1
|
Shekatkar M, Kheur S, Deshpande S, Sakhare S, Sanap A, Kheur M, Bhonde R. Critical appraisal of the chorioallantoic membrane model for studying angiogenesis in preclinical research. Mol Biol Rep 2024; 51:1026. [PMID: 39340708 DOI: 10.1007/s11033-024-09956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Angiogenesis, the biological mechanism by which new blood vessels are generated from existing ones, plays a vital role in growth and development. Effective preclinical screening is necessary for the development of medications that may enhance or inhibit angiogenesis in the setting of different disorders. Traditional in vitro and, in vivo models of angiogenesis are laborious and time-consuming, necessitating advanced infrastructure for embryo culture. MAIN BODY A challenge encountered by researchers studying angiogenesis is the lack of appropriate techniques to evaluate the impact of regulators on the angiogenic response. An ideal test should possess reliability, technical simplicity, easy quantifiability, and, most importantly, physiological relevance. The CAM model, leveraging the extraembryonic membrane of the chicken embryo, offers a unique combination of accessibility, low cost, and rapid development, making it an attractive option for angiogenesis assays. This review evaluates the strengths and limitations of the CAM model in the context of its anatomical and physiological properties, and its relevance to human pathophysiological conditions. Its abundant capillary network makes it a common choice for studying angiogenesis. The CAM assay serves as a substitute for animal models and offers a natural setting for developing blood vessels and the many elements involved in the intricate interaction with the host. Despite its advantages, the CAM model's limitations are notable. These include species-specific responses that may not always extrapolate to humans and the ethical considerations of using avian embryos. We discuss methodological adaptations that can mitigate some of these limitations and propose future directions to enhance the translational relevance of this model. This review underscores the CAM model's valuable role in angiogenesis research and aims to guide researchers in optimizing its use for more predictive and robust preclinical studies. CONCLUSION The highly vascularized chorioallantoic membrane (CAM) of fertilized chicken eggs is a cost-effective and easily available method for screening angiogenesis, in comparison to other animal models.
Collapse
Affiliation(s)
- Madhura Shekatkar
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Supriya Kheur
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Shantanu Deshpande
- Department of Pediatric and Preventive Dentistry, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Navi Mumbai, India
| | - Swapnali Sakhare
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Mohit Kheur
- Department of Prosthodontics, M.A. Rangoonwala College of Dental Sciences and Research Centre, Pune, Maharashtra, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
2
|
Deliyanti D, Suphapimol V, Ang P, Tang X, Jayasimhan A, Wilkinson-Berka JL. Early Depletion of Neutrophils Reduces Retinal Inflammation and Neovascularization in Mice with Oxygen-Induced Retinopathy. Int J Mol Sci 2023; 24:15680. [PMID: 37958664 PMCID: PMC10648252 DOI: 10.3390/ijms242115680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Retinal inflammation is a central feature of ocular neovascular diseases such as diabetic retinopathy and retinopathy of prematurity, but the contribution of neutrophils to this process is not fully understood. We studied oxygen-induced retinopathy (OIR) which develops in two phases, featuring hyperoxia-induced retinal vaso-obliteration in phase I, followed by retinal neovascularization in phase II. As neutrophils are acute responders to tissue damage, we evaluated whether neutrophil depletion with an anti-Ly6G mAb administered in phase I OIR influenced retinal inflammation and vascular injury. Neutrophils were measured in blood and spleen via flow cytometry, and myeloperoxidase, an indicator of neutrophil activity, was evaluated in the retina using Western blotting. Retinal vasculopathy was assessed by quantitating vaso-obliteration, neovascularization, vascular leakage, and VEGF levels. The inflammatory factors, TNF, MCP-1, and ICAM-1 were measured in retina. In the OIR controls, neutrophils were increased in the blood and spleen in phase I but not phase II OIR. In OIR, the anti-Ly6G mAb reduced neutrophils in the blood and spleen, and myeloperoxidase, inflammation, and vasculopathy in the retina. Our findings revealed that the early rise in neutrophils in OIR primes the retina for an inflammatory and angiogenic response that promotes severe damage to the retinal vasculature.
Collapse
Affiliation(s)
| | | | | | | | | | - Jennifer L. Wilkinson-Berka
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010, Australia; (D.D.); (V.S.); (P.A.); (X.T.); (A.J.)
| |
Collapse
|
3
|
Gao F, Feng Y, Hu X, Zhang X, Li T, Wang Y, Ge S, Wang C, Chi J, Tan X, Wang N. Neutrophils regulate tumor angiogenesis in oral squamous cell carcinoma and the role of Chemerin. Int Immunopharmacol 2023; 121:110540. [PMID: 37354780 DOI: 10.1016/j.intimp.2023.110540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant tumor of the oral cavity. Tumor angiogenesis plays a crucial role in tumor progression. Studies have established the correlation between neutrophils and tumor angiogenesis in the tumor microenvironment. A previous study found that overexpression of Chemerin- in OSCC increased the infiltration of neutrophils in tumor tissues. This study aims to investigate the mechanisms underlying the regulation of the development and progression of OSCC, which have great significance in enhancing the postoperative survival of patients with OSCC. This study evaluated the accuracy of neutrophil count combined with MVD in predicting patients' survival time and its relationship with clinicopathological parameters and prognosis. Additionally, the study explored the effects of the Chemerin-neutrophil interaction on the angiogenic function of HUVECs. In OSCC, the overexpression of Chemerin promoted the angiogenesis of HUVECs through neutrophils. Moreover, Chemerin upregulated pro-angiogenic factors (e.g., VEGF-A, MMP-9, MMP-2, and S100A9) in neutrophils by activating MEK/ERK signaling pathway. In vivo experiments demonstrated that Chemerin may promote tumor growth by regulating tumor angiogenesis. In conclusion, the results suggest that neutrophil count and MVD serve as poor prognostic factors for patients with OSCC, and their combination is a more effective factor in predicting the survival time of OSCC patients. Neutrophils potentially contribute to angiogenesis through MEK/ERK signaling pathway via Chemerin and participate in the progression and metastasis of OSCC.
Collapse
Affiliation(s)
- Fei Gao
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao city, Shandong Province, China
| | - Yuanyong Feng
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao city, Shandong Province, China
| | - Xiaoyuan Hu
- Biological Therapy Center, The Third Affiliated Hospital of Kunming Medical University, Kunzhou Road No. 519, Kunming, Yunnan Province, China
| | - Xuan Zhang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao city, Shandong Province, China
| | - Tongtong Li
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao city, Shandong Province, China
| | - Yueqi Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao city, Shandong Province, China
| | - Shengyou Ge
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao city, Shandong Province, China
| | - Chengqin Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao city, Shandong Province, China
| | - Jinghua Chi
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao city, Shandong Province, China
| | - Xiaohua Tan
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao city, Shandong Province, China
| | - Ning Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao city, Shandong Province, China.
| |
Collapse
|
4
|
Dutta A, Bhagat S, Paul S, Katz JP, Sengupta D, Bhargava D. Neutrophils in Cancer and Potential Therapeutic Strategies Using Neutrophil-Derived Exosomes. Vaccines (Basel) 2023; 11:1028. [PMID: 37376417 PMCID: PMC10301170 DOI: 10.3390/vaccines11061028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Neutrophils are the most abundant immune cells and make up about 70% of white blood cells in human blood and play a critical role as the first line of defense in the innate immune response. They also help regulate the inflammatory environment to promote tissue repair. However, in cancer, neutrophils can be manipulated by tumors to either promote or hinder tumor growth depending on the cytokine pool. Studies have shown that tumor-bearing mice have increased levels of neutrophils in peripheral circulation and that neutrophil-derived exosomes can deliver various cargos, including lncRNA and miRNA, which contribute to tumor growth and degradation of extracellular matrix. Exosomes derived from immune cells generally possess anti-tumor activities and induce tumor-cell apoptosis by delivering cytotoxic proteins, ROS generation, H2O2 or activation of Fas-mediated apoptosis in target cells. Engineered exosome-like nanovesicles have been developed to deliver chemotherapeutic drugs precisely to tumor cells. However, tumor-derived exosomes can aggravate cancer-associated thrombosis through the formation of neutrophil extracellular traps. Despite the advancements in neutrophil-related research, a detailed understanding of tumor-neutrophil crosstalk is still lacking and remains a major barrier in developing neutrophil-based or targeted therapy. This review will focus on the communication pathways between tumors and neutrophils, and the role of neutrophil-derived exosomes (NDEs) in tumor growth. Additionally, potential strategies to manipulate NDEs for therapeutic purposes will be discussed.
Collapse
Affiliation(s)
- Abhishek Dutta
- Exsure, Kalinga Institute of Industrial Technology, KIIT Rd, Patia, Bhubaneswar 751024, Odisha, India
| | - Shrikrishna Bhagat
- Exsure, Kalinga Institute of Industrial Technology, KIIT Rd, Patia, Bhubaneswar 751024, Odisha, India
| | - Swastika Paul
- Exsure, Kalinga Institute of Industrial Technology, KIIT Rd, Patia, Bhubaneswar 751024, Odisha, India
| | - Jonathan P. Katz
- Department of Gastroenterology, 928 BRB II/III, 421 Curie Blvd, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Debomita Sengupta
- Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute (under Ministry of Health and Family Welfare, Government of India Regional Cancer Centre), 37, S.P. Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Dharmendra Bhargava
- Department of Gastroenterology, 928 BRB II/III, 421 Curie Blvd, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Miebach L, Berner J, Bekeschus S. In ovo model in cancer research and tumor immunology. Front Immunol 2022; 13:1006064. [PMID: 36248802 PMCID: PMC9556724 DOI: 10.3389/fimmu.2022.1006064] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Considering cancer not only as malignant cells on their own but as a complex disease in which tumor cells interact and communicate with their microenvironment has motivated the establishment of clinically relevant 3D models in past years. Technological advances gave rise to novel bioengineered models, improved organoid systems, and microfabrication approaches, increasing scientific importance in preclinical research. Notwithstanding, mammalian in vivo models remain closest to mimic the patient’s situation but are limited by cost, time, and ethical constraints. Herein, the in ovo model bridges the gap as an advanced model for basic and translational cancer research without the need for ethical approval. With the avian embryo being a naturally immunodeficient host, tumor cells and primary tissues can be engrafted on the vascularized chorioallantoic membrane (CAM) with high efficiencies regardless of species-specific restrictions. The extraembryonic membranes are connected to the embryo through a continuous circulatory system, readily accessible for manipulation or longitudinal monitoring of tumor growth, metastasis, angiogenesis, and matrix remodeling. However, its applicability in immunoncological research is largely underexplored. Dual engrafting of malignant and immune cells could provide a platform to study tumor-immune cell interactions in a complex, heterogenic and dynamic microenvironment with high reproducibility. With some caveats to keep in mind, versatile methods for in and ex ovo monitoring of cellular and molecular dynamics already established in ovo are applicable alike. In this view, the present review aims to emphasize and discuss opportunities and limitations of the chicken embryo model for pre-clinical research in cancer and cancer immunology.
