. In vitro research has evidenced the properties of CFs, such as antitumor and antioxidant activities. This study aimed to evaluate the effects of CF extract in an animal model of PCa. Forty male Wistar Unilever rats were randomly assigned to four groups: control, induced, control + CF, and induced + CF groups. Animals from the induced groups were exposed to a multistep protocol for PCa induction. The CF extract, rich in trigalloyl-HHDP-glucoside and obtained via decoction, was administered to the CF groups in drinking water (3 mg per animal per day) for 49 weeks. Animals were sacrificed at 61 weeks of age. Regarding the effects of CFs on dorsolateral prostate tumorigenesis, no significant differences were observed between the induced and induced + CF groups. However, animals exposed to the CF extract showed fewer inflammation areas on the dorsolateral prostate lobe than those not exposed to CF. Moreover, the CF extract alleviated the hepatic oxidative stress associated with the multistep protocol, resulting in lower levels of lipid peroxidation. These results suggest that CF extract has antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- E Nascimento-Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Najjar RS, Turner CG, Wong BJ, Feresin RG. Berry-Derived Polyphenols in Cardiovascular Pathologies: Mechanisms of Disease and the Role of Diet and Sex. Nutrients 2021; 13:nu13020387. [PMID: 33513742 PMCID: PMC7911141 DOI: 10.3390/nu13020387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) prevalence, pathogenesis, and manifestation is differentially influenced by biological sex. Berry polyphenols target several signaling pathways pertinent to CVD development, including inflammation, oxidative stress, and cardiac and vascular remodeling, and there are innate differences in these pathways that also vary by sex. There is limited research systematically investigating sex differences in berry polyphenol effects on these pathways, but there are fundamental findings at this time that suggest a sex-specific effect. This review will detail mechanisms within these pathological pathways, how they differ by sex, and how they may be individually targeted by berry polyphenols in a sex-specific manner. Because of the substantial polyphenolic profile of berries, berry consumption represents a promising interventional tool in the treatment and prevention of CVD in both sexes, but the mechanisms in which they function within each sex may vary.
Collapse
Affiliation(s)
- Rami S. Najjar
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, USA;
| | - Casey G. Turner
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30302, USA; (C.G.T.); (B.J.W.)
| | - Brett J. Wong
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30302, USA; (C.G.T.); (B.J.W.)
| | - Rafaela G. Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, USA;
- Correspondence:
| |
Collapse
|
22
|
Roşca AE, Vlădăreanu AM, Mititelu A, Popescu BO, Badiu C, Căruntu C, Voiculescu SE, Onisâi M, Gologan Ş, Mirica R, Zăgrean L. Effects of Exogenous Androgens on Platelet Activity and Their Thrombogenic Potential in Supraphysiological Administration: A Literature Review. J Clin Med 2021; 10:jcm10010147. [PMID: 33406783 PMCID: PMC7795962 DOI: 10.3390/jcm10010147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/04/2023] Open
Abstract
Anabolic androgenic steroids (AAS), simply called “androgens”, represent the most widespread drugs used to enhance performance and appearance in a sporting environment. High-dosage and/or long-term AAS administration has been associated frequently with significant alterations in the cardiovascular system, some of these with severe endpoints. The induction of a prothrombotic state is probably the most life-threatening consequence, suggested by numerous case reports in AAS-abusing athletes, and by a considerable number of human and animal studies assessing the influence of exogenous androgens on hemostasis. Despite over fifty years of research, data regarding the thrombogenic potential of exogenous androgens are still scarce. The main reason is the limited possibility of conducting human prospective studies. However, human observational studies conducted in athletes or patients, in vitro human studies, and animal experiments have pointed out that androgens in supraphysiological doses induce enhanced platelet activity and thrombopoiesis, leading to increased platelet aggregation. If this tendency overlaps previously existing coagulation and/or fibrinolysis dysfunctions, it may lead to a thrombotic diathesis, which could explain the multitude of thromboembolic events reported in the AAS-abusing population. The influence of androgen excess on the platelet activity and fluid–coagulant balance remains a subject of debate, urging for supplementary studies in order to clarify the effects on hemostasis, and to provide new compelling evidence for their claimed thrombogenic potential.
Collapse
Affiliation(s)
- Adrian Eugen Roşca
- Division of Physiology and Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.E.V.); (L.Z.)
- Victor Babeş National Institute of Research-Development in the Pathology Domain, 050096 Bucharest, Romania;
- Department of Cardiology, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
- Correspondence: (A.E.R.); (A.-M.V.)
| | - Ana-Maria Vlădăreanu
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.)
- Correspondence: (A.E.R.); (A.-M.V.)
| | - Alina Mititelu
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.)
| | - Bogdan Ovidiu Popescu
- Victor Babeş National Institute of Research-Development in the Pathology Domain, 050096 Bucharest, Romania;
- Department of Neurology, Carol Davila University of Medicine and Pharmacy, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Corin Badiu
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, C.I. Parhon National Institute of Endocrinology, 11863 Bucharest, Romania;
| | - Constantin Căruntu
- Division of Physiology, Department of Fundamental Disciplines, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Suzana Elena Voiculescu
- Division of Physiology and Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.E.V.); (L.Z.)
| | - Minodora Onisâi
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.)
| | - Şerban Gologan
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, Elias Clinical Hospital, 011461 Bucharest, Romania;
| | - Radu Mirica
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, “Sf. Ioan” Clinical Hospital, 042122 Bucharest, Romania;
| | - Leon Zăgrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.E.V.); (L.Z.)
| |
Collapse
|
23
|
Magalhães SC, de Oliveira KA, Freiras PA, Moreira Gomes MD, Pereira LM, Boa LF, de Carvalho DP, Fortunato RS, Carneiro Loureiro AC, Brito LC, de Oliveira AC. High-dose Nandrolone Decanoate induces oxidative stress and inflammation in retroperitoneal adipose tissue of male rats. J Steroid Biochem Mol Biol 2020; 203:105728. [PMID: 32712213 DOI: 10.1016/j.jsbmb.2020.105728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
The non-therapeutic use of the androgenic anabolic steroid Nandrolone Decanoate is popular due to its effects on physical performance and body composition, especially for its lipolytic and anabolic effects associated. However, high doses of such drugs are often associated with a series of pathologies related to unbalanced redox homeostasis, which, in turn, can be linked to inflammation. The oxidative stress onset could deregulate the secretion of cytokines, evidencing a dysfunctional adipocyte. Thus, the aim of this study was to investigate the effect of supraphysiological doses of Nandrolone Decanoate on redox homeostasis of retroperitoneal fatpad of male rats and its relationship with cytokines-based inflammatory signaling. Hydrogen peroxide production was assessed in the retroperitoneal fat pad of adult male rats which received either 10 mg kg of Nandrolone Decanoate or only a vehicle. Also, catalase, superoxide dismutase and glutathione peroxidase activities were measured, together with total reduced thiols and protein carbonylation, as well as IL-1β, TNF-α, and IL-6 local levels. High doses of Nandrolone Decanoate caused an increase in the hydrogen peroxide production, together with lower activities of the antioxidant enzymes and lower levels of total reduced thiol. There were also higher protein carbonylation and greater levels of IL-1β, TNF-α, and IL-6 in the treated group compared to control group. Therefore, it was possible to verify that high doses of Nandrolone Decanoate cause oxidative stress and induce higher inflammatory signaling in retroperitoneal fat pad of male rats.
