1
|
Park LM, Lannigan J, Low Q, Jaimes MC, Bonilla DL. OMIP-109: 45-color full spectrum flow cytometry panel for deep immunophenotyping of the major lineages present in human peripheral blood mononuclear cells with emphasis on the T cell memory compartment. Cytometry A 2024. [PMID: 39466962 DOI: 10.1002/cyto.a.24900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 10/30/2024]
Abstract
The need for more in-depth exploration of the human immune system has moved the flow cytometry field forward with advances in instrumentation, reagent development and availability, and user-friendly implementation of data analysis methods. We developed a high-quality human 45-color panel, for comprehensive characterization of major cell lineages present in circulation including T cells, γδ T cells, NKT-like cells, B cells, NK cells, monocytes, basophils, dendritic cells, and ILCs. Assay optimization steps are described in detail to ensure that each marker in the panel was optimally resolved. In addition, we highlight the outstanding discernment of cell activation, exhaustion, memory, and differentiation states of CD4+ and CD8+ T cells using this 45-color panel. The panel enabled an in-depth description of very distinct phenotypes associated with the complexity of the T cell memory response. Furthermore, we present how this panel can be effectively used for cell sorting on instruments with a similar optical layout to achieve the same level of resolution. Functional evaluation of sorted specific rare cell subsets demonstrated significantly different patterns of immunological responses to stimulation, supporting functional and phenotypic differences within the T cell memory subsets. In summary, the combination of full spectrum profiling technology and careful assay design and optimization results in a high resolution multiparametric 45-color assay. This panel offers the opportunity to fully characterize immunological profiles present in peripheral blood in the context of infectious diseases, autoimmunity, neurodegeneration, immunotherapy, and biomarker discovery.
Collapse
Affiliation(s)
- Lily M Park
- Cytek Biosciences, Inc., Scientific Commercialization, Fremont, California, USA
| | - Joanne Lannigan
- Flow Cytometry Support Services, LLC, Alexandria, Virginia, USA
| | - Quentin Low
- Cytek Biosciences, Inc., Scientific Commercialization, Fremont, California, USA
| | - Maria C Jaimes
- Cytek Biosciences, Inc., Scientific Commercialization, Fremont, California, USA
| | - Diana L Bonilla
- Cytek Biosciences, Inc., Scientific Commercialization, Fremont, California, USA
| |
Collapse
|
2
|
Brunelli DT, Bonfante ILP, Boldrini VO, Scolfaro PG, Duft RG, Mateus K, Fatori RF, Chacon-Mikahil MPT, Farias AS, Teixeira AM, Cavaglieri CR. Combined Training Improves Gene Expression Related to Immunosenescence in Obese Type 2 Diabetic Individuals. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:730-739. [PMID: 38319611 DOI: 10.1080/02701367.2023.2299716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/21/2023] [Indexed: 02/07/2024]
Abstract
Purpose: The aim of this study was to investigate the effects of moderate combined training (CT) on both the gene expression of pro- and anti-inflammatory markers and senescence in the immune system in peripheral blood mononuclear cells (PBMCs) and subcutaneous adipose tissue (SAT) of obese middle-aged individuals with type 2 diabetes (T2D). Methods: Thirty obese individuals (50.2 ± 9.4 years; body mass index: 31.8 ± 2.3 kg/m²) with T2D underwent 16 weeks of a CT group [CT; aerobic (50-60% of VO2max) plus resistance (50-75% of 1RM) training; 3 times/week, 70 min/session; n = 16)] or a control group (CG, n = 14). Nutritional patterns, muscle strength (1RM), cardiorespiratory fitness (VO2max), waist circumference (WC), body composition (Air Displacement Plethysmograph) and blood collections for biochemical (serum leptin, IL-2, IL-4, IL-6, IL-10, TNF-α and anti-CMV) and molecular (gene expression of leptin, IL-2, IL-4, IL-6, IL-10, TNF-α, PD-1, P16ink4a, CCR7, CD28 and CD27 in PBMCs and SAT) analyses were assessed before (Pre) and after (Post) the 16 weeks of the experimental period. Results: Significant decreases were observed in WC and IL4, TNF-α, PD-1 and CD27 expression in PBMCs for CT. Furthermore, significant increases were observed in 1RM and VO2max for CT after the experimental period. Conclusion: Moderate CT contributed to a reduction in the gene expression of markers associated to chronic inflammation and immunosenescence in PBMCs of obese middle-aged individuals with T2D.
Collapse
|
3
|
Yang S, Guo J, Xiong Y, Han G, Luo T, Peng S, Liu J, Hu T, Zha Y, Lin X, Tan Y, Zhang J. Unraveling the genetic and molecular landscape of sepsis and acute kidney injury: A comprehensive GWAS and machine learning approach. Int Immunopharmacol 2024; 137:112420. [PMID: 38851159 DOI: 10.1016/j.intimp.2024.112420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVES This study aimed to explore the underlying mechanisms of sepsis and acute kidney injury (AKI), including sepsis-associated AKI (SA-AKI), a frequent complication in critically ill sepsis patients. METHODS GWAS data was analyzed for genetic association between AKI and sepsis. Then, we systematically applied three distinct machine learning algorithms (LASSO, SVM-RFE, RF) to rigorously identify and validate signature genes of SA-AKI, assessing their diagnostic and prognostic value through ROC curves and survival analysis. The study also examined the functional and immunological aspects of these genes, potential drug targets, and ceRNA networks. A mouse model of sepsis was created to test the reliability of these signature genes. RESULTS LDSC confirmed a positive genetic correlation between AKI and sepsis, although no significant shared loci were found. Bidirectional MR analysis indicated mutual increased risks of AKI and sepsis. Then, 311 key genes common to sepsis and AKI were identified, with 42 significantly linked to sepsis prognosis. Six genes, selected through LASSO, SVM-RFE, and RF algorithms, showed excellent predictive performance for sepsis, AKI, and SA-AKI. The models demonstrated near-perfect AUCs in both training and testing datasets, and a perfect AUC in a sepsis mouse model. Significant differences in immune cells, immune-related pathways, HLA, and checkpoint genes were found between high- and low-risk groups. The study identified 62 potential drug treatments for sepsis and AKI and constructed a ceRNA network. CONCLUSIONS The identified signature genes hold potential clinical applications, including prognostic evaluation and targeted therapeutic strategies for sepsis and AKI. However, further research is needed to confirm these findings.
Collapse
Affiliation(s)
- Sha Yang
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China
| | - Jing Guo
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China
| | - Yunbiao Xiong
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Guoqiang Han
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Tao Luo
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shuo Peng
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jian Liu
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Tieyi Hu
- Department of Neurology, the Affiliated Dazu Hospital of Chongqing Medical University , China
| | - Yan Zha
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xin Lin
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
4
|
Zhang Y, Chen S, Tang X, Peng Y, Jiang T, Zhang X, Li J, Liu Y, Yang Z. The role of KLRG1: a novel biomarker and new therapeutic target. Cell Commun Signal 2024; 22:337. [PMID: 38898461 PMCID: PMC11186184 DOI: 10.1186/s12964-024-01714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
Killer cell lectin-like receptor G1 (KLRG1) is an immune checkpoint receptor expressed predominantly in NK and T-cell subsets that downregulates the activation and proliferation of immune cells and participates in cell-mediated immune responses. Accumulating evidence has demonstrated the importance of KLRG1 as a noteworthy disease marker and therapeutic target that can influence disease onset, progression, and prognosis. Blocking KLRG1 has been shown to effectively mitigate the effects of downregulation in various mouse tumor models, including solid tumors and hematologic malignancies. However, KLRG1 inhibitors have not yet been approved for human use, and the understanding of KLRG1 expression and its mechanism of action in various diseases remains incomplete. In this review, we explore alterations in the distribution, structure, and signaling pathways of KLRG1 in immune cells and summarize its expression patterns and roles in the development and progression of autoimmune diseases, infectious diseases, and cancers. Additionally, we discuss the potential applications of KLRG1 as a tool for tumor immunotherapy.
Collapse
Affiliation(s)
- Yakun Zhang
- School of Medicine, Chongqing University, Chongqing, 400030, China
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Shuang Chen
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xinyi Tang
- School of Medicine, Chongqing University, Chongqing, 400030, China
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yu Peng
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tingting Jiang
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xiaomei Zhang
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jun Li
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yao Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Zailin Yang
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
5
|
Nakanjako D, Nabatanzi R, Ssinabulya I, Bayigga L, Kiragga A, Banturaki G, Castelnuovo B. Chronic immune activation and accelerated immune aging among HIV-infected adults receiving suppressive antiretroviral therapy for at least 12 years in an African cohort. Heliyon 2024; 10:e31910. [PMID: 38882354 PMCID: PMC11177148 DOI: 10.1016/j.heliyon.2024.e31910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
Background HIV-associated alterations innate and adaptive immune cell compartments are reminiscent of the process of immune aging. Objectives We described immune aging phenotypes among ART-treated HIV-infected adults relative to age-matched HIV-negative counterparts. Methods In a cross-sectional comparative study of HIV-infected adults with CD4≥500 cells/μl after at least 12 years of suppressive ART and age-and-gender-matched HIV-negative individuals, immune activation and immune aging phenotypes were measured, using multi-color flowcytometry. Results ART-treated HIV-infected individuals had higher body mass index (P = 0.004), waist-hip circumference (P = 0.041), hip circumference (P < 0.001), and diastolic blood pressure (P = 0.012) and immune activation (CD4+CD38+HLADR+; median 4.15,IQR(1.030,14.6)] relative to the HIV-negative age-matched individuals [median 3.14,IQR(1.030, 6.68)]; P=0.0034. Immune aging markers [CD4+CD57+T-cells; median 13.00 IQR (0.45,64.1)] were higher among HIV-infected ART-treated adults<50 years relative to HIV-negative<50 years[median 8.020,IQR(0.004,21.2)]; P=0.0010. Naïve CD4 T-cells, Central memory CD4 T-cells, Terminal Effector Memory T cells (TEMRA: CD27-CD45RA + CCR7-) and immune senescence CD4/CD8+CD28-/CD57+ T-cells were similar among ART-treated HIV-infected individuals<45 years relative to 60 years-and-older HIV-negative counterparts≥; p = 0.0932, p = 0.05357, p = 0.0950 and p = 0.5714 respectively. Conclusion ART-treated adults are immunologically two decades older than their HIV-negative counterparts. Accelerated immune aging among individuals aging with HIV underscores the need for an HIV cure to avert the unprecedented complications of accelerated immune senescence and the associated NCD risk in African settings with protracted exposure to endemic co-infections.
Collapse
Affiliation(s)
- Damalie Nakanjako
- Department of Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Rose Nabatanzi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Isaac Ssinabulya
- Department of Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
- Uganda Heart Institute, Kampala, Uganda
| | - Lois Bayigga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Agnes Kiragga
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Grace Banturaki
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Barbara Castelnuovo
- Department of Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
6
|
Anderko RR, DePuyt AE, Bronson R, Bullotta AC, Aga E, Bosch RJ, Jones RB, Eron JJ, Mellors JW, Gandhi RT, McMahon DK, Macatangay BJ, Rinaldo CR, Mailliard RB. Persistence of a Skewed Repertoire of NK Cells in People with HIV-1 on Long-Term Antiretroviral Therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1564-1578. [PMID: 38551350 PMCID: PMC11073922 DOI: 10.4049/jimmunol.2300672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
HIV-1 infection greatly alters the NK cell phenotypic and functional repertoire. This is highlighted by the expansion of a rare population of FcRγ- NK cells exhibiting characteristics of traditional immunologic memory in people with HIV (PWH). Although current antiretroviral therapy (ART) effectively controls HIV-1 viremia and disease progression, its impact on HIV-1-associated NK cell abnormalities remains unclear. To address this, we performed a longitudinal analysis detailing conventional and memory-like NK cell characteristics in n = 60 PWH during the first 4 y of ART. Throughout this regimen, a skewed repertoire of cytokine unresponsive FcRγ- memory-like NK cells persisted and accompanied an overall increase in NK surface expression of CD57 and KLRG1, suggestive of progression toward immune senescence. These traits were linked to elevated serum inflammatory biomarkers and increasing Ab titers to human CMV, with human CMV viremia detected in approximately one-third of PWH at years 1-4 of ART. Interestingly, 40% of PWH displayed atypical NK cell subsets, representing intermediate stages of NK-poiesis based on single-cell multiomic trajectory analysis. Our findings indicate that NK cell irregularities persist in PWH despite long-term ART, underscoring the need to better understand the causative mechanisms that prevent full restoration of immune health in PWH.