Collapse
Affiliation(s)
- Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Julia Berner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Greifswald, Germany
- Department of Oral and Maxillofacial Surgery, Plastic Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Greifswald, Germany
- *Correspondence: Sander Bekeschus,
| |
Collapse
|
6
|
Kennedy DC, Coen B, Wheatley AM, McCullagh KJA. Microvascular Experimentation in the Chick Chorioallantoic Membrane as a Model for Screening Angiogenic Agents including from Gene-Modified Cells. Int J Mol Sci 2021; 23:452. [PMID: 35008876 PMCID: PMC8745510 DOI: 10.3390/ijms23010452] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
The chick chorioallantoic membrane (CAM) assay model of angiogenesis has been highlighted as a relatively quick, low cost and effective model for the study of pro-angiogenic and anti-angiogenic factors. The chick CAM is a highly vascularised extraembryonic membrane which functions for gas exchange, nutrient exchange and waste removal for the growing chick embryo. It is beneficial as it can function as a treatment screening tool, which bridges the gap between cell based in vitro studies and in vivo animal experimentation. In this review, we explore the benefits and drawbacks of the CAM assay to study microcirculation, by the investigation of each distinct stage of the CAM assay procedure, including cultivation techniques, treatment applications and methods of determining an angiogenic response using this assay. We detail the angiogenic effect of treatments, including drugs, metabolites, genes and cells used in conjunction with the CAM assay, while also highlighting the testing of genetically modified cells. We also present a detailed exploration of the advantages and limitations of different CAM analysis techniques, including visual assessment, histological and molecular analysis along with vascular casting methods and live blood flow observations.
Collapse
Affiliation(s)
| | | | - Antony M. Wheatley
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland, H91 W5P7 Galway, Ireland; (D.C.K.); (B.C.)
| | - Karl J. A. McCullagh
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland, H91 W5P7 Galway, Ireland; (D.C.K.); (B.C.)
| |
Collapse
|
7
|
Li T, Tan KS, Tu YY, Zhao L, Liu J, Ong HH, Wang DY, Shi L. Overexpression of Neutrophil MMP-9 and HIF-1α May Contribute to the Finger-Like Projections Formation and Histo-Pathogenesis in Nasal Inverted Papilloma. J Inflamm Res 2021; 14:2979-2991. [PMID: 34262323 PMCID: PMC8275020 DOI: 10.2147/jir.s312605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background Nasal inverted papilloma (NIP) is defined based on its histological characteristic of inverted epithelium growth into the stroma. The inversion can result in epithelial growth in the underlying connective tissue stroma when the basement membrane completely separates from the epithelial layer. To date, such inversion mechanism underlying NIP's pathological phenomenon is unknown. Therefore, we hypothesized that mediators and soluble proteins released by neutrophils, the most predominant infiltrating cells in NIP, is vital in causing the epithelial changes and pathogenesis of NIP. Methods We collected 37 NIP tissues from patients who underwent surgical removal of NIP and performed hematoxylin-eosin (HE), immunohistochemical, and immunofluorescence staining to analyze in-depth the basic characteristics of NIP, including detecting the expression and distribution of MMPs and associated factors in NIP. Western blotting and quantitative real-time PCR were further performed to analyze the protein and mRNA expression levels of specific factors including MMPs, HIF-1α, and tissue inhibitors of metalloproteinases (TIMPs). Results We observed finger-like projections that insert into the epithelium in NIP tissue as its main characteristics. The projections contain fibroblasts, extracellular matrix, capillaries, and infiltrating inflammatory cells. We found abundant neutrophils clustered at the finger-like projection of NIP, and also noted MMP-1 and MMP-9 were up-regulated in NIP (p<0.05), whereas TIMP-1/3 was decreased. The expression level of HIF-1α was also found to be increased in NIP tissue. We further showed that MMP-9 and HIF-1α were mainly expressed by neutrophils and were predominantly observed in the finger-like projections that contribute to the NIP pathology. Conclusion Upregulation and release of MMP-9 and HIF-1α from infiltrating neutrophils may cause damage to the epithelial basement membrane and epithelial clefts, forming finger-like projections with angiogenesis and fibroblasts insertion, resulting in epithelial growth in the tissue stroma, a typical histo-pathological characteristic in NIP.
Collapse
Affiliation(s)
- Tao Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University Health System Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Biosafety level 3 Core Facility, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Yan Yi Tu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Zhao
- Department of Otolaryngology, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University Health System Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hsiao Hui Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University Health System Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University Health System Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
8
|
Chu PY, Koh APF, Antony J, Huang RYJ. Applications of the Chick Chorioallantoic Membrane as an Alternative Model for Cancer Studies. Cells Tissues Organs 2021; 211:222-237. [PMID: 33780951 DOI: 10.1159/000513039] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/13/2020] [Indexed: 11/19/2022] Open
Abstract
A variety of in vivo experimental models have been established for the studies of human cancer using both cancer cell lines and patient-derived xenografts (PDXs). In order to meet the aspiration of precision medicine, the in vivomurine models have been widely adopted. However, common constraints such as high cost, long duration of experiments, and low engraftment efficiency remained to be resolved. The chick embryo chorioallantoic membrane (CAM) is an alternative model to overcome some of these limitations. Here, we provide an overview of the applications of the chick CAM model in the study of oncology. The CAM model has shown significant retention of tumor heterogeneity alongside increased xenograft take rates in several PDX studies. Various imaging techniques and data analysis have been applied to study tumor metastasis, angiogenesis, and therapeutic response to novel agents. Lastly, to practically illustrate the feasibility of utilizing the CAM model, we summarize the general protocol used in a case study utilizing an ovarian cancer PDX.
Collapse
Affiliation(s)
- Pei-Yu Chu
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Angele Pei-Fern Koh
- Cancer Science Institute of Singapore, Center for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Jane Antony
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, California, USA
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Depletion of Embryonic Macrophages Leads to a Reduction in Angiogenesis in the Ex Ovo Chick Chorioallantoic Membrane Assay. Cells 2020; 10:cells10010005. [PMID: 33375076 PMCID: PMC7822194 DOI: 10.3390/cells10010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/28/2022] Open
Abstract
Macrophages play an important but poorly understood role in angiogenesis. To investigate their role in vessel formation, relevant in vivo models are crucial. Although the chick chorioallantoic membrane (CAM) model has been frequently used as an angiogenesis assay, limited data are available on the involvement of chicken macrophages in this process. Here, we describe a method to deplete macrophages in the ex ovo chick CAM assay by injection of clodronate liposomes and show that this depletion directly affects vascularisation of collagen onplants. Chicken embryos were injected intravenously with either clodronate or phosphate-buffered saline (PBS) liposomes, followed by placement of collagen type I plugs on the CAM to quantify angiogenic ingrowth. Clodronate liposome injection led to a significant 3.4-fold reduction of macrophages compared with control embryos as measured by immunohistochemistry and flow cytometry. Furthermore, analysis of vessel ingrowth into the collagen plugs revealed a significantly lower angiogenic response in macrophage-depleted embryos compared with control embryos, indicating that chicken embryonic macrophages play an essential function in the development of blood vessels. These results demonstrate that the chick CAM assay provides a promising model to investigate the role of macrophages in angiogenesis.
Collapse
|
10
|
Heimes D, Wiesmann N, Eckrich J, Brieger J, Mattyasovszky S, Proff P, Weber M, Deschner J, Al-Nawas B, Kämmerer PW. In Vivo Modulation of Angiogenesis and Immune Response on a Collagen Matrix via Extracorporeal Shockwaves. Int J Mol Sci 2020; 21:ijms21207574. [PMID: 33066403 PMCID: PMC7589066 DOI: 10.3390/ijms21207574] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/02/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022] Open
Abstract
The effective management of tissue integration and immunological responses to transplants decisively co-determines the success of soft and hard tissue reconstruction. The aim of this in vivo study was to evaluate the eligibility of extracorporeal shock wave therapy (ESWT) with respect to its ability to modulate angiogenesis and immune response to a collagen matrix (CM) for tissue engineering in the chorioallantoic membrane (CAM) assay, which is performed with fertilized chicken eggs. CM were placed on the CAM on embryonic development day (EDD) 7; at EDD-10, ESWT was conducted at 0.12 mJ/mm2 with 500 impulses each. One and four days later, angiogenesis represented by vascularized area, vessel density, and vessel junctions as well as HIF-1α and VEGF gene expression were evaluated. Furthermore, immune response (iNOS2, MMP-9, and MMP-13 via qPCR) was assessed and compared between ESWT- and non-ESWT-groups. At EDD-14, the vascularized area (+115% vs. +26%) and the increase in vessel junctions (+751% vs. +363%) were significantly higher in the ESWT-group. ESWT significantly increased MMP-9 gene expression at EDD-11 and significantly decreased MMP-13 gene expression at EDD-14 as compared to the controls. Using the CAM assay, an enhanced angiogenesis and neovascularization in CM after ESWT were observed. Furthermore, ESWT could reduce the inflammatory activity after a latency of four days.
Collapse
Affiliation(s)
- Diana Heimes
- Department of Oral- and Maxillofacial and Plastic Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (N.W.); (B.A.-N.); (P.W.K.)
- Correspondence: ; Tel.: +49-6131-17-5086
| | - Nadine Wiesmann
- Department of Oral- and Maxillofacial and Plastic Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (N.W.); (B.A.-N.); (P.W.K.)