Collapse
Affiliation(s)
- Saulo Chaves Magalhães
- Laboratório de Fisiologia Endócrina e Metabolismo, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Ceará, Brazil
| | - Keciany Alves de Oliveira
- Laboratório de Fisiologia Endócrina e Metabolismo, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Ceará, Brazil
| | - Paula Alexandre Freiras
- Laboratório de Fisiologia Endócrina e Metabolismo, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Ceará, Brazil
| | - Maria Diana Moreira Gomes
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Ceará, Brazil
| | - Leonardo Matta Pereira
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Ceará, Brazil
| | - Luiz Fonte Boa
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Ceará, Brazil
| | - Denise Pires de Carvalho
- Laboratório de Fisiologia Endócrina Dóris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Soares Fortunato
- Laboratório de Fisiologia e Sinalização Redox, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriano Cesar Carneiro Loureiro
- Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Ceará, Brazil
| | - Luciana Catunda Brito
- Instututo de Educação Física e Esportes, Universidade Federal do Ceará, Ceará, Brazil
| | - Ariclécio Cunha de Oliveira
- Laboratório de Fisiologia Endócrina e Metabolismo, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Ceará, Brazil.
| |
Collapse
|
24
|
Alves JV, da Costa RM, Pereira CA, Fedoce AG, Silva CAA, Carneiro FS, Lobato NS, Tostes RC. Supraphysiological Levels of Testosterone Induce Vascular Dysfunction via Activation of the NLRP3 Inflammasome. Front Immunol 2020; 11:1647. [PMID: 32849566 PMCID: PMC7411079 DOI: 10.3389/fimmu.2020.01647] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Both supraphysiological and subphysiological testosterone levels are associated with increased cardiovascular risk. Testosterone consumption at supraphysiological doses has been linked to increased blood pressure, left ventricular hypertrophy, vascular dysfunction, and increased levels of inflammatory markers. Activation of the NLRP3 inflammasome contributes to the production of proinflammatory cytokines, leading to cardiovascular dysfunction. We hypothesized that supraphysiological levels of testosterone, via generation of mitochondrial reactive oxygen species (mROS), activates the NLRP3 inflammasome and promotes vascular dysfunction. Methods: Male, 12 week-old C57Bl/6J (WT) and NLRP3 knockout (NLRP3-/-) mice were used. Mice were treated with testosterone propionate [TP (10 mg/kg) in vivo] or vehicle for 30 days. In addition, vessels were incubated with testosterone [Testo (10-6 M, 2 h) in vitro]. Testosterone levels, blood pressure, vascular function (thoracic aortic rings), pro-caspase-1/caspase-1 and interleukin-1β (IL-1β) expression, and generation of reactive oxygen species were determined. Results: Testosterone increased contractile responses and reduced endothelium-dependent vasodilation, both in vivo and in vitro. These effects were not observed in arteries from NLRP3-/- mice. Aortas of TP-treated WT mice (in vivo), as well as aortas from WT mice incubated with testo (in vitro), exhibited increased mROS levels and increased caspase-1 and IL-1β expression. These effects were not observed in arteries from NLRP3-/- mice. Flutamide [Flu, 10-5 M, androgen receptor (AR) antagonist], carbonyl cyanide m-chlorophenyl hydrazone (CCCP, 10-6 M, mitochondrial uncoupler) and MCC950 (MCC950, 10-6 M, a NLRP3 receptor inhibitor) prevented testosterone-induced mROS generation. Conclusion: Supraphysiological levels of testosterone induce vascular dysfunction via mROS generation and NLRP3 inflammasome activation. These events may contribute to increased cardiovascular risk.
Collapse
MESH Headings
- Androgens/toxicity
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Caspase 1/metabolism
- Inflammasomes/agonists
- Inflammasomes/genetics
- Inflammasomes/metabolism
- Interleukin-1beta/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria/drug effects
- Mitochondria/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/agonists
- NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Reactive Oxygen Species/metabolism
- Receptors, Androgen/drug effects
- Receptors, Androgen/metabolism
- Testosterone Propionate/toxicity
- Tissue Culture Techniques
- Vasoconstriction/drug effects
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Juliano Vilela Alves
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rafael Menezes da Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Special Academic Unit of Health Sciences, Federal University of Jataí, Jataí, Brazil
| | - Camila André Pereira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Aline Garcia Fedoce
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Fernando Silva Carneiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Núbia Souza Lobato
- Special Academic Unit of Health Sciences, Federal University of Jataí, Jataí, Brazil
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Alrabadi N, Jarrah MI, Alzoubi KH. Acute myocardial infarction with cardiogenic shock in a young physically active physician concurrently using the anabolic steroid sustanon: A case report. Biomed Rep 2020; 13:14. [PMID: 32765853 DOI: 10.3892/br.2020.1321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/05/2020] [Indexed: 11/05/2022] Open
Abstract
The association between ischemic heart disease (IHD) and the concurrent use of anabolic androgenic steroids (AASs) is underestimated in clinical settings. The tendency of patients to not disclose AASs use may explain this underestimation. In the present case report, the clinical case of a 26-year-old physically active male, who was a physician, without any classical coronary risk factors, who presented with chest pain that was misdiagnosed by the peripheral care unit as skeletal muscle pain is described. Later, the patient was brought to our central hospital (King Abdullah University Hospital) suffering from a massive acute myocardial infarction with marked ECG changes and cardiogenic shock. Following stabilization of his condition, a detailed history of the patient was taken, during which the patient admitted that he was a chronic user of the anabolic steroid sustanon (250 mg, once/week for 6 months) and amino acid supplements (whey protein isolate, 6 tabs every day for 1 year). Specific cardiac markers were increased and the patient exhibited dynamic ischemic changes in his electrocardiogram. Notably, the coronary angiogram of the patient demonstrated ostial occlusion of the left anterior descending artery, which was associated with mid-right coronary artery embolic obstruction. Other than the anabolic steroids and protein supplementation use, the patient history, examination and lab evaluation were normal. During follow up, the patient continued to suffer heart failure with low ejection fraction. In addition, he developed apical thrombus 2 months after primary admission. The patient developed tachycardia in spite of optimal medical treatment and finally received an implantable cardioverter defibrillator. Physicians should always be aware of the possibility of AASs use in young physically active patients. IHD should always be suspected and investigated with typical chest pain in healthy young patients, even if regular risk factors are not present. Medical professionals should not be excluded as potential AASs users/abusers.
