1
|
Shifflett KW, Dittmer DP. Mouse models of Kaposi sarcoma-associated herpesvirus (KSHV). Virology 2025; 603:110384. [PMID: 39837218 PMCID: PMC11788063 DOI: 10.1016/j.virol.2024.110384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 01/23/2025]
Abstract
Infection with Kaposi sarcoma-associated herpesvirus (KSHV) is a prerequisite for the development of several human cancers, including Kaposi sarcoma and primary effusion lymphoma. Efficient long-term infection with KSHV and subsequent virally induced cell transformation is limited to humans, resulting in a lack of small animal models for KSHV-driven malignancies. Various attempts to create a mouse model for KSHV include infection of humanized mice, generating transgenic mice that ectopically express viral proteins, and grafting KSHV-infected tumor, primary, or immortalized cells onto immunodeficient mice. While no single mouse model can recapitulate the full range of KSHV-associated pathologies described in humans, each model adds an essential piece to the complete picture of KSHV infection and oncogenesis.
Collapse
Affiliation(s)
- Kyle W Shifflett
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
2
|
Li X, Wang Y, Guan R, Sheng N, Zhang S. Multi-Omics Profiling Unveils the Complexity and Dynamics of Immune Infiltrates in Intrahepatic Cholangiocarcinoma. BIOLOGY 2024; 13:816. [PMID: 39452125 PMCID: PMC11504529 DOI: 10.3390/biology13100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a highly heterogeneous malignancy. The reasons behind the global rise in the incidence of ICC remain unclear, and there exists limited knowledge regarding the immune cells within the tumor microenvironment (TME). In this study, a more comprehensive analysis of multi-omics data was performed using machine learning methods. The study found that the immunoactivity of B cells, macrophages, and T cells in the infiltrating immune cells of ICC exhibits a significantly higher level of immunoactivity in comparison to other immune cells. During the immune sensing and response, the effect of antigen-presenting cells (APCs) such as B cells and macrophages on activating NK cells was weakened, while the effect of activating T cells became stronger. Simultaneously, four distinct subpopulations, namely BLp, MacrophagesLp, BHn, and THn, have been identified from the infiltrating immune cells, and their corresponding immune-related marker genes have been identified. The immune sensing and response model of ICC has been revised and constructed based on our current comprehension. This study not only helps to deepen the understanding the heterogeneity of infiltrating immune cells in ICC, but also may provide valuable insights into the diagnosis, evaluation, treatment, and prognosis of ICC.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (X.L.); (R.G.); (N.S.)
| | - Yan Wang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (X.L.); (R.G.); (N.S.)
| | - Renchu Guan
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (X.L.); (R.G.); (N.S.)
| | - Nan Sheng
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (X.L.); (R.G.); (N.S.)
| | - Shuangquan Zhang
- School of Cyber Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
3
|
Sin SH, Eason AB, Kim Y, Schneider JW, Damania B, Dittmer DP. The complete Kaposi sarcoma-associated herpesvirus genome induces early-onset, metastatic angiosarcoma in transgenic mice. Cell Host Microbe 2024; 32:755-767.e4. [PMID: 38653242 PMCID: PMC11305081 DOI: 10.1016/j.chom.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/16/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Kaposi sarcoma (KS) is the most common cancer in persons living with HIV. It is caused by KS-associated herpesvirus (KSHV). There exists no animal model for KS. Pronuclear injection of the 170,000-bp viral genome induces early-onset, aggressive angiosarcoma in transgenic mice. The tumors are histopathologically indistinguishable from human KS. As in human KS, all tumor cells express the viral latency-associated nuclear antigen (LANA). The tumors transcribe most viral genes, whereas endothelial cells in other organs only transcribe the viral latent genes. The tumor cells are of endothelial lineage and exhibit the same molecular pattern of pathway activation as KS, namely phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR, interleukin-10 (IL-10), and vascular endothelial growth factor (VEGF). The KSHV-induced tumors are more aggressive than Ha-ras-induced angiosarcomas. Overall survival is increased by prophylactic ganciclovir. Thus, whole-virus KSHV-transgenic mice represent an accurate model for KS and open the door for the genetic dissection of KS pathogenesis and evaluation of therapies, including vaccines.