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany; (J.E.); (J.B.)
| | - Jonas Eckrich
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany; (J.E.); (J.B.)
| | - Juergen Brieger
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany; (J.E.); (J.B.)
| | - Stefan Mattyasovszky
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
| | - Peter Proff
- Department of Orthodontics, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Manuel Weber
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Augustusplatz 2, 55131 Mainz, Germany;
| | - Bilal Al-Nawas
- Department of Oral- and Maxillofacial and Plastic Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (N.W.); (B.A.-N.); (P.W.K.)
| | - Peer W. Kämmerer
- Department of Oral- and Maxillofacial and Plastic Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (N.W.); (B.A.-N.); (P.W.K.)
| |
Collapse
|
11
|
Rezzola S, Loda A, Corsini M, Semeraro F, Annese T, Presta M, Ribatti D. Angiogenesis-Inflammation Cross Talk in Diabetic Retinopathy: Novel Insights From the Chick Embryo Chorioallantoic Membrane/Human Vitreous Platform. Front Immunol 2020; 11:581288. [PMID: 33117388 PMCID: PMC7552803 DOI: 10.3389/fimmu.2020.581288] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
Pathological angiogenesis of the retina is a key component of irreversible causes of blindness, as observed in proliferative diabetic retinopathy (PDR). The pathogenesis of PDR is complex and involves vascular, inflammatory, and neuronal mechanisms. Several structural and molecular alterations associated to PDR are related to the presence of inflammation that appears to play a non-redundant role in the neovascular response that characterizes the retina of PDR patients. Vascular endothelial growth factor (VEGF) blockers have evolved over time for the treatment of retinal neovascularization. However, several limitations to anti-VEGF interventions exist. Indeed, the production of other angiogenic factors and pro-inflammatory mediators may nullify and/or cause resistance to anti-VEGF therapies. Thus, appropriate experimental models are crucial for dissecting the mechanisms leading to retinal neovascularization and for the discovery of more efficacious anti-angiogenic/anti-inflammatory therapies for PDR patients. This review focuses on the tight cross talk between angiogenesis and inflammation during PDR and describe how the chick embryo chorioallantoic membrane (CAM) assay may represent a cost-effective and rapid in vivo tool for the study of the relationship between neovascular and inflammatory responses elicited by the vitreous humor of PDR patients and for the screening of novel therapeutic agents.
Collapse
Affiliation(s)
- Sara Rezzola
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Loda
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Francesco Semeraro
- Eye Clinic, Department of Neurological and Vision Sciences, University of Brescia, Brescia, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy.,Italian Consortium for Biotechnology (CIB), Unit of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy
| |
Collapse
|
12
|
Andleeb A, Dikici S, Waris TS, Bashir MM, Akhter S, Chaudhry AA, MacNeil S, Yar M. Developing affordable and accessible pro-angiogenic wound dressings; incorporation of 2 deoxy D-ribose (2dDR) into cotton fibres and wax-coated cotton fibres. J Tissue Eng Regen Med 2020; 14:973-988. [PMID: 32473079 DOI: 10.1002/term.3072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/13/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022]
Abstract
The absorption capacity of cotton dressings is a critical factor in their widespread use where they help absorb wound exudate. Cotton wax dressings, in contrast, are used for wounds where care is taken to avoid adhesion of dressings to sensitive wounds such as burn injuries. Accordingly, we explored the loading of 2-deoxy-D-ribose (2dDR), a small sugar, which stimulates angiogenesis and wound healing in normal and diabetic rats, into both types of dressings and measured the release of it over several days. The results showed that approximately 90% of 2dDR was released between 3 and 5 days when loaded into cotton dressings. For wax-coated cotton dressings, several methods of loading of 2dDR were explored. A strategy similar to the commercial wax coating methodology was found the best protocol which provided a sustained release over 5 days. Cytotoxicity analysis of 2dDR loaded cotton dressing showed that the dressing stimulated metabolic activity of fibroblasts over 7 days confirming the non-toxic nature of this sugar-loaded dressings. The results of the chick chorioallantoic membrane (CAM) assay demonstrated a strong angiogenic response to both 2dDR loaded cotton dressing and to 2dDR loaded cotton wax dressings. Both dressings were found to increase the number of newly formed blood vessels significantly when observed macroscopically and histologically. We conclude this study offers a simple approach to developing affordable wound dressings as both have the potential to be evaluated as pro-active dressings to stimulate wound healing in wounds where management of exudate or prevention of adherence to the wounds are clinical requirements.
Collapse
Affiliation(s)
- Anisa Andleeb
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
| | - Serkan Dikici
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - Tayyaba Sher Waris
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
| | - Muhammad Mustehsan Bashir
- Department of Plastic, Reconstructive surgery and Burn Unit, King Edward Medical University Lahore, Pakistan
| | - Shahid Akhter
- Cotton Craft Pvt Ltd Plot 407, 408 Sunder Industrial Estate, Lahore, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
| | - Sheila MacNeil
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - Muhammad Yar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
| |
Collapse
|
13
|
Yang JH, Chen CD, Chou CH, Wen WF, Tsao PN, Lee H, Chen SU. Intentional endometrial injury increases embryo implantation potentials through enhanced endometrial angiogenesis†. Biol Reprod 2020; 100:381-389. [PMID: 30247509 DOI: 10.1093/biolre/ioy205] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/03/2018] [Accepted: 09/20/2018] [Indexed: 11/12/2022] Open
Abstract
Embryo implantation rates have been found to be enhanced by precedent endometrial injuries, but the underlying mechanism is not fully investigated. Endometrial inflammation occurs both at peri-implantation period and after endometrial injury, in which vascular reaction is a distinctive feature of inflammation. In this study, intentional endometrial injury was done with a 0.7-mm-diameter brush inserted into the left uterine horn of female ICR mice, then turned around 720° (group 2), and the right uterine horn served as the controls without endometrial injuries (group 1). Intraperitoneal equine chorionic gonadotropin 2.5 IU was injected, followed by human chorionic gonadotropin 10 IU injection, and the uterus was dissected 5 days later, roughly at the peri-implantation period. The peri-implantation endometrium was obtained, and angiogenesis protein array revealed that matrix metalloproteinase-3 (MMP-3), plasminogen activator inhibitor-1 (PAI-1), insulin-like growth factor binding protein 1 (IGFBP-1), and IL-1α were more strongly expressed in injured endometrium (group 2) than in the controls (group 1). Immunohistochemical CD34 staining was more prominently expressed in group 2 uterus, and the treatment with LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, significantly decreased CD34 immunopositive cells. The capabilities of permeability, proliferation, tube formation, and migration of mouse endometrial endothelial cells were significantly enhanced in group 2 than in group 1. Our results demonstrate that enhanced endometrial angiogenesis is a possible mechanism accounting for the increased endometrial receptivity after endometrial injury.
Collapse
Affiliation(s)
- Jehn-Hsiahn Yang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chin-Der Chen
- Department of Obstetrics and Gynecology, Fu Jen Catholic University Hospital, Taipei, Taiwan
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Fen Wen
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shee-Uan Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
14
|
Zhu Z, Xu J, Li L, Ye W, Xu G, Chen B, Zeng J, Li J, Huang Z. Effect of gastric cancer stem cell on gastric cancer invasion, migration and angiogenesis. Int J Med Sci 2020; 17:2040-2051. [PMID: 32788883 PMCID: PMC7415381 DOI: 10.7150/ijms.46774] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose: Using the gastric cancer cell line SGC7901 and gastric cancer stem cell (CSC-G), we conducted this study to investigate the role of cancer stem cells in invasion, metastasis and tumor angiogenesis. Methods: Stem cell markers (OCT4, SOX2, C-Myc and Klf4) expression was detected by RT-PCR and Western blotting. The proliferation, migration, invasion abilities, L-OHP and 5-FU resistance, angiogenesis were assessed using in vitro spherical clone formation assays, plate cloning experiments, transwell migration, transwell invasion, drug resistance, scratch-wound migration, ring formation assay, and their tumorigenic and ability were assessed using a tumor formation experiment in mice. Results: Compared with the SGC7901, the expression of Oct4, Sox2, Klf4 and CD44 mRNA was significantly higher in CSC-G, the mRNA relative expression of E-cadherin in CSC-G was lower than SGC7901, while the expression of c-Myc did not significantly change. The proliferation, drug resistance, migration, and invasion abilities were significantly higher in CSC-G, and the tumorigenic ability in mice was also significantly higher. Conclusion: The proliferation, drug resistance, migration, invasion, and tumorigenic abilities of CSC-G significantly were higher than SGC7901. CSC-G plays important roles in proliferation, migration, invasion, and tumorigenicity.
Collapse
Affiliation(s)
- Zhipeng Zhu
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen (Fujian 361003), P.R. China
| | - Jiuhua Xu
- Department of clinical medicine, Fujian Medical University, Fuzhou (Fujian 350004), P.R. China
| | - Lulu Li
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen (Fujian 361003), P.R. China
| | - Weipeng Ye
- Department of clinical medicine, Fujian Medical University, Fuzhou (Fujian 350004), P.R. China
| | - Guoxing Xu
- Endoscopy center, The First Affiliated Hospital of Xiamen University, Xiamen (Fujian 361003), P.R. China
| | - Borong Chen
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen (Fujian 361003), P.R. China
| | - Junjie Zeng
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen (Fujian 361003), P.R. China
| | - Jiayi Li
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen (Fujian 361003), P.R. China
| | - Zhengjie Huang
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen (Fujian 361003), P.R. China.,Department of clinical medicine, Fujian Medical University, Fuzhou (Fujian 350004), P.R. China
| |
Collapse
|
15
|
Nawaz IM, Rezzola S, Cancarini A, Russo A, Costagliola C, Semeraro F, Presta M. Human vitreous in proliferative diabetic retinopathy: Characterization and translational implications. Prog Retin Eye Res 2019; 72:100756. [PMID: 30951889 DOI: 10.1016/j.preteyeres.2019.03.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of visual impairment in the working-age population. DR is a progressive eye disease caused by long-term accumulation of hyperglycaemia-mediated pathological alterations in the retina of diabetic patients. DR begins with asymptomatic retinal abnormalities and may progress to advanced-stage proliferative diabetic retinopathy (PDR), characterized by neovascularization or preretinal/vitreous haemorrhages. The vitreous, a transparent gel that fills the posterior cavity of the eye, plays a vital role in maintaining ocular function. Structural and molecular alterations of the vitreous, observed during DR progression, are consequences of metabolic and functional modifications of the retinal tissue. Thus, vitreal alterations reflect the pathological events occurring at the vitreoretinal interface. These events are caused by hypoxic, oxidative, inflammatory, neurodegenerative, and leukostatic conditions that occur during diabetes. Conversely, PDR vitreous can exert pathological effects on the diabetic retina, resulting in activation of a vicious cycle that contributes to disease progression. In this review, we recapitulate the major pathological features of DR/PDR, and focus on the structural and molecular changes that characterize the vitreal structure and composition during DR and progression to PDR. In PDR, vitreous represents a reservoir of pathological signalling molecules. Therefore, in this review we discuss how studying the biological activity of the vitreous in different in vitro, ex vivo, and in vivo experimental models can provide insights into the pathogenesis of PDR. In addition, the vitreous from PDR patients can represent a novel tool to obtain preclinical experimental evidences for the development and characterization of new therapeutic drug candidates for PDR therapy.
