1
|
Scavone C, Liguori V, Adungba OJ, Cesare DDG, Sullo MG, Andreone V, Sportiello L, Maniscalco GT, Capuano A. Disease-modifying therapies and hematological disorders: a systematic review of case reports and case series. Front Neurol 2024; 15:1386527. [PMID: 38957352 PMCID: PMC11217193 DOI: 10.3389/fneur.2024.1386527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
IntroductionDisease modifying therapies (DMTs) used to treat multiple sclerosis (MS) can be associated to the occurrence of hematological disorders. This systematic review aims to provide an overview of these events occurring in real-life conditions, by describing case reports and series published in the literature.MethodsA literature search of all publications up to January 5th 2024 on the Medline and Embase databases was carried out. The results were presented both in the text and in tables.ResultsSixty-seven case reports/series were included in this review, of which more than half related to alemtuzumab, natalizumab and ocrelizumab. The publication date of included studies ranged from 2006 to 2024. The majority of case reports and series described the occurrence of late-onset hematological disorders (events that occurred more than 30 days after the first DMT administration), mainly represented by case of neutropenia, autoimmune hemolytic anemia and immune thrombocytopenia. All cases reported a favorable outcome, apart one case report that described a fatal case. Among included cases, 4 articles, all related to natalizumab, described the occurrence of myeloid disorders in 13 newborns from mother receiving the DMT.DiscussionConsidering the limitations identified in the majority of included studies, further ad hoc studies are strongly needed to better evaluate the hematological disorders of DMTs. Meantime, the strict monitoring of treated patients for the occurrence of these toxicities should be highly recommended.
Collapse
Affiliation(s)
- Cristina Scavone
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, Naples, Italy
| | - Valerio Liguori
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, Naples, Italy
| | | | | | - Maria Giuseppa Sullo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenzo Andreone
- Neurological Clinic and Stroke Unit, “A. Cardarelli” Hospital, Naples, Italy
| | - Liberata Sportiello
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, Naples, Italy
| | - Giorgia Teresa Maniscalco
- Multiple Sclerosis Regional Center, “A. Cardarelli” Hospital, Naples, Italy
- Neurological Clinic and Stroke Unit, “A. Cardarelli” Hospital, Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, Naples, Italy
| |
Collapse
|
2
|
Deftereos SN, Vavougios GD, Bakirtzis C, Hadjigeorgiou G, Grigoriadis N. Effects of High Efficacy Multiple Sclerosis Disease Modifying Drugs on the Immune Synapse: A Systematic Review. Curr Pharm Des 2024; 30:536-551. [PMID: 38343058 DOI: 10.2174/0113816128288102240131053205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/11/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Co-signaling and adhesion molecules are important elements for creating immune synapses between T lymphocytes and antigen-presenting cells; they positively or negatively regulate the interaction between a T cell receptor with its cognate antigen, presented by the major histocompatibility complex. OBJECTIVES We conducted a systematic review on the effects of High Efficacy Disease Modifying Drugs (HEDMDs) for Multiple Sclerosis (MS) on the co-signaling and adhesion molecules that form the immune synapse. METHODS We searched EMBASE, MEDLINE, and other sources to identify clinical or preclinical reports on the effects of HEDMDs on co-signaling and adhesion molecules that participate in the formation of immune synapses in patients with MS or other autoimmune disorders. We included reports on cladribine tablets, anti- CD20 monoclonal antibodies, S1P modulators, inhibitors of Bruton's Tyrosine Kinase, and natalizumab. RESULTS In 56 eligible reports among 7340 total publications, limited relevant evidence was uncovered. Not all co-signaling and adhesion molecules have been studied in relation to every HEDMD, with more data being available on the anti-CD20 monoclonal antibodies (that affect CD80, CD86, GITR and TIGIT), cladribine tablets (affecting CD28, CD40, ICAM-1, LFA-1) and the S1P modulators (affecting CD86, ICAM-1 and LFA-1) and less on Natalizumab (affecting CD80, CD86, CD40, LFA-1, VLA-4) and Alemtuzumab (affecting GITR and CTLA-4). CONCLUSION The puzzle of HEDMD effects on the immune synapse is far from complete. The available evidence suggests that distinguishing differences exist between drugs and are worth pursuing further.
Collapse
Affiliation(s)
- Spyros N Deftereos
- Second Department of Neurology, Special Unit for Biomedical Research and Education (S.U.B.R.E.), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Merck S.A., Greece, an Affiliate of Merck KGaA, Darmstadt, Germany
| | - George D Vavougios
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Christos Bakirtzis
- Second Department of Neurology, Special Unit for Biomedical Research and Education (S.U.B.R.E.), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Hadjigeorgiou
- Medical School, University of Cyprus, Nicosia, Cyprus
- Cyprus Academy of Sciences, Letters and Arts, Nicosia, Cyprus
| | - Nikolaos Grigoriadis
- Second Department of Neurology, Special Unit for Biomedical Research and Education (S.U.B.R.E.), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
3
|
Peck T, Davis C, Lenihan-Geels G, Griffiths M, Spijkers-Shaw S, Zubkova OV, La Flamme AC. The novel HS-mimetic, Tet-29, regulates immune cell trafficking across barriers of the CNS during inflammation. J Neuroinflammation 2023; 20:251. [PMID: 37915090 PMCID: PMC10619265 DOI: 10.1186/s12974-023-02925-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Disruption of the extracellular matrix at the blood-brain barrier (BBB) underpins neuroinflammation in multiple sclerosis (MS). The degradation of extracellular matrix components, such as heparan sulfate (HS) proteoglycans, can be prevented by treatment with HS-mimetics through their ability to inhibit the enzyme heparanase. The heparanase-inhibiting ability of our small dendrimer HS-mimetics has been investigated in various cancers but their efficacy in neuroinflammatory models has not been evaluated. This study investigates the use of a novel HS-mimetic, Tet-29, in an animal model of MS. METHODS Neuroinflammation was induced in mice by experimental autoimmune encephalomyelitis, a murine model of MS. In addition, the BBB and choroid plexus were modelled in vitro using transmigration assays, and migration of immune cells in vivo and in vitro was quantified by flow cytometry. RESULTS We found that Tet-29 significantly reduced lymphocyte accumulation in the central nervous system which, in turn, decreased disease severity in experimental autoimmune encephalomyelitis. The disease-modifying effect of Tet-29 was associated with a rescue of BBB integrity, as well as inhibition of activated lymphocyte migration across the BBB and choroid plexus in transwell models. In contrast, Tet-29 did not significantly impair in vivo or in vitro steady state-trafficking under homeostatic conditions. CONCLUSIONS Together these results suggest that Tet-29 modulates, rather than abolishes, trafficking across central nervous system barriers.
Collapse
Affiliation(s)
- Tessa Peck
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand
| | - Connor Davis
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand
| | - Georgia Lenihan-Geels
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand
| | - Maddie Griffiths
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand
| | - Sam Spijkers-Shaw
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Olga V Zubkova
- Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Anne Camille La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
- Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand.
- Malaghan Institute of Medical Research, Wellington, New Zealand.
| |
Collapse
|
4
|
Li J, Huang D, Lei B, Huang J, Yang L, Nie M, Su S, Zhao Q, Wang Y. VLA-4 suppression by senescence signals regulates meningeal immunity and leptomeningeal metastasis. eLife 2022; 11:83272. [PMID: 36484779 PMCID: PMC9803356 DOI: 10.7554/elife.83272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Leptomeningeal metastasis is associated with dismal prognosis and has few treatment options. However, very little is known about the immune response to leptomeningeal metastasis. Here, by establishing an immunocompetent mouse model of breast cancer leptomeningeal metastasis, we found that tumor-specific CD8+ T cells were generated in deep cervical lymph nodes (dCLNs) and played an important role in controlling leptomeningeal metastasis. Mechanistically, T cells in dCLNs displayed a senescence phenotype and their recruitment was impaired in mice bearing cancer cells that preferentially colonized in leptomeningeal space. Upregulation of p53 suppressed the transcription of VLA-4 in senescent dCLN T cells and consequently inhibited their migration to the leptomeningeal compartment. Clinically, CD8+ T cells from the cerebrospinal fluid of patients with leptomeningeal metastasis exhibited senescence and VLA-4 downregulation. Collectively, our findings demonstrated that CD8+ T cell immunosenescence drives leptomeningeal metastasis.
Collapse
Affiliation(s)
- Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina
| | - Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina
| | - Bingxi Lei
- Department of Neurosurgery, Sun Yat-sen UniversityGuangzhouChina
| | - Jingying Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina
| | - Linbing Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina
| | - Man Nie
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer CenterGuangzhouChina
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen UniversityGuangzhouChina
| | - Qiyi Zhao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina,Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-Sen UniversityGuangzhouChina
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina
| |
Collapse
|
5
|
Lymphocyte Counts and Multiple Sclerosis Therapeutics: Between Mechanisms of Action and Treatment-Limiting Side Effects. Cells 2021; 10:cells10113177. [PMID: 34831400 PMCID: PMC8625745 DOI: 10.3390/cells10113177] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Although the detailed pathogenesis of multiple sclerosis (MS) is not completely understood, a broad range of disease-modifying therapies (DMTs) are available. A common side effect of nearly every MS therapeutic agent is lymphopenia, which can be both beneficial and, in some cases, treatment-limiting. A sound knowledge of the underlying mechanism of action of the selected agent is required in order to understand treatment-associated changes in white blood cell counts, as well as monitoring consequences. This review is a comprehensive summary of the currently available DMTs with regard to their effects on lymphocyte count. In the first part, we describe important general information about the role of lymphocytes in the course of MS and the essentials of lymphopenic states. In the second part, we introduce the different DMTs according to their underlying mechanism of action, summarizing recommendations for lymphocyte monitoring and definitions of lymphocyte thresholds for different therapeutic regimens.