Collapse
Affiliation(s)
- Renee R. Anderko
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Allison E. DePuyt
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Rhianna Bronson
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Arlene C. Bullotta
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Evgenia Aga
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ronald J. Bosch
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - R. Brad Jones
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Joseph J. Eron
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John W. Mellors
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rajesh T. Gandhi
- Infectious Disease Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Deborah K. McMahon
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bernard J. Macatangay
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Charles R. Rinaldo
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robbie B. Mailliard
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Zanfardino P, Amati A, Doccini S, Cox SN, Tullo A, Longo G, D'Erchia A, Picardi E, Nesti C, Santorelli FM, Petruzzella V. OPA1 mutation affects autophagy and triggers senescence in autosomal dominant optic atrophy plus fibroblasts. Hum Mol Genet 2024; 33:768-786. [PMID: 38280232 DOI: 10.1093/hmg/ddae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/06/2024] [Indexed: 01/29/2024] Open
Abstract
In several cases of mitochondrial diseases, the underlying genetic and bioenergetic causes of reduced oxidative phosphorylation (OxPhos) in mitochondrial dysfunction are well understood. However, there is still limited knowledge about the specific cellular outcomes and factors involved for each gene and mutation, which contributes to the lack of effective treatments for these disorders. This study focused on fibroblasts from a patient with Autosomal Dominant Optic Atrophy (ADOA) plus syndrome harboring a mutation in the Optic Atrophy 1 (OPA1) gene. By combining functional and transcriptomic approaches, we investigated the mitochondrial function and identified cellular phenotypes associated with the disease. Our findings revealed that fibroblasts with the OPA1 mutation exhibited a disrupted mitochondrial network and function, leading to altered mitochondrial dynamics and reduced autophagic response. Additionally, we observed a premature senescence phenotype in these cells, suggesting a previously unexplored role of the OPA1 gene in inducing senescence in ADOA plus patients. This study provides novel insights into the mechanisms underlying mitochondrial dysfunction in ADOA plus and highlights the potential importance of senescence in disease progression.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of study of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Alessandro Amati
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of study of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Calambrone, Pisa, Italy
| | - Sharon N Cox
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of study of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Giovanna Longo
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of study of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Annamaria D'Erchia
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of study of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of study of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Claudia Nesti
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Calambrone, Pisa, Italy
| | - Filippo M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Calambrone, Pisa, Italy
| | - Vittoria Petruzzella
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of study of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
8
|
Yu PJ, Zhou M, Liu Y, Du J. Senescent T Cells in Age-Related Diseases. Aging Dis 2024:AD.2024.0219. [PMID: 38502582 DOI: 10.14336/ad.2024.0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/18/2024] [Indexed: 03/21/2024] Open
Abstract
Age-induced alterations in human immunity are often considered deleterious and are referred to as immunosenescence. The immune system monitors the number of senescent cells in the body, while immunosenescence may represent the initiation of systemic aging. Immune cells, particularly T cells, are the most impacted and involved in age-related immune function deterioration, making older individuals more prone to different age-related diseases. T-cell senescence can impact the effectiveness of immunotherapies that rely on the immune system's function, including vaccines and adoptive T-cell therapies. The research and practice of using senescent T cells as therapeutic targets to intervene in age-related diseases are in their nascent stages. Therefore, in this review, we summarize recent related literature to investigate the characteristics of senescent T cells as well as their formation mechanisms, relationship with various aging-related diseases, and means of intervention. The primary objective of this article is to explore the prospects and possibilities of therapeutically targeting senescent T cells, serving as a valuable resource for the development of immunotherapy and treatment of age-related diseases.
Collapse
|
9
|
Rimmer L, Mann DA, Sayer AA, Amarnath S, Granic A. A silver bullet for ageing medicine?: clinical relevance of T-cell checkpoint receptors in normal human ageing. Front Immunol 2024; 15:1360141. [PMID: 38361938 PMCID: PMC10867193 DOI: 10.3389/fimmu.2024.1360141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Immunosenescence describes dysregulation of the immune system with ageing manifested in both the innate and adaptive immunity, including changes in T-cell checkpoint signaling. Through complex and nuanced process, T-cells lose excitatory signaling pathways and upregulate their inhibitory signaling, leading to ineffective immune responses that contribute to the formation of the ageing phenotype. Here we expand on the expression, function, and clinical potential of targeting the T-cell checkpoint signaling in age and highlight interventions offering the most benefits to older adults' health. Notably, modifications in vaccination such as with mTOR inhibitors show immediate clinical relevance and good tolerability. Other proposed treatments, including therapies with monoclonal antibodies fail to show clinical efficacy or tolerability needed for implementation at present. Although T-cell co-signaling fits a valuable niche for translational scientists to manage immunosenescence, future study would benefit from the inclusion of older adults with multiple long-term conditions and polypharmacy, ensuring better applicability to actual patients seen in clinical settings.
Collapse
Affiliation(s)
- Lucy Rimmer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Derek A. Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Avan A. Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shoba Amarnath
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
10
|
Kasamatsu T. Implications of Senescent T Cells for Cancer Immunotherapy. Cancers (Basel) 2023; 15:5835. [PMID: 38136380 PMCID: PMC10742305 DOI: 10.3390/cancers15245835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
T-cell senescence is thought to result from the age-related loss of the ability to mount effective responses to pathogens and tumor cells. In addition to aging, T-cell senescence is caused by repeated antigenic stimulation and chronic inflammation. Moreover, we demonstrated that T-cell senescence was induced by treatment with DNA-damaging chemotherapeutic agents. The characteristics of therapy-induced senescent T (TIS-T) cells and general senescent T cells are largely similar. Senescent T cells demonstrate an increase in the senescence-associated beta-galactosidase-positive population, cell cycle arrest, secretion of senescence-associated secretory phenotypic factors, and metabolic reprogramming. Furthermore, senescent T cells downregulate the expression of the co-stimulatory molecules CD27 and CD28 and upregulate natural killer cell-related molecules. Moreover, TIS-T cells showed increased PD-1 expression. However, the loss of proliferative capacity and decreased expression of co-stimulatory molecules associated with T-cell senescence cause a decrease in T-cell immunocompetence. In this review, we discuss the characteristics of senescent T-cells, including therapy-induced senescent T cells.
Collapse
Affiliation(s)
- Tetsuhiro Kasamatsu
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi 371-8514, Gunma, Japan
| |
Collapse
|
11
|
Palermo B, Franzese O, Frisullo G, D'Ambrosio L, Panetta M, Campo G, D'Andrea D, Sperduti I, De Nicola F, Goeman F, Gallina F, Visca P, Facciolo F, Nisticò P. CD28/PD1 co-expression: dual impact on CD8 + T cells in peripheral blood and tumor tissue, and its significance in NSCLC patients' survival and ICB response. J Exp Clin Cancer Res 2023; 42:287. [PMID: 37898752 PMCID: PMC10612243 DOI: 10.1186/s13046-023-02846-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/29/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) has significantly prolonged survival of non-small cell lung cancer (NSCLC) patients, although most patients develop mechanisms of resistance. Recently single-cell RNA-sequencing (scRNA-Seq) revealed a huge T-cell phenotypic and (dys)functional state variability. Accordingly, T-cell exhaustion is recognized as a functional adaptation, with a dynamic progression from a long-lived "pre-exhausted stem-like progenitor" to a "terminally exhausted" state. In this scenario it is crucial to understand the complex interplay between co-stimulatory and inhibitory molecules in CD8+ T-cell functionality. METHODS To gain a baseline landscape of the composition, functional states, and transcriptomic signatures predictive of prognosis, we analyzed CD8+ T-cell subsets characterized by the presence/absence of PD1 and CD28 from periphery, adjacent non-tumor tissue and tumor site of a cohort of treatment-naïve NSCLC patients, by integrated multiparametric flow cytometry, targeted multi-omic scRNA-seq analyses, and computational pipelines. RESULTS Despite the increased PD1 levels, an improved PD1+CD28+ T-cell polyfunctionality was observed with the transition from periphery to tumor site, associated with lack of TIGIT, TIM-3 and LAG-3, but not with Ag-experienced-marker CD11a. Differently from CD28+ T cells, the increased PD1 levels in the tumor were associated with reduced functionality in PD1+CD28- T cells. CD11ahigh, although expressed only in a small fraction of this subset, still sustained its functionality. Absence of TIGIT, TIM-3 and CTLA-4, alone or combined, was beneficial to CD28- T cells. Notably, we observed distinct TRM phenotypes in the different districts, with CD28+ T cells more capable of producing TGFβ in the periphery, potentially contributing to elevated CD103 levels. In contrast CD28- TRM mainly produced CXCL13 within the tumor. ScRNA-seq revealed 5 different clusters for each of the two subsets, with distinctive transcriptional profiles in the three districts. By interrogating the TCGA dataset of patients with lung adenocarcinoma (LUAD) and metastatic NSCLC treated with atezolizumab, we found signatures of heterogeneous TRM and "pre-exhausted" long-lived effector memory CD8+ T cells associated with improved response to ICB only in the presence of CD28. CONCLUSIONS Our findings identify signatures able to stratify survival of LUAD patients and predict ICB response in advanced NSCLC. CD28 is advocated as a key determinant in the signatures identified, in both periphery and tumor site, thus likely providing feasible biomarkers of ICB response.
Collapse
Affiliation(s)
- Belinda Palermo
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe Frisullo
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenzo D'Ambrosio
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Mariangela Panetta
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Campo
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Daniel D'Andrea
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Isabella Sperduti
- Biostatistics and Scientific Direction, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | | | - Frauke Goeman
- SAFU Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Filippo Gallina
- Thoracic-Surgery Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Paolo Visca
- Pathology Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Facciolo
- Thoracic-Surgery Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
12
|
Martyshkina YS, Tereshchenko VP, Bogdanova DA, Rybtsov SA. Reliable Hallmarks and Biomarkers of Senescent Lymphocytes. Int J Mol Sci 2023; 24:15653. [PMID: 37958640 PMCID: PMC10647376 DOI: 10.3390/ijms242115653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The phenomenon of accumulation of senescent adaptive immunity cells in the elderly is attracting attention due to the increasing risk of global epidemics and aging of the global population. Elderly people are predisposed to various infectious and age-related diseases and are at higher risk of vaccination failure. The accumulation of senescent cells increases age-related background inflammation, "Inflammaging", causing lymphocyte exhaustion and cardiovascular, neurodegenerative, autoimmune and cancer diseases. Here, we present a comprehensive contemporary review of the mechanisms and phenotype of senescence in the adaptive immune system. Although modern research has not yet identified specific markers of aging lymphocytes, several sets of markers facilitate the separation of the aging population based on normal memory and exhausted cells for further genetic and functional analysis. The reasons for the higher predisposition of CD8+ T-lymphocytes to senescence compared to the CD4+ population are also discussed. We point out approaches for senescent-lymphocyte-targeting markers using small molecules (senolytics), antibodies and immunization against senescent cells. The suppression of immune senescence is the most relevant area of research aimed at developing anti-aging and anti-cancer therapy for prolonging the lifespan of the global population.
Collapse
Affiliation(s)
- Yuliya S. Martyshkina
- Division of Immunobiology and Biomedicine, Center for Genetics and Life Sciences, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia; (Y.S.M.)
| | - Valeriy P. Tereshchenko
- Resource Center for Cell Technology and Immunology, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia
| | - Daria A. Bogdanova
- Division of Immunobiology and Biomedicine, Center for Genetics and Life Sciences, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia; (Y.S.M.)
| | - Stanislav A. Rybtsov
- Resource Center for Cell Technology and Immunology, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia
| |
Collapse
|
13
|
Kasamatsu T, Awata-Shiraiwa M, Ishihara R, Murakami Y, Masuda Y, Gotoh N, Oda T, Yokohama A, Matsumura I, Handa H, Tsukamoto N, Murakami H, Saitoh T. Sub-lethal doses of chemotherapeutic agents induce senescence in T cells and upregulation of PD-1 expression. Clin Exp Med 2023; 23:2695-2703. [PMID: 36913034 DOI: 10.1007/s10238-023-01034-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023]
Abstract
Cellular senescence is a stable cell cycle arrest, usually in response to internal and/or external stress, including telomere dysfunction, abnormal cellular growth, and DNA damage. Several chemotherapeutic drugs, such as melphalan (MEL) and doxorubicin (DXR), induce cellular senescence in cancer cells. However, it is not clear whether these drugs induce senescence in immune cells. We evaluated the induction of cellular senescence in T cells were derived from human peripheral blood mononuclear cells (PBMNCs) in healthy donors using sub-lethal doses of chemotherapeutic agents. The PBMNCs were kept overnight in RPMI 1640 medium with 2% phytohemagglutinin and 10% fetal bovine serum and then cultured in RPMI 1640 with 20 ng/mL IL-2 and sub-lethal doses of chemotherapeutic drugs (2 μM MEL and 50 nM DXR) for 48 h. Sub-lethal doses of chemotherapeutic agents induced phenotypes associated with senescence, such as the formation of γH2AX nuclear foci, cell proliferation arrest, and induction of senescence-associated beta-galactosidase (SA-β-Gal) activity, (control vs. MEL, DXR; median mean fluorescence intensity (MFI) 1883 (1130-2163) vs. 2233 (1385-2254), 2406.5 (1377-3119), respectively) in T cells. IL6 and SPP1 mRNA, which are senescence-associated secretory phenotype (SASP) factors, were significantly upregulated by sublethal doses of MEL and DXR compared to the control (P = 0.043 and 0.018, respectively). Moreover, sub-lethal doses of chemotherapeutic agents significantly enhanced the expression of programmed death 1 (PD-1) on CD3 + CD4 + and CD3 + CD8 + T cells compared to the control (CD4 + T cells; P = 0.043, 0.043, and 0.043, respectively, CD8 + T cells; P = 0.043, 0.043, and 0.043, respectively). Our results suggest that sub-lethal doses of chemotherapeutic agents induce senescence in T cells and tumor immunosuppression by upregulating PD-1 expression on T cells.
