1
|
Ptaschinski C, Gibbs BF. Early-life risk factors which govern pro-allergic immunity. Semin Immunopathol 2024; 46:9. [PMID: 39066790 PMCID: PMC11283399 DOI: 10.1007/s00281-024-01020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Allergic diseases affect up to 40% of the global population with a substantial rise in food allergies, in particular, over the past decades. For the majority of individuals with allergy fundamental programming of a pro-allergic immune system largely occurs in early childhood where it is crucially governed by prenatal genetic and environmental factors, including their interactions. These factors include several genetic aberrations, such as filaggrin loss-of-function mutations, early exposure to respiratory syncytial virus, and various chemicals such as plasticizers, as well as the influence of the gut microbiome and numerous lifestyle circumstances. The effects of such a wide range of factors on allergic responses to an array of potential allergens is complex and the severity of these responses in a clinical setting are subsequently not easy to predict at the present time. However, some parameters which condition a pro-allergic immune response, including severe anaphylaxis, are becoming clearer. This review summarises what we currently know, and don't know, about the factors which influence developing pro-allergic immunity particularly during the early-life perinatal period.
Collapse
Affiliation(s)
- Catherine Ptaschinski
- Department of Pathology, University of Michigan, Ann Arbor, USA
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, USA
| | - Bernhard F Gibbs
- School of Psychology and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, Kent, CT1 1QU, UK.
| |
Collapse
|
2
|
Koenen MH, van Montfrans JM, Prevaes SMPJ, van Engelen MP, van der Vries E, Boes M, Sanders EAM, Bogaert D, Verhagen LM. Antibody deficiencies in children are associated with prematurity and a family history of infections. Pediatr Res 2023; 94:2047-2053. [PMID: 37491587 DOI: 10.1038/s41390-023-02725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/18/2023] [Accepted: 06/15/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Recurrent respiratory tract infections (rRTIs) frequently affect young children and are associated with antibody deficiencies. We investigated the prevalence of and epidemiological risk factors associated with antibody deficiencies in young children with rRTIs and their progression over time, and linked these to prospectively measured RTI symptoms. METHODS We included children <7 years with rRTIs in a prospective cohort study. Patient characteristics associated with antibody deficiencies were identified using multivariable logistic regression analysis. RESULTS We included 146 children with a median age of 3.1 years. Daily RTI symptoms were monitored in winter in n = 73 children and repeated immunoglobulin level measurements were performed in n = 45 children. Antibody deficiency was diagnosed in 56% and associated with prematurity (OR 3.17 [1.15-10.29]) and a family history of rRTIs (OR 2.37 [1.11-5.15]). Respiratory symptoms did not differ between children with and without antibody deficiencies. During follow-up, antibody deficiency diagnosis remained unchanged in 67%, while 18% of children progressed to a more severe phenotype. CONCLUSION Immune maturation and genetic predisposition may lie at the basis of antibody deficiencies commonly observed in early life. Because disease severity did not differ between children with and without antibody deficiency, we suggest symptom management can be similar for all children with rRTIs. IMPACT An antibody deficiency was present in 56% of children <7 years with recurrent respiratory tract infections (rRTIs) in a Dutch tertiary hospital setting. Prematurity and a family history of rRTIs were associated with antibody deficiencies, suggesting that immune maturation and genetic predisposition may lie at the basis of antibody deficiencies in early life. RTI symptoms did not differ between children with and without antibody deficiency, suggesting that symptom management can be similar for all children with rRTIs, irrespective of humoral immunological deficiencies. During follow-up, 18% of children progressed to a more severe phenotype, emphasizing that early diagnosis is warranted to prevent long-term morbidity and increase quality of life.
Collapse
Affiliation(s)
- Mischa H Koenen
- Center of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Joris M van Montfrans
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Sabine M P J Prevaes
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | | | - Erhard van der Vries
- Department of Research & Development, GD Animal Health, Deventer, The Netherlands
- Department of Clinical Chemistry and Hematology, UMC Utrecht, Utrecht, The Netherlands
| | - Marianne Boes
- Center of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Elisabeth A M Sanders
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Debby Bogaert
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Center for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Lilly M Verhagen
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands.
- Department of Pediatric Infectious Diseases and Immunology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Barten LJC, Zuurveld M, Faber J, Garssen J, Klok T. Oral immunotherapy as a curative treatment for food-allergic preschool children: Current evidence and potential underlying mechanisms. Pediatr Allergy Immunol 2023; 34:e14043. [PMID: 38010006 DOI: 10.1111/pai.14043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023]
Abstract
The worldwide rising prevalence of food allergy is a major public health concern. Standard care consists of allergen avoidance and rescue medication upon accidental exposure. Oral immunotherapy (OIT) is increasingly being studied as a treatment option. Although desensitization (an increased reaction threshold) is often achieved during OIT, sustained unresponsiveness (SU; clinical nonreactivity after finishing OIT) is not achieved in most patients. A few studies have investigated the effectiveness of OIT in children younger than 4 years of age (early = e-OIT) and have shown a much more favorable outcome in terms of SU development. Together with food allergy prevention studies, which have demonstrated high efficacy of early oral allergen exposure, the outcomes of e-OIT studies indicate an early-life window of opportunity to achieve SU, allowing unrestricted dietary intake. However, the underlying mechanism of the high effectiveness of e-OIT is not understood yet. Both cohort and OIT studies indicate early-life immune plasticity. An immature food-allergic response in the first years of life seems to be a major driver of this immune plasticity, along with a higher tolerogenic immunological state. Allergy maturation can likely be disrupted effectively by early intervention, preventing the development of persistent food allergy. Upcoming studies will provide important additional data on the safety, feasibility, and effectiveness of e-OIT. Combined with immune mechanistic studies, this should inform the implementation of e-OIT.
Collapse
Affiliation(s)
- Lieke J C Barten
- Pediatric Allergy Treatment Center, Deventer Hospital, Deventer, The Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Division Pharmacology, Utrecht University, Utrecht, The Netherlands
| | - Marit Zuurveld
- Utrecht Institute for Pharmaceutical Sciences, Division Pharmacology, Utrecht University, Utrecht, The Netherlands
| | - Joyce Faber
- Pediatric Allergy Treatment Center, Deventer Hospital, Deventer, The Netherlands
| | - Johan Garssen
- Utrecht Institute for Pharmaceutical Sciences, Division Pharmacology, Utrecht University, Utrecht, The Netherlands
| | - Ted Klok
- Pediatric Allergy Treatment Center, Deventer Hospital, Deventer, The Netherlands
| |
Collapse
|
4
|
Pieren DKJ, Boer MC, de Wit J. The adaptive immune system in early life: The shift makes it count. Front Immunol 2022; 13:1031924. [PMID: 36466865 PMCID: PMC9712958 DOI: 10.3389/fimmu.2022.1031924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 10/13/2023] Open
Abstract
Respiratory infectious diseases encountered early in life may result in life-threatening disease in neonates, which is primarily explained by the relatively naive neonatal immune system. Whereas vaccines are not readily available for all infectious diseases, vaccinations have greatly reduced childhood mortality. However, repeated vaccinations are required to reach protective immunity in infants and not all vaccinations are effective at young age. Moreover, protective adaptive immunity elicited by vaccination wanes more rapidly at young age compared to adulthood. The infant adaptive immune system has previously been considered immature but this paradigm has changed during the past years. Recent evidence shows that the early life adaptive immune system is equipped with a strong innate-like effector function to eliminate acute pathogenic threats. These strong innate-like effector capacities are in turn kept in check by a tolerogenic counterpart of the adaptive system that may have evolved to maintain balance and to reduce collateral damage. In this review, we provide insight into these aspects of the early life's adaptive immune system by addressing recent literature. Moreover, we speculate that this shift from innate-like and tolerogenic adaptive immune features towards formation of immune memory may underlie different efficacy of infant vaccination in these different phases of immune development. Therefore, presence of innate-like and tolerogenic features of the adaptive immune system may be used as a biomarker to improve vaccination strategies against respiratory and other infections in early life.
Collapse
Affiliation(s)
| | | | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
5
|
Jin J, Zhang C, Guo X, Zhang L, Mei K, Zhou B, Lu J, Lu Y. Vaccination experiences of premature children in a retrospective hospital-based cohort in a Chinese metropolitan area. Hum Vaccin Immunother 2021; 17:5235-5241. [PMID: 34736371 DOI: 10.1080/21645515.2021.1989924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND In China, premature children in good health may be advised to receive routine immunization programs. However, delayed vaccination is common. This study aimed to characterize vaccination experiences of premature children and determine the impact of vaccination consultation clinic (VCC) assessment. METHODS We performed a retrospective cohort study, including premature children visiting VCC at Children's Hospital of Fudan University in 2017-2019. Data of these children, including demographics, recommendations of vaccination after VCC assessment, vaccination records, adverse events following immunization (AEFI), and incidence of vaccine-preventable diseases in 2017-2019, were collected retrospectively. RESULTS A total of 1124 premature children were included, with vaccination uptake of 46.3% for expanded program of immunization (EPI) vaccines and 15.1% for non-EPI vaccines before VCC assessment. Furthermore, 77.5% of premature children who had not received any EPI vaccine were vaccinated after the assessment; however, most were delayed, regardless of vaccine types and recommendations. In contrast, 67.3% was vaccinated with non-EPI vaccines after the assessment. Majority (n = 35) of recorded AEFI was mild to moderate, in addition to one allergic rash. One each case of pertussis and varicella were recorded in those who had not received the corresponding vaccines. CONCLUSION Vaccination may be safe and epidemiological effective in premature children. However, it remains mostly delayed in premature children with recommendations of normal vaccination. It warrants improving implementation of VCC recommendations. In addition, there is a need of health promotion on more non-EPI vaccines for premature children.