Collapse
Affiliation(s)
- Nasr Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohamad Ismail Jarrah
- Department of Internal Medicine, Interventional Cardiology Division, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem Hasan Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
26
|
Motamer M, Haghjooy Javanmard S, Mortazavi ZS, Bahrani S. Evaluation the effect of testosterone on the number of endothelial progenitor cells and amount of SDF-1α, PDGF, bFGF, and NO. Int J Prev Med 2020; 10:214. [PMID: 31929861 PMCID: PMC6941377 DOI: 10.4103/ijpvm.ijpvm_79_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/24/2018] [Indexed: 11/23/2022] Open
Abstract
Background: Recent therapeutic advances in cardiovascular disease, thanks to the discovery of endothelial progenitor cells (EPCs). Stromal cell-derived factor-1α (SDF-1α), platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), and nitric oxide (NO) play a role in migration, homing, and differentiation of EPCs into mature endothelial cells. The incidence of cardiovascular disease is higher in men than in women. This fact suggests the influence of sex hormones on incidence of cardiovascular disease. Methods: Twenty-four female wistar rats weighing 160–180 g were randomly divided into four groups (N = 6): 1. sham-treated by sesame oil, 2. ovariectomized (OVX)-treated by sesame oil, 3. OVX-treated by 10 μg/kg/day testosterone, and 4. OVX-treated by 100 μg/kg/day testosterone. After 21 days, the animals were euthanized and blood samples were saved for determination of EPC count and serum levels of SDF-1α, PDGF, bFGF, and NO production. Results: High-dose testosterone induced significant increase in EPC count in OVX rats (P < 0.05). Also 100 μg/kg/day testosterone increased serum level of SDF-1α more than OVX-treated by 10 μg/kg/day testosterone (P < 0.05). But 10 μg/kg/day testosterone increased significantly the serum level of PDGF >100 μg/kg/day testosterone-treated group (P < 0.05). The serum level of bFGF in sham-treated by sesame oil was equal with its concentration in OVX-treated by 100 μg/kg/day testosterone. And the serum concentration of NO production in testosterone-treated groups were significantly less than other groups (P < 0.05). Conclusions: This study suggests that testosterone might be effective on cardiovascular disease in females by increasing EPC count through SDF-1α and PDGF mechanisms which are some of the vascular healing factors.
Collapse
Affiliation(s)
- Maryam Motamer
- Department of Physiology, Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Medical Student Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zahra Sadat Mortazavi
- Department of Physiology, Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Medical Student Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeide Bahrani
- Department of Physiology, Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Medical Student Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
27
|
Mancini A, Fuvuzzi AMR, Bruno C, Nicolazzi MA, Vergani E, Ciferri N, Silvestrini A, Meucci E, Nicolotti N, D'Assante R, Cittadini A. Anabolic Hormone Deficiencies in Heart Failure with Reduced or Preserved Ejection Fraction and Correlation with Plasma Total Antioxidant Capacity. Int J Endocrinol 2020; 2020:5798146. [PMID: 32411227 PMCID: PMC7199626 DOI: 10.1155/2020/5798146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND While anabolic hormone deficit is a common finding in heart failure with reduced ejection fraction (HFrEF), few data are available in heart failure with preserved ejection fraction (HFpEF). METHODS Blood samples were collected for metabolic (total cholesterol, HDL cholesterol, LDL cholesterol, creatinine, and glucose) and hormonal (IGF-1, DHEA-S, TSH, fT3, fT4, and T) determination, comparing 30 patients with HFpEF and 20 patients with HFrEF. Total antioxidant capacity was evaluated by using the spectrophotometric method using the latency time in the appearance of the radical species of a chromogen (LAG, sec) as a parameter proportional to antioxidant content of the sample. Echocardiographic parameters were also assessed in the two groups. RESULTS A high prevalence of testosterone (32% in HFrEF and 72% in HFpEF, p < 0.05) and DHEA-S deficiencies was observed in HFpEF patients. Echocardiographic parameters did not correlate with hormone values. A significant direct correlation between T (r 2 = 0.25, p < 0.05) and DHEA-S (r 2 = 0.19, p < 0.05) with LAG was observed only in HFpEF. CONCLUSION Anabolic hormone deficiency is clearly shown in HFpEF, as already known in HFrEF. Although longitudinal studies are required to confirm the prognostic value of this observation, our data suggest different mechanisms in modulating antioxidants in the two conditions, with possible therapeutic implications.
Collapse
Affiliation(s)
- Antonio Mancini
- Operative Unit of Endocrinology, Fondazione Policlinico Universitario A Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Angela Maria Rita Fuvuzzi
- Operative Unit of Internal Medicine and Vascular Diseases, Division of Internal Medicine and Cardiovascular Diseases, Fondazione Policlinico Universitario A Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carmine Bruno
- Operative Unit of Endocrinology, Fondazione Policlinico Universitario A Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Anna Nicolazzi
- Operative Unit of Internal Medicine and Vascular Diseases, Division of Internal Medicine and Cardiovascular Diseases, Fondazione Policlinico Universitario A Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Edoardo Vergani
- Operative Unit of Endocrinology, Fondazione Policlinico Universitario A Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nunzia Ciferri
- Operative Unit of Endocrinology, Fondazione Policlinico Universitario A Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Silvestrini
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elisabetta Meucci
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nicola Nicolotti
- Medical Management, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberta D'Assante
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Antonio Cittadini
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| |
Collapse
|
28
|
Paltoglou G, Avloniti A, Chatzinikolaou A, Stefanaki C, Papagianni M, Papassotiriou I, Fatouros IG, Chrousos GP, Kanaka-Gantenbein C, Mastorakos G. In early pubertal boys, testosterone and LH are associated with improved anti-oxidation during an aerobic exercise bout. Endocrine 2019; 66:370-380. [PMID: 31378848 DOI: 10.1007/s12020-019-02037-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/26/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE To investigate the association of the hypothalamic-pituitary-testicular (HPT) axis with pro- and anti- oxidation, in relation to puberty and obesity in boys, before and after an aerobic exercise bout. METHODS This is a cross-sectional human observational study of 92 healthy normal-weight, obese pre- and early- pubertal boys that underwent a blood sampling, before, and after an aerobic exercise bout at 70% VO2max, until exhaustion. LH, FSH, total testosterone (tT) and markers of pro- (TBARS and PCs) and anti- (GSH, GSSG, GPX, catalase, TAC) oxidation were measured. RESULTS Baseline LH, FSH, and tT concentrations were greater in early, than in pre- pubertal boys, independently of weight status. Post-exercise, LH concentrations decreased in early pubertal boys while FSH concentrations did not change in any of the studied groups. Baseline and post-exercise tT concentrations were lower in obese than in normal-weight early pubertal boys, while baseline and post-exercise LH and FSH concentrations did not differ between these groups. Post-exercise tT concentrations increased in early pubertal obese boys. Baseline LH, FSH and tT concentrations correlated positively with baseline anti-oxidation markers concentrations in pre-pubertal boys. Baseline tT concentrations correlated positively with the increase of TAC concentrations in early pubertal normal-weight boys. In all boys, baseline LH concentrations were the best positive predictors for the exercise-associated increase of TAC concentrations. CONCLUSIONS It appears that the HPT axis maturation during puberty (in particular its LH and testosterone components) is positively associated with the increase of anti-oxidation during a bout of aerobic exercise.
Collapse
Affiliation(s)
- George Paltoglou
- Endocrine Unit, "Aretaieion" Hospital, National and Kapodistrian University of Athens - Faculty of Medicine, Athens, Greece
- Department of Paediatric and Adolescent Endocrinology, University College London Hospital, London, UK
| | - Alexandra Avloniti
- Department of Physical Education and Sports Sciences, Democritus University of Thrace, Komotini, Greece
| | - Athanasios Chatzinikolaou
- Department of Physical Education and Sports Sciences, Democritus University of Thrace, Komotini, Greece
| | - Charikleia Stefanaki
- Endocrine Unit, "Aretaieion" Hospital, National and Kapodistrian University of Athens - Faculty of Medicine, Athens, Greece
- Department of Pediatrics, General Hospital of Piraeus 'Aghios Panteleimon', Piraeus, Greece
| | - Maria Papagianni
- Third Department of Pediatrics, Aristotle University of Thessaloniki, School of Medicine, "Hippokrateion" General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Ioannis G Fatouros
- Department of Physical Education and Sports Sciences, University of Thessaly, Trikala, Greece
| | - George P Chrousos
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens - Faculty of Medicine, Athens, Greece
| | - Christina Kanaka-Gantenbein
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens - Faculty of Medicine, Athens, Greece
| | - George Mastorakos
- Endocrine Unit, "Aretaieion" Hospital, National and Kapodistrian University of Athens - Faculty of Medicine, Athens, Greece.