Collapse
Affiliation(s)
- Tetsuhiro Kasamatsu
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8514, Japan.
| | - Maaya Awata-Shiraiwa
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8514, Japan
- Gunma University of Health and Welfare, 191-1 Kawamagari-Cho, Maebashi, Gunma, 371-0823, Japan
| | - Rei Ishihara
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8514, Japan
- Gunma University of Health and Welfare, 191-1 Kawamagari-Cho, Maebashi, Gunma, 371-0823, Japan
| | - Yuki Murakami
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8514, Japan
- Gunma University of Health and Welfare, 191-1 Kawamagari-Cho, Maebashi, Gunma, 371-0823, Japan
| | - Yuta Masuda
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8514, Japan
- Gunma University of Health and Welfare, 191-1 Kawamagari-Cho, Maebashi, Gunma, 371-0823, Japan
| | - Nanami Gotoh
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8514, Japan
| | - Tsukasa Oda
- Institute of Molecular and Cellular Regulation, Gunma University, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Akihiko Yokohama
- Blood Transfusion Service, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Ikuko Matsumura
- Department of Hematology, Gunma University, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-0034, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-0034, Japan
| | - Norifumi Tsukamoto
- Oncology Center, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Hirokazu Murakami
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8514, Japan
- Gunma University of Health and Welfare, 191-1 Kawamagari-Cho, Maebashi, Gunma, 371-0823, Japan
| | - Takayuki Saitoh
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8514, Japan
| |
Collapse
|
14
|
Jain A, Sturmlechner I, Weyand CM, Goronzy JJ. Heterogeneity of memory T cells in aging. Front Immunol 2023; 14:1250916. [PMID: 37662959 PMCID: PMC10471982 DOI: 10.3389/fimmu.2023.1250916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Immune memory is a requisite and remarkable property of the immune system and is the biological foundation of the success of vaccinations in reducing morbidity from infectious diseases. Some vaccines and infections induce long-lasting protection, but immunity to other vaccines and particularly in older adults rarely persists over long time periods. Failed induction of an immune response and accelerated waning of immune memory both contribute to the immuno-compromised state of the older population. Here we review how T cell memory is influenced by age. T cell memory is maintained by a dynamic population of T cells that are heterogeneous in their kinetic parameters under homeostatic condition and their function. Durability of T cell memory can be influenced not only by the loss of a clonal progeny, but also by broader changes in the composition of functional states and transition of T cells to a dysfunctional state. Genome-wide single cell studies on total T cells have started to provide insights on the influence of age on cell heterogeneity over time. The most striking findings were a trend to progressive effector differentiation and the activation of pro-inflammatory pathways, including the emergence of CD4+ and CD8+ cytotoxic subsets. Genome-wide data on antigen-specific memory T cells are currently limited but can be expected to provide insights on how changes in T cell subset heterogeneity and transcriptome relate to durability of immune protection.
Collapse
Affiliation(s)
- Abhinav Jain
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Ines Sturmlechner
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Cornelia M. Weyand
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Medicine, Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Jörg J. Goronzy
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Medicine, Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
15
|
Shive CL, Kowal CM, Desotelle AF, Nguyen Y, Carbone S, Kostadinova L, Davitkov P, O’Mara M, Reihs A, Siddiqui H, Wilson BM, Anthony DD. Endotoxemia Associated with Liver Disease Correlates with Systemic Inflammation and T Cell Exhaustion in Hepatitis C Virus Infection. Cells 2023; 12:2034. [PMID: 37626844 PMCID: PMC10453378 DOI: 10.3390/cells12162034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Both acute and chronic hepatitis C virus (HCV) infections are characterized by inflammation. HCV and reduced liver blood filtration contribute to inflammation; however, the mechanisms of systemic immune activation and dysfunction as a result of HCV infection are not clear. We measured circulating inflammatory mediators (IL-6, IP10, sCD163, sCD14), indices of endotoxemia (EndoCab, LBP, FABP), and T cell markers of exhaustion and senescence (PD-1, TIGIT, CD57, KLRG-1) in HCV-infected participants, and followed a small cohort after direct-acting anti-viral therapy. IL-6, IP10, Endocab, LBP, and FABP were elevated in HCV participants, as were T cell co-expression of exhaustion and senescence markers. We found positive associations between IL-6, IP10, EndoCab, LBP, and co-expression of T cell markers of exhaustion and senescence. We also found numerous associations between reduced liver function, as measured by plasma albumin levels, and T cell exhaustion/senescence, inflammation, and endotoxemia. We found positive associations between liver stiffness (TE score) and plasma levels of IL-6, IP10, and LBP. Lastly, plasma IP10 and the proportion of CD8 T cells co-expressing PD-1 and CD57 decreased after initiation of direct-acting anti-viral therapy. Although associations do not prove causality, our results support the model that translocation of microbial products, resulting from decreased liver blood filtration, during HCV infection drives chronic inflammation that results in T cell exhaustion/senescence and contributes to systemic immune dysfunction.
Collapse
Affiliation(s)
- Carey L. Shive
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
- Pathology Department, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Corinne M. Kowal
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Alexandra F. Desotelle
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Ynez Nguyen
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Sarah Carbone
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Lenche Kostadinova
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Perica Davitkov
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Megan O’Mara
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Alexandra Reihs
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Hinnah Siddiqui
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Brigid M. Wilson
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Donald D. Anthony
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
16
|
Kell L, Simon AK, Alsaleh G, Cox LS. The central role of DNA damage in immunosenescence. FRONTIERS IN AGING 2023; 4:1202152. [PMID: 37465119 PMCID: PMC10351018 DOI: 10.3389/fragi.2023.1202152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023]
Abstract
Ageing is the biggest risk factor for the development of multiple chronic diseases as well as increased infection susceptibility and severity of diseases such as influenza and COVID-19. This increased disease risk is linked to changes in immune function during ageing termed immunosenescence. Age-related loss of immune function, particularly in adaptive responses against pathogens and immunosurveillance against cancer, is accompanied by a paradoxical gain of function of some aspects of immunity such as elevated inflammation and increased incidence of autoimmunity. Of the many factors that contribute to immunosenescence, DNA damage is emerging as a key candidate. In this review, we discuss the evidence supporting the hypothesis that DNA damage may be a central driver of immunosenescence through senescence of both immune cells and cells of non-haematopoietic lineages. We explore why DNA damage accumulates during ageing in a major cell type, T cells, and how this may drive age-related immune dysfunction. We further propose that existing immunosenescence interventions may act, at least in part, by mitigating DNA damage and restoring DNA repair processes (which we term "genoprotection"). As such, we propose additional treatments on the basis of their evidence for genoprotection, and further suggest that this approach may provide a viable therapeutic strategy for improving immunity in older people.
Collapse
Affiliation(s)
- Loren Kell
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Anna Katharina Simon
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ghada Alsaleh
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Nuñez NG, Schmid J, Power L, Alberti C, Krishnarajah S, Kreutmair S, Unger S, Blanco S, Konigheim B, Marín C, Onofrio L, Kienzler JC, Costa-Pereira S, Ingelfinger F, Pasinovich ME, Castelli JM, Vizzotti C, Schaefer M, Villar-Vesga J, Mundt S, Merten CH, Sethi A, Wertheimer T, Lutz M, Vanoaica D, Sotomayor C, Gruppi A, Münz C, Cardozo D, Barbás G, Lopez L, Carreño P, Castro G, Raboy E, Gallego S, Morón G, Cervi L, Acosta Rodriguez EV, Maletto BA, Maccioni M, Becher B. High-dimensional analysis of 16 SARS-CoV-2 vaccine combinations reveals lymphocyte signatures correlating with immunogenicity. Nat Immunol 2023; 24:941-954. [PMID: 37095378 PMCID: PMC10232362 DOI: 10.1038/s41590-023-01499-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/22/2023] [Indexed: 04/26/2023]
Abstract
The range of vaccines developed against severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) provides a unique opportunity to study immunization across different platforms. In a single-center cohort, we analyzed the humoral and cellular immune compartments following five coronavirus disease 2019 (COVID-19) vaccines spanning three technologies (adenoviral, mRNA and inactivated virus) administered in 16 combinations. For adenoviral and inactivated-virus vaccines, heterologous combinations were generally more immunogenic compared to homologous regimens. The mRNA vaccine as the second dose resulted in the strongest antibody response and induced the highest frequency of spike-binding memory B cells irrespective of the priming vaccine. Priming with the inactivated-virus vaccine increased the SARS-CoV-2-specific T cell response, whereas boosting did not. Distinct immune signatures were elicited by the different vaccine combinations, demonstrating that the immune response is shaped by the type of vaccines applied and the order in which they are delivered. These data provide a framework for improving future vaccine strategies against pathogens and cancer.
Collapse
Affiliation(s)
- Nicolás Gonzalo Nuñez
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
- Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina.
| | - Jonas Schmid
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Laura Power
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Chiara Alberti
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Stefanie Kreutmair
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Susanne Unger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sebastián Blanco
- Facultad de Ciencias Médicas, Instituto de Virología 'Dr. J. M. Vanella' Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Brenda Konigheim
- Facultad de Ciencias Médicas, Instituto de Virología 'Dr. J. M. Vanella' Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Marín
- Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Luisina Onofrio
- Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | | | - Sara Costa-Pereira
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | | | - Carla Vizzotti
- Ministerio de Salud de la Nación, Buenos Aires, Argentina
| | - Maximilian Schaefer
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Juan Villar-Vesga
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Carla Helena Merten
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Aakriti Sethi
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Tobias Wertheimer
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Mirjam Lutz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Danusia Vanoaica
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Claudia Sotomayor
- Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Adriana Gruppi
- Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Christian Münz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Diego Cardozo
- Secretaría de Prevención y Promoción de la Salud, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina
| | - Gabriela Barbás
- Secretaría de Prevención y Promoción de la Salud, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina
| | - Laura Lopez
- Secretaría de Prevención y Promoción de la Salud, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina
| | - Paula Carreño
- Secretaría de Prevención y Promoción de la Salud, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina
| | - Gonzalo Castro
- Secretaría de Prevención y Promoción de la Salud, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina
| | - Elias Raboy
- Secretaría de Prevención y Promoción de la Salud, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina
| | - Sandra Gallego
- Facultad de Ciencias Médicas, Instituto de Virología 'Dr. J. M. Vanella' Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriel Morón
- Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Laura Cervi
- Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Eva V Acosta Rodriguez
- Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Belkys A Maletto
- Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Mariana Maccioni
- Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina.
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Gupta A, Marzook H, Ahmad F. Comorbidities and clinical complications associated with SARS-CoV-2 infection: an overview. Clin Exp Med 2023; 23:313-331. [PMID: 35362771 PMCID: PMC8972750 DOI: 10.1007/s10238-022-00821-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/12/2022] [Indexed: 01/08/2023]
Abstract
The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes major challenges to the healthcare system. SARS-CoV-2 infection leads to millions of deaths worldwide and the mortality rate is found to be greatly associated with pre-existing clinical conditions. The existing dataset strongly suggests that cardiometabolic diseases including hypertension, coronary artery disease, diabetes and obesity serve as strong comorbidities in coronavirus disease (COVID-19). Studies have also shown the poor outcome of COVID-19 in patients associated with angiotensin-converting enzyme-2 polymorphism, cancer chemotherapy, chronic kidney disease, thyroid disorder, or coagulation dysfunction. A severe complication of COVID-19 is mostly seen in people with compromised medical history. SARS-CoV-2 appears to attack the respiratory system causing pneumonia, acute respiratory distress syndrome, which lead to induction of severe systemic inflammation, multi-organ dysfunction, and death mostly in the patients who are associated with pre-existing comorbidity factors. In this article, we highlighted the key comorbidities and a variety of clinical complications associated with COVID-19 for a better understanding of the etiopathogenesis of COVID-19.