Collapse
Affiliation(s)
- Imtiaz M Nawaz
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Anna Cancarini
- Department of Ophthalmology, University of Brescia, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Brescia, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Italy.
| |
Collapse
|
16
|
Wang W, Lollis EM, Bordeleau F, Reinhart-King CA. Matrix stiffness regulates vascular integrity through focal adhesion kinase activity. FASEB J 2019; 33:1199-1208. [PMID: 30102569 PMCID: PMC6355084 DOI: 10.1096/fj.201800841r] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/23/2018] [Indexed: 12/18/2022]
Abstract
Tumor vasculature is known to be more permeable than the vasculature found in healthy tissue, which in turn can lead to a more aggressive tumor phenotype and impair drug delivery into tumors. While the stiffening of the stroma surrounding solid tumors has been reported to increase vascular permeability, the mechanism of this process remains unclear. Here, we utilize an in vitro model of tumor stiffening, ex ovo culture, and a mouse model to investigate the molecular mechanism by which matrix stiffening alters endothelial barrier function. Our data indicate that the increased endothelial permeability caused by heightened matrix stiffness can be prevented by pharmaceutical inhibition of focal adhesion kinase (FAK) both in vitro and ex ovo. Matrix stiffness-mediated FAK activation determines Src localization to cell-cell junctions, which then induces increased vascular endothelial cadherin phosphorylation both in vitro and in vivo. Endothelial cells in stiff tumors have more activated Src and higher levels of phosphorylated vascular endothelial cadherin at adherens junctions compared to endothelial cells in more compliant tumors. Altogether, our data indicate that matrix stiffness regulates endothelial barrier integrity through FAK activity, providing one mechanism by which extracellular matrix stiffness regulates endothelial barrier function. Additionally, our work also provides further evidence that FAK is a promising potential target for cancer therapy because FAK plays a critical role in the regulation of endothelial barrier integrity.-Wang, W., Lollis, E. M., Bordeleau, F., Reinhart-King, C. A. Matrix stiffness regulates vascular integrity through focal adhesion kinase activity.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Emmanuel M. Lollis
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA; and
| | - François Bordeleau
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Cynthia A. Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
17
|
Presta M, Foglio E, Churruca Schuind A, Ronca R. Long Pentraxin-3 Modulates the Angiogenic Activity of Fibroblast Growth Factor-2. Front Immunol 2018; 9:2327. [PMID: 30349543 PMCID: PMC6187966 DOI: 10.3389/fimmu.2018.02327] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis, the process of new blood vessel formation from pre-existing ones, plays a key role in various physiological and pathological conditions. Alteration of the angiogenic balance, consequent to the deranged production of angiogenic growth factors and/or natural angiogenic inhibitors, is responsible for angiogenesis-dependent diseases, including cancer. Fibroblast growth factor-2 (FGF2) represents the prototypic member of the FGF family, able to induce a complex “angiogenic phenotype” in endothelial cells in vitro and a potent neovascular response in vivo as the consequence of a tight cross talk between pro-inflammatory and angiogenic signals. The soluble pattern recognition receptor long pentraxin-3 (PTX3) is a member of the pentraxin family produced locally in response to inflammatory stimuli. Besides binding features related to its role in innate immunity, PTX3 interacts with FGF2 and other members of the FGF family via its N-terminal extension, thus inhibiting FGF-mediated angiogenic responses in vitro and in vivo. Accordingly, PTX3 inhibits the growth and vascularization of FGF-dependent tumors and FGF2-mediated smooth muscle cell proliferation and artery restenosis. Recently, the characterization of the molecular bases of FGF2/PTX3 interaction has allowed the identification of NSC12, the first low molecular weight pan-FGF trap able to inhibit FGF-dependent tumor growth and neovascularization. The aim of this review is to provide an overview of the impact of PTX3 and PTX3-derived molecules on the angiogenic, inflammatory, and tumorigenic activity of FGF2 and their potential implications for the development of more efficacious anti-FGF therapeutic agents to be used in those clinical settings in which FGFs play a pathogenic role.
Collapse
Affiliation(s)
- Marco Presta
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Eleonora Foglio
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Ander Churruca Schuind
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
18
|
Mortaz E, Alipoor SD, Adcock IM, Mumby S, Koenderman L. Update on Neutrophil Function in Severe Inflammation. Front Immunol 2018; 9:2171. [PMID: 30356867 PMCID: PMC6190891 DOI: 10.3389/fimmu.2018.02171] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are main players in the effector phase of the host defense against micro-organisms and have a major role in the innate immune response. Neutrophils show phenotypic heterogeneity and functional flexibility, which highlight their importance in regulation of immune function. However, neutrophils can play a dual role and besides their antimicrobial function, deregulation of neutrophils and their hyperactivity can lead to tissue damage in severe inflammation or trauma. Neutrophils also have an important role in the modulation of the immune system in response to severe injury and trauma. In this review we will provide an overview of the current understanding of neutrophil subpopulations and their function during and post-infection and discuss the possible mechanisms of immune modulation by neutrophils in severe inflammation.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shamila D Alipoor
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ian M Adcock
- Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.,Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sharon Mumby
- Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Leo Koenderman
- Laboratory of Translational Immunology, Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| |
Collapse
|
19
|
The Oxidative Stress and Mitochondrial Dysfunction during the Pathogenesis of Diabetic Retinopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3420187. [PMID: 30254714 PMCID: PMC6145164 DOI: 10.1155/2018/3420187] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/27/2018] [Accepted: 08/14/2018] [Indexed: 12/14/2022]
Abstract
Diabetic retinopathy is one of the most serious microvascular complications induced by hyperglycemia via five major pathways, including polyol, hexosamine, protein kinase C, and angiotensin II pathways and the accumulation of advanced glycation end products. The hyperglycemia-induced overproduction of reactive oxygen species (ROS) induces local inflammation, mitochondrial dysfunction, microvascular dysfunction, and cell apoptosis. The accumulation of ROS, local inflammation, and cell death are tightly linked and considerably affect all phases of diabetic retinopathy pathogenesis. Furthermore, microvascular dysfunction induces ischemia and local inflammation, leading to neovascularization, macular edema, and neurodysfunction, ultimately leading to long-term blindness. Therefore, it is crucial to understand and elucidate the detailed mechanisms underlying the development of diabetic retinopathy. In this review, we summarized the existing knowledge about the pathogenesis and current strategies for the treatment of diabetic retinopathy, and we believe this systematization will help and support further research in this area.
Collapse
|
20
|
The Role of Microglia in Diabetic Retinopathy: Inflammation, Microvasculature Defects and Neurodegeneration. Int J Mol Sci 2018; 19:ijms19010110. [PMID: 29301251 PMCID: PMC5796059 DOI: 10.3390/ijms19010110] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/23/2017] [Accepted: 12/25/2017] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy is a common complication of diabetes mellitus, which appears in one third of all diabetic patients and is a prominent cause of vision loss. First discovered as a microvascular disease, intensive research in the field identified inflammation and neurodegeneration to be part of diabetic retinopathy. Microglia, the resident monocytes of the retina, are activated due to a complex interplay between the different cell types of the retina and diverse pathological pathways. The trigger for developing diabetic retinopathy is diabetes-induced hyperglycemia, accompanied by leukostasis and vascular leakages. Transcriptional changes in activated microglia, mediated via the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and extracellular signal–regulated kinase (ERK) signaling pathways, results in release of various pro-inflammatory mediators, including cytokines, chemokines, caspases and glutamate. Activated microglia additionally increased proliferation and migration. Among other consequences, these changes in microglia severely affected retinal neurons, causing increased apoptosis and subsequent thinning of the nerve fiber layer, resulting in visual loss. New potential therapeutics need to interfere with these diabetic complications even before changes in the retina are diagnosed, to prevent neuronal apoptosis and blindness in patients.
Collapse
|
21
|
Hlávková D, Kopecký O, Lukešová Š, Vroblová V, Andrýs C, Morávek P, Podhola M, Vokurková D, Šafránek H. Monitoring of Serum Levels of Angiogenin, ENA-78 and GRO Chemokines in Patients with Renal Cell Carcinoma (RCC) in the Course of the Treatment. ACTA MEDICA (HRADEC KRÁLOVÉ) 2017; 51:185-90. [DOI: 10.14712/18059694.2017.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tumour progression requires the presence of a rich vascular supply. A number of cytokines, chemokines and proteases participate in the process of tumour angiogenesis. We evaluated serum levels of angiogenin, panGRO (Growth Related Oncogene) (CXCL 1,2,3) and ENA-78 (Epithelial Neutrophil Activating) (CXCL5) in the serum of 32 patients with RCC (renal cell carcinoma) and 14 healthy blood donors by means of a protein array analysis. The patients were divided into three groups according to their disease stages (I+II, III, IV). We discovered significant differences between the blood donors and patients with RCC both in pre-operative and post-operative angiogenin, panGRO and ENA-78 levels. The increase in angiogenic factors lasted in patients even without metastases 2 months after surgery. We found no correlation between the levels of angiogenin and stages I+II, III and IV RCC. Patients with advanced carcinoma (stage III) had pre-operatively higher serum levels of ENA-78 than patients with stages I+II (p = 0,009) and IV (p< 0.001). Eight weeks after surgery the patients with stages I+II had significantly higher levels of panGRO than patients with stage IV.