Collapse
Affiliation(s)
- Jie Jin
- Vaccination Consultation Clinic, Children's Hospital of Fudan University, Shanghai, China
| | - Chengjun Zhang
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public, Fudan University, Shanghai, China
| | - Xiang Guo
- Institute of Immunization, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Liping Zhang
- Department of Immunization, Minhang District Center for Disease Control and Prevention, Shanghai, China
| | - Kewen Mei
- Department of Immunization, Minhang District Center for Disease Control and Prevention, Shanghai, China
| | - Beihua Zhou
- Vaccination Consultation Clinic, Children's Hospital of Fudan University, Shanghai, China
| | - Jia Lu
- Department of Immunization, Minhang District Center for Disease Control and Prevention, Shanghai, China
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Clemens EA, Alexander-Miller MA. Understanding Antibody Responses in Early Life: Baby Steps towards Developing an Effective Influenza Vaccine. Viruses 2021; 13:v13071392. [PMID: 34372597 PMCID: PMC8310046 DOI: 10.3390/v13071392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
The immune system of young infants is both quantitatively and qualitatively distinct from that of adults, with diminished responsiveness leaving these individuals vulnerable to infection. Because of this, young infants suffer increased morbidity and mortality from respiratory pathogens such as influenza viruses. The impaired generation of robust and persistent antibody responses in these individuals makes overcoming this increased vulnerability through vaccination challenging. Because of this, an effective vaccine against influenza viruses in infants under 6 months is not available. Furthermore, vaccination against influenza viruses is challenging even in adults due to the high antigenic variability across viral strains, allowing immune evasion even after induction of robust immune responses. This has led to substantial interest in understanding how specific antibody responses are formed to variable and conserved components of influenza viruses, as immune responses tend to strongly favor recognition of variable epitopes. Elicitation of broadly protective antibody in young infants, therefore, requires that both the unique characteristics of young infant immunity as well as the antibody immunodominance present among epitopes be effectively addressed. Here, we review our current understanding of the antibody response in newborns and young infants and discuss recent developments in vaccination strategies that can modulate both magnitude and epitope specificity of IAV-specific antibody.
Collapse
|
7
|
Cord-Blood-Derived Professional Antigen-Presenting Cells: Functions and Applications in Current and Prospective Cell Therapies. Int J Mol Sci 2021; 22:ijms22115923. [PMID: 34072923 PMCID: PMC8199409 DOI: 10.3390/ijms22115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
Human umbilical cord blood (UCB) represents a valuable source of hematopoietic stem cells, particularly for patients lacking a matching donor. UCB provides practical advantages, including a lower risk of graft-versus-host-disease and permissive human leukocyte antigen mismatching. These advantageous properties have so far been applied for stem cell, mesenchymal stromal cell, and chimeric antigen receptor T cell therapies. However, UCB-derived professional antigen-presenting cells are increasingly being utilized in the context of immune tolerance and regenerative therapy. Here, we review the cell-specific characteristics as well as recent advancements in UCB-based cell therapies focusing on dendritic cells, monocytes, B lymphocytes, innate lymphoid cells, and macrophages.
Collapse
|
8
|
Abstract
The neonatal period and early infancy are times of increased vulnerability to infection. The immune system of infants undergoes rapid changes and a number of factors can influence the maturation and function of the early infant immune system, amongst these factors are maternal infections and immunity. Infants who are HIV-exposed, but uninfected show important immune alterations, which are likely to be associated with the increased morbidity and mortality observed in these infants. Maternally derived antibodies are crucial in early life to protect infants from infection during the time when their own immune system is becoming more experienced and fully mature. However, maternal antibodies can also interfere with the infant's own antibody responses to primary vaccination. Preterm infants are particularly vulnerable to infection, having not had the opportunity to benefit from the transplacental transfer of maternal antibodies in late pregnancy. In addition, further differences have been observed in the innate and adaptive immune system between preterm and term infants. Here, we focus on maternal influences on the infant immune system, using HIV and maternal vaccination as examples and finish by considering how prematurity impacts infant immune responses to vaccination.
Collapse
Affiliation(s)
- Petra Zimmermann
- From the Department of Paediatrics, Fribourg Hospital HFR and Faculty of Science and Medicine, University of Fribourg, Switzerland
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia
| | - Christine E Jones
- Faculty of Medicine and Institute for Life Sciences, University of Southampton and NIHR Southampton Clinical Research Facility and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| |
Collapse
|
9
|
Eichinger KM, Kosanovich JL, Lipp M, Empey KM, Petrovsky N. Strategies for active and passive pediatric RSV immunization. Ther Adv Vaccines Immunother 2021; 9:2515135520981516. [PMID: 33623860 PMCID: PMC7879001 DOI: 10.1177/2515135520981516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 11/20/2020] [Indexed: 12/26/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in children worldwide, with the most severe disease occurring in very young infants. Despite half a century of research there still are no licensed RSV vaccines. Difficulties in RSV vaccine development stem from a number of factors, including: (a) a very short time frame between birth and first RSV exposure; (b) interfering effects of maternal antibodies; and (c) differentially regulated immune responses in infants causing a marked T helper 2 (Th2) immune bias. This review seeks to provide an age-specific understanding of RSV immunity critical to the development of a successful pediatric RSV vaccine. Historical and future approaches to the prevention of infant RSV are reviewed, including passive protection using monoclonal antibodies or maternal immunization strategies versus active infant immunization using pre-fusion forms of RSV F protein antigens formulated with novel adjuvants such as Advax that avoid excess Th2 immune polarization.
Collapse
Affiliation(s)
- Katherine M. Eichinger
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, and Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica L. Kosanovich
- Department of Pharmacy and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madeline Lipp
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kerry M. Empey
- Department of Pharmacy and Therapeutics, Department of Pharmaceutical Sciences, School of Medicine and Clinical and Translational Science Institute, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nikolai Petrovsky
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia and Vaxine Pty Ltd, Warradale, SA 5046, Australia
| |
Collapse
|
10
|
Aradottir Pind AA, Molina Estupiñan JL, Magnusdottir GJ, Del Giudice G, Jonsdottir I, Bjarnarson SP. LT-K63 Enhances B Cell Activation and Survival Factors in Neonatal Mice That Translates Into Long-Lived Humoral Immunity. Front Immunol 2020; 11:527310. [PMID: 33193301 PMCID: PMC7644473 DOI: 10.3389/fimmu.2020.527310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022] Open
Abstract
Adjuvants enhance magnitude and duration of immune responses induced by vaccines. In this study we assessed in neonatal mice if and how the adjuvant LT-K63 given with a pneumococcal conjugate vaccine, Pnc1-TT, could affect the expression of tumor necrosis factor receptor (TNF-R) superfamily members, known to be involved in the initiation and maintenance of antibody responses; B cell activating factor receptor (BAFF-R) and B cell maturation antigen (BCMA) and their ligands, BAFF, and a proliferation inducing ligand (APRIL). Initially we assessed the maturation status of different B cell populations and their expression of BAFF-R and BCMA. Neonatal mice had dramatically fewer B cells than adult mice and the composition of different subsets within the B cell pool differed greatly. Proportionally newly formed B cells were most abundant, but they had diminished BAFF-R expression which could explain low proportions of marginal zone and follicular B cells observed. Limited BCMA expression was also detected in neonatal pre-plasmablasts/plasmablasts. LT-K63 enhanced vaccine-induced BAFF-R expression in splenic marginal zone, follicular and newly formed B cells, leading to increased plasmablast/plasma cells, and their enhanced expression of BCMA in spleen and bone marrow. Additionally, the induction of BAFF and APRIL expression occurred early in neonatal mice immunized with Pnc1-TT either with or without LT-K63. However, BAFF+ and APRIL+ cells in spleens were maintained at a higher level in mice that received the adjuvant. Furthermore, the early increase of APRIL+ cells in bone marrow was more profound in mice immunized with vaccine and adjuvant. Finally, we assessed, for the first time in neonatal mice, accessory cells of the plasma cell niche in bone marrow and their secretion of APRIL. We found that LT-K63 enhanced the frequency and APRIL expression of eosinophils, macrophages, and megakaryocytes, which likely contributed to plasma cell survival, even though APRIL+ cells showed a fast decline. All this was associated with enhanced, sustained vaccine-specific antibody-secreting cells in bone marrow and persisting vaccine-specific serum antibodies. Our study sheds light on the mechanisms behind the adjuvanticity of LT-K63 and identifies molecular pathways that should be triggered by vaccine adjuvants to induce sustained humoral immunity in early life.
Collapse
Affiliation(s)
- Audur Anna Aradottir Pind
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Jenny Lorena Molina Estupiñan
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gudbjorg Julia Magnusdottir
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Ingileif Jonsdottir
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Stefania P Bjarnarson
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
11
|
Alexander-Miller MA. Challenges for the Newborn Following Influenza Virus Infection and Prospects for an Effective Vaccine. Front Immunol 2020; 11:568651. [PMID: 33042150 PMCID: PMC7524958 DOI: 10.3389/fimmu.2020.568651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/18/2020] [Indexed: 01/10/2023] Open
Abstract
Newborns are at significantly increased risk of severe disease following infection with influenza virus. This is the collective result of their naïve status, altered immune responsiveness, and the lack of a vaccine that is effective in these individuals. Numerous studies have revealed impairments in both the innate and adaptive arms of the immune system of newborns. The consequence of these alterations is a quantitative and qualitative decrease in both antibody and T cell responses. This review summarizes the hurdles newborns experience in mounting an effective response that can clear influenza virus and limit disease following infection. In addition, the challenges, as well as the opportunities, for developing vaccines that can elicit protective responses in these at risk individuals are discussed.
Collapse
Affiliation(s)
- Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
12
|
Gutierrez MJ, Nino G, Hong X, Wang X. Epigenomics and Early Life Human Humoral Immunity: Novel Paradigms and Research Opportunities. Front Immunol 2020; 11:1766. [PMID: 32983086 PMCID: PMC7492271 DOI: 10.3389/fimmu.2020.01766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022] Open
Abstract
The molecular machinery controlling immune development has been extensively investigated. Studies in animal models and adult individuals have revealed fundamental mechanisms of disease and have been essential to understanding how humans sense and respond to cellular stress, tissue damage, pathogens and their environment. Nonetheless, our understanding of how immune responses originate during human development is just starting to emerge. In particular, studies to unveil how environmental and other non-heritable factors shape the immune system at the beginning of life offer great promise to yield important knowledge about determinants of normal inter-individual immune variation and to prevent and treat many human diseases. In this review, we summarize our current understanding of some of the mechanisms determining early life antibody production as a model of an immune process with sequential molecular checkpoints susceptible to influence by non-heritable factors. We discuss the potential of epigenomics as a valuable approach that may reveal not only relevant gene-environment interactions but important clues about immune developmental processes and homeostasis in early life. We then highlight the novel paradigm of human immunology as a complex field that nowadays requires a longitudinal systems-biology approach to understand normal variation and developmental changes during the first few years of life.