Collapse
Affiliation(s)
- Anamika Gupta
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, UAE
| | - Hezlin Marzook
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, UAE
| | - Firdos Ahmad
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, UAE.
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE.
| |
Collapse
|
19
|
Krimpenfort RA, Behr FM, Nieuwland M, de Rink I, Kerkhoven R, von Lindern M, Nethe M. E-Cadherin Expression Distinguishes Mouse from Human Hematopoiesis in the Basophil and Erythroid Lineages. Biomolecules 2022; 12:1706. [PMID: 36421719 PMCID: PMC9688100 DOI: 10.3390/biom12111706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 09/11/2024] Open
Abstract
E-cadherin is a key regulator of epithelial cell-cell adhesion, the loss of which accelerates tumor growth and invasion. E-cadherin is also expressed in hematopoietic cells as well as epithelia. The function of hematopoietic E-cadherin is, however, mostly elusive. In this study, we explored the validity of mouse models to functionally investigate the role of hematopoietic E-cadherin in human hematopoiesis. We generated a hematopoietic-specific E-cadherin knockout mouse model. In mice, hematopoietic E-cadherin is predominantly expressed within the basophil lineage, the expression of which is dispensable for the generation of basophils. However, neither E-cadherin mRNA nor protein were detected in human basophils. In contrast, human hematopoietic E-cadherin marks the erythroid lineage. E-cadherin expression in hematopoiesis thereby revealed striking evolutionary differences between the basophil and erythroid cell lineage in humans and mice. This is remarkable as E-cadherin expression in epithelia is highly conserved among vertebrates including humans and mice. Our study therefore revealed that the mouse does not represent a suitable model to study the function of E-cadherin in human hematopoiesis and an alternative means to study the role of E-cadherin in human erythropoiesis needs to be developed.
Collapse
Affiliation(s)
- Rosa A. Krimpenfort
- Sanquin Research, Landsteiner Laboratory, Academic Medical Centre, Department of Hematopoiesis, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Felix M. Behr
- Sanquin Research, Landsteiner Laboratory, Academic Medical Centre, Department of Hematopoiesis, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Marja Nieuwland
- Genomics Core Facility, Netherlands Cancer Institute, 1006 BE Amsterdam, The Netherlands
| | - Iris de Rink
- Genomics Core Facility, Netherlands Cancer Institute, 1006 BE Amsterdam, The Netherlands
| | - Ron Kerkhoven
- Genomics Core Facility, Netherlands Cancer Institute, 1006 BE Amsterdam, The Netherlands
| | - Marieke von Lindern
- Sanquin Research, Landsteiner Laboratory, Academic Medical Centre, Department of Hematopoiesis, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Micha Nethe
- Sanquin Research, Landsteiner Laboratory, Academic Medical Centre, Department of Hematopoiesis, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
20
|
Role of PARP Inhibitors in Cancer Immunotherapy: Potential Friends to Immune Activating Molecules and Foes to Immune Checkpoints. Cancers (Basel) 2022; 14:cancers14225633. [PMID: 36428727 PMCID: PMC9688455 DOI: 10.3390/cancers14225633] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induce cytotoxic effects as single agents in tumors characterized by defective repair of DNA double-strand breaks deriving from BRCA1/2 mutations or other abnormalities in genes associated with homologous recombination. Preclinical studies have shown that PARPi-induced DNA damage may affect the tumor immune microenvironment and immune-mediated anti-tumor response through several mechanisms. In particular, increased DNA damage has been shown to induce the activation of type I interferon pathway and up-regulation of PD-L1 expression in cancer cells, which can both enhance sensitivity to Immune Checkpoint Inhibitors (ICIs). Despite the recent approval of ICIs for a number of advanced cancer types based on their ability to reinvigorate T-cell-mediated antitumor immune responses, a consistent percentage of treated patients fail to respond, strongly encouraging the identification of combination therapies to overcome resistance. In the present review, we analyzed both established and unexplored mechanisms that may be elicited by PARPi, supporting immune reactivation and their potential synergism with currently used ICIs. This analysis may indicate novel and possibly patient-specific immune features that might represent new pharmacological targets of PARPi, potentially leading to the identification of predictive biomarkers of response to their combination with ICIs.
Collapse
|
21
|
Peng H, Wu S, Wang S, Yang Q, Wang L, Zhang S, Huang M, Li Y, Xiong P, Zhang Z, Cai Y, Li L, Deng Y, Deng Y. Sex differences exist in adult heart group 2 innate lymphoid cells. BMC Immunol 2022; 23:52. [PMCID: PMC9620621 DOI: 10.1186/s12865-022-00525-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Group 2 innate lymphoid cells (ILC2s) are the most dominant ILCs in heart tissue, and sex-related differences exist in mouse lung ILC2 phenotypes and functions; however, it is still unclear whether there are sex differences in heart ILC2s.
Results Compared with age-matched wild-type (WT) male mice, 8-week-old but not 3-week-old WT female mice harbored an obviously greater percentage and number of heart ILC2s in homeostasis. However, the percentage of killer-cell lectin-like receptor G1 (Klrg1)− ILC2s was higher, but the Klrg1+ ILC2s were lower in female mice than in male mice in both heart tissues of 3- and 8-week-old mice. Eight-week-old Rag2−/− mice also showed sex differences similar to those of age-matched WT mice. Regarding surface marker expression, compared to age-matched male mice, WT female mice showed higher expression of CD90.2 and Ki67 and lower expression of Klrg1 and Sca-1 in heart total ILC2s. There was no sex difference in IL-4 and IL-5 secretion by male and female mouse heart ILC2s. Increased IL-33 mRNA levels within the heart tissues were also found in female mice compared with male mice. By reanalyzing published single-cell RNA sequencing data, we found 2 differentially expressed genes between female and male mouse heart ILC2s. Gene set variation analysis revealed that the glycine, serine and threonine metabolism pathway was upregulated in female heart ILC2s. Subcluster analysis revealed that one cluster of heart ILC2s with relatively lower expression of Semaphorin 4a and thioredoxin interacting protein but higher expression of hypoxia-inducible lipid droplet-associated. Conclusions These results revealed greater numbers of ILC2s, higher expression of CD90.2, reduced Klrg1 and Sca-1 expression in the hearts of female mice than in male mice and no sex difference in IL-4 and IL-5 production in male and female mouse heart ILC2s. These sex differences in heart ILC2s might be due to the heterogeneity of IL-33 within the heart tissue. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00525-0.
Collapse
Affiliation(s)
- Hongyan Peng
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Shuting Wu
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Shanshan Wang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060 People’s Republic of China
| | - Qinglan Yang
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Lili Wang
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Shuju Zhang
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Minghui Huang
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Yana Li
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Peiwen Xiong
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Zhaohui Zhang
- grid.410570.70000 0004 1760 6682Institute of Materia Medica, College of Pharmacy and Laboratory Medicine Science, Army Medical University (Third Military Medical University), Chongqing, 400038 China
| | - Yue Cai
- grid.233520.50000 0004 1761 4404Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 China
| | - Liping Li
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Youcai Deng
- grid.410570.70000 0004 1760 6682Institute of Materia Medica, College of Pharmacy and Laboratory Medicine Science, Army Medical University (Third Military Medical University), Chongqing, 400038 China ,grid.410570.70000 0004 1760 6682Department of Hematology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Yafei Deng
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| |
Collapse
|
22
|
Adeegbe D, Barbi J, Wing J. Editorial: Regulatory T lymphocytes in cancer immunity. Front Immunol 2022; 13:1065570. [PMID: 36353629 PMCID: PMC9639678 DOI: 10.3389/fimmu.2022.1065570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 10/13/2024] Open
Affiliation(s)
- Dennis Adeegbe
- Department of Immunology, H. Lee. Moffitt Cancer Center, Tampa, FL, United States
| | - Joseph Barbi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - James Wing
- Human Immunology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| |
Collapse
|
23
|
Saito M, Suzuki H, Asano T, Tanaka T, Yoshikawa T, Kaneko MK, Kato Y. KLMab-1: An Anti-human KLRG1 Monoclonal Antibody for Immunocytochemistry. Monoclon Antib Immunodiagn Immunother 2022; 41:279-284. [PMID: 36306514 DOI: 10.1089/mab.2022.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Immune checkpoint molecules have received attention as targets of cancer immunotherapy. Killer cell lectin-like receptor subfamily G member 1 (KLRG1) is one of the immune checkpoint molecules expressed in CD4+ T, CD8+ T, and natural killer (NK) cells. KLRG1 exhibits antiviral and antitumor immunity, and its expression in T and NK cells is upregulated by viral infectious diseases and some tumors. Thus, monoclonal antibodies (mAbs) for KLRG1 would be useful tools for the diagnosis and immunotherapy against viral infectious diseases and cancers. We have developed anti-human KLRG1 (hKLRG1) mAb (clone KLMab-1, mouse IgG1, kappa) by the Cell-Based Immunization and Screening method. We have also demonstrated that KLMab-1 recognizes both exogenous and endogenous hKLRG1 in flow cytometry. In this study, we first showed that KLMab-1 and its recombinant mAb (recKLMab-1) bound to exogenous hKLRG1 overexpressed in Chinese hamster ovary (CHO)-K1 cells, but not in parental CHO-K1 cells, in immunocytochemistry. We next showed that both mAbs detected endogenous hKLRG1 expressed in human NK cells. These results demonstrate that KLMab-1 and recKLMab-1 are available for immunocytochemistry.
Collapse
Affiliation(s)
- Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, and Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, and Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, and Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Antibody Drug Development, and Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
24
|
Seymour F, Carmichael J, Taylor C, Parrish C, Cook G. Immune senescence in multiple myeloma-a role for mitochondrial dysfunction? Leukemia 2022; 36:2368-2373. [PMID: 35879358 DOI: 10.1038/s41375-022-01653-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Age-related immune dysfunction is primarily mediated by immunosenescence which results in ineffective clearance of infective pathogens, poor vaccine responses and increased susceptibility to multi-morbidities. Immunosenescence-related immunometabolic abnormalities are associated with accelerated aging, an inflammatory immune response (inflammaging) and ultimately frailty syndromes. In addition, several conditions can accelerate the development of immunosenescence, including cancer. This is a bi-directional interaction since inflammaging may create a permissive environment for tumour development. Multiple myeloma (MM) is a mature B-cell malignancy that presents in the older population. MM exemplifies the interaction of age- (Host Response Biology; HRB) and disease-related immunological dysfunction, contributing to the development of a frailty syndrome which impairs the therapeutic impact of recent advances in treatment strategies. Understanding the mechanisms by which accelerated immunological aging is induced and the ways in which a tumour such as MM influences this process is key to overcoming therapeutic barriers. A link between cellular mitochondrial dysfunction and the acquisition of an abnormal immune phenotype has recently been described and has widespread physiological consequence beyond the impact on the immune system. Here we outline our current understanding of normal immune aging, describe the mechanism of immunometabolic dysfunction in accelerating this process, and propose the role these processes are playing in the pathogenesis of MM.
Collapse
Affiliation(s)
- Frances Seymour
- Department of Haematology, Leeds Cancer Centre, Leeds Teaching Hospitals Trust, Leeds, UK.
| | - Jonathan Carmichael
- Department of Haematology, Leeds Cancer Centre, Leeds Teaching Hospitals Trust, Leeds, UK
- NIHR (Leeds) Medtech & In vitro Diagnostic Cooperative, Leeds, UK
| | - Claire Taylor
- Experimental Haematology, Leeds Institute of Medical Research, University of Leeds UK, Leeds, UK
| | - Christopher Parrish
- Department of Haematology, Leeds Cancer Centre, Leeds Teaching Hospitals Trust, Leeds, UK
- Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trial Research, University of Leeds UK, Leeds, UK
| | - Gordon Cook
- Department of Haematology, Leeds Cancer Centre, Leeds Teaching Hospitals Trust, Leeds, UK
- NIHR (Leeds) Medtech & In vitro Diagnostic Cooperative, Leeds, UK
- Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trial Research, University of Leeds UK, Leeds, UK
| |
Collapse
|
25
|
Melia F, Udomjarumanee P, Zinovkin D, Arghiani N, Pranjol MZI. Pro-tumorigenic role of type 2 diabetes-induced cellular senescence in colorectal cancer. Front Oncol 2022; 12:975644. [PMID: 36059680 PMCID: PMC9434004 DOI: 10.3389/fonc.2022.975644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide. The disease still remains incurable and highly lethal in the advanced stage, representing a global health concern. Therefore, it is essential to understand the causes and risk factors leading to its development. Because age-related cellular senescence and type 2 diabetes (T2D) have been recognised as risk factors for CRC development, the recent finding that type 2 diabetic patients present an elevated circulating volume of senescent cells raises the question whether type 2 diabetes facilitates the process of CRC tumorigenesis by inducing premature cell senescence. In this review, we will discuss the mechanisms according to which T2D induces cellular senescence and the role of type 2 diabetes-induced cellular senescence in the pathogenesis and progression of colorectal cancer. Lastly, we will explore the current therapeutic approaches and challenges in targeting senescence.