| |
Collapse
|
29
|
Testosterone Deficiency and Endothelial Dysfunction: Nitric Oxide, Asymmetric Dimethylarginine, and Endothelial Progenitor Cells. Sex Med Rev 2019; 7:661-668. [DOI: 10.1016/j.sxmr.2019.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/15/2022]
|
30
|
Wadthaisong M, Witayavanitkul N, Bupha‐Intr T, Wattanapermpool J, de Tombe PP. Chronic high-dose testosterone treatment: impact on rat cardiac contractile biology. Physiol Rep 2019; 7:e14192. [PMID: 31353833 PMCID: PMC6661270 DOI: 10.14814/phy2.14192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 01/28/2023] Open
Abstract
Androgen therapy provides cardiovascular benefits for hypogonadism. However, myocardial hypertrophy, fibrosis, and infarction have been reported in testosterone or androgenic anabolic steroid abuse. Therefore, better understanding of the factors leading to adverse results of androgen abuse is needed. The aim of the present study was to examine the impact of high dose of androgen treatment on cardiac biology, and whether exposure duration modulates this response. Male rats were treated with 10 mg/kg testosterone, three times a week, for either 4 or 12 weeks; vehicle injections served as controls. Four weeks of testosterone treatment induced an increase in ventricular wall thickness, indicative of concentric hypertrophy, as well as increased ejection fraction; in contrast, both parameters were blunted following 12 weeks of high-dose testosterone treatment. Cardiac myocyte contractile parameters were assessed in isolated electrically stimulated myocytes (sarcomere and intracellular calcium dynamics), and in chemically permeabilized isolated myocardium (myofilament force development and tension-cost). High-dose testosterone treatment for 4 weeks was associated with increased myocyte contractile parameters, while 12 weeks treatment induced significant depression of these parameters, mirroring the cardiac pump function results. In conclusion, chronic administration of high-dose testosterone initially induces increased cardiac function. However, this initial beneficial impact is followed by significant depression of cardiac pump function, myocyte contractility, and cardiac myofilament function. Our results indicate that chronic high-testosterone usage is of limited use and may, instead, induce significant cardiac dysfunction.
Collapse
Affiliation(s)
- Munthana Wadthaisong
- Department of Physiology, Faculty of ScienceMahidol UniversityBangkokThailand
- Department of Cell and Molecular PhysiologyLoyola University Chicago Health Sciences DivisionMaywoodIllinois
| | - Namthip Witayavanitkul
- Department of Physiology, Faculty of ScienceMahidol UniversityBangkokThailand
- Department of Cell and Molecular PhysiologyLoyola University Chicago Health Sciences DivisionMaywoodIllinois
| | - Tepmanas Bupha‐Intr
- Department of Physiology, Faculty of ScienceMahidol UniversityBangkokThailand
| | | | - Pieter P. de Tombe
- Department of Cell and Molecular PhysiologyLoyola University Chicago Health Sciences DivisionMaywoodIllinois
- Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinois
| |
Collapse
|
31
|
Kaufman MJ, Kanayama G, Hudson JI, Pope HG. Supraphysiologic-dose anabolic-androgenic steroid use: A risk factor for dementia? Neurosci Biobehav Rev 2019; 100:180-207. [PMID: 30817935 PMCID: PMC6451684 DOI: 10.1016/j.neubiorev.2019.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 02/06/2023]
Abstract
Supraphysiologic-dose anabolic-androgenic steroid (AAS) use is associated with physiologic, cognitive, and brain abnormalities similar to those found in people at risk for developing Alzheimer's Disease and its related dementias (AD/ADRD), which are associated with high brain β-amyloid (Aβ) and hyperphosphorylated tau (tau-P) protein levels. Supraphysiologic-dose AAS induces androgen abnormalities and excess oxidative stress, which have been linked to increased and decreased expression or activity of proteins that synthesize and eliminate, respectively, Aβ and tau-P. Aβ and tau-P accumulation may begin soon after initiating supraphysiologic-dose AAS use, which typically occurs in the early 20s, and their accumulation may be accelerated by other psychoactive substance use, which is common among non-medical AAS users. Accordingly, the widespread use of supraphysiologic-dose AAS may increase the numbers of people who develop dementia. Early diagnosis and correction of sex-steroid level abnormalities and excess oxidative stress could attenuate risk for developing AD/ADRD in supraphysiologic-dose AAS users, in people with other substance use disorders, and in people with low sex-steroid levels or excess oxidative stress associated with aging.
Collapse
Affiliation(s)
- Marc J Kaufman
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.
| | - Gen Kanayama
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - James I Hudson
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Harrison G Pope
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
32
|
Abstract
The cardiovascular system is particularly sensitive to androgens, but some controversies exist regarding the effect of testosterone on the heart. While among anabolic abusers, cases of sudden cardiac death have been described, recently it was reported that low serum level of testosterone was correlated with increased risk of cardiovascular diseases (CVD) and mortality rate. This review aims to evaluate the effect of testosterone on myocardial tissue function, coronary artery disease (CAD), and death. Low testosterone level is associated with increased incidence of CAD and mortality. Testosterone administration in hypogonadal elderly men and women has a positive effect on cardiovascular function and improved clinical outcomes and survival time. Although at supraphysiologic doses, androgen may have a toxic effect, and at physiological levels, testosterone is safe and exerts a beneficial effect on myocardial function including mechanisms at cellular and mitochondrial level. The interaction with free testosterone and estradiol should be considered. Further studies are necessary to better understand the interaction mechanisms for an optimal androgen therapy in CVD.
Collapse
Affiliation(s)
- Vittorio Emanuele Bianchi
- Clinical Center Stella Maris, Laboratory of Physiology of Exercise, Strada Rovereta 42, 47891, Falciano, Republic of San Marino.
| |
Collapse
|
33
|
Chin KY, Ima-Nirwana S. The Role of Tocotrienol in Preventing Male Osteoporosis-A Review of Current Evidence. Int J Mol Sci 2019; 20:E1355. [PMID: 30889819 PMCID: PMC6471446 DOI: 10.3390/ijms20061355] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
Male osteoporosis is a significant but undetermined healthcare problem. Men suffer from a higher mortality rate post-fracture than women and they are marginalized in osteoporosis treatment. The current prophylactic agents for osteoporosis are limited. Functional food components such as tocotrienol may be an alternative option for osteoporosis prevention in men. This paper aims to review the current evidence regarding the skeletal effects of tocotrienol in animal models of male osteoporosis and its potential antiosteoporotic mechanism. The efficacy of tocotrienol of various sources (single isoform, palm and annatto vitamin E mixture) had been tested in animal models of bone loss induced by testosterone deficiency (orchidectomy and buserelin), metabolic syndrome, nicotine, alcoholism, and glucocorticoid. The treated animals showed improvements ranging from bone microstructural indices, histomorphometric indices, calcium content, and mechanical strength. The bone-sparing effects of tocotrienol may be exerted through its antioxidant, anti-inflammatory, and mevalonate-suppressive pathways. However, information pertaining to its mechanism of actions is superficial and warrants further studies. As a conclusion, tocotrienol could serve as a functional food component to prevent male osteoporosis, but its application requires validation from a clinical trial in men.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Malaysia.