Collapse
|
6
|
Manocha G, Ghatak A, Puig K, Combs C. Anti-α4β1 Integrin Antibodies Attenuated Brain Inflammatory Changes in a Mouse Model of Alzheimer's Disease. Curr Alzheimer Res 2019; 15:1123-1135. [PMID: 30068274 PMCID: PMC6302348 DOI: 10.2174/1567205015666180801111033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/11/2018] [Accepted: 07/23/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is associated with age-associated central nervous system degeneration and dementia. This decline in the function correlates with deposition of Aβ peptide containing plaques and associated reactive gliosis. The inflammatory phenotype of microglia, in particular, is often considered detrimental to cognitive function in AD. In addition to the changes in the CNS, altered immune changes in the periphery have recently been observed in AD suggesting a critical immune- related communication between the periphery and the brain. OBJECTIVE We hypothesized that modulating the peripheral immune system may alter the proinflammatory gliosis associated with AD. Therapeutic antibodies against the α4β1 integrin receptor have been used clinically to attenuate the ability of various immune cells to adhere to endothelium and migrate into target tissues such as the intestines (Crohn's disease) or brain (multiple sclerosis). We hypothesized that a similar peripheral antibody-based therapy would attenuate gliosis by altering immune cell infiltration or phenotype in peripheral organs and the brain using an APP/PS1 mouse model of Alzheimer's disease. METHOD Littermate control wild-type and APP/PS1 mice were tail vein injected with either saline, isotype control (IgG2b), or an antibody recognizing α4-integrin, anti-CD49d, once a week for 4 consecutive weeks. To understand CNS and peripheral immune changes, brains and spleen were used. RESULTS/CONCLUSION Our data suggests that the antibody therapy was able to reduce microgliosis, astrogliosis, and synaptic changes in the APP/PS1 mice compared to isotype control injections without changing amyloid-β plaque load. Interestingly, both isotype control and antibody therapy also reduced the number of proinflammatory cytokines in the spleen although changes in the brain were less robust. The anti-CD49d and isotype control treatments also reduced CD4 immunoreactivity in the brains, suggesting a possible mechanism for attenuation of inflammation in the brain. This data suggests that it is indeed feasible to alter the immune component of AD brain changes using a clinically feasible strategy of delivering a particular subtype of IgG or epitope selective antibodies that target infiltration of the peripheral immune system.
Collapse
Affiliation(s)
- Gunjan Manocha
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, ND 58202, United States
| | - Atreyi Ghatak
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, ND 58202, United States
| | - Kendra Puig
- Presentation College Aberdeen, South Dakota, ND 58202, United States
| | - Colin Combs
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, ND 58202, United States
| |
Collapse
|
7
|
Velázquez FE, Anastasiou M, Carrillo-Salinas FJ, Ngwenyama N, Salvador AM, Nevers T, Alcaide P. Sialomucin CD43 regulates T helper type 17 cell intercellular adhesion molecule 1 dependent adhesion, apical migration and transendothelial migration. Immunology 2019; 157:52-69. [PMID: 30690734 DOI: 10.1111/imm.13047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/07/2018] [Accepted: 01/15/2019] [Indexed: 01/10/2023] Open
Abstract
T helper type 17 lymphocytes (Th17 cells) infiltrate the central nervous system (CNS), induce inflammation and demyelination and play a pivotal role in the pathogenesis of multiple sclerosis. Sialomucin CD43 is highly expressed in Th17 cells and mediates adhesion to endothelial selectin (E-selectin), an initiating step in Th17 cell recruitment to sites of inflammation. CD43-/- mice have impaired Th17 cell recruitment to the CNS and are protected from experimental autoimmune encephalomyelitis (EAE), the mouse model of multiple sclerosis. However, E-selectin is dispensable for the development of EAE, in contrast to intercellular and vascular cell adhesion molecules (ICAM-1 and VCAM-1). We report that CD43-/- mice have decreased demyelination and T-cell infiltration, but similar up-regulation of ICAM-1 and VCAM-1 in the spinal cord, compared with wild-type (WT) mice, at the initiation of EAE. CD43-/- Th17 cells have impaired adhesion to ICAM-1 under flow conditions in vitro, despite having similar expression of LFA-1, the main T-cell ligand for ICAM-1, as WT Th17 cells. Regardless of the route of integrin activation, CD43-/- Th17 cell firm arrest on ICAM-1 was comparable to that of WT Th17 cells, but CD43-/- Th17 cells failed to optimally apically migrate on immobilized ICAM-1-coated coverslips and endothelial cells, and to transmigrate under shear flow conditions in an ICAM-1-dependent manner. Collectively, these findings unveil novel roles for CD43, facilitating adhesion of Th17 cells to ICAM-1 and modulating apical and transendothelial migration, as mechanisms potentially responsible for Th17 cell recruitment to sites of inflammation such as the CNS.
Collapse
Affiliation(s)
| | - Marina Anastasiou
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA.,Laboratory of Autoimmunity and Inflammation, University of Crete Medical School, Crete, Greece
| | | | - Njabulo Ngwenyama
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Ane M Salvador
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Tania Nevers
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
8
|
Monoclonal Antibodies in Preclinical EAE Models of Multiple Sclerosis: A Systematic Review. Int J Mol Sci 2017; 18:ijms18091992. [PMID: 28926943 PMCID: PMC5618641 DOI: 10.3390/ijms18091992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 02/08/2023] Open
Abstract
Monoclonal antibodies (mAb) are promising therapeutics in multiple sclerosis and multiple new candidates have been developed, hence increasing the need for some agreement for preclinical mAb studies. We systematically analyzed publications of experimental autoimmune encephalomyelitis (EAE) studies showing effects of monoclonal antibodies. A PubMed search retrieved 570 records, out of which 122 studies with 253 experiments were eligible based on experimental design, number of animals and presentation of time courses of EAE scores. Analysis of EAE models, treatment schedules, single and total doses, routes of administration, and onset of treatment from pre-immunization up to 35 days after immunization revealed high heterogeneity. Total doses ranged from 0.1 to 360 mg/kg for observation times of up to 35 days after immunization. About half of experiments (142/253) used total doses of 10-70 mg/kg. Employing this range, we tested anti-Itga4 as a reference mAb at varying schedules and got no, mild or substantial EAE-score reductions, depending on the mouse strain and onset of the treatment. The result agrees with the range of outcomes achieved in 10 reported anti-Itga4 experiments. Studies comparing low and high doses of various mAbs or early vs. late onset of treatment did not reveal dose-effect or timing-effect associations, with a tendency towards better outcomes with preventive treatments starting within the first week after immunization. The systematic comparison allows for extraction of some "common" design characteristics, which may be helpful to further assess the efficacy of mAbs and role of specific targets in preclinical models of multiple sclerosis.
Collapse
|
9
|
Schmitz K, Tegeder I. Bioluminescence and Near-infrared Imaging of Optic Neuritis and Brain Inflammation in the EAE Model of Multiple Sclerosis in Mice. J Vis Exp 2017. [PMID: 28287595 DOI: 10.3791/55321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) in SJL/J mice is a model for relapsing-remitting multiple sclerosis (RRMS). Clinical EAE scores describing motor function deficits are basic readouts of the immune-mediated inflammation of the spinal cord. However, scores and body weight do not allow for an in vivo assessment of brain inflammation and optic neuritis. The latter is an early and frequent manifestation in about 2/3 of MS patients. Here, we show methods for bioluminescence and near-infrared live imaging to assess EAE evoked optic neuritis, brain inflammation, and blood-brain barrier (BBB) disruption in living mice using an in vivo imaging system. A bioluminescent substrate activated by oxidases primarily showed optic neuritis. The signal was specific and allowed the visualization of medication effects and disease time courses, which paralleled the clinical scores. Pegylated fluorescent nanoparticles that remained within the vasculature for extended periods of time were used to assess the BBB integrity. Near-infrared imaging revealed a BBB leak at the peak of the disease. The signal was the strongest around the eyes. A near-infrared substrate for matrix metalloproteinases was used to assess EAE-evoked inflammation. Auto-fluorescence interfered with the signal, requiring spectral unmixing for quantification. Overall, bioluminescence imaging was a reliable method to assess EAE-associated optic neuritis and medication effects and was superior to the near-infrared techniques in terms of signal specificity, robustness, ease of quantification, and cost.
Collapse
Affiliation(s)
- Katja Schmitz
- Institute of Clinical Pharmacology, University Hospital Frankfurt
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, University Hospital Frankfurt;
| |
Collapse
|
10
|
Podkowa A, Miller RJ, Motl RW, Fish R, Oelze ML. Focused Ultrasound Treatment of Cervical Lymph Nodes in Rats with EAE: A Pilot Study. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2957-2964. [PMID: 27639434 DOI: 10.1016/j.ultrasmedbio.2016.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 07/18/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
In this pilot study, focused ultrasound (FUS) was used to produce hyperthermia in cervical lymph nodes of rats having experimental autoimmune encephalomyelitis (EAE) to alleviate symptoms associated with EAE. EAE was induced in dark agouti rats, and EAE scores were recorded over 21 d. At the onset of EAE symptoms, rats were treated with FUS to induce temperatures of 43-44°C for 20 min in the superficial cervical lymph nodes. An EAE remittance score was tallied for all rats, defined as the maximum EAE score observed minus the minimum EAE score observed after the maximum EAE was reached. On average, the peak remittance score for FUS-treated rats was 1.14 ± 0.48 versus 0.33 ± 0.27 for sham-treated rats. These differences were statistically significant (p = 0.037). Therefore, FUS treatment of cervical lymph nodes in rats with EAE resulted in a significant reduction in EAE score.