Collapse
Affiliation(s)
- Francesco Melia
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Palita Udomjarumanee
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dmitry Zinovkin
- Department of Pathology, Gomel State Medical University, Gomel, Belarus
| | - Nahid Arghiani
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- *Correspondence: Nahid Arghiani, ; Md Zahidul Islam Pranjol,
| | - Md Zahidul Islam Pranjol
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- *Correspondence: Nahid Arghiani, ; Md Zahidul Islam Pranjol,
| |
Collapse
|
26
|
Qian H, Dong D, Fan P, Feng Y, Peng Y, Yao X, Wang R. Expression of KLRG1 on subpopulations of lymphocytes in the peripheral blood of patients with locally advanced nasopharyngeal carcinoma and prognostic analysis. PRECISION RADIATION ONCOLOGY 2022. [DOI: 10.1002/pro6.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Hengjun Qian
- Chinese Academy of Medical Sciences Key Laboratory of Cancer Immunotherapy and Radiotherapy The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- Xinjiang Key Laboratory of Oncology The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Danning Dong
- Chinese Academy of Medical Sciences Key Laboratory of Cancer Immunotherapy and Radiotherapy The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- Xinjiang Key Laboratory of Oncology The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Peiwen Fan
- Chinese Academy of Medical Sciences Key Laboratory of Cancer Immunotherapy and Radiotherapy The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- Xinjiang Key Laboratory of Oncology The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Yaning Feng
- Chinese Academy of Medical Sciences Key Laboratory of Cancer Immunotherapy and Radiotherapy The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- Xinjiang Key Laboratory of Oncology The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Yanchun Peng
- Chinese Academy of Medical Sciences Oxford Institute University of Oxford Oxford Oxfordshire UK
| | - Xuan Yao
- Chinese Academy of Medical Sciences Oxford Institute University of Oxford Oxford Oxfordshire UK
| | - Ruozheng Wang
- Chinese Academy of Medical Sciences Key Laboratory of Cancer Immunotherapy and Radiotherapy The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- Xinjiang Key Laboratory of Oncology The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi China
| |
Collapse
|
27
|
Shive C, Pandiyan P. Inflammation, Immune Senescence, and Dysregulated Immune Regulation in the Elderly. FRONTIERS IN AGING 2022; 3:840827. [PMID: 35821823 PMCID: PMC9261323 DOI: 10.3389/fragi.2022.840827] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/30/2022] [Indexed: 12/22/2022]
Abstract
An optimal immune response requires the appropriate interaction between the innate and the adaptive arms of the immune system as well as a proper balance of activation and regulation. After decades of life, the aging immune system is continuously exposed to immune stressors and inflammatory assaults that lead to immune senescence. In this review, we will discuss inflammaging in the elderly, specifically concentrating on IL-6 and IL-1b in the context of T lymphocytes, and how inflammation is related to mortality and morbidities, specifically cardiovascular disease and cancer. Although a number of studies suggests that the anti-inflammatory cytokine TGF-b is elevated in the elderly, heightened inflammation persists. Thus, the regulation of the immune response and the ability to return the immune system to homeostasis is also important. Therefore, we will discuss cellular alterations in aging, concentrating on senescent T cells and CD4+ CD25+ FOXP3+ regulatory T cells (Tregs) in aging
Collapse
Affiliation(s)
- Carey Shive
- Louis Stokes Cleveland VA Medical Center, United States Department of Veterans Affairs, Cleveland, OH, United States.,Case Western Reserve University, Cleveland, OH, United States
| | - Pushpa Pandiyan
- Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
28
|
Borys SM, Bag AK, Brossay L, Adeegbe DO. The Yin and Yang of Targeting KLRG1 + Tregs and Effector Cells. Front Immunol 2022; 13:894508. [PMID: 35572605 PMCID: PMC9098823 DOI: 10.3389/fimmu.2022.894508] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
The literature surrounding KLRG1 has primarily focused on NK and CD8+ T cells. However, there is evidence that the most suppressive Tregs express KLRG1. Until now, the role of KLRG1 on Tregs has been mostly overlooked and remains to be elucidated. Here we review the current literature on KLRG1 with an emphasis on the KLRG1+ Treg subset role during cancer development and autoimmunity. KLRG1 has been recently proposed as a new checkpoint inhibitor target, but these studies focused on the effects of KLRG1 blockade on effector cells. We propose that when designing anti-tumor therapies targeting KLRG1, the effects on both effector cells and Tregs will have to be considered.
Collapse
Affiliation(s)
- Samantha M Borys
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, United States
| | - Arup K Bag
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, United States
| | - Dennis O Adeegbe
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|
29
|
Pieren DKJ, Smits NAM, Postel RJ, Kandiah V, de Wit J, van Beek J, van Baarle D, Guichelaar T. Co-Expression of TIGIT and Helios Marks Immunosenescent CD8+ T Cells During Aging. Front Immunol 2022; 13:833531. [PMID: 35651622 PMCID: PMC9148977 DOI: 10.3389/fimmu.2022.833531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aging leads to alterations in the immune system that result in ineffective responsiveness against pathogens. Features of this process, collectively known as immunosenescence, accumulate in CD8+ T cells with age and have been ascribed to differentiation of these cells during the course of life. Here we aimed to identify novel markers in CD8+ T cells associated with immunosenescence. Furthermore, we assessed how these markers relate to the aging-related accumulation of highly differentiated CD27-CD28- cells. We found that co-expression of the transcription factor Helios and the aging-related marker TIGIT identifies CD8+ T cells that fail to proliferate and show impaired induction of activation markers CD69 and CD25 in response to stimulation in vitro. Despite this, in blood of older adults we found TIGIT+Helios+ T cells to become highly activated during an influenza-A virus infection, but these higher frequencies of activated TIGIT+Helios+ T cells associate with longer duration of coughing. Moreover, in healthy individuals, we found that TIGIT+Helios+ CD8+ T cells accumulate with age in the highly differentiated CD27-CD28- population. Interestingly, TIGIT+Helios+ CD8+ T cells also accumulate with age among the less differentiated CD27+CD28- T cells before their transit into the highly differentiated CD27-CD28- stage. This finding suggests that T cells with immunosenescent features become prominent at old age also within the earlier differentiation states of these cells. Our findings show that co-expression of TIGIT and Helios refines the definition of immunosenescent CD8+ T cells and challenge the current dogma of late differentiation stage as proxy for T-cell immunosenescence.
Collapse
Affiliation(s)
- Daan K. J. Pieren
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Noortje A. M. Smits
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Rimke J. Postel
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Vinitha Kandiah
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Josine van Beek
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Debbie van Baarle
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Teun Guichelaar
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
- *Correspondence: Teun Guichelaar,
| |
Collapse
|
30
|
Matos TR, Gehad A, Teague JE, Dyring-Andersen B, Benezeder T, Dowlatshahi M, Crouch J, Watanabe Y, O'Malley JT, Kupper TS, Yang C, Watanabe R, Clark RA. Central memory T cells are the most effective precursors of resident memory T cells in human skin. Sci Immunol 2022; 7:eabn1889. [PMID: 35452256 PMCID: PMC9435065 DOI: 10.1126/sciimmunol.abn1889] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The circulating precursor cells that give rise to human resident memory T cells (TRM) are poorly characterized. We used an in vitro differentiation system and human skin-grafted mice to study TRM generation from circulating human memory T cell subsets. In vitro TRM differentiation was associated with functional changes, including enhanced IL-17A production and FOXP3 expression in CD4+ T cells and granzyme B production in CD8+ T cells, changes that mirrored the phenotype of T cells in healthy human skin. Effector memory T cells (TEM) had the highest conversion rate to TRM in vitro and in vivo, but central memory T cells (TCM) persisted longer in the circulation, entered the skin in larger numbers, and generated increased numbers of TRM. In summary, TCM are highly efficient precursors of human skin TRM, a feature that may underlie their known association with effective long-term immunity.
Collapse
Affiliation(s)
- Tiago R Matos
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.,Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Ahmed Gehad
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica E Teague
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Beatrice Dyring-Andersen
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Theresa Benezeder
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Mitra Dowlatshahi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jack Crouch
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yoshinori Watanabe
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John T O'Malley
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas S Kupper
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chao Yang
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rei Watanabe
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Bell MR, Kutzler MA. An old problem with new solutions: Strategies to improve vaccine efficacy in the elderly. Adv Drug Deliv Rev 2022; 183:114175. [PMID: 35202770 DOI: 10.1016/j.addr.2022.114175] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/01/2022]
Abstract
Vaccination is the most effective measure to protect against infections. However, with increasing age, there is a progressive decline in the ability of the immune system to both protect against infection and develop protective immunity from vaccination. This age-related decline of the immune system is due to age-related changes in both the innate and adaptive immune systems. With an aging world population and increased risk of pandemics, there is a need to continue to develop strategies to increase vaccine responses in the elderly. Here, the major age-related changes that occur in both the innate and adaptive immune responses that impair the response to vaccination in the elderly will be highlighted. Existing and future strategies to improve vaccine efficacy in the elderly will then be discussed, including adjuvants, delivery methods, and formulation. These strategies provide mechanisms to improve the efficacy of existing vaccines and develop novel vaccines for the elderly.
Collapse
|
32
|
Visram A, Kourelis TV. Aging-associated immune system changes in multiple myeloma: The dark side of the moon. Cancer Treat Res Commun 2021; 29:100494. [PMID: 34837796 DOI: 10.1016/j.ctarc.2021.100494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 11/18/2021] [Indexed: 02/08/2023]
Abstract
Multiple myeloma (MM) is a disease of the elderly. Changes that occur in the immune system with aging, also known as immunosenescence, have been associated with decreased tumor immunosurveillance and are thought to contribute to the development of MM and other cancers in the elderly. Once MM establishes itself in the bone marrow, immunosenescence related changes have been observed in the immune tumor microenvironment (iTME) and are driven by the malignant cells. The efficacy of novel immunotherapies used to treat MM has been blunted by detrimental iTME changes that occur at later disease stages and are, to some extent, driven by prior therapies. In this review, we discuss general changes that occur in the immune system with aging as well as our current knowledge of immunosenescence in MM. We discuss the differences and overlap between T cell senescence and exhaustion as well as potential methods to prevent or reverse immunosenescence. We focus predominantly on T cell immunosenescence which has been better evaluated in this disease and is more pertinent to novel MM immunotherapies. Our lack of understanding of the drivers of immunosenescence at each stage of the disease, from precursor stages to heavily pretreated MM, represents a major barrier to improving the efficacy of novel and existing therapies.
Collapse
Affiliation(s)
- Alissa Visram
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN United States; Department of Medicine, Division of Hematology, University of Ottawa, Ottawa Hospital Research Institute, Ontario, Canada
| | - Taxiarchis V Kourelis
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN United States.
| |
Collapse
|
33
|
Xu X, Ye L, Zhang Q, Shen H, Li S, Zhang X, Ye M, Liang T. Group-2 Innate Lymphoid Cells Promote HCC Progression Through CXCL2-Neutrophil-Induced Immunosuppression. Hepatology 2021; 74:2526-2543. [PMID: 33829508 PMCID: PMC8597094 DOI: 10.1002/hep.31855] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/27/2021] [Accepted: 03/28/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Due to their inherent characteristics, the function of group-2 innate lymphoid cells (ILC2s) varies in a context-dependent manner. ILC2s are involved in certain liver diseases; however, their involvement in HCC is unknown. In the present study, we assessed the role of an HCC-derived ILC2 population in tumor progression. APPROACH AND RESULTS Through FACS and single-cell RNA sequencing, we discovered that ILC2s were highly enriched in human HCC and correlated significantly with tumor recurrence and worse progression-free survival as well as overall survival in patients. Mass cytometry identified a subset of HCC-derived ILC2s that had lost the expression of killer cell lectin-like receptor subfamily G, member 1 (KLRG1). Distinct from their circulating counterparts, these hepatic ILC2s highly expressed CD69 and an array of tissue resident-related genes. Furthermore, reduction of E-cadherin in tumor cells caused the loss of KLRG1 expression in ILC2s, leading to their increased proliferation and subsequent accumulation in HCC sites. The KLRG1- ILC2 subset showed elevated production of chemotaxis factors, including C-X-C motif chemokine (C-X-C motif) ligand (CXCL)-2 and CXCL8, which in turn recruited neutrophils to form an immunosuppressive microenvironment, leading to tumor progression. Accordingly, restoring KLRG1 in ILC2s, inhibiting CXCL2 in ILC2s, or depleting neutrophils inhibited tumor progression in a murine HCC model. CONCLUSIONS We identified HCC-associated ILC2s as an immune regulatory cell type that promotes tumor development, suggesting that targeting these ILC2s might lead to new treatments for HCC.
