1
|
Jeon D, Hill E, McNeel DG. Toll-like receptor agonists as cancer vaccine adjuvants. Hum Vaccin Immunother 2024; 20:2297453. [PMID: 38155525 PMCID: PMC10760790 DOI: 10.1080/21645515.2023.2297453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy to treat cancer patients. Among the wide range of immunological approaches, cancer vaccines have been investigated to activate and expand tumor-reactive T cells. However, most cancer vaccines have not shown significant clinical benefit as monotherapies. This is likely due to the antigen targets of vaccines, "self" proteins to which there is tolerance, as well as to the immunosuppressive tumor microenvironment. To help circumvent immune tolerance and generate effective immune responses, adjuvants for cancer vaccines are necessary. One representative adjuvant family is Toll-Like receptor (TLR) agonists, synthetic molecules that stimulate TLRs. TLRs are the largest family of pattern recognition receptors (PRRs) that serve as the sensors of pathogens or cellular damage. They recognize conserved foreign molecules from pathogens or internal molecules from cellular damage and propel innate immune responses. When used with vaccines, activation of TLRs signals an innate damage response that can facilitate the development of a strong adaptive immune response against the target antigen. The ability of TLR agonists to modulate innate immune responses has positioned them to serve as adjuvants for vaccines targeting infectious diseases and cancers. This review provides a summary of various TLRs, including their expression patterns, their functions in the immune system, as well as their ligands and synthetic molecules developed as TLR agonists. In addition, it presents a comprehensive overview of recent strategies employing different TLR agonists as adjuvants in cancer vaccine development, both in pre-clinical models and ongoing clinical trials.
Collapse
Affiliation(s)
- Donghwan Jeon
- Department of Oncology, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Ethan Hill
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Douglas G. McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
2
|
Crofts KF, Page CL, Swedik SM, Holbrook BC, Meyers AK, Zhu X, Parsonage D, Westcott MM, Alexander-Miller MA. An Analysis of Linker-Dependent Effects on the APC Activation and In Vivo Immunogenicity of an R848-Conjugated Influenza Vaccine. Vaccines (Basel) 2023; 11:1261. [PMID: 37515076 PMCID: PMC10383912 DOI: 10.3390/vaccines11071261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Subunit or inactivated vaccines comprise the majority of vaccines used against viral and bacterial pathogens. However, compared to their live/attenuated counterparts, these vaccines often demonstrate reduced immunogenicity, requiring multiple boosters and or adjuvants to elicit protective immune responses. For this reason, studies of adjuvants and the mechanism through which they can improve inactivated vaccine responses are critical for the development of vaccines with increased efficacy. Studies have shown that the direct conjugation of adjuvant to antigen promotes vaccine immunogenicity, with the advantage of both the adjuvant and antigen targeting the same cell. Using this strategy of direct linkage, we developed an inactivated influenza A (IAV) vaccine that is directly conjugated with the Toll-like receptor 7/8 agonist resiquimod (R848) through a heterobifunctional crosslinker. Previously, we showed that this vaccine resulted in improved protection and viral clearance in newborn nonhuman primates compared to a non-adjuvanted vaccine. We subsequently discovered that the choice of linker used to conjugate R848 to the virus alters the stimulatory activity of the vaccine, promoting increased maturation and proinflammatory cytokine production from DC differentiated in vitro. With this knowledge, we explored how the choice of crosslinker impacts the stimulatory activity of these vaccines. We found that the linker choice alters signaling through the NF-κB pathway in human monocyte-derived dendritic cells (moDCs). Further, we extended our analyses to in vivo differentiated APC present in human peripheral blood, replicating the linker-dependent differences found in in vitro differentiated cells. Finally, we demonstrated in a mouse model that the choice of linker impacts the amount of IAV-specific IgG antibody produced in response to vaccination. These data enhance our understanding of conjugation approaches for improving vaccine immunogenicity.
Collapse
Affiliation(s)
- Kali F. Crofts
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
| | - Courtney L. Page
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
| | - Stephanie M. Swedik
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
| | - Beth C. Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
| | - Allison K. Meyers
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
| | - Xuewei Zhu
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Marlena M. Westcott
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
| | - Martha A. Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
| |
Collapse
|
3
|
Beijnen EMS, Odumade OA, Haren SDV. Molecular Determinants of the Early Life Immune Response to COVID-19 Infection and Immunization. Vaccines (Basel) 2023; 11:vaccines11030509. [PMID: 36992093 DOI: 10.3390/vaccines11030509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/11/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Clinical manifestations from primary COVID infection in children are generally less severe as compared to adults, and severe pediatric cases occur predominantly in children with underlying medical conditions. However, despite the lower incidence of disease severity, the burden of COVID-19 in children is not negligible. Throughout the course of the pandemic, the case incidence in children has substantially increased, with estimated cumulative rates of SARS-CoV-2 infection and COVID-19 symptomatic illness in children comparable to those in adults. Vaccination is a key approach to enhance immunogenicity and protection against SARS-CoV-2. Although the immune system of children is functionally distinct from that of other age groups, vaccine development specific for the pediatric population has mostly been limited to dose-titration of formulations that were developed primarily for adults. In this review, we summarize the literature pertaining to age-specific differences in COVID-19 pathogenesis and clinical manifestation. In addition, we review molecular distinctions in how the early life immune system responds to infection and vaccination. Finally, we discuss recent advances in development of pediatric COVID-19 vaccines and provide future directions for basic and translational research in this area.
Collapse
Affiliation(s)
- Elisabeth M S Beijnen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Oludare A Odumade
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Division of Medicine Critical Care, Boston Children's Hospital, Boston, MA 02115, USA
| | - Simon D van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Barman S, Borriello F, Brook B, Pietrasanta C, De Leon M, Sweitzer C, Menon M, van Haren SD, Soni D, Saito Y, Nanishi E, Yi S, Bobbala S, Levy O, Scott EA, Dowling DJ. Shaping Neonatal Immunization by Tuning the Delivery of Synergistic Adjuvants via Nanocarriers. ACS Chem Biol 2022; 17:2559-2571. [PMID: 36028220 PMCID: PMC9486804 DOI: 10.1021/acschembio.2c00497] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/15/2022] [Indexed: 01/19/2023]
Abstract
Adjuvanted nanocarrier-based vaccines hold substantial potential for applications in novel early-life immunization strategies. Here, via mouse and human age-specific in vitro modeling, we identified the combination of a small-molecule STING agonist (2'3'-cyclic GMP-AMP, cGAMP) and a TLR7/8 agonist (CL075) to drive the synergistic activation of neonatal dendritic cells and precision CD4 T-helper (Th) cell expansion via the IL-12/IFNγ axis. We further demonstrate that the vaccination of neonatal mice with quadrivalent influenza recombinant hemagglutinin (rHA) and an admixture of two polymersome (PS) nanocarriers separately encapsulating cGAMP (cGAMP-PS) and CL075 (CL075-PS) drove robust Th1 bias, high frequency of T follicular helper (TFH) cells, and germinal center (GC) B cells along with the IgG2c-skewed humoral response in vivo. Dual-loaded cGAMP/CL075-PSs did not outperform admixed cGAMP-PS and CL075-PS in vivo. These data validate an optimally designed adjuvantation system via age-selected small-molecule synergy and a multicomponent nanocarrier formulation as an effective approach to induce type 1 immune responses in early life.
Collapse
Affiliation(s)
- Soumik Barman
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Francesco Borriello
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
- Department
of Translational Medical Sciences and Center for Basic and Clinical
Immunology Research (CISI), University of
Naples Federico II, Naples 80131, Italy
- WAO
Center of Excellence, Naples 80131, Italy
| | - Byron Brook
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Carlo Pietrasanta
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
- Fondazione
IRCCS Ca’ Granda Ospedale Maggiore Policlinico, NICU, Milan 20122, Italy
- Department
of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Maria De Leon
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | - Cali Sweitzer
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | - Manisha Menon
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | - Simon D. van Haren
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Dheeraj Soni
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Yoshine Saito
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | - Etsuro Nanishi
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Sijia Yi
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Chicago, Illinois 60208, United States
| | - Sharan Bobbala
- Department
of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Ofer Levy
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
- Broad
Institute of MIT & Harvard, Cambridge, Massachusetts 02142, United States
| | - Evan A. Scott
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Chicago, Illinois 60208, United States
| | - David J. Dowling
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
van Haren SD, Pedersen GK, Kumar A, Ruckwardt TJ, Moin S, Moore IN, Minai M, Liu M, Pak J, Borriello F, Doss-Gollin S, Beijnen EMS, Ahmed S, Helmel M, Andersen P, Graham BS, Steen H, Christensen D, Levy O. CAF08 adjuvant enables single dose protection against respiratory syncytial virus infection in murine newborns. Nat Commun 2022; 13:4234. [PMID: 35918315 PMCID: PMC9346114 DOI: 10.1038/s41467-022-31709-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Respiratory syncytial virus is a leading cause of morbidity and mortality in children, due in part to their distinct immune system, characterized by impaired induction of Th 1 immunity. Here we show application of cationic adjuvant formulation CAF08, a liposomal vaccine formulation tailored to induce Th 1 immunity in early life via synergistic engagement of Toll-like Receptor 7/8 and the C-type lectin receptor Mincle. We apply quantitative phosphoproteomics to human dendritic cells and reveal a role for Protein Kinase C-δ for enhanced Th1 cytokine production in neonatal dendritic cells and identify signaling events resulting in antigen cross-presentation. In a murine in vivo model a single immunization at birth with CAF08-adjuvanted RSV pre-fusion antigen protects newborn mice from RSV infection by induction of antigen-specific CD8+ T-cells and Th1 cells. Overall, we describe a pediatric adjuvant formulation and characterize its mechanism of action providing a promising avenue for development of early life vaccines against RSV and other respiratory viral pathogens.
Collapse
Affiliation(s)
- Simon D van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Gabriel K Pedersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Azad Kumar
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Syed Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark Liu
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Jensen Pak
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Francesco Borriello
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Generate Biomedicines, Cambridge, MA, USA
| | - Simon Doss-Gollin
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Elisabeth M S Beijnen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Saima Ahmed
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michaela Helmel
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Andersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanno Steen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| |
Collapse
|
6
|
Chew K, Lee B, van Haren SD, Nanishi E, O’Meara T, Splaine JB, DeLeon M, Soni D, Seo HS, Dhe-Paganon S, Ozonoff A, Smith JA, Levy O, Dowling DJ. Adjuvant Discovery via a High Throughput Screen using Human Primary Mononuclear Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.06.17.496630. [PMID: 35860217 PMCID: PMC9298130 DOI: 10.1101/2022.06.17.496630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Motivation Vaccines are a key biomedical intervention to prevent the spread of infectious diseases, but their efficacy can be limited by insufficient immunogenicity and nonuniform reactogenic profiles. Adjuvants are molecules that potentiate vaccine responses by inducing innate immune activation. However, there are a limited number of adjuvants in approved vaccines, and current approaches for preclinical adjuvant discovery and development are inefficient. To enhance adjuvant identification, we developed a protocol based on in vitro screening of human primary leukocytes. Summary We describe a methodology utilizing high-throughput and high-content screening for novel adjuvant candidates that was used to screen a library of ~2,500 small molecules via a 384-well quantitative combined cytokine and flow cytometry immunoassay in primary human peripheral blood mononuclear cells (PBMCs) from 4 healthy adult study participants. Hits were identified based on their induction of soluble cytokine (TNF, IFNg and IL-10) secretion and PBMC maturation (CD 80/86, Ox40, and HLA-DR) in at least two of the four donors screened. From an initial set of 197 compounds identified using these biomarkers-an 8.6% hit rate-we downselected to five scaffolds that demonstrated robust efficacy and potency in vitro and evaluated the top hit, vinblastine sulfate, for adjuvanticity in vivo. Vinblastine sulfate significantly enhanced murine humoral responses to recombinant SARS-CoV-2 spike protein, including a four-fold enhancement of IgG titer production when compared to treatment with the spike antigen alone. Overall, we outline a methodology for discovering immunomodulators with adjuvant potential via high-throughput screening of PBMCs in vitro that yielded a lead compound with in vivo adjuvanticity.
Collapse
Affiliation(s)
- Katherine Chew
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Branden Lee
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Timothy O’Meara
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | | | - Maria DeLeon
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Jennifer A. Smith
- ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, USA
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - David J. Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Crofts KF, Holbrook BC, D'Agostino RB, Alexander-Miller MA. Analysis of R848 as an Adjuvant to Improve Inactivated Influenza Vaccine Immunogenicity in Elderly Nonhuman Primates. Vaccines (Basel) 2022; 10:494. [PMID: 35455242 PMCID: PMC9032612 DOI: 10.3390/vaccines10040494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 01/13/2023] Open
Abstract
Elderly individuals are highly susceptible to developing severe outcomes as a result of influenza A virus (IAV) infection. This can be attributed to alterations that span the aged immune system, which also result in reduced responsiveness to the seasonal inactivated vaccine. Given the rapidly increasing number of individuals in this age group, it is imperative that we develop strategies that can better protect this population from IAV-associated disease. Based on our previous findings that the TLR7/8 agonist resiquimod (R848) could efficiently boost responses in the newborn, another population with decreased vaccine responsiveness, we evaluated this adjuvant in an elderly African green monkey (AGM) model. AGM aged 16-24 years old (equivalent to 64-96 in human years) were primed and boosted with inactivated A/PuertoRico/8/1934 (H1N1) (IPR8) alone or directly linked to R848 (IPR8-R848). We observed increases in the level of circulating virus-specific IgM antibody 10 days following primary vaccination in AGM that were vaccinated with IPR8-R848, but not IPR8 alone. In addition, there were significant increases in virus-specific IgG after boosting selectively in the IPR8-R848 vaccinated animals. These findings provide insights into the ability of R848 to modulate the aged immune system in the context of IAV vaccination.