Collapse
Affiliation(s)
- Anthony Podkowa
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rita J Miller
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Robert W Motl
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Raymond Fish
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael L Oelze
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
11
|
Kipp M, Hochstrasser T, Schmitz C, Beyer C. Female sex steroids and glia cells: Impact on multiple sclerosis lesion formation and fine tuning of the local neurodegenerative cellular network. Neurosci Biobehav Rev 2016; 67:125-36. [DOI: 10.1016/j.neubiorev.2015.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 01/01/2023]
|
12
|
Klaren RE, Stasula U, Steelman AJ, Hernandez J, Pence BD, Woods JA, Motl RW. Effects of exercise in a relapsing-remitting model of experimental autoimmune encephalomyelitis. J Neurosci Res 2016; 94:907-14. [DOI: 10.1002/jnr.23783] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Rachel E. Klaren
- Department of Kinesiology and Community Health; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - Ulana Stasula
- Department of Kinesiology and Community Health; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - Andrew J. Steelman
- Department of Animal Sciences; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - Jessica Hernandez
- Department of Animal Sciences; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - Brandt D. Pence
- Department of Kinesiology and Community Health; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - Jeffrey A. Woods
- Department of Kinesiology and Community Health; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - Robert W. Motl
- Department of Kinesiology and Community Health; University of Illinois at Urbana-Champaign; Urbana Illinois
| |
Collapse
|
13
|
Volpi C, Mondanelli G, Pallotta MT, Vacca C, Iacono A, Gargaro M, Albini E, Bianchi R, Belladonna ML, Celanire S, Mordant C, Heroux M, Royer-Urios I, Schneider M, Vitte PA, Cacquevel M, Galibert L, Poli SM, Solari A, Bicciato S, Calvitti M, Antognelli C, Puccetti P, Orabona C, Fallarino F, Grohmann U. Allosteric modulation of metabotropic glutamate receptor 4 activates IDO1-dependent, immunoregulatory signaling in dendritic cells. Neuropharmacology 2015; 102:59-71. [PMID: 26522434 PMCID: PMC4720030 DOI: 10.1016/j.neuropharm.2015.10.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/05/2015] [Accepted: 10/26/2015] [Indexed: 01/01/2023]
Abstract
Metabotropic glutamate receptor 4 (mGluR4) possesses immune modulatory properties in vivo, such that a positive allosteric modulator (PAM) of the receptor confers protection on mice with relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE). ADX88178 is a newly-developed, one such mGluR4 modulator with high selectivity, potency, and optimized pharmacokinetics. Here we found that application of ADX88178 in the RR-EAE model system converted disease into a form of mild—yet chronic—neuroinflammation that remained stable for over two months after discontinuing drug treatment. In vitro, ADX88178 modulated the cytokine secretion profile of dendritic cells (DCs), increasing production of tolerogenic IL-10 and TGF-β. The in vitro effects required activation of a Gi-independent, alternative signaling pathway that involved phosphatidylinositol-3-kinase (PI3K), Src kinase, and the signaling activity of indoleamine 2,3-dioxygenase 1 (IDO1). A PI3K inhibitor as well as small interfering RNA targeting Ido1—but not pertussis toxin, which affects Gi protein-dependent responses—abrogated the tolerogenic effects of ADX88178-conditioned DCs in vivo. Thus our data indicate that, in DCs, highly selective and potent mGluR4 PAMs such as ADX88178 may activate a Gi-independent, long-lived regulatory pathway that could be therapeutically exploited in chronic autoimmune diseases such as multiple sclerosis. ADX88178, a selective mGluR4 PAM, exerts long-term therapeutic effects in RR-EAE. ADX88178 activates a noncanonical mGluR4 signaling in DCs. ADX88178 induces a tolerogenic functional phenotype in DCs via immunoregulatory IDO1. Highly selective mGluR4 PAMs may represent novel drugs in chronic neuroinflammation.
Collapse
Affiliation(s)
- Claudia Volpi
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Maria T Pallotta
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Carmine Vacca
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Alberta Iacono
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Elisa Albini
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Roberta Bianchi
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Maria L Belladonna
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Sylvain Celanire
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Céline Mordant
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Madeleine Heroux
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Isabelle Royer-Urios
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Manfred Schneider
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Pierre-Alain Vitte
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Mathias Cacquevel
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Laurent Galibert
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Sonia-Maria Poli
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Aldo Solari
- Department of Economics, Management, and Statistics, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milano, Italy
| | - Silvio Bicciato
- Department of Life Sciences, Via G. Campi 287, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Mario Calvitti
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Paolo Puccetti
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Ciriana Orabona
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy.
| |
Collapse
|
14
|
Sjögren's syndrome associated dry eye in a mouse model is ameliorated by topical application of integrin α4 antagonist GW559090. Exp Eye Res 2015; 143:1-8. [PMID: 26463157 DOI: 10.1016/j.exer.2015.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 01/17/2023]
Abstract
Sjögren's syndrome is an autoimmune disease associated with inflammation of exocrine glands with clinical manifestations of dry eye and dry mouth. Dry eye in this disease involves inflammation of the ocular surface tissues - cornea and conjunctiva. While systemic blockade of adhesion molecules has been used to treat autoimmune diseases, the purpose of this study was to determine the therapeutic efficacy of topical application of an integrin α4 adhesion molecule antagonist in a mouse model of dry eye associated with Sjögren's syndrome. To assess this spontaneously developed ocular surface inflammation related to Sjögren's syndrome in TSP-1null mice (12 wks) was evaluated. Mice were treated with topical formulations containing 0.1% dexamethasone or 30 mg/ml GW559090 or vehicle control. Corneal fluorescein staining and conjunctival goblet cell density were assessed. Real-time PCR analysis was performed to assess expression of the inflammatory marker IL-1β in the cornea and Tbet and RORγt in the draining lymph nodes. Ocular surface inflammation was detectable in TSP-1null mice (≥12 wk old), which resulted in increased corneal fluorescein staining indicative of corneal barrier disruption and reduced conjunctival goblet cell density. These changes were accompanied by increased corneal expression of IL-1β as compared to WT controls and an altered balance of Th1 (Tbet) and Th17 (RORγt) markers in the draining lymph nodes. Topically applied dexamethasone and GW559090 significantly reduced corneal fluorescein staining compared to vehicle treatment (p = 0.023 and p < 0.001, respectively). This improved corneal barrier integrity upon adhesion molecule blockade was consistent with significantly reduced corneal expression of pro-inflammatory IL-1β compared to vehicle treated groups (p < 0.05 for both treatments). Significant improvement in goblet cell density was also noted in mice treated with 0.1% dexamethasone and GW559090 (p < 0.05 for both). We conclude that similar to topical dexamethasone, topically administered GW559090 successfully improved corneal barrier integrity and inflammation in an established ocular surface disease associated with Sjögren's syndrome.
Collapse
|
15
|
Ramroodi N, Khani M, Ganjali Z, Javan MR, Sanadgol N, Khalseh R, Ravan H, Sanadgol E, Abdollahi M. Prophylactic Effect of BIO-1211 Small-Molecule Antagonist of VLA-4 in the EAE Mouse Model of Multiple Sclerosis. Immunol Invest 2015; 44:694-712. [PMID: 26436854 DOI: 10.3109/08820139.2015.1085391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/20/2015] [Accepted: 07/29/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Some functional limitations and economic burden of therapeutic antibodies indicated that introducing of alternative therapeutic compounds with same or different mechanism of action could be worthwhile. In this regard small-molecule antagonists can have a wide range of impacts, so in this research, we examine the prophylactic effects of BIO-1211 [Very Late Antigen-4 (VLA4) blocker], in experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis in comparison with commercial available medicine, Natalizumab (NTZ)]. METHODS EAE was induced by subcutaneous immunization of myelin oligodendrocyte glycoprotein (MOG35-55) in 8-week-old C57BL/6 mice. During EAE induction, mice were separated to distinct groups and provided either BIO-1211 (5 and 10 mg/kg) or NTZ (5 mg/kg) and co-administration of these two compounds. After 21 days, neuro-inflammatory responses were analyzed using qRT-PCR, western blot, and ELISA methods. Pervade of immune cells to brain was examined by Evans blue staining and immunohistochemistry (IHC) analysis of specific markers of microglia/monocytes (CD11b) and leukocytes (CD45). RESULTS Targeted disruption of VLA4/VCAM1 interactions, by BIO-1211 agonist in mice, results in reduced cytokines expression, leukocyte trafficking, and inhibition of inflammatory responses in EAE (p < 0.01) in a dose-independent manner (data not shown). Mice treated with both BIO-1211 and NTZ exhibited a considerable depletion in the EAE clinical score, which correlated with decreased expression of TNF-α, IL-17, IFN-γ and pervade of CD11b(+) and CD45(+) cells into the cerebral cortex. CONCLUSION Our results indicated that BIO12-11 compound would be an useful tool to further understand the biological roles of VLA4/VCAM1 interactions, and could also be considered as EAE-suppressing agent.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/metabolism
- CD11b Antigen/metabolism
- Cell Movement/immunology
- Cerebral Cortex/immunology
- Cerebral Cortex/metabolism
- Cerebral Cortex/pathology
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Expression Regulation/drug effects
- Inflammation Mediators/metabolism
- Integrin alpha4beta1/antagonists & inhibitors
- Leukocyte Common Antigens/metabolism
- Leukocytes/immunology
- Leukocytes/metabolism
- Male
- Mice
- Monocytes/immunology
- Monocytes/metabolism
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Nitro Compounds
- Oligopeptides/administration & dosage
- Oligopeptides/chemistry
- Oligopeptides/pharmacology
- Permeability/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Thiazoles/administration & dosage
- Thiazoles/pharmacology
Collapse
Affiliation(s)
- Nourollah Ramroodi
- a Department of Neurology, Faculty of Medicine , Zahedan University of Medical Sciences , Zahedan , Iran
| | - Masood Khani
- b Department of Immunology, Faculty of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Zohre Ganjali
- c Department of Biology, Faculty of Sciences , University of Zabol , Zabol , Iran
| | - Mohammad Reza Javan
- d Department of Immunology, Faculty of Medicine , Zabol University of Medical Sciences , Zabol , Iran
| | - Nima Sanadgol
- c Department of Biology, Faculty of Sciences , University of Zabol , Zabol , Iran
- e Department of Pharmacy and Pharmaceutical Science Research Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Roghayeh Khalseh
- f Department of Chemical Engineering , Babol Noushirvani University of Technology , Babol , Iran
| | - Hadi Ravan
- g Department of Biology, Faculty of Science , Shahid Bahonar University of Kerman , Kerman , Iran , and
| | - Ehsan Sanadgol
- h Department of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Abdollahi
- e Department of Pharmacy and Pharmaceutical Science Research Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
16
|
Ingwersen J, Menge T, Wingerath B, Kaya D, Graf J, Prozorovski T, Keller A, Backes C, Beier M, Scheffler M, Dehmel T, Kieseier BC, Hartung HP, Küry P, Aktas O. Natalizumab restores aberrant miRNA expression profile in multiple sclerosis and reveals a critical role for miR-20b. Ann Clin Transl Neurol 2014; 2:43-55. [PMID: 25642434 PMCID: PMC4301674 DOI: 10.1002/acn3.152] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 10/03/2014] [Accepted: 10/24/2014] [Indexed: 12/20/2022] Open
Abstract
Objective To identify microRNAs (miRNAs) regulated by anti-α4 integrin monoclonal antibody therapy (natalizumab) in the peripheral blood of patients with relapsing-remitting (RR) multiple sclerosis (MS) and to confirm their role in experimental settings in vivo. Methods In a longitudinal study of 17 RR-MS patients, we investigated blood miRNA expression profiles at baseline and after 1 year of natalizumab therapy by microarray technique and quantitative PCR validation. We compared the baseline expression profiles of these patients to those of 18 age- and sex-matched healthy controls. We confirmed the contribution of resulting candidate miRNAs in an animal model of MS, experimental autoimmune encephalomyelitis (EAE) induced by adoptive transfer of proteolipid protein (PLP)139–151-activated lymphocytes in SJL/J mice or by active immunization of miR-106a∼363-deficient C57BL/6 mice (or wildtype litter mates) with myelin oligodendrocyte glycoprotein (MOG)35–55. Results Our longitudinal analysis revealed that miR-18a, miR-20b, miR-29a, and miR-103 were upregulated and predominantly expressed by CD4+ T cells, whereas miR-326 was downregulated upon natalizumab treatment. A comparison of untreated RR-MS patients at baseline with healthy controls revealed that the four natalizumab-upregulated targets were initially downregulated in MS. All confirmed targets showed disease-dependent expression in splenocytes of mice suffering from EAE. Genetic deletion of the miRNA cluster miR-106a∼363 (containing natalizumab-regulated miR-20b) resulted in a more severe EAE course and an in vivo upregulation of the miR-20b target genes rorgt, stat3, and vegfa. Interpretation Our study indicates that natalizumab restores dysregulated miRNA patterns in MS and reveals the contribution of miR-20b in autoimmune demyelination in vivo.
