1
|
Kleinbongard P, Senyo SE, Lindsey ML, Garvin AM, Simpson JA, de Castro Braz LE. Cardiac fibroblasts: answering the call. Am J Physiol Heart Circ Physiol 2024; 327:H681-H686. [PMID: 39093000 PMCID: PMC11442096 DOI: 10.1152/ajpheart.00478.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Cardiac fibroblasts play a pivotal role in maintaining heart homeostasis by depositing extracellular matrix (ECM) to provide structural support for the myocardium, vasculature, and neuronal network and by contributing to essential physiological processes. In response to injury such as myocardial infarction or pressure overload, fibroblasts become activated, leading to increased ECM production that can ultimately drive left ventricular remodeling and progress to heart failure. Recently, the American Journal of Physiology-Heart and Circulatory Physiology issued a call for papers on cardiac fibroblasts that yielded articles with topics spanning fibroblast physiology, technical considerations, signaling pathways, and interactions with other cell types. This mini-review summarizes those articles and places the new findings in the context of what is currently known for cardiac fibroblasts and what future directions remain.
Collapse
Affiliation(s)
- Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Essen, Germany
| | - Samuel E Senyo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States
| | - Merry L Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
- Veterans Affairs Medical Center, Nashville, Tennessee, United States
| | - Alexandra M Garvin
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- IMPART Investigator Team Canada, Guelph, Ontario, Canada
| | - Lisandra E de Castro Braz
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| |
Collapse
|
2
|
Deng T, Lu W, Zhao X, Wang H, Zheng Y, Zheng A, Shen Z. Chondroitin sulfate/silk fibroin hydrogel incorporating graphene oxide quantum dots with photothermal-effect promotes type H vessel-related wound healing. Carbohydr Polym 2024; 334:121972. [PMID: 38553198 DOI: 10.1016/j.carbpol.2024.121972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 04/02/2024]
Abstract
Chronic wounds with bacterial infection present formidable clinical challenges. In this study, a versatile hydrogel dressing with antibacterial and angiogenic activity composite of silk fibroin (SF), chondroitin sulfate (CS), and graphene oxide quantum dots (GOQDs) is fabricated. GOQDs@SF/CS (GSC) hydrogel is rapidly formed through the enzyme catalytic action of horseradish peroxidase. With the incorporation of GOQDs both gelation speed and mechanical properties have been enhanced, and the photothermal characteristics of GOQDs in GSC hydrogel enabled bacterial killing through photothermal treatment (PTT) at ∼51 °C. In vitro studies show that the GSC hydrogels demonstrate excellent antibacterial performance and induce type H vessel differentiation of endothelial cells via the activated ERK1/2 signaling pathway and upregulated SLIT3 expression. In vivo results show that the hydrogel significantly promotes type H vessels formation, which is related to the collagen deposition, epithelialization and, ultimately, accelerates the regeneration of infected skin defects. Collectively, this multifunctional GSC hydrogel, with dual action of antibacterial efficacy and angiogenesis promotion, emerges as an innovative skin dressing with the potential for advancing in infected wound healing.
Collapse
Affiliation(s)
- Tanjun Deng
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wenli Lu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaoxian Zhao
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Haoyu Wang
- Dermatology Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yumeng Zheng
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ao Zheng
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China.
| | - Zhengyu Shen
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
3
|
Perera CJ, Hosen SZ, Khan T, Fang H, Mekapogu AR, Xu Z, Falasca M, Chari ST, Wilson JS, Pirola R, Greening DW, Apte MV. Proteomic profiling of small extracellular vesicles derived from mouse pancreatic cancer and stellate cells: Role in pancreatic cancer. Proteomics 2024; 24:e2300067. [PMID: 38570832 DOI: 10.1002/pmic.202300067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/17/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Small extracellular vesicles (sEVs) are cell-derived vesicles evolving as important elements involved in all stages of cancers. sEVs bear unique protein signatures that may serve as biomarkers. Pancreatic cancer (PC) records a very poor survival rate owing to its late diagnosis and several cancer cell-derived proteins have been reported as candidate biomarkers. However, given the pivotal role played by stellate cells (PSCs, which produce the collagenous stroma in PC), it is essential to also assess PSC-sEV cargo in biomarker discovery. Thus, this study aimed to isolate and characterise sEVs from mouse PC cells and PSCs cultured alone or as co-cultures and performed proteomic profiling and pathway analysis. Proteomics confirmed the enrichment of specific markers in the sEVs compared to their cells of origin as well as the proteins that are known to express in each of the culture types. Most importantly, for the first time it was revealed that PSC-sEVs are enriched in proteins (including G6PI, PGAM1, ENO1, ENO3, and LDHA) that mediate pathways related to development of diabetes, such as glucose metabolism and gluconeogenesis revealing a potential role of PSCs in pancreatic cancer-related diabetes (PCRD). PCRD is now considered a harbinger of PC and further research will enable to identify the role of these components in PCRD and may develop as novel candidate biomarkers of PC.
Collapse
Affiliation(s)
- Chamini J Perera
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Sm Zahid Hosen
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Tanzila Khan
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Haoyun Fang
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiovascular Research, Translation and Implementation, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Alpha Raj Mekapogu
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Suresh T Chari
- Department of Gastroenterology, Hepatology and Nutrition, M. D Anderson Cancer Centre, University of Texas, Houston, Texas, USA
| | - Jeremy S Wilson
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Ron Pirola
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - David W Greening
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiovascular Research, Translation and Implementation, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| |
Collapse
|
4
|
Dritsoula A, Camilli C, Moss SE, Greenwood J. The disruptive role of LRG1 on the vasculature and perivascular microenvironment. Front Cardiovasc Med 2024; 11:1386177. [PMID: 38745756 PMCID: PMC11091338 DOI: 10.3389/fcvm.2024.1386177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
The establishment of new blood vessels, and their subsequent stabilization, is a critical process that facilitates tissue growth and organ development. Once established, vessels need to diversify to meet the specific needs of the local tissue and to maintain homeostasis. These processes are tightly regulated and fundamental to normal vessel and tissue function. The mechanisms that orchestrate angiogenesis and vessel maturation have been widely studied, with signaling crosstalk between endothelium and perivascular cells being identified as an essential component. In disease, however, new vessels develop abnormally, and existing vessels lose their specialization and function, which invariably contributes to disease progression. Despite considerable research into the vasculopathic mechanisms in disease, our knowledge remains incomplete. Accordingly, the identification of angiocrine and angiopathic molecules secreted by cells within the vascular microenvironment, and their effect on vessel behaviour, remains a major research objective. Over the last decade the secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1), has emerged as a significant vasculopathic molecule, stimulating defective angiogenesis, and destabilizing the existing vasculature mainly, but not uniquely, by altering both canonical and non-canonical TGF-β signaling in a highly cell and context dependent manner. Whilst LRG1 does not possess any overt homeostatic role in vessel development and maintenance, growing evidence provides a compelling case for LRG1 playing a pleiotropic role in disrupting the vasculature in many disease settings. Thus, LRG1 has now been reported to damage vessels in various disorders including cancer, diabetes, chronic kidney disease, ocular disease, and lung disease and the signaling processes that drive this dysfunction are being defined. Moreover, therapeutic targeting of LRG1 has been widely proposed to re-establish a quiescent endothelium and normalized vasculature. In this review, we consider the current status of our understanding of the role of LRG1 in vascular pathology, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Athina Dritsoula
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
5
|
Daponte V, Henke K, Drissi H. Current perspectives on the multiple roles of osteoclasts: Mechanisms of osteoclast-osteoblast communication and potential clinical implications. eLife 2024; 13:e95083. [PMID: 38591777 PMCID: PMC11003748 DOI: 10.7554/elife.95083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
Bone remodeling is a complex process involving the coordinated actions of osteoblasts and osteoclasts to maintain bone homeostasis. While the influence of osteoblasts on osteoclast differentiation is well established, the reciprocal regulation of osteoblasts by osteoclasts has long remained enigmatic. In the past few years, a fascinating new role for osteoclasts has been unveiled in promoting bone formation and facilitating osteoblast migration to the remodeling sites through a number of different mechanisms, including the release of factors from the bone matrix following bone resorption and direct cell-cell interactions. Additionally, considerable evidence has shown that osteoclasts can secrete coupling factors known as clastokines, emphasizing the crucial role of these cells in maintaining bone homeostasis. Due to their osteoprotective function, clastokines hold great promise as potential therapeutic targets for bone diseases. However, despite long-standing work to uncover new clastokines and their effect in vivo, more substantial efforts are still required to decipher the mechanisms and pathways behind their activity in order to translate them into therapies. This comprehensive review provides insights into our evolving understanding of the osteoclast function, highlights the significance of clastokines in bone remodeling, and explores their potential as treatments for bone diseases suggesting future directions for the field.
Collapse
Affiliation(s)
- Valentina Daponte
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
- VA Medical CenterAtlantaUnited States
| | - Katrin Henke
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
- VA Medical CenterAtlantaUnited States
| |
Collapse
|
6
|
Liao P, Chen L, Zhou H, Mei J, Chen Z, Wang B, Feng JQ, Li G, Tong S, Zhou J, Zhu S, Qian Y, Zong Y, Zou W, Li H, Zhang W, Yao M, Ma Y, Ding P, Pang Y, Gao C, Mei J, Zhang S, Zhang C, Liu D, Zheng M, Gao J. Osteocyte mitochondria regulate angiogenesis of transcortical vessels. Nat Commun 2024; 15:2529. [PMID: 38514612 PMCID: PMC10957947 DOI: 10.1038/s41467-024-46095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
Transcortical vessels (TCVs) provide effective communication between bone marrow vascular system and external circulation. Although osteocytes are in close contact with them, it is not clear whether osteocytes regulate the homeostasis of TCVs. Here, we show that osteocytes maintain the normal network of TCVs by transferring mitochondria to the endothelial cells of TCV. Partial ablation of osteocytes causes TCV regression. Inhibition of mitochondrial transfer by conditional knockout of Rhot1 in osteocytes also leads to regression of the TCV network. By contrast, acquisition of osteocyte mitochondria by endothelial cells efficiently restores endothelial dysfunction. Administration of osteocyte mitochondria resultes in acceleration of the angiogenesis and healing of the cortical bone defect. Our results provide new insights into osteocyte-TCV interactions and inspire the potential application of mitochondrial therapy for bone-related diseases.
Collapse
Affiliation(s)
- Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Long Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hao Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jiong Mei
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziming Chen
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Bingqi Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jerry Q Feng
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Guangyi Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sihan Tong
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhou
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Zhu
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Qian
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Weiguo Zou
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenkan Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Yao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Ding
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialun Mei
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Senyao Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia.