Collapse
|
22
|
Vitkov L, Hartl D, Hannig M. Is osseointegration inflammation-triggered? Med Hypotheses 2016; 93:1-4. [DOI: 10.1016/j.mehy.2016.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/04/2016] [Indexed: 12/29/2022]
|
23
|
Capitão M, Soares R. Angiogenesis and Inflammation Crosstalk in Diabetic Retinopathy. J Cell Biochem 2016; 117:2443-53. [PMID: 27128219 DOI: 10.1002/jcb.25575] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 12/11/2022]
Abstract
Diabetic retinopathy (DR) is one of the most prevalent microvascular complications of diabetes and one of the most frequent causes of blindness in active age. Etiopathogenesis behind this important complication is related to several biochemical, hemodynamic and endocrine mechanisms with a preponderant initial role assumed by polyol pathways, increment of growth factors, accumulation of advanced glycation end products (AGE), activation of protein kinase C (PKC), activation of the renin-angiotensin-aldosterone system (RAAS), and leukostasis. Chronic and sustained hyperglycemia works as a trigger to the early alterations that culminate in vascular dysfunction. Hypoxia also plays an essential role in disease progression with promotion of neovascularization and vascular dystrophies with vitreous hemorrhages induction. Thus, the accumulation of fluids and protein exudates in ocular cavities leads to an opacity augmentation of the cornea that associated to neurodegeneration results in vision loss, being this a devastating characteristic of the disease final stage. During disease progression, inflammatory molecules are produced and angiogenesis occur. Furthermore, VEGF is overexpressed by the maintained hyperglycemic environment and up-regulated by tissue hypoxia. Also pro-inflammatory mediators regulated by cytokines, such as tumor necrosis factor (TNF-α) and interleukin-1 beta (IL-1β), and growth factors leads to the progression of these processes, culminating in vasopermeability (diabetes macular edema) and/or pathological angiogenesis (proliferative diabetic retinopathy). It was found a mutual contribution between inflammation and angiogenesis along the process. J. Cell. Biochem. 117: 2443-2453, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Margarida Capitão
- Department of Biochemistry, Faculty of Medicine, University of Porto, Portugal
| | - Raquel Soares
- Department of Biochemistry, Faculty of Medicine, University of Porto, Portugal. .,i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal.
| |
Collapse
|
24
|
Minder P, Zajac E, Quigley JP, Deryugina EI. EGFR regulates the development and microarchitecture of intratumoral angiogenic vasculature capable of sustaining cancer cell intravasation. Neoplasia 2016; 17:634-49. [PMID: 26408256 PMCID: PMC4674488 DOI: 10.1016/j.neo.2015.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/28/2015] [Accepted: 08/10/2015] [Indexed: 12/16/2022] Open
Abstract
Many malignant characteristics of cancer cells are regulated through pathways induced by the tyrosine kinase activity of the epidermal growth factor receptor (EGFR). Herein, we show that besides directly affecting the biology of cancer cells per se, EGFR also regulates the primary tumor microenvironment. Specifically, our findings demonstrate that both the expression and signaling activity of EGFR are required for the induction of a distinct intratumoral vasculature capable of sustaining tumor cell intravasation, a critical rate-limiting step in the metastatic cascade. An intravasation-sustaining mode of intratumoral angiogenic vessels depends on high levels of tumor cell EGFR and the interplay between EGFR-regulated production of interleukin 8 by tumor cells, interleukin-8–induced influx of tumor-infiltrating neutrophils delivering their unique matrix metalloproteinase-9, and neutrophil matrix metalloproteinase-9–dependent release of the vascular permeability and endothelial growth factor, VEGF. Our data indicate that through VEGF-mediated disruption of endothelial layer integrity and increase of intratumoral vasculature permeability, EGFR activity significantly facilitates active intravasation of cancer cells. Therefore, this study unraveled an important but overlooked function of EGFR in cancer, namely, its ability to create an intravasation-sustaining microenvironment within the developing primary tumor by orchestrating several interrelated processes required for the initial steps of cancer metastasis through vascular routes. Our findings also suggest that EGFR-targeted therapies might be more effective when implemented in cancer patients with early-staged primary tumors containing a VEGF-dependent angiogenic vasculature. Accordingly, early EGFR inhibition combined with various anti-VEGF approaches could synergistically suppress tumor cell intravasation through inhibiting the highly permeable angiogenic vasculature induced by EGFR-overexpressing aggressive cancer cells.
Collapse
Affiliation(s)
- Petra Minder
- The Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA
| | - Ewa Zajac
- The Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA
| | - James P Quigley
- The Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA
| | - Elena I Deryugina
- The Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA.
| |
Collapse
|
25
|
Ames JJ, Henderson T, Liaw L, Brooks PC. Methods for Analyzing Tumor Angiogenesis in the Chick Chorioallantoic Membrane Model. Methods Mol Biol 2016; 1406:255-269. [PMID: 26820962 DOI: 10.1007/978-1-4939-3444-7_22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Models of tumor angiogenesis have played a critical role in understanding the mechanisms involved in the recruitment of vasculature to the tumor mass, and have also provided a platform for testing antiangiogenic potential of new therapeutics that combat the development of malignant growth. In this regard, the chorioallantoic membrane (CAM) of the developing chick embryo has proven to be an elegant model for investigation of angiogenic processes. Here, we describe methods for effectively utilizing the preestablished vascular network of the chick CAM to investigate and quantify tumor-associated angiogenesis in a breast tumor model.
Collapse
Affiliation(s)
- Jacquelyn J Ames
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA
| | - Terry Henderson
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Peter C Brooks
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA.
| |
Collapse
|
26
|
Bessa G, Melo-Reis PR, Araújo LA, Mrué F, Freitas GB, Brandão ML, Silva Júnior NJ. Angiogenic activity of latex from Euphorbia tirucalliLinnaeus 1753 (Plantae, Euphorbiaceae). BRAZ J BIOL 2015; 75:752-8. [DOI: 10.1590/1519-6984.01214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/10/2014] [Indexed: 11/21/2022] Open
Abstract
AbstractTo assess the pro-angiogenic activity of Euphorbia tirucalli, commonly known as “avelós” plant, we performed a series of tests by applying an aqueous E. tirucalli latex solution (10 mg/mL) to the chorioallantoic membranes (CAMs) of 80 fertilized chicken eggs incubated in a temperature- and humidity-controlled automatic incubator. The results indicated that the aqueous latex solution increased vascular network formation compared to that with the negative control (p < 0.05) and the inhibitor control (p < 0.05). This suggests that under the experimental conditions tested, the aqueous latex solution induced an inflammatory response leading to neoangiogenesis.
Collapse
Affiliation(s)
- G Bessa
- Pontifícia Universidade Católica de Goiás, Brazil
| | - PR Melo-Reis
- Pontifícia Universidade Católica de Goiás, Brazil
| | - LA Araújo
- Pontifícia Universidade Católica de Goiás, Brazil
| | - F Mrué
- Pontifícia Universidade Católica de Goiás, Brazil
| | - GB Freitas
- Pontifícia Universidade Católica de Goiás, Brazil
| | - ML Brandão
- Pontifícia Universidade Católica de Goiás, Brazil
| | | |
Collapse
|
27
|
Deryugina EI, Quigley JP. Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol 2015; 44-46:94-112. [PMID: 25912949 PMCID: PMC5079283 DOI: 10.1016/j.matbio.2015.04.004] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/21/2022]
Abstract
Metastasis is a distinct stage of cancer progression that requires the development of angiogenic blood vessels serving as conduits for tumor cell dissemination. An accumulated body of evidence indicates that metastasis-supporting neovasculature should possess certain structural characteristics allowing for the process of tumor cell intravasation, an active entry of cancer cells into the vessel interior. It appears that the development of tumor vessels with lumens of a distinctive size and support of these vessels by a discontinuous pericyte coverage constitute critical microarchitectural requirements to: (a) provide accessible points for vessel wall penetration by primary tumor cells; (b) provide enough lumen space for a tumor cell or cell aggregate upon intravasation; and (c) allow for sufficient rate of blood flow to carry away intravasated cells from the primary tumor to the next, proximal or distal site. This review will primarily focus on the functional roles of matrix metalloproteinases (MMPs), which catalytically trigger the development of an intravasation-sustaining neovasculature at the early stages of tumor growth and are also required for the maintenance of a metastasis-supporting state of blood vessels at later stages of cancer progression.
Collapse
Affiliation(s)
- Elena I Deryugina
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| | - James P Quigley
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
28
|
Semeraro F, Cancarini A, dell'Omo R, Rezzola S, Romano MR, Costagliola C. Diabetic Retinopathy: Vascular and Inflammatory Disease. J Diabetes Res 2015; 2015:582060. [PMID: 26137497 PMCID: PMC4475523 DOI: 10.1155/2015/582060] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/03/2015] [Accepted: 05/13/2015] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment in the working-age population of the Western world. The pathogenesis of DR is complex and several vascular, inflammatory, and neuronal mechanisms are involved. Inflammation mediates structural and molecular alterations associated with DR. However, the molecular mechanisms underlying the inflammatory pathways associated with DR are not completely characterized. Previous studies indicate that tissue hypoxia and dysregulation of immune responses associated with diabetes mellitus can induce increased expression of numerous vitreous mediators responsible for DR development. Thus, analysis of vitreous humor obtained from diabetic patients has made it possible to identify some of the mediators (cytokines, chemokines, and other factors) responsible for DR pathogenesis. Further studies are needed to better understand the relationship between inflammation and DR. Herein the main vitreous-related factors triggering the occurrence of retinal complication in diabetes are highlighted.
Collapse
Affiliation(s)
- F. Semeraro
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - A. Cancarini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - R. dell'Omo
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - S. Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - M. R. Romano
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples, Italy
| | - C. Costagliola
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
- ICRRS Neuromed, Pozzilli, Isernia, Italy
- *C. Costagliola:
| |
Collapse
|
29
|
The chick embryo chorioallantoic membrane as a model for tumor biology. Exp Cell Res 2014; 328:314-24. [PMID: 24972385 DOI: 10.1016/j.yexcr.2014.06.010] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 01/08/2023]
Abstract
Among the in vivo models, the chick embryo chorioallantoic membrane (CAM) has been used to implant several tumor types as well as malignant cell lines to study their growth rate, angiogenic potential and metastatic capability. This review article is focused on the major compelling literature data on the use of the CAM to investigate tumor growth and the metastatic process.
Collapse
|
30
|
Klingenberg M, Becker J, Eberth S, Kube D, Wilting J. The chick chorioallantoic membrane as an in vivo xenograft model for Burkitt lymphoma. BMC Cancer 2014; 14:339. [PMID: 24884418 PMCID: PMC4036709 DOI: 10.1186/1471-2407-14-339] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 05/14/2014] [Indexed: 11/10/2022] Open
Abstract
Background Burkitt lymphoma (BL) is an aggressive malignancy that arises from B-cells and belongs to the group of Non-Hodgkin lymphomas (NHL). Due to the lack of appropriate in vivo models NHL research is mainly performed in vitro. Here, we studied the use of the chick chorioallantoic membrane (CAM) for the generation of human BL xenograft tumors, which we compared with known characteristics of the human disease. Methods In order to generate experimental BL tumors, we inoculated human BL2B95 and BL2-GFP cells on the CAM. BL2B95 xenograft-tumors were grown for seven days and subsequently analyzed with transmission electron and immunofluorescence microscopy, as well as histological staining approaches. BL2-GFP cells were studied at regular intervals up to seven days, and their metastatic behavior was visualized with intravital immunofluorescence techniques. Results Xenografted BL2B95 cells formed solid tumors in the CAM model with a Ki67-index greater than 90%, preservation of typical tumor markers (CD10, CD19, CD20), a ‘starry sky’ morphology, production of agyrophilic fibers in the stroma, formation of blood and lymphatic vessels and lymphogenic dissemination of BL2B95 to distant sites. We identified macrophages, lymphocytes and heterophilic granulocytes (chick homolog of neutrophils) as the most abundant immune cells in the experimental tumors. BL2-GFP cells could be traced in real-time during their distribution in the CAM, and the first signs for their dissemination were visible after 2-3 days. Conclusions We show that xenografted BL2B95 cells generate tumors in the CAM with a high degree of cellular, molecular and proliferative concord with the human disease, supporting the application of the CAM model for NHL research with a focus on tumor-stroma interactions. Additionally we report that BL2-GFP cells, grafted on the CAM of ex ovo cultured chick embryos, provide a powerful tool to study lymphogenic dissemination in real-time.