Collapse
Affiliation(s)
- Maria J Gutierrez
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Medical Center, George Washington University, Washington, DC, United States.,Center for Genetic Medicine, Children's National Medical Center, Washington, DC, United States
| | - Xiumei Hong
- Department of Population, Family and Reproductive Health, Center on Early Life Origins of Disease, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Center on Early Life Origins of Disease, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.,Division of General Pediatrics and Adolescent Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
13
|
Pichichero ME. Immunologic dysfunction contributes to the otitis prone condition. J Infect 2020; 80:614-622. [PMID: 32205139 DOI: 10.1016/j.jinf.2020.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/11/2022]
Abstract
Acute Otitis Media (AOM) is a multifactorial disease occurring mostly in young children who are immunologically naïve to AOM pathogens. This review focuses on work from Rochester NY, USA over the past 12 years among young children who had AOM infections microbiologically-confirmed by tympanocentesis, so called "stringently-defined". Among stringently-defined otitis prone children deficiencies in fundamental immune defense mechanisms have been identified that contribute to the propensity of young children to experience recurrent AOM. Dysfunction in innate immune responses that cause an immunopathological impact in the nasopharynx have been discovered including inadequate proinflammatory cytokine response and poor epithelial cell repair. Adaptive immunity defects in B cell function and immunologic memory resulting in low levels of antibody to otopathogen-specific antigens allows repeated infections. CD4+ and CD8+ T cell function and memory defects significantly contribute. The immune profile of an otitis prone child resembles that of a neonate through the first year of life. Immunologic deficits in otitis prone children cause them to be unusually vulnerable to viral upper respiratory infections and respond inadequately to routine pediatric vaccines.
Collapse
Affiliation(s)
- Michael E Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY.
| |
Collapse
|
14
|
Achey MA, Nag UP, Robinson VL, Reed CR, Arepally GM, Levy JH, Tracy ET. The Developing Balance of Thrombosis and Hemorrhage in Pediatric Surgery: Clinical Implications of Age-Related Changes in Hemostasis. Clin Appl Thromb Hemost 2020; 26:1076029620929092. [PMID: 32584601 PMCID: PMC7427005 DOI: 10.1177/1076029620929092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/14/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
Bleeding and thrombosis in critically ill infants and children is a vexing clinical problem. Despite the relatively low incidence of bleeding and thrombosis in the overall pediatric population relative to adults, these critically ill children face unique challenges to hemostasis due to extreme physiologic derangements, exposure of blood to foreign surfaces and membranes, and major vascular endothelial injury or disruption. Caring for pediatric patients on extracorporeal support, recovering from solid organ transplant or invasive surgery, and after major trauma is often complicated by major bleeding or clotting events. As our ability to care for the youngest and sickest of these children increases, the gaps in our understanding of the clinical implications of developmental hemostasis have become increasingly important. We review the current understanding of the development and function of the hemostatic system, including the complex and overlapping interactions of coagulation proteins, platelets, fibrinolysis, and immune mediators from the neonatal period through early childhood and to young adulthood. We then examine scenarios in which our ability to effectively measure and treat coagulation derangements in pediatric patients is limited. In these clinical situations, adult therapies are often extrapolated for use in children without taking age-related differences in pediatric hemostasis into account, leaving clinicians confused and impacting patient outcomes. We discuss the limitations of current coagulation testing in pediatric patients before turning to emerging ideas in the measurement and management of pediatric bleeding and thrombosis. Finally, we highlight opportunities for future research which take into account this developing balance of bleeding and thrombosis in our youngest patients.
Collapse
Affiliation(s)
| | - Uttara P. Nag
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | | | - Gowthami M. Arepally
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Jerrold H. Levy
- Departments of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Elisabeth T. Tracy
- Division of Pediatric Surgery, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
15
|
Coultas JA, Smyth R, Openshaw PJ. Respiratory syncytial virus (RSV): a scourge from infancy to old age. Thorax 2019; 74:986-993. [PMID: 31383776 DOI: 10.1136/thoraxjnl-2018-212212] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/19/2019] [Accepted: 06/14/2019] [Indexed: 01/02/2023]
Abstract
Respiratory syncytial virus (RSV) is the most common single cause of respiratory hospitalisation of infants and is the second largest cause of lower respiratory infection mortality worldwide. In adults, RSV is an under-recognised cause of deterioration in health, particularly in frail elderly persons. Infection rates typically rise in late autumn and early winter causing bronchiolitis in infants, common colds in adults and insidious respiratory illness in the elderly. Virus detection methods optimised for use in children have low detection rate in adults, highlighting the need for better diagnostic tests. There are many vaccines under development, mostly based on the surface glycoprotein F which exists in two conformations (prefusion and postfusion). Much of the neutralising antibody appears to be to the prefusion form. Vaccines being developed include live attenuated, subunit, particle based and live vectored agents. Different vaccine strategies may be appropriate for different target populations: at-risk infants, school-age children, adult caregivers and the elderly. Antiviral drugs are in clinical trial and may find a place in disease management. RSV disease is one of the major remaining common tractable challenges in infectious diseases and the era of vaccines and antivirals for RSV is on the near horizon.
Collapse
Affiliation(s)
| | - Rosalind Smyth
- Director of the Insitute and Professor of Child Health, Great Ormond Street Institute for Child Health, UCL, London, UK
| | | |
Collapse
|
16
|
Yeo KT, Embury P, Anderson T, Mungai P, Malhotra I, King C, Kazura J, Dent A. HIV, Cytomegalovirus, and Malaria Infections during Pregnancy Lead to Inflammation and Shifts in Memory B Cell Subsets in Kenyan Neonates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1465-1478. [PMID: 30674575 PMCID: PMC6379806 DOI: 10.4049/jimmunol.1801024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/17/2018] [Indexed: 11/19/2022]
Abstract
Infections during pregnancy can expose the fetus to microbial Ags, leading to inflammation that affects B cell development. Prenatal fetal immune priming may have an important role in infant acquisition of pathogen-specific immunity. We examined plasma proinflammatory biomarkers, the proportions of various B cell subsets, and fetal priming to tetanus vaccination in cord blood from human United States and Kenyan neonates. United States neonates had no identified prenatal infectious exposures, whereas Kenyan neonates examined had congenital CMV or mothers with prenatal HIV or Plasmodium falciparum or no identified infectious exposures. Kenyan neonates had higher levels of IP-10, TNF-α, CRP, sCD14, and BAFF than United States neonates. Among the Kenyan groups, neonates with prenatal infections/infectious exposures had higher levels of cord blood IFN-γ, IL-7, sTNFR1, and sTNFR2 compared with neonates with no infectious exposures. Kenyan neonates had greater proportions of activated memory B cells (MBC) compared with United States neonates. Among the Kenyan groups, HIV-exposed neonates had greater proportions of atypical MBC compared with the other groups. Although HIV-exposed neonates had altered MBC subset distributions, detection of tetanus-specific MBC from cord blood, indicative of fetal priming with tetanus vaccine given to pregnant women, was comparable in HIV-exposed and non-HIV-exposed neonates. These results indicate that the presence of infections during pregnancy induces fetal immune activation with inflammation and increased activated MBC frequencies in neonates. The immunologic significance and long-term health consequences of these differences warrant further investigation.
Collapse
Affiliation(s)
- Kee Thai Yeo
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106; and
| | - Paula Embury
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106
| | - Timothy Anderson
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106
| | - Peter Mungai
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106
- Division of Vector Borne and Neglected Tropical Diseases, Ministry of Public Health and Sanitation, Nairobi 00200, Kenya
| | - Indu Malhotra
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106
| | - Christopher King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106
| | - James Kazura
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106
| | - Arlene Dent
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106;
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106; and
| |
Collapse
|
17
|
Parra M, Yang J, Weitner M, Derrick S, Yang A, Schmidt T, Singh B, Moreno A, Akkoyunlu M. TACI Contributes to Plasmodium yoelii Host Resistance by Controlling T Follicular Helper Cell Response and Germinal Center Formation. Front Immunol 2018; 9:2612. [PMID: 30473702 PMCID: PMC6237915 DOI: 10.3389/fimmu.2018.02612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/23/2018] [Indexed: 01/22/2023] Open
Abstract
The delay in parasite-specific B cell development leaves people in malaria endemic areas vulnerable to repeated Plasmodium infections. Here, we investigated the role of transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI), a molecule involved in the generation of antigen-specific antibody secreting cells, in host response to non-lethal Plasmodium yoelii infection. We found that TACI deficiency not only resulted in higher peak parasitemia levels in P. yoelii challenged mice, but also led to a delay in parasite clearance and anti-P. yoelii Merozoite Surface Protein 1(C-terminal 19-kDa fragment [rMSP-119]) protein and anti-rMSP-119 and anti-P. yoelii IgG antibody development. There was also a delay in the generation of splenic high affinity antibody secreting cells that recognize rMSP-119 protein as compared to wild-type mice. Interestingly, coinciding with the delay in parasite clearance there was a delay in the resolution of T follicular helper (TFH) cell and germinal center (GC) B cell responses in TACI -/- mice. The persistence of TFH and GC B cells is likely a result of enhanced interaction between TFH and GC B cells because inducible costimulator ligand (ICOSL) expression was significantly higher on TACI -/- GC B cells than wild-type cells. The difference in the kinetics of GC reaction appeared to also impact the emergence of plasma cells (PC) because there was a delay in the generation of TACI -/- mice PC. Nevertheless, following the recovery from P. yoelii infection, TACI -/- and wild-type mice were both protected from a rechallenge infection. Establishment of protective B cell response was responsible for the resolution of parasitemia because B cells purified from recovered TACI -/- or wild-type mice were equally protective when introduced to naïve wild-type mice prior to P. yoelii challenge. Thus, despite the increased susceptibility of TACI -/- mice to P. yoelii infection and a delay in the development of protective antibody levels, TACI -/- mice are able to clear the infection and resist rechallenge infection.