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Zhang X, Tian B, Cong X, Ning Z. SLIT3 promotes cardiac fibrosis and differentiation of cardiac fibroblasts by RhoA/ROCK1 signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:832-840. [PMID: 38800023 PMCID: PMC11127076 DOI: 10.22038/ijbms.2024.73812.16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/08/2023] [Indexed: 05/29/2024]
Abstract
Objectives Slit guidance ligand 3 (SLIT3) has been identified as a potential therapeutic regulator against fibroblast activity and fibrillary collagen production in an autocrine manner. However, this research aims to investigate the potential role of SLIT3 in cardiac fibrosis and fibroblast differentiation and its underlying mechanism. Materials and Methods C57BL/6 mice (male, 8-10 weeks, n=47) were subcutaneously infused with Ang II (2.0 mg/kg/day) for 4 weeks. One to two-day-old Sprague-Dawley (SD) rats were anesthetized by intraperitoneal injection of 1% pentobarbital sodium (60 mg/kg) and ketamine (50 mg/kg) and the cardiac fibroblast was isolated aseptically. The mRNA and protein expression were analyzed using RT-qPCR and Western blotting. Results The SLIT3 expression level was increased in Ang II-induced mice models and cardiac fibroblasts. SLIT3 significantly increased migrated cells and α-smooth muscle actin (α-SMA) expression in cardiac fibroblasts. Ang II-induced increases in mRNA expression of collagen I (COL1A1), and collagen III (COL3A1) was attenuated by SLIT3 inhibition. SLIT3 knockdown attenuated the Ang II-induced increase in mRNA expression of ACTA2 (α-SMA), Fibronectin, and CTGF. SLIT3 suppression potentially reduced DHE expression and decreased malondialdehyde (MDA) content, and the superoxide dismutase (SOD) and catalase (CAT) levels were significantly increased in cardiac fibroblasts. Additionally, SLIT3 inhibition markedly decreased RhoA and ROCK1 protein expression, whereas ROCK inhibitor Y-27632 (10 μM) markedly attenuated the migration of cardiac fibroblasts stimulated by Ang II and SLIT3. Conclusion The results speculate that SLIT3 could significantly regulate cardiac fibrosis and fibroblast differentiation via the RhoA/ROCK1 signaling pathway.
Collapse
Affiliation(s)
- Xiaogang Zhang
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Zhoupu Hospital affiliated to Shanghai Medical College of Health), Pudong New District, Shanghai 201318, China
- These authors contributed equally to this work
| | - Bei Tian
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Zhoupu Hospital affiliated to Shanghai Medical College of Health), Pudong New District, Shanghai 201318, China
- These authors contributed equally to this work
| | - Xinpeng Cong
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Zhoupu Hospital affiliated to Shanghai Medical College of Health), Pudong New District, Shanghai 201318, China
| | - Zhongping Ning
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Zhoupu Hospital affiliated to Shanghai Medical College of Health), Pudong New District, Shanghai 201318, China
| |
Collapse
|
8
|
Gong L, Si MS. SLIT3-mediated fibroblast signaling: a promising target for antifibrotic therapies. Am J Physiol Heart Circ Physiol 2023; 325:H1400-H1411. [PMID: 37830982 DOI: 10.1152/ajpheart.00216.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
The SLIT family (SLIT1-3) of highly conserved glycoproteins was originally identified as ligands for the Roundabout (ROBO) family of single-pass transmembrane receptors, serving to provide repulsive axon guidance cues in the nervous system. Intriguingly, studies involving SLIT3 mutant mice suggest that SLIT3 might have crucial biological functions outside the neural context. Although these mutant mice display no noticeable neurological abnormalities, they present pronounced connective tissue defects, including congenital central diaphragmatic hernia, membranous ventricular septal defect, and osteopenia. We recently hypothesized that the phenotype observed in SLIT3-deficient mice may be tied to abnormalities in fibrillar collagen-rich connective tissue. Further research by our group indicates that both SLIT3 and its primary receptor, ROBO1, are expressed in fibrillar collagen-producing cells across various nonneural tissues. Global and constitutive SLIT3 deficiency not only reduces the synthesis and content of fibrillar collagen in various organs but also alleviates pressure overload-induced fibrosis in both the left and right ventricles. This review delves into the known phenotypes of SLIT3 mutants and the debated role of SLIT3 in vasculature and bone. Present evidence hints at SLIT3 acting as an autocrine regulator of fibrillar collagen synthesis, suggesting it as a potential antifibrotic treatment. However, the precise pathway and mechanisms through which SLIT3 regulates fibrillar collagen synthesis remain uncertain, presenting an intriguing avenue for future research.
Collapse
Affiliation(s)
- Lianghui Gong
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Ming-Sing Si
- Division of Cardiac Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| |
Collapse
|
9
|
Yuan M, Yao L, Chen P, Wang Z, Liu P, Xiong Z, Hu X, Li L, Jiang Y. Human umbilical cord mesenchymal stem cells inhibit liver fibrosis via the microRNA-148a-5p/SLIT3 axis. Int Immunopharmacol 2023; 125:111134. [PMID: 37918086 DOI: 10.1016/j.intimp.2023.111134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have garnered considerable attention as prospective modalities of treatment for liver fibrosis (LF). The inhibition of hepatic stellate cell (HSC) activation underlies the anti-fibrotic effects of hUC-MSCs. However, the precise mechanism by which hUC-MSCs impede HSC activation remains unclarified. We aimed to elucidate the intrinsic mechanisms underlying the therapeutic effects of hUC-MSCs in LF patients. METHODS Mice with liver cirrhosis induced by carbon tetrachloride (CCl4) were used as experimental models and administered hUC-MSCs via tail-vein injection. The alterations in inflammation and fibrosis were evaluated through histopathological examinations. RNA sequencing (RNA-seq) and bioinformatics analysis were then conducted to investigate the therapeutic mechanism of hUC-MSCs. Finally, an in-vitro experiment involving the co-cultivation of hUC-MSCs or hUC-MSC-derived exosomes (MSC-Exos) with LX2 cells was performed to validate the potential mechanism underlying the hepatoprotective effects of hUC-MSCs in LF patients. RESULTS hUC-MSC therapy significantly improved liver function and alleviated LF in CCl4-induced mice. High-throughput RNA-Seq analysis identified 1142 differentially expressed genes that were potentially involved in mediating the therapeutic effects of hUC-MSCs. These genes play an important role in regulating the extracellular matrix. miRNA expression data (GSE151098) indicated that the miR-148a-5p level was downregulated in LF samples, but restored following hUC-MSC treatment. miR-148a-5p was delivered to LX2 cells by hUC-MSCs via the exosome pathway, and the upregulated expression of miR-148a-5p significantly suppressed the expression of the activated phenotype of LX2 cells. SLIT3 was identified within the pool of potential target genes regulated by miR-148a-5p. Furthermore, hUC-MSC administration upregulated the expression of miR-148a-5p, which played a crucial role in suppressing the expression of SLIT3, thereby palliating fibrosis. CONCLUSIONS hUC-MSCs inhibit the activation of HSCs through the miR-148a-5p/SLIT3 pathway and are thus capable of alleviating LF.
Collapse
Affiliation(s)
- Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ping Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zheng Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Pingji Liu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhiyu Xiong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310053, China.
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
10
|
Yue L, Lu Z, Guo T, Liu J, Yuan C, Yang B. Association of SLIT3 and ZNF280B Gene Polymorphisms with Wool Fiber Diameter. Animals (Basel) 2023; 13:3552. [PMID: 38003169 PMCID: PMC10668676 DOI: 10.3390/ani13223552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The SLIT3 gene encodes a secreted protein, and the ZNF280B gene is a member of the transcription factor family. Both genes have multiple biological functions. This study was conducted to investigate the association between SLIT3 and ZNF280B gene polymorphisms and wool fiber diameter and to determine potential molecular marker sites for breeding sheep with fine wool. We used Kompetitive Allele-Specific PCR to type the single nucleotide polymorphism (SNP) loci in the SLIT3 and ZNF280B genes within 1081 Alpine Merino sheep and associated these SNPs with wool fiber diameter. The results revealed one SNP in SLIT3 and ZNF280B, which were each related to sheep fiber diameter. The wool fiber diameters of sheep with the CC genotype in SLIT3 g.478807C>G and AA genotype in ZNF280B g.677G>A were the smallest and differed significantly from the diameters of other genotypes (p < 0.05). These results suggest potential molecular marker sites for fine-wool sheep breeding.
Collapse
Affiliation(s)
- Lin Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.Y.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.Y.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.Y.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.Y.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.Y.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.Y.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| |
Collapse
|
11
|
Gannoun L, De Schrevel C, Belle M, Dauguet N, Achouri Y, Loriot A, Vanderaa C, Cordi S, Dili A, Heremans Y, Rooman I, Leclercq IA, Jacquemin P, Gatto L, Lemaigre FP. Axon guidance genes control hepatic artery development. Development 2023; 150:dev201642. [PMID: 37497580 DOI: 10.1242/dev.201642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Earlier data on liver development demonstrated that morphogenesis of the bile duct, portal mesenchyme and hepatic artery is interdependent, yet how this interdependency is orchestrated remains unknown. Here, using 2D and 3D imaging, we first describe how portal mesenchymal cells become organised to form hepatic arteries. Next, we examined intercellular signalling active during portal area development and found that axon guidance genes are dynamically expressed in developing bile ducts and portal mesenchyme. Using tissue-specific gene inactivation in mice, we show that the repulsive guidance molecule BMP co-receptor A (RGMA)/neogenin (NEO1) receptor/ligand pair is dispensable for portal area development, but that deficient roundabout 2 (ROBO2)/SLIT2 signalling in the portal mesenchyme causes reduced maturation of the vascular smooth muscle cells that form the tunica media of the hepatic artery. This arterial anomaly does not impact liver function in homeostatic conditions, but is associated with significant tissular damage following partial hepatectomy. In conclusion, our work identifies new players in development of the liver vasculature in health and liver regeneration.
Collapse
Affiliation(s)
- Lila Gannoun
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Catalina De Schrevel
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Morgane Belle
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Department of Development, Rue Moreau 17, Paris 75012, France
| | - Nicolas Dauguet
- Flow cytometry CYTF platform, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Younes Achouri
- Transgene Technology Platform TRSG, Université Catholique de Louvain, Brussels, Avenue Hippocrate 75, Belgium 1200
| | - Axelle Loriot
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Christophe Vanderaa
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Sabine Cordi
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Alexandra Dili
- HPB Surgery Unit, Centre Hospitalier Universitaire UCL Namur, Site Mont-Godinne, Avenue du Dr. Thérasse 1, Yvoir 5530, Belgium
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Avenue Mounier 53, Brussels 1200, Belgium
| | - Yves Heremans
- Visual & Spatial Tissue Analysis (VSTA) core facility, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium
| | - Ilse Rooman
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Avenue Mounier 53, Brussels 1200, Belgium
| | - Patrick Jacquemin
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Laurent Gatto
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Frédéric P Lemaigre
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| |
Collapse
|
12
|
Feng L, Shu HP, Sun LL, Tu YC, Liao QQ, Yao LJ. Role of the SLIT-ROBO signaling pathway in renal pathophysiology and various renal diseases. Front Physiol 2023; 14:1226341. [PMID: 37497439 PMCID: PMC10366692 DOI: 10.3389/fphys.2023.1226341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
SLIT ligand and its receptor ROBO were initially recognized for their role in axon guidance in central nervous system development. In recent years, as research has advanced, the role of the SLIT-ROBO signaling pathway has gradually expanded from axonal repulsion to cell migration, tumor development, angiogenesis, and bone metabolism. As a secreted protein, SLIT regulates various pathophysiological processes in the kidney, such as proinflammatory responses and fibrosis progression. Many studies have shown that SLIT-ROBO is extensively involved in various aspects of kidney development and maintenance of structure and function. The SLIT-ROBO signaling pathway also plays an important role in different types of kidney disease. This article reviews the advances in the study of the SLIT-ROBO pathway in various renal pathophysiological and kidney disorders and proposes new directions for further research in this field.