Collapse
Affiliation(s)
| | | | | | | | - Jörg Wilting
- Department of Anatomy and Cell Biology, University Medical Center Goettingen, Kreuzbergring 36, Goettingen 37075, Germany.
| |
Collapse
|
31
|
Kain KH, Miller JWI, Jones-Paris CR, Thomason RT, Lewis JD, Bader DM, Barnett JV, Zijlstra A. The chick embryo as an expanding experimental model for cancer and cardiovascular research. Dev Dyn 2013; 243:216-28. [PMID: 24357262 DOI: 10.1002/dvdy.24093] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 12/17/2022] Open
Abstract
A long and productive history in biomedical research defines the chick as a model for human biology. Fundamental discoveries, including the description of directional circulation propelled by the heart and the link between oncogenes and the formation of cancer, indicate its utility in cardiac biology and cancer. Despite the more recent arrival of several vertebrate and invertebrate animal models during the last century, the chick embryo remains a commonly used model for vertebrate biology and provides a tractable biological template. With new molecular and genetic tools applied to the avian genome, the chick embryo is accelerating the discovery of normal development and elusive disease processes. Moreover, progress in imaging and chick culture technologies is advancing real-time visualization of dynamic biological events, such as tissue morphogenesis, angiogenesis, and cancer metastasis. A rich background of information, coupled with new technologies and relative ease of maintenance, suggest an expanding utility for the chick embryo in cardiac biology and cancer research.
Collapse
|
32
|
Corsini M, Moroni E, Ravelli C, Andrés G, Grillo E, Ali IH, Brazil DP, Presta M, Mitola S. Cyclic adenosine monophosphate-response element-binding protein mediates the proangiogenic or proinflammatory activity of gremlin. Arterioscler Thromb Vasc Biol 2013; 34:136-45. [PMID: 24233491 DOI: 10.1161/atvbaha.113.302517] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Angiogenesis and inflammation are closely related processes. Gremlin is a novel noncanonical vascular endothelial growth factor receptor-2 (VEGFR2) ligand that induces a proangiogenic response in endothelial cells (ECs). Here, we investigated the role of the cyclic adenosine monophosphate-response element (CRE)-binding protein (CREB) in mediating the proinflammatory and proangiogenic responses of ECs to gremlin. APPROACH AND RESULTS Gremlin induces a proinflammatory response in ECs, leading to reactive oxygen species and cyclic adenosine monophosphate production and the upregulation of proinflammatory molecules involved in leukocyte extravasation, including chemokine (C-C motif) ligand-2 (Ccl2) and Ccl7, chemokine (C-X-C motif) ligand-1 (Cxcl1), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1). Accordingly, gremlin induces the VEGFR2-dependent phosphorylation, nuclear translocation, and transactivating activity of CREB in ECs. CREB activation mediates the early phases of the angiogenic response to gremlin, including stimulation of EC motility and permeability, and leads to monocyte/macrophage adhesion to ECs and their extravasation. All these effects are inhibited by EC transfection with a dominant-negative CREB mutant or with a CREB-binding protein-CREB interaction inhibitor that competes for CREB/CRE binding. Also, both recombinant gremlin and gremlin-expressing tumor cells induce proinflammatory/proangiogenic responses in vivo that are suppressed by the anti-inflammatory drug hydrocortisone. Similar effects were induced by the canonical VEGFR2 ligand VEGF-A165. CONCLUSIONS Together, the results underline the tight cross-talk between angiogenesis and inflammation and demonstrate a crucial role of CREB activation in the modulation of the VEGFR2-mediated proinflammatory/proangiogenic response of ECs to gremlin.
Collapse
Affiliation(s)
- Michela Corsini
- From the Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (M.C., E.M., C.R., E.G., M.P., S.M.); Electron Microscopy Unit, Centro de Biologia Molecular Severo Ochoa, Campus Cantoblanco, Madrid, Spain (G.A.); and Centre for Experimental Medicine, Queen's University Belfast, ICS-A, Grosvenor Road, Belfast BT12 6BA, UK (I.H.A., D.P.B.)
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Angiogenic capacity of M1- and M2-polarized macrophages is determined by the levels of TIMP-1 complexed with their secreted proMMP-9. Blood 2013; 122:4054-67. [PMID: 24174628 DOI: 10.1182/blood-2013-05-501494] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A proangiogenic function of tissue-infiltrating monocytes/macrophages has long been attributed to their matrix metalloproteinase-9 zymogen (proMMP-9). Herein, we evaluated the capacity of human monocytes, mature M0 macrophages, and M1- and M2-polarized macrophages to induce proMMP-9-mediated angiogenesis. Only M2 macrophages induced angiogenesis at levels comparable with highly angiogenic neutrophils previously shown to release their proMMP-9 in a unique form, free of tissue inhibitor of metalloproteinases-1 (TIMP-1). Macrophage differentiation was accompanied by induction of low-angiogenic, TIMP-1-encumbered proMMP-9. However, polarization toward the M2, but not the M1 phenotype, caused a substantial downregulation of TIMP-1 expression, resulting in production of angiogenic, TIMP-deficient proMMP-9. Correspondingly, the angiogenic potency of M2 proMMP-9 was lost after its complexing with TIMP-1, whereas TIMP-1 silencing in M0/M1 macrophages rendered them both angiogenic. Similar to human cells, murine bone marrow-derived M2 macrophages also shut down their TIMP-1 expression and produced proMMP-9 unencumbered by TIMP-1. Providing proof that angiogenic capacity of murine M2 macrophages depended on their TIMP-free proMMP-9, Mmp9-null M2 macrophages were nonangiogenic, although their TIMP-1 was severely downregulated. Our study provides a unifying molecular mechanism for high angiogenic capacity of TIMP-free proMMP-9 that would be uniquely produced in a pathophysiological microenvironment by influxing neutrophils and/or M2 polarized macrophages.
Collapse
|
34
|
Hansen AG, Freeman TJ, Arnold SA, Starchenko A, Jones-Paris CR, Gilger MA, Washington MK, Fan KH, Shyr Y, Beauchamp RD, Zijlstra A. Elevated ALCAM shedding in colorectal cancer correlates with poor patient outcome. Cancer Res 2013; 73:2955-64. [PMID: 23539446 DOI: 10.1158/0008-5472.can-12-2052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular biomarkers of cancer are needed to assist histologic staging in the selection of treatment, outcome risk stratification, and patient prognosis. This is particularly important for patients with early-stage disease. We show that shedding of the extracellular domain of activated leukocyte cell adhesion molecule (ALCAM) is prognostic for outcome in patients with colorectal cancer (CRC). Previous reports on the prognostic value of ALCAM expression in CRC have been contradictory and inconclusive. This study clarifies the prognostic value of ALCAM by visualizing ectodomain shedding using a dual stain that detects both the extracellular and the intracellular domains in formalin-fixed tissue. Using this novel assay, 105 patients with primary CRCs and 12 normal mucosa samples were evaluated. ALCAM shedding, defined as detection of the intracellular domain in the absence of the corresponding extracellular domain, was significantly elevated in patients with CRC and correlated with reduced survival. Conversely, retention of intact ALCAM was associated with improved survival, thereby confirming that ALCAM shedding is associated with poor patient outcome. Importantly, analysis of patients with stage II CRC showed that disease-specific survival is significantly reduced for patients with elevated ALCAM shedding (P = 0.01; HR, 3.0), suggesting that ALCAM shedding can identify patients with early-stage disease at risk of rapid progression.
Collapse
Affiliation(s)
- Amanda G Hansen
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fang C, Avis I, Bianco C, Held N, Morris J, Ylaya K, Hewitt SM, Aplin AC, Nicosia RF, Fung LA, Lewis JD, Stetler-Stevenson WG, Salomon DS, Cuttitta F. SCNH2 is a novel apelinergic family member acting as a potent mitogenic and chemotactic factor for both endothelial and epithelial cells. ACTA ACUST UNITED AC 2013; 3:37-51. [PMID: 23956953 DOI: 10.4236/ojcd.2013.32009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The gut hormone apelin is a major therapeutic focus for several diseases involving inflammation and aberrant cell growth. We investigated whether apelin-36 contained alternative bioactive peptides associated with normal physiology or disease. Amino acid sequence analysis of apelin-36 identified an amidation motif consistent with the formation of a secondary bioactive peptide (SCNH2). SCNH2 is proven to be mitogenic and chemotactic in normal/malignant cells and augments angiogenesis via a PTX-resistant/CT-X-sensitive G protein-coupled receptor (GPCR). Notably, SCNH2 is substantially more potent and sensitive than apelin-13 and vascular endothelial growth factor-A. Endogenous SCNH2 is highly expressed in human tumors and placenta and in mouse embryonic tissues. Our findings demonstrate that SCNH2 is a new apelinergic member with critical pluripotent roles in angiogenesis related diseases and embryogenesis via a non-APJ GPCR.
Collapse
Affiliation(s)
- Changge Fang
- Angiogenesis Core Facility, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Martowicz A, Spizzo G, Gastl G, Untergasser G. Phenotype-dependent effects of EpCAM expression on growth and invasion of human breast cancer cell lines. BMC Cancer 2012; 12:501. [PMID: 23110550 PMCID: PMC3519683 DOI: 10.1186/1471-2407-12-501] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/25/2012] [Indexed: 12/31/2022] Open
Abstract
Background The epithelial cell adhesion molecule (EpCAM) has been shown to be overexpressed in breast cancer and stem cells and has emerged as an attractive target for immunotherapy of breast cancer patients. This study analyzes the effects of EpCAM on breast cancer cell lines with epithelial or mesenchymal phenotype. Methods For this purpose, shRNA-mediated knockdown of EpCAM gene expression was performed in EpCAMhigh breast cancer cell lines with epithelial phenotype (MCF-7, T47D and SkBR3). Moreover, EpCAMlow breast carcinoma cell lines with mesenchymal phenotype (MDA-MB-231, Hs578t) and inducible overexpression of EpCAM were used to study effects on proliferation, migration and in vivo growth. Results In comparison to non-specific silencing controls (n/s-crtl) knockdown of EpCAM (E#2) in EpCAMhigh cell lines resulted in reduced cell proliferation under serum-reduced culture conditions. Moreover, DNA synthesis under 3D culture conditions in collagen was significantly reduced. Xenografts of MCF-7 and T47D cells with knockdown of EpCAM formed smaller tumors that were less invasive. EpCAMlow cell lines with tetracycline-inducible overexpression of EpCAM showed no increased cell proliferation or migration under serum-reduced growth conditions. MDA-MB-231 xenografts with EpCAM overexpression showed reduced invasion into host tissue and more infiltrates of chicken granulocytes. Conclusions The role of EpCAM in breast cancer strongly depends on the epithelial or mesenchymal phenotype of tumor cells. Cancer cells with epithelial phenotype need EpCAM as a growth- and invasion-promoting factor, whereas tumor cells with a mesenchymal phenotype are independent of EpCAM in invasion processes and tumor progression. These findings might have clinical implications for EpCAM-based targeting strategies in patients with invasive breast cancer.