Collapse
Affiliation(s)
- Sang-Hoon Sin
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony B Eason
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yongbaek Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Johann W Schneider
- National Health Laboratory Service, Division of Anatomical Pathology, Faculty of Medicine and Health Sciences, Tygerberg Hospital, Stellenbosch University, Cape Town, South Africa
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Santiago JC, Westfall DH, Adams SV, Okuku F, Phipps W, Mullins JI. Variation within major internal repeats of KSHV in vivo. Virus Evol 2023; 9:vead034. [PMID: 37325087 PMCID: PMC10266750 DOI: 10.1093/ve/vead034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS), yet the viral genetic factors that lead to the development of KS in KSHV-infected individuals have not been fully elucidated. Nearly, all previous analyses of KSHV genomic evolution and diversity have excluded the three major internal repeat regions: the two origins of lytic replication, internal repeats 1 and 2 (IR1 and IR2), and the latency-associated nuclear antigen (LANA) repeat domain (LANAr). These regions encode protein domains that are essential to the KSHV infection cycle but have been rarely sequenced due to their extended repetitive nature and high guanine and cytosine (GC) content. The limited data available suggest that their sequences and repeat lengths are more heterogeneous across individuals than in the remainder of the KSHV genome. To assess their diversity, the full-length IR1, IR2, and LANAr sequences, tagged with unique molecular identifiers (UMIs), were obtained by Pacific Biosciences' single-molecule real-time sequencing (SMRT-UMI) from twenty-four tumors and six matching oral swabs from sixteen adults in Uganda with advanced KS. Intra-host single-nucleotide variation involved an average of 0.16 per cent of base positions in the repeat regions compared to a nearly identical average of 0.17 per cent of base positions in the remainder of the genome. Tandem repeat unit (TRU) counts varied by only one from the intra-host consensus in a majority of individuals. Including the TRU indels, the average intra-host pairwise identity was 98.3 per cent for IR1, 99.6 per cent for IR2 and 98.9 per cent for LANAr. More individuals had mismatches and variable TRU counts in IR1 (twelve/sixteen) than in IR2 (two/sixteen). There were no open reading frames in the Kaposin coding sequence inside IR2 in at least fifty-five of ninety-six sequences. In summary, the KSHV major internal repeats, like the rest of the genome in individuals with KS, have low diversity. IR1 was the most variable among the repeats, and no intact Kaposin reading frames were present in IR2 of the majority of genomes sampled.
Collapse
Affiliation(s)
- Jan Clement Santiago
- Department of Microbiology, University of Washington, 960 Republican St, Seattle, WA 98109-4325, USA
| | - Dylan H Westfall
- Department of Microbiology, University of Washington, 960 Republican St, Seattle, WA 98109-4325, USA
| | - Scott V Adams
- Global Oncology and Vaccine and Infectious Diseases Division,Fred Hutchinson Cancer Center, 1100 Eastlake Ave, Seattle, 98109-4487 WA, USA
| | - Fred Okuku
- Uganda Cancer Institute, Upper Mulago Hill Road, Kampala, Uganda
| | - Warren Phipps
- Global Oncology and Vaccine and Infectious Diseases Division,Fred Hutchinson Cancer Center, 1100 Eastlake Ave, Seattle, 98109-4487 WA, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195-8070, USA
| | - James I Mullins
- Department of Microbiology, University of Washington, 960 Republican St, Seattle, WA 98109-4325, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195-8070, USA
- Department of Global Health, University of Washington, 3980 15th Ave NE, Seattle, WA 98195, USA
| |
Collapse
|
5
|
A panel of KSHV mutants in the polycistronic kaposin locus for precise analysis of individual protein products. J Virol 2021; 96:e0156021. [PMID: 34936820 PMCID: PMC8906436 DOI: 10.1128/jvi.01560-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the cause of several human cancers, including the endothelial cell (EC) malignancy, Kaposi’s sarcoma. Unique KSHV genes absent from other human herpesvirus genomes, the “K-genes,” are important for KSHV replication and pathogenesis. Among these, the kaposin transcript is highly expressed in all phases of infection, but its complex polycistronic nature has hindered functional analysis to date. At least three proteins are produced from the kaposin transcript: Kaposin A (KapA), B (KapB), and C (KapC). To determine the relative contributions of kaposin proteins during KSHV infection, we created a collection of mutant viruses unable to produce kaposin proteins individually or in combination. In previous work, we showed KapB alone recapitulated the elevated proinflammatory cytokine transcripts associated with KS via the disassembly of RNA granules called processing bodies (PBs). Using the new ΔKapB virus, we showed that KapB was necessary for this effect during latent KSHV infection. Moreover, we observed that despite the ability of all kaposin-deficient latent iSLK cell lines to produce virions, all displayed low viral episome copy number, a defect that became more pronounced after primary infection of naive ECs. For ΔKapB, provision of KapB in trans failed to complement the defect, suggesting a requirement for the kaposin locus in cis. These findings demonstrate that our panel of kaposin-deficient viruses enables precise analysis of the respective contributions of individual kaposin proteins to KSHV replication. Moreover, our mutagenesis approach serves as a guide for the functional analysis of other complex multicistronic viral loci. IMPORTANCE Kaposi’s sarcoma-associated herpesvirus (KSHV) expresses high levels of the kaposin transcript during both latent and lytic phases of replication. Due to its repetitive, GC-rich nature and polycistronic coding capacity, until now no reagents existed to permit a methodical analysis of the role of individual kaposin proteins in KSHV replication. We report the creation of a panel of recombinant viruses and matched producer cell lines that delete kaposin proteins individually or in combination. We demonstrate the utility of this panel by confirming the requirement of one kaposin translation product to a key KSHV latency phenotype. This study describes a new panel of molecular tools for the KSHV field to enable precise analysis of the roles of individual kaposin proteins during KSHV infection.