Collapse
Affiliation(s)
- Kali F Crofts
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Ralph B D'Agostino
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
8
|
Tetrasubstituted imidazoles as incognito Toll-like receptor 8 a(nta)gonists. Nat Commun 2021; 12:4351. [PMID: 34272380 PMCID: PMC8285539 DOI: 10.1038/s41467-021-24536-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Small-molecule modulators of TLR8 have drawn much interests as it plays pivotal roles in the innate immune response to single-stranded RNAs (ssRNAs) derived from viruses. However, their clinical uses are limited because they can invoke an uncontrolled, global inflammatory response. The efforts described herein culminate in the fortuitous discovery of a tetrasubstituted imidazole CU-CPD107 which inhibits R848-induced TLR8 signaling. In stark contrast, CU-CPD107 shows unexpected synergistic agonist activities in the presence of ssRNA, while CU-CPD107 alone is unable to influence TLR8 signaling. CU-CPD107’s unique, dichotomous behavior sheds light on a way to approach TLR agonists. CU-CPD107 offers the opportunity to avoid the undesired, global inflammation side effects that have rendered imidazoquinolines clinically irrelevant, providing an insight for the development of antiviral drugs. Toll-like receptor 8 (TLR8) plays essential roles in the innate immune response to viral single-stranded RNA (ssRNA), so small molecule modulators of TLR8 are of interest, however adverse effects limit their use. Here, the authors report a tetrasubstituted imidazole CU-CPD107 with dichotomous behaviour, which inhibits R848-induced TLR8 signaling, but shows synergistic activity in the presence of ssRNA, making it a potential antiviral agent.
Collapse
|
9
|
Clemens EA, Holbrook BC, Kanekiyo M, Yewdell JW, Graham BS, Alexander-Miller MA. An R848-Conjugated Influenza Virus Vaccine Elicits Robust Immunoglobulin G to Hemagglutinin Stem in a Newborn Nonhuman Primate Model. J Infect Dis 2021; 224:351-359. [PMID: 33245745 PMCID: PMC8280492 DOI: 10.1093/infdis/jiaa728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022] Open
Abstract
Eliciting broadly protective antibodies is a critical goal for the development of more effective vaccines against influenza. Optimizing protection is of particular importance in newborns, who are highly vulnerable to severe disease following infection. An effective vaccination strategy for this population must surmount the challenges associated with the neonatal immune system as well as mitigate the inherent immune subdominance of conserved influenza virus epitopes, responses to which can provide broader protection. Here, we show that prime-boost vaccination with a TLR7/8 agonist (R848)-conjugated influenza A virus vaccine elicits antibody responses to the highly conserved hemagglutinin stem and promotes rapid induction of virus neutralizing stem-specific antibodies following viral challenge. These findings support the efficacy of R848 as an effective adjuvant for newborns and demonstrate its ability to enhance antibody responses to subdominant antigenic sites in this at-risk population.
Collapse
Affiliation(s)
- Elene A Clemens
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
10
|
Angelidou A, Diray-Arce J, Conti MG, Netea MG, Blok BA, Liu M, Sanchez-Schmitz G, Ozonoff A, van Haren SD, Levy O. Human Newborn Monocytes Demonstrate Distinct BCG-Induced Primary and Trained Innate Cytokine Production and Metabolic Activation In Vitro. Front Immunol 2021; 12:674334. [PMID: 34326836 PMCID: PMC8315003 DOI: 10.3389/fimmu.2021.674334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background Newborns exhibit distinct immune responses and are at high risk of infection. Neonatal immunization with BCG, the live attenuated vaccine against tuberculosis (TB), is associated with broad protection against a range of unrelated pathogens, possibly reflecting vaccine-induced training of innate immune cells ("innate memory"). However, little is known regarding the impact of age on BCG-induced innate responses. Objective Establish an age-specific human monocyte in vitro training platform to characterize and compare BCG-induced primary and memory cytokine responses and immunometabolic shifts. Design/Methods Human neonatal and adult CD33-selected monocytes were stimulated for 24h with RPMI (control) or BCG (Danish strain) in 10% autologous serum, washed and cultured for 5 additional days, prior to re-stimulation with the TLR4 agonist LPS for another 24h. Supernatants were collected at Day 1 (D1) to measure primary innate responses and at Day 7 (D7) to assess memory innate responses by ELISA and multiplex cytokine and chemokine assays. Lactate, a signature metabolite increased during trained immunity, was measured by colorimetric assay. Results Cytokine production by human monocytes differed significantly by age at D1 (primary, BCG 1:750 and 1:100 vol/vol, p<0.0001) and D7 (innate memory response, BCG 1:100 vol/vol, p<0.05). Compared to RPMI control, newborn monocytes demonstrated greater TNF (1:100, 1:10 vol/vol, p<0.01) and IL-12p40 (1:100 vol/vol, p<0.05) production than adult monocytes (1:100, p<0.05). At D7, while BCG-trained adult monocytes, as previously reported, demonstrated enhanced LPS-induced TNF production, BCG-trained newborn monocytes demonstrated tolerization, as evidenced by significantly diminished subsequent LPS-induced TNF (RPMI vs. BCG 1:10, p <0.01), IL-10 and CCL5 production (p<0.05). With the exception of IL-1RA production by newborn monocytes, BCG-induced monocyte production of D1 cytokines/chemokines was inversely correlated with D7 LPS-induced TNF in both age groups (p<0.0001). Compared to BCG-trained adult monocytes, newborn monocytes demonstrated markedly impaired BCG-induced production of lactate, a metabolite implicated in immune training in adults. Conclusions BCG-induced human monocyte primary- and memory-innate cytokine responses were age-dependent and accompanied by distinct immunometabolic shifts that impact both glycolysis and training. Our results suggest that immune ontogeny may shape innate responses to live attenuated vaccines, suggesting age-specific approaches to leverage innate training for broad protection against infection.
Collapse
Affiliation(s)
- Asimenia Angelidou
- Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Joann Diray-Arce
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Maria-Giulia Conti
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Bastiaan A. Blok
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mark Liu
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT & Harvard, Cambridge, MA, United States
| |
Collapse
|
11
|
Damuka N, Kammari K, Potshangbam AM, Kondapi AK, Vindal V. Epoxydicoumarin Derivative is a Novel Non‐Nucleoside TLR8 Agonist: Screening, Synthesis and Biological Evaluation. ChemistrySelect 2021. [DOI: 10.1002/slct.202100368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Naresh Damuka
- Department of Biotechnology and Bioinformatics University of Hyderabad Hyderabad 500046 India
| | - Kurumurthy Kammari
- Department of Biotechnology and Bioinformatics University of Hyderabad Hyderabad 500046 India
| | - Angamba Meetei Potshangbam
- Department of Biotechnology and Bioinformatics University of Hyderabad Hyderabad 500046 India
- Department of Biotechnology Manipur University Imphal 795003 India
| | - Anand Kumar Kondapi
- Department of Biotechnology and Bioinformatics University of Hyderabad Hyderabad 500046 India
| | - Vaibhav Vindal
- Department of Biotechnology and Bioinformatics University of Hyderabad Hyderabad 500046 India
| |
Collapse
|
12
|
Garrido C, Curtis AD, Dennis M, Pathak SH, Gao H, Montefiori D, Tomai M, Fox CB, Kozlowski PA, Scobey T, Munt JE, Mallory ML, Saha PT, Hudgens MG, Lindesmith LC, Baric RS, Abiona OM, Graham B, Corbett KS, Edwards D, Carfi A, Fouda G, Van Rompay KKA, De Paris K, Permar SR. SARS-CoV-2 vaccines elicit durable immune responses in infant rhesus macaques. Sci Immunol 2021; 6:6/60/eabj3684. [PMID: 34131024 PMCID: PMC8774290 DOI: 10.1126/sciimmunol.abj3684] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022]
Abstract
The inclusion of infants in the SARS-CoV-2 vaccine roll-out is important to prevent severe complications of pediatric SARS-CoV-2 infections and to limit transmission and could possibly be implemented via the global pediatric vaccine schedule. However, age-dependent differences in immune function require careful evaluation of novel vaccines in the pediatric population. Toward this goal, we assessed the safety and immunogenicity of two SARS-CoV-2 vaccines. Two groups of 8 infant rhesus macaques (RMs) were immunized intramuscularly at weeks 0 and 4 with stabilized prefusion SARS-CoV-2 S-2P spike (S) protein encoded by mRNA encapsulated in lipid nanoparticles (mRNA-LNP) or the purified S protein mixed with 3M-052, a synthetic TLR7/8 agonist in a squalene emulsion (Protein+3M-052-SE). Neither vaccine induced adverse effects. Both vaccines elicited high magnitude IgG binding to RBD, N terminus domain, S1, and S2, ACE2 blocking activity, and high neutralizing antibody titers, all peaking at week 6. S-specific memory B cells were detected by week 4 and S-specific T cell responses were dominated by the production of IL-17, IFN-γ, or TNF-α. Antibody and cellular responses were stable through week 22. The immune responses for the mRNA-LNP vaccine were of a similar magnitude to those elicited by the Moderna mRNA-1273 vaccine in adults. The S-2P mRNA-LNP and Protein-3M-052-SE vaccines were well-tolerated and highly immunogenic in infant RMs, providing proof-of concept for a pediatric SARS-CoV-2 vaccine with the potential for durable immunity that might decrease the transmission of SARS-CoV-2 and mitigate the ongoing health and socioeconomic impacts of COVID-19.
Collapse
Affiliation(s)
- Carolina Garrido
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, USA
| | - Alan D Curtis
- Department of Microbiology and Immunology, Center for AIDS Research, and Children's Research Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maria Dennis
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, USA
| | - Sachi H Pathak
- Department of Microbiology and Immunology, Center for AIDS Research, and Children's Research Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongmei Gao
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, USA
| | - David Montefiori
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, USA
| | - Mark Tomai
- 3M Corporate Research Materials Laboratory, Saint Paul, MN, USA
| | | | - Pamela A Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Trevor Scobey
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer E Munt
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael L Mallory
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pooja T Saha
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael G Hudgens
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lisa C Lindesmith
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Olubukola M Abiona
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Barney Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | | | | | - Genevieve Fouda
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, Center for AIDS Research, and Children's Research Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
13
|
Talukdar A, Ganguly D, Roy S, Das N, Sarkar D. Structural Evolution and Translational Potential for Agonists and Antagonists of Endosomal Toll-like Receptors. J Med Chem 2021; 64:8010-8041. [PMID: 34107682 DOI: 10.1021/acs.jmedchem.1c00300] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) are members of a large family of evolutionarily conserved pattern recognition receptors (PRRs), which serve as key components of the innate immune system by playing a pivotal role in sensing "nonself" ligands. Endosomal TLRs (TLR3, TLR7, TLR8, and TLR9) can recognize pathogen-derived nucleic acid and initiate an innate immune response because they react against both self- and non-self-origin nucleic acid molecules. Accordingly, both receptor agonists and antagonists are potentially useful in disparate clinical contexts and thus are globally sought after. Recent research has revealed that agonists and antagonists share an overlapping binding region. This Perspective highlights rational medicinal chemistry approaches to elucidate the structural attributes of small molecules capable of agonism or antagonism or of elegantly switching between the two. The structural evolution of different chemotypes can provide the framework for the future development of endosomal TLR agonists and antagonists.
Collapse
Affiliation(s)
- Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Dipyaman Ganguly
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, West Bengal, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Swarnali Roy
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Nirmal Das
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Dipika Sarkar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
14
|
Cord-Blood-Derived Professional Antigen-Presenting Cells: Functions and Applications in Current and Prospective Cell Therapies. Int J Mol Sci 2021; 22:ijms22115923. [PMID: 34072923 PMCID: PMC8199409 DOI: 10.3390/ijms22115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
Human umbilical cord blood (UCB) represents a valuable source of hematopoietic stem cells, particularly for patients lacking a matching donor. UCB provides practical advantages, including a lower risk of graft-versus-host-disease and permissive human leukocyte antigen mismatching. These advantageous properties have so far been applied for stem cell, mesenchymal stromal cell, and chimeric antigen receptor T cell therapies. However, UCB-derived professional antigen-presenting cells are increasingly being utilized in the context of immune tolerance and regenerative therapy. Here, we review the cell-specific characteristics as well as recent advancements in UCB-based cell therapies focusing on dendritic cells, monocytes, B lymphocytes, innate lymphoid cells, and macrophages.