Collapse
Affiliation(s)
- Xingyuan Xu
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhouChina
| | - Longyun Ye
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhouChina
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhouChina
| | - Hang Shen
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhouChina
| | - Shanshan Li
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhouChina
| | - Xiaoyu Zhang
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhouChina
| | - Mao Ye
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhouChina
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhouChina,Innovation Center for the Study of Pancreatic Disease of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
34
|
Methods for Characterization of Senescent Circulating and Tumor-Infiltrating T-Cells: An Overview from Multicolor Flow Cytometry to Single-Cell RNA Sequencing. Methods Mol Biol 2021; 2325:79-95. [PMID: 34053052 DOI: 10.1007/978-1-0716-1507-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Immunosenescence is the general term used to describe the aging-associated decline of immunological function that explains the higher susceptibility to infectious diseases and cancer, increased autoimmunity, or the reduced effectiveness of vaccinations. Senescence of CD8+ T-cells has been described in all these conditions.The most important classical markers of T senescent cells are the cell cycle inhibitors p16ink4a, p21, and p53, together with positivity for SA-βgal expression and the acquirement of a peculiar IFNγ -based secretory phenotype commonly defined SASP (Senescence Associated Secretory Phenotype). Other surface markers are the CD28 and CD27 loss together with gain of expression of CD45RA, CD57, TIGIT, and/or KLRG1. However, this characterization could not be sufficient to distinguish from truly senescent cells and exhausted T-cells. Furthermore, more complexity is added by the wide heterogeneity of T-cells subset in aged individuals or in the tumor microenvironment. A combined analysis by multicolor flow cytometry for surface and intracellular markers integrated with gene-expression arrays and single-cell RNA sequencing is required to develop effective interventions for therapeutic modulation of specific T-cell subsets. The RNASeq offers the great possibility to reveal at single-cell resolution the exact molecular hallmarks of senescent CD8+ T-cells without the limitations of bulk analysis. Furthermore, the comprehensive integration of multidimensional approaches (genomics, epigenomics, proteomics, metabolomics) will increase our global understanding of how immunosenescence of T-cells is interlinked to human aging.
Collapse
|
35
|
Yun JH, Lee C, Liu T, Liu S, Kim EY, Xu S, Curtis JL, Pinello L, Bowler RP, Silverman EK, Hersh CP, Zhou X. Hedgehog interacting protein-expressing lung fibroblasts suppress lymphocytic inflammation in mice. JCI Insight 2021; 6:e144575. [PMID: 34375314 PMCID: PMC8492352 DOI: 10.1172/jci.insight.144575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 07/21/2021] [Indexed: 11/30/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is mainly caused by cigarette smoking and characterized by chronic inflammation in vulnerable individuals. However, it is unknown how genetic factors may shape chronic inflammation in COPD. To understand how hedgehog interacting protein, encoded by HHIP gene identified in the genome-wide association study in COPD, plays a role in inflammation, we utilized Hhip+/– mice that present persistent inflammation and emphysema upon aging similar to that observed in human COPD. By performing single-cell RNA sequencing of the whole lung from mice at different ages, we found that Hhip+/– mice developed a cytotoxic immune response with a specific increase in killer cell lectin-like receptor G1–positive CD8+ T cells with upregulated Ifnγ expression recapitulating human COPD. Hhip expression was restricted to a lung fibroblast subpopulation that had increased interaction with CD8+ T lymphocytes in Hhip+/– compared with Hhip+/+ during aging. Hhip-expressing lung fibroblasts had upregulated IL-18 pathway genes in Hhip+/– lung fibroblasts, which was sufficient to drive increased levels of IFN-γ in CD8+ T cells ex vivo. Our finding provides insight into how a common genetic variation contributes to the amplified lymphocytic inflammation in COPD.
Collapse
Affiliation(s)
- Jeong H Yun
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - ChangHee Lee
- Department of Genetics, Harvard Medical School, Boston, United States of America
| | - Tao Liu
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Siqi Liu
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Edy Y Kim
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Shuang Xu
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Jeffrey L Curtis
- VA Center, University of Michigan Medical School, Ann Arbor, United States of America
| | - Luca Pinello
- Department of Pathology, Massachusetts General Hospital, Boston, United States of America
| | - Russell P Bowler
- Department of Medicine, National Jewish Health, Denver, United States of America
| | - Edwin K Silverman
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Craig P Hersh
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Xiaobo Zhou
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| |
Collapse
|
36
|
Ramello MC, Núñez NG, Tosello Boari J, Bossio SN, Canale FP, Abrate C, Ponce N, Del Castillo A, Ledesma M, Viel S, Richer W, Sedlik C, Tiraboschi C, Muñoz M, Compagno D, Gruppi A, Acosta Rodríguez EV, Piaggio E, Montes CL. Polyfunctional KLRG-1 +CD57 + Senescent CD4 + T Cells Infiltrate Tumors and Are Expanded in Peripheral Blood From Breast Cancer Patients. Front Immunol 2021; 12:713132. [PMID: 34386013 PMCID: PMC8353459 DOI: 10.3389/fimmu.2021.713132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/05/2021] [Indexed: 01/19/2023] Open
Abstract
Senescent T cells have been described during aging, chronic infections, and cancer; however, a comprehensive study of the phenotype, function, and transcriptional program of this T cell population in breast cancer (BC) patients is missing. Compared to healthy donors (HDs), BC patients exhibit an accumulation of KLRG-1+CD57+ CD4+ and CD8+ T cells in peripheral blood. These T cells infiltrate tumors and tumor-draining lymph nodes. KLRG-1+CD57+ CD4+ and CD8+ T cells from BC patients and HDs exhibit features of senescence, and despite their inhibitory receptor expression, they produce more effector cytokines and exhibit higher expression of Perforin, Granzyme B, and CD107a than non-senescent subsets. When compared to blood counterparts, tumor-infiltrating senescent CD4+ T cells show similar surface phenotype but reduced cytokine production. Transcriptional profiling of senescent CD4+ T cells from the peripheral blood of BC patients reveals enrichment in genes associated with NK or CD8+-mediated cytotoxicity, TCR-mediated stimulation, and cell exhaustion compared to non-senescent T cells. Comparison of the transcriptional profile of senescent CD4+ T cells from peripheral blood of BC patients with those of HDs highlighted marked similarities but also relevant differences. Senescent CD4+ T cells from BC patients show enrichment in T-cell signaling, processes involved in DNA replication, p53 pathways, oncogene-induced senescence, among others compared to their counterparts in HDs. High gene expression of CD4, KLRG-1, and B3GAT1 (CD57), which correlates with increased overall survival for BC patients, underscores the usefulness of the evaluation of the frequency of senescent CD4+ T cells as a biomarker in the follow-up of patients.
Collapse
Affiliation(s)
- Maria C Ramello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Nicolás G Núñez
- PSL Research University, Institut Curie Research Center, Translational Research Department, Paris, France; INSERM U932, Paris, France
| | - Jimena Tosello Boari
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,PSL Research University, Institut Curie Research Center, Translational Research Department, Paris, France; INSERM U932, Paris, France
| | - Sabrina N Bossio
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Fernando P Canale
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Carolina Abrate
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Nicolas Ponce
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | | | - Marta Ledesma
- Gynecology Deparment, Hospital Rawson, Córdoba, Argentina
| | - Sophie Viel
- PSL Research University, Institut Curie Research Center, Translational Research Department, Paris, France; INSERM U932, Paris, France
| | - Wilfrid Richer
- PSL Research University, Institut Curie Research Center, Translational Research Department, Paris, France; INSERM U932, Paris, France
| | - Christine Sedlik
- PSL Research University, Institut Curie Research Center, Translational Research Department, Paris, France; INSERM U932, Paris, France
| | - Carolina Tiraboschi
- Laboratory of Molecular and Functional Glyco-Oncology, IQUIBICEN-CONICET-UBA, CABA (Ciudad Autónoma de Buenos Aires), Argentina
| | - Marcos Muñoz
- Laboratorio de Medicina experimental y terapéutica, IMIBIO, Universidad Nacional de San Luis, San Luis, Argentina
| | - Daniel Compagno
- Laboratory of Molecular and Functional Glyco-Oncology, IQUIBICEN-CONICET-UBA, CABA (Ciudad Autónoma de Buenos Aires), Argentina
| | - Adriana Gruppi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Eva V Acosta Rodríguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Eliane Piaggio
- PSL Research University, Institut Curie Research Center, Translational Research Department, Paris, France; INSERM U932, Paris, France
| | - Carolina L Montes
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| |
Collapse
|
37
|
Stutte S, Ruf J, Kugler I, Ishikawa-Ankerhold H, Parzefall A, Marconi P, Maeda T, Kaisho T, Krug A, Popper B, Lauterbach H, Colonna M, von Andrian U, Brocker T. Type I interferon mediated induction of somatostatin leads to suppression of ghrelin and appetite thereby promoting viral immunity in mice. Brain Behav Immun 2021; 95:429-443. [PMID: 33895286 DOI: 10.1016/j.bbi.2021.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
Loss of appetite (anorexia) is a typical behavioral response to infectious diseases that often reduces body weight. Also, anorexia can be observed in cancer and trauma patients, causing poor quality of life and reduced prospects of positive therapeutic outcomes. Although anorexia is an acute symptom, its initiation and endocrine regulation during antiviral immune responses are poorly understood. During viral infections, plasmacytoid dendritic cells (pDCs) produce abundant type I interferon (IFN-I) to initiate first-line defense mechanisms. Here, by targeted ablation of pDCs and various in vitro and in vivo mouse models of viral infection and inflammation, we identified that IFN-I is a significant driver of somatostatin (SST). Consequently, SST suppressed the hunger hormone ghrelin that led to severe metabolic changes, anorexia, and rapid body weight loss. Furthermore, during vaccination with Modified Vaccinia Ankara virus (MVA), the SST-mediated suppression of ghrelin was critical to viral immune response, as ghrelin restrained the production of early cytokines by natural killer (NK) cells and pDCs, and impaired the clonal expansion of CD8+ T cells. Thus, the hormonal modulation of ghrelin through SST and the cytokine IFN-I is fundamental for optimal antiviral immunity, which comes at the expense of calorie intake.
Collapse
Affiliation(s)
- Susanne Stutte
- Institute for Immunology, Faculty of Medicine, LMU Munich, Germany; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, USA
| | - Janina Ruf
- Institute for Immunology, Faculty of Medicine, LMU Munich, Germany
| | - Ina Kugler
- Institute for Immunology, Faculty of Medicine, LMU Munich, Germany
| | | | - Andreas Parzefall
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Peggy Marconi
- Department of Chemical and Pharmaceutical Sciences (DipSCF), University of Ferrara, Italy
| | - Takahiro Maeda
- Departments of Island and Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1, Sakamoto, Nagasaki City, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama 641-8509, Japan
| | - Anne Krug
- Institute for Immunology, Faculty of Medicine, LMU Munich, Germany
| | - Bastian Popper
- Biomedical Center (BMC), Core Facility Animal Models, Medical Faculty, LMU Munich, Germany
| | | | - Marco Colonna
- Washington University, School of Medicine, St. Louis, USA
| | - Ulrich von Andrian
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, USA
| | - Thomas Brocker
- Institute for Immunology, Faculty of Medicine, LMU Munich, Germany.
| |
Collapse
|
38
|
Gustafson MP, Wheatley-Guy CM, Rosenthal AC, Gastineau DA, Katsanis E, Johnson BD, Simpson RJ. Exercise and the immune system: taking steps to improve responses to cancer immunotherapy. J Immunother Cancer 2021; 9:e001872. [PMID: 34215686 PMCID: PMC8256759 DOI: 10.1136/jitc-2020-001872] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2021] [Indexed: 12/18/2022] Open
Abstract
The remarkable success of cancer immunotherapies has provided new hope to cancer patients. Unfortunately, a significant proportion of patients remain unable to respond to immunotherapy or maintain durable clinical responses. The lack of objective responses likely results from profound immune dysfunction often observed in patients with cancer. There is substantial evidence that exercise and physical activity can reduce incidence and improve outcomes in cancer patients. As the immune system is highly responsive to exercise, one potential avenue to improve immune function is through exercise and physical activity. A single event of dynamic exercise results in the substantial mobilization of leukocytes with increased functional capacities into the circulation. Chronic, or long-term, exercise leads to higher physical fitness in terms of greater cardiorespiratory function and/or muscle strength and endurance. High aerobic capacity, as measured by maximal oxygen uptake, has been associated with the reduction of dysfunctional T cells and improvements in the abundance of some T cell populations. To be sure, however, the mechanisms of exercise-mediated immune changes are both extensive and diverse. Here, we examine the evidence and theorize how acute and chronic exercise could be used to improve responses to cancer immunotherapies including immune checkpoint inhibitors, dendritic cell vaccines, natural killer cell therapies, and adoptive T cell therapies such as chimeric antigen receptor (CAR) T cells. Although the parameters of optimal exercise to yield defined outcomes remain to be determined, the available current data provide a compelling justification for additional human studies and clinical trials investigating the adjuvant use of exercise in immuno-oncology.