Collapse
|
6
|
Regulation of the Macroautophagic Machinery, Cellular Differentiation, and Immune Responses by Human Oncogenic γ-Herpesviruses. Viruses 2021; 13:v13050859. [PMID: 34066671 PMCID: PMC8150893 DOI: 10.3390/v13050859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022] Open
Abstract
The human γ-herpesviruses Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) encode oncogenes for B cell transformation but are carried by most infected individuals without symptoms. For this purpose, they manipulate the anti-apoptotic pathway macroautophagy, cellular proliferation and apoptosis, as well as immune recognition. The mechanisms and functional relevance of these manipulations are discussed in this review. They allow both viruses to strike the balance between efficient persistence and dissemination in their human hosts without ever being cleared after infection and avoiding pathologies in most of their carriers.
Collapse
|
7
|
Münz C. The Role of Lytic Infection for Lymphomagenesis of Human γ-Herpesviruses. Front Cell Infect Microbiol 2021; 11:605258. [PMID: 33842383 PMCID: PMC8034291 DOI: 10.3389/fcimb.2021.605258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/09/2021] [Indexed: 01/02/2023] Open
Abstract
Epstein Barr virus (EBV) and Kaposi sarcoma associated herpesvirus (KSHV) are two oncogenic human γ-herpesviruses that are each associated with 1-2% of human tumors. They encode bona fide oncogenes that they express during latent infection to amplify their host cells and themselves within these. In contrast, lytic virus particle producing infection has been considered to destroy host cells and might be even induced to therapeutically eliminate EBV and KSHV associated tumors. However, it has become apparent in recent years that early lytic replication supports tumorigenesis by these two human oncogenic viruses. This review will discuss the evidence for this paradigm change and how lytic gene products might condition the microenvironment to facilitate EBV and KSHV associated tumorigenesis.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
McNamara RP, Dittmer DP. Extracellular vesicles in virus infection and pathogenesis. Curr Opin Virol 2020; 44:129-138. [PMID: 32846272 PMCID: PMC7755726 DOI: 10.1016/j.coviro.2020.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
Viruses are obligate intracellular parasites that usurp cellular signaling networks to promote pathogen spread and disease progression. Signaling through extracellular vesicles (EVs) is an emerging field of study in the virus-host interaction network. EVs relay information both locally and distally through incorporated contents, typically without tripping innate immune sensors. Therefore, this extracellular signaling axis presents itself as a tantalizing target for promoting a favorable niche for the pathogen(s) takeover of the host, particularly for chronic infections. From the incorporation of virus-encoded molecules such as micro RNAs and proteins/enzymes to the envelopment of entire infectious particles, evolutionary distinct viruses have shown a remarkable ability to converge on this means of communication. In this review, we will cover the recent advances in this field and explore how EV can be used as potential biomarkers for chronic, persistent, or latent virus infections.
Collapse
Affiliation(s)
- Ryan P McNamara
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States.
| |
Collapse
|
9
|
Dangerous Liaisons: Gammaherpesvirus Subversion of the Immunoglobulin Repertoire. Viruses 2020; 12:v12080788. [PMID: 32717815 PMCID: PMC7472090 DOI: 10.3390/v12080788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
A common biologic property of the gammaherpesviruses Epstein–Barr Virus and Kaposi sarcoma herpesvirus is their use of B lymphocytes as a reservoir of latency in healthy individuals that can undergo oncogenic transformation later in life. Gammaherpesviruses (GHVs) employ an impressive arsenal of proteins and non-coding RNAs to reprogram lymphocytes for proliferative expansion. Within lymphoid tissues, the germinal center (GC) reaction is a hub of B cell proliferation and death. The goal of a GC is to generate and then select for a pool of immunoglobulin (Ig) genes that will provide a protective humoral adaptive immune response. B cells infected with GHVs are detected in GCs and bear the hallmark signatures of the mutagenic processes of somatic hypermutation and isotype class switching of the Ig genes. However, data also supports extrafollicular B cells as a reservoir engaged by GHVs. Next-generation sequencing technologies provide unprecedented detail of the Ig sequence that informs the natural history of infection at the single cell level. Here, we review recent reports from human and murine GHV systems that identify striking differences in the immunoglobulin repertoire of infected B cells compared to their uninfected counterparts. Implications for virus biology, GHV-associated cancers, and host immune dysfunction will be discussed.