Collapse
|
15
|
England R, Pak J, Liu M, Rao S, Ozonoff A, Levy O, van Haren SD. Human Blood Plasma Shapes Distinct Neonatal TLR-Mediated Dendritic Cell Activation via Expression of the MicroRNA Let-7g. Immunohorizons 2021; 5:246-256. [PMID: 33931496 DOI: 10.4049/immunohorizons.2000081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/19/2021] [Indexed: 11/19/2022] Open
Abstract
The newborn innate immune system is characterized as functionally distinct, resulting in impaired proinflammatory responses to many stimuli and a bias toward Th2 development. Although the magnitude of impairment can be partially overcome, for instance through activation of TLR7/8 in newborn dendritic cells, the newborn innate response remains distinct from that of adults. Using human in vitro modeling of newborn and adult dendritic cells, we investigated the role of extracellular and intracellular regulators in driving age-specific responses to TLR7/8 stimulation. MicroRNA expression profiling and plasma switch experiments identified Let-7g as a novel regulator of newborn innate immunity. Activation-induced expression of Let-7g in monocyte-derived dendritic cells (MoDCs) is driven by newborn plasma and reduces expression of costimulatory receptors CD86, MHC class I, and CCR7 and secretion of IFN-α and sCD40L. Conversely, an increase in secretion of the Th2-polarizing cytokine IL-12p40 is observed. Overexpression of Let-7g in adult MoDCs resulted in the same observations. Small interfering RNA-mediated ablation of Let-7g levels in newborn MoDCs resulted in an adult-like phenotype. In conclusion, this study reveals for the first time (to our knowledge) that age-specific differences in human plasma induce the microRNA Let-7g as a key mediator of the newborn innate immune phenotype. These observations shed new light on the mechanisms of immune ontogeny and may inform approaches to discover age-specific immunomodulators, such as adjuvants.
Collapse
Affiliation(s)
- Ross England
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA; and
| | - Jensen Pak
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA; and
| | - Mark Liu
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA; and
| | - Shun Rao
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA; and
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA; and
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA; and
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Simon D van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA;
- Harvard Medical School, Boston, MA; and
| |
Collapse
|
16
|
Makris S, Johansson C. R848 or influenza virus can induce potent innate immune responses in the lungs of neonatal mice. Mucosal Immunol 2021; 14:267-276. [PMID: 32576926 PMCID: PMC7116567 DOI: 10.1038/s41385-020-0314-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 05/16/2020] [Accepted: 05/27/2020] [Indexed: 02/04/2023]
Abstract
Innate immune responses are important to protect the neonatal lung, which becomes exposed to commensal and pathogenic microorganisms immediately after birth, at a time when both the lung and the adaptive immune system are still developing. How immune cells in the neonatal lung respond to innate immune stimuli, including toll-like receptor (TLR) agonists, or viruses, is currently unclear. To address this, adult and neonatal mice were intranasally administered with various innate immune stimuli, respiratory syncytial virus (RSV) or influenza virus and cytokine and chemokine levels were quantified. The neonatal lungs responded weakly to RSV and most stimuli but more strongly than adult mice to R848 and influenza virus, both of which activate TLR7 and the inflammasome. Notably, neonatal lungs also contained higher levels of cAMP, a secondary messenger produced following adenosine receptor signaling, than adult lungs and increased responsiveness to R848 was observed in adult mice when adenosine was coadministered. Our data suggest that the neonatal lung may respond preferentially to stimuli that coactivate TLR7 and the inflammasome and that these responses may be amplified by extracellular adenosine. Improved understanding of regulation of immune responses in the neonatal lung can inform the development of vaccine adjuvants for the young.
Collapse
Affiliation(s)
- Spyridon Makris
- Correspondence: Cecilia Johansson (), Tel.: +44 207 594 2531
| | - Cecilia Johansson
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
17
|
Beijnen EMS, van Haren SD. Vaccine-Induced CD8 + T Cell Responses in Children: A Review of Age-Specific Molecular Determinants Contributing to Antigen Cross-Presentation. Front Immunol 2020; 11:607977. [PMID: 33424857 PMCID: PMC7786054 DOI: 10.3389/fimmu.2020.607977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Infections are most common and most severe at the extremes of age, the young and the elderly. Vaccination can be a key approach to enhance immunogenicity and protection against pathogens in these vulnerable populations, who have a functionally distinct immune system compared to other age groups. More than 50% of the vaccine market is for pediatric use, yet to date vaccine development is often empiric and not tailored to molecular distinctions in innate and adaptive immune activation in early life. With modern vaccine development shifting from whole-cell based vaccines to subunit vaccines also comes the need for formulations that can elicit a CD8+ T cell response when needed, for example, by promoting antigen cross-presentation. While our group and others have identified many cellular and molecular determinants of successful activation of antigen-presenting cells, B cells and CD4+ T cells in early life, much less is known about the ontogeny of CD8+ T cell induction. In this review, we summarize the literature pertaining to the frequency and phenotype of newborn and infant CD8+ T cells, and any evidence of induction of CD8+ T cells by currently licensed pediatric vaccine formulations. In addition, we review the molecular determinants of antigen cross-presentation on MHC I and successful CD8+ T cell induction and discuss potential distinctions that can be made in children. Finally, we discuss recent advances in development of novel adjuvants and provide future directions for basic and translational research in this area.
Collapse
Affiliation(s)
- Elisabeth M. S. Beijnen
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Alexander-Miller MA. Challenges for the Newborn Following Influenza Virus Infection and Prospects for an Effective Vaccine. Front Immunol 2020; 11:568651. [PMID: 33042150 PMCID: PMC7524958 DOI: 10.3389/fimmu.2020.568651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/18/2020] [Indexed: 01/10/2023] Open
Abstract
Newborns are at significantly increased risk of severe disease following infection with influenza virus. This is the collective result of their naïve status, altered immune responsiveness, and the lack of a vaccine that is effective in these individuals. Numerous studies have revealed impairments in both the innate and adaptive arms of the immune system of newborns. The consequence of these alterations is a quantitative and qualitative decrease in both antibody and T cell responses. This review summarizes the hurdles newborns experience in mounting an effective response that can clear influenza virus and limit disease following infection. In addition, the challenges, as well as the opportunities, for developing vaccines that can elicit protective responses in these at risk individuals are discussed.
Collapse
Affiliation(s)
- Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
19
|
Sasaki E, Hamaguchi I, Mizukami T. Pharmacodynamic and safety considerations for influenza vaccine and adjuvant design. Expert Opin Drug Metab Toxicol 2020; 16:1051-1061. [PMID: 32772723 DOI: 10.1080/17425255.2020.1807936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION A novel adjuvant evaluation system for safety and immunogenicity is needed. Vaccination is important for infection prevention, for example, from influenza viruses. Adjuvants are considered critical for improving the effectiveness of influenza vaccines. Adjuvant development is an important issue in influenza vaccine design. AREAS COVERED A conventional in vivo evaluation method for vaccine safety has been limited in analyzing phenotypic and pathological changes. Therefore, it is difficult to obtain information on the changes at the molecular level. This review aims to explain the recently developed genomics analysis-based vaccine adjuvant safety evaluation tools verified by AddaVaxTM and polyinosinic-polycytidylic acid (poly I:C) using 18 biomarker genes and whole-virion inactivated influenza vaccine as a toxicity control. Genomics analyzes would help provide safety and efficacy information regarding influenza vaccine design by facilitating appropriate adjuvant selection. EXPERT OPINION The efficacy and safety profiles of influenza vaccines and adjuvants using genomics technologies provide useful information regarding immunogenicity, which is related to safety and efficacy. This approach provides important information to select appropriate inoculation routes, combinations of vaccine antigens and adjuvants, and dosing amounts. The efficacy of vaccine adjuvant evaluation by genomics analysis should be verified by various studies using various vaccines in the future.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases , Tokyo, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases , Tokyo, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases , Tokyo, Japan
| |
Collapse
|
20
|
Kaushik D, Dhingra S, Patil MT, Piplani S, Khanna V, Honda-Okubo Y, Li L, Fung J, Sakala IG, Salunke DB, Petrovsky N. BBIQ, a pure TLR7 agonist, is an effective influenza vaccine adjuvant. Hum Vaccin Immunother 2020; 16:1989-1996. [PMID: 32298200 PMCID: PMC7482670 DOI: 10.1080/21645515.2019.1710409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Better adjuvants are needed for vaccines against seasonal influenza. TLR7 agonists are potent activators of innate immune responses and thereby may be promising adjuvants. Among the imidazoquinoline compounds, 1-benzyl-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine (BBIQ) was reported to be a highly active TLR7 agonist but has remained relatively unexplored because of its commercial unavailability. Indeed, in silico molecular modeling studies predicted that BBIQ had a higher TLR7 docking score and binding free energy than imiquimod, the gold standard TLR7 agonist. To circumvent the availability issue, we developed an improved and higher yield method to synthesize BBIQ. Testing BBIQ on human and mouse TLR7 reporter cell lines confirmed it to be TLR7 specific with significantly higher potency than imiquimod. To test its adjuvant potential, BBIQ or imiquimod were admixed with recombinant influenza hemagglutinin protein and administered to mice as two intramuscular immunizations 2 weeks apart. Serum anti-influenza IgG responses assessed by ELISA 2 weeks after the second immunization confirmed that the mice that received vaccine admixed with BBIQ had significantly higher anti-influenza IgG1 and IgG2c responses than mice immunized with antigen alone or admixed with imiquimod. This confirmed BBIQ to be a TLR7-specific adjuvant able to enhance humoral immune responses.
Collapse
Affiliation(s)
- Deepender Kaushik
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University , Chandigarh, India
| | - Simran Dhingra
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University , Chandigarh, India
| | - Madhuri T Patil
- Department of Chemistry, Mehr Chand Mahajan DAV College for Women , Chandigarh, India
| | - Sakshi Piplani
- Vaxine Pty Ltd , Warradale, Australia.,College of Medicine and Public Health, Flinders University , Adelaide, Australia
| | - Varun Khanna
- Vaxine Pty Ltd , Warradale, Australia.,College of Medicine and Public Health, Flinders University , Adelaide, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd , Warradale, Australia.,College of Medicine and Public Health, Flinders University , Adelaide, Australia
| | - Lei Li
- Vaxine Pty Ltd , Warradale, Australia.,College of Medicine and Public Health, Flinders University , Adelaide, Australia
| | | | - Isaac G Sakala
- Vaxine Pty Ltd , Warradale, Australia.,College of Medicine and Public Health, Flinders University , Adelaide, Australia
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University , Chandigarh, India.,National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials (NICOVIA), Panjab University , Chandigarh, India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd , Warradale, Australia.,College of Medicine and Public Health, Flinders University , Adelaide, Australia
| |
Collapse
|
21
|
Miller SM, Cybulski V, Whitacre M, Bess LS, Livesay MT, Walsh L, Burkhart D, Bazin HG, Evans JT. Novel Lipidated Imidazoquinoline TLR7/8 Adjuvants Elicit Influenza-Specific Th1 Immune Responses and Protect Against Heterologous H3N2 Influenza Challenge in Mice. Front Immunol 2020; 11:406. [PMID: 32210973 PMCID: PMC7075946 DOI: 10.3389/fimmu.2020.00406] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/20/2020] [Indexed: 11/29/2022] Open
Abstract
Most licensed seasonal influenza vaccines are non-adjuvanted and rely primarily on vaccine-induced antibody titers for protection. As such, seasonal antigenic drift and suboptimal vaccine strain selection often results in reduced vaccine efficacy. Further, seasonal H3N2 influenza vaccines demonstrate poor efficacy compared to H1N1 and influenza type B vaccines. New vaccines, adjuvants, or delivery technologies that can induce broader or cross-seasonal protection against drifted influenza virus strains, likely through induction of protective T cell responses, are urgently needed. Here, we report novel lipidated TLR7/8 ligands that act as strong adjuvants to promote influenza-virus specific Th1-and Th17-polarized T cell responses and humoral responses in mice with no observable toxicity. Further, the adjuvanted influenza vaccine provided protection against a heterologous H3N2 influenza challenge in mice. These responses were further enhanced when combined with a synthetic TLR4 ligand adjuvant. Despite differences between human and mouse TLR7/8, these novel lipidated imidazoquinolines induced the production of cytokines required to polarize a Th1 and Th17 immune response in human PBMCs providing additional support for further development of these compounds as novel adjuvants for the induction of broad supra-seasonal protection from influenza virus.