Collapse
Affiliation(s)
- Jens Ingwersen
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| | - Til Menge
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| | - Britta Wingerath
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| | - Derya Kaya
- Department of Neurology, Medical School, Dokuz Eylül University Izmir, Turkey
| | - Jonas Graf
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| | - Tim Prozorovski
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| | - Andreas Keller
- CBC Comprehensive Biomarker Center GmbH Heidelberg, Germany ; Clinical Bioinformatics, Saarland University Saarbrücken, Germany
| | - Christina Backes
- Clinical Bioinformatics, Saarland University Saarbrücken, Germany
| | - Markus Beier
- CBC Comprehensive Biomarker Center GmbH Heidelberg, Germany
| | | | - Thomas Dehmel
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| | - Bernd C Kieseier
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| |
Collapse
|
17
|
Mindur JE, Ito N, Dhib-Jalbut S, Ito K. Early treatment with anti-VLA-4 mAb can prevent the infiltration and/or development of pathogenic CD11b+CD4+ T cells in the CNS during progressive EAE. PLoS One 2014; 9:e99068. [PMID: 24896098 PMCID: PMC4045930 DOI: 10.1371/journal.pone.0099068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/12/2014] [Indexed: 01/18/2023] Open
Abstract
Natalizumab is a humanized monoclonal antibody against the leukocyte adhesion molecule very late antigen (VLA)-4, and is currently an approved therapy for patients with relapsing-remitting multiple sclerosis (RRMS). However, it is unknown whether natalizumab is beneficial for progressive forms of MS. Therefore, we assessed the effects of anti-VLA-4 monoclonal antibody (mAb) therapy in a progressive experimental autoimmune encephalomyelitis (EAE) mouse model. Notably, we found that early therapy could significantly reduce the severity of progressive EAE, while treatment initiated at an advanced stage was less efficient. Furthermore, we observed the accumulation of a novel subset of GM-CSF-producing CD11b+CD4+ T cells in the CNS throughout disease progression. Importantly, early therapeutic anti-VLA-4 mAb treatment suppressed the accumulation of these GM-CSF-producing CD11b+CD4+ T cells in the CNS along with activated microglia/macrophages populations, and also conferred a protective effect against inflammation-mediated neurodegeneration, including demyelination and axonal loss. Collectively, our data suggest that early treatment with anti-VLA-4 mAb can provide neuroprotection against progressive CNS autoimmune disease by preventing the accumulation of pathogenic GM-CSF-producing CD11b+CD4+ T cells in the CNS.
Collapse
Affiliation(s)
- John E. Mindur
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Naoko Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Kouichi Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| |
Collapse
|
18
|
Kachuck NJ. Challenges and opportunities: what we are learning from the clinical natalizumab experience. Expert Rev Neurother 2014; 5:605-15. [PMID: 16162084 DOI: 10.1586/14737175.5.5.605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The approval of natalizumab for relapsing forms of multiple sclerosis, and the subsequent voluntary suspension of its use due to an unexpected viral infection, is a cautionary tale of how much we have to learn about how to prioritize and perform the necessary research and development of novel therapeutics for human diseases, the ethics of placebo-controlled trials and the relationships between researchers, regulatory authorities and the pharmaceutical industry.
Collapse
Affiliation(s)
- Norman J Kachuck
- USC Keck School of Medicine, 1520 San Pablo Street, 3000 Los Angeles CA 90033, USA.
| |
Collapse
|
19
|
Bennett JL. Natalizumab and progressive multifocal leukoencephalopathy: migrating towards safe adhesion molecule therapy in multiple sclerosis. Neurol Res 2013; 28:291-8. [PMID: 16687056 DOI: 10.1179/016164106x98189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Natalizumab, a humanized monoclonal antibody against alpha4beta1 integrin, was shown in clinical trials to dramatically reduce the relapse rate, development of new magnetic resonance imaging (MRI) lesions and progression of disability in patients with relapsing multiple sclerosis. Following its expedited approval, sales of the drug were discontinued owing to the emergence of two cases of progressive multifocal leukoencephalopathy (PML), a rare but deadly viral infection of the central nervous system (CNS) associated with immunosuppression. Owing to the effect of natalizumab on central nervous system leukocyte recruitment, the emergence of PML has been attributed to diminished immunosurveillance. The lack of additional opportunistic or CNS infections among natalizumab-treated patients, however, suggests that alternate mechanisms may contribute to the infectious risk. This review examines how the inhibition of alpha4beta1-mediated adhesion might establish a unique milieu for the development of PML and how future approaches to selective adhesion molecule therapy in multiple sclerosis might avoid a similar fate.
Collapse
Affiliation(s)
- Jeffrey L Bennett
- Department of Neurology, University of Colorado at Denver and Health Sciences Center, 80262, USA.
| |
Collapse
|
20
|
Tellurium compound AS101 ameliorates experimental autoimmune encephalomyelitis by VLA-4 inhibition and suppression of monocyte and T cell infiltration into the CNS. Neuromolecular Med 2013; 16:292-307. [PMID: 24272426 DOI: 10.1007/s12017-013-8277-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/08/2013] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory autoimmune disease of the central nervous system (CNS) involving demyelinating and neurodegenerative processes. Several of the major pathological CNS alterations and behavioral deficits of MS are recapitulated in the experimental autoimmune encephalitis (EAE) mouse model in which the disease process is induced by administration of myelin peptides. Development of EAE requires infiltration of inflammatory cytokine-generating monocytes and macrophages, and auto-reactive T cells, into the CNS. Very late antigen-4 (VLA-4, α4β1) is an integrin molecule that plays a role in inflammatory responses by facilitating the migration of leukocytes across the blood-brain barrier during inflammatory disease, and antibodies against VLA-4 exhibit therapeutic efficacy in mouse and monkey MS models. Here, we report that the tellurium compound AS101 (ammonium trichloro (dioxoethylene-o,o') tellurate) ameliorates EAE by inhibiting monocyte and T cell infiltration into the CNS. CD49d is an alpha subunit of the VLA-4 (α4β1) integrin. During the peak stage of EAE, AS101 treatment effectively ameliorated the disease process by reducing the number of CD49d(+) inflammatory monocyte/macrophage cells in the spinal cord. AS101 treatment markedly reduced the pro-inflammatory cytokine levels, while increasing anti-inflammatory cytokine levels. In contrast, AS101 treatment did not affect the peripheral populations of CD11b(+) monocytes and macrophages. AS101 treatment reduced the infiltration of CD4(+) and CD49(+)/VLA4 T cells. In addition, treatment of T cells from MS patients with AS101 resulted in apoptosis, while such treatment did not affect T cells from healthy donors. These results suggest that AS101 reduces accumulation of leukocytes in the CNS by inhibiting the activity of the VLA-4 integrin and provide a rationale for the potential use of Tellurium IV compounds for the treatment of MS.
Collapse
|
21
|
Constantinescu CS, Farooqi N, O'Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 2012; 164:1079-106. [PMID: 21371012 DOI: 10.1111/j.1476-5381.2011.01302.x] [Citation(s) in RCA: 1029] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is the most commonly used experimental model for the human inflammatory demyelinating disease, multiple sclerosis (MS). EAE is a complex condition in which the interaction between a variety of immunopathological and neuropathological mechanisms leads to an approximation of the key pathological features of MS: inflammation, demyelination, axonal loss and gliosis. The counter-regulatory mechanisms of resolution of inflammation and remyelination also occur in EAE, which, therefore can also serve as a model for these processes. Moreover, EAE is often used as a model of cell-mediated organ-specific autoimmune conditions in general. EAE has a complex neuropharmacology, and many of the drugs that are in current or imminent use in MS have been developed, tested or validated on the basis of EAE studies. There is great heterogeneity in the susceptibility to the induction, the method of induction and the response to various immunological or neuropharmacological interventions, many of which are reviewed here. This makes EAE a very versatile system to use in translational neuro- and immunopharmacology, but the model needs to be tailored to the scientific question being asked. While creating difficulties and underscoring the inherent weaknesses of this model of MS in straightforward translation from EAE to the human disease, this variability also creates an opportunity to explore multiple facets of the immune and neural mechanisms of immune-mediated neuroinflammation and demyelination as well as intrinsic protective mechanisms. This allows the eventual development and preclinical testing of a wide range of potential therapeutic interventions.