Collapse
|
10
|
Johnson KE, Tarakanova VL. Gammaherpesviruses and B Cells: A Relationship That Lasts a Lifetime. Viral Immunol 2020; 33:316-326. [PMID: 31913773 DOI: 10.1089/vim.2019.0126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gammaherpesviruses are highly prevalent pathogens that establish life-long infection and are associated with diverse malignancies, including lymphoproliferative diseases and B cell lymphomas. Unlike other viruses that either do not infect B cells or infect B cells transiently, gammaherpesviruses manipulate physiological B cell differentiation to establish life-long infection in memory B cells. Disruption of such viral manipulation by genetic or environmental causes is likely to seed viral lymphomagenesis. In this review, we discuss physiological and unique host and viral mechanisms usurped by gammaherpesviruses to fine tune host B cell biology for optimal infection establishment and maintenance.
Collapse
Affiliation(s)
- Kaitlin E Johnson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
11
|
Münz C. Tumor Microenvironment Conditioning by Abortive Lytic Replication of Oncogenic γ-Herpesviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:127-135. [PMID: 32030652 DOI: 10.1007/978-3-030-35727-6_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epstein Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) constitute the human γ-herpesviruses and two of the seven human tumor viruses. In addition to their viral oncogenes that primarily belong to the latent infection programs of these viruses, they encode proteins that condition the microenvironment. Many of these are early lytic gene products and are only expressed in a subset of infected cells of the tumor mass. In this chapter I will describe their function and the evidence that targeting them in addition to the latent oncogenes could be beneficial for the treatment of EBV- and KSHV-associated malignancies.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
12
|
In Vivo Models of Oncoproteins Encoded by Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2019; 93:JVI.01053-18. [PMID: 30867309 DOI: 10.1128/jvi.01053-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human oncogenic virus. KSHV utilizes its proteins to modify the cellular environment to promote viral replication and persistence. Some of these proteins are oncogenic, modulating cell proliferation, apoptosis, angiogenesis, genome stability, and immune responses, among other cancer hallmarks. These changes can lead to the development of KSHV-associated malignancies. In this Gem, we focus on animal models of oncogenic KSHV proteins that were developed to enable better understanding of KSHV tumorigenesis.
Collapse
|
13
|
Damania B, Münz C. Immunodeficiencies that predispose to pathologies by human oncogenic γ-herpesviruses. FEMS Microbiol Rev 2019; 43:181-192. [PMID: 30649299 PMCID: PMC6435449 DOI: 10.1093/femsre/fuy044] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022] Open
Abstract
Human γ-herpesviruses include the closely related tumor viruses Epstein Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV). EBV is the most growth-transforming pathogen known and is linked to at least seven human malignancies. KSHV is also associated with three human cancers. Most EBV- and KSHV-infected individuals fortunately remain disease-free despite persistent infection and this is likely due to the robustness of the immune control that they mount against these tumor viruses. However, upon immune suppression EBV- and KSHV-associated malignancies emerge at increased frequencies. Moreover, primary immunodeficiencies with individual mutations that predispose to EBV or KSHV disease allow us to gain insights into a catalog of molecules that are required for the immune control of these tumor viruses. Curiously, there is little overlap between the mutation targets that predispose individuals to EBV versus KSHV disease, even so both viruses can infect the same host cell, human B cells. These differences will be discussed in this review. A better understanding of the crucial components in the near-perfect life-long immune control of EBV and KSHV should allow us to target malignancies that are associated with these viruses, but also induce similar immune responses against other tumors.
Collapse
Affiliation(s)
- Blossom Damania
- Lineberger Cancer Research Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
14
|
Abstract
Kaposi sarcoma (KS) gained public attention as an AIDS-defining malignancy; its appearance on the skin was a highly stigmatizing sign of HIV infection during the height of the AIDS epidemic. The widespread introduction of effective antiretrovirals to control HIV by restoring immunocompetence reduced the prevalence of AIDS-related KS, although KS does occur in individuals with well-controlled HIV infection. KS also presents in individuals without HIV infection in older men (classic KS), in sub-Saharan Africa (endemic KS) and in transplant recipients (iatrogenic KS). The aetiologic agent of KS is KS herpesvirus (KSHV; also known as human herpesvirus-8), and viral proteins can induce KS-associated cellular changes that enable the virus to evade the host immune system and allow the infected cell to survive and proliferate despite viral infection. Currently, most cases of KS occur in sub-Saharan Africa, where KSHV infection is prevalent owing to transmission by saliva in childhood compounded by the ongoing AIDS epidemic. Treatment for early AIDS-related KS in previously untreated patients should start with the control of HIV with antiretrovirals, which frequently results in KS regression. In advanced-stage KS, chemotherapy with pegylated liposomal doxorubicin or paclitaxel is the most common treatment, although it is seldom curative. In sub-Saharan Africa, KS continues to have a poor prognosis. Newer treatments for KS based on the mechanisms of its pathogenesis are being explored.