Collapse
Affiliation(s)
- Shannon M. Miller
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Van Cybulski
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Margaret Whitacre
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Laura S. Bess
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Mark T. Livesay
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Lois Walsh
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - David Burkhart
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Hélène G. Bazin
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Jay T. Evans
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| |
Collapse
|
22
|
Development of RNA/DNA Hydrogel Targeting Toll-Like Receptor 7/8 for Sustained RNA Release and Potent Immune Activation. Molecules 2020; 25:molecules25030728. [PMID: 32046113 PMCID: PMC7037604 DOI: 10.3390/molecules25030728] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 01/10/2023] Open
Abstract
Guanosine- and uridine-rich single-stranded RNA (GU-rich RNA) is an agonist of Toll-like receptor (TLR) 7 and TLR8 and induces strong immune responses. A nanostructured GU-rich RNA/DNA assembly prepared using DNA nanotechnology can be used as an adjuvant capable of improving the biological stability of RNA and promoting efficient RNA delivery to target immune cells. To achieve a sustained supply of GU-rich RNA to immune cells, we developed a GU-rich RNA/DNA hydrogel (RDgel) using nanostructured GU-rich RNA/DNA assembly, from which GU-rich RNA can be released in a sustained manner. A hexapod-like GU-rich RNA/DNA nanostructure, or hexapodRD6, was designed using a 20-mer phosphorothioate-stabilized GU-rich RNA and six phosphodiester DNAs. Two sets of hexapodRD6 were mixed to obtain RDgel. Under serum-containing conditions, GU-rich RNA was gradually released from the RDgel. Fluorescently labeled GU-rich RNA was efficiently taken up by DC2.4 murine dendritic cells and induced a high level of tumor necrosis factor-α release from these cells when it was incorporated into RDgel. These results indicate that the RDgel constructed using DNA nanotechnology can be a useful adjuvant in cancer therapy with sustained RNA release and high immunostimulatory activity.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The gradual replacement of inactivated whole cell and live attenuated vaccines with subunit vaccines has generally reduced reactogenicity but in many cases also immunogenicity. Although only used when necessary, adjuvants can be key to vaccine dose/antigen-sparing, broadening immune responses to variable antigens, and enhancing immunogenicity in vulnerable populations with distinct immunity. Licensed vaccines contain an increasing variety of adjuvants, with a growing pipeline of adjuvanted vaccines under development. RECENT FINDINGS Most adjuvants, including Alum, Toll-like receptor agonists and oil-in-water emulsions, activate innate immunity thereby altering the quantity and quality of an adaptive immune response. Adjuvants activate leukocytes, and induce mediators (e.g., cytokines, chemokines, and prostaglandin-E2) some of which are biomarkers for reactogenicity, that is, induction of local/systemic side effects. Although there have been safety concerns regarding a hypothetical risk of adjuvants inducing auto-immunity, such associations have not been established. As immune responses vary by population (e.g., age and sex), adjuvant research now incorporates principles of precision medicine. Innovations in adjuvant research include use of human in vitro models, immuno-engineering, novel delivery systems, and systems biology to identify biomarkers of safety and adjuvanticity. SUMMARY Adjuvants enhance vaccine immunogenicity and can be associated with reactogenicity. Novel multidisciplinary approaches hold promise to accelerate and de-risk targeted adjuvant discovery and development. VIDEO ABSTRACT: http://links.lww.com/MOP/A53.
Collapse
Affiliation(s)
- Etsuro Nanishi
- Precision Vaccines Program
- Division of Infectious Diseases, Boston Children's Hospital
- Harvard Medical School, Boston
| | - David J. Dowling
- Precision Vaccines Program
- Division of Infectious Diseases, Boston Children's Hospital
- Harvard Medical School, Boston
| | - Ofer Levy
- Precision Vaccines Program
- Division of Infectious Diseases, Boston Children's Hospital
- Harvard Medical School, Boston
- Broad Institute of MIT & Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
24
|
Haque A, Akçeşme FB, Pant AB. A review of Zika virus: hurdles toward vaccine development and the way forward. Antivir Ther 2019; 23:285-293. [PMID: 29300166 DOI: 10.3851/imp3215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
The Zika virus (ZIKV) epidemic has recently emerged as a public health threat due to its teratogenic nature and association with the serious neurological condition Guillain-Barré syndrome (GBS). To date, no approved antiviral therapeutics to treat, nor vaccines to prevent, ZIKV infection are available. In order to develop effective anti-ZIKV vaccines, improved animal models and a better understanding of immunological correlates of protection against ZIKV are required. In this paper, we discuss the recent progress in developing vaccines against ZIKV and the hurdles to overcome in making efficacious anti-ZIKV vaccines. Here, we propose strategies to make efficacious and safe vaccines against ZIKV by using novel approaches including molecular attenuation of viruses and TLR-based nanoparticle vaccines. The question of exacerbating dengue virus infection or causing GBS through the production of cross-reactive immunity targeting viral or host proteins have been addressed in this paper. Challenges in implementing immunogenic and protective ZIKV vaccine trials in immunodepressed target populations (for example, pregnant women) have also been discussed.
Collapse
Affiliation(s)
- Azizul Haque
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Faruk Berat Akçeşme
- Department of Biostatistics and Medical Informatics at University of Medical Sciences, Üsküdar/İstanbul, Turkey
| | - Anudeep B Pant
- School of Public Health and Tropical Medicine at Tulane University, New Orleans, LA, USA
| |
Collapse
|
25
|
Abstract
Introduction: Neonates are less responsive to vaccines than adults, making it harder to protect newborns against infection. Neonatal differences in antigen-presenting cell, B and T cell function, all likely contribute. A key question is whether novel adjuvants might be able to make neonatal vaccines more effective. Areas covered: This review addresses the issues of how to improve neonatal vaccines, which we have defined as vaccines given in the first 4 weeks of life in a human infant or the first week of life in a mouse. A search was performed using keywords including 'neonatal immunity', 'neonatal immunisation', 'vaccine' and 'adjuvant' of PubMed articles published between 1960 and 2018. Expert opinion: Sugar-like structures have recently been shown to prime the infant adaptive immune system to respond to vaccines, being potentially more effective than traditional adjuvants. Sugar-based compounds with beneficial adjuvant effects in neonatal vaccine models include delta inulin (Advax), curdlan, and trehalose 6,6'-dibehenate. Such compounds make interesting neonatal adjuvant candidates, either used alone or in combination with traditional innate immune adjuvants.
Collapse
Affiliation(s)
- Isaac G Sakala
- a Vaxine Pty Ltd , Adelaide , Australia.,b Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University , Adelaide , Australia
| | - Katherine Marie Eichinger
- c Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh , Pittsburgh , PA , USA
| | - Nikolai Petrovsky
- a Vaxine Pty Ltd , Adelaide , Australia.,b Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University , Adelaide , Australia
| |
Collapse
|
26
|
Komura F, Takahashi Y, Inoue T, Takakura Y, Nishikawa M. Development of a Nanostructured RNA/DNA Assembly as an Adjuvant Targeting Toll-Like Receptor 7/8. Nucleic Acid Ther 2019; 29:335-342. [PMID: 31329033 DOI: 10.1089/nat.2019.0787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adjuvants are essential for efficiently inducing an antigen-specific immune response in vaccine therapy. Single-stranded RNA (ssRNA) containing guanosine- and uridine-rich sequences is recognized by Toll-like receptor (TLR)7 and/or TLR8 and induces strong immune responses; thus, the application of ssRNA as an adjuvant is desirable. The development of a ssRNA-based adjuvant, however, requires the efficient delivery of ssRNA into the endosomes of antigen-presenting cells, where the TLRs exist. To achieve this, we developed a nanostructured RNA/DNA assembly using DNA nanotechnology, which can be efficiently recognized by antigen-presenting cells. The nanostructured RNA/DNA assembly, named tetrapodRD3, was designed using a 40-mer phosphorothioate-stabilized RNA and three 40-mer phosphodiester DNAs. TetrapodRD3 was more stable than ssRNA under serum conditions. The secreted alkaline phosphatase assay using HEK-Blue hTLR cells showed that tetrapodRD3 triggered human TLR8-specific responses. Fluorescently labeled tetrapodRD3 was efficiently taken up by murine dendritic DC2.4 cells and induced a high level of tumor necrosis factor-α release from the cells. Antigen presentation by the major histocompatibility complex class I on bone marrow-derived dendritic cells was significantly increased by the addition of an antigen along with tetrapodRD3. These results indicate that tetrapodRD3 constructed using DNA nanotechnology can be a useful adjuvant targeting human TLR8.
Collapse
Affiliation(s)
- Fusae Komura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Makiya Nishikawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| |
Collapse
|
27
|
Sanchez-Schmitz G, Stevens CR, Bettencourt IA, Flynn PJ, Schmitz-Abe K, Metser G, Hamm D, Jensen KJ, Benn C, Levy O. Microphysiologic Human Tissue Constructs Reproduce Autologous Age-Specific BCG and HBV Primary Immunization in vitro. Front Immunol 2018; 9:2634. [PMID: 30524426 PMCID: PMC6256288 DOI: 10.3389/fimmu.2018.02634] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/25/2018] [Indexed: 11/13/2022] Open
Abstract
Current vaccine development disregards human immune ontogeny, relying on animal models to select vaccine candidates targeting human infants, who are at greatest risk of infection worldwide, and receive the largest number of vaccines. To help accelerate and de-risk development of early-life effective immunization, we engineered a human age-specific microphysiologic vascular-interstitial interphase, suitable for pre-clinical modeling of distinct age-targeted immunity in vitro. Our Tissue Constructs (TCs) enable autonomous extravasation of monocytes that undergo rapid self-directed differentiation into migratory Dendritic Cells (DCs) in response to adjuvants and licensed vaccines such as Bacille Calmette-Guérin (BCG) or Hepatitis B virus Vaccine (HBV). TCs contain a confluent human endothelium grown atop a tri-dimensional human extracellular matrix substrate, employ human age-specific monocytes and autologous non heat-treated plasma, and avoid the use of xenogenic materials and exogenous cytokines. Vaccine-pulsed TCs autonomously generated DCs that induced single-antigen recall responses from autologous naïve and memory CD4+ T lymphocytes, matching study participant immune-status, including BCG responses paralleling donor PPD status, BCG-induced adenosine deaminase (ADA) activity paralleling infant cohorts in vivo, and multi-dose HBV antigen-specific responses as demonstrated by lymphoproliferation and TCR sequencing. Overall, our microphysiologic culture method reproduced age- and antigen-specific recall responses to BCG and HBV immunization, closely resembling those observed after a birth immunization of human cohorts in vivo, offering for the first time a new approach to early pre-clinical selection of effective age-targeted vaccine candidates.
Collapse
Affiliation(s)
- Guzman Sanchez-Schmitz
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Precision Vaccines Program, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States
| | - Chad R Stevens
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Ian A Bettencourt
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Peter J Flynn
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Klaus Schmitz-Abe
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Gil Metser
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - David Hamm
- Adaptive Biotechnologies, Seattle, WA, United States
| | - Kristoffer J Jensen
- Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark.,Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Christine Benn
- Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark.,Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau
| | - Ofer Levy
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Precision Vaccines Program, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States.,Broad Institute of Harvard and MIT, Cambridge, MA, United States
| |
Collapse
|
28
|
Natama HM, Moncunill G, Rovira-Vallbona E, Sanz H, Sorgho H, Aguilar R, Coulibaly-Traoré M, Somé MA, Scott S, Valéa I, Mens PF, Schallig HDFH, Kestens L, Tinto H, Dobaño C, Rosanas-Urgell A. Modulation of innate immune responses at birth by prenatal malaria exposure and association with malaria risk during the first year of life. BMC Med 2018; 16:198. [PMID: 30384846 PMCID: PMC6214168 DOI: 10.1186/s12916-018-1187-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/05/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Factors driving inter-individual differences in immune responses upon different types of prenatal malaria exposure (PME) and subsequent risk of malaria in infancy remain poorly understood. In this study, we examined the impact of four types of PME (i.e., maternal peripheral infection and placental acute, chronic, and past infections) on both spontaneous and toll-like receptors (TLRs)-mediated cytokine production in cord blood and how these innate immune responses modulate the risk of malaria during the first year of life. METHODS We conducted a birth cohort study of 313 mother-child pairs nested within the COSMIC clinical trial (NCT01941264), which was assessing malaria preventive interventions during pregnancy in Burkina Faso. Malaria infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. Supernatant concentrations of 30 cytokines, chemokines, and growth factors induced by stimulation of cord blood with agonists of TLRs 3, 7/8, and 9 were measured by quantitative suspension array technology. Crude concentrations and ratios of TLR-mediated cytokine responses relative to background control were analyzed. RESULTS Spontaneous production of innate immune biomarkers was significantly reduced in cord blood of infants exposed to malaria, with variation among PME groups, as compared to those from the non-exposed control group. However, following TLR7/8 stimulation, which showed higher induction of cytokines/chemokines/growth factors than TLRs 3 and 9, cord blood cells of infants with evidence of past placental malaria were hyper-responsive in comparison to those of infants not-exposed. In addition, certain biomarkers, which levels were significantly modified depending on the PME category, were independent predictors of either malaria risk (GM-CSF TLR7/8 crude) or protection (IL-12 TLR7/8 ratio and IP-10 TLR3 crude, IL-1RA TLR7/8 ratio) during the first year of life. CONCLUSIONS These findings indicate that past placental malaria has a profound effect on fetal immune system and that the differential alterations of innate immune responses by PME categories might drive heterogeneity between individuals to clinical malaria susceptibility during the first year of life.