Collapse
Affiliation(s)
- Marcela Parra
- US Food and Drug Administration, Division of Bacterial Allergenic and Parasitic Diseases, Center for Biologics Evaluation and Research, Silver Spring, MD, United States
| | - Jiyeon Yang
- US Food and Drug Administration, Division of Bacterial Allergenic and Parasitic Diseases, Center for Biologics Evaluation and Research, Silver Spring, MD, United States
| | - Megan Weitner
- US Food and Drug Administration, Division of Bacterial Allergenic and Parasitic Diseases, Center for Biologics Evaluation and Research, Silver Spring, MD, United States
| | - Steven Derrick
- US Food and Drug Administration, Division of Bacterial Allergenic and Parasitic Diseases, Center for Biologics Evaluation and Research, Silver Spring, MD, United States
| | - Amy Yang
- US Food and Drug Administration, Division of Bacterial Allergenic and Parasitic Diseases, Center for Biologics Evaluation and Research, Silver Spring, MD, United States
| | - Thomas Schmidt
- US Food and Drug Administration, Division of Bacterial Allergenic and Parasitic Diseases, Center for Biologics Evaluation and Research, Silver Spring, MD, United States
| | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Mustafa Akkoyunlu
- US Food and Drug Administration, Division of Bacterial Allergenic and Parasitic Diseases, Center for Biologics Evaluation and Research, Silver Spring, MD, United States
| |
Collapse
|
18
|
Dickinson GS, Levenson EA, Walker JA, Kearney JF, Alugupalli KR. IL-7 Enables Antibody Responses to Bacterial Polysaccharides by Promoting B Cell Receptor Diversity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:1229-1240. [PMID: 30006375 PMCID: PMC6085875 DOI: 10.4049/jimmunol.1800162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/15/2018] [Indexed: 11/19/2022]
Abstract
Polysaccharide vaccines such as the Vi polysaccharide (ViPS) of Salmonella enterica serovar Typhi induce efficient Ab responses in adults but not in young children. The reasons for this difference are not understood. IL-7 dependency in B cell development increases progressively with age. IL-7Rα-mediated signals are required for the expression of many VH gene segments that are distal to DH-JH in the IgH locus and for the complete diversification of the BCR repertoire. Therefore, we hypothesized that B cells generated in the absence of IL-7 do not recognize a wide range of Ags because of a restricted BCR repertoire. Compared with adult wildtype mice, young wildtype mice and IL-7-deficient adult mice generated a significantly reduced Ab response to ViPS. Additionally, ViPS-binding B cells in adult wildtype mice predominantly used distal VH gene segments. Transgenic expression of either IL-7 or a BCR encoded by a distal VH gene segment permitted young mice to respond efficiently to bacterial polysaccharides. These results indicate that restricted VH gene usage early in life results in a paucity of Ag-specific B cell precursors, thus limiting antipolysaccharide responses.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/immunology
- Antibody Diversity/genetics
- Antibody Diversity/immunology
- Antibody Formation/genetics
- Antibody Formation/immunology
- B-Lymphocytes/immunology
- Genes, Immunoglobulin Heavy Chain/genetics
- Genes, Immunoglobulin Heavy Chain/immunology
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Interleukin-7/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Polysaccharides, Bacterial/immunology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
Collapse
Affiliation(s)
- Gregory S Dickinson
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Eric A Levenson
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Justin A Walker
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - John F Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Kishore R Alugupalli
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107; and
| |
Collapse
|
19
|
The evolution of greater humoral immunity in females than males: implications for vaccine efficacy. CURRENT OPINION IN PHYSIOLOGY 2018; 6:16-20. [PMID: 30320243 DOI: 10.1016/j.cophys.2018.03.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Males and females differ in their effector and memory immune responses to foreign and self-antigens. The difference in antibody responses (i.e., humoral immunity), in particular, is one of the most well conserved sex differences in immunology. Certain sex differences in humoral immunity are present throughout life, whereas others are only apparent after puberty and prior to reproductive senescence, suggesting that both genes and hormones are involved. Importantly, these sex-based differences in humoral immunity contribute to variation in the responses to vaccines and may explain some disparities in vaccine efficacy between the sexes. Elevated humoral immunity in females compared with males is phylogenetically well conserved, suggesting an adaptive advantage of elevated antibody for reproductive success, including for the transfer of protective antibodies to offspring.
Collapse
|
20
|
Glaesener S, Jaenke C, Habener A, Geffers R, Hagendorff P, Witzlau K, Imelmann E, Krueger A, Meyer-Bahlburg A. Decreased production of class-switched antibodies in neonatal B cells is associated with increased expression of miR-181b. PLoS One 2018; 13:e0192230. [PMID: 29389970 PMCID: PMC5794184 DOI: 10.1371/journal.pone.0192230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/18/2018] [Indexed: 01/11/2023] Open
Abstract
The increased susceptibility to infections of neonates is caused by an immaturity of the immune system as a result of both qualitative and quantitative differences between neonatal and adult immune cells. With respect to B cells, neonatal antibody responses are known to be decreased. Accountable for this is an altered composition of the neonatal B cell compartment towards more immature B cells. However, it remains unclear whether the functionality of individual neonatal B cell subsets is altered as well. In the current study we therefore compared phenotypical and functional characteristics of corresponding neonatal and adult B cell subpopulations. No phenotypic differences could be identified with the exception of higher IgM expression in neonatal B cells. Functional analysis revealed differences in proliferation, survival, and B cell receptor signaling. Most importantly, neonatal B cells showed severely impaired class-switch recombination (CSR) to IgG and IgA. This was associated with increased expression of miR-181b in neonatal B cells. Deficiency of miR-181b resulted in increased CSR. With this, our results highlight intrinsic differences that contribute to weaker B cell antibody responses in newborns.
Collapse
Affiliation(s)
- Stephanie Glaesener
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Christine Jaenke
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anika Habener
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Hagendorff
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Katrin Witzlau
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Esther Imelmann
- Institute for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Andreas Krueger
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Almut Meyer-Bahlburg
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- * E-mail:
| |
Collapse
|
21
|
Holbrook BC, Aycock ST, Machiele E, Clemens E, Gries D, Jorgensen MJ, Hadimani MB, King SB, Alexander-Miller MA. An R848 adjuvanted influenza vaccine promotes early activation of B cells in the draining lymph nodes of non-human primate neonates. Immunology 2017; 153:357-367. [PMID: 28940186 DOI: 10.1111/imm.12845] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 12/31/2022] Open
Abstract
Impaired immune responsiveness is a significant barrier to vaccination of neonates. By way of example, the low seroconversion observed following influenza vaccination has led to restriction of its use to infants over 6 months of age, leaving younger infants vulnerable to infection. Our previous studies using a non-human primate neonate model demonstrated that the immune response elicited following vaccination with inactivated influenza virus could be robustly increased by inclusion of the Toll-like receptor agonist flagellin or R848, either delivered individually or in combination. When delivered individually, R848 was found to be the more effective of the two. To gain insights into the mechanism through which these adjuvants functioned in vivo, we assessed the initiation of the immune response, i.e. at 24 hr, in the draining lymph node of neonate non-human primates. Significant up-regulation of co-stimulatory molecules on dendritic cells could be detected, but only when both adjuvants were present. In contrast, R848 alone could increase the number of cells in the lymph node, presumably through enhanced recruitment, as well as B-cell activation at this early time-point. These changes were not observed with flagellin and the dual adjuvanted vaccine did not promote increases beyond those observed with R848 alone. In vitro studies showed that R848 could promote B-cell activation, supporting a model wherein a direct effect on neonate B-cell activation is an important component of the in vivo potency of R848 in neonates.
Collapse
Affiliation(s)
- Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - S Tyler Aycock
- Animal Resources Program, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Emily Machiele
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Elene Clemens
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Danielle Gries
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Matthew J Jorgensen
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - S Bruce King
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, USA
| | | |
Collapse
|
22
|
Abstract
The two ligands B cell-activating factor of the tumor necrosis factor family (BAFF) and a proliferation-inducing ligand (APRIL) and the three receptors BAFF receptor (BAFF-R), transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI), and B cell maturation antigen (BCMA) are members of the "BAFF system molecules." BAFF system molecules are primarily involved in B cell homeostasis. The relevance of BAFF system molecules in host responses to microbial assaults has been investigated in clinical studies and in mice deficient for each of these molecules. Many microbial products modulate the expression of these molecules. Data from clinical studies suggest a correlation between increased expression levels of BAFF system molecules and elevated B cell responses. Depending on the pathogen, heightened B cell responses may strengthen the host response or promote susceptibility. Whereas pathogen-mediated increases in the expression levels of the ligands and/or the receptors appear to promote microbial clearance, certain pathogens have evolved to ablate B cell responses by suppressing the expression of TACI and/or BAFF-R on B cells. Other than its well-established role in B cell responses, the TACI-mediated activation of macrophages is also implicated in resistance to intracellular pathogens. An improved understanding of the role that BAFF system molecules play in infection may assist in devising novel strategies for vaccine development.
Collapse
Affiliation(s)
- Jiro Sakai
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mustafa Akkoyunlu
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
23
|
Becerra E, De La Torre I, Leandro MJ, Cambridge G. B cell phenotypes in patients with rheumatoid arthritis relapsing after rituximab: expression of B cell-activating factor-binding receptors on B cell subsets. Clin Exp Immunol 2017; 190:372-383. [PMID: 28800164 DOI: 10.1111/cei.13024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2017] [Indexed: 01/14/2023] Open
Abstract
Serum levels of B cell-activating factor (BAFF) rise following rituximab (RTX) therapy in patients with rheumatoid arthritis (RA). Initiation of naive B cell return to the periphery and autoreactive B cell expansion leading to relapse after RTX may therefore be linked to interactions between BAFF and BAFF-binding receptors (BBR). Relationships between serum BAFF and BBR expression [(BAFFR, calcium signal modulating cyclophilic ligand interactor (TACI) and B cell maturation antigen (BCMA)] were determined on B cell subsets, defined using immunoglobulin (Ig)D/CD38. Twenty pre-RTX and 18 RA patients relapsing after B cell depletion were included. Results were analysed with respect to timing of relapse up to 7 months after peripheral B cell return (≥ 5 B cells/μl) and to serum BAFF levels. After B cell return, B cell populations from relapsing patients had significantly lower BAFFR+ expression compared to HC and pre-RTX patients. The percentage of BAFFR+ B cells increased with time after B cell return and was correlated inversely with serum BAFF levels. BAFFR expression remained reduced. The percentage of TACI+ memory B cells were lower in RA patients after RTX compared with healthy controls (HC). BCMA expression (% and expression) did not differ between patients and HC. Relapse following B cell return appeared largely independent of the percentage of BAFFR+ or percentage of BCMA+ B cells or serum BAFF levels. The lower percentage of TACI+ memory B cells may reduce inhibitory signalling for B cell differentiation. In patients relapsing at longer periods after B cell return, recovery of the B cell pool was more complete, suggesting that selection or expansion of autoreactive B cells may be needed to precipitate relapse.
Collapse
Affiliation(s)
- E Becerra
- Department of Rheumatology, University College London, London, UK
| | - I De La Torre
- Department of Rheumatology, University College London, London, UK
| | - M J Leandro
- Department of Rheumatology, University College London, London, UK
| | - G Cambridge
- Department of Rheumatology, University College London, London, UK
| |
Collapse
|
24
|
Basha S, Pichichero ME. Decreased TNF family receptor expression on B-cells is associated with reduced humoral responses to Streptococcus pneumoniae infections in young children. Cell Immunol 2017; 320:11-19. [PMID: 28947093 DOI: 10.1016/j.cellimm.2017.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/06/2017] [Accepted: 07/14/2017] [Indexed: 12/30/2022]
Abstract
An underdeveloped or impaired immune response in young children is associated with increased susceptibility to Streptococcus pneumonia (Spn) infections. We determined serum antibody titers against 3 Spn vaccine candidate proteins and vaccine serotype polysaccharide antigens in a group of Spn infection prone 9-18months old and found lower IgG antibody titers to all tested antigens compared to age-matched non-infection-prone children. We also found the children had significantly reduced percentages of total memory B-cells, switched memory B-cells and plasma cells. We sought a mechanistic explanation for that result by examination of TNF family receptors (TNFRs) TACI, BCMA, and BAFFR receptor expression on B-cells and found significantly lower BAFFR and TACI expression; significantly lower proliferation of B-cells stimulated with exogenous BAFF; and diminished expression of co-stimulatory receptors B7-1 and B7-2 among infection prone vs. non-prone children. We conclude that lower expression of TNFRs, lower proliferation of B-cells in response to BAFF and lower expression of B7-1 and B7-2 by B-cells may contribute to reduced antibody responses to Spn and consequent infection proneness in young children.