Collapse
Affiliation(s)
- Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Blossom Damania
- Department of Microbiology and Immunology, Lineberger Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Jeffrey Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Mark Bower
- National Centre for HIV Malignancy, Chelsea & Westminster Hospital, London, UK
| | - Denise Whitby
- Leidos Biomedical Research, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
15
|
Ruder B, Murtadak V, Stürzl M, Wirtz S, Distler U, Tenzer S, Mahapatro M, Greten FR, Hu Y, Neurath MF, Cesarman E, Ballon G, Günther C, Becker C. Chronic intestinal inflammation in mice expressing viral Flip in epithelial cells. Mucosal Immunol 2018; 11:1621-1629. [PMID: 30104627 PMCID: PMC8063487 DOI: 10.1038/s41385-018-0068-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 02/04/2023]
Abstract
Viruses are present in the intestinal microflora and are currently discussed as a potential causative mechanism for the development of inflammatory bowel disease. A number of viruses, such as Human Herpesvirus-8, express homologs to cellular FLIPs, which are major contributors for the regulation of epithelial cell death. In this study we analyzed the consequences of constitutive expression of HHV8-viral FLIP in intestinal epithelial cells (IECs) in mice. Surprisingly, expression of vFlip disrupts tissue homeostasis and induces severe intestinal inflammation. Moreover vFlipIEC-tg mice showed reduced Paneth cell numbers, associated with excessive necrotic cell death. On a molecular level vFlip expression altered classical and alternative NFκB activation. Blocking of alternative NFκB signaling by deletion of Ikka in vivo largely protected mice from inflammation and Paneth cell loss induced by vFLIP. Collectively, our data provide functional evidence that expression of a single viral protein in IECs can be sufficient to disrupt epithelial homeostasis and to initiate chronic intestinal inflammation.
Collapse
Affiliation(s)
- Barbara Ruder
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Vinay Murtadak
- Division of Molecular and Experimental Surgery, Department of Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Florian R. Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Markus F. Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Gianna Ballon
- Department of Pathology and Laboratory Medicine, Northwell Health, Lake Success, NY, USA
| | - Claudia Günther
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
16
|
Sin SH, Eason AB, Bigi R, Kim Y, Kang S, Tan K, Seltzer TA, Venkataramanan R, An H, Dittmer DP. Kaposi's Sarcoma-Associated Herpesvirus Latency Locus Renders B Cells Hyperresponsive to Secondary Infections. J Virol 2018; 92:e01138-18. [PMID: 30021906 PMCID: PMC6146794 DOI: 10.1128/jvi.01138-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 12/28/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) induces B cell hyperplasia and neoplasia, such as multicentric Castleman's disease (MCD) and primary effusion lymphoma (PEL). To explore KSHV-induced B cell reprogramming in vivo, we expressed the KSHV latency locus, inclusive of all viral microRNAs (miRNAs), in B cells of transgenic mice in the absence of the inhibitory FcγRIIB receptor. The BALB/c strain was chosen as this is the preferred model to study B cell differentiation. The mice developed hyperglobulinemia, plasmacytosis, and B lymphoid hyperplasia. This phenotype was ameliorated by everolimus, which is a rapamycin derivative used for the treatment of mantle cell lymphoma. KSHV latency mice exhibited hyperresponsiveness to the T-dependent (TD) antigen mimic anti-CD40 and increased incidence of pristane-induced inflammation. Lastly, the adaptive immunity against a secondary infection with Zika virus (ZIKV) was markedly enhanced. These phenotypes are consistent with KSHV lowering the activation threshold of latently infected B cells, which may be beneficial in areas of endemicity, where KSHV is acquired in childhood and infections are common.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) establishes latency in B cells and is stringently linked to primary effusion lymphoma (PEL) and the premalignant B cell hyperplasia multicentric Castleman's disease (MCD). To investigate potential genetic background effects, we expressed the KSHV miRNAs in BALB/c transgenic mice. BALB/c mice are the preferred strain for B cell hybridoma development because of their propensity to develop predictable B cell responses to antigen. The BALB/c latency mice exhibited a higher incidence of B cell hyperplasia as well as sustained hyperglobulinemia. The development of neutralizing antibodies against ZIKV was augmented in BALB/c latency mice. Hyperglobulinemia was dampened by everolimus, a derivative of rapamycin, suggesting a role for mTOR inhibitors in managing immune activation, which is hallmark of KSHV infection as well as HIV infection.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/virology
- Cell Differentiation/drug effects
- Coinfection
- Disease Resistance/genetics
- Everolimus/pharmacology
- Herpesvirus 8, Human/drug effects
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/immunology
- Humans
- Hypergammaglobulinemia/genetics
- Hypergammaglobulinemia/immunology
- Hypergammaglobulinemia/virology