Collapse
Affiliation(s)
- Michael P Gustafson
- Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | | | | | - Dennis A Gastineau
- Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Emmanuel Katsanis
- Pediatrics, Immunobiology, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Bruce D Johnson
- Department of Cardiovascular Diseases, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Richard J Simpson
- Pediatrics, Immunobiology, and Nutritional Sciences, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| |
Collapse
|
39
|
Functions and clinical significance of KLRG1 in the development of lung adenocarcinoma and immunotherapy. BMC Cancer 2021; 21:752. [PMID: 34187403 PMCID: PMC8243757 DOI: 10.1186/s12885-021-08510-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND As a marker of differentiation, Killer cell lectin like receptor G1 (KLRG1) plays an inhibitory role in human NK cells and T cells. However, its clinical role remains inexplicit. This work intended to investigate the predictive ability of KLRG1 on the efficacy of immune-checkpoint inhibitor in the treatment of lung adenocarcinoma (LUAD), as well as contribute to the possible molecular mechanisms of KLRG1 on LUAD development. METHODS Using data from the Gene Expression Omnibus, the Cancer Genome Atlas and the Genotype-Tissue Expression, we compared the expression of KLRG1 and its related genes Bruton tyrosine kinase (BTK), C-C motif chemokine receptor 2 (CCR2), Scm polycomb group protein like 4 (SCML4) in LUAD and normal lung tissues. We also established stable LUAD cell lines with KLRG1 gene knockdown and investigated the effect of KLRG1 knockdown on tumor cell proliferation. We further studied the prognostic value of the four factors in terms of overall survival (OS) in LUAD. Using data from the Gene Expression Omnibus, we further investigated the expression of KLRG1 in the patients with different responses after immunotherapy. RESULTS The expression of KLRG1, BTK, CCR2 and SCML4 was significantly downregulated in LUAD tissues compared to normal controls. Knockdown of KLRG1 promoted the proliferation of A549 and H1299 tumor cells. And low expression of these four factors was associated with unfavorable overall survival in patients with LUAD. Furthermore, low expression of KLRG1 also correlated with poor responses to immunotherapy in LUAD patients. CONCLUSION Based on these findings, we inferred that KLRG1 had significant correlation with immunotherapy response. Meanwhile, KLRG1, BTK, CCR2 and SCML4 might serve as valuable prognostic biomarkers in LUAD.
Collapse
|
40
|
Tata A, Dodard G, Fugère C, Leget C, Ors M, Rossi B, Vivier E, Brossay L. Combination blockade of KLRG1 and PD-1 promotes immune control of local and disseminated cancers. Oncoimmunology 2021; 10:1933808. [PMID: 34188973 PMCID: PMC8208121 DOI: 10.1080/2162402x.2021.1933808] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Checkpoint blockade therapy is effective against many cancers; however, new targets need to be identified to treat patients who do not respond to current treatment or demonstrate immune escape. Here, we showed that blocking the inhibitory receptor Killer cell lectin-like receptor G1 (KLRG1) enhances anti-tumor immunity mediated by NK cells and CD8+ T cells. We found that loss of KLRG1 signaling alone significantly decreased melanoma and breast cancer tumor growth in the lungs of mice. In addition, we demonstrated that KLRG1 blockade can synergize with PD-1 checkpoint therapy to increase the therapeutic efficacy compared to either treatment alone. This effect was even observed with tumors that do not respond to PD-1 checkpoint therapy. Double blockade therapy led to significantly decreased tumor size, increased frequency and activation of CD8+ T cells, and increased NK cell frequency and maturation in the tumor microenvironment. These findings demonstrate that KLRG1 is a novel checkpoint inhibitor target that affects NK and T cell anti-tumor immunity, both alone and in conjunction with established immunotherapies.
Collapse
Affiliation(s)
- Angela Tata
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, Rhode Island, USA
| | - Garvin Dodard
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, Rhode Island, USA
| | - Céline Fugère
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, Rhode Island, USA
| | | | - Mélody Ors
- Innate Pharma Research Labs., Marseille, France
| | | | - Eric Vivier
- Innate Pharma Research Labs., Marseille, France.,Centre d'Immunologie De Marseille-Luminy, Aix Marseille Université, Marseille, France.,Service d'Immunologie, Hôpital De La Timone, Assistance Publique-Hôpitaux De Marseille, Marseille, France
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, Rhode Island, USA.,Lead Contact
| |
Collapse
|
41
|
Legscha KJ, Antunes Ferreira E, Chamoun A, Lang A, Awwad MHS, Ton GNHQ, Galetzka D, Guezguez B, Hundemer M, Bourdon JC, Munder M, Theobald M, Echchannaoui H. Δ133p53α enhances metabolic and cellular fitness of TCR-engineered T cells and promotes superior antitumor immunity. J Immunother Cancer 2021; 9:jitc-2020-001846. [PMID: 34112738 PMCID: PMC8194333 DOI: 10.1136/jitc-2020-001846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background Tumor microenvironment-associated T cell senescence is a key limiting factor for durable effective cancer immunotherapy. A few studies have demonstrated the critical role of the tumor suppressor TP53-derived p53 isoforms in cellular senescence process of non-immune cells. However, their role in lymphocytes, in particular tumor-antigen (TA) specific T cells remain largely unexplored. Methods Human T cells from peripheral blood were retrovirally engineered to coexpress a TA-specific T cell receptor and the Δ133p53α-isoform, and characterized for their cellular phenotype, metabolic profile and effector functions. Results Phenotypic analysis of Δ133p53α-modified T cells revealed a marked reduction of the T-cell inhibitory molecules (ie, CD160 and TIGIT), a lower frequency of senescent-like CD57+ and CD160+ CD8+ T cell populations, and an increased number of less differentiated CD28+ T cells. Consistently, we demonstrated changes in the cellular metabolic program toward a quiescent T cell state. On a functional level, Δ133p53α-expressing T cells acquired a long-term proliferative capacity, showed superior cytokine secretion and enhanced tumor-specific killing in vitro and in mouse tumor model. Finally, we demonstrated the capacity of Δ133p53α to restore the antitumor response of senescent T cells isolated from multiple myeloma patients. Conclusion This study uncovered a broad effect of Δ133p53α isoform in regulating T lymphocyte function. Enhancing fitness and effector functions of senescent T cells by modulation of p53 isoforms could be exploited for future translational research to improve cancer immunotherapy and immunosenescence-related diseases.
Collapse
Affiliation(s)
- Kevin Jan Legscha
- Department of Hematology, Oncology and Pneumology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Edite Antunes Ferreira
- Department of Hematology, Oncology and Pneumology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Antonios Chamoun
- Department of Hematology, Oncology and Pneumology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexander Lang
- Department of Hematology, Oncology and Pneumology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | - Danuta Galetzka
- Department of Radiation Oncology and Radiotherapy, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Borhane Guezguez
- Department of Hematology, Oncology and Pneumology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.,German Cancer Consortium (DKTK), Partner Site, Mainz, Germany
| | - Michael Hundemer
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | - Markus Munder
- Department of Hematology, Oncology and Pneumology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.,Research Center for Immunotherapy (FZI), University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Theobald
- Department of Hematology, Oncology and Pneumology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.,German Cancer Consortium (DKTK), Partner Site, Mainz, Germany.,Research Center for Immunotherapy (FZI), University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hakim Echchannaoui
- Department of Hematology, Oncology and Pneumology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany .,German Cancer Consortium (DKTK), Partner Site, Mainz, Germany
| |
Collapse
|
42
|
Zhang Y, Li K, Li C, Liang W, Li K, Li J, Wei X, Yang J. An atypical KLRG1 in Nile tilapia involves in adaptive immunity as a potential marker for activated T lymphocytes. FISH & SHELLFISH IMMUNOLOGY 2021; 113:51-60. [PMID: 33798718 DOI: 10.1016/j.fsi.2021.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Killer cell lectin-like receptor G subfamily 1 (KLRG1) is a receptor generally expressed on effector CD8+ T cells or NK cells at terminal differentiation stage, and it will be highly induced for lymphocyte cytotoxicity upon pathogen infection or lymphocyte activation. However, little is known about the character or function of KLRG1 in lower vertebrates. In present study, we reappraised a molecule that previously defined as KLRG1 in the genomic sequence of Nile tilapia Oreochromis niloticus, and identified it as an atypical KLRG1-like molecule (defined as On-KLRG1-L), and illustrated its potential function serving as a marker representing effector T lymphocytes of fish species. On-KLRG1-L consists of two C-type lectin-like domains (CTLDs) without transmembrane region, and the tertiary structure of the CTLD is highly alike to that in mouse KLRG1. As a CTLD-containing protein, the recombinant On-KLRG1-L could bind PGN and several microbes in vitro. On-KLRG1-L was widely expressed in immune-associated tissues, with the highest expression level in the gill. Once Nile tilapia is infected by Aeromonas hydrophila, mRNA level of On-KLRG1-L in spleen lymphocytes were significantly up-regulated on 5 days after infection. Meanwhile, On-KLRG1-L protein was also induced on 5 or 8 days after A. hydrophila infection. Furthermore, we found both mRNA and protein levels of On-KLRG1-L were dramatically enhanced within several hours after spleen lymphocytes were activated by T cell-specific mitogen PHA in vitro. More importantly, the ratio of On-KLRG1-L+ T cells was also augmented after PHA stimulation. The observations suggested that the KLRG1-like molecule from Nile tilapia participated in lymphocyte activation and anti-bacterial adaptive immune response, and could serve as an activation marker of T lymphocytes. Our study thus provided new evidences to understand lymphocyte-mediated adaptive immunity of teleost.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Cheng Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wei Liang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kunming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiaqi Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
43
|
Mittelbrunn M, Kroemer G. Hallmarks of T cell aging. Nat Immunol 2021; 22:687-698. [PMID: 33986548 DOI: 10.1038/s41590-021-00927-z] [Citation(s) in RCA: 238] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
The aged adaptive immune system is characterized by progressive dysfunction as well as increased autoimmunity. This decline is responsible for elevated susceptibility to infection and cancer, as well as decreased vaccination efficacy. Recent evidence indicates that CD4+ T cell-intrinsic alteratins contribute to chronic inflammation and are sufficient to accelerate an organism-wide aging phenotype, supporting the idea that T cell aging plays a major role in body-wide deterioration. In this Review, we propose ten molecular hallmarks to represent common denominators of T cell aging. These hallmarks are grouped into four primary hallmarks (thymic involution, mitochondrial dysfunction, genetic and epigenetic alterations, and loss of proteostasis) and four secondary hallmarks (reduction of the TCR repertoire, naive-memory imbalance, T cell senescence, and lack of effector plasticity), and together they explain the manifestation of the two integrative hallmarks (immunodeficiency and inflammaging). A major challenge now is weighing the relative impact of these hallmarks on T cell aging and understanding their interconnections, with the final goal of defining molecular targets for interventions in the aging process.
Collapse
Affiliation(s)
- Maria Mittelbrunn
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain. .,Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China. .,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
44
|
Pieren DKJ, Smits NAM, Imholz S, Nagarajah B, van Oostrom CT, Brandt RMC, Vermeij WP, Dollé MET, Guichelaar T. Compromised DNA Repair Promotes the Accumulation of Regulatory T Cells With an Aging-Related Phenotype and Responsiveness. FRONTIERS IN AGING 2021; 2. [PMID: 35474946 PMCID: PMC9037984 DOI: 10.3389/fragi.2021.667193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Decline of immune function during aging has in part been ascribed to the accumulation of regulatory T cells (Tregs) and decreased T-cell responses with age. Aside from changes to T cells that occur over a lifetime, the impact of intracellular aging processes such as compromised DNA repair on T cells remains incompletely defined. Here we aimed to define the impact of compromised DNA repair on T-cell phenotype and responsiveness by studying T cells from mice with a deficiency in their DNA excision-repair gene Ercc1. These Ercc1 mutant (Ercc1−/Δ7) mice show accumulation of nuclear DNA damage resulting in accelerated aging. Similarly to wild-type aged mice, Ercc1−/Δ7 mice accumulated Tregs with reduced CD25 and increased PD-1 expression among their naive T cells. Ercc1-deficiency limited the capacity of Tregs, helper T cells, and cytotoxic T cells to proliferate and upregulate CD25 in response to T-cell receptor- and IL-2-mediated stimulation. The recent demonstration that the mammalian target of rapamycin (mTOR) may impair DNA repair lead us to hypothesize that changes induced in the T-cell population by compromised DNA repair may be slowed down or reversed by blocking mTOR with rapamycin. In vivo dietary treatment of Ercc1−/Δ7 mice with rapamycin did not reduce Treg levels, but highly increased the proportion of CD25+ and PD-1+ memory Tregs instead. Our study elucidates that compromised DNA repair promotes the accumulation of Tregs with an aging-related phenotype and causes reduced T-cell responsiveness, which may be independent of mTOR activation.