Collapse
Affiliation(s)
- Hamtandi Magloire Natama
- Department of Biomedical Sciences, Institute of Tropical Medicine, B 2000, Antwerp, Belgium.,Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, BP218, Nanoro, Burkina Faso.,Department of Biomedical Sciences, University of Antwerp, B 2610, Antwerp, Belgium
| | - Gemma Moncunill
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - Universitat de Barcelona, Carrer Rossello 132, E-08036, Barcelona, Catalonia, Spain
| | - Eduard Rovira-Vallbona
- Department of Biomedical Sciences, Institute of Tropical Medicine, B 2000, Antwerp, Belgium
| | - Héctor Sanz
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - Universitat de Barcelona, Carrer Rossello 132, E-08036, Barcelona, Catalonia, Spain
| | - Hermann Sorgho
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, BP218, Nanoro, Burkina Faso
| | - Ruth Aguilar
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - Universitat de Barcelona, Carrer Rossello 132, E-08036, Barcelona, Catalonia, Spain
| | - Maminata Coulibaly-Traoré
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, BP218, Nanoro, Burkina Faso
| | - M Athanase Somé
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, BP218, Nanoro, Burkina Faso
| | - Susana Scott
- Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, WC1E7HT, UK
| | - Innocent Valéa
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, BP218, Nanoro, Burkina Faso
| | - Petra F Mens
- Department of Medical Microbiology - Parasitology Unit, Academic Medical Centre, Amsterdam, 1105, AZ, The Netherlands
| | - Henk D F H Schallig
- Department of Medical Microbiology - Parasitology Unit, Academic Medical Centre, Amsterdam, 1105, AZ, The Netherlands
| | - Luc Kestens
- Department of Biomedical Sciences, Institute of Tropical Medicine, B 2000, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, B 2610, Antwerp, Belgium
| | - Halidou Tinto
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, BP218, Nanoro, Burkina Faso.,Centre Muraz, BP390, Bobo Dioulasso, Burkina Faso
| | - Carlota Dobaño
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - Universitat de Barcelona, Carrer Rossello 132, E-08036, Barcelona, Catalonia, Spain
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, B 2000, Antwerp, Belgium.
| |
Collapse
|
29
|
Ugolini M, Sander LE. Dead or alive: how the immune system detects microbial viability. Curr Opin Immunol 2018; 56:60-66. [PMID: 30366275 DOI: 10.1016/j.coi.2018.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/14/2022]
Abstract
Immune detection of microbial viability is increasingly recognized as a potent driver of innate and adaptive immune responses. Here we describe recent mechanistic insights into the process of how the immune system discriminates between viable and non-viable microbial matter. Accumulating evidence suggests a key role for microbial RNA as a widely conserved viability associated PAMP (vita-PAMP) and a molecular signal of increased infectious threat. Toll-like receptor 8 (TLR8) has recently emerged as a critical sensor for viable bacteria, ssRNA viruses, and archaea in human antigen presenting cells (APC). We discuss the role of microbial RNA, and other potential vita-PAMPs in antimicrobial immunity and vaccine responses.
Collapse
Affiliation(s)
- Matteo Ugolini
- Max Planck Unit for the Science of Pathogens, Berlin, Germany; Max Planck Institute for Infection Biology, Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; German Center for Lung Research (DZL), Berlin, Germany.
| |
Collapse
|
30
|
Westcott MM, Clemens EA, Holbrook BC, King SB, Alexander-Miller MA. The choice of linker for conjugating R848 to inactivated influenza virus determines the stimulatory capacity for innate immune cells. Vaccine 2018; 36:1174-1182. [PMID: 29398273 DOI: 10.1016/j.vaccine.2018.01.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/14/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022]
Abstract
Inactivated influenza vaccines are not approved for use in infants less than 6 months of age due to poor immunogenicity in that population. While the live attenuated influenza vaccine has the potential to be more immunogenic, it is not an option for infants and other vulnerable populations, including the elderly and immunocompromised individuals due to safety concerns. In an effort to improve the immunogenicity of the inactivated vaccine for use in vulnerable populations, we have used an approach of chemically crosslinking the Toll-like receptor (TLR) 7/8 agonist R848 directly to virus particles. We have reported previously that an R848-conjugated, inactivated vaccine is more effective at inducing adaptive immune responses and protecting against lung pathology in influenza challenged neonatal African green monkeys than is the unmodified counterpart. In the current study, we describe a second generation vaccine that utilizes an amide-sulfhydryl crosslinker with different spacer chemistry and length to couple R848 to virions. The new vaccine has significantly enhanced immunostimulatory activity for murine macrophages and importantly for monocyte derived human dendritic cells. Demonstration of the significant differences in stimulatory activity afforded by modest changes in linker impacts our fundamental view of the design of TLR agonist-antigen vaccines.
Collapse
Affiliation(s)
- Marlena M Westcott
- Department of Microbiology and Immunology, Biotech Place, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC 27101, USA.
| | - Elene A Clemens
- Department of Microbiology and Immunology, Biotech Place, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC 27101, USA.
| | - Beth C Holbrook
- Department of Microbiology and Immunology, Biotech Place, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC 27101, USA.
| | - S Bruce King
- Department of Chemistry, Wake Downtown, Wake Forest University, 455 Vine Street, Winston-Salem, NC 27101, USA.
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Biotech Place, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC 27101, USA.
| |
Collapse
|
31
|
Sasaki E, Momose H, Hiradate Y, Mizukami T, Hamaguchi I. Establishment of a novel safety assessment method for vaccine adjuvant development. Vaccine 2018; 36:7112-7118. [PMID: 30318166 DOI: 10.1016/j.vaccine.2018.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/09/2018] [Accepted: 09/29/2018] [Indexed: 12/27/2022]
Abstract
Vaccines effectively prevent infectious diseases. Many types of vaccines against various pathogens that threaten humans are currently in widespread use. Recently, adjuvant adaptation has been attempted to activate innate immunity to enhance the effectiveness of vaccines. The effectiveness of adjuvants for vaccinations has been demonstrated in many animal models and clinical trials. Although a highly potent adjuvant tends to have high effectiveness, it also has the potential to increase the risk of side effects such as pain, edema, and fever. Indeed, highly effective adjuvants, such as poly(I:C), have not been clinically applied due to their high risks of toxicity in humans. Therefore, the task in the field of adjuvant development is to clinically apply highly effective and non- or low-toxic adjuvant-containing vaccines. To resolve this issue, it is essential to ensure a low risk of side effects and the high efficacy of an adjuvant in the early developmental phases. This review summarizes the theory and history of the current safety assessment methods for adjuvants, using the inactivated influenza vaccine as a model. Our novel method was developed as a system to judge the safety of a candidate compound using biomarkers identified by genomic technology and statistical tools. A systematic safety assessment tool for adjuvants would be of great use for predicting toxicity during novel adjuvant development, screening, and quality control.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Yuki Hiradate
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan.
| |
Collapse
|
32
|
Adjuvant-Dependent Enhancement of HIV Env-Specific Antibody Responses in Infant Rhesus Macaques. J Virol 2018; 92:JVI.01051-18. [PMID: 30089691 DOI: 10.1128/jvi.01051-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022] Open
Abstract
Toward the goal of developing an effective HIV vaccine that can be administered in infancy to protect against postnatal and lifelong sexual HIV transmission risks, the current pilot study was designed to compare the effect of novel adjuvants on the induction of HIV Env-specific antibody responses in infant macaques. Aligning our studies with the adjuvanted proteins evaluated in a prime-boost schedule with ALVAC in the ongoing HVTN (HIV Vaccine Trials Network) 702 efficacy trial, we selected the bivalent clade C Env immunogens gp120 C.1086 and gp120 TV1 in combination with the MF59 adjuvant. However, we hypothesized that the adjuvant system AS01, that is included in the pediatric RTS,S malaria vaccine, would promote Env-specific antibody responses superior to those of the oil-in-water MF59 emulsion adjuvant. In a second study arm, we compared two emulsions, glucopyranosyl lipid adjuvant formulated in a stable emulsion (GLA-SE) and 3M-052-SE, containing Toll-like receptor 4 (TLR4) and TLR7/TLR8 (TLR7/8) ligand, respectively. The latter adjuvant had been previously demonstrated to be especially effective in activating neonatal antigen-presenting cells. Our results demonstrate that different adjuvants drive quantitatively or qualitatively distinct responses to the bivalent Env vaccine. AS01 induced higher Env-specific plasma IgG antibody levels than the antigen in MF59 and promoted improved antibody function in infants, and 3M-052-SE outperformed GLA-SE by inducing the highest breadth and functionality of antibody responses. Thus, distinct adjuvants are likely to be required for maximizing vaccine-elicited immune responses in infants, particularly when immunization in infancy aims to elicit both perinatal and lifelong immunity against challenging pathogens such as HIV.IMPORTANCE Alum remains the adjuvant of choice for pediatric vaccines. Yet the distinct nature of the developing immune system in infants likely requires novel adjuvants targeted specifically at the pediatric population to reach maximal vaccine efficacy with an acceptable safety profile. The current study supports the idea that additional adjuvants for pediatric vaccines should be, and need to be, tested in infants for their potential to enhance immune responses. Using an infant macaque model, our results suggest that both AS01 and 3M-052-SE can significantly improve and better sustain HIV Env-specific antibody responses than alum. Despite the limited number of animals, the results revealed interesting differences that warrant further testing of promising novel adjuvant candidates in larger preclinical and clinical studies to define the mechanisms leading to adjuvant-improved antibody responses and to identify targets for adjuvant and vaccine optimization.
Collapse
|
33
|
Freyne B, Donath S, Germano S, Gardiner K, Casalaz D, Robins-Browne RM, Amenyogbe N, Messina NL, Netea MG, Flanagan KL, Kollmann T, Curtis N. Neonatal BCG Vaccination Influences Cytokine Responses to Toll-like Receptor Ligands and Heterologous Antigens. J Infect Dis 2018; 217:1798-1808. [PMID: 29415180 PMCID: PMC11491830 DOI: 10.1093/infdis/jiy069] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/01/2018] [Indexed: 04/13/2024] Open
Abstract
Background BCG vaccination is associated with a reduction in all-cause infant mortality in high-mortality settings. The underlying mechanisms remain uncertain, but long-term modulation of the innate immune response (trained immunity) may be involved. Methods Whole-blood specimens, collected 7 days after randomization from 212 neonates enrolled in a randomized trial of neonatal BCG vaccination, were stimulated with killed pathogens and Toll-like receptor (TLR) ligands to interrogate cytokine responses. Results BCG-vaccinated infants had increased production of interleukin 6 (IL-6) in unstimulated samples and decreased production of interleukin 1 receptor antagonist, IL-6, and IL-10 and the chemokines macrophage inflammatory protein 1α (MIP-1α), MIP-1β, and monocyte chemoattractant protein 1 (MCP-1) following stimulation with peptidoglycan (TLR2) and R848 (TLR7/8). BCG-vaccinated infants also had decreased MCP-1 responses following stimulation with heterologous pathogens. Sex and maternal BCG vaccination status interacted with neonatal BCG vaccination. Conclusions Neonatal BCG vaccination influences cytokine responses to TLR ligands and heterologous pathogens. This effect is characterized by decreased antiinflammatory cytokine and chemokine responses in the context of higher levels of IL-6 in unstimulated samples. This supports the hypothesis that BCG vaccination modulates the innate immune system. Further research is warranted to determine whether there is an association between these findings and the beneficial nonspecific (heterologous) effects of BCG vaccine on all-cause mortality.
Collapse
Affiliation(s)
- Bridget Freyne
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
| | - Susan Donath
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children’s Research Institute, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
| | - Susan Germano
- Infectious Diseases and Microbiology Group, Parkville, Australia
| | - Kaya Gardiner
- Infectious Diseases and Microbiology Group, Parkville, Australia
| | - Dan Casalaz
- Department of Paediatrics, Mercy Hospital for Women, Heidelberg, Australia
| | - Roy M Robins-Browne
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Nelly Amenyogbe
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Nicole L Messina
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katie L Flanagan
- School of Medicine, University of Tasmania, Launceston Australia
- Department of Immunology and Pathology, Monash University, Clayton, Australia
| | - Tobias Kollmann
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Nigel Curtis
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Australia
| |
Collapse
|
34
|
Surendran N, Simmons A, Pichichero ME. TLR agonist combinations that stimulate Th type I polarizing responses from human neonates. Innate Immun 2018; 24:240-251. [PMID: 29673285 PMCID: PMC6830928 DOI: 10.1177/1753425918771178] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Each year millions of neonates die due to vaccine preventable infectious diseases. Our study seeks to develop novel neonatal vaccines and improve immunogenicity of early childhood vaccines by incorporating TLR agonist-adjuvant combinations that overcome the inherent neonatal Th2 bias and stimulate Th1 polarizing response from neonatal APCs. We systematically stimulated cord blood mononuclear cells with single and multiple combinations of TLR agonists and measured levels of IL-12p70, IFN-γ, IFN-α, IL-10, IL-13, TNF-α, IL-6 and IL-1β from cell culture supernatants. APC-specific surface expression levels of costimulatory markers CD40, CD83 and PD-L1 were assessed by flow cytometry. Whole blood assays were included to account for the effect of plasma inhibitory factors and APC intracellular TNF-α and IL-12p40 secretions were measured. We found robust Th1 polarizing IL-12p70, IFN-γ and IFN-α responses when cord blood APCs were stimulated with TLR agonist combinations that contained Poly I:C, Monophosphoryl Lipid A (MPLA) or R848. Addition of class A CpG oligonucleotide (ODN) to Th1 polarizing TLR agonist combinations significantly reduced cord blood IL-12p70 and IFN-γ levels and addition of a TLR2 agonist induced significantly high Th2 polarizing IL-13. Multi-TLR agonist combinations that included R848 induced lower inhibitory PD-L1 expression on cord blood classical dendritic cells than CpG ODN-containing combinations. Incorporation of combination adjuvants containing TLR3, TLR4 and TLR7/8 agonists to neonatal vaccines may be an effective strategy to overcome neonatal Th2 bias.