- Immunosuppressive Agents/pharmacology
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/immunology
- Plasmacytoma/genetics
- Plasmacytoma/immunology
- Plasmacytoma/virology
- RNA, Viral/genetics
- RNA, Viral/immunology
- Receptors, IgG/deficiency
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/immunology
- Sarcoma, Kaposi/virology
- Terpenes/pharmacology
- Virus Latency
- Zika Virus/drug effects
- Zika Virus/genetics
- Zika Virus/immunology
- Zika Virus Infection/genetics
- Zika Virus Infection/immunology
- Zika Virus Infection/virology
Collapse
Affiliation(s)
- Sang-Hoon Sin
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anthony B Eason
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachele Bigi
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yongbaek Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - SunAh Kang
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kelly Tan
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tischan A Seltzer
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hyowon An
- Department of Statistics & Operations Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dirk P Dittmer
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
17
|
Anders PM, Montgomery ND, Montgomery SA, Bhatt AP, Dittmer DP, Damania B. Human herpesvirus-encoded kinase induces B cell lymphomas in vivo. J Clin Invest 2018; 128:2519-2534. [PMID: 29733294 DOI: 10.1172/jci97053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that is the etiological agent of the endothelial cell cancer Kaposi's sarcoma (KS) and 2 B cell lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). KSHV ORF36, also known as viral protein kinase (vPK), is a viral serine/threonine kinase. We previously reported that KSHV vPK enhances cell proliferation and mimics cellular S6 kinase to phosphorylate ribosomal protein S6, a protein involved in protein synthesis. We created a mouse model to analyze the function of vPK in vivo. We believe this is the first mouse tumor model of a viral kinase encoded by a pathogenic human virus. We observed increased B cell activation in the vPK transgenic mice compared with normal mice. We also found that, over time, vPK transgenic mice developed a B cell hyperproliferative disorder and/or a high-grade B cell non-Hodgkin lymphoma at a greatly increased incidence compared with littermate controls. This mouse model shows that a viral protein kinase is capable of promoting B cell activation and proliferation as well as augmenting lymphomagenesis in vivo and may therefore contribute to the development of viral cancers.
Collapse
Affiliation(s)
- Penny M Anders
- Lineberger Comprehensive Cancer Center.,Department of Microbiology and Immunology, and
| | - Nathan D Montgomery
- Department of Pathology and Laboratory Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephanie A Montgomery
- Lineberger Comprehensive Cancer Center.,Department of Pathology and Laboratory Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aadra P Bhatt
- Lineberger Comprehensive Cancer Center.,Department of Microbiology and Immunology, and
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center.,Department of Microbiology and Immunology, and
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center.,Department of Microbiology and Immunology, and
| |
Collapse
|
18
|
Simpson S, Fiches G, Jean MJ, Dieringer M, McGuinness J, John SP, Shamay M, Desai P, Zhu J, Santoso NG. Inhibition of Tip60 Reduces Lytic and Latent Gene Expression of Kaposi's Sarcoma-Associated Herpes Virus (KSHV) and Proliferation of KSHV-Infected Tumor Cells. Front Microbiol 2018; 9:788. [PMID: 29740418 PMCID: PMC5928232 DOI: 10.3389/fmicb.2018.00788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/06/2018] [Indexed: 12/23/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus responsible for the development of Kaposi's sarcoma, primary effusion lymphoma (PEL), and Multicentric Castleman's disease in immunocompromised individuals. Despite the burden of these diseases there are few treatment options for afflicted individuals, due in part to our limited understanding of virus-host interactions. Tip60, a histone aceytltransferase (HAT) has been previously shown to interact with both the KSHV latency associated nuclear antigen protein (LANA), which is the main factor in maintaining the viral latent state, and ORF36, a viral kinase expressed in the lytic phase. We further investigated Tip60-virus interaction to ascertain Tip60's role in the viral life cycle and its potential as a target for future therapeutics. Through modulation of Tip60 expression in HEK293T cells harboring a plasmid containing the KSHV viral episome, Bac36, we found that Tip60 is vital for both lytic replication as well as efficient expression of latent genes. Interestingly, Tip60 small molecule inhibitors, MG149 and NU9056, similarly inhibited latent and lytic genes, and reduced virion production in wild-type KSHV+/EBV- PEL, BCBL-1 cells. Long-term treatment with these Tip60 inhibitors selectively decreased the viability of KSHV-infected B lymphoma cells compared to uninfected cells. From this study, we conclude that Tip60 is important for KSHV infection and its associated cancer development, and Tip60 is therefore a potential target for future antiviral and anticancer therapeutics.