Collapse
Affiliation(s)
- Cris S Constantinescu
- Division of Clinical Neurology, School of Clinical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | | | | | | |
Collapse
|
22
|
Farooqi N, Gran B, Constantinescu CS. Are current disease-modifying therapeutics in multiple sclerosis justified on the basis of studies in experimental autoimmune encephalomyelitis? J Neurochem 2010; 115:829-44. [DOI: 10.1111/j.1471-4159.2010.06982.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Huang TC, Tseng KY, Tsai SS, Liu HJ, Ho CT, Lin HY, Cheng LT, Chuang KP. Eriodictyol decreases very late antigen-4 (VLA-4) expression, cellular adhesion, and migration through an NFκB-dependent pathway in monocytes. J Funct Foods 2010. [DOI: 10.1016/j.jff.2010.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
24
|
Agius E, Lacy KE, Vukmanovic-Stejic M, Jagger AL, Papageorgiou AP, Hall S, Reed JR, Curnow SJ, Fuentes-Duculan J, Buckley CD, Salmon M, Taams LS, Krueger J, Greenwood J, Klein N, Rustin MHA, Akbar AN. Decreased TNF-alpha synthesis by macrophages restricts cutaneous immunosurveillance by memory CD4+ T cells during aging. ACTA ACUST UNITED AC 2009; 206:1929-40. [PMID: 19667063 PMCID: PMC2737169 DOI: 10.1084/jem.20090896] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immunity declines during aging, however the mechanisms involved in this decline are not known. In this study, we show that cutaneous delayed type hypersensitivity (DTH) responses to recall antigens are significantly decreased in older individuals. However, this is not related to CC chemokine receptor 4, cutaneous lymphocyte-associated antigen, or CD11a expression by CD4+ T cells or their physical capacity for migration. Instead, there is defective activation of dermal blood vessels in older subject that results from decreased TNF-α secretion by macrophages. This prevents memory T cell entry into the skin after antigen challenge. However, isolated cutaneous macrophages from these subjects can be induced to secrete TNF-α after stimulation with Toll-like receptor (TLR) 1/2 or TLR 4 ligands in vitro, indicating that the defect is reversible. The decreased conditioning of tissue microenvironments by macrophage-derived cytokines may therefore lead to defective immunosurveillance by memory T cells. This may be a predisposing factor for the development of malignancy and infection in the skin during aging.
Collapse
Affiliation(s)
- Elaine Agius
- Department of Immunology, Division of Infection and Immunity, University College London, London, W1T 4JF, England, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Kivisäkk P, Healy BC, Viglietta V, Quintana FJ, Hootstein MA, Weiner HL, Khoury SJ. Natalizumab treatment is associated with peripheral sequestration of proinflammatory T cells. Neurology 2009; 72:1922-30. [PMID: 19487650 DOI: 10.1212/wnl.0b013e3181a8266f] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Natalizumab is an antibody directed against integrin alpha4 that reduces disease activity in patients with multiple sclerosis (MS) by blocking migration of T and B cells into the CNS. The goal of this study was to characterize the effects of natalizumab treatment on cytokine production and expression of activation markers, costimulatory molecules, and trafficking determinants on CD4+ and CD8+ T cells. METHODS In a longitudinal study, we investigated the expression of surface makers and cytokine expression on peripheral blood lymphocytes from 28 patients with MS who started natalizumab treatment and were followed for 1 year. A mixed effects model was used to compare pretreatment to on-treatment measurements. RESULTS The frequency of CD4+ T cells producing interferon-gamma, tumor necrosis factor, and interleukin (IL)-17 upon anti-CD3 stimulation increased 6 months after initiation of natalizumab treatment and remained elevated throughout the follow-up. The frequency of CD4+ T cells expressing CD25, HLA-DR, and CCR6 ex vivo was increased at one or more time points during treatment. Among CD8+ T cells, the frequency of cells producing IL-2 and IL-17 after stimulation was increased during natalizumab treatment, as was the frequency of CD8+ T cells expressing CD58 and CCR5 ex vivo. The increase in the frequency of activated cells could not be replicated by in vitro exposure to natalizumab. CONCLUSION Natalizumab treatment increases the percentage of activated leukocytes producing proinflammatory cytokines in blood, presumably due to sequestration of activated cells in the peripheral circulation.
Collapse
Affiliation(s)
- P Kivisäkk
- Center for Neurological Diseases, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Based on the results of two phase III clinical trials, the humanized recombinant monoclonal antibody natalizumab was approved for the treatment of relapsing forms of multiple sclerosis (MS). Since its initial approval in November 2004, it has been announced that six patients who received natalizumab in the context of clinical studies acquired an infection with the human polyoma virus JC and were diagnosed with progressive multifocal leukoencephalopathy (PML). Two of these individuals had a fatal outcome. Our groups recently showed that natalizumab therapy results in a reduction of CD4(+) T cells within the cerebrospinal fluid (CSF) that is ten-fold more pronounced than the reduction in the number of CD8(+) T lymphocytes. Interestingly, it appears that the effect of natalizumab on cell numbers in the CSF persists for at least 6 months after cessation of treatment. More recently, we studied the expression of major histocompatibility complex (MHC) I and II, and the number and phenotypes of leukocytes in cerebral perivascular spaces (CPVS). We observed that natalizumab therapy was associated with a significant decrease in the cell surface expression of MHC class II molecules, and the numbers of dendritic cells in CPVS. In addition, no CD4(+) T cells were detectable in this compartment. Our observations may explain the differential and prolonged effects of natalizumab therapy on different leukocyte subsets in the central nervous system. They also suggest that natalizumab treatment may result in prolonged immunosuppression in peripheral organs, and the delayed onset of adverse events.
Collapse
|
28
|
Novel therapeutic strategies for multiple sclerosis--a multifaceted adversary. Nat Rev Drug Discov 2008; 7:909-25. [PMID: 18974749 DOI: 10.1038/nrd2358] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Therapeutic strategies for multiple sclerosis have radically changed in the past 15 years. Five regulatory-approved immunomodulatory agents are reasonably effective in the treatment of relapsing-remitting multiple sclerosis, and appear to delay the time to progression to disabling stages. Inhibiting disease progression remains the central challenge for the development of improved therapies. As understanding of the immunopathogenesis of multiple sclerosis has advanced, a number of novel potential therapeutics have been identified, and are discussed here. It has also become apparent that traditional views of multiple sclerosis simply as a CD4+ T-cell-mediated disease of the central nervous system are incomplete. The pathogenic role of other immune components such as the innate immune system, regulatory T cells, T helper 17 cells and B cells is reaching centre stage, opening up exciting avenues and novel potential targets to affect the natural course of multiple sclerosis.
Collapse
|
29
|
Meads MB, Hazlehurst LA, Dalton WS. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res 2008; 14:2519-26. [PMID: 18451212 DOI: 10.1158/1078-0432.ccr-07-2223] [Citation(s) in RCA: 411] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The bone marrow microenvironment facilitates the survival, differentiation, and proliferation of hematopoietic cells. These cells are supported by fibroblast-like bone marrow stromal cells, osteoblasts, and osteoclasts which secrete soluble factors and extracellular matrix proteins that mediate these functions. This rich environment serves as a safe haven not only for normal and malignant hematopoietic cells, but also for epithelial tumor cells that metastasize to bone, offering protection from chemotherapeutic agents by common mechanisms. Soluble factors produced in the bone marrow, such as stromal cell-derived factor-1 and interleukin-6, mediate homing, survival, and proliferation of tumor cells, and integrin-mediated adhesion sequesters tumor cells to this protective niche. Environment-mediated drug resistance includes a combination of soluble factors and adhesion, and can be subdivided into soluble factor-mediated drug resistance and cell adhesion-mediated drug resistance. Because it is induced immediately by the microenvironment and is independent of epigenetic or genetic changes caused by the selective pressure of drug exposure, environment-mediated drug resistance is a form of de novo drug resistance. In this form of drug resistance, tumor cells are transiently and reversibly protected from apoptosis induced by both chemotherapy and physiologic mediators of cell death. This protection allows tumor cells to survive the insult of chemotherapy, leading to minimal residual disease, and thereby increases the probability for the development of acquired drug resistance.
Collapse
Affiliation(s)
- Mark B Meads
- Department of Experimental Therapeutics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | |
Collapse
|
30
|
Engelhardt B, Kappos L. Natalizumab: targeting alpha4-integrins in multiple sclerosis. NEURODEGENER DIS 2007; 5:16-22. [PMID: 18075270 DOI: 10.1159/000109933] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 01/15/2007] [Indexed: 11/19/2022] Open
Abstract
In 1992, it was shown that monoclonal antibodies blocking alpha(4)-integrins prevent the development of experimental autoimmune encephalomyelitis, an animal model for multiple sclerosis (MS). As alpha(4)beta(1)-integrin was demonstrated to mediate the attachment of immune-competent cells to inflamed brain endothelium in experimental autoimmune encephalomyelitis, the therapeutic effect was attributed to the inhibition of immune cell extravasation and inflammation in the central nervous system. This novel therapeutic approach was rapidly and successfully translated into the clinic. The humanized anti-alpha(4)-integrin antibody natalizumab demonstrated an unequivocal therapeutic effect in preventing relapses and slowing down the pace of neurological deterioration in patients with relapsing-remitting MS in phase II and phase III clinical trials. The occurrence of 3 cases of progressive multifocal leukoencephalopathy in patients treated with natalizumab led to the voluntary withdrawal of the drug from the market. After a thorough safety evaluation of all patients receiving this drug in past and ongoing studies for MS and Crohn's disease, natalizumab again obtained approval in the US and the European Community. A treatment targeting leukocyte trafficking in MS has now re-entered the clinic. Further thorough evaluation is necessary for a better understanding of the risk-benefit balance of this new treatment option for relapsing MS. In this review, we discuss the basic mechanism of action, key clinical results of clinical trials and the emerging indication of natalizumab in MS.