Collapse
|
13
|
Zhu Q, Zhao X, Zhang D, Xia W, Zhang J. Abnormal expression of SLIT3 induces intravillous vascularization dysplasia in ectopic pregnancy. PeerJ 2023; 11:e14850. [PMID: 36793891 PMCID: PMC9924138 DOI: 10.7717/peerj.14850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/12/2023] [Indexed: 02/12/2023] Open
Abstract
Objective To investigate whether the morphology, capillary number, and transcriptome expression profiles of ectopic pregnancy (EP) villi differ from those of normal pregnancy (NP) villi. Methods Hematoxylin-eosin (HE) and immunohistochemistry (IHC) staining for CD31 were conducted to compare differences in morphology and capillary number between EP and NP villi. Differentially expressed (DE) miRNAs and mRNAs were determined from transcriptome sequencing of both types of villi and used to construct a miRNA-mRNA network, from which hub genes were identified. Candidate DE-miRNAs and DE-mRNAs were validated by quantitative reverse transcription (qRT)-PCR. Correlations were identified between the number of capillaries and serum beta human chorionic gonadotropin (β-HCG) levels and between the expression levels of hub genes associated with angiogenesis and β-HCG levels. Results The mean and total cross-sectional areas of placental villi were significantly increased in EP compared with NP villi. Capillary density was greatly reduced in EP villi and was positively correlated with β-HCG levels. A total of 49 DE-miRNAs and 625 DE-mRNAs were identified from the sequencing data. An integrated analysis established a miRNA-mRNA network containing 32 DE-miRNAs and 103 DE-mRNAs. Based on the validation of hub mRNAs and miRNAs in the network, a regulatory pathway involving miR-491-5p-SLIT3 was discovered, which may have a role in the development of villous capillaries. Conclusion Villus morphology, capillary number, and miRNA/mRNA expression profiles in villous tissues were aberrant in EP placentas. Specifically, SLIT3, which is regulated by miR-491-5p, may contribute to the regulation of villous angiogenesis and was established as a putative predictor of chorionic villus development, providing a basis for future research.
Collapse
Affiliation(s)
- Qian Zhu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Xiaoya Zhao
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Duo Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Wei Xia
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Jian Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| |
Collapse
|
14
|
Proteins Found in the Triple-Negative Breast Cancer Secretome and Their Therapeutic Potential. Int J Mol Sci 2023; 24:ijms24032100. [PMID: 36768435 PMCID: PMC9916912 DOI: 10.3390/ijms24032100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The cancer secretome comprises factors secreted by tumors, including cytokines, growth factors, proteins from the extracellular matrix (ECM), proteases and protease inhibitors, membrane and extracellular vesicle proteins, peptide hormones, and metabolic proteins. Secreted proteins provide an avenue for communication with other tumor cells and stromal cells, and these in turn promote tumor growth and progression. Breast cancer is the most commonly diagnosed cancer in women in the US and worldwide. Triple-negative breast cancer (TNBC) is characterized by its aggressiveness and its lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and HER2, making it unable to be treated with therapies targeting these protein markers, and leaving patients to rely on standard chemotherapy. In order to develop more effective therapies against TNBC, researchers are searching for targetable molecules specific to TNBC. Proteins in the TNBC secretome are involved in wide-ranging cancer-promoting processes, including tumor growth, angiogenesis, inflammation, the EMT, drug resistance, invasion, and development of the premetastatic niche. In this review, we catalog the currently known proteins in the secretome of TNBC tumors and correlate these secreted molecules with potential therapeutic opportunities to facilitate translational research.
Collapse
|
15
|
Gao L, Chen W, Li L, Li J, Kongling W, Zhang Y, Yang X, Zhao Y, Bai J, Wang F. Targeting soluble epoxide hydrolase promotes osteogenic-angiogenic coupling via activating SLIT3/HIF-1α signalling pathway. Cell Prolif 2023:e13403. [PMID: 36636821 DOI: 10.1111/cpr.13403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
Type H vessels have recently been identified to modulate osteogenesis. Epoxyeicostrioleic acids (EETs) have an essential contribution to vascular homeostasis. However, whether increased EETs with soluble epoxide hydrolase (sEH) inhibitor TPPU enhance the coupling of angiogenesis and osteogenesis remains largely unknown. The effects of TPPU on cross-talk between co-cultured human umbilical vein endothelial cells (HUVECs) and human dental pulp stem cells (hDPSCs), and on long bone growth and calvarial defect repair in mice were investigated in vitro and in vivo. TPPU enhanced osteogenic differentiation of co-cultured HUVECs and hDPSCs in vitro and increased type H vessels, and long bone growth and bone repair of calvarial defect. Mechanistically, TPPU promoted cell proliferation and angiogenesis, reclined cell apoptosis, and significantly increased CD31hi EMCNhi endothelial cells (ECs) and SLIT3 and HIF-1α expression levels in co-cultured HUVECs and hDPSCs. Knockdown of Slit3 in hDPSCs or Hif-1α in HUVECs impaired the formation of CD31hi EMCNhi ECs and reversed TPPU-induced osteogenesis. We defined a previously unidentified effect of TPPU coupling angiogenesis and osteogenesis. TPPU induced type H vessels by upregulating the expression of hDPSCs-derived SLIT3, which resulted in the activation of ROBO1/YAP1/HIF-1α signalling pathway in ECs. Targeting metabolic pathways of EETs represents a new strategy to couple osteogenesis and angiogenesis, sEH is a promising therapeutic target for bone regeneration and repair.
Collapse
Affiliation(s)
- Lu Gao
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China.,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, China
| | - Weixian Chen
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Lijun Li
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Juanjuan Li
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Wenyao Kongling
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Yaoyang Zhang
- School of Stomatology, Dalian Medical University, Dalian, China.,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, China
| | - Xueping Yang
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Yanrong Zhao
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Jie Bai
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Fu Wang
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China.,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, China
| |
Collapse
|
16
|
Morphogenesis of vascular and neuronal networks and the relationships between their remodeling processes. Brain Res Bull 2022; 186:62-69. [DOI: 10.1016/j.brainresbull.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/18/2022] [Accepted: 05/29/2022] [Indexed: 11/21/2022]
|
17
|
Gao J, Xu W, Zeng T, Tian Y, Wu C, Liu S, Zhao Y, Zhou S, Lin X, Cao H, Lu L. Genome-Wide Association Study of Egg-Laying Traits and Egg Quality in LingKun Chickens. Front Vet Sci 2022; 9:877739. [PMID: 35795788 PMCID: PMC9251537 DOI: 10.3389/fvets.2022.877739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Egg production is the most important trait of laying hens. To identify molecular markers and candidate genes associated with egg production and quality, such as body weight at first oviposition (BWF), the number of eggs produced in 500 days (EN500), egg weight (EW), egg shell thickness (EST), egg shell strength (ESS), and Haugh unit (HU), a genome-wide analysis was performed in 266 LingKun Chickens. The results showed that thirty-seven single nucleotide polymorphisms (SNPs) were associated with all traits (p < 9.47 × 10−8, Bonferroni correction). These SNPs were located in close proximity to or within the sequence of the thirteen candidate genes, such as Galanin And GMAP Prepropeptide (GAL), Centromere Protein (CENPF), Glypican 2 (GPC2), Phosphatidylethanolamine N-Methyltransferase (PEMT), Transcription Factor AP-2 Delta (TFAP2D), and Carboxypeptidase Q (CPQ) gene related to egg-laying and Solute Carrier Family 5 Member 7 (SLC5A7), Neurocalcin Delta (NCALD), Proteasome 20S Subunit Beta 2 (PSMB2), Slit Guidance Ligand 3 (SLIT3), and Tubulin Tyrosine Ligase Like 7 (TTLL7) genes related to egg quality. Interestingly, one of the genes involved in bone formation (SLIT3) was identified as a candidate gene for ESS. Our candidate genes and SNPs associated with egg-laying traits were significant for molecular breeding of egg-laying traits and egg quality in LingKun chickens.
Collapse
Affiliation(s)
- Jinfeng Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Chunqin Wu
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Suzhen Liu
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Yan Zhao
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Shuhe Zhou
- Wenzhou Golden Land Agricultural Development Co., Ltd., Wenzhou, China
| | - Xinqin Lin
- Wenzhou Golden Land Agricultural Development Co., Ltd., Wenzhou, China
| | - Hongguo Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Hongguo Cao
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- *Correspondence: Lizhi Lu
| |
Collapse
|
18
|
Xiao W, Pinilla-Baquero A, Faulkner J, Song X, Prabhakar P, Qiu H, Moremen KW, Ludwig A, Dempsey PJ, Azadi P, Wang L. Robo4 is constitutively shed by ADAMs from endothelial cells and the shed Robo4 functions to inhibit Slit3-induced angiogenesis. Sci Rep 2022; 12:4352. [PMID: 35288626 PMCID: PMC8921330 DOI: 10.1038/s41598-022-08227-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/03/2022] [Indexed: 11/19/2022] Open
Abstract
Roundabout 4 (Robo4) is a transmembrane receptor that expresses specifically in endothelial cells. Soluble Robo4 was reported in the human plasma and mouse serum and is inhibitory towards FGF- and VEGF-induced angiogenesis. It remains unknown how soluble Robo4 is generated and if soluble Robo4 regulates additional angiogenic signaling. Here, we report soluble Robo4 is the product of constitutive ectodomain shedding of endothelial cell surface Robo4 by disintegrin metalloproteinases ADAM10 and ADAM17 and acts to inhibit angiogenic Slit3 signaling. Meanwhile, the ligand Slit3 induces cell surface receptor Robo4 endocytosis to shield Robo4 from shedding, showing Slit3 inhibits Robo4 shedding to enhance Robo4 signaling. Our study delineated ADAM10 and ADAM17 are Robo4 sheddases, and ectodomain shedding, including negative regulation by its ligand Slit3, represents a novel control mechanism of Robo4 signaling in angiogenesis.
Collapse
Affiliation(s)
- Wenyuan Xiao
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer's Research Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL33613, USA
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Alejandro Pinilla-Baquero
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer's Research Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL33613, USA
| | - John Faulkner
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer's Research Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL33613, USA
| | - Xuehong Song
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer's Research Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL33613, USA
| | - Pradeep Prabhakar
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Hong Qiu
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Andreas Ludwig
- Institute for Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Peter J Dempsey
- Department of Pediatrics, University of Colorado Medical School, Aurora, CO, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer's Research Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL33613, USA.