Collapse
Affiliation(s)
- Saleem Basha
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY 14621, USA
| | - Michael E Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY 14621, USA.
| |
Collapse
|
25
|
van de Vosse E, van Ostaijen-Ten Dam MM, Vermaire R, Verhard EM, Waaijer JL, Bakker JA, Bernards ST, Eibel H, van Tol MJ, van Dissel JT, Haverkamp MH. Recurrent respiratory tract infections (RRTI) in the elderly: A late onset mild immunodeficiency? Clin Immunol 2017; 180:111-119. [PMID: 28487087 DOI: 10.1016/j.clim.2017.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 01/27/2017] [Accepted: 05/05/2017] [Indexed: 01/27/2023]
Abstract
Elderly with late-onset recurrent respiratory tract infections (RRTI) often have specific anti-polysaccharide antibody deficiency (SPAD). We hypothesized that late-onset RRTI is caused by mild immunodeficiencies, such as SPAD, that remain hidden through adult life. We analyzed seventeen elderly RRTI patients and matched controls. We determined lymphocyte subsets, expression of BAFF receptors, serum immunoglobulins, complement pathways, Pneumovax-23 vaccination response and genetic variations in BAFFR and MBL2. Twelve patients (71%) and ten controls (59%) had SPAD. IgA was lower in patients than in controls, but other parameters did not differ. However, a high percentage of both patients (53%) and controls (65%) were MBL deficient, much more than in the general population. Often, MBL2 secretor genotypes did not match functional deficiency, suggesting that functional MBL deficiency can be an acquired condition. In conclusion, we found SPAD and MBL deficiency in many elderly, and conjecture that at least the latter arises with age.
Collapse
Affiliation(s)
- Esther van de Vosse
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| | | | - René Vermaire
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Els M Verhard
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacqueline L Waaijer
- Department of Paediatrics, Laboratory for Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap A Bakker
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Sandra T Bernards
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hermann Eibel
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Maarten J van Tol
- Department of Paediatrics, Laboratory for Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap T van Dissel
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Margje H Haverkamp
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
26
|
Abstract
The immune system of preterm infants is immature, placing them at increased risk for serious immune-related complications. Human milk provides a variety of immune protective and immune maturation factors that are beneficial to the preterm infant's poorly developed immune system. The most studied immune components in human milk include antimicrobial proteins, maternal leukocytes, immunoglobulins, cytokines and chemokines, oligosaccharides, gangliosides, nucleotides, and long-chain polyunsaturated fatty acids. There is growing evidence that these components contribute to the lower incidence of immune-related conditions in the preterm infant. Therefore, provision of these components in human milk, donor milk, or formula may provide immunologic benefits.
Collapse
|
27
|
Toro JF, Salgado DM, Vega R, Rodríguez JA, Rodríguez LS, Angel J, Franco MA, Greenberg HB, Narváez CF. Total and Envelope Protein-Specific Antibody-Secreting Cell Response in Pediatric Dengue Is Highly Modulated by Age and Subsequent Infections. PLoS One 2016; 11:e0161795. [PMID: 27560782 PMCID: PMC4999220 DOI: 10.1371/journal.pone.0161795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/11/2016] [Indexed: 11/18/2022] Open
Abstract
The response of antibody-secreting cells (ASC) induced by dengue has only recently started to be characterized. We propose that young age and previous infections could be simple factors that affect this response. Here, we evaluated the primary and secondary responses of circulating ASC in infants (6–12 months old) and children (1–14 years old) infected with dengue showing different degrees of clinical severity. The ASC response was delayed and of lower magnitude in infants, compared with older children. In primary infection (PI), the total and envelope (E) protein-specific IgM ASC were dominant in infants but not in children, and a negative correlation was found between age and the number of IgM ASC (rho = −0.59, P = 0.03). However, infants with plasma dengue-specific IgG detectable in the acute phase developed an intense ASC response largely dominated by IgG and comparable to that of children with secondary infection (SI). IgM and IgG produced by ASC circulating in PI or SI were highly cross-reactive among the four serotypes. Dengue infection caused the disturbance of B cell subsets, particularly a decrease in the relative frequency of naïve B cells. Higher frequencies of total and E protein-specific IgM ASC in the infants and IgG in the children were associated with clinically severe forms of infection. Therefore, the ASC response induced by dengue is highly influenced by the age at which infection occurs and previous immune status, and its magnitude is a relevant element in the clinical outcome. These results are important in the search for correlates of protection and for determining the ideal age for vaccinating against dengue.
Collapse
Affiliation(s)
- Jessica F. Toro
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia
- Departamento de Pediatría, Hospital Universitario de Neiva, Neiva, Colombia
| | - Doris M. Salgado
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia
- Departamento de Pediatría, Hospital Universitario de Neiva, Neiva, Colombia
| | - Rocío Vega
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia
- Departamento de Pediatría, Hospital Universitario de Neiva, Neiva, Colombia
| | - Jairo A. Rodríguez
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia
- Departamento de Pediatría, Hospital Universitario de Neiva, Neiva, Colombia
| | - Luz-Stella Rodríguez
- Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juana Angel
- Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Manuel A. Franco
- Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Harry B. Greenberg
- Departments of Medicine and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Carlos F. Narváez
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia
- * E-mail:
| |
Collapse
|
28
|
Kollmann TR, Marchant A. Towards Predicting Protective Vaccine Responses in the Very Young. Trends Immunol 2016; 37:523-534. [PMID: 27344245 DOI: 10.1016/j.it.2016.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/09/2016] [Accepted: 05/25/2016] [Indexed: 11/30/2022]
Abstract
Infectious diseases remain a major cause of death in infancy. Vaccination is a proven-effective strategy to reduce the risk of infectious diseases. However, important gaps remain in our understanding of vaccine responses in early life. Systems vaccinology has provided new insight into mechanisms and predictors of vaccine responses. However, systems vaccinology has not yet been systematically applied to infants younger than 12 months of age. Here, we review the knowledge gained from systems vaccinology studies of vaccines that are licensed for administration to infants. We propose that systems vaccinology should be applied to age-specific studies focused on protection, to derive the necessary insight for optimal design of vaccines for the very young.
Collapse
Affiliation(s)
- Tobias R Kollmann
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, BC Children's Hospital, Vancouver, Canada.
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| |
Collapse
|
29
|
Iyer AS, Khaskhely NM, Leggat DJ, Ohtola JA, Saul-McBeth JL, Khuder SA, Westerink MAJ. Inflammatory Markers and Immune Response to Pneumococcal Vaccination in HIV-Positive and -Negative Adults. PLoS One 2016; 11:e0150261. [PMID: 26930208 PMCID: PMC4773189 DOI: 10.1371/journal.pone.0150261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/01/2016] [Indexed: 11/30/2022] Open
Abstract
Background Members of the Tumor Necrosis Factor (TNF)-superfamily have speculated roles in the response against T-independent type II antigens (TI-II) including pneumococcal polysaccharides (PPS). Dysregulation in their expression is associated with an enhanced risk for pneumococcal disease in neonates but their expression in other high-risk populations including HIV-positive individuals remains to be elucidated. Objective To investigate signals that contribute towards PPS-response and identify potential anomalies that may account for diminished serological response in HIV-positive individuals post Pneumovax (PPV23) immunization. Methods Markers of inflammation, C-reactive protein (CRP), IL-6, sCD27 and sCD30, were assessed in HIV-positive and -negative individuals as potential predictors of PPV23 response. Serum levels of B cell activating factor (BAFF), transmembrane activator and calcium-modulator and cytophilin ligand interactor (TACI), B cell maturation antigen (BCMA) and B cell expression of BAFF-R, TACI, BCMA, CD40 and CD21 were assessed in total (unselected) and PPS23F (antigen)-specific B cells of PPV23 immunized HIV-positive and -negative individuals. Results CRP, sCD27, sCD30 and BAFF were significantly elevated in the serum of HIV-positive individuals but did not adversely affect PPV23 response. Assessment of PPS-specific B cells revealed enhanced TACI and reduced BAFF-R expression compared to unselected B cells in HIV-positive and -negative individuals. Surface TACI was similar but soluble TACI was significantly lower in HIV-positive compared to HIV-negative individuals. Conclusion Current studies highlight a potential role for TACI in PPV23 response based on its enhanced expression on PPS-specific B cells. Although surface levels of TACI were similar, diminished soluble TACI (sTACI) in HIV-positive compared to HIV-negative individuals could potentially decrease BAFF responsiveness and Ig response. A better understanding of the role of TNF receptors could contribute to the design of improved pneumococcal vaccines. Trial Registration ClinicalTrials.gov NCT02515240
Collapse
Affiliation(s)
- Anita S Iyer
- Department of Medicine, University of Toledo, 3000 Arlington Avenue, Toledo, Ohio 43614, United States of America
| | - Noor M Khaskhely
- Department of Medicine, University of Toledo, 3000 Arlington Avenue, Toledo, Ohio 43614, United States of America
| | - David J Leggat
- Department of Medicine, University of Toledo, 3000 Arlington Avenue, Toledo, Ohio 43614, United States of America
| | - Jennifer A Ohtola
- Department of Medicine, University of Toledo, 3000 Arlington Avenue, Toledo, Ohio 43614, United States of America
| | - Jessica L Saul-McBeth
- Department of Medicine, University of Toledo, 3000 Arlington Avenue, Toledo, Ohio 43614, United States of America
| | - Sadik A Khuder
- Department of Public Health, University of Toledo, 3000 Arlington Avenue, Toledo, Ohio 43614, United States of America
| | - M A Julie Westerink
- Department of Medicine; Department of Infectious Diseases and Department of Microbiology and Immunology, 135 Rutledge Avenue, Charleston, South Carolina 29425, United States of America
| |
Collapse
|
30
|
Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci 2015; 282:20143085. [PMID: 26702035 PMCID: PMC4707740 DOI: 10.1098/rspb.2014.3085] [Citation(s) in RCA: 891] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/01/2015] [Indexed: 12/15/2022] Open
Abstract
This article reviews the development of the immune response through neonatal, infant and adult life, including pregnancy, ending with the decline in old age. A picture emerges of a child born with an immature, innate and adaptive immune system, which matures and acquires memory as he or she grows. It then goes into decline in old age. These changes are considered alongside the risks of different types of infection, autoimmune disease and malignancy.