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Malaysia.
| |
Collapse
|
34
|
Zhang B, Miller VM, Miller JD. Influences of Sex and Estrogen in Arterial and Valvular Calcification. Front Endocrinol (Lausanne) 2019; 10:622. [PMID: 31620082 PMCID: PMC6763561 DOI: 10.3389/fendo.2019.00622] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/27/2019] [Indexed: 01/14/2023] Open
Abstract
Vascular and cardiac valvular calcification was once considered to be a degenerative and end stage product in aging cardiovascular tissues. Over the past two decades, however, a critical mass of data has shown that cardiovascular calcification can be an active and highly regulated process. While the incidence of calcification in the coronary arteries and cardiac valves is higher in men than in age-matched women, a high index of calcification associates with increased morbidity, and mortality in both sexes. Despite the ubiquitous portending of poor outcomes in both sexes, our understanding of mechanisms of calcification under the dramatically different biological contexts of sex and hormonal milieu remains rudimentary. Understanding how the critical context of these variables inform our understanding of mechanisms of calcification-as well as innovative strategies to target it therapeutically-is essential to advancing the fields of both cardiovascular disease and fundamental mechanisms of aging. This review will explore potential sex and sex-steroid differences in the basic biological pathways associated with vascular and cardiac valvular tissue calcification, and potential strategies of pharmacological therapy to reduce or slow these processes.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Virginia M. Miller
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Jordan D. Miller
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Jordan D. Miller
| |
Collapse
|
35
|
Tchernof A, Brochu D, Maltais‐Payette I, Mansour MF, Marchand GB, Carreau A, Kapeluto J. Androgens and the Regulation of Adiposity and Body Fat Distribution in Humans. Compr Physiol 2018; 8:1253-1290. [DOI: 10.1002/cphy.c170009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Gadot Y, Thörngren JO, Eklund E, Ekström L, Rane A. Pregnancy-Induced Perturbation of Urinary Androgenic Steroid Disposition. J Endocr Soc 2018; 2:597-608. [PMID: 29942924 PMCID: PMC6007248 DOI: 10.1210/js.2018-00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022] Open
Abstract
Objective To investigate the excretion and conjugation profile of testosterone (T), Epitestosterone (EpiT), and other androgen metabolites in different phases of pregnancy and postpregnancy as a reflection of the “androgenic exposure.” Design Consecutive recruitment of pregnant women. Setting Maternity outpatient low-risk pregnancy clinic. Patients Seventy-seven pregnant women. Interventions Collection of urine for analyses of sulfate (S) and glucuronide (G) conjugates and metabolic ratios of androgens and androgen metabolites using liquid chromatography-tandem mass spectrometry. Main Outcome Measures Excretion profiles and metabolic ratios of G and S conjugates of T, EpiT, dehydroepiandrosterone (DHEA), androsterone (A), etiocholanolone (Etio), and dihydrotestosterone in relation to trimester and postpartum, body mass index, fetal sex, and ethnicity. Results T-S excretion increased significantly between the second and third trimester, whereas excretion of T-G did not change. In contrast, both conjugates of EpiT increased markedly, more so for the S-(17-fold) than the G-conjugate (1.6-fold). The preference for S over G conjugation was conspicuous for EpiT and DHEA (S/G ratio 2.1 and 4.7, respectively, in the third trimester), whereas the reverse was true for T, A, and Etio (S/G 0.6, 0.13, and 0.11, respectively). Conclusions Pregnancy influences the androgen excretion profile, with the most profound change being an increase in EpiT excretion throughout the trimesters. EpiT may modulate the effect of T, but its exact role during pregnancy is not known. There were marked differences in the S/G conjugate ratios between androgens upstream and downstream from T in the metabolic network. These results are interesting to compare with the androgen disposition in women with endocrine disorders or abuse of steroids.
Collapse
Affiliation(s)
- Yifat Gadot
- St Michael's Hospital and Hospital for Sick Children, Toronto, Ontario, Canada
| | - John-Olof Thörngren
- Division of Clinical Pharmacology, Anti-Doping Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Eklund
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Ekström
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Rane
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
37
|
Musicki B, Karakus S, Akakpo W, Silva FH, Liu J, Chen H, Zirkin BR, Burnett AL. Testosterone replacement in transgenic sickle cell mice controls priapic activity and upregulates PDE5 expression and eNOS activity in the penis. Andrology 2017; 6:184-191. [PMID: 29145710 DOI: 10.1111/andr.12442] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/30/2017] [Accepted: 10/04/2017] [Indexed: 01/02/2023]
Abstract
Sickle cell disease (SCD)-associated priapism is characterized by decreased nitric oxide (NO) signaling and downregulated phosphodiesterase (PDE)5 protein expression and activity in the penis. Priapism is also associated with testosterone deficiency, but molecular mechanisms underlying testosterone effects in the penis in SCD are not known. Given the critical role of androgens in erection physiology and NO synthase (NOS)/PDE5 expression, we hypothesized that testosterone replacement to eugonadal testosterone levels reduces priapism by reversing impaired endothelial (e)NOS activity and molecular abnormalities involving PDE5. Adult male transgenic Berkeley sickle cell (Sickle) and wild-type (WT) mice were implanted with testosterone pellets, which release 1.2 μg testosterone/day for 21 days, or vehicle. After 21 days, animals underwent erectile function assessment followed by collection of blood for serum testosterone measurements, penes for molecular analysis, and seminal vesicles as testosterone-responsive tissue. Serum testosterone levels were measured by radioimmunoassay; protein expressions of PDE5, α-smooth muscle actin, eNOS and nNOS, and phosphorylation of PDE5 at Ser-92, eNOS at Ser-1177, neuronal (n) NOS at Ser-1412, and Akt at Ser-473 were measured by Western blot in penile tissue. Testosterone treatment reversed downregulated serum testosterone levels and increased (p < 0.05) the weight of seminal vesicles in Sickle mice to levels comparable to that of WT mice, indicating restored testosterone levels in Sickle mice. Testosterone treatment reduced (p < 0.05) prolonged detumescence in Sickle mice and normalized downregulated P-PDE5 (Ser-92), PDE5, P-eNOS (Ser-1177), and P-Akt (Ser-473) protein expressions in the Sickle mouse penis. Testosterone treatment did not affect P-nNOS (Ser-1412), eNOS, nNOS, or α-smooth muscle actin protein expressions in the Sickle mouse penis. In conclusion, in the mouse model of human SCD, increasing testosterone to eugonadal levels reduced priapic activity and reversed impaired Akt/eNOS activity and PDE5 protein expression in the penis.