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
19
|
Owen-Woods C, Kusumbe A. Fundamentals of bone vasculature: Specialization, interactions and functions. Semin Cell Dev Biol 2022; 123:36-47. [PMID: 34281770 DOI: 10.1016/j.semcdb.2021.06.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Angiogenesis, hematopoiesis and osteogenesis are fundamental processes mediating complex and essential biological functions. In the bone marrow, endothelial cells (ECs) are a principal mediator of regulatory signals that govern hematopoietic and mesenchymal stem cells. EC and osteoblast interactions and niche functions of ECs are fundamental in maintaining bone health and coordinating repair and regeneration following injury. These cellular interactions are subject to dysregulation and deterioration under stress, aging, chronic disease states and malignancy. Thus, the prospect of manipulating the bone vasculature has tremendous potential to advance therapeutic interventions for the management of bone diseases. This review discusses the current state of vascular-skeletal tissue interactions focusing on osteoblast and hematopoietic stem cells interaction with ECs.
Collapse
Affiliation(s)
- Charlotte Owen-Woods
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Anjali Kusumbe
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
20
|
Jiang L, Sun J, Huang D. Role of Slit/Robo Signaling pathway in Bone Metabolism. Int J Biol Sci 2022; 18:1303-1312. [PMID: 35173554 PMCID: PMC8771833 DOI: 10.7150/ijbs.66931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/26/2021] [Indexed: 11/12/2022] Open
Abstract
Slit/Robo signals were initially found to play an essential role in nerve development as axonal guidance molecules. In recent years, with in-depth study, the role of Slit/Robo in other life activities, such as tumor development, angiogenesis, cell migration, and bone homeostasis, has gradually been revealed. Bone is an organ with an active metabolism. Bone resorption and bone formation are closely related through precise spatiotemporal coordination. There is much evidence that slit, as a new bone coupling factor, can regulate bone formation and resorption. For example, Slit3 can promote bone formation and inhibit bone resorption through Robo receptors, which has excellent therapeutic potential in metabolic bone diseases. Although the conclusions of some studies are contradictory, they all affirm the vital role of Slit/Robo signaling in regulating bone metabolism. This paper reviews the research progress of Slit/Robo signaling in bone metabolism, briefly discusses the contradictions in the existing research, and puts forward the research direction of Slit/Robo in the field of bone metabolism in the future.
Collapse
Affiliation(s)
- Lingyu Jiang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianxun Sun
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
马 金, 任 岩, 王 佰, 孙 伟, 岳 德, 王 卫. [Progress of developmental mechanism of subtype H vessels in osteonecrosis of the femoral head]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:1486-1491. [PMID: 34779178 PMCID: PMC8586765 DOI: 10.7507/1002-1892.202103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/05/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To review the research progress of subtype H vessels in the occurrence and development of osteonecrosis of the femoral head (ONFH). METHODS The relevant domestic and foreign literature was extensively reviewed. The histological features, biological mechanism of subtype H vessels involved in promoting of osteogenesis, and the role and application of the subtype H vessels in ONFH were summarized. RESULTS The subtype H vessel is a newly discovered bone vessel, mainly distributed in metaphysis and subperiosteum, highly expressing endomucin and CD31. The subtype H vessel has a dense arrangement of Runx2 + early osteoprogenitors, collagen type Ⅰα + osteoblast cells, and Osterix + osteoprogenitors that have the ability to induce osteogenesis and angiogenesis. Factors such as platelet-derived growth factor BB, slit guidance ligand 3, hypoxia inducible factor 1α, Notch signaling pathway, and vascular endothelial growth factor are involved in the mechanism of subtype H vessels in promoting osteogenesis. CONCLUSION Subtype H vessels play an important role in the regulation of angiogenesis and osteogenesis during bone tissue repair and reconstruction. The discovery of subtype H vessels provides new insights into the molecular and cellular mechanisms of osteogenesis and angiogenesis coupling. In the future, new techniques targeting the regulation of subtype H blood vessels may become a promising method for the treatment of ONFH.
Collapse
Affiliation(s)
- 金辉 马
- 中日友好医院骨科(北京 100029)Department of Orthopedic Surgery, China-Japan Friendship Hospital, Beijing, 100029, P.R.China
| | - 岩松 任
- 中日友好医院骨科(北京 100029)Department of Orthopedic Surgery, China-Japan Friendship Hospital, Beijing, 100029, P.R.China
| | - 佰亮 王
- 中日友好医院骨科(北京 100029)Department of Orthopedic Surgery, China-Japan Friendship Hospital, Beijing, 100029, P.R.China
| | - 伟 孙
- 中日友好医院骨科(北京 100029)Department of Orthopedic Surgery, China-Japan Friendship Hospital, Beijing, 100029, P.R.China
| | - 德波 岳
- 中日友好医院骨科(北京 100029)Department of Orthopedic Surgery, China-Japan Friendship Hospital, Beijing, 100029, P.R.China
| | - 卫国 王
- 中日友好医院骨科(北京 100029)Department of Orthopedic Surgery, China-Japan Friendship Hospital, Beijing, 100029, P.R.China
| |
Collapse
|
22
|
Shirakura K, Okada Y. Vascular Leakage Prevention by Roundabout 4 under Pathological Conditions. Biol Pharm Bull 2021; 44:1365-1370. [PMID: 34602544 DOI: 10.1248/bpb.b21-00413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular permeability is regulated mainly by the endothelial barrier and controls vascular homeostasis, proper vessel development, and immune cell trafficking. Several molecules are involved in regulating endothelial barrier function. Roundabout 4 (Robo4) is a single-pass transmembrane protein that is specifically expressed in vascular endothelial cells. Robo4 is an important regulator of vascular leakage and angiogenesis, especially under pathological conditions. The role of Robo4 in preventing vascular leakage has been studied in various disease models, including animal models of retinopathy, tumors, diabetes, and endotoxemia. The involvement of Robo4 in vascular endothelial growth factor and inflammation-mediated signaling pathways has been well studied, and recent evidence suggests that Robo4 modulates endothelial barrier function via distinct mechanisms. In this review, we discuss the role of Robo4 in endothelial barrier function and the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
23
|
Liang L, Huang Q, Gan M, Jiang L, Yan H, Lin Z, Zhu H, Wang R, Hu K. High SEC61G expression predicts poor prognosis in patients with Head and Neck Squamous Cell Carcinomas. J Cancer 2021; 12:3887-3899. [PMID: 34093796 PMCID: PMC8176234 DOI: 10.7150/jca.51467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/23/2021] [Indexed: 01/11/2023] Open
Abstract
Background: Overexpression of the membrane protein SEC61 translocon gamma subunit (SEC61G) has been observed in a variety of cancers; however, its role in head and neck squamous cell carcinomas (HNSCC) is unknown. This study aimed to elucidate the relationship between SEC61G and HNSCC based on data from The Cancer Genome Atlas (TCGA) database. Methods: Data for HNSCC patients were collected from TCGA and the expression level of SEC61G was compared between paired HNSCC and normal tissues using the Wilcoxon rank-sum test. The relationship between clinicopathologic features and SEC61G expression was also analyzed using the Wilcoxon rank-sum test and logistic regression. Receiver operating characteristic (ROC) curves were generated to evaluate the value of SEC61G as a binary classifier using the area under the curve (AUC value). The association of clinicopathologic characteristics with prognosis in HNSCC patients was assessed using Cox regression and the Kaplan-Meier methods. A nomogram, based on Cox multivariate analysis, was used to predict the impact of SEC61G on prognosis. Functional enrichment analysis was performed to determine the hallmark pathways associated with differentially expressed genes in HNSCC patients exhibiting high and low SEC61G expression. Results: The expression of SEC61G was significantly elevated in HNSCC tissues compared to normal tissues (P < 0.001). The high expression of SEC61G was significantly correlated with the T stage, M stage, clinical stage, TP53 mutation status, PIK3CA mutation status, primary therapy outcome, and cervical lymph node dissection (all P < 0.05). Meanwhile, ROC curves suggested the significant diagnostic ability of SEC61G for HNSCC (AUC = 0.923). Kaplan-Meier survival analysis showed that patients with HNSCC characterized by high SEC61G expression had a poorer prognosis than patients with low SEC61G expression (hazard ratio = 1.95, 95% confidence interval 1.48-2.56, P < 0.001). Univariate and multivariate analyses revealed that SEC61G was independently associated with overall survival (P = 0.027). Functional annotations indicated that SEC61G is involved in pathways related to translation and regulation of SLITs/ROBOs expression, SRP-dependent co-translational protein targeting to the membrane, nonsense-mediated decay, oxidative phosphorylation, and Parkinson's disease. Conclusion: SEC61G plays a vital role in HNSCC progression and prognosis; it may, therefore, serve as an effective biomarker for the prediction of patient survival.
Collapse
Affiliation(s)
- Leifeng Liang
- Department of Oncology, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, Guangxi, China
| | - Qingwen Huang
- Department of Pathology, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, Guangxi, China
| | - Mei Gan
- Department of Oncology, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, Guangxi, China
| | - Liujun Jiang
- Department of Oncology, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, Guangxi, China
| | - Haolin Yan
- Department of Oncology, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, Guangxi, China
| | - Zhan Lin
- Department of Oncology, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, Guangxi, China
| | - Haisheng Zhu
- Department of Oncology, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, Guangxi, China
| | - Rensheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kai Hu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
24
|
Kaya TB, Aydemir O, Ceylaner S, Ceylaner G, Tekin AN. Isolated congenital diaphragm hernia associated with homozygous SLIT3 gene variant in dizygous twins. Eur J Med Genet 2021; 64:104215. [PMID: 33933663 DOI: 10.1016/j.ejmg.2021.104215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 03/22/2021] [Accepted: 04/04/2021] [Indexed: 11/16/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a serious life-threatening birth defect characterized by abnormal development in the muscular or tendinous portion of the diaphragm during embryogenesis. Despite its high incidence, the etiology of CDH hasn't been fully understood. Genetic factors are important in pathogenesis; however, few single genes have been definitively implicated in human CDH. SLIT1, SLIT2, and SLIT3 (slit guidance ligand) are three human homologs of the drosophila Slit gene. They interact with roundabout (Robo) homolog receptors to affect cell migration, adhesion, cell motility, and angiogenesis and play important roles in cell signaling pathways including the guidance of axons. In this report, we presented dizygous twin babies with CDH related to the SLIT3 gene variant. Previous studies showed that Slit3 null mice had congenital diaphragmatic hernias on or near the ventral midline portion of the central tendon. This is the first report of homozygous SLIT3 variant associated with CDH in humans.