Collapse
Affiliation(s)
- Naveen Surendran
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY, USA
| | - Andrea Simmons
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY, USA
| | - Michael E Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY, USA
| |
Collapse
|
35
|
Vono M, Eberhardt CS, Mohr E, Auderset F, Christensen D, Schmolke M, Coler R, Meinke A, Andersen P, Lambert PH, Mastelic-Gavillet B, Siegrist CA. Overcoming the Neonatal Limitations of Inducing Germinal Centers through Liposome-Based Adjuvants Including C-Type Lectin Agonists Trehalose Dibehenate or Curdlan. Front Immunol 2018. [PMID: 29541075 PMCID: PMC5835515 DOI: 10.3389/fimmu.2018.00381] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Neonates and infants are more vulnerable to infections and show reduced responses to vaccination. Consequently, repeated immunizations are required to induce protection and early life vaccines against major pathogens such as influenza are yet unavailable. Formulating antigens with potent adjuvants, including immunostimulators and delivery systems, is a demonstrated approach to enhance vaccine efficacy. Yet, adjuvants effective in adults may not meet the specific requirements for activating the early life immune system. Here, we assessed the neonatal adjuvanticity of three novel adjuvants including TLR4 (glucopyranosyl lipid adjuvant-squalene emulsion), TLR9 (IC31®), and Mincle (CAF01) agonists, which all induce germinal centers (GCs) and potent antibody responses to influenza hemagglutinin (HA) in adult mice. In neonates, a single dose of HA formulated into each adjuvant induced T follicular helper (TFH) cells. However, only HA/CAF01 elicited significantly higher and sustained antibody responses, engaging neonatal B cells to differentiate into GCs already after a single dose. Although antibody titers remained lower than in adults, HA-specific responses induced by a single neonatal dose of HA/CAF01 were sufficient to confer protection against influenza viral challenge. Postulating that the neonatal adjuvanticity of CAF01 may result from the functionality of the C-type lectin receptor (CLR) Mincle in early life we asked whether other C-type lectin agonists would show a similar neonatal adjuvanticity. Replacing the Mincle agonist trehalose 6,6′-dibehenate by Curdlan, which binds to Dectin-1, enhanced antibody responses through the induction of similar levels of TFH, GCs and bone marrow high-affinity plasma cells. Thus, specific requirements of early life B cells may already be met after a single vaccine dose using CLR-activating agonists, identified here as promising B cell immunostimulators for early life vaccines when included into cationic liposomes.
Collapse
Affiliation(s)
- Maria Vono
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland
| | - Christiane Sigrid Eberhardt
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland.,WHO Collaborative Center for Vaccine Immunology, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Elodie Mohr
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland
| | - Floriane Auderset
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland
| | - Dennis Christensen
- Vaccine Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Rhea Coler
- Infectious Disease Research Institute, Seattle, WA, United States
| | | | - Peter Andersen
- Vaccine Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Paul-Henri Lambert
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland
| | - Beatris Mastelic-Gavillet
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland.,WHO Collaborative Center for Vaccine Immunology, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
36
|
Scheid A, Borriello F, Pietrasanta C, Christou H, Diray-Arce J, Pettengill MA, Joshi S, Li N, Bergelson I, Kollmann T, Dowling DJ, Levy O. Adjuvant Effect of Bacille Calmette-Guérin on Hepatitis B Vaccine Immunogenicity in the Preterm and Term Newborn. Front Immunol 2018; 9:29. [PMID: 29416539 PMCID: PMC5787546 DOI: 10.3389/fimmu.2018.00029] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 01/04/2018] [Indexed: 01/21/2023] Open
Abstract
Immunization is key to protecting term and preterm infants from a heightened risk of infection. However, preterm immunity is distinct from that of the term, limiting its ability to effectively respond to vaccines routinely given at birth, such as hepatitis B vaccine (HBV). As part of the Expanded Program on Immunization, HBV is often given together with the live-attenuated vaccine Bacille Calmette-Guérin (BCG), known to activate multiple pattern-recognition receptors. Of note, some clinical studies suggest BCG can enhance efficacy of other vaccines in term newborns. However, little is known about whether BCG can shape Th-polarizing cytokine responses to HBV nor the age-dependency of such effects, including whether they may extend to the preterm. To characterize the effects of BCG on HBV immunogenicity, we studied individual and combined administration of these vaccines to cord newborn and adult human whole blood and mononuclear cells in vitro and to neonatal and adult mice in vivo. Compared to either BCG or HBV alone, (BCG + HBV) synergistically enhanced in vitro whole blood production of IL-1β, while (BCG + HBV) also promoted production of several cytokines/chemokines in all age groups, age-specific enhancement included IL-12p70 in the preterm and GM-CSF in the preterm and term. In human mononuclear cells, (BCG + HBV) enhanced mRNA expression of several genes including CSF2, which contributed to clustering of genes by vaccine treatment via principle component analysis. To assess the impact of BCG on HBV immunization, mice of three different age groups were immunized subcutaneously with, BCG, HBV, (BCG + HBV) into the same site; or BCG and HBV injected into separate sites. Whether injected into a separate site or at the same site, co-administration of BCG with HBV significantly enhanced anti-HBV IgG titers in mice immunized on day of life-0 or -7, respectively, but not in adult mice. In summary, our data demonstrate that innate and adaptive vaccine responses of preterm and term newborns are immunologically distinct. Furthermore, BCG or "BCG-like" adjuvants should be further studied as a promising adjuvantation approach to enhance immunogenicity of vaccines to protect these vulnerable populations.
Collapse
Affiliation(s)
- Annette Scheid
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Francesco Borriello
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Carlo Pietrasanta
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - Joann Diray-Arce
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Matthew A. Pettengill
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Sweta Joshi
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Ning Li
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Medical Eli Lilly, Shanghai, China
| | - Ilana Bergelson
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Tobias Kollmann
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, British Columbia Children’s Hospital, Vancouver, BC, Canada
| | - David J. Dowling
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| |
Collapse
|
37
|
Borriello F, Pietrasanta C, Lai JCY, Walsh LM, Sharma P, O'Driscoll DN, Ramirez J, Brightman S, Pugni L, Mosca F, Burkhart DJ, Dowling DJ, Levy O. Identification and Characterization of Stimulator of Interferon Genes As a Robust Adjuvant Target for Early Life Immunization. Front Immunol 2017; 8:1772. [PMID: 29312305 PMCID: PMC5732947 DOI: 10.3389/fimmu.2017.01772] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/27/2017] [Indexed: 11/16/2022] Open
Abstract
Immunization is key to preventing infectious diseases, a leading cause of death early in life. However, due to age-specific immunity, vaccines often demonstrate reduced efficacy in newborns and young infants as compared to adults. Here, we combined in vitro and in vivo approaches to identify adjuvant candidates for early life immunization. We employed newborn and adult bone marrow-derived dendritic cells (BMDCs) to perform a screening of pattern recognition receptor agonists and found that the stimulator of interferon genes ligand 2′3′-cGAMP (hereafter cGAMP) induces a comparable expression of surface maturation markers in newborn and adult BMDCs. Then, we utilized the trivalent recombinant hemagglutinin (rHA) influenza vaccine, Flublok, as a model antigen to investigate the role of cGAMP in adult and early life immunization. cGAMP adjuvantation alone could increase rHA-specific antibody titers in adult but not newborn mice. Remarkably, as compared to alum or cGAMP alone, immunization with cGAMP formulated with alum (Alhydrogel) enhanced newborn rHA-specific IgG2a/c titers ~400-fold, an antibody subclass associated with the development of IFNγ-driven type 1 immunity in vivo and endowed with higher effector functions, by 42 days of life. Highlighting the amenability for successful vaccine formulation and delivery, we next confirmed that cGAMP adsorbs onto alum in vitro. Accordingly, immunization early in life with (cGAMP+alum) promoted IFNγ production by CD4+ T cells and increased the proportions and absolute numbers of CD4+ CXCR5+ PD-1+ T follicular helper and germinal center (GC) GL-7+ CD138+ B cells, suggesting an enhancement of the GC reaction. Adjuvantation effects were apparently specific for IgG2a/c isotype switching without effect on antibody affinity maturation, as there was no effect on rHA-specific IgG avidity. Overall, our studies suggest that cGAMP when formulated with alum may represent an effective adjuvantation system to foster humoral and cellular aspects of type 1 immunity for early life immunization.
Collapse
Affiliation(s)
- Francesco Borriello
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Precision Vaccines Program, Divisions of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Napoli, Italy.,WAO Center of Excellence, Naples, Italy
| | - Carlo Pietrasanta
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Precision Vaccines Program, Divisions of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Jacqueline C Y Lai
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Precision Vaccines Program, Divisions of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Lois M Walsh
- Biomedical & Pharmaceutical Science Skaggs School of Pharmacy, University of Montana, Missoula, MT, United States
| | - Pankaj Sharma
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Precision Vaccines Program, Divisions of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - David N O'Driscoll
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Precision Vaccines Program, Divisions of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Juan Ramirez
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Precision Vaccines Program, Divisions of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Spencer Brightman
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Precision Vaccines Program, Divisions of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Lorenza Pugni
- Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - David J Burkhart
- Biomedical & Pharmaceutical Science Skaggs School of Pharmacy, University of Montana, Missoula, MT, United States
| | - David J Dowling
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Ofer Levy
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Precision Vaccines Program, Divisions of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
38
|
Dietz RM, Wright CJ. Oxidative stress diseases unique to the perinatal period: A window into the developing innate immune response. Am J Reprod Immunol 2017; 79:e12787. [PMID: 29194835 DOI: 10.1111/aji.12787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/31/2017] [Indexed: 12/15/2022] Open
Abstract
The innate immune system has evolved to play an integral role in the normally developing lung and brain. However, in response to oxidative stress, innate immunity, mediated by specific cellular and molecular programs and signaling, contributes to pathology in these same organ systems. Despite opposing drivers of oxidative stress, namely hyperoxia in neonatal lung injury and hypoxia/ischemia in neonatal brain injury, similar pathways-including toll-like receptors, NFκB and MAPK cascades-have been implicated in tissue damage. In this review, we consider recent insights into the innate immune response to oxidative stress in both neonatal and adult models to better understand hyperoxic lung injury and hypoxic-ischemic brain injury across development and aging. These insights support the development of targeted immunotherapeutic strategies to address the challenge of harnessing the innate immune system in oxidative stress diseases of the neonate.
Collapse
Affiliation(s)
- Robert M Dietz
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
39
|
Abstract
Immunisation of the newborn represents a key global strategy in overcoming morbidity and mortality due to infection in early life. Potential limitations, however, include poor immunogenicity, safety concerns and the development of tolerogenicity or hypo-responsiveness to either the same antigen and/or concomitant antigens administered at birth or in the subsequent months. Furthermore, the neonatal immunological milieu is polarised towards Th2-type immunity with dampening of Th1-type responses and impaired humoral immunity, resulting in qualitatively and quantitatively poorer antibody responses compared to older infants. Innate immunity also shows functional deficiency in antigen-presenting cells: the expression and signalling of Toll-like receptors undergo maturational changes associated with distinct functional responses. Nevertheless, the effectiveness of BCG, hepatitis B and oral polio vaccines, the only immunisations currently in use in the neonatal period, is proof of concept that vaccines can be successfully administered to the newborn via different routes of delivery to induce a range of protective mechanisms for three different diseases. In this review paper, we discuss the rationale for and challenges to neonatal immunisation, summarising progress made in the field, including lessons learnt from newborn vaccines in the pipeline. Furthermore, we explore important maternal, infant and environmental co-factors that may impede the success of current and future neonatal immunisation strategies. A variety of approaches have been proposed to overcome the inherent regulatory constraints of the newborn innate and adaptive immune system, including alternative routes of delivery, novel vaccine configurations, improved innate receptor agonists and optimised antigen-adjuvant combinations. Crucially, a dual strategy may be employed whereby immunisation at birth is used to prime the immune system in order to improve immunogenicity to subsequent homologous or heterologous boosters in later infancy. Similarly, potent non-specific immunomodulatory effects may be elicited when challenged with unrelated antigens, with the potential to reduce the overall risk of infection and allergic disease in early life.
Collapse
Affiliation(s)
- Anja Saso
- Centre of International Child Health, Department of Paediatrics, Imperial College London, W2 1NY, London, UK
| | - Beate Kampmann
- Centre of International Child Health, Department of Paediatrics, Imperial College London, W2 1NY, London, UK.