Collapse
Affiliation(s)
- Agnieszka Martowicz
- Laboratory of Experimental Oncology, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | | | | | | |
Collapse
|
37
|
Fergelot P, Bernhard JC, Soulet F, Kilarski WW, Léon C, Courtois N, Deminière C, Herbert JMJ, Antczak P, Falciani F, Rioux-Leclercq N, Patard JJ, Ferrière JM, Ravaud A, Hagedorn M, Bikfalvi A. The experimental renal cell carcinoma model in the chick embryo. Angiogenesis 2012; 16:181-94. [DOI: 10.1007/s10456-012-9311-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/29/2012] [Indexed: 02/06/2023]
|
38
|
VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood 2012; 120:4653-62. [PMID: 22966168 DOI: 10.1182/blood-2012-04-421040] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recruitment and retention of leukocytes at a site of blood vessel growth are crucial for proper angiogenesis and subsequent tissue perfusion. Although critical for many aspects of regenerative medicine, the mechanisms of leukocyte recruitment to and actions at sites of angiogenesis are not fully understood. In this study, we investigated the signals attracting leukocytes to avascular transplanted pancreatic islets and leukocyte actions at the engraftment site. Expression of the angiogenic stimulus VEGF-A by mouse pancreatic islets was elevated shortly after syngeneic transplantation to muscle. High levels of leukocytes, predominantly CD11b(+)/Gr-1(+)/CXCR4(hi) neutrophils, were observed at the site of engraftment, whereas VEGF-A-deficient islets recruited only half of the amount of leukocytes when transplanted. Acute VEGF-A exposure of muscle increased leukocyte extravasation but not the levels of SDF-1α. VEGF-A-recruited neutrophils expressed 10 times higher amounts of MMP-9 than neutrophils recruited to an inflammatory stimulus. Revascularization of islets transplanted to MMP-9-deficient mice was impaired because blood vessels initially failed to penetrate grafts, and after 2 weeks vascularity was still disturbed. This study demonstrates that VEGF-A recruits a proangiogenic circulating subset of CD11b(+)/Gr-1(+) neutrophils that are CXCR4(hi) and deliver large amounts of the effector protein MMP-9, required for islet revascularization and functional integration after transplantation.
Collapse
|
39
|
Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol Aspects Med 2011; 33:119-208. [PMID: 22100792 DOI: 10.1016/j.mam.2011.10.015] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/29/2011] [Indexed: 02/07/2023]
Abstract
Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes.
Collapse
|
40
|
Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1455-70. [PMID: 21741942 DOI: 10.1016/j.ajpath.2011.05.031] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 04/15/2011] [Accepted: 05/17/2011] [Indexed: 12/25/2022]
Abstract
Tumor-associated neutrophils contribute to neovascularization by supplying matrix metalloproteinase-9 (MMP-9), a protease that has been genetically and biochemically linked to induction of angiogenesis. Specific roles of inflammatory neutrophils and their distinct proMMP-9 in the coordinate regulation of tumor angiogenesis and tumor cell dissemination, however, have not been addressed. We demonstrate that the primary tumors formed by highly disseminating variants of human fibrosarcoma and prostate carcinoma recruit elevated levels of infiltrating MMP-9-positive neutrophils and concomitantly exhibit enhanced levels of angiogenesis and intravasation. Specific inhibition of neutrophil influx by interleukin 8 (IL-8) neutralization resulted in the coordinated diminishment of tumor angiogenesis and intravasation, both of which were rescued by purified neutrophil proMMP-9. However, if neutrophil proMMP-9, naturally devoid of tissue inhibitor of metalloproteinases (TIMP), was delivered in complex with TIMP-1 or in a mixture with TIMP-2, the protease failed to rescue the inhibitory effects of anti-IL8 therapy, indicating that the TIMP-free status of proMMP-9 is critical for facilitating tumor angiogenesis and intravasation. Our findings directly link tumor-associated neutrophils and their TIMP-free proMMP-9 with the ability of aggressive tumor cells to induce the formation of new blood vessels that serve as conduits for tumor cell dissemination. Thus, treatment of cancers associated with neutrophil infiltration may benefit from specific targeting of neutrophil MMP-9 at early stages to prevent ensuing tumor angiogenesis and tumor metastasis.
Collapse
|
41
|
Li YW, Qiu SJ, Fan J, Zhou J, Gao Q, Xiao YS, Xu YF. Intratumoral neutrophils: a poor prognostic factor for hepatocellular carcinoma following resection. J Hepatol 2011; 54:497-505. [PMID: 21112656 DOI: 10.1016/j.jhep.2010.07.044] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/10/2010] [Accepted: 07/09/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Neutrophil infiltration has been linked to clinical outcome of various cancer types. However, its role in hepatocellular carcinoma (HCC) is unclear. In this study, we investigated prognostic values for intratumoral and peritumoral neutrophils in HCC patients undergoing curative resection. METHODS The expression of CD66b, CD8, TGF-beta, and CD34 was assessed by immunohistochemistry in tissue microarrays containing paired intratumoral and peritumoral tissues from 197 patients receiving curative resection for HCC. Prognostic values for these and other clinicopathologic factors were evaluated. RESULTS Intratumoral CD66b(+) neutrophils significantly correlated with CD8(+) T cells (r=0.240, p=0.004), TGF-beta expression (p=0.012), BCLC stage (p=0.016), and early recurrence (p=0.041). Increased intratumoral neutrophils were significantly associated with decreased RFS/OS (p=0.001 and p<0.001, respectively) in univariate analysis and were identified as an independent prognostic factor (HR=1.845, 95% CI=1.169-2.911, p=0.008 for RFS; HR=2.578, 95% CI=1.618-4.106, p<0.001 for OS) in multivariate analysis. Intratumoral neutrophil-to-CD8(+) T cell ratio (iNTR) better predicted the outcome in terms of minimum p values. Intratumoral neutrophils were also demonstrated to be statistically predictive for RFS/OS in the normal AFP subgroup, small HCC subgroup, and validation cohort. However, peritumoral neutrophils were not associated with the outcome of HCC. CONCLUSIONS The presence of intratumoral neutrophils was a poor prognostic factor for HCC after resection. Intratumoral neutrophil-to-CD8(+) T cell ratio was a better predictor of outcome.
Collapse
Affiliation(s)
- Yi-Wei Li
- Liver Cancer Institute, Zhong Shan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
42
|
Wittekindt C, Jovanovic N, Guntinas-Lichius O. Expression of matrix metalloproteinase-9 (MMP-9) and blood vessel density in laryngeal squamous cell carcinomas. Acta Otolaryngol 2011; 131:101-6. [PMID: 20873997 DOI: 10.3109/00016489.2010.506886] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION In this study we found that inflammatory cells may be a source of MMP-9 in laryngeal cancer. MMP-9 was correlated with blood vessel density. MMP-9 may be a potential target to disrupt tumor neovascularization. OBJECTIVE To study the expression of MMP-9 in laryngeal cancer and determine a possible relation with blood vessel density. METHODS Immunohistochemistry was used for MMP analysis and for blood vessel detection in 83 laryngeal cancer samples. The density of blood vessels was analyzed with a stereological tool. RESULTS MMP-9 was detected in inflammatory cells. Positivity for MMP-9 correlated significantly with the grade of differentiation (p = 0.025). Expression of MMP-9 was not correlated with T stage, nodal metastasis, or tumor recurrence. The mean blood vessel density was 51.4 vessels/mm². Specimens were more likely to exhibit higher density of blood vessels when MMP-9 expression was also present (p = 0.014).
Collapse
|
43
|
Hofman PM. Pathobiology of the neutrophil-intestinal epithelial cell interaction: Role in carcinogenesis. World J Gastroenterol 2010; 16:5790-800. [PMID: 21154999 PMCID: PMC3001969 DOI: 10.3748/wjg.v16.i46.5790] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of chronic inflammation, acting as an independent factor, on the onset of gastrointestinal carcinogenesis is now well accepted. However, even if there is an increase in the number of elements directly involving polymorphonuclear leukocytes (PMNL), as a major actor in digestive carcinogenesis, the different cellular and molecular events occurring in this process are still not completely understood. The transepithelial migration of PMNL, which is the ultimate step of the afflux of PMNL into the digestive mucosa, is a complex phenomenon involving sequential interaction of molecules expressed both on PMNL and on digestive epithelial cells. Chronic inflammatory areas rich in PMNL [so-called (chronic active inflammation)] and iterative transepithelial migration of PMNL certainly evoke intracellular signals, which lead toward progressive transformation of epithelia. Among these different signals, the mutagenic effect of reactive oxygen species and nitrates, the activation of the nuclear factor-κB pathway, and the modulation of expression of certain microRNA are key actors. Following the initiation of carcinogenesis, PMNL are involved in the progression and invasion of digestive carcinomas, with which they interact. It is noteworthy that different subpopulations of PMNL, which can have some opposite effects on tumor growth, in association with different levels of transforming growth factor-β and with the number of CD8 positive T lymphocytes, could be present during the development of digestive carcinoma. Other factors that involve PMNL, such as massive elastase release, and the production of angiogenic factors, can participate in the progression of neoplastic cells through tissues. PMNL may play a major role in the onset of metastases, since they allow the tumor cells to cross the endothelial barrier and to migrate into the blood stream. Finally, PMNL play a role, alone or in association with other cell parameters, in the initiation, promotion, progression and dissemination of digestive carcinomas. This review focuses on the main currently accepted cellular and molecular mechanisms that involve PMNL as key actors in digestive carcinogenesis.