Collapse
Affiliation(s)
- Tugba Barsan Kaya
- Eskişehir Osmangazi University Faculty of Medicine, Department of Neonatology, Eskişehir, Turkey.
| | - Ozge Aydemir
- Eskişehir Osmangazi University Faculty of Medicine, Department of Neonatology, Eskişehir, Turkey
| | | | | | - Ayse Neslihan Tekin
- Eskişehir Osmangazi University Faculty of Medicine, Department of Neonatology, Eskişehir, Turkey
| |
Collapse
|
25
|
Marulanda K, Brokaw D, Gambarian M, Pareta R, McQuilling JP, Opara EC, McLean SE. Controlled Delivery of Slit3 Proteins from Alginate Microbeads Inhibits In Vitro Angiogenesis. J Surg Res 2021; 264:90-98. [PMID: 33794389 DOI: 10.1016/j.jss.2021.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/15/2020] [Accepted: 01/25/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The Slit-Robo pathway is a key regulator of angiogenesis and cellular function in experimental models. Slit3 proteins exhibit both proangiogenic and antiangiogenic properties, but the exact mechanism remains unclear. It is theorized that Slit3 may be a potential treatment for vascular diseases and cancer. METHODS Slit3 labeled with I-125 was encapsulated in microbeads composed of low-viscosity alginate of high-glucuronic acid content, first coated with poly-L-ornithine for various durations and finally with low-viscosity high mannuronic acid. Gamma counter was used to measure microbead encapsulation efficiency and Slit3 release. Markers of angiogenesis were assessed with Boyden chamber, scratch wound, and Matrigel tube formation assays using human umbilical vein and mouse endothelial cells. RESULTS On incubation of Slit3-loaded microbeads, there was an initial burst phase release of Slit3 for the first 24 h followed by sustained release for 6 to 12 d. Microbead composition determined encapsulation efficiency and rate of release; Slit3 encapsulation was most efficient in microbeads with lower low-viscosity alginate of high-glucuronic acid content concentrations (1.5%) and no poly-L-ornithine coating. Compared with controls (media alone), Slit3 microbeads significantly inhibited in vitro cellular migration, endothelial cell migration for wound closure at 24 and 48 h and endothelial tube formation (P < 0.001, respectively). CONCLUSIONS Slit3 can be effectively encapsulated and delivered via a controlled release pattern using alginate microbeads. Microbead encapsulation reduces in vitro endothelial tube formation and inhibits cellular migration to impair angiogenesis. Thus, Slit3 microparticles may be explored as a therapeutic option to mitigate tumor proliferation.
Collapse
Affiliation(s)
- Kathleen Marulanda
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina
| | - Dylan Brokaw
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina
| | - Maria Gambarian
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina
| | - Rajesh Pareta
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - John P McQuilling
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Sean E McLean
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
26
|
Morphogenesis of the Islets of Langerhans Is Guided by Extraendocrine Slit2 and Slit3 Signals. Mol Cell Biol 2021; 41:e0045120. [PMID: 33318057 PMCID: PMC8088276 DOI: 10.1128/mcb.00451-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The spatial architecture of the islets of Langerhans is vitally important for their correct function, and alterations in islet morphogenesis often result in diabetes mellitus. We have previously reported that Roundabout (Robo) receptors are required for proper islet morphogenesis. As part of the Slit-Robo signaling pathway, Robo receptors function in conjunction with Slit ligands to mediate axon guidance, cell migration, and cell positioning in development. However, the role of Slit ligands in islet morphogenesis has not yet been determined. Here, we report that Slit ligands are expressed in overlapping and distinct patterns in both endocrine and nonendocrine tissues in late pancreas development. We show that the function of either Slit2 or Slit3, which are predominantly expressed in the pancreatic mesenchyme, is required and sufficient for islet morphogenesis, while Slit1, which is predominantly expressed in the β cells, is dispensable for islet morphogenesis. We further show that Slit functions as a repellent signal to β cells. These data suggest that clustering of endocrine cells during islet morphogenesis is guided, at least in part, by repelling Slit2/3 signals from the pancreatic mesenchyme.
Collapse
|
27
|
Chen J, Hendriks M, Chatzis A, Ramasamy SK, Kusumbe AP. Bone Vasculature and Bone Marrow Vascular Niches in Health and Disease. J Bone Miner Res 2020; 35:2103-2120. [PMID: 32845550 DOI: 10.1002/jbmr.4171] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
Bone vasculature and bone marrow vascular niches supply oxygen, nutrients, and secrete angiocrine factors required for the survival, maintenance, and self-renewal of stem and progenitor cells. In the skeletal system, vasculature creates nurturing niches for bone and blood-forming stem cells. Blood vessels regulate hematopoiesis and drive bone formation during development, repair, and regeneration. Dysfunctional vascular niches induce skeletal aging, bone diseases, and hematological disorders. Recent cellular and molecular characterization of the bone marrow microenvironment has provided unprecedented insights into the complexity, heterogeneity, and functions of the bone vasculature and vascular niches. The bone vasculature is composed of distinct vessel subtypes that differentially regulate osteogenesis, hematopoiesis, and disease conditions in bones. Further, bone marrow vascular niches supporting stem cells are often complex microenvironments involving multiple different cell populations and vessel subtypes. This review provides an overview of the emerging vascular cell heterogeneity in bone and the new roles of the bone vasculature and associated vascular niches in health and disease. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Junyu Chen
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Michelle Hendriks
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Alexandros Chatzis
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Saravana K Ramasamy
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Wang S, Huang S, Johnson S, Rosin V, Lee J, Colomb E, Witt R, Jaworski A, Weiss SJ, Si M. Tissue-specific angiogenic and invasive properties of human neonatal thymus and bone MSCs: Role of SLIT3-ROBO1. Stem Cells Transl Med 2020; 9:1102-1113. [PMID: 32470195 PMCID: PMC7445019 DOI: 10.1002/sctm.19-0448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/05/2020] [Accepted: 05/03/2020] [Indexed: 12/13/2022] Open
Abstract
Although mesenchymal stem/stromal cells (MSCs) are being explored in numerous clinical trials as proangiogenic and proregenerative agents, the influence of tissue origin on the therapeutic qualities of these cells is poorly understood. Complicating the functional comparison of different types of MSCs are the confounding effects of donor age, genetic background, and health status of the donor. Leveraging a clinical setting where MSCs can be simultaneously isolated from discarded but healthy bone and thymus tissues from the same neonatal patients, thereby controlling for these confounding factors, we performed an in vitro and in vivo paired comparison of these cells. We found that both neonatal thymus (nt)MSCs and neonatal bone (nb)MSCs expressed different pericytic surface marker profiles. Further, ntMSCs were more potent in promoting angiogenesis in vitro and in vivo and they were also more motile and efficient at invading ECM in vitro. These functional differences were in part mediated by an increased ntMSC expression of SLIT3, a factor known to activate endothelial cells. Further, we discovered that SLIT3 stimulated MSC motility and fibrin gel invasion via ROBO1 in an autocrine fashion. Consistent with our findings in human MSCs, we found that SLIT3 and ROBO1 were expressed in the perivascular cells of the neonatal murine thymus gland and that global SLIT3 or ROBO1 deficiency resulted in decreased neonatal murine thymus gland vascular density. In conclusion, ntMSCs possess increased proangiogenic and invasive behaviors, which are in part mediated by the paracrine and autocrine effects of SLIT3.
Collapse
Affiliation(s)
- Shuyun Wang
- Department of Cardiac Surgery, Section of Pediatric Cardiovascular SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Shan Huang
- Department of Cardiac Surgery, Section of Pediatric Cardiovascular SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Sean Johnson
- Department of Cardiac Surgery, Section of Pediatric Cardiovascular SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Vadim Rosin
- Department of Cardiac Surgery, Section of Pediatric Cardiovascular SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Jeffrey Lee
- Department of Cardiac Surgery, Section of Pediatric Cardiovascular SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Eric Colomb
- Department of Cardiac Surgery, Section of Pediatric Cardiovascular SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Russell Witt
- Department of General SurgeryBrigham and Women's HospitalMassachusettsUSA
| | | | - Stephen J. Weiss
- Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Ming‐Sing Si
- Department of Cardiac Surgery, Section of Pediatric Cardiovascular SurgeryUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
29
|
Zhang J, Pan J, Jing W. Motivating role of type H vessels in bone regeneration. Cell Prolif 2020; 53:e12874. [PMID: 33448495 PMCID: PMC7507571 DOI: 10.1111/cpr.12874] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Coupling between angiogenesis and osteogenesis has an important role in both normal bone injury repair and successful application of tissue‐engineered bone for bone defect repair. Type H blood vessels are specialized microvascular components that are closely related to the speed of bone healing. Interactions between type H endothelial cells and osteoblasts, and high expression of CD31 and EMCN render the environment surrounding these blood vessels rich in factors conducive to osteogenesis and promote the coupling of angiogenesis and osteogenesis. Type H vessels are mainly distributed in the metaphysis of bone and densely surrounded by Runx2+ and Osterix+ osteoprogenitors. Several other factors, including hypoxia‐inducible factor‐1α, Notch, platelet‐derived growth factor type BB, and slit guidance ligand 3 are involved in the coupling of type H vessel formation and osteogenesis. In this review, we summarize the identification and distribution of type H vessels and describe the mechanism for type H vessel‐mediated modulation of osteogenesis. Type H vessels provide new insights for detection of the molecular and cellular mechanisms that underlie the crosstalk between angiogenesis and osteogenesis. As a result, more feasible therapeutic approaches for treatment of bone defects by targeting type H vessels may be applied in the future.
Collapse
Affiliation(s)
- Jiankang Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Effects of repetitive Iodine thyroid blocking on the foetal brain and thyroid in rats: a systems biology approach. Sci Rep 2020; 10:10839. [PMID: 32616734 PMCID: PMC7331645 DOI: 10.1038/s41598-020-67564-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
A single administration of an iodine thyroid blocking agent is usually sufficient to protect thyroid from radioactive iodine and prevent thyroid cancer. Repeated administration of stable iodine (rKI) may be necessary during prolonged or repeated exposure to radioactive iodine. We previously showed that rKI for eight days offers protection without toxic effects in adult rats. However, the effect of rKI administration in the developing foetus is unknown, especially on brain development, although a correlation between impaired maternal thyroid status and a decrease in intelligence quotient of the progeny has been observed. This study revealed distinct gene expression profiles between the progeny of rats receiving either rKI or saline during pregnancy. To understand the implication of these differentially expressed (DE) genes, a systems biology approach was used to construct networks for each organ using three different techniques: Bayesian statistics, sPLS-DA and manual construction of a Process Descriptive (PD) network. The PD network showed DE genes from both organs participating in the same cellular processes that affect mitophagy and neuronal outgrowth. This work may help to evaluate the doctrine for using rKI in case of repetitive or prolonged exposure to radioactive particles upon nuclear accidents.