Collapse
|
31
|
Parmley LA, Elkins ND, Fini MA, Liu YE, Repine JE, Wright RM. Alpha-4/beta-1 and alpha-L/beta-2 integrins mediate cytokine induced lung leukocyte-epithelial adhesion and injury. Br J Pharmacol 2007; 152:915-29. [PMID: 17828290 PMCID: PMC2078224 DOI: 10.1038/sj.bjp.0707443] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Injury to the alveolar epithelium is a critical feature of acute lung injury (ALI). Using a cytokine model of ALI we demonstrated previously that newly recruited mononuclear phagocytes (MNP) contributed to lung inflammation and injury. We hypothesized that cytokines delivered into the alveolar airspace would have multiple effects on the lung that may contribute to lung injury. EXPERIMENTAL APPROACH Intratracheal cytokine insufflation and leukocyte adoptive transfer in vivo were combined with in vitro analyses of lung epithelial cell-MNP adhesion and injury. Lung inflammatory injury was assessed by histology, leukocyte infiltration, and release of LDH and RAGE. KEY RESULTS Cytokine insufflation was associated with apparent MNP-epithelial adhesion, up-regulation of alveolar ICAM-1 and VCAM-1, and the release of LDH and RAGE into the bronchoalveolar lavage. Insufflation of small molecule integrin antagonists suppressed adhesion of MNP and modulated release of LDH and RAGE. Adoptive transfer of MNP purified from cytokine insufflated lungs into leukopenic rats demonstrated the requirement of MNP for release of LDH that was not induced by cytokine alone. Corroboration that disrupting the ICAM/LFA1 interaction or the VCAM/VLA4 interaction blocked MNP-epithelial cell interaction and injury was obtained in vitro using both blocking monoclonal antibodies and the small molecule integrin antagonists, BIO5192 and XVA143. CONCLUSIONS AND IMPLICATIONS MNP recruited following cytokine insufflation contributed to lung injury. Further, integrin antagonists reduced alveolar epithelial cell injury induced during lung inflammation. Intratracheal delivery of small molecule antagonsists of leukocyte-epithelial adhesion that prevent lung injury may have significant clinical utility.
Collapse
Affiliation(s)
- L A Parmley
- Webb-Waring Institute for Cancer, Aging and Antioxidant Research, University of Colorado Health Sciences Center Denver, CO, USA
| | - N D Elkins
- Webb-Waring Institute for Cancer, Aging and Antioxidant Research, University of Colorado Health Sciences Center Denver, CO, USA
| | - M A Fini
- Webb-Waring Institute for Cancer, Aging and Antioxidant Research, University of Colorado Health Sciences Center Denver, CO, USA
- Department of Pulmonary Sciences, The School of Medicine, University of Colorado Health Sciences Center Denver, CO, USA
| | - Y-E Liu
- Department of Biochemistry, Princeton University Princeton, NJ, USA
| | - J E Repine
- Webb-Waring Institute for Cancer, Aging and Antioxidant Research, University of Colorado Health Sciences Center Denver, CO, USA
- Department of Pulmonary Sciences, The School of Medicine, University of Colorado Health Sciences Center Denver, CO, USA
| | - R M Wright
- Webb-Waring Institute for Cancer, Aging and Antioxidant Research, University of Colorado Health Sciences Center Denver, CO, USA
- Department of Pulmonary Sciences, The School of Medicine, University of Colorado Health Sciences Center Denver, CO, USA
- Author for correspondence:
| |
Collapse
|
32
|
Stüve O, Bennett JL. Pharmacological properties, toxicology and scientific rationale for the use of natalizumab (Tysabri) in inflammatory diseases. CNS DRUG REVIEWS 2007; 13:79-95. [PMID: 17461891 PMCID: PMC6494150 DOI: 10.1111/j.1527-3458.2007.00003.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Natalizumab (Tysabri) was the first adhesion molecule antagonist to make it into clinical trial for patients with multiple sclerosis (MS) and other inflammatory disorders. Natalizumab is a humanized recombinant monoclonal antibody (MAb) that binds to the alpha (alpha)(4) chain of the alpha(4) beta (beta)(1) (very late activating antigen 4; VLA-4) and alpha(4)beta(7) integrins. The scientific rationale for natalizumab therapy is the reduction of leukocyte extravasation into peripheral tissues. Natalizumab, like other VLA-4 antagonists, may also interfere with the activation of T lymphocytes in secondary lymphoid organs and their reactivation in the central nervous system (CNS). Shortly after its approval for the treatment of relapsing-remitting MS (RR-MS), three patients who were treated with natalizumab in the setting of clinical trials developed progressive multifocal leukoencephalopathy (PML), an opportunistic infection of the brain with the polyoma virus JC. It remains to be elucidated why the use of this VLA-4 antagonist is associated with an increased incidence of PML. Natalizumab was recently reapproved for the treatment of relapsing forms of MS. In this review, we outline the scientific rationale for using natalizumab in MS and other inflammatory disorders. In addition, an overview of pharmacological properties, clinical efficacy, safety, and toxicology of natalizumab is provided.
Collapse
Affiliation(s)
- Olaf Stüve
- Neurology Section, VA North Texas Health Care System, Medical Service, Dallas, Texas, USA
| | | |
Collapse
|
33
|
Tsunoda I, Terry EJ, Marble BJ, Lazarides E, Woods C, Fujinami RS. Modulation of experimental autoimmune encephalomyelitis by VLA-2 blockade. Brain Pathol 2007; 17:45-55. [PMID: 17493037 PMCID: PMC8095550 DOI: 10.1111/j.1750-3639.2006.00042.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Adhesion molecules play important roles in cell-cell and cell-extracellular matrix (ECM) interactions in inflammation. Blocking the interaction between inflammatory cells and vascular endothelia can prevent cell entry into tissues and harmful inflammatory responses, that is, autoimmunity, but could also limit immunosurveillance by anti-viral T cells in sites of infection or latency. Development of progressive multifocal leukoencephalopathy in patients treated with antibody against very late antigen (VLA)-4 prompted us to explore an alternative therapeutic approach. We used an antibody against the integrin alpha2, VLA-2, that interacts with ECM, not vascular endothelium. SJL/J mice were sensitized with myelin proteolipid protein (PLP)(139-151) peptide to induce experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Treatment of mice with VLA-2 antibody suppressed clinical signs and CNS inflammation of EAE, when antibody was given immediately after disease onset. In contrast, VLA-4 or VLA-2 antibody treatment of mice during the priming or remission phase of EAE had minor effects on the disease's clinical course. No differences were found in lymphoproliferative responses to PLP(139-151) among treatment groups. Data suggest that blocking cell-ECM interactions can be an alternative therapy for MS.
Collapse
Affiliation(s)
- Ikuo Tsunoda
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Emily Jane Terry
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Benjamin J. Marble
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Elias Lazarides
- (Formerly of Targeted Molecules Corporation) Chromos Molecular Systems, Burnaby, British Columbia, Canada
| | - Catherine Woods
- (Formerly of Targeted Molecules Corporation) Chromos Molecular Systems, Burnaby, British Columbia, Canada
| | - Robert S. Fujinami
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
34
|
Brown DA, Sawchenko PE. Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J Comp Neurol 2007; 502:236-60. [PMID: 17348011 DOI: 10.1002/cne.21307] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Murine models of experimental autoimmune encephalomyelitis (EAE) are important vehicles for studying the effects of genetic manipulation on disease processes related to multiple sclerosis (MS). Currently, a comprehensive assessment of EAE pathogenesis with respect to inflammatory and degenerating neuronal elements is lacking. By using Fluoro-jade histochemistry to mark neurodegeneration and dual immunostaining to follow T-cell, microglial, and vascular responses, the time course and distribution of pathological events in EAE was surveyed. C57BL/6J mice were killed at 7, 10, 14, 21 or 35 days after vaccination with the myelin oligodendrocyte glycoprotein peptide MOG(35-55). Disease onset occurred at day 14 and peaked at day 21. Early T-cell infiltration and microglial activation in periventricular and superficial white matter structures adjacent to meninges suggested initial recruitment of effector T cells via the cerebrospinal fluid and choroid plexus. This was associated with microglial activation at distal sites along the same white matter tracts, with subsequent vascular recruitment of T cells associated with further injury. Systematic examination of the entire CNS supported this two-step model of EAE pathogenesis, with inflammation and neurodegeneration commencing at similar times and affecting multiple levels of predominantly sensory central pathways, including their terminal fields. This included aspects of the visual, auditory/vestibular, somatosensory (lemniscal), and proprioceptive (spinocerebellar) systems. The early targeting of visual and periventricular structures followed by more widespread CNS involvement is consistent with common presenting signs in human MS patients and suggestive of a similar basis in neuropathology.
Collapse
Affiliation(s)
- David A Brown
- Laboratory of Neuronal Structure and Function, The Salk Institute for Biological Studies, and The Foundation for Medical Research, La Jolla, CA 92037, USA
| | | |
Collapse
|
35
|
Nessler S, Stadelmann C, Bittner A, Schlegel K, Gronen F, Brueck W, Hemmer B, Sommer N. Suppression of autoimmune encephalomyelitis by a neurokinin-1 receptor antagonist — A putative role for substance P in CNS inflammation. J Neuroimmunol 2006; 179:1-8. [PMID: 16904192 DOI: 10.1016/j.jneuroim.2006.06.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 06/25/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
Substance P (SP) is an excitatory neurotransmitter in the central and peripheral nervous system. Most of its physiological functions are mediated through binding to the neurokinin-1 receptor (NK-1R). Recently, proinflammatory properties of SP have been described. In this study we utilized T cell transfer experimental autoimmune encephalomyelitis (EAE) to investigate the role of SP in CNS autoimmune disease. Treatment with the NK-1R antagonist CP-96,345 dramatically reduced clinical and histological signs of EAE if administered before disease onset. The protective effect of CP96,345 treatment was related to a reduced expression of the adhesion molecules ICAM-1 and VCAM-1 on CNS endothelia. The cellular composition or activation status of splenocytes was not affected by CP-96,345 administration, while the secretion of proinflammatory Th1 cytokines was reduced in treated animals. Th2 cytokines remained largely unaffected by NK-1 receptor antagonist treatment. In summary, our findings suggest that the protective effect of CP96,345 treatment is mediated by stabilization of the blood-brain barrier and suppression of Th1 immunity.