- Vaccines and Immunity Theme, MRC Unit The Gambia, Fajara, The Gambia.
| |
Collapse
|
40
|
Holbrook BC, Aycock ST, Machiele E, Clemens E, Gries D, Jorgensen MJ, Hadimani MB, King SB, Alexander-Miller MA. An R848 adjuvanted influenza vaccine promotes early activation of B cells in the draining lymph nodes of non-human primate neonates. Immunology 2017; 153:357-367. [PMID: 28940186 DOI: 10.1111/imm.12845] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 12/31/2022] Open
Abstract
Impaired immune responsiveness is a significant barrier to vaccination of neonates. By way of example, the low seroconversion observed following influenza vaccination has led to restriction of its use to infants over 6 months of age, leaving younger infants vulnerable to infection. Our previous studies using a non-human primate neonate model demonstrated that the immune response elicited following vaccination with inactivated influenza virus could be robustly increased by inclusion of the Toll-like receptor agonist flagellin or R848, either delivered individually or in combination. When delivered individually, R848 was found to be the more effective of the two. To gain insights into the mechanism through which these adjuvants functioned in vivo, we assessed the initiation of the immune response, i.e. at 24 hr, in the draining lymph node of neonate non-human primates. Significant up-regulation of co-stimulatory molecules on dendritic cells could be detected, but only when both adjuvants were present. In contrast, R848 alone could increase the number of cells in the lymph node, presumably through enhanced recruitment, as well as B-cell activation at this early time-point. These changes were not observed with flagellin and the dual adjuvanted vaccine did not promote increases beyond those observed with R848 alone. In vitro studies showed that R848 could promote B-cell activation, supporting a model wherein a direct effect on neonate B-cell activation is an important component of the in vivo potency of R848 in neonates.
Collapse
Affiliation(s)
- Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - S Tyler Aycock
- Animal Resources Program, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Emily Machiele
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Elene Clemens
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Danielle Gries
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Matthew J Jorgensen
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - S Bruce King
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, USA
| | | |
Collapse
|
41
|
Georgountzou A, Papadopoulos NG. Postnatal Innate Immune Development: From Birth to Adulthood. Front Immunol 2017; 8:957. [PMID: 28848557 PMCID: PMC5554489 DOI: 10.3389/fimmu.2017.00957] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022] Open
Abstract
It is well established that adaptive immune responses are deficient in early life, contributing to increased mortality and morbidity. The developmental trajectories of different components of innate immunity are only recently being explored. Individual molecules, cells, or pathways of innate recognition and signaling, within different compartments/anatomical sites, demonstrate variable maturation patterns. Despite some discrepancies among published data, valuable information is emerging, showing that the developmental pattern of cytokine responses during early life is age and toll-like receptor specific, and may be modified by genetic and environmental factors. Interestingly, specific environmental exposures have been linked both to innate function modifications and the occurrence of chronic inflammatory disorders, such as respiratory allergies. As these conditions are on the rise, our knowledge on innate immune development and its modulating factors needs to be expanded. Improved understanding of the sequence of events associated with disease onset and persistence will lead toward meaningful interventions. This review describes the state-of-the-art on normal postnatal innate immune ontogeny and highlights research areas that are currently explored or should be further addressed.
Collapse
Affiliation(s)
- Anastasia Georgountzou
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Infection, Inflammation and Respiratory Medicine, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
42
|
Speer EM, Dowling DJ, Ozog LS, Xu J, Yang J, Kennady G, Levy O. Pentoxifylline inhibits TLR- and inflammasome-mediated in vitro inflammatory cytokine production in human blood with greater efficacy and potency in newborns. Pediatr Res 2017; 81:806-816. [PMID: 28072760 DOI: 10.1038/pr.2017.6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/19/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Toll-like receptor (TLR)-mediated inflammation may contribute to neonatal sepsis, for which pentoxifylline (PTX), a phosphodiesterase inhibitor that raises intracellular cAMP, is a candidate adjunctive therapy. We characterized the anti-inflammatory effects of PTX toward TLR-mediated production of inflammatory (tumor necrosis factor (TNF) and interleukin (IL)-1β) and proresolution (IL-6 and IL-10) cytokines in human newborn and adult blood. METHODS Newborn cord and adult blood were treated with PTX (50-400 µmol/l) before, during or after stimulation with LPS (TLR4 agonist), R848 (TLR7/8 agonist) or LPS/ATP (inflammasome activation). Cytokines were measured by multiplex assay (supernatants), intracellular cytokines and signaling molecules by flow cytometry, and mRNA by quantitative real-time PCR. RESULTS Whether added 2 h pre-, simultaneously to, or 2 h post-TLR stimulation, PTX inhibited TLR-mediated cytokine production in a concentration-dependent manner, with greater efficacy and potency in newborn blood, decreasing intracellular TNF and IL-1β with relative preservation of IL-10 and IL-6. PTX decreased TLR-mediated TNF mRNA while increasing IL-10 mRNA. Neonatal plasma factors contributed to the anti-inflammatory effects of PTX in newborn blood that were independent of soluble TNF receptor concentrations, p38 MAPK phosphorylation and IĸB degradation. CONCLUSION PTX is a potent and efficacious inhibitor of TLR-mediated inflammatory cytokines in newborn cord blood and a promising neonatal anti-inflammatory agent.
Collapse
Affiliation(s)
- Esther M Speer
- Department of Pediatrics, Stony Brook University School of Medicine, Stony Brook, New York
| | - David J Dowling
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Lukasz S Ozog
- Department of Pediatrics, Stony Brook University School of Medicine, Stony Brook, New York
| | - Jianjin Xu
- Department of Applied Mathematics and Statistics, Stony Brook University School of Medicine, Stony Brook, New York
| | - Jie Yang
- Family, Population, and Preventive Medicine Department, Stony Brook University School of Medicine, Stony Brook, New York
| | - Geetika Kennady
- Department of Pediatrics, Stony Brook University School of Medicine, Stony Brook, New York
| | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Precision Vaccines Program, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
43
|
Dowling DJ, Scott EA, Scheid A, Bergelson I, Joshi S, Pietrasanta C, Brightman S, Sanchez-Schmitz G, Van Haren SD, Ninković J, Kats D, Guiducci C, de Titta A, Bonner DK, Hirosue S, Swartz MA, Hubbell JA, Levy O. Toll-like receptor 8 agonist nanoparticles mimic immunomodulating effects of the live BCG vaccine and enhance neonatal innate and adaptive immune responses. J Allergy Clin Immunol 2017; 140:1339-1350. [PMID: 28343701 PMCID: PMC5667586 DOI: 10.1016/j.jaci.2016.12.985] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/15/2016] [Accepted: 12/07/2016] [Indexed: 12/22/2022]
Abstract
Background Newborns display distinct immune responses, leaving them vulnerable to infections and impairing immunization. Targeting newborn dendritic cells (DCs), which integrate vaccine signals into adaptive immune responses, might enable development of age-specific vaccine formulations to overcome suboptimal immunization. Objective Small-molecule imidazoquinoline Toll-like receptor (TLR) 8 agonists robustly activate newborn DCs but can result in reactogenicity when delivered in soluble form. We used rational engineering and age- and species-specific modeling to construct and characterize polymer nanocarriers encapsulating a TLR8 agonist, allowing direct intracellular release after selective uptake by DCs. Methods Chemically similar but morphologically distinct nanocarriers comprised of amphiphilic block copolymers were engineered for targeted uptake by murine DCs in vivo, and a range of TLR8 agonist–encapsulating polymersome formulations were then synthesized. Novel 96-well in vitro assays using neonatal human monocyte-derived DCs and humanized TLR8 mouse bone marrow–derived DCs enabled benchmarking of the TLR8 agonist–encapsulating polymersome formulations against conventional adjuvants and licensed vaccines, including live attenuated BCG vaccine. Immunogenicity of the TLR8 agonist adjuvanted antigen 85B (Ag85B)/peptide 25–loaded BCG-mimicking nanoparticle formulation was evaluated in vivo by using humanized TLR8 neonatal mice. Results Although alum-adjuvanted vaccines induced modest costimulatory molecule expression, limited TH-polarizing cytokine production, and significant cell death, BCG induced a robust adult-like maturation profile of neonatal DCs. Remarkably, TLR8 agonist polymersomes induced not only newborn DC maturation profiles similar to those induced by BCG but also stronger IL-12p70 production. On subcutaneous injection to neonatal mice, the TLR8 agonist–adjuvanted Ag85B peptide 25 formulation was comparable with BCG in inducing Ag85B-specific CD4+ T-cell numbers. Conclusion TLR8 agonist–encapsulating polymersomes hold substantial potential for early-life immunization against intracellular pathogens. Overall, our study represents a novel approach for rational design of early-life vaccines.
Collapse
Affiliation(s)
- David J Dowling
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass.
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, Ill.
| | - Annette Scheid
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Division of Newborn Medicine, Floating Hospital for Children, Tufts Medical Center, Boston, Mass; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Ilana Bergelson
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Sweta Joshi
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Carlo Pietrasanta
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Spencer Brightman
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Guzman Sanchez-Schmitz
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Simon D Van Haren
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Jana Ninković
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Dina Kats
- Department of Biomedical Engineering, Northwestern University, Evanston, Ill
| | | | - Alexandre de Titta
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Daniel K Bonner
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sachiko Hirosue
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Melody A Swartz
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Institute for Molecular Engineering, University of Chicago, Chicago, Ill
| | - Jeffrey A Hubbell
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Institute for Molecular Engineering, University of Chicago, Chicago, Ill
| | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass.
| |
Collapse
|
44
|
Dowling DJ, van Haren SD, Scheid A, Bergelson I, Kim D, Mancuso CJ, Foppen W, Ozonoff A, Fresh L, Theriot TB, Lackner AA, Fichorova RN, Smirnov D, Vasilakos JP, Beaurline JM, Tomai MA, Midkiff CC, Alvarez X, Blanchard JL, Gilbert MH, Aye PP, Levy O. TLR7/8 adjuvant overcomes newborn hyporesponsiveness to pneumococcal conjugate vaccine at birth. JCI Insight 2017; 2:e91020. [PMID: 28352660 DOI: 10.1172/jci.insight.91020] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Infection is the most common cause of mortality in early life, and immunization is the most promising biomedical intervention to reduce this burden. However, newborns fail to respond optimally to most vaccines. Adjuvantation is a key approach to enhancing vaccine immunogenicity, but responses of human newborn leukocytes to most candidate adjuvants, including most TLR agonists, are functionally distinct. Herein, we demonstrate that 3M-052 is a locally acting lipidated imidazoquinoline TLR7/8 agonist adjuvant in mice, which, when properly formulated, can induce robust Th1 cytokine production by human newborn leukocytes in vitro, both alone and in synergy with the alum-adjuvanted pneumococcal conjugate vaccine 13 (PCV13). When admixed with PCV13 and administered i.m. on the first day of life to rhesus macaques, 3M-052 dramatically enhanced generation of Th1 CRM-197-specific neonatal CD4+ cells, activation of newborn and infant Streptococcus pneumoniae polysaccharide-specific (PnPS-specific) B cells as well as serotype-specific antibody titers, and opsonophagocytic killing. Remarkably, a single dose at birth of PCV13 plus 0.1 mg/kg 3M-052 induced PnPS-specific IgG responses that were approximately 10-100 times greater than a single birth dose of PCV13 alone, rapidly exceeding the serologic correlate of protection, as early as 28 days of life. This potent immunization strategy, potentially effective with one birth dose, could represent a new paradigm in early life vaccine development.
Collapse
Affiliation(s)
- David J Dowling
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Simon D van Haren
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Precision Vaccines Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Annette Scheid
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Precision Vaccines Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Newborn Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Ilana Bergelson
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Dhohyung Kim
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Christy J Mancuso
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Willemina Foppen
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Al Ozonoff
- Harvard Medical School, Boston, Massachusetts, USA.,Precision Vaccines Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.,Center for Patient Safety and Quality Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Lynn Fresh
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Terese B Theriot
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Andrew A Lackner
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Raina N Fichorova
- Harvard Medical School, Boston, Massachusetts, USA.,Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | - Mark A Tomai
- 3M Drug Delivery Systems, Saint Paul, Minnesota, USA
| | - Cecily C Midkiff
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Xavier Alvarez
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - James L Blanchard
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Margaret H Gilbert
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Pyone Pyone Aye
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Precision Vaccines Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
45
|
Jensen K, Dela Pena-Ponce MG, Piatak M, Shoemaker R, Oswald K, Jacobs WR, Fennelly G, Lucero C, Mollan KR, Hudgens MG, Amedee A, Kozlowski PA, Estes JD, Lifson JD, Van Rompay KKA, Larsen M, De Paris K. Balancing Trained Immunity with Persistent Immune Activation and the Risk of Simian Immunodeficiency Virus Infection in Infant Macaques Vaccinated with Attenuated Mycobacterium tuberculosis or Mycobacterium bovis BCG Vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00360-16. [PMID: 27655885 PMCID: PMC5216431 DOI: 10.1128/cvi.00360-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
Our goal is to develop a pediatric combination vaccine to protect the vulnerable infant population against human immunodeficiency virus type 1 (HIV-1) and tuberculosis (TB) infections. The vaccine consists of an auxotroph Mycobacterium tuberculosis strain that coexpresses HIV antigens. Utilizing an infant rhesus macaque model, we have previously shown that this attenuated M. tuberculosis (AMtb)-simian immunodeficiency virus (SIV) vaccine is immunogenic, and although the vaccine did not prevent oral SIV infection, a subset of vaccinated animals was able to partially control virus replication. However, unexpectedly, vaccinated infants required fewer SIV exposures to become infected compared to naive controls. Considering that the current TB vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), can induce potent innate immune responses and confer pathogen-unspecific trained immunity, we hypothesized that an imbalance between enhanced myeloid cell function and immune activation might have influenced the outcome of oral SIV challenge in AMtb-SIV-vaccinated infants. To address this question, we used archived samples from unchallenged animals from our previous AMtb-SIV vaccine studies and vaccinated additional infant macaques with BCG or AMtb only. Our results show that vaccinated infants, regardless of vaccine strain or regimen, had enhanced myeloid cell responses. However, CD4+ T cells were concurrently activated, and the persistence of these activated target cells in oral and/or gastrointestinal tissues may have facilitated oral SIV infection. Immune activation was more pronounced in BCG-vaccinated infant macaques than in AMtb-vaccinated infant macaques, indicating a role for vaccine attenuation. These findings underline the importance of understanding the interplay of vaccine-induced immunity and immune activation and its effect on HIV acquisition risk and outcome in infants.