Collapse
|
31
|
L ARP7 Is a BRCA1 Ubiquitinase Substrate and Regulates Genome Stability and Tumorigenesis. Cell Rep 2020; 32:107974. [DOI: 10.1016/j.celrep.2020.107974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 05/05/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
|
32
|
Gong L, Wang S, Shen L, Liu C, Shenouda M, Li B, Liu X, Shaw JA, Wineman AL, Yang Y, Xiong D, Eichmann A, Evans SM, Weiss SJ, Si MS. SLIT3 deficiency attenuates pressure overload-induced cardiac fibrosis and remodeling. JCI Insight 2020; 5:136852. [PMID: 32644051 PMCID: PMC7406261 DOI: 10.1172/jci.insight.136852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/06/2020] [Indexed: 01/28/2023] Open
Abstract
In pulmonary hypertension and certain forms of congenital heart disease, ventricular pressure overload manifests at birth and is an obligate hemodynamic abnormality that stimulates myocardial fibrosis, which leads to ventricular dysfunction and poor clinical outcomes. Thus, an attractive strategy is to attenuate the myocardial fibrosis to help preserve ventricular function. Here, by analyzing RNA-sequencing databases and comparing the transcript and protein levels of fibrillar collagen in WT and global-knockout mice, we found that slit guidance ligand 3 (SLIT3) was present predominantly in fibrillar collagen-producing cells and that SLIT3 deficiency attenuated collagen production in the heart and other nonneuronal tissues. We then performed transverse aortic constriction or pulmonary artery banding to induce left and right ventricular pressure overload, respectively, in WT and knockout mice. We discovered that SLIT3 deficiency abrogated fibrotic and hypertrophic changes and promoted long-term ventricular function and overall survival in both left and right ventricular pressure overload. Furthermore, we found that SLIT3 stimulated fibroblast activity and fibrillar collagen production, which coincided with the transcription and nuclear localization of the mechanotransducer yes-associated protein 1. These results indicate that SLIT3 is important for regulating fibroblast activity and fibrillar collagen synthesis in an autocrine manner, making it a potential therapeutic target for fibrotic diseases, especially myocardial fibrosis and adverse remodeling induced by persistent afterload elevation.
Collapse
Affiliation(s)
- Lianghui Gong
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuyun Wang
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Li Shen
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Catherine Liu
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mena Shenouda
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Baolei Li
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiaoxiao Liu
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Alan L. Wineman
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dingding Xiong
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Anne Eichmann
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Paris Cardiovascular Research Center, INSERM U970, Paris, France.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sylvia M. Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences,,Department of Medicine, and,Department of Pharmacology, UCSD, La Jolla, California, USA
| | - Stephen J. Weiss
- Division of Genetic Medicine,,Department of Internal Medicine,,Life Sciences Institute,,Cellular and Molecular Biology Graduate Program, and,Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ming-Sing Si
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Robo4 contributes to the turnover of Peyer's patch B cells. Mucosal Immunol 2020; 13:245-256. [PMID: 31772321 DOI: 10.1038/s41385-019-0230-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 02/04/2023]
Abstract
All leukocytes can get entrance into the draining lymph nodes via the afferent lymphatics but only lymphoid cells can leave the nodes. The molecular mechanisms behind this phenomenon have remained unknown. We employed genome wide microarray analyses of the subcapsular sinus and lymphatic sinus (LS) endothelial cells and found Robo4 to be selectively expressed on LS lymphatics. Further analyses showed high Robo4 expression in lymphatic vessels of Peyer's patches, which only have efferent lymphatic vessels. In functional assays, Robo4-deficient animals showed accumulation of naïve B cells (CD19+/CD62Lhi/CD44lo) in Peyer's patches, whereas no difference was seen within other lymphocyte subtypes. Short-term lymphocyte homing via high endothelial venules to peripheral and mesenteric lymph nodes and Peyer's patches was also slightly impaired in Robo4 knockout animals. These results show for the first time, selective expression of Robo4 in the efferent arm of the lymphatics and its role in controlling the turnover of a subset of B lymphocytes from Peyer's patches.
Collapse
|
34
|
Saygin D, Tabib T, Bittar HET, Valenzi E, Sembrat J, Chan SY, Rojas M, Lafyatis R. Transcriptional profiling of lung cell populations in idiopathic pulmonary arterial hypertension. Pulm Circ 2020; 10:10.1177_2045894020908782. [PMID: 32166015 PMCID: PMC7052475 DOI: 10.1177/2045894020908782] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Despite recent improvements in management of idiopathic pulmonary arterial
hypertension, mortality remains high. Understanding the alterations in the
transcriptome–phenotype of the key lung cells involved could provide insight
into the drivers of pathogenesis. In this study, we examined differential gene
expression of cell types implicated in idiopathic pulmonary arterial
hypertension from lung explants of patients with idiopathic pulmonary arterial
hypertension compared to control lungs. After tissue digestion, we analyzed all
cells from three idiopathic pulmonary arterial hypertension and six control
lungs using droplet-based single cell RNA-sequencing. After dimensional
reduction by t-stochastic neighbor embedding, we compared the transcriptomes of
endothelial cells, pericyte/smooth muscle cells, fibroblasts, and macrophage
clusters, examining differential gene expression and pathways implicated by
analysis of Gene Ontology Enrichment. We found that endothelial cells and
pericyte/smooth muscle cells had the most differentially expressed gene profile
compared to other cell types. Top differentially upregulated genes in
endothelial cells included novel genes: ROBO4, APCDD1, NDST1, MMRN2,
NOTCH4, and DOCK6, as well as previously reported
genes: ENG, ORAI2, TFDP1, KDR, AMOTL2, PDGFB, FGFR1, EDN1, and
NOTCH1. Several transcription factors were also found to be
upregulated in idiopathic pulmonary arterial hypertension endothelial cells
including SOX18, STRA13, LYL1, and ELK, which
have known roles in regulating endothelial cell phenotype. In particular,
SOX18 was implicated through bioinformatics analyses in
regulating the idiopathic pulmonary arterial hypertension endothelial cell
transcriptome. Furthermore, idiopathic pulmonary arterial hypertension
endothelial cells upregulated expression of FAM60A and
HDAC7, potentially affecting epigenetic changes in
idiopathic pulmonary arterial hypertension endothelial cells. Pericyte/smooth
muscle cells expressed genes implicated in regulation of cellular apoptosis and
extracellular matrix organization, and several ligands for genes showing
increased expression in endothelial cells. In conclusion, our study represents
the first detailed look at the transcriptomic landscape across idiopathic
pulmonary arterial hypertension lung cells and provides robust insight into
alterations that occur in vivo in idiopathic pulmonary arterial hypertension
lungs.
Collapse
Affiliation(s)
- Didem Saygin
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tracy Tabib
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Humberto E T Bittar
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Eleanor Valenzi
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Stephen Y Chan
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert Lafyatis
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Li N, Inoue K, Sun J, Niu Y, Lalani S, Yallowitz A, Yang X, Zhang C, Shen R, Zhao B, Xu R, Greenblatt MB. Osteoclasts are not a source of SLIT3. Bone Res 2020; 8:11. [PMID: 32133214 PMCID: PMC7031526 DOI: 10.1038/s41413-020-0086-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/29/2019] [Accepted: 10/21/2019] [Indexed: 12/28/2022] Open
Abstract
The axon guidance cue SLIT3 was identified as an osteoanabolic agent in two recent reports. However, these reports conflict in their nomination of osteoblasts versus osteoclasts as the key producers of skeletal SLIT3 and additionally offer conflicting data on the effects of SLIT3 on osteoclastogenesis. Here, aiming to address this discrepancy, we found no observable SLIT3 expression during human or mouse osteoclastogenesis and the only modest SLIT3-mediated effects on osteoclast differentiation. Conditional deletion of SLIT3 in cathepsin K (CTSK)-positive cells, including osteoclasts, had no effect on the number of osteoclast progenitors, in vitro osteoclast differentiation, overall bone mass, or bone resorption/formation parameters. Similar results were observed with the deletion of SLIT3 in LysM-positive cells, including osteoclast lineage cells. Consistent with this finding, bone marrow chimeras made from Slit3 -/- donors that lacked SLIT3 expression at all stages of osteoclast development displayed normal bone mass relative to controls. Taken in context, multiple lines of evidence were unable to identify the physiologic function of osteoclast-derived SLIT3, indicating that osteoblasts are the major source of skeletal SLIT3.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian China
| | - Kazuki Inoue
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY USA
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY USA
| | - Jun Sun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY USA
| | - Yingzhen Niu
- Division of Adult Reconstruction and Joint Replacement, Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY USA
| | - Sarfaraz Lalani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY USA
| | - Alisha Yallowitz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY USA
| | - Xu Yang
- Division of Adult Reconstruction and Joint Replacement, Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY USA
| | - Chao Zhang
- Institute for Computational Biomedicine, Cornell University, New York, NY USA
| | - Rong Shen
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian China
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY USA
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY USA
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian China
| | - Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY USA
| |
Collapse
|
36
|
Two faces of bivalent domain regulate VEGFA responsiveness and angiogenesis. Cell Death Dis 2020; 11:75. [PMID: 32001672 PMCID: PMC6992747 DOI: 10.1038/s41419-020-2228-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 01/22/2023]
Abstract
The bivalent domain (BD) at promoter region is an unique epigenetic feature poised for activation or repression during cell differentiation in embryonic stem cell. However, the function of BDs in already differentiated cells remains exclusive. By profiling the epigenetic landscape of endothelial cells during VEGFA (vascular endothelial growth factor A) stimulation, we discovered that BDs are widespread in endothelial cells and preferentially marked genes responsive to VEGFA. The BDs responsive to VEGFA have more permissive chromatin environment comparing to other BDs. The initial activation of bivalent genes depends on RNAPII pausing release induced by EZH1 rather than removal of H3K27me3. The later suppression of bivalent gene expression depended on KDM5A recruitment by its interaction with PRC2. Importantly, EZH1 promoted both in vitro and in vivo angiogenesis by upregulating EGR3, whereas KDM5A dampened angiogenesis. Collectively, this study demonstrates a novel dual function of BDs in endothelial cells to control VEGF responsiveness and angiogenesis.
Collapse
|
37
|
Cai G, Yang X, Chen T, Jin F, Ding J, Wu Z. Integrated bioinformatics analysis of potential pathway biomarkers using abnormal proteins in clubfoot. PeerJ 2020; 8:e8422. [PMID: 31998564 PMCID: PMC6977474 DOI: 10.7717/peerj.8422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/17/2019] [Indexed: 12/28/2022] Open
Abstract
Background As one of the most common major congenital distal skeletal abnormalities, congenital talipes equinovarus (clubfoot) affects approximately one in one thousandth newborns. Although several etiologies of clubfoot have been proposed and several genes have been identified as susceptible genes, previous studies did not further explore signaling pathways and potential upstream and downstream regulatory networks. Therefore, the aim of the present investigation is to explore abnormal pathways and their interactions in clubfoot using integrated bioinformatics analyses. Methods KEGG, gene ontology (GO), Reactome (REAC), WikiPathways (WP) or human phenotype ontology (HP) enrichment analysis were performed using WebGestalt, g:Profiler and NetworkAnalyst. Results A large number of signaling pathways were enriched e.g. signal transduction, disease, metabolism, gene expression (transcription), immune system, developmental biology, cell cycle, and ECM. Protein-protein interactions (PPIs) and gene regulatory networks (GRNs) analysis results indicated that extensive and complex interactions occur in these proteins, enrichment pathways, and TF-miRNA coregulatory networks. Transcription factors such as SOX9, CTNNB1, GLI3, FHL2, TGFBI and HOXD13, regulated these candidate proteins. Conclusion The results of the present study supported previously proposed hypotheses, such as ECM, genetic, muscle, neurological, skeletal, and vascular abnormalities. More importantly, the enrichment results also indicated cellular or immune responses to external stimuli, and abnormal molecular transport or metabolism may be new potential etiological mechanisms of clubfoot.