Collapse
Affiliation(s)
- Sydney Simpson
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Guillaume Fiches
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Maxime J. Jean
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Michael Dieringer
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - James McGuinness
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Sinu P. John
- Signaling Systems Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Meir Shamay
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Prashant Desai
- Viral Oncology Program, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jian Zhu
- Department of Pathology, Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Netty G. Santoso
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
19
|
McHugh D, Caduff N, Barros MHM, Rämer PC, Raykova A, Murer A, Landtwing V, Quast I, Styles CT, Spohn M, Fowotade A, Delecluse HJ, Papoudou-Bai A, Lee YM, Kim JM, Middeldorp J, Schulz TF, Cesarman E, Zbinden A, Capaul R, White RE, Allday MJ, Niedobitek G, Blackbourn DJ, Grundhoff A, Münz C. Persistent KSHV Infection Increases EBV-Associated Tumor Formation In Vivo via Enhanced EBV Lytic Gene Expression. Cell Host Microbe 2018; 22:61-73.e7. [PMID: 28704654 DOI: 10.1016/j.chom.2017.06.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/09/2017] [Accepted: 06/20/2017] [Indexed: 11/15/2022]
Abstract
The human tumor viruses Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) establish persistent infections in B cells. KSHV is linked to primary effusion lymphoma (PEL), and 90% of PELs also contain EBV. Studies on persistent KSHV infection in vivo and the role of EBV co-infection in PEL development have been hampered by the absence of small animal models. We developed mice reconstituted with human immune system components as a model for KSHV infection and find that EBV/KSHV dual infection enhanced KSHV persistence and tumorigenesis. Dual-infected cells displayed a plasma cell-like gene expression pattern similar to PELs. KSHV persisted in EBV-transformed B cells and was associated with lytic EBV gene expression, resulting in increased tumor formation. Evidence of elevated lytic EBV replication was also found in EBV/KSHV dually infected lymphoproliferative disorders in humans. Our data suggest that KSHV augments EBV-associated tumorigenesis via stimulation of lytic EBV replication.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/virology
- Cell Line, Tumor
- Coinfection
- Cytokines/blood
- DNA, Viral/analysis
- Disease Models, Animal
- Epstein-Barr Virus Infections/blood
- Epstein-Barr Virus Infections/immunology
- Epstein-Barr Virus Infections/virology
- Gene Expression Regulation, Viral
- Genes, Viral/genetics
- Herpesviridae Infections/blood
- Herpesviridae Infections/immunology
- Herpesviridae Infections/virology
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/pathogenicity
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/pathogenicity
- Herpesvirus 8, Human/physiology
- High-Throughput Nucleotide Sequencing
- Humans
- Lymphoma, Primary Effusion/etiology
- Lymphoma, Primary Effusion/virology
- Mice
- Neoplasms/virology
- Spleen/pathology
- Spleen/virology
- Survival Rate
- Virus Replication
Collapse
Affiliation(s)
- Donal McHugh
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Nicole Caduff
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | | | - Patrick C Rämer
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Ana Raykova
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Anita Murer
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Vanessa Landtwing
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Isaak Quast
- Neuroinflammation, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Christine T Styles
- Section of Virology, Faculty of Medicine, Imperial College London, London, UK
| | - Michael Spohn
- Virus Genomics, Heinrich Pette Institute, Hamburg, Germany
| | - Adeola Fowotade
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | | | | | - Yong-Moon Lee
- Departments of Pathology and Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jin-Man Kim
- Departments of Pathology and Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jaap Middeldorp
- Department of Pathology, VU University Medical Center and Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover and German Centre of Infection Research (DZIF), Hannover-Braunschweig Site, Germany
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Andrea Zbinden
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Riccarda Capaul
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Robert E White
- Section of Virology, Faculty of Medicine, Imperial College London, London, UK
| | - Martin J Allday
- Section of Virology, Faculty of Medicine, Imperial College London, London, UK
| | | | | | - Adam Grundhoff
- Virus Genomics, Heinrich Pette Institute, Hamburg, Germany
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
20
|
Wong JP, Damania B. Modulation of oncogenic signaling networks by Kaposi's sarcoma-associated herpesvirus. Biol Chem 2017; 398:911-918. [PMID: 28284028 DOI: 10.1515/hsz-2017-0101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/08/2017] [Indexed: 01/07/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of three human malignancies: Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. To persist and replicate within host cells, KSHV encodes proteins that modulate different signaling pathways. Manipulation of cell survival and proliferative networks by KSHV can promote the development of KSHV-associated malignancies. In this review, we discuss recent updates on KSHV pathogenesis and the viral life cycle. We focus on proteins encoded by KSHV that modulate the phosphatidylinositol-4,5-bisphosphate 3 kinase and extracellular signal-regulated kinases 1/2 pathways to create an environment favorable for viral replication and the development of KSHV malignancies.