Collapse
Affiliation(s)
- Stefan Nessler
- Clinical Neuroimmunology Group, Department of Neurology, Philipps-University, Rudolf-Bultmann-Strasse 8, Marburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kerfoot SM, Norman MU, Lapointe BM, Bonder CS, Zbytnuik L, Kubes P. Reevaluation of P-selectin and alpha 4 integrin as targets for the treatment of experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2006; 176:6225-34. [PMID: 16670333 DOI: 10.4049/jimmunol.176.10.6225] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There has been a great deal of interest in adhesion molecules as targets for the treatment of multiple sclerosis and other inflammatory diseases. In this study, we systematically evaluate alpha(4) integrin and P-selectin as targets for therapy in murine models of multiple sclerosis-for the first time directly measuring the ability of their blockade to inhibit recruitment and relate this to clinical efficacy. Experimental autoimmune encephalomyelitis was induced in C57BL/6 or SJL/J mice and intravital microscopy was used to quantify leukocyte interactions within the CNS microvasculature. In both strains, pretreatment with blocking Abs to either alpha(4) integrin or P-selectin reduced firm adhesion to a similar extent, but did not block it completely. The combination of the Abs was more effective than either Ab alone, although the degree of improvement was more evident in SJL/J mice. Similarly, dual blockade was much more effective at preventing the subsequent accumulation of fluorescently labeled leukocytes in the tissue in both strains. Despite evidence of blockade of leukocyte recruitment mechanisms, no clinical benefit was observed with anti-adhesion molecule treatments or genetic deletion of P-selectin in the C57BL/6 model, or in a pertussis toxin-modified model in SJL/J mice. In contrast, Abs to alpha(4) integrin resulted in a significant delay in the onset of clinical signs of disease in the standard SJL/J model. Despite evidence of a similar ability to block firm adhesion, Abs to P-selectin had no effect. Importantly, combined blockade of both adhesion molecules resulted in significantly better clinical outcome than anti-alpha(4) integrin alone.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Cell Adhesion Molecules/antagonists & inhibitors
- Cells, Cultured
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- Integrin alpha4/immunology
- Integrin alpha4/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/therapy
- P-Selectin/metabolism
Collapse
Affiliation(s)
- Steven M Kerfoot
- Immunology Research Group, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
37
|
Niino M, Bodner C, Simard ML, Alatab S, Gano D, Kim HJ, Trigueiro M, Racicot D, Guérette C, Antel JP, Fournier A, Grand'Maison F, Bar-Or A. Natalizumab effects on immune cell responses in multiple sclerosis. Ann Neurol 2006; 59:748-54. [PMID: 16634035 DOI: 10.1002/ana.20859] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Our objective was to study in vivo biological effects of natalizumab on immune cell phenotype and function in multiple sclerosis (MS) patients. METHODS Blood was obtained before and after serial monthly natalizumab infusions to track functional expression of VLA-4 and migratory capacity of immune cells. The impact of infusion on activation thresholds of immune cells was evaluated. RESULTS Preinfusion VLA-4 expression differed across immune cell subsets. Natalizumab significantly, albeit partially, diminished VLA-4 expression on circulating immune cells. Cell subsets were differentially affected. Treatment significantly decreased migratory capacity of immune cells, correlating well with changes in VLA-4 expression. Effects of a single dose were not saturating and did not persist through the monthly dose interval. Infusion effect varied across patients but was remarkably stable in individual patients, over multiple infusions. Treatment significantly modulated proliferative responses of immune cells. INTERPRETATION To our knowledge, we provide first proof of concept that natalizumab diminishes migratory capacity of immune cells. Our prospective study further shows that effects of therapy likely (1) differ for distinct immune cell subsets, (2) are not sustained over current dose interval, (3) have unique profiles in individual patients, and (4) include modulation of activation threshold of immune cells. Monitoring these parameters could be relevant to ongoing safety and efficacy considerations.
Collapse
MESH Headings
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Cell Movement/drug effects
- Cell Separation
- Dose-Response Relationship, Drug
- Flow Cytometry
- Humans
- Immunity, Cellular/drug effects
- In Vitro Techniques
- Infusions, Intravenous
- Integrin alpha4/biosynthesis
- Integrin alpha4beta1/biosynthesis
- Integrin alpha4beta1/immunology
- Monocytes/immunology
- Monocytes/physiology
- Multiple Sclerosis, Relapsing-Remitting/drug therapy
- Multiple Sclerosis, Relapsing-Remitting/immunology
- Natalizumab
- Phenotype
- Prospective Studies
- Stimulation, Chemical
Collapse
Affiliation(s)
- Masaaki Niino
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Engelhardt B. Regulation of immune cell entry into the central nervous system. Results Probl Cell Differ 2006; 43:259-80. [PMID: 17068976 DOI: 10.1007/400_020] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The central nervous system (CNS) has long been regarded as an immune privileged organ implying that the immune system avoids the CNS to not disturb its homeostasis, which is critical for proper function of neurons. Meanwhile, it is accepted that immune cells do in fact gain access to the CNS and that immune responses can be mounted within this tissue. However, the unique CNS microenvironment strictly controls these immune reactions starting with tightly controlling immune cell entry into the tissue. The endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid (CSF) barrier, which protect the CNS from the constantly changing milieu within the bloodstream, also strictly control immune cell entry into the CNS. Under physiological conditions, immune cell migration into the CNS is kept at a very low level. In contrast, during a variety of pathological conditions of the CNS such as viral or bacterial infections, or during inflammatory diseases such as multiple sclerosis, immunocompetent cells readily traverse the BBB and likely also the choroid plexus and subsequently enter the CNS parenchyma or CSF spaces. This chapter summarizes our current knowledge of immune cell entry across the blood CNS barriers. A large body of the currently available information on immune cell entry into the CNS has been derived from studying experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Therefore, most of this chapter discussing immune cell entry during CNS pathogenesis refers to observations in the EAE model, allowing for the possibility that other mechanisms of immune cell entry into the CNS might apply under different pathological conditions such as bacterial meningitis or stroke.
Collapse
|
39
|
Engelhardt B. Immune cell migration across the blood–brain barrier: molecular mechanisms and therapeutic targeting. FUTURE NEUROLOGY 2006. [DOI: 10.2217/14796708.1.1.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The endothelial blood–brain barrier (BBB) and the epithelial blood–cerebrospinal fluid barrier protect the CNS from the constantly changing milieu within the bloodstream. The BBB strictly controls immune cell entry into the CNS, which is rare under physiological conditions. During a variety of pathological conditions of the CNS, such as viral or bacterial infections, or during inflammatory diseases, such as multiple sclerosis, immunocompetent cells readily traverse the BBB and subsequently enter the CNS parenchyma. Most of the available information on immune cell entry into the CNS is derived from studying experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Consequently, our current knowledge on traffic signals mediating immune cell entry across the BBB during immunosurveillance and disease results mainly from experimental data in the EAE model. Therefore, a large part of this review summarizes these findings. Similarly, the potential benefits and risks associated with therapeutic targeting of immune cell trafficking across the BBB will be discussed in the context of multiple sclerosis, since elucidation of the molecular mechanisms relevant to this disease have largely relied on the use of its in vivo model, EAE.
Collapse
Affiliation(s)
- Britta Engelhardt
- Theodore Kocher Institute, University of Bern, Freiestr. 1, CH-3012 Switzerland
| |
Collapse
|
40
|
González-Amaro R, Mittelbrunn M, Sánchez-Madrid F. Therapeutic anti-integrin (alpha4 and alphaL) monoclonal antibodies: two-edged swords? Immunology 2005; 116:289-96. [PMID: 16236118 PMCID: PMC1802423 DOI: 10.1111/j.1365-2567.2005.02225.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Anti-alpha4 and anti-alphaL integrin chain monoclonal antibodies have shown a clear-cut beneficial effect in different animal models of autoimmune and inflammatory disorders as well as in human diseases, including multiple sclerosis, inflammatory bowel disease, and psoriasis. It has been widely assumed that this therapeutic effect is mainly consequence of the blockade of leucocyte adhesion to endothelium, inhibiting thus their extravasation and the inflammatory phenomenon. However, it is evident that both alpha4beta1 (very late antigen-4) and alphaLbeta2 (leucocyte function-associated antigen-1) integrins have additional important roles in other immune phenomena, including the formation of the immune synapse and the differentiation of T helper 1 lymphocytes. Therefore, it is very feasible that the long-term administration of blocking agents directed against these integrins to patients with inflammatory/autoimmune conditions may have undesirable or unexpected effects.