Collapse
Affiliation(s)
- A Katharina Simon
- Nuffield Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Georg A Hollander
- Department of Paediatrics, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Andrew McMichael
- Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Oxford OX3 7FZ, UK
| |
Collapse
|
31
|
Ohtola JA, Khaskhely NM, Saul-Mcbeth JL, Iyer AS, Leggat DJ, Khuder SA, Westerink MAJ. Alterations in serotype-specific B cell responses to the 13-valent pneumococcal conjugate vaccine in aging HIV-infected adults. Vaccine 2015; 34:451-457. [PMID: 26707220 DOI: 10.1016/j.vaccine.2015.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/18/2015] [Accepted: 12/07/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND Advanced age and human immunodeficiency virus (HIV) infection are associated with increased pneumococcal disease risk. The impact of these factors on cellular responses to vaccination is unknown. METHODS HIV-infected (HIV+) individuals 50-65 years old with CD4(+) Tcells/μl (CD4) >200 on antiretroviral therapy (ART) ≥1 year received either the 13-valent pneumococcal conjugate vaccine followed by the 23-valent pneumococcal polysaccharide vaccine (PCV/PPV) or PPV only. HIV-uninfected (HIV-) controls received PCV/PPV. Phenotype distribution and surface expression of complement receptor CD21 and tumor necrosis factor superfamily receptors (TNFRs) were compared on serotype-specific B cells postvaccination. RESULTS Postvaccination serotype-specific B cell percentages were significantly lower in HIV+ PCV/PPV compared to PPV groups, but similar between HIV+ or HIV- PCV/PPV groups. Transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI)(+) serotype-specific B cell percentages were significantly decreased in HIV+ PCV/PPV compared to PPV groups. CD21(+) serotype-specific B cells were significantly higher in HIV- compared to HIV+ PCV/PPV groups. CONCLUSIONS An initial dose of PCV reduced the frequency, but not phenotype distribution, of serotype-specific B cells and also lowered TACI expression in aging HIV+ subjects postvaccination with PPV. These findings suggest that PCV does not enhance cellular responses to revaccination with PPV.
Collapse
Affiliation(s)
- Jennifer A Ohtola
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, United States
| | - Noor M Khaskhely
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, United States
| | - Jessica L Saul-Mcbeth
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, United States
| | - Anita S Iyer
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, United States
| | - David J Leggat
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, United States
| | - Sadik A Khuder
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, United States; Department of Public Health and Preventative Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, United States
| | - M A Julie Westerink
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, United States; Department of Pathology, University of Toledo College of Medicine & Life Sciences, Toledo, OH, United States; Department of Medical Microbiology and Immunology, University of Toledo College of Medicine & Life Sciences, Toledo, OH, United States.
| |
Collapse
|
32
|
Inclusion of Flagellin during Vaccination against Influenza Enhances Recall Responses in Nonhuman Primate Neonates. J Virol 2015; 89:7291-303. [PMID: 25948746 DOI: 10.1128/jvi.00549-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/28/2015] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Influenza virus can cause life-threatening infections in neonates and young infants. Although vaccination is a major countermeasure against influenza, current vaccines are not approved for use in infants less than 6 months of age, in part due to the weak immune response following vaccination. Thus, there is a strong need to develop new vaccines with improved efficacy for this vulnerable population. To address this issue, we established a neonatal African green monkey (AGM) nonhuman primate model that could be used to identify effective influenza vaccine approaches for use in young infants. We assessed the ability of flagellin, a Toll-like receptor 5 (TLR5) agonist, to serve as an effective adjuvant in this at-risk population. Four- to 6-day-old AGMs were primed and boosted with inactivated PR8 influenza virus (IPR8) adjuvanted with either wild-type flagellin or inactive flagellin with a mutation at position 229 (m229), the latter of which is incapable of signaling through TLR5. Increased IgG responses were observed following a boost, as well as at early times after challenge, in infants vaccinated with flagellin-adjuvanted IPR8. Inclusion of flagellin during vaccination also resulted in a significantly increased number of influenza virus-specific T cells following challenge compared to the number in infants vaccinated with the m229 adjuvant. Finally, following challenge infants vaccinated with IPR8 plus flagellin exhibited a reduced pathology in the lungs compared to that in infants that received IPR8 plus m229. This study provides the first evidence of flagellin-mediated enhancement of vaccine responses in nonhuman primate neonates. IMPORTANCE Young infants are particularly susceptible to severe disease as a result of influenza virus infection. Compounding this is the lack of effective vaccines for use in this vulnerable population. Here we describe a vaccine approach that results in improved immune responses and protection in young infants. Incorporation of flagellin during vaccination resulted in increased antibody and T cell responses together with reduced disease following virus infection. These results suggest that flagellin may serve as an effective adjuvant for vaccines targeted to this vulnerable population.
Collapse
|
33
|
Abstract
The immune system in early life goes through rapid and radical changes. Early life is also the period with the highest risk of infections. The foetal immune system is programmed to coexist with foreign antigenic influences in utero, and postnatally to rapidly develop a functional system capable of distinguishing helpful microbes from harmful pathogens. Both host genetics and environmental influences shape this dramatic transition and direct the trajectory of the developing immune system into early childhood and beyond. Given the malleability of the immune system in early life, interventions aimed at modulating this trajectory thus have the potential to translate into considerable reductions in infectious disease burden with immediate as well as long-lasting benefit. However, an improved understanding of the underlying molecular drivers of early life immunity is prerequisite to optimise such interventions and transform the window of early life vulnerability into one of opportunity.
Collapse
|
34
|
Becerra E, Scully MA, Leandro MJ, Heelas EO, Westwood JP, De La Torre I, Cambridge G. Effect of rituximab on B cell phenotype and serum B cell-activating factor levels in patients with thrombotic thrombocytopenic purpura. Clin Exp Immunol 2015; 179:414-25. [PMID: 25339550 DOI: 10.1111/cei.12472] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2014] [Indexed: 12/14/2022] Open
Abstract
Autoantibodies inhibiting the activity of the metalloproteinase, ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13), underlie the pathogenesis of thrombotic thrombocytopenic purpura (TTP). Rituximab (RTX) combined with plasma-exchange (PEX) is an effective treatment in TTP. Patients can remain in remission for extended periods following PEX/RTX, and this is associated with continuing reduction in antibodies to ADAMTS13. Factors controlling B cell differentiation to autoantibody production, including stimulation through the B cell receptor and interactions with the B cell-activating factor (BAFF), may thus impact length of remission. In this cross-sectional study, we measured naive and memory B cell phenotypes [using CD19/immunoglobulin (Ig)D/CD27] following PEX/RTX treatment in TTP patients at B cell return (n=6) and in 12 patients in remission 10-68 months post-RTX. We also investigated relationships among serum BAFF, soluble CD23 (sCD23(-) a surrogate measure of acquiring B memory (CD27(+) ) phenotype) and BAFF receptor (BAFF-R) expression. At B cell return after PEX/RTX, naive B cells predominated and BAFF-R expression was reduced compared to healthy controls (P<0.001). In the remission group, despite numbers of CD19(+) B cells within normal limits in most patients, the percentage and absolute numbers of pre-switch and memory B cells remained low, with sCD23 levels at the lower end of the normal range. BAFF levels were correlated inversely with BAFF-R expression and time after therapy. In conclusion, the long-term effects of RTX therapy in patients with TTP included slow regeneration of memory B cell subsets and persistently reduced BAFF-R expression across all B cell subpopulations. This may reflect the delay in selection and differentiation of potentially autoreactive (ADAMTS13-specific) B cells, resulting in relatively long periods of low disease activity after therapy.
Collapse
Affiliation(s)
- E Becerra
- Department of Rheumatology, University College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Alexander-Miller MA. Vaccines against respiratory viral pathogens for use in neonates: opportunities and challenges. THE JOURNAL OF IMMUNOLOGY 2015; 193:5363-9. [PMID: 25411431 DOI: 10.4049/jimmunol.1401410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The first six months of life reflect a time of high susceptibility to severe disease following respiratory virus infection. Although this could be improved significantly by immunization, current vaccines are not approved for use in these very young individuals. This is the result of the combined effects of poor immune responsiveness and safety concerns regarding the use of live attenuated vaccines or potent adjuvants in this population. Vaccines to effectively combat respiratory viral infection ideally would result in robust CD4(+) and CD8(+) T cell responses, as well as high-affinity Ab. Inclusion of TLR agonists or single-cycle viruses is an attractive approach for provision of signals that can act as potent stimulators of dendritic cell maturation, as well as direct activators of T and/or B cells. In this article, I discuss the challenges associated with generation of a robust immune response in neonates and the potential for adjuvants to overcome these obstacles.
Collapse
|
36
|
Effect of TACI signaling on humoral immunity and autoimmune diseases. J Immunol Res 2015; 2015:247426. [PMID: 25866827 PMCID: PMC4381970 DOI: 10.1155/2015/247426] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/04/2015] [Indexed: 02/02/2023] Open
Abstract
Transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI) is one of the receptors of B cell activating factor of the tumor necrosis factor family (BAFF) and a proliferation-inducing ligand (APRIL). TACI is a regulator in the immune responses. TACI inhibits B cell expansion and promotes the differentiation and survival of plasma cells. The mechanisms underlying these effects probably involve changed expressions of some crucial molecules, such as B lymphocyte induced maturation protein-1 (Blimp-1) and inducible T-cell costimulator ligand (ICOSL) in B cells and/or plasma cells. However, abnormal TACI signaling may relate to autoimmune disorders. Common variable immune deficiency (CVID) patients with heterozygous mutations in TACI alleles increase susceptibility to autoimmune diseases. Taci−/− mice and BAFF transgenic mice both develop signs of human SLE. These findings that indicate inappropriate levels of TACI signaling may disrupt immune system balance, thereby promoting the development of autoimmune diseases. In this review, we summarize the basic characteristics of the TACI ligands BAFF and APRIL, and detail the research findings on the role of TACI in humoral immunity. We also discuss the possible mechanisms underlying the susceptibility of CVID patients with TACI mutations to autoimmune diseases and the role of TACI in the pathogenesis of SLE.