Collapse
|
21
|
Toth Z, Papp B, Brulois K, Choi YJ, Gao SJ, Jung JU. LANA-Mediated Recruitment of Host Polycomb Repressive Complexes onto the KSHV Genome during De Novo Infection. PLoS Pathog 2016; 12:e1005878. [PMID: 27606464 PMCID: PMC5015872 DOI: 10.1371/journal.ppat.1005878] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022] Open
Abstract
One of the hallmarks of the latent phase of Kaposi's sarcoma-associated herpesvirus (KSHV) infection is the global repression of lytic viral gene expression. Following de novo KSHV infection, the establishment of latency involves the chromatinization of the incoming viral genomes and recruitment of the host Polycomb repressive complexes (PRC1 and PRC2) to the promoters of lytic genes, which is accompanied by the inhibition of lytic genes. However, the mechanism of how PRCs are recruited to the KSHV episome is still unknown. Utilizing a genetic screen of latent genes in the context of KSHV genome, we identified the latency-associated nuclear antigen (LANA) to be responsible for the genome-wide recruitment of PRCs onto the lytic promoters following infection. We found that LANA initially bound to the KSHV genome right after infection and subsequently recruited PRCs onto the viral lytic promoters, thereby repressing lytic gene expression. Furthermore, both the DNA and chromatin binding activities of LANA were required for the binding of LANA to the KSHV promoters, which was necessary for the recruitment of PRC2 to the lytic promoters during de novo KSHV infection. Consequently, the LANA-knockout KSHV could not recruit PRCs to its viral genome upon de novo infection, resulting in aberrant lytic gene expression and dysregulation of expression of host genes involved in cell cycle and proliferation pathways. In this report, we demonstrate that KSHV LANA recruits host PRCs onto the lytic promoters to suppress lytic gene expression following de novo infection.
Collapse
Affiliation(s)
- Zsolt Toth
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Zilkha Neurogenetic Institute, Los Angeles, California, United States of America
- * E-mail: (ZT); (JUJ)
| | - Bernadett Papp
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Zilkha Neurogenetic Institute, Los Angeles, California, United States of America
| | - Kevin Brulois
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Zilkha Neurogenetic Institute, Los Angeles, California, United States of America
| | - Youn Jung Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Zilkha Neurogenetic Institute, Los Angeles, California, United States of America
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Zilkha Neurogenetic Institute, Los Angeles, California, United States of America
| | - Jae U. Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Zilkha Neurogenetic Institute, Los Angeles, California, United States of America
- * E-mail: (ZT); (JUJ)
| |
Collapse
|
22
|
Dittmer DP, Damania B. Kaposi sarcoma-associated herpesvirus: immunobiology, oncogenesis, and therapy. J Clin Invest 2016; 126:3165-75. [PMID: 27584730 DOI: 10.1172/jci84418] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8, is the etiologic agent underlying Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. This human gammaherpesvirus was discovered in 1994 by Drs. Yuan Chang and Patrick Moore. Today, there are over five thousand publications on KSHV and its associated malignancies. In this article, we review recent and ongoing developments in the KSHV field, including molecular mechanisms of KSHV pathogenesis, clinical aspects of KSHV-associated diseases, and current treatments for cancers associated with this virus.
Collapse
|
23
|
Dittmer DP, Damania B, Sin SH. Animal models of tumorigenic herpesviruses--an update. Curr Opin Virol 2016; 14:145-50. [PMID: 26476352 DOI: 10.1016/j.coviro.2015.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 01/24/2023]
Abstract
Any one model system, be it culture or animal, only recapitulates one aspect of the viral life cycle in the human host. By providing recent examples of animal models for Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus, we would argue that multiple animal models are needed to gain a comprehensive understanding of the pathogenesis associated with human oncogenic herpesviruses. Transgenic mice, homologous animal herpesviruses, and tumorgraft and humanized mouse models all complement each other in the study of viral pathogenesis. The use of animal model systems facilitates the exploration of novel anti-viral and anti-cancer treatment modalities for diseases associated with oncogenic herpesviruses.
Collapse
Affiliation(s)
- Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, Center for AIDS Research (CfAR), School of Medicine, University of North Carolina, Chapel Hill, USA.
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, Center for AIDS Research (CfAR), School of Medicine, University of North Carolina, Chapel Hill, USA
| | - Sang-Hoon Sin
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, Center for AIDS Research (CfAR), School of Medicine, University of North Carolina, Chapel Hill, USA
| |
Collapse
|
24
|
Cheng S, He C, Zhou H, Kong X, Xie H, Xia L, Yan J. The effect of Toll-like receptor 4 on β 2 -glycoprotein I-induced B cell activation in mouse model. Mol Immunol 2016; 71:78-86. [DOI: 10.1016/j.molimm.2016.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 12/16/2022]
|
25
|
Kaposi's Sarcoma-Associated Herpesvirus Latency Locus Compensates for Interleukin-6 in Initial B Cell Activation. J Virol 2015; 90:2150-4. [PMID: 26656696 DOI: 10.1128/jvi.02456-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023] Open
Abstract
Interleukin 6 (IL-6) is considered a proliferation and survival factor for B cells. To assess the role of IL-6 in Kaposi sarcoma-associated herpesvirus (KSHV