Collapse
Affiliation(s)
- Guiquan Cai
- Department of Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan Yang
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Chen
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fangchun Jin
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Ding
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenkai Wu
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Kwan SH, Aziz NHKA, Ismail MN. Bioactive Proteins in Channa striata Promote Wound Healing through Angiogenesis and Cell Proliferation. Protein Pept Lett 2020; 27:48-59. [PMID: 31362651 PMCID: PMC6978642 DOI: 10.2174/0929866526666190730121711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Channa striata are speculated to contain bioactive proteins with the ability to enhancing wound healing. It is commonly consumed after surgery for a faster recovery of the wound. OBJECTIVE To identify the bioactive proteins and evaluate their ability in cell proliferation and angiogenesis promotion. MATERIAL AND METHODS Freeze-Dried Water Extracts (FDWE) and Spray-Dried Water Extracts (SDWE) of C. striata were tested with MTT assay using EA.hy926 endothelial cell line and ex-vivo aortic ring assay. Later the proteins were fractionated and analysed using an LC-QTOF mass spectrometer. The data generated were matched with human gene database for protein similarity and pathway identification. RESULTS Both samples have shown positive cell proliferation and pro-angiogenic activity. Four essential proteins/genes were identified, which are collagen type XI, actin 1, myosin light chain and myosin heavy chain. The pathways discovered that related to these proteins are integrin pathway, Slit-Robo signalling pathway and immune response C-C Chemokine Receptor-3 signalling pathway in eosinophils, which contribute towards wound healing mechanism. CONCLUSIONS The results presented have demonstrated that C. striata FDWE and SDWE protein fractions contain bioactive proteins that are highly similar to human proteins and thus could be involved in the wound healing process via specific biological pathways.
Collapse
Affiliation(s)
| | | | - Mohd Nazri Ismail
- Address correspondence to this author at the Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, USM, Penang,
Malaysia; Tel: +604-6532694; E-mail:
| |
Collapse
|
39
|
Peng Y, Wu S, Li Y, Crane JL. Type H blood vessels in bone modeling and remodeling. Theranostics 2020; 10:426-436. [PMID: 31903130 PMCID: PMC6929606 DOI: 10.7150/thno.34126] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/12/2019] [Indexed: 12/29/2022] Open
Abstract
In the mammalian skeletal system, osteogenesis and angiogenesis are intimately linked during bone growth and regeneration in bone modeling and during bone homeostasis in bone remodeling. Recent studies have expanded our knowledge about the molecular and cellular mechanisms responsible for coupling angiogenesis and bone formation. Type H vessels, termed such because of high expression of Endomucin (Emcn) and CD31, have recently been identified and have the ability to induce bone formation. Factors including platelet-derived growth factor type BB (PDGF-BB), slit guidance ligand 3 (SLIT3), hypoxia-inducible factor 1-alpha (HIF-1α), Notch, and vascular endothelial growth factor (VEGF) are involved in the coupling of angiogenesis and osteogenesis. This review summarizes the current understanding of signaling pathways that regulate type H vessels and how type H vessels modulate osteogenesis. Further studies dissecting the regulation and function of type H vessels will provide new insights into the role of bone vasculature in the metabolism of the skeleton. We also discuss considerations for therapeutic approaches targeting type H vessels to promote fracture healing, prevent pathological bone loss, osteonecrosis, osteoarthritis, and bone metastases.
Collapse
Affiliation(s)
- Yi Peng
- Department of Orthopedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Song Wu
- Department of Orthopedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Yusheng Li
- Department of Orthopedic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 41000, China
| | - Janet L. Crane
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
40
|
Niimi T. Roles of Slit Ligands and Their Roundabout (Robo) Family of Receptors in Bone Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 21:143-154. [PMID: 32986130 DOI: 10.1007/5584_2020_586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Slit guidance ligands (Slits) and their roundabout (Robo) family of receptors are well-known axon guidance molecules that were originally identified in Drosophila mutants with commissural axon pathfinding defects. However, Slit-Robo signaling has been shown to be involved in not only neurogenesis, but also the development of other organs such as the kidney and heart. Recently, it was also revealed that Slit-Robo signaling plays an important role in bone metabolism. For example, osteoclast-derived Slit3 plays an osteoprotective role by synchronously stimulating bone formation by osteoblasts and suppressing bone resorption by osteoclasts through Robo receptors expressed on osteoblastic and osteoclastic cell lineages, making it a potential therapeutic target for metabolic bone disorders. Furthermore, osteoblast-derived Slit3 promotes bone formation indirectly as a proangiogenic factor. This review summarizes the recent progress on defining the roles of the Slit-Robo signaling in bone metabolism, and discusses the possible roles of the interaction between Robo and neural epidermal growth factor-like (NEL)-like (NELL) proteins that are novel ligands for Robo receptors.
Collapse
Affiliation(s)
- Tomoaki Niimi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| |
Collapse
|
41
|
Zhong W, Peng Y, Yue E, Huang B, Zhang W, Zhao Z, Jiang J, Wang Q, Zhao H. Gingival crevicular fluid levels of SLIT3 are increased in periodontal disease. Oral Dis 2019; 26:182-192. [PMID: 31696592 DOI: 10.1111/odi.13227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/01/2022]
Abstract
This study aims to investigate the levels of SLIT3 in gingival crevicular fluid (GCF) of healthy and periodontal disease subjects, and their correlations to periodontal disease. A total of 45 periodontal patients and 45 periodontally healthy volunteers were enrolled. The clinical parameters, radiographic bone loss and the levels of SLIT3, receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) in GCF were measured. The prevalences of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia in subgingival plaque were also analyzed. The expression of SLIT3 and RANKL was detected in the periodontium of experimental periodontitis in rats and lipopolysaccharide (LPS)-induced mouse macrophage. The total amounts and concentrations of SLIT3 and RANKL were significantly higher in periodontitis than those in healthy, while the level of OPG was significantly lower (p < .05). Significant positive correlations were observed between the level of GCF SLIT3 and clinical attachment level and radiographic bone loss (p < .05). There existed a significant positive correlation between SLIT3 and RANKL (p < .05). Increased expression of SLIT3 and RANKL was observed in the periodontium of periodontal rats. SLIT3 expression was induced by LPS stimulation in macrophages. These results suggest that SLIT3 may act as a diagnostic indicator of periodontal disease and should be further investigated.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Youmei Peng
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Erli Yue
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Huang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Zhao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinhua Jiang
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qingduan Wang
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongyu Zhao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
42
|
Sivan U, De Angelis J, Kusumbe AP. Role of angiocrine signals in bone development, homeostasis and disease. Open Biol 2019; 9:190144. [PMID: 31575330 PMCID: PMC6833221 DOI: 10.1098/rsob.190144] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Skeletal vasculature plays a central role in the maintenance of microenvironments for osteogenesis and haematopoiesis. In addition to supplying oxygen and nutrients, vasculature provides a number of inductive factors termed as angiocrine signals. Blood vessels drive recruitment of osteoblast precursors and bone formation during development. Angiogenesis is indispensable for bone repair and regeneration. Dysregulation of the angiocrine crosstalk is a hallmark of ageing and pathobiological conditions in the skeletal system. The skeletal vascular bed is complex, heterogeneous and characterized by distinct capillary subtypes (type H and type L), which exhibit differential expression of angiocrine factors. Furthermore, distinct blood vessel subtypes with differential angiocrine profiles differentially regulate osteogenesis and haematopoiesis, and drive disease states in the skeletal system. This review provides an overview of the role of angiocrine signals in bone during homeostasis and disease.
Collapse
Affiliation(s)
- Unnikrishnan Sivan
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Jessica De Angelis
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Anjali P Kusumbe
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| |
Collapse
|
43
|
Koohini Z, Koohini Z, Teimourian S. Slit/Robo Signaling Pathway in Cancer; a New Stand Point for Cancer Treatment. Pathol Oncol Res 2019; 25:1285-1293. [PMID: 30610466 DOI: 10.1007/s12253-018-00568-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
Angiogenesis and metastasis are two critical steps for cancer cells survival and migration. The microenvironment of tumor sphere induces new blood vessels formation for enhancing tumor mass. Preexisting capillaries and postcapillary venules in tumors bring about new blood vessels. ROBO1-ROBO4 are transmembrane receptors family which act as guidance molecules of the nervous system. The SLITs family is secreted glycoproteins that bind to these receptors. SLIT-ROBO signaling pathway plays an important role in neurogenesis and immune response. Linkage between ROBOs and their ligands (SLITs) induce chemorepllent signal for regulation of axon guidance and leukocyte cell migration, recent finding shows that it is also involved in endothelial cell migration and angiogenesis in various type of cancers. In this article we review recent finding of SLIT-ROBO pathway in angiogenesis and metastasis.
Collapse
Affiliation(s)
- Zahra Koohini
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Koohini
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Regulatory mechanisms of Robo4 and their effects on angiogenesis. Biosci Rep 2019; 39:BSR20190513. [PMID: 31160487 PMCID: PMC6620384 DOI: 10.1042/bsr20190513] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
Roundabout4 (Robo4) is a transmembrane receptor that belongs to the Roundabout (Robo) family of axon guidance molecules. Robo4 is an endothelial-specific receptor that participates in endothelial cell migration, proliferation, and angiogenesis and the maintenance of vasculature homeostasis. The purpose of this review is to summarize and analyze three main mechanisms related to the expression and function of Robo4 during developmental and pathological angiogenesis. In this review, static shear stress and the binding of transcription factors such as E26 transformation-specific variant 2 (ETV2) and Slit3 induce Robo4 expression and activate Robo4 during tissue and organ development. Robo4 interacts with Slit2 or UNC5B to maintain vascular integrity, while a disturbed flow and the expression of transcription factors in inflammatory or neoplastic environments alter Robo4 expression levels, although these changes have uncertain functions. Based on the mechanisms described above, we discuss the aberrant expression of Robo4 in angiogenesis-related diseases and propose antiangiogenic therapies targeting the Robo4 signaling pathway for the treatment of ocular neovascularization lesions and tumors. Finally, although many problems related to Robo4 signaling pathways remain to be resolved, Robo4 is a promising and potentially valuable therapeutic target for treating pathological angiogenesis and developmental defects in angiogenesis.
Collapse
|
45
|
Tong M, Jun T, Nie Y, Hao J, Fan D. The Role of the Slit/Robo Signaling Pathway. J Cancer 2019; 10:2694-2705. [PMID: 31258778 PMCID: PMC6584916 DOI: 10.7150/jca.31877] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
The Slit family is a family of secreted proteins that play important roles in various physiologic and pathologic activities via interacting with Robo receptors. Slit/Robo signaling was first identified in the nervous system, where it functions in neuronal axon guidance; nevertheless, an increasing number of studies have shown that Slit/Robo signaling even regulates other activities, such as angiogenesis, inflammatory cell chemotaxis, tumor cell migration and metastasis. Although the precise role of the ligand-receptor in organisms has been obscure and the conclusions drawn are sometimes paradoxical, tremendous advances in understanding the Slit/Robo signaling pathway have been made. As such, our review summarizes the characteristics of the Slit/Robo signaling pathway and its role in various cell types.