Collapse
Affiliation(s)
- B Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - S Karakus
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - W Akakpo
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - F H Silva
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - J Liu
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - H Chen
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - B R Zirkin
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Hitsumoto T. Relationship Between Serum Total Testosterone Concentration and Augmentation Index at Radial Artery in Japanese Postmenopausal Patients. J Clin Med Res 2017; 9:872-878. [PMID: 28912924 PMCID: PMC5593435 DOI: 10.14740/jocmr3164w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 08/25/2017] [Indexed: 11/11/2022] Open
Abstract
Background The significance of testosterone as a risk factor for cardiovascular disease (CVD) in females is controversial. This cross-sectional study aimed to elucidate the relationship between serum total testosterone concentration (T-T) and augmentation index at the radial artery (r-AIx) as a marker of arterial function in Japanese postmenopausal patients. Methods A total of 447 postmenopausal patients with traditional cardiovascular risk factors and/or a history of CVD (age (mean ± standard deviation (SD)), 73 ± 10 years) were enrolled. r-AIx was measured using tonometry, and the association between r-AIx and various clinical parameters, including T-T, was determined. Results r-AIx significantly increased (CVD vs. non-CVD: 99±11% vs. 91±11%, P < 0.001) and T-T significantly decreased (CVD vs. non-CVD: 0.31 ± 0.13 ng/mL vs. 0.49 ± 0.23 ng/mL, P < 0.001) in patients with CVD than in those without CVD. A significant negative correlation (r = -0.48; P < 0.001) between r-AIx and T-T was observed. Furthermore, multiple regression analysis indicated that T-T (t value = -7.7; P < 0.001), height (t value = -5.3; P < 0.001), d-ROMs test as a marker of oxidative stress in vivo (t value = 3.2; P < 0.001), CVD (t value = 2.9; P < 0.01), and pulse rate (t value = -2.7; P < 0.01) were independent variables for r-AIx as a subordinate factor. Conclusion This study revealed that low T-T is an important determining factor for an increase in r-AIx in Japanese postmenopausal patients. A prospective multicenter study with a large sample size is required to confirm the results of this study.
Collapse
Affiliation(s)
- Takashi Hitsumoto
- Hitsumoto Medical Clinic, 2-7-7, Takezakicyou, Shimonoseki City, Yamaguchi 750-0025, Japan.
| |
Collapse
|
39
|
Saddick SY. The impact of nandrolone decanoate administration on ovarian and uterine tissues in rat: Luteinizing hormone profile, histopathological and morphometric assessment. Saudi J Biol Sci 2017; 25:507-512. [PMID: 29692652 PMCID: PMC5911639 DOI: 10.1016/j.sjbs.2017.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 12/17/2022] Open
Abstract
The study had been conducted to evaluate the effects of nandrolone decanoate (abused repeated doses) on female rat's ovary and uterus during administration and withdrawal. The study included 18 rats that were divided into control group (n = 6) and treated group (n = 12). The treated group was injected intramuscular (IM) with nandrolone decanoate (7 mg/kg body weight) for three consecutive days, for two weeks. The study stated that nandrolone decanoate increases the weights of body, ovary, and uterus. Moreover, it has a tendency of bringing upon modifications in the biochemical, histopathological, and morphological makeup of the female reproductive aspects. In conclusion, nandrolone decanoate has been identified as deleterious element for the female rats, and it is suggested that keen observations must be made on the human abusers to control and manage the possible pathologies.
Collapse
Affiliation(s)
- Salina Y Saddick
- Faculty of Science, Department of Biology, King Abdulaziz University, Jeddah 23815, Saudi Arabia
| |
Collapse
|
40
|
Asih PR, Tegg ML, Sohrabi H, Carruthers M, Gandy SE, Saad F, Verdile G, Ittner LM, Martins RN. Multiple Mechanisms Linking Type 2 Diabetes and Alzheimer's Disease: Testosterone as a Modifier. J Alzheimers Dis 2017; 59:445-466. [PMID: 28655134 PMCID: PMC6462402 DOI: 10.3233/jad-161259] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Evidence in support of links between type-2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) has increased considerably in recent years. AD pathological hallmarks include the accumulation of extracellular amyloid-β (Aβ) and intracellular hyperphosphorylated tau in the brain, which are hypothesized to promote inflammation, oxidative stress, and neuronal loss. T2DM exhibits many AD pathological features, including reduced brain insulin uptake, lipid dysregulation, inflammation, oxidative stress, and depression; T2DM has also been shown to increase AD risk, and with increasing age, the prevalence of both conditions increases. In addition, amylin deposition in the pancreas is more common in AD than in normal aging, and although there is no significant increase in cerebral Aβ deposition in T2DM, the extent of Aβ accumulation in AD correlates with T2DM duration. Given these similarities and correlations, there may be common underlying mechanism(s) that predispose to both T2DM and AD. In other studies, an age-related gradual loss of testosterone and an increase in testosterone resistance has been shown in men; low testosterone levels can also occur in women. In this review, we focus on the evidence for low testosterone levels contributing to an increased risk of T2DM and AD, and the potential of testosterone treatment in reducing this risk in both men and women. However, such testosterone treatment may need to be long-term, and would need regular monitoring to maintain testosterone at physiological levels. It is possible that a combination of testosterone therapy together with a healthy lifestyle approach, including improved diet and exercise, may significantly reduce AD risk.
Collapse
Affiliation(s)
- Prita R. Asih
- Department of Anatomy, Dementia Research Unit, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- KaRa Institute of Neurological Diseases, Sydney, NSW, Australia
| | - Michelle L. Tegg
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Hamid Sohrabi
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Australian Alzheimer’s Research Foundation Perth, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia
| | | | - Samuel E. Gandy
- Departments of Neurology and Psychiatry and the Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, USA
| | - Farid Saad
- Bayer Pharma AG, Global Medical Affairs Andrology, Berlin, Germany
- Gulf Medical University School of Medicine, Ajman, UAE
| | - Giuseppe Verdile
- Australian Alzheimer’s Research Foundation Perth, WA, Australia
- School of Biomedical Sciences, Curtin University of Technology, Bentley, WA, Australia
| | - Lars M. Ittner
- Department of Anatomy, Dementia Research Unit, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Ralph N. Martins
- KaRa Institute of Neurological Diseases, Sydney, NSW, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Australian Alzheimer’s Research Foundation Perth, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
41
|
Biochemical and oxidative stress markers in the liver and kidneys of rats submitted to different protocols of anabolic steroids. Mol Cell Biochem 2016; 425:181-189. [DOI: 10.1007/s11010-016-2872-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022]
|
42
|
Pongkan W, Pintana H, Sivasinprasasn S, Jaiwongkam T, Chattipakorn SC, Chattipakorn N. Testosterone deprivation accelerates cardiac dysfunction in obese male rats. J Endocrinol 2016; 229:209-20. [PMID: 27000685 DOI: 10.1530/joe-16-0002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/17/2016] [Indexed: 12/20/2022]
Abstract
Low testosterone level is associated with increased risks of cardiovascular diseases. As obese-insulin-resistant condition could impair cardiac function and that the incidence of obesity is increased in aging men, a condition of testosterone deprivation could aggravate the cardiac dysfunction in obese-insulin-resistant subjects. However, the mechanism underlying this adverse effect is unclear. This study investigated the effects of obesity on metabolic parameters, heart rate variability (HRV), left ventricular (LV) function, and cardiac mitochondrial function in testosterone-deprived rats. Orchiectomized or sham-operated male Wistar rats (n=36per group) were randomly divided into groups and were given either a normal diet (ND, 19.77% of energy fat) or a high-fat diet (HFD, 57.60% of energy fat) for 12weeks. Metabolic parameters, HRV, LV function, and cardiac mitochondrial function were determined at 4, 8, and 12weeks after starting each feeding program. We found that insulin resistance was observed after 8weeks of the consumption of a HFD in both sham (HFS) and orchiectomized (HFO) rats. Neither the ND sham (NDS) group nor ND orchiectomized (NDO) rats developed insulin resistance. The development of depressed HRV, LV contractile dysfunction, and increased cardiac mitochondrial reactive oxygen species production was observed earlier in orchiectomized (NDO and HFO) rats at week 4, whereas HFS rats exhibited these impairments later at week 8. These findings suggest that testosterone deprivation accelerates the impairment of cardiac autonomic regulation and LV function via increased oxidative stress and impaired cardiac mitochondrial function in obese-orchiectomized male rats.