Collapse
Affiliation(s)
- Kara Jensen
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Myra Grace Dela Pena-Ponce
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Glenn Fennelly
- Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Carissa Lucero
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Katie R Mollan
- Lineberger Cancer Center and Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael G Hudgens
- Gillings School of Global Public Health and Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Angela Amedee
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Michelle Larsen
- Albert Einstein College of Medicine, New York, New York, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
46
|
Surendran N, Nicolosi T, Kaur R, Morris M, Pichichero M. Prospective study of the innate cellular immune response in low vaccine responder children. Innate Immun 2016; 23:89-96. [PMID: 27864558 DOI: 10.1177/1753425916678471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We recently reported our findings from a longitudinal, prospective study where we identified 10% infants who were low vaccine responders (LVR) at age 9-12 mo following routine primary series vaccine schedule. We found multiple cellular deficiencies in LVR children, including low number of memory B cells, reduced polyclonal stimulation of naïve/memory T cell response and suboptimal APC response. These children outgrew their poor vaccine response by the time they received booster doses of vaccine. Studies in human infant innate immunity are rare because of the unique challenges in specimen collection. As innate immunity instructs adaptive immunity, we hypothesized that the primary immune defect lies with innate immunity and in this study we sought to determine the ontogeny of innate immune response in LVR children between 6 and 36 mo of age. Interestingly, suboptimal APC response observed in LVR children at 6-9 mo of age characterized by significantly ( P < 0.05) low basal MHC II expression, low R848 induced IRF7 fold change, as well as low IFN-α, IL-12p70 and IL-1β levels, came to parity with normal vaccine responders by 12-15 mo of age, suggesting that the observed immune deficiency in LVR children may be the result of delayed maturation of immune system.
Collapse
Affiliation(s)
- Naveen Surendran
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester Regional Health System, 1425 Portland Ave, Rochester, NY, USA
| | - Ted Nicolosi
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester Regional Health System, 1425 Portland Ave, Rochester, NY, USA
| | - Ravinder Kaur
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester Regional Health System, 1425 Portland Ave, Rochester, NY, USA
| | - Matthew Morris
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester Regional Health System, 1425 Portland Ave, Rochester, NY, USA
| | - Michael Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester Regional Health System, 1425 Portland Ave, Rochester, NY, USA
| |
Collapse
|
47
|
van Haren SD, Dowling DJ, Foppen W, Christensen D, Andersen P, Reed SG, Hershberg RM, Baden LR, Levy O. Age-Specific Adjuvant Synergy: Dual TLR7/8 and Mincle Activation of Human Newborn Dendritic Cells Enables Th1 Polarization. THE JOURNAL OF IMMUNOLOGY 2016; 197:4413-4424. [PMID: 27793997 DOI: 10.4049/jimmunol.1600282] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 09/26/2016] [Indexed: 02/07/2023]
Abstract
Due to functionally distinct cell-mediated immunity, newborns and infants are highly susceptible to infection with intracellular pathogens. Indeed, neonatal Ag-presenting dendritic cells (DCs) demonstrate impaired Th1 responses to many candidate adjuvants, including most TLR agonists (TLRAs). Combination adjuvantation systems may provide enhanced immune activation but have typically been developed without regard to the age of the target population. We posited that distinct combinations of TLRAs and C-type lectin receptor agonists may enhance Th1 responses of newborn DCs. TLRA/C-type lectin receptor agonist combinations were screened for enhancement of TNF production by human newborn and adult monocyte-derived DCs cultured in 10% autologous plasma or in newborn cord, infant, adult, and elderly whole blood. Monocyte-derived DC activation was characterized by targeted gene expression analysis, caspase-1 and NF-κB studies, cytokine multiplex and naive autologous CD4+ T cell activation. Dual activation of newborn DCs via the C-type lectin receptor, macrophage-inducible C-type lectin (trehalose-6,6-dibehenate), and TLR7/8 (R848) greatly enhanced caspase-1 and NF-κB activation, Th1 polarizing cytokine production and autologous Th1 polarization. Combined activation via TLR4 (glycopyranosyl lipid adjuvant aqueous formulation) and Dectin-1 (β-glucan peptide) acted synergistically in newborns and adults, but to a lesser extent. The degree of synergy varied dramatically with age, and was the greatest in newborns and infants with less synergy in adults and elders. Overall, combination adjuvant systems demonstrate markedly different immune activation with age, with combined DC activation via Macrophage-inducible C-type lectin and TLR7/8 representing a novel approach to enhance the efficacy of early-life vaccines.
Collapse
Affiliation(s)
- Simon D van Haren
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA 02115.,Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115.,Harvard Medical School, Boston, MA 02115
| | - David J Dowling
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA 02115.,Harvard Medical School, Boston, MA 02115
| | - Willemina Foppen
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA 02115.,Harvard Medical School, Boston, MA 02115
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, DK-2300, Denmark
| | - Peter Andersen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115.,Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, DK-2300, Denmark
| | - Steven G Reed
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115.,Infectious Disease Research Institute, Seattle, WA 98102
| | | | - Lindsey R Baden
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115.,Division of Infectious Diseases, Brigham and Women's Hospital Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Ofer Levy
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA 02115; .,Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115.,Harvard Medical School, Boston, MA 02115
| |
Collapse
|
48
|
Schüller S, Wisgrill L, Sadeghi K, Gindl E, Helmer H, Husslein P, Berger A, Spittler A, Förster-Waldl E. The TLR-specific adjuvants R-848 and CpG-B endorse the immunological reaction of neonatal antigen-presenting cells. Pediatr Res 2016; 80:311-8. [PMID: 27057737 DOI: 10.1038/pr.2016.71] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 02/02/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Preterm neonates display an impaired vaccine response. Neonatal antigen-presenting cells (APCs) are less effective to induce an adaptive immune response and to promote the development of immunological memory. Efficient adjuvantal toll-like receptor (TLR)-triggering may overcome the neonatal immunological impairment. Accordingly, the aim of this study was to investigate the immunostimulatory action of R-848 and CpG-B on neonatal APCs. METHODS Surface marker and cytokine secretion of APCs were evaluated after incubation of cord blood and peripheral blood mononuclear cells with the indicated adjuvants and were analyzed using flow cytometry. RESULTS TLR-specific stimulation resulted in a significant induction of costimulatory molecules on neonatal APCs. Stimulation with R-848 resulted in significant higher secretion of TNFα, IL-6, IL-10, IL-12/IL-23p40, IL-12p70, and IFN-γ. Interestingly, CpG-B resulted in significant higher secretion of TNFα and IL-6. CONCLUSION In summary, the incubation of TLR-agonists induced activation and maturation of neonatal APCs. These data show that modern TLR-specific adjuvants achieve a direct effect and potent upregulation of activation and maturation markers and cytokines in preterm neonates. We thus conclude that agents triggering TLRs might possibly overcome neonatal lack of vaccine responses.
Collapse
Affiliation(s)
- Simone Schüller
- Department of Paediatrics and Adolescent Medicine, Division of Neonatology, Paediatric Intensive Care & Neuropaediatrics, Medical University of Vienna, Vienna, Austria
| | - Lukas Wisgrill
- Department of Paediatrics and Adolescent Medicine, Division of Neonatology, Paediatric Intensive Care & Neuropaediatrics, Medical University of Vienna, Vienna, Austria
| | - Kambis Sadeghi
- Department of Paediatrics and Adolescent Medicine, Division of Neonatology, Paediatric Intensive Care & Neuropaediatrics, Medical University of Vienna, Vienna, Austria
| | - Erich Gindl
- Department of Paediatrics and Adolescent Medicine, Division of Neonatology, Paediatric Intensive Care & Neuropaediatrics, Medical University of Vienna, Vienna, Austria
| | - Hanns Helmer
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Peter Husslein
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Angelika Berger
- Department of Paediatrics and Adolescent Medicine, Division of Neonatology, Paediatric Intensive Care & Neuropaediatrics, Medical University of Vienna, Vienna, Austria
| | - Andreas Spittler
- Department of Surgery, Research Labs & Core Facility Flow Cytometry, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Förster-Waldl
- Department of Paediatrics and Adolescent Medicine, Division of Neonatology, Paediatric Intensive Care & Neuropaediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Holbrook BC, Kim JR, Blevins LK, Jorgensen MJ, Kock ND, D'Agostino RB, Aycock ST, Hadimani MB, King SB, Parks GD, Alexander-Miller MA. A Novel R848-Conjugated Inactivated Influenza Virus Vaccine Is Efficacious and Safe in a Neonate Nonhuman Primate Model. THE JOURNAL OF IMMUNOLOGY 2016; 197:555-64. [PMID: 27279374 DOI: 10.4049/jimmunol.1600497] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/15/2016] [Indexed: 11/19/2022]
Abstract
Influenza virus infection of neonates poses a major health concern, often resulting in severe disease and hospitalization. At present, vaccines for this at-risk population are lacking. Thus, development of an effective vaccine is an urgent need. In this study, we have used an innovative nonhuman primate neonate challenge model to test the efficacy of a novel TLR 7/8 agonist R848-conjugated influenza virus vaccine. The use of the intact virus represents a step forward in conjugate vaccine design because it provides multiple antigenic targets allowing for elicitation of a broad immune response. Our results show that this vaccine induces high-level virus-specific Ab- and cell-mediated responses in neonates that result in increased virus clearance and reduced lung pathology postchallenge compared with the nonadjuvanted virus vaccine. Surprisingly, the addition of a second TLR agonist (flagellin) did not enhance vaccine protection, suggesting that combinations of TLR that provide increased efficacy must be determined empirically. These data support further exploration of this new conjugate influenza vaccine approach as a platform for use in the at-risk neonate population.
Collapse
Affiliation(s)
- Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101
| | - Jong R Kim
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101
| | - Lance K Blevins
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101
| | - Matthew J Jorgensen
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Nancy D Kock
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Ralph B D'Agostino
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - S Tyler Aycock
- Animal Resources Program, Wake Forest School of Medicine, Winston-Salem, NC 27157; and
| | | | - S Bruce King
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109
| | - Griffith D Parks
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101
| | | |
Collapse
|
50
|
Pettengill MA, van Haren SD, Li N, Dowling DJ, Bergelson I, Jans J, Ferwerda G, Levy O. Distinct TLR-mediated cytokine production and immunoglobulin secretion in human newborn naïve B cells. Innate Immun 2016; 22:433-43. [PMID: 27252169 DOI: 10.1177/1753425916651985] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/27/2016] [Indexed: 11/15/2022] Open
Abstract
Neonatal innate immunity is distinct from that of adults, which may contribute to increased susceptibility to infection and limit vaccine responses. B cells play critical roles in protection from infection and detect PAMPs via TLRs, that, when co-activated with CD40, can drive B-cell proliferation and Ab production. We characterized the expression of TLRs in circulating B cells from newborns and adults, and evaluated TLR- and CD40-mediated naïve B-cell class-switch recombination (CSR) and cytokine production. Gene expression levels of most TLRs was similar between newborn and adult B cells, except that newborn naïve B cells expressed more TLR9 than adult naïve B cells. Neonatal naïve B cells demonstrated impaired TLR2- and TLR7- but enhanced TLR9-mediated cytokine production. Significantly fewer newborn naïve B cells underwent CSR to produce IgG, an impairment also noted with IL-21 stimulation. Additionally, co-stimulation via CD40 and TLRs induced greater cytokine production in adult B cells. Thus, while newborn naïve B cells demonstrate adult-level expression of TLRs and CD40, the responses to stimulation of these receptors are distinct. Relatively high expression of TLR9 and impaired CD40-mediated Ig secretion contributes to distinct innate and adaptive immunity of human newborns and may inform novel approaches to early-life immunization.
Collapse
Affiliation(s)
- Matthew A Pettengill
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA
| | - Simon D van Haren
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA
| | - Ning Li
- Department of Immunology and Rheumatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - David J Dowling
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA
| | - Ilana Bergelson
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Jop Jans
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerben Ferwerda
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ofer Levy
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA
| |
Collapse
|