Collapse
|
44
|
Soulet F, Kilarski WW, Antczak P, Herbert J, Bicknell R, Falciani F, Bikfalvi A. Gene signatures in wound tissue as evidenced by molecular profiling in the chick embryo model. BMC Genomics 2010; 11:495. [PMID: 20840761 PMCID: PMC2996991 DOI: 10.1186/1471-2164-11-495] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 09/14/2010] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Modern functional genomic approaches may help to better understand the molecular events involved in tissue morphogenesis and to identify molecular signatures and pathways. We have recently applied transcriptomic profiling to evidence molecular signatures in the development of the normal chicken chorioallantoic membrane (CAM) and in tumor engrafted on the CAM. We have now extended our studies by performing a transcriptome analysis in the "wound model" of the chicken CAM, which is another relevant model of tissue morphogenesis. RESULTS To induce granulation tissue (GT) formation, we performed wounding of the chicken CAM and compared gene expression to normal CAM at the same stage of development. Matched control samples from the same individual were used. We observed a total of 282 genes up-regulated and 44 genes down-regulated assuming a false-discovery rate at 5% and a fold change > 2. Furthermore, bioinformatics analysis lead to the identification of several categories that are associated to organismal injury, tissue morphology, cellular movement, inflammatory disease, development and immune system. Endothelial cell data filtering leads to the identification of several new genes with an endothelial cell signature. CONCLUSIONS The chick chorioallantoic wound model allows the identification of gene signatures and pathways involved in GT formation and neoangiogenesis. This may constitute a fertile ground for further studies.
Collapse
|
45
|
Melo-Reis PR, Andrade LS, Silva CB, Araújo LMM, Pereira MS, Mrue F, Chen-Chen L. Angiogenic activity of Synadenium umbellatum Pax latex. BRAZ J BIOL 2010; 70:189-94. [PMID: 20231977 DOI: 10.1590/s1519-69842010000100026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 01/05/2009] [Indexed: 11/22/2022] Open
Abstract
Synadenium umbellatum Pax, popularly known as 'cola-nota', is a medicinal plant that grows in tropical regions. Latex of this plant is used to treat various diseases such as diabetes mellitus, Hansen s disease, tripanosomiases, leukemia and several malignant tumors. In the present study, the angiogenic activity of S. umbellatum latex was evaluated using the chick embryo chorioallantoic membrane (CAM) assay. Results showed significant increase of the vascular net (p < 0.05) compared to the negative control (H2O). The histological analysis was in accordance with the results obtained. In conclusion, our data indicate that S. umbellatum latex, under the conditions of this research, presented angiogenic effect.
Collapse
Affiliation(s)
- P R Melo-Reis
- Departamento de Biomedicina, Laboratório de Estudos Experimentais e Biotecnológicos, Pontifícia Universidade Católica de Goiás, Goiânia, GO, Brazil
| | | | | | | | | | | | | |
Collapse
|
46
|
Andrés G, Leali D, Mitola S, Coltrini D, Camozzi M, Corsini M, Belleri M, Hirsch E, Schwendener RA, Christofori G, Alcamì A, Presta M. A pro-inflammatory signature mediates FGF2-induced angiogenesis. J Cell Mol Med 2010; 13:2083-2108. [PMID: 18624773 DOI: 10.1111/j.1582-4934.2008.00415.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Fibroblast growth factor-2 (FGF2) is a potent angiogenic growth factor. Here, gene expression profiling of FGF2-stimulated microvascular endothelial cells revealed, together with a prominent pro-angiogenic profile, a pro-inflammatory signature characterized by the upregulation of pro-inflammatory cytokine/chemokines and their receptors, endothelial cell adhesion molecules and members of the eicosanoid pathway. Real-time quantitative PCR demonstrated early induction of most of the FGF2-induced, inflammation-related genes. Accordingly, chick embryo chorioallantoic membrane (CAM) and murine Matrigel plug angiogenesis assays demonstrated a significant monocyte/macrophage infiltrate in the areas of FGF2-driven neovascularization. Similar results were obtained when the conditioned medium (CM) of FGF2-stimulated endothelial cells was delivered onto the CAM, suggesting that FGF2-upregulated chemoattractants mediate the inflammatory response. Importantly, FGF2-triggered new blood vessel formation was significantly reduced in phosphatidylinositol 3-kinase-gamma null mice exhibiting defective leucocyte migration or in clodronate liposome-treated, macrophage-depleted mice. Furthermore, the viral pan-chemokine antagonist M3 inhibited the angiogenic and inflammatory responses induced by the CM of FGF2-stimulated endothelial cells and impaired FGF2-driven neovascularization in the CAM assay. These findings point to inflammatory chemokines as early mediators of FGF2-driven angiogenesis and indicate a non-redundant role for inflammatory cells in the neovascularization process elicited by the growth factor.
Collapse
Affiliation(s)
- Germán Andrés
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, Italy
| | - Daria Leali
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, Italy
| | - Stefania Mitola
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, Italy
| | - Daniela Coltrini
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, Italy
| | - Maura Camozzi
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, Italy
| | - Michela Corsini
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, Italy
| | - Mirella Belleri
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, Italy
| | - Emilio Hirsch
- Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Reto A Schwendener
- Laboratory of Liposome Research, Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Gerhard Christofori
- Institute of Biochemistry and Genetics, Department of Clinical Biological Sciences, University of Basel, Basel, Switzerland
| | - Antonio Alcamì
- Centro de Biologìa Molecular Severo Ochoa (CSIC-UAM), Campus Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Marco Presta
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
47
|
Recruited bone marrow cells expressing the EP3 prostaglandin E receptor subtype enhance angiogenesis during chronic inflammation. Biomed Pharmacother 2010; 64:93-100. [DOI: 10.1016/j.biopha.2009.04.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 04/15/2009] [Indexed: 11/18/2022] Open
|
48
|
Subauste MC, Kupriyanova TA, Conn EM, Ardi VC, Quigley JP, Deryugina EI. Evaluation of metastatic and angiogenic potentials of human colon carcinoma cells in chick embryo model systems. Clin Exp Metastasis 2009; 26:1033-47. [PMID: 19842048 DOI: 10.1007/s10585-009-9293-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 09/30/2009] [Indexed: 01/16/2023]
Abstract
Increased metastatic and angiogenic potentials of aggressive human colon carcinoma cells were verified in independent chick embryo models by comparing in vivo highly metastatic SW620 colon carcinoma cell line with its isogenic, non-metastatic SW480 cell variant. In the experimental metastasis model, both cell types rapidly arrested in the chorioallantoic membrane (CAM) vasculature as demonstrated by quantitative PCR and immunohistochemistry. Live cell imaging also indicated that both SW620 and SW480 cells efficiently extravasated from the CAM capillary system. However, only few SW480 cells were present in the CAM tissue after 24-48 h. In contrast, the numbers of SW620 cells increased exponentially, indicating proliferative and survival advantages of metastatic colon carcinoma cells in vivo. Multicellular SW620 foci were identified in close proximity to CAM blood vessels. A positive correlation between increased metastatic ability and VEGF-expression of colon carcinoma SW620 cells was demonstrated by the substantial inhibitory effects of anti-VEGF treatment on the levels of metastatic colonization and density of blood vessels adjacent to tumor cell foci. Furthermore, the chick embryo angiogenesis model confirmed high levels of VEGF-dependent angiogenesis induced by SW620 cells, but not SW480 cells. Thus, chick embryo experimental metastasis and CAM angiogenesis models appear to coordinately reflect critical features of advanced colon carcinomas, i.e., the acquisition of enhanced survival and increased angiogenic potentials, both constituting critical determinants of colon cancer progression. The use of rapid and quantitative chick embryo models might provide alternative approaches to conventional mammalian model systems for screening anti-cancer agents.
Collapse
Affiliation(s)
- M Cecilia Subauste
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | | | | | | | | |
Collapse
|
49
|
Deryugina EI, Quigley JP. Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:103-20. [PMID: 19800930 DOI: 10.1016/j.bbamcr.2009.09.017] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 09/23/2009] [Accepted: 09/24/2009] [Indexed: 02/04/2023]
Abstract
A number of extensive reviews are available discussing the roles of MMPs in various aspects of cancer progression from benign tumor formation to overt cancer present with deadly metastases. This review will focus specifically on the evidence functionally linking the MMPs and tumor-induced angiogenesis in various in vivo models. Emphasis has been placed on the cellular origin of the MMPs in tumor tissue, the requirement of proMMP activation and the resulting proteolytic activity for the induction and progression of tumor angiogenesis, and the pleiotropic roles for some of the MMPs. The functional mechanisms of the angiogenic MMPs are discussed as well as their catalytic detection in complex biological systems. In addition, the contribution of active MMPs to metastatic spread and establishment of secondary metastasis will be discussed in view of the findings indicating that MMPs are involved in the preparation of pre-metastatic niches. Finally, the most recent evidence, indicating the pro-metastatic consequences of anti-angiogenic therapies employing MMP inhibitors will be presented as examples highlighting possible outcomes of interfering with the pleiotropic nature of the MMP functionality.
Collapse
|
50
|
Staton CA, Reed MWR, Brown NJ. A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol 2009; 90:195-221. [PMID: 19563606 DOI: 10.1111/j.1365-2613.2008.00633.x] [Citation(s) in RCA: 334] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The study of angiogenesis has grown exponentially over the past 40 years with the recognition that angiogenesis is essential for numerous pathologies and, more recently, with the advent of successful drugs to inhibit angiogenesis in tumours. The main problem with angiogenesis research remains the choice of appropriate assays to evaluate the efficacy of potential new drugs and to identify potential targets within the angiogenic process. This selection is made more complex by the recognition that heterogeneity occurs, not only within the endothelial cells themselves, but also within the specific microenvironment to be studied. Thus, it is essential to choose the assay conditions and cell types that most closely resemble the angiogenic disease being studied. This is especially important when aiming to translate data from in vitro to in vivo and from preclinical to the clinic. Here we critically review and highlight recent advances in the principle assays in common use including those for endothelial cell proliferation, migration, differentiation and co-culture with fibroblasts and mural cells in vitro, vessel outgrowth from organ cultures and in vivo assays such as chick chorioallantoic membrane (CAM), zebrafish, sponge implantation, corneal, dorsal air sac, chamber and tumour angiogenesis models. Finally, we briefly discuss the direction likely to be taken in future studies, which include the use of increasingly sophisticated imaging analysis systems for data acquisition.
Collapse
Affiliation(s)
- Carolyn A Staton
- Microcirculation Research Group, Academic Unit of Surgical Oncology, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, UK.
| | | | | |
Collapse
|