Collapse
|
41
|
Gläsner J, Blum H, Wehner V, Stilz HU, Humphries JD, Curley GP, Mould AP, Humphries MJ, Hallmann R, Röllinghoff M, Gessner A. A small molecule alpha 4 beta 1 antagonist prevents development of murine Lyme arthritis without affecting protective immunity. THE JOURNAL OF IMMUNOLOGY 2005; 175:4724-34. [PMID: 16177120 DOI: 10.4049/jimmunol.175.7.4724] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
After infection with Borrelia burgdorferi, humans and mice under certain conditions develop arthritis. Initiation of inflammation is dependent on the migration of innate immune cells to the site of infection, controlled by interactions of a variety of adhesion molecules. In this study, we used the newly synthesized compound S18407, which is a prodrug of the active drug S16197, to analyze the functional importance of alpha4beta1-dependent cell adhesion for the development of arthritis and for the antibacterial immune response. S16197 is shown to interfere specifically with the binding of alpha4beta(1 integrin to its ligands VCAM-1 and fibronectin in vitro. Treatment of B. burgdorferi-infected C3H/HeJ mice with the alpha4beta1 antagonist significantly ameliorated the outcome of clinical arthritis and the influx of neutrophilic granulocytes into ankle joints. Furthermore, local mRNA up-regulation of the proinflammatory mediators IL-1, IL-6, and cyclooxygenase-2 was largely abolished. Neither the synthesis of spirochete-specific Igs nor the development of a Th1-dominated immune response was altered by the treatment. Importantly, the drug also did not interfere with Ab-mediated control of spirochete load in the tissues. These findings demonstrate that the pathogenesis, but not the protective immune response, in Lyme arthritis is dependent on the alpha4beta1-mediated influx of inflammatory cells. The onset of inflammation can be successfully targeted by treatment with S18407.
Collapse
Affiliation(s)
- Joachim Gläsner
- Institute for Clinical Microbiology, Immunology, and Hygiene, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Schreiner B, Kieseier BC, Hartung HP, Hohlfeld R, Wiendl H. Blockade von Adhäsionsmolekülen mit Natalizumab in der Therapie der Multiplen Sklerose. DER NERVENARZT 2005; 76:999-1005. [PMID: 15812675 DOI: 10.1007/s00115-005-1900-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Natalizumab is a humanized, monoclonal antibody, that inhibits adhesion molecules (alpha(4)-integrins) on the surface of immune cells. These adhesion molecules are important for binding of lymphocytes to endothelial cells of blood vessels and infiltration of inflammatory cells into tissues. Natalizumab is currently being tested in large clinical trials for the treatment of multiple sclerosis (MS) and other autoimmune diseases (inflammatory bowel diseases, rheumatoid arthritis). After demonstrating the safety and potential effectiveness of natalizumab in MS therapy during shorter treatment periods (</=6 months) in clinical phase I and II studies, two ongoing large, double-blinded, placebo-controlled phase III trials (named AFFIRM and SENTINEL) are evaluating its efficacy for patients with relapsing-remitting MS in respect to primary clinical endpoints (relapse rate, disease progression). Based a 1-year interim analysis of these studies, natalizumab was recently authorized by the U.S. Food and Drug Administration for treatment in reducing the frequency of clinical surges in multiple sclerosis, and an application was also made for its use in Europe. After more than 2 years of combined natalizumab (Tysabri) and interferon beta-1a (Avonex) therapy in the so-called Sentinel Study, there was one unexpected death and one appearance of progressive multifocal leukoencephalopathy. As a result, in February 2005 the manufacturers (Biogen/Elan) stopped all running studies of natalizumab and removed the drug from the market. New studies are underway to gain more understanding and especially to determine the risk to patients treated in the Sentinel Study. This article summarizes and updates the results of previous and ongoing natalizumab trials in the context of MS.
Collapse
Affiliation(s)
- B Schreiner
- Neurologische Klinik und Poliklinik der Julius-Maximilians-Universität Würzburg
| | | | | | | | | |
Collapse
|
43
|
Pepinsky RB, Lee WC, Cornebise M, Gill A, Wortham K, Chen LL, Leone DR, Giza K, Dolinski BM, Perper S, Nickerson-Nutter C, Lepage D, Chakraborty A, Whalley ET, Petter RC, Adams SP, Lobb RR, Scott DM. Design, synthesis, and analysis of a polyethelene glycol-modified (PEGylated) small molecule inhibitor of integrin {alpha}4{beta}1 with improved pharmaceutical properties. J Pharmacol Exp Ther 2005; 312:742-50. [PMID: 15485895 DOI: 10.1124/jpet.104.075648] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Integrin alpha4beta1 plays an important role in inflammatory processes by regulating the migration of leukocytes into inflamed tissues. Previously, we identified BIO5192 [2(S)-{[1-(3,5-dichloro-benzenesulfonyl)-pyrrolidine-2(S)-carbonyl]-amino}-4-[4-methyl-2(S)-(methyl-{2-[4-(3-o-tolyl-ureido)-phenyl]-acetyl}-amino)-pentanoylamino]-butyric acid], a highly selective and potent (K(D) of 9 pM) small molecule inhibitor of alpha4beta1. Although BIO5192 is efficacious in various animal models of inflammatory disease, high doses and daily treatment of the compound are needed to achieve a therapeutic effect because of its relatively short serum half-life. To address this issue, polyethylene glycol modification (PEGylation) was used as an approach to improve systemic exposure. BIO5192 was PEGylated by a targeted approach in which derivatizable amino groups were incorporated into the molecule. Two sites were identified that could be modified, and from these, five PEGylated compounds were synthesized and characterized. One compound, 2a-PEG (K(D) of 19 pM), was selected for in vivo studies. The pharmacokinetic and pharmacodynamic properties of 2a-PEG were dramatically improved relative to the unmodified compound. The PEGylated compound was efficacious in a rat model of experimental autoimmune encephalomyelitis at a 30-fold lower molar dose than the parent compound and required only a once-a-week dosing regimen compared with a daily treatment for BIO5192. Compound 2a-PEG was highly selective for alpha4beta1. These studies demonstrate the feasibility of PEGylation of alpha4beta1-targeted small molecules with retention of activity in vitro and in vivo. 2a-PEG, and related compounds, will be valuable reagents for assessing alpha4beta1 biology and may provide a new therapeutic approach to treatment of human inflammatory diseases.
Collapse
Affiliation(s)
- R B Pepinsky
- Biogen Idec, Inc., 14 Cambridge Center, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Deloire MSA, Touil T, Brochet B, Dousset V, Caillé JM, Petry KG. Macrophage brain infiltration in experimental autoimmune encephalomyelitis is not completely compromised by suppressed T-cell invasion: in vivo magnetic resonance imaging illustration in effective anti-VLA-4 antibody treatment. Mult Scler 2005; 10:540-8. [PMID: 15471371 DOI: 10.1191/1352458504ms1090oa] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Large inflammatory infiltrates of T cells, macrophages and B cells in the central nervous system (CNS) contribute to the pathogenesis of multiple sclerosis (MS). The passage of T cells through the blood-brain barrier can be suppressed with antibodies directed against alpha-4 integrins (VLA-4) that mediate T-cell adherence. This treatment, in phase III of clinical trial evaluation, reduces lesion development in MS patients. In the ongoing inflammatory disease process the consequences of T-cell inhibitory anti-VLA-4 antibodies on inflammatory compounds are still poorly investigated. We show that anti-VLA-4 antibody treatment during the late preclinical phase of the acute experimental autoimmune encephalomyelitis (EAE) MS rat model interrupts T-cell egress out of the vascular compartment and suppresses clinical disease and histological alterations but macrophage recruitment in the CNS is not fully compromised. Among the treated EAE animals not developing disease, none presented foci of T-cell infiltration in CNS. However, in 75% of the treated EAE rats monocyte ingress in CNS was observed in vivo by magnetic resonance imaging with the ultrasmall superparamagnetic iron oxide contrast agent. Our data shed new light on the role of remaining macrophage brain infiltration in an induced but interrupted T-cell-mediated EAE disease process.
Collapse
MESH Headings
- Acute Disease
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Biomarkers
- Contrast Media
- Cysteine
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Epitopes/immunology
- Female
- Ferric Compounds
- Integrin alpha4beta1/immunology
- Macrophages/immunology
- Macrophages/pathology
- Magnetic Resonance Imaging
- Monocytes/immunology
- Monocytes/pathology
- Natalizumab
- Rats
- Rats, Inbred Lew
- Serum Albumin, Bovine
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Mathilde S A Deloire
- EA 2966 Neurobiology of Myelin Diseases Laboratory, University Victor Segalen Bordeaux 2, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
45
|
Mittelbrunn M, Molina A, Escribese MM, Yáñez-Mó M, Escudero E, Ursa A, Tejedor R, Mampaso F, Sánchez-Madrid F. VLA-4 integrin concentrates at the peripheral supramolecular activation complex of the immune synapse and drives T helper 1 responses. Proc Natl Acad Sci U S A 2004; 101:11058-63. [PMID: 15263094 PMCID: PMC503740 DOI: 10.1073/pnas.0307927101] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Indexed: 11/18/2022] Open
Abstract
The integrin alpha 4 beta 1 (VLA-4) not only mediates the adhesion and transendothelial migration of leukocytes, but also provides costimulatory signals that contribute to the activation of T lymphocytes. However, the behavior of alpha 4 beta 1 during the formation of the immune synapse is currently unknown. Here, we show that alpha 4 beta 1 is recruited to both human and murine antigen-dependent immune synapses, when the antigen-presenting cell is a B lymphocyte or a dendritic cell, colocalizing with LFA-1 at the peripheral supramolecular activation complex. However, when conjugates are formed in the presence of anti-alpha 4 antibodies, VLA-4 colocalizes with the CD3-zeta chain at the center of the synapse. In addition, antibody engagement of alpha 4 integrin promotes polarization toward a T helper 1 (Th1) response in human in vitro models of CD4(+) T cell differentiation and naïve T cell priming by dendritic cells. The in vivo administration of anti-alpha 4 integrin antibodies also induces an immune deviation to Th1 response that dampens a Th2-driven autoimmune nephritis in Brown Norway rats. These data reveal a regulatory role of alpha 4 integrins on T lymphocyte-antigen presenting cell cognate immune interactions.
Collapse
Affiliation(s)
- María Mittelbrunn
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Madrid 28006, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gold R, Ransohoff RM, Sandrock A, Rieckmann P. The blood–brain barrier as target of multiple sclerosis research and therapy. J Neuroimmunol 2004; 152:1-4. [PMID: 15303274 DOI: 10.1016/j.jneuroim.2004.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ralf Gold
- Clinical Research Group for Multiple Sclerosis and Neuroimmunology, Department of Neurology, University of Würzburg, Germany.
| | | | | | | |
Collapse
|