Collapse
|
37
|
Rechavi E, Lev A, Lee YN, Simon AJ, Yinon Y, Lipitz S, Amariglio N, Weisz B, Notarangelo LD, Somech R. Timely and spatially regulated maturation of B and T cell repertoire during human fetal development. Sci Transl Med 2015; 7:276ra25. [DOI: 10.1126/scitranslmed.aaa0072] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Tatari-Calderone Z, Luban NLC, Vukmanovic S. Genetics of transfusion recipient alloimmunization: can clues from susceptibility to autoimmunity pave the way? ACTA ACUST UNITED AC 2014; 41:436-45. [PMID: 25670931 DOI: 10.1159/000369145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/01/2014] [Indexed: 01/08/2023]
Abstract
The search for genetic determinants of alloimmunization in sickle cell disease transfusion recipients was based on two premises: i) that polymorphisms responsible for stronger immune and/or inflammatory responses and hemoglobin β(S) mutation were co-selected by malaria; and ii) that stronger responder status contributes to development of lupus. We found a marker of alloimmunization in the gene encoding for Ro52 protein, also known as Sjögren syndrome antigen 1 (SSA1) and TRIM21. Surprisingly, the nature of the association was opposite of that with lupus; the same variant of a polymorphism (rs660) that was associated with lupus incidence was also associated with induction of tolerance to red blood cell antigens during early childhood. The dual function of Ro52 can explain this apparent contradiction. We propose that other lupus/autoimmunity susceptibility loci may reveal roles of additional molecules in various aspects of alloimmunization induced by transfusion as well as during pregnancy.
Collapse
Affiliation(s)
- Zohreh Tatari-Calderone
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC, USA ; Department of Pediatrics, George Washington University School of Medicine, Washington, DC, USA
| | - Naomi L C Luban
- Department of Pediatrics, George Washington University School of Medicine, Washington, DC, USA ; Division of Laboratory Medicine, Children's National Medical Center, Washington, DC, USA
| | - Stanislav Vukmanovic
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC, USA ; Department of Pediatrics, George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
39
|
Lambert L, Sagfors AM, Openshaw PJM, Culley FJ. Immunity to RSV in Early-Life. Front Immunol 2014; 5:466. [PMID: 25324843 PMCID: PMC4179512 DOI: 10.3389/fimmu.2014.00466] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/12/2014] [Indexed: 02/01/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) is the commonest cause of severe respiratory infection in infants, leading to over 3 million hospitalizations and around 66,000 deaths worldwide each year. RSV bronchiolitis predominantly strikes apparently healthy infants, with age as the principal risk factor for severe disease. The differences in the immune response to RSV in the very young are likely to be key to determining the clinical outcome of this common infection. Remarkable age-related differences in innate cytokine responses follow recognition of RSV by numerous pattern recognition receptors, and the importance of this early response is supported by polymorphisms in many early innate genes, which associate with bronchiolitis. In the absence of strong, Th1 polarizing signals, infants develop T cell responses that can be biased away from protective Th1 and cytotoxic T cell immunity toward dysregulated, Th2 and Th17 polarization. This may contribute not only to the initial inflammation in bronchiolitis, but also to the long-term increased risk of developing wheeze and asthma later in life. An early-life vaccine for RSV will need to overcome the difficulties of generating a protective response in infants, and the proven risks associated with generating an inappropriate response. Infantile T follicular helper and B cell responses are immature, but maternal antibodies can afford some protection. Thus, maternal vaccination is a promising alternative approach. However, even in adults adaptive immunity following natural infection is poorly protective, allowing re-infection even with the same strain of RSV. This gives us few clues as to how effective vaccination could be achieved. Challenges remain in understanding how respiratory immunity matures with age, and the external factors influencing its development. Determining why some infants develop bronchiolitis should lead to new therapies to lessen the clinical impact of RSV and aid the rational design of protective vaccines.
Collapse
Affiliation(s)
- Laura Lambert
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Agnes M. Sagfors
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Fiona J. Culley
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
40
|
Borges MCL, Sesso MLT, Roberti LR, de Menezes Oliveira MAH, Nogueira RD, Geraldo-Martins VR, Ferriani VPL. Salivary antibody response to streptococci in preterm and fullterm children: a prospective study. Arch Oral Biol 2014; 60:116-25. [PMID: 25290442 DOI: 10.1016/j.archoralbio.2014.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 08/04/2014] [Accepted: 08/08/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Secretory immunoglobulins present in mucosa surfaces represent the first line of defense of the adaptive immune system against infectious challenges. Preterm (PT) neonates' humoral immunity is diminished compared to full-term (FT) newborns. The identification of important antigens (Ags) of virulence of oral species may help in the investigation of the mechanisms of antigenic stimulation and the development of the mucosal immune response. In the present study, we measured saliva levels of immunoglobulins A (IgA) and M (IgM) and characterized the specificity of IgA against Ags of several streptococcal species found early in life. METHODS This was a prospective observational study. Salivary IgA (sIgA) antibody responses to bacterial species that are prototypes of pioneer (Streptococcus mitis, S. sanguinis, S. gordonii) and pathogenic (Streptococcus mutans) microorganisms of the oral cavity were studied in FT and PT children in two visits: at birth (T0) and at 3 months of age (T3). Salivas from 123 infants (72 FT and 51 PT) were collected during the first 10h after birth (T0) and again at 3 months of age (T3). Salivary levels of IgA and IgM antibodies were analysed by enzyme-linked immunosorbent assay (ELISA). A subgroup of 26 FT and 24 PT children were compared with respect to patterns of antibody specificities against different streptococci Ags using Western blot assays. RESULTS No significant differences (P>0.05) in salivary levels of IgA and IgM between FT and PT babies were found at birth. At T3, mean sIgA values were similar between groups and sIgM levels were significantly higher in PT than FT (P<0.05). Western blot assays identified positive IgA response to streptococci in the majority of children, especially in the FT group. There were some differences between groups in relation to the frequency of children with positive response to Ags and intensity of IgA response. In general, oral streptococci Ags were more frequently detected and bands were more intense in FT than in PT, especially in T3. Prospective analysis of patterns of sIgA against Ags of different streptococcal species revealed an increase in complexity of the sIgA antibody response from the first day of birth (T0) to T3 in PT and FT. CONCLUSION The patterns of sIgA response to streptococci Ags appear to be influenced by the gestational age, which might reflect the level of immunological maturity of the mucosal immune system.
Collapse
Affiliation(s)
- Mariana Castro Loureiro Borges
- Department of Pediatrics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Lucia Talarico Sesso
- Department of Pediatrics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luciana Rodrigues Roberti
- Department of Pediatrics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Ruchele Dias Nogueira
- Department of Pediatrics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; University of Uberaba, Minas Gerais, Brazil.
| | | | - Virginia Paes Leme Ferriani
- Department of Pediatrics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
41
|
Faucette AN, Unger BL, Gonik B, Chen K. Maternal vaccination: moving the science forward. Hum Reprod Update 2014; 21:119-35. [PMID: 25015234 DOI: 10.1093/humupd/dmu041] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Infections remain one of the leading causes of morbidity in pregnant women and newborns, with vaccine-preventable infections contributing significantly to the burden of disease. In the past decade, maternal vaccination has emerged as a promising public health strategy to prevent and combat maternal, fetal and neonatal infections. Despite a number of universally recommended maternal vaccines, the development and evaluation of safe and effective maternal vaccines and their wide acceptance are hampered by the lack of thorough understanding of the efficacy and safety in the pregnant women and the offspring. METHODS An outline was synthesized based on the current status and major gaps in the knowledge of maternal vaccination. A systematic literature search in PUBMED was undertaken using the key words in each section title of the outline to retrieve articles relevant to pregnancy. Articles cited were selected based on relevance and quality. On the basis of the reviewed information, a perspective on the future directions of maternal vaccination research was formulated. RESULTS Maternal vaccination can generate active immune protection in the mother and elicit systemic immunoglobulin G (IgG) and mucosal IgG, IgA and IgM responses to confer neonatal protection. The maternal immune system undergoes significant modulation during pregnancy, which influences responsiveness to vaccines. Significant gaps exist in our knowledge of the efficacy and safety of maternal vaccines, and no maternal vaccines against a large number of old and emerging pathogens are available. Public acceptance of maternal vaccination has been low. CONCLUSIONS To tackle the scientific challenges of maternal vaccination and to provide the public with informed vaccination choices, scientists and clinicians in different disciplines must work closely and have a mechanistic understanding of the systemic, reproductive and mammary mucosal immune responses to vaccines. The use of animal models should be coupled with human studies in an iterative manner for maternal vaccine experimentation, evaluation and optimization. Systems biology approaches should be adopted to improve the speed, accuracy and safety of maternal vaccine targeting.
Collapse
Affiliation(s)
- Azure N Faucette
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI 48201, USA
| | - Benjamin L Unger
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI 48201, USA
| | - Bernard Gonik
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI 48201, USA Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA Department of Immunology and Microbiology, Wayne State University, Detroit, MI 48201, USA Department of Oncology, Wayne State University, Detroit, MI 48201, USA Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
42
|
Pichichero ME. Challenges in vaccination of neonates, infants and young children. Vaccine 2014; 32:3886-94. [PMID: 24837502 PMCID: PMC4135535 DOI: 10.1016/j.vaccine.2014.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/18/2014] [Accepted: 05/01/2014] [Indexed: 12/14/2022]
Abstract
All neonates, infants and young children receive multiple priming doses and booster vaccinations in the 1st and 2nd year of life to prevent infections by viral and bacterial pathogens. Despite high vaccine compliance, outbreaks of vaccine-preventable infections are occurring worldwide. These data strongly argue for an improved understanding of the immune responses of neonates, infants and young children to vaccine antigens and further study of the exploitable mechanisms to achieve more robust and prolonged immunity with fewer primary and booster vaccinations in the pediatric population. This review will focus on our recent work involving infant and young child immunity following routine recommended vaccinations. The discussion will address vaccine responses with respect to four areas: (1) systemic antibody responses, (2) memory B-cell generation, (3) CD4 T-cell responses, and (4) APC function.
Collapse
Affiliation(s)
- Michael E Pichichero
- Rochester General Hospital Research Institute, Rochester, NY 14621, United States of America.
| |
Collapse
|
43
|
Abstract
B cell maturation antigen (BCMA) is a tumor necrosis family receptor (TNFR) member that is predominantly expressed on terminally differentiated B cells and, upon binding to its ligands B cell activator of the TNF family (BAFF) and a proliferation inducing ligand (APRIL), delivers pro-survival cell signals. Thus, BCMA is mostly known for its functional activity in mediating the survival of plasma cells that maintain long-term humoral immunity. The expression of BCMA has also been linked to a number of cancers, autoimmune disorders, and infectious diseases that suggest additional roles for BCMA activity. Despite recent advances in our understanding of the roles for the related TNFR members BAFF-R and transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI), the signaling pathway used by BCMA for mediating plasma cell survival as well as its putative function in certain disease states are not well understood. By examining the expression, regulation, and signaling targets of BCMA, we may gain further insight into this receptor and how it operates within cells in both health and disease. This information is important for identifying new therapeutic targets that may be relevant in treating diseases that involve the BAFF/APRIL cytokine network.