Collapse
Affiliation(s)
- Wanpitak Pongkan
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Hiranya Pintana
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Sivaporn Sivasinprasasn
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Department of Oral Biology and Diagnostic ScienceFaculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
43
|
Roşca AE, Stoian I, Badiu C, Gaman L, Popescu BO, Iosif L, Mirica R, Tivig IC, Stancu CS, Căruntu C, Voiculescu SE, Zăgrean L. Impact of chronic administration of anabolic androgenic steroids and taurine on blood pressure in rats. ACTA ACUST UNITED AC 2016; 49:e5116. [PMID: 27254659 PMCID: PMC4932817 DOI: 10.1590/1414-431x20165116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/14/2016] [Indexed: 11/22/2022]
Abstract
Supraphysiological administration of anabolic androgenic steroids has been linked to
increased blood pressure. The widely distributed amino acid taurine seems to be an
effective depressor agent in drug-induced hypertension. The purpose of this study was
to assess the impact of chronic high dose administration of nandrolone decanoate
(DECA) and taurine on blood pressure in rats and to verify the potentially involved
mechanisms. The study was conducted in 4 groups of 8 adult male Wistar rats, aged 14
weeks, treated for 12 weeks with: DECA (A group); vehicle (C group); taurine (T
group), or with both drugs (AT group). Systolic blood pressure (SBP) was measured at
the beginning of the study (SBP1), 2 (SBP2) and 3 months
(SBP3) later. Plasma angiotensin-converting enzyme (ACE) activity and
plasma end products of nitric oxide metabolism (NOx) were also determined.
SBP3 and SBP2 were significantly increased compared to
SBP1 only in the A group (P<0.002 for both). SBP2,
SBP3 and ACE activity showed a statistically significant increase in
the A vs C (P<0.005), andvs AT groups
(P<0.05), while NOx was significantly decreased in the A and AT groups
vs controls (P=0.01). ACE activity was strongly correlated with
SBP3 in the A group (r=0.71, P=0.04). These findings suggest that oral
supplementation of taurine may prevent the increase in SBP induced by DECA, an effect
potentially mediated by angiotensin-converting enzyme.
Collapse
Affiliation(s)
- A E Roşca
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - I Stoian
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - C Badiu
- C.I. Parhon National Institute of Endocrinology, Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - L Gaman
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - B O Popescu
- Colentina Clinical Hospital, Department of Neurology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - L Iosif
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - R Mirica
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - I C Tivig
- R&D Irist Labmed, Bucharest, Romania
| | - C S Stancu
- Department of Lipoproteins and Atherosclerosis, N. Simionescu Institute of Cellular Biology and Pathology, Bucharest, Romania
| | - C Căruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - S E Voiculescu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - L Zăgrean
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
44
|
Christou GA, Christou KA, Nikas DN, Goudevenos JA. Acute myocardial infarction in a young bodybuilder taking anabolic androgenic steroids: A case report and critical review of the literature. Eur J Prev Cardiol 2016; 23:1785-1796. [PMID: 27184497 DOI: 10.1177/2047487316651341] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/04/2016] [Indexed: 11/15/2022]
Abstract
We describe a case report of a 30-year-old bodybuilder suffering acute myocardial infarction (AMI). He had been taking stanozolol and testosterone for two months. The coronary angiogram showed high thrombotic burden in the left anterior descending artery without underlying atherosclerosis. Few case reports of AMI in athletes taking anabolic androgenic steroids (AASs) have been reported so far. AAS-related AMI is possibly underreported in the medical literature due to the desire of the affected individuals to hide AAS use. Physicians should always consider the possibility of AAS abuse in the context of a young athlete suffering AMI. AASs can predispose to AMI through the acceleration of coronary atherosclerosis. Additionally, thrombosis without underlying atherosclerosis or vasospasm is highly possible to cause AMI in AAS users. Complications after AMI may be more frequent in AAS users.
Collapse
Affiliation(s)
| | | | - Dimitrios N Nikas
- First Department of Cardiology, University Hospital of Ioannina, Greece
| | - John A Goudevenos
- First Department of Cardiology, University Hospital of Ioannina, Greece
| |
Collapse
|
45
|
Joseph JF, Parr MK. Synthetic androgens as designer supplements. Curr Neuropharmacol 2016; 13:89-100. [PMID: 26074745 PMCID: PMC4462045 DOI: 10.2174/1570159x13666141210224756] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/25/2014] [Accepted: 10/25/2014] [Indexed: 01/02/2023] Open
Abstract
Anabolic androgenic steroids (AAS) are some of the most common performance
enhancing drugs (PED) among society. Despite the broad spectrum of adverse effects and legal
consequences, AAS are illicitly marketed and distributed in many countries. To circumvent existing
laws, the chemical structure of AAS is modified and these designer steroids are sold as nutritional
supplements mainly over the Internet. Several side effects are linked with AAS abuse. Only little is
known about the pharmacological effects and metabolism of unapproved steroids due to the absence
of clinical studies. The large number of designer steroid findings in dietary supplements and the
detection of new compounds combined with legal loopholes for their distribution in many countries
show that stricter regulations and better information policy are needed.
Collapse
Affiliation(s)
- Jan Felix Joseph
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Maria Kristina Parr
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| |
Collapse
|
46
|
Tostes RC, Carneiro FS, Carvalho MHC, Reckelhoff JF. Reactive oxygen species: players in the cardiovascular effects of testosterone. Am J Physiol Regul Integr Comp Physiol 2015; 310:R1-14. [PMID: 26538238 DOI: 10.1152/ajpregu.00392.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 10/23/2015] [Indexed: 01/12/2023]
Abstract
Androgens are essential for the development and maintenance of male reproductive tissues and sexual function and for overall health and well being. Testosterone, the predominant and most important androgen, not only affects the male reproductive system, but also influences the activity of many other organs. In the cardiovascular system, the actions of testosterone are still controversial, its effects ranging from protective to deleterious. While early studies showed that testosterone replacement therapy exerted beneficial effects on cardiovascular disease, some recent safety studies point to a positive association between endogenous and supraphysiological levels of androgens/testosterone and cardiovascular disease risk. Among the possible mechanisms involved in the actions of testosterone on the cardiovascular system, indirect actions (changes in the lipid profile, insulin sensitivity, and hemostatic mechanisms, modulation of the sympathetic nervous system and renin-angiotensin-aldosterone system), as well as direct actions (modulatory effects on proinflammatory enzymes, on the generation of reactive oxygen species, nitric oxide bioavailability, and on vasoconstrictor signaling pathways) have been reported. This mini-review focuses on evidence indicating that testosterone has prooxidative actions that may contribute to its deleterious actions in the cardiovascular system. The controversial effects of testosterone on ROS generation and oxidant status, both prooxidant and antioxidant, in the cardiovascular system and in cells and tissues of other systems are reviewed.