Collapse
Affiliation(s)
- Daan K. J. Pieren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Noortje A. M. Smits
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sandra Imholz
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Bhawani Nagarajah
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Conny T. van Oostrom
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | | - Wilbert P. Vermeij
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Martijn E. T. Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Teun Guichelaar
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- *Correspondence: Teun Guichelaar,
| |
Collapse
|
45
|
Hochheiser K, Wiede F, Wagner T, Freestone D, Enders MH, Olshansky M, Russ B, Nüssing S, Bawden E, Braun A, Bachem A, Gressier E, McConville R, Park SL, Jones CM, Davey GM, Gyorki DE, Tscharke D, Parish IA, Turner S, Herold MJ, Tiganis T, Bedoui S, Gebhardt T. Ptpn2 and KLRG1 regulate the generation and function of tissue-resident memory CD8+ T cells in skin. J Exp Med 2021; 218:212037. [PMID: 33914023 PMCID: PMC8091133 DOI: 10.1084/jem.20200940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 12/21/2020] [Accepted: 02/10/2021] [Indexed: 12/30/2022] Open
Abstract
Tissue-resident memory T cells (TRM cells) are key elements of tissue immunity. Here, we investigated the role of the regulator of T cell receptor and cytokine signaling, Ptpn2, in the formation and function of TRM cells in skin. Ptpn2-deficient CD8+ T cells displayed a marked defect in generating CD69+ CD103+ TRM cells in response to herpes simplex virus type 1 (HSV-1) skin infection. This was accompanied by a reduction in the proportion of KLRG1− memory precursor cells and a transcriptional bias toward terminal differentiation. Of note, forced expression of KLRG1 was sufficient to impede TRM cell formation. Normalizing memory precursor frequencies by transferring equal numbers of KLRG1− cells restored TRM generation, demonstrating that Ptpn2 impacted skin seeding with precursors rather than downstream TRM cell differentiation. Importantly, Ptpn2-deficient TRM cells augmented skin autoimmunity but also afforded superior protection from HSV-1 infection. Our results emphasize that KLRG1 repression is required for optimal TRM cell formation in skin and reveal an important role of Ptpn2 in regulating TRM cell functionality.
Collapse
Affiliation(s)
- Katharina Hochheiser
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia.,Peter MacCallum Cancer Centre Melbourne, Melbourne, Victoria, Australia
| | - Florian Wiede
- Peter MacCallum Cancer Centre Melbourne, Melbourne, Victoria, Australia.,Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Teagan Wagner
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - David Freestone
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Matthias H Enders
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Moshe Olshansky
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Brendan Russ
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Simone Nüssing
- Peter MacCallum Cancer Centre Melbourne, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Emma Bawden
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Asolina Braun
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Annabell Bachem
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Elise Gressier
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Robyn McConville
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Simone L Park
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Claerwen M Jones
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Gayle M Davey
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - David E Gyorki
- Peter MacCallum Cancer Centre Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, University of Melbourne, Parkville, Victoria, Australia
| | - David Tscharke
- The John Curtin School of Medical Research, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Ian A Parish
- Peter MacCallum Cancer Centre Melbourne, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen Turner
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Marco J Herold
- The Walter & Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Tony Tiganis
- Peter MacCallum Cancer Centre Melbourne, Melbourne, Victoria, Australia.,Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Sammy Bedoui
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Thomas Gebhardt
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
46
|
Shive CL, Freeman ML, Younes SA, Kowal CM, Canaday DH, Rodriguez B, Lederman MM, Anthony DD. Markers of T Cell Exhaustion and Senescence and Their Relationship to Plasma TGF-β Levels in Treated HIV+ Immune Non-responders. Front Immunol 2021; 12:638010. [PMID: 33868264 PMCID: PMC8044907 DOI: 10.3389/fimmu.2021.638010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/16/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Immune non-responders (INR) are HIV+, ART-controlled (>2 yrs) people who fail to reconstitute their CD4 T cell numbers. Systemic inflammation and markers of T cell senescence and exhaustion are observed in INR. This study aims to investigate T cell senescence and exhaustion and their possible association with soluble immune mediators and to understand the immune profile of HIV-infected INR. Selected participants were <50 years old to control for the confounder of older age. Methods: Plasma levels of IL-6, IP10, sCD14, sCD163, and TGF-β and markers of T cell exhaustion (PD-1, TIGIT) and senescence (CD57, KLRG-1) were measured in ART-treated, HIV+ participants grouped by CD4 T cell counts (n = 63). Immune parameters were also measured in HIV-uninfected, age distribution-matched controls (HC; n = 30). Associations between T cell markers of exhaustion and senescence and plasma levels of immune mediators were examined by Spearman rank order statistics. Results: Proportions of CD4 T cell subsets expressing markers of exhaustion (PD-1, TIGIT) and senescence (CD57, KLRG-1) were elevated in HIV+ participants. When comparing proportions between INR and IR, INR had higher proportions of CD4 memory PD-1+, EM CD57+, TEM TIGIT+ and CD8 EM and TEM TIGIT+ cells. Plasma levels of IL-6, IP10, and sCD14 were elevated during HIV infection. IP10 was higher in INR. Plasma TGF-β levels and CD4 cycling proportions of T regulatory cells were lower in INR. Proportions of CD4 T cells expressing TIGIT, PD-1, and CD57 positively correlated with plasma levels of IL-6. Plasma levels of TGF-β negatively correlated with proportions of TIGIT+ and PD-1+ T cell subsets. Conclusions: INR have lower levels of TGF-β and decreased proportions of cycling CD4 T regulatory cells and may have difficulty controlling inflammation. IP10 is elevated in INR and is linked to higher proportions of T cell exhaustion and senescence seen in INR.
Collapse
Affiliation(s)
- Carey L. Shive
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
- Center for AIDS Research, Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Michael L. Freeman
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Souheil-Antoine Younes
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Corinne M. Kowal
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - David H. Canaday
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Benigno Rodriguez
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Michael M. Lederman
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Donald D. Anthony
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- MetroHealth Medical Center, Division of Rheumatic Disease, Case Western Reserve, Cleveland, OH, United States
| |
Collapse
|
47
|
Chambers ES, Akbar AN. Can blocking inflammation enhance immunity during aging? J Allergy Clin Immunol 2021; 145:1323-1331. [PMID: 32386656 DOI: 10.1016/j.jaci.2020.03.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 02/09/2023]
Abstract
Aging is a global burden, and the increase in life span does not increase in parallel with health span. Therefore, older adults are currently living longer with chronic diseases, increased infections, and cancer. A characteristic of aging is the presence of chronic low-grade inflammation that is characterized by elevated concentrations of IL-6, TNF-α, and C-reactive protein, which has been termed inflammaging. Previous studies have demonstrated that chronic inflammation interferes with T-cell response and macrophage function and is also detrimental for vaccine responses. This raises the question of whether therapeutic strategies that reduce inflammation may be useful for improving immunity in older adults. In this review we discuss the potential causes of inflammaging, the cellular source of the inflammatory mediators, and the mechanisms by which inflammation may inhibit immunity. Finally, we describe existing interventions that target inflammation that have been used to enhance immunity during aging.
Collapse
Affiliation(s)
- Emma S Chambers
- Division of Infection and Immunity, University College London, London, United Kingdom; Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, United Kingdom.
| | - Arne N Akbar
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
48
|
Lioulios G, Fylaktou A, Papagianni A, Stangou M. T cell markers recount the course of immunosenescence in healthy individuals and chronic kidney disease. Clin Immunol 2021; 225:108685. [PMID: 33549833 DOI: 10.1016/j.clim.2021.108685] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Aging results in substantial changes in almost all cellular subpopulations within the immune system, including functional and phenotypic alterations. T lymphocytes, as the main representative population of cellular immunity, have been extensively studied in terms of modifications and adjustments during aging. Phenotypic alterations are attributed to three main mechanisms; a reduction of naïve T cell population with a shift to more differentiated forms, a subsequent oligoclonal expansion of naïve T cells characterized by repertoire restriction, and replicative insufficiency after repetitive activation. These changes and the subsequent phenotypic disorders are comprised in the term "immunosenescence". Similar changes seem to occur in chronic kidney disease, with T cells of young patients resembling those of healthy older individuals. A broad range of surface markers can be utilized to identify immunosenescent T cells. In this review, we will discuss the most important senescence markers and their potential connection with impaired renal function.
Collapse
Affiliation(s)
- Georgios Lioulios
- Department of Nephrology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece.
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration Hospital, Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Maria Stangou
- Department of Nephrology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| |
Collapse
|
49
|
T-Cell Dysfunction as a Limitation of Adoptive Immunotherapy: Current Concepts and Mitigation Strategies. Cancers (Basel) 2021; 13:cancers13040598. [PMID: 33546277 PMCID: PMC7913380 DOI: 10.3390/cancers13040598] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary T cells are immune cells that can be used to target infections or cancers. Adoptive T-cell immunotherapy leverages these properties and/or confers new features to T cells through ex vivo manipulations prior to their use in patients. However, as a “living drug,” the function of these cells can be hampered by several built-in physiological constraints and external factors that limit their efficacy. Manipulating T cells ex vivo can impart dysfunctional features to T cells through repeated stimulations and expansion, but it also offers many opportunities to improve the therapeutic potential of these cells, including emerging interventions to prevent or reverse T-cell dysfunction developing ex vivo or after transfer in patients. This review outlines the various forms of T-cell dysfunction, emphasizes how it affects various types of T-cell immunotherapy approaches, and describes current and anticipated strategies to limit T-cell dysfunction. Abstract Over the last decades, cellular immunotherapy has revealed its curative potential. However, inherent physiological characteristics of immune cells can limit the potency of this approach. Best defined in T cells, dysfunction associated with terminal differentiation, exhaustion, senescence, and activation-induced cell death, undermine adoptive cell therapies. In this review, we concentrate on how the multiple mechanisms that articulate the various forms of immune dysfunction impact cellular therapies primarily involving conventional T cells, but also other lymphoid subtypes. The repercussions of immune cell dysfunction across the full life cycle of cell therapy, from the source material, during manufacturing, and after adoptive transfer, are discussed, with an emphasis on strategies used during ex vivo manipulations to limit T-cell dysfunction. Applicable to cellular products prepared from native and unmodified immune cells, as well as genetically engineered therapeutics, the understanding and potential modulation of dysfunctional features are key to the development of improved cellular immunotherapies.
Collapse
|
50
|
Zhou D, Borsa M, Simon AK. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell 2021; 20:e13316. [PMID: 33524238 PMCID: PMC7884036 DOI: 10.1111/acel.13316] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
The ageing of the global population brings about unprecedented challenges. Chronic age-related diseases in an increasing number of people represent an enormous burden for health and social care. The immune system deteriorates during ageing and contributes to many of these age-associated diseases due to its pivotal role in pathogen clearance, tissue homeostasis and maintenance. Moreover, in order to develop treatments for COVID-19, we urgently need to acquire more knowledge about the aged immune system, as older adults are disproportionally and more severely affected. Changes with age lead to impaired responses to infections, malignancies and vaccination, and are accompanied by chronic, low-degree inflammation, which together is termed immunosenescence. However, the molecular and cellular mechanisms that underlie immunosenescence, termed immune cell senescence, are mostly unknown. Cellular senescence, characterised by an irreversible cell cycle arrest, is thought to be the cause of tissue and organismal ageing. Thus, better understanding of cellular senescence in immune populations at single-cell level may provide us with insight into how immune cell senescence develops over the life time of an individual. In this review, we will briefly introduce the phenotypic characterisation of aged innate and adaptive immune cells, which also contributes to overall immunosenescence, including subsets and function. Next, we will focus on the different hallmarks of cellular senescence and cellular ageing, and the detection techniques most suitable for immune cells. Applying these techniques will deepen our understanding of immune cell senescence and to discover potential druggable pathways, which can be modulated to reverse immune ageing.
Collapse
Affiliation(s)
- Dingxi Zhou
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Mariana Borsa
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | | |
Collapse
|