Collapse
Affiliation(s)
- Christine M Coquery
- Department of Microbiology, Immunology, & Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
44
|
Limited expression of APRIL and its receptors prior to intestinal IgA plasma cell development during human infancy. Mucosal Immunol 2014; 7:467-77. [PMID: 24045575 PMCID: PMC3959635 DOI: 10.1038/mi.2013.64] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/26/2013] [Accepted: 08/07/2013] [Indexed: 02/04/2023]
Abstract
The absence of immunoglobulin A (IgA) in the intestinal tract renders young infants highly susceptible to enteric infections. However, mediators of initial IgA induction in this population are undefined. We determined the temporal acquisition of plasma cells by isotype and expression of T cell-independent (TI) and -dependent (TD) IgA class switch factors in the human intestinal tract during early infancy. We found that IgA plasma cells were largely absent in the infant intestine until after 1 month of age, approaching adult densities later in infancy than both IgM and IgG. The restricted development of IgA plasma cells in the first month was accompanied by reduced expression of the TI factor a proliferation-inducing ligand (APRIL) and its receptors TACI (transmembrane activator and calcium-modulator and cyclophilin ligand interactor) and B cell maturation antigen (BCMA) within isolated lymphoid follicles (ILFs). Moreover, both APRIL and BCMA expression strongly correlated with increasing IgA plasma cell densities over time. Conversely, TD mediators (CD40 ligand (CD40L) and CD40) were expressed within ILFs before 1 month and were not associated with IgA plasma cell generation. In addition, preterm infants had lower densities of IgA plasma cells and reduced APRIL expression compared with full-term infants. Thus, blunted TI responses may contribute to the delayed induction of intestinal IgA during early human infancy.
Collapse
|
45
|
van Twillert I, van Gaans-van den Brink JAM, Poelen MCM, Helm K, Kuipers B, Schipper M, Boog CJP, Verheij TJM, Versteegh FGA, van Els CACM. Age related differences in dynamics of specific memory B cell populations after clinical pertussis infection. PLoS One 2014; 9:e85227. [PMID: 24454823 PMCID: PMC3890308 DOI: 10.1371/journal.pone.0085227] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/26/2013] [Indexed: 01/10/2023] Open
Abstract
For a better understanding of the maintenance of immune mechanisms to Bordetella pertussis (Bp) in relation to age, we investigated the dynamic range of specific B cell responses in various age-groups at different time points after a laboratory confirmed pertussis infection. Blood samples were obtained in a Dutch cross sectional observational study from symptomatic pertussis cases. Lymphocyte subpopulations were phenotyped by flowcytometry before and after culture. Memory B (Bmem) cells were differentiated into IgG antibody secreting cells (ASC) by polyclonal stimulation and detected by an ELISPOT assay specific for pertussis antigens pertussis toxin (Ptx), filamentous haemagglutinin (FHA) and pertactin (Prn). Bp antigen specific IgG concentrations in plasma were determined using multiplex technology. The majority of subjects having experienced a clinical pertussis episode demonstrated high levels of both Bp specific IgG and Bmem cell levels within the first 6 weeks after diagnosis. Significantly lower levels were observed thereafter. Waning of cellular and humoral immunity to maintenance levels occurred within 9 months after antigen encounter. Age was found to determine the maximum but not base-line frequencies of Bmem cell populations; higher levels of Bmem cells specific for Ptx and FHA were reached in adults and (pre-) elderly compared to under-fours and schoolchildren in the first 6 weeks after Bp exposure, whereas not in later phases. This age effect was less obvious for specific IgG levels. Nonetheless, subjects' levels of specific Bmem cells and specific IgG were weakly correlated. This is the first study to show that both age and closeness to last Bp encounter impacts the size of Bp specific Bmem cell and plasma IgG levels.
Collapse
Affiliation(s)
- Inonge van Twillert
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Martien C. M. Poelen
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Kina Helm
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Betsy Kuipers
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Maarten Schipper
- Department of Statistics, Mathematical Modelling and Data Logistics, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Theo J. M. Verheij
- Julius Center Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Cécile A. C. M. van Els
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- * E-mail:
| |
Collapse
|
46
|
Vincent FB, Saulep-Easton D, Figgett WA, Fairfax KA, Mackay F. The BAFF/APRIL system: emerging functions beyond B cell biology and autoimmunity. Cytokine Growth Factor Rev 2013; 24:203-15. [PMID: 23684423 PMCID: PMC7108297 DOI: 10.1016/j.cytogfr.2013.04.003] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The BAFF system plays a key role in the development of autoimmunity, especially in systemic lupus erythematosus (SLE). This often leads to the assumption that BAFF is mostly a B cell factor with a specific role in autoimmunity. Focus on BAFF and autoimmunity, driven by pharmaceutical successes with the recent approval of a novel targeted therapy Belimumab, has relegated other potential roles of BAFF to the background. Far from being SLE-specific, the BAFF system has a much broader relevance in infection, cancer and allergy. In this review, we provide the latest views on additional roles of the BAFF system in health and diseases, as well as an update on BAFF and autoimmunity, with particular focus on current clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Fabienne Mackay
- Corresponding author at: Department of Immunology, Monash University, Central Clinical School, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria 3004, Australia. Tel.: +61 3 99030713; fax: +61 3 99030038.
| |
Collapse
|
47
|
Melville JM, Moss TJM. The immune consequences of preterm birth. Front Neurosci 2013; 7:79. [PMID: 23734091 PMCID: PMC3659282 DOI: 10.3389/fnins.2013.00079] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/02/2013] [Indexed: 01/24/2023] Open
Abstract
Preterm birth occurs in 11% of live births globally and accounts for 35% of all newborn deaths. Preterm newborns have immature immune systems, with reduced innate and adaptive immunity; their immune systems may be further compromised by various factors associated with preterm birth. The immune systems of preterm infants have a smaller pool of monocytes and neutrophils, impaired ability of these cells to kill pathogens, and lower production of cytokines which limits T cell activation and reduces the ability to fight bacteria and detect viruses in cells, compared to term infants. Intrauterine inflammation is a major contributor to preterm birth, and causes premature immune activation and cytokine production. This can induce immune tolerance leading to reduced newborn immune function. Intrauterine inflammation is associated with an increased risk of early-onset sepsis and likely has long-term adverse immune consequences. Requisite medical interventions further impact on immune development and function. Antenatal corticosteroid treatment to prevent newborn respiratory disease is routine but may be immunosuppressive, and has been associated with febrile responses, reductions in lymphocyte proliferation and cytokine production, and increased risk of infection. Invasive medical procedures result in an increased risk of late-onset sepsis. Respiratory support can cause chronic inflammatory lung disease associated with increased risk of long-term morbidity. Colonization of the infant by microorganisms at birth is a significant contributor to the establishment of the microbiome. Caesarean section affects infant colonization, potentially contributing to lifelong immune function and well-being. Several factors associated with preterm birth alter immune function. A better understanding of perinatal modification of the preterm immune system will allow for the refinement of care to minimize lifelong adverse immune consequences.
Collapse
Affiliation(s)
- Jacqueline M. Melville
- The Ritchie Centre, Monash Institute of Medical Research, Monash UniversityClayton, VIC, Australia
| | - Timothy J. M. Moss
- The Ritchie Centre, Monash Institute of Medical Research, Monash UniversityClayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash UniversityClayton, VIC, Australia
| |
Collapse
|
48
|
Neonatal antibody responses are attenuated by interferon-γ produced by NK and T cells during RSV infection. Proc Natl Acad Sci U S A 2013; 110:5576-81. [PMID: 23509276 DOI: 10.1073/pnas.1214247110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) infects most children in the first year of life and is a major single cause of hospitalization in infants and young children. There is no effective vaccine, and antibody generated by primary neonatal infection is poorly protective against reinfection even with antigenically homologous viral strains. Studying the immunological basis of these observations in neonatal mice, we found that antibody responses to infection were low and unaffected by CD4 depletion, in contrast with adult mice, which had stronger CD4-dependent antibody responses. Natural killer cell depletion or codepletion of CD4(+) and CD8(+) cells during neonatal RSV infection caused a striking increase in anti-RSV antibody titer. These cells are major sources of the cytokine IFN-γ, and blocking IFN-γ also enhanced RSV-specific antibody responses in neonates. In addition, infection with a recombinant RSV engineered to produce IFN-γ reduced antibody titer, confirming that IFN-γ plays a pivotal role in inhibition of antibody responses after neonatal infection. These unexpected findings show that the induction of a strong cellular immune response may limit antibody responses in early life and that vaccines that induce IFN-γ-secreting cells might, in some situations, be less protective than those that do not.
Collapse
|
49
|
Maturing of the fetal and neonatal immune system. Clin Immunol 2013. [DOI: 10.1016/b978-0-7234-3691-1.00050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
TACI mutations and impaired B-cell function in subjects with CVID and healthy heterozygotes. J Allergy Clin Immunol 2012; 131:468-76. [PMID: 23237420 DOI: 10.1016/j.jaci.2012.10.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mutations in the gene coding for the transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI) are found in 8% to 10% of subjects with common variable immunodeficiency (CVID). Although heterozygous mutations may coincide with immunodeficiency in a few families, most mutation-bearing relatives are not hypogammaglobulinemic. Thus, the role of TACI mutations in producing the immune defect remains unclear. OBJECTIVE This study examined the expression and function of TACI mutations in healthy heterozygous relatives. METHODS We examined the surface and intracellular expression of TACI protein in EBV-transformed B cells of patients and relatives with mutations in 7 families, binding of a proliferation-inducing ligand, and secretion of IgG and IgA by ligand-activated B cells. We tested whether Toll-like receptor 9 agonists increased TACI expression and whether an agonistic anti-TACI antibody could induce activation-induced cytidine deaminase mRNA in those with mutations. RESULTS Intracellular and extracellular TACI expression was defective for B cells of all subjects with mutations, including subjects with CVID and relatives. Although Toll-like receptor 9 triggering normally up-regulates B-cell TACI expression, this was defective for all subjects with mutations. Triggering TACI by an agonistic antibody showed loss of activation-induced cytidine deaminase mRNA induction in all mutation-bearing B cells. However, ligand-induced IgG and IgA production was normal for healthy relatives but not for subjects with CVID. CONCLUSION Thus, B cells of relatives of subjects with CVID who have mutations in TACI but normal immune globulin levels still have detectable in vitro B-cell defects.
Collapse
|