Collapse
Affiliation(s)
- Rita C Tostes
- University of São Paulo, Ribeirao Preto Medical School, Ribeirao Preto, São Paulo, Brazil;
| | - Fernando S Carneiro
- University of São Paulo, Ribeirao Preto Medical School, Ribeirao Preto, São Paulo, Brazil
| | | | - Jane F Reckelhoff
- University of Mississippi Medical Center, Women's Health Research Center, Jackson, Mississippi
| |
Collapse
|
47
|
Testosterone Replacement Therapy Prevents Alterations of Coronary Vascular Reactivity Caused by Hormone Deficiency Induced by Castration. PLoS One 2015; 10:e0137111. [PMID: 26322637 PMCID: PMC4556439 DOI: 10.1371/journal.pone.0137111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 07/22/2015] [Indexed: 01/02/2023] Open
Abstract
The present study aimed to determine the effects of chronic treatment with different doses of testosterone on endothelium–dependent coronary vascular reactivity in male rats. Adult male rats were divided into four experimental groups: control (SHAM), castrated (CAST), castrated and immediately treated subcutaneously with a physiological dose (0.5 mg/kg/day, PHYSIO group) or supraphysiological dose (2.5 mg/kg/day, SUPRA group) of testosterone for 15 days. Systolic blood pressure (SBP) was assessed at the end of treatment through tail plethysmography. After euthanasia, the heart was removed and coronary vascular reactivity was assessed using the Langendorff retrograde perfusion technique. A dose–response curve for bradykinin (BK) was constructed, followed by inhibition with 100 μM L-NAME, 2.8 μM indomethacin (INDO), L-NAME + INDO, or L-NAME + INDO + 0.75 μM clotrimazole (CLOT). We observed significant endothelium–dependent, BK–induced coronary vasodilation, which was abolished in the castrated group and restored in the PHYSIO and SUPRA groups. Furthermore, castration modulated the lipid and hormonal profiles and decreased body weight, and testosterone therapy restored all of these parameters. Our results revealed an increase in SBP in the SUPRA group. In addition, our data led us to conclude that physiological concentrations of testosterone may play a beneficial role in the cardiovascular system by maintaining an environment that is favourable for the activity of an endothelium–dependent vasodilator without increasing SBP.
Collapse
|
48
|
Yanar K, Atukeren P, Cebe T, Kunbaz A, Ozan T, Kansu AD, Durmaz S, Güleç V, Belce A, Aydın S, Çakatay U, Rizvi SI. Ameliorative Effects of Testosterone Administration on Renal Redox Homeostasis in Naturally Aged Rats. Rejuvenation Res 2015; 18:299-312. [DOI: 10.1089/rej.2014.1640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Karolin Yanar
- Department of Medical Biochemistry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Pınar Atukeren
- Department of Medical Biochemistry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tamer Cebe
- Basic Sciences, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ahmad Kunbaz
- Basic Sciences, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tuna Ozan
- Basic Sciences, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ahmet Doğukan Kansu
- Basic Sciences, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Selahattin Durmaz
- Basic Sciences, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Veysel Güleç
- Basic Sciences, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ahmet Belce
- Department of Nursing, Faculty of Health Sciences, Bezmialem Vakıf University, Istanbul, Turkey
| | - Seval Aydın
- Department of Medical Biochemistry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ufuk Çakatay
- Department of Medical Biochemistry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
49
|
Nguyen PL, Jarolim P, Basaria S, Zuflacht JP, Milian J, Kadivar S, Graham PL, Hyatt A, Kantoff PW, Beckman JA. Androgen deprivation therapy reversibly increases endothelium-dependent vasodilation in men with prostate cancer. J Am Heart Assoc 2015; 4:jah3918. [PMID: 25896892 PMCID: PMC4579953 DOI: 10.1161/jaha.115.001914] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background Androgen deprivation therapy (ADT) is a standard treatment for patients with aggressive prostate cancer. Although ADT improves survival, it increases the risk of diabetes. Emerging evidence suggests that ADT increases adverse cardiovascular events as early as 3 months after initiation in patients with cardiovascular disease, but the mechanism is unknown. We hypothesized that ADT may impair endothelium‐dependent vasodilation due to increases in lipids and insulin resistance and may provide a link for heightened cardiovascular risk in this population. Methods and Results We prospectively evaluated conduit artery endothelium‐dependent and ‐independent vasodilation, lipids, and insulin resistance in 16 consecutively treated men (mean age 66±7 years; 25% with diabetes) with prostate cancer before and after 3 months of ADT. High‐resolution B‐mode ultrasound was used to assess flow‐mediated (endothelium‐dependent) and nitroglycerine‐mediated (endothelium‐independent) brachial artery vasodilation. ADT significantly increased insulin resistance, total cholesterol, HDL, and LDL. Endothelium‐dependent vasodilation was greater at 3 months than at baseline (10.8% [interquartile range: 7.7% to 14.6%] versus 8.9% [interquartile range: 4.0% to 12.6%], respectively; P=0.046, allometric P=0.037). Nitroglycerine‐mediated vasodilation did not change from baseline (P>0.2). The subset of participants on ADT for 6 months returned for reevaluation at 1 year. In this group, endothelium‐dependent vasodilation increased from baseline to 3 months and returned to baseline 6 months after ADT withdrawal (9.4% [interquartile range: 6.9% to 10.9%], 11.6% [interquartile range: 7.9% to 15.2%], and 9.0% [interquartile range: 5.1% to 12.5%], respectively; P=0.05). Conclusions In contrast to our expectation, ADT improved endothelium‐dependent vasodilation and its cessation returned endothelium‐dependent vasodilation to baseline. Determining the mechanism of this change requires further investigation.
Collapse
Affiliation(s)
- Paul L Nguyen
- Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA (P.L.N., P.L.G., A.H.)
| | - Petr Jarolim
- Department of Pathology, Brigham and Women's Hospital, Boston, MA (P.J.)
| | - Shehzad Basaria
- Endocrinology, Brigham and Women's Hospital, Boston, MA (S.B.)
| | - Jonah P Zuflacht
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (J.P.Z., J.M., S.K., J.A.B.)
| | - Jessica Milian
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (J.P.Z., J.M., S.K., J.A.B.)
| | - Samoneh Kadivar
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (J.P.Z., J.M., S.K., J.A.B.)
| | - Powell L Graham
- Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA (P.L.N., P.L.G., A.H.)
| | - Andrew Hyatt
- Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA (P.L.N., P.L.G., A.H.)
| | - Philip W Kantoff
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (P.W.K.)
| | - Joshua A Beckman
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (J.P.Z., J.M., S.K., J.A.B.)
| |
Collapse
|
50
|
Eddie SL, Kim JJ, Woodruff TK, Burdette JE. Microphysiological modeling of the reproductive tract: a fertile endeavor. Exp Biol Med (Maywood) 2014; 239:1192-202. [PMID: 24737736 PMCID: PMC4156579 DOI: 10.1177/1535370214529387] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Preclinical toxicity testing in animal models is a cornerstone of the drug development process, yet it is often unable to predict adverse effects and tolerability issues in human subjects. Species-specific responses to investigational drugs have led researchers to utilize human tissues and cells to better estimate human toxicity. Unfortunately, human cell-derived models are imperfect because toxicity is assessed in isolation, removed from the normal physiologic microenvironment. Microphysiological modeling often referred to as 'organ-on-a-chip' or 'human-on-a-chip' places human tissue into a microfluidic system that mimics the complexity of human in vivo physiology, thereby allowing for toxicity testing on several cell types, tissues, and organs within a more biologically relevant environment. Here we describe important concepts when developing a repro-on-a-chip model. The development of female and male reproductive microfluidic systems is critical to sex-based in vitro toxicity and drug testing. This review addresses the biological and physiological aspects of the male and female reproductive systems in vivo and what should be considered when designing a microphysiological human-on-a-chip model. Additionally, interactions between the reproductive tract and other systems are explored, focusing on the impact of factors and hormones produced by the reproductive tract and disease pathophysiology.
Collapse
Affiliation(s)
- Sharon L Eddie
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - J Julie Kim
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|