Collapse
Affiliation(s)
- Mingfu Tong
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.,State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tie Jun
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
46
|
Genet G, Boyé K, Mathivet T, Ola R, Zhang F, Dubrac A, Li J, Genet N, Henrique Geraldo L, Benedetti L, Künzel S, Pibouin-Fragner L, Thomas JL, Eichmann A. Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis. Nat Commun 2019; 10:2350. [PMID: 31138815 PMCID: PMC6538628 DOI: 10.1038/s41467-019-10359-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
Endothelial cell migration, proliferation and survival are triggered by VEGF-A activation of VEGFR2. However, how these cell behaviors are regulated individually is still unknown. Here we identify Endophilin-A2 (ENDOA2), a BAR-domain protein that orchestrates CLATHRIN-independent internalization, as a critical mediator of endothelial cell migration and sprouting angiogenesis. We show that EndoA2 knockout mice exhibit postnatal angiogenesis defects and impaired front-rear polarization of sprouting tip cells. ENDOA2 deficiency reduces VEGFR2 internalization and inhibits downstream activation of the signaling effector PAK but not ERK, thereby affecting front-rear polarity and migration but not proliferation or survival. Mechanistically, VEGFR2 is directed towards ENDOA2-mediated endocytosis by the SLIT2-ROBO pathway via SLIT-ROBO-GAP1 bridging of ENDOA2 and ROBO1. Blocking ENDOA2-mediated endothelial cell migration attenuates pathological angiogenesis in oxygen-induced retinopathy models. This work identifies a specific endocytic pathway controlling a subset of VEGFR2 mediated responses that could be targeted to prevent excessive sprouting angiogenesis in pathological conditions.
Collapse
Affiliation(s)
- Gael Genet
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Kevin Boyé
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Thomas Mathivet
- Inserm U970, Paris Cardiovascular Research Center, Paris, 75015, France
| | - Roxana Ola
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Functional Genomics, Proteomics and Experimental Pathology Department, Prof. Dr. I. Chiricuta Oncology Institute, Cluj-Napoca, Romania, Department of Basic, Preventive and Clinical Science, University of Transylvania, Brasov, Romania
| | - Feng Zhang
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Alexandre Dubrac
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Jinyu Li
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Nafiisha Genet
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | | | - Lorena Benedetti
- Department of Neuroscience and Cell Biology, School of Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Steffen Künzel
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | | | - Jean-Leon Thomas
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
- Sorbonne Universités, UPMC Université Paris 06, Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique, AP-HP, Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, Paris, France
| | - Anne Eichmann
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA.
- Inserm U970, Paris Cardiovascular Research Center, Paris, 75015, France.
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
47
|
Liao Y, Ouyang L, Ci L, Chen B, Lv D, Li Q, Sun Y, Fei J, Bao S, Liu X, Li L. Pravastatin regulates host foreign-body reaction to polyetheretherketone implants via miR-29ab1-mediated SLIT3 upregulation. Biomaterials 2019; 203:12-22. [PMID: 30851489 DOI: 10.1016/j.biomaterials.2019.02.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022]
Abstract
Host rejection to biomaterials can induce uncontrolled foreign-body reactions (FBR), resulting in a dense fibrous encapsulation that blocks mass transport and/or communication between the host and the implant. Adequate angiogenesis between the body and the implant has been implicated as a key regulator for overcoming FBR. Thus, approaches for stimulating neovascularization and/or suppressing FBR are under investigation. In this study, pravastatin (Pra) was loaded onto a 3D network surface of sulfonated polyetheretherketone (SP) to achieve superior local drug effects. The SP loaded with Pra (SP-Pra) promoted angiogenesis and mitigated FBR via miR-29 dependent SLIT3 upregulation in wild-type (WT) mice. miR-29a and miR-29b1 were significantly downregulated in the SP-Pra capsule compared to levels in the SP capsule, while SLIT3 and neovascularization were substantially upregulated in WT mice. However, the above effects presented in the WT mice were not detected in miR-29ab1 knockout mice which was generated by the CRISPR/Cas9 approach. Overall, the results suggest that miR-29 plays a critical role in reducing FBR to these implants by targeting SLIT3. Suppression of FBR by SP-Pra implants offers the potential to improve the performance of current medical devices.
Collapse
Affiliation(s)
- Yun Liao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Liping Ouyang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Ci
- Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC., Shanghai 201203, China
| | - Baohui Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Lv
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Qin Li
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yingxiao Sun
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shisan Bao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Discipline of Pathology, Charles Perkin Centre, Bosch Institute and School of Medical Sciences, The University of Sydney, Australia.
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Ling Li
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
48
|
Hess DL, Kelly-Goss MR, Cherepanova OA, Nguyen AT, Baylis RA, Tkachenko S, Annex BH, Peirce SM, Owens GK. Perivascular cell-specific knockout of the stem cell pluripotency gene Oct4 inhibits angiogenesis. Nat Commun 2019; 10:967. [PMID: 30814500 PMCID: PMC6393549 DOI: 10.1038/s41467-019-08811-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/31/2019] [Indexed: 12/23/2022] Open
Abstract
The stem cell pluripotency factor Oct4 serves a critical protective role during atherosclerotic plaque development by promoting smooth muscle cell (SMC) investment. Here, we show using Myh11-CreERT2 lineage-tracing with inducible SMC and pericyte (SMC-P) knockout of Oct4 that Oct4 regulates perivascular cell migration and recruitment during angiogenesis. Knockout of Oct4 in perivascular cells significantly impairs perivascular cell migration, increases perivascular cell death, delays endothelial cell migration, and promotes vascular leakage following corneal angiogenic stimulus. Knockout of Oct4 in perivascular cells also impairs perfusion recovery and decreases angiogenesis following hindlimb ischemia. Transcriptomic analyses demonstrate that expression of the migratory gene Slit3 is reduced following loss of Oct4 in cultured SMCs, and in Oct4-deficient perivascular cells in ischemic hindlimb muscle. Together, these results provide evidence that Oct4 plays an essential role within perivascular cells in injury- and hypoxia-induced angiogenesis.
Collapse
Affiliation(s)
- Daniel L Hess
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Molly R Kelly-Goss
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908, USA
- Department of Biomedical Engineering, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Olga A Cherepanova
- Lerner Research Institute, 9500 Euclid Avenue, NB50, Cleveland, OH, 44195, USA
| | - Anh T Nguyen
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908, USA
| | - Richard A Baylis
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Svyatoslav Tkachenko
- Lerner Research Institute, 9500 Euclid Avenue, JJN3-01, Cleveland, OH, 44195, USA
| | - Brian H Annex
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908, USA
- Department of Medicine, Cardiovascular Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Shayn M Peirce
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908, USA
- Department of Biomedical Engineering, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
49
|
Jordan VK, Beck TF, Hernandez-Garcia A, Kundert PN, Kim BJ, Jhangiani SN, Gambin T, Starkovich M, Punetha J, Paine IS, Posey JE, Li AH, Muzny D, Hsu CW, Lashua AJ, Sun X, Fernandes CJ, Dickinson ME, Lally KP, Gibbs RA, Boerwinkle E, Lupski JR, Scott DA. The role of FREM2 and FRAS1 in the development of congenital diaphragmatic hernia. Hum Mol Genet 2019; 27:2064-2075. [PMID: 29618029 DOI: 10.1093/hmg/ddy110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) has been reported twice in individuals with a clinical diagnosis of Fraser syndrome, a genetic disorder that can be caused by recessive mutations affecting FREM2 and FRAS1. In the extracellular matrix, FREM2 and FRAS1 form a self-stabilizing complex with FREM1, a protein whose deficiency causes sac CDH in humans and mice. By sequencing FREM2 and FRAS1 in a CDH cohort, and searching online databases, we identified five individuals who carried recessive or double heterozygous, putatively deleterious variants in these genes which may represent susceptibility alleles. Three of these alleles were significantly enriched in our CDH cohort compared with ethnically matched controls. We subsequently demonstrated that 8% of Frem2ne/ne and 1% of Fras1Q1263*/Q1263* mice develop the same type of anterior sac CDH seen in FREM1-deficient mice. We went on to show that development of sac hernias in FREM1-deficient mice is preceded by failure of anterior mesothelial fold progression resulting in the persistence of an amuscular, poorly vascularized anterior diaphragm that is abnormally adherent to the underlying liver. Herniation occurs in the perinatal period when the expanding liver protrudes through this amuscular region of the anterior diaphragm that is juxtaposed to areas of muscular diaphragm. Based on these data, we conclude that deficiency of FREM2, and possibly FRAS1, are associated with an increased risk of developing CDH and that loss of the FREM1/FREM2/FRAS1 complex, or its function, leads to anterior sac CDH development through its effects on mesothelial fold progression.
Collapse
Affiliation(s)
- Valerie K Jordan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tyler F Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andres Hernandez-Garcia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter N Kundert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bum-Jun Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Molly Starkovich
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ingrid S Paine
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander H Li
- Human Genetics Center, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Donna Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amber J Lashua
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xin Sun
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin P Lally
- Department of Pediatric Surgery, McGovern Medical School at UT Health, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daryl A Scott
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
50
|
Huminiecki L. Magic roundabout is an endothelial-specific ohnolog of ROBO1 which neo-functionalized to an essential new role in angiogenesis. PLoS One 2019; 14:e0208952. [PMID: 30802244 PMCID: PMC6389290 DOI: 10.1371/journal.pone.0208952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/26/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Magic roundabout (ROBO4) is an unusual endothelial-specific paralog of the family of neuronally-expressed axon guidance receptors called roundabouts. Endothelial cells (ECs), whose uninterrupted sheet delimits the lumen of all vertebrate blood vessels and which are absent from invertebrate species, are a vertebrate-specific evolutionary novelty. RESULTS Herein, the evolutionary mechanism of the duplication, retention and divergence of ROBO4 was investigated for the first time. Phylogenetic analyses carried out suggested that ROBO4 is a fast-evolving paralog of ROBO1 formed at the base of vertebrates. The ancestral expression pattern was neuronal. ROBO4 dramatically shifted its expression and became exceptionally specific to ECs. The data-mining of FANTOM5 and ENCODE reveals that ROBO4's endothelial expression arises from a single transcription start site (TSS), conserved in mouse, controlled by a proximal promoter with a complex architecture suggestive of regulatory neo-functionalization. (An analysis of promoter probabilities suggested the architecture was not due to a chance arrangement of TFBSes). Further evidence for the neo-functionalization of ROBO4 comes from the analysis of its protein interactions, the rates of protein evolution, and of positively selected sites. CONCLUSIONS The neo-functionalization model explains why ROBO4 protein acquired new context-specific biological functions in the control of angiogenesis. This endothelial-specific roundabout receptor is an illustrative example of the emergence of an essential vertebrate molecular novelty and an endothelial-specific signaling sub-network through 2R-WGD. The emergence of novel cell types, such as ECs, might be a neglected evolutionary force contributing to the high rate of retention of duplicates post-2R-WGD. Crucially, expression neo-functionalization to evolutionarily novel sites of expression conceptually extends the classical model of neo-functionalization.
Collapse
Affiliation(s)
- Lukasz Huminiecki
- Instytut Genetyki i Hodowli Zwierząt Polskiej Akademii Nauk, Jastrzębiec, Magdalenka, Poland
| |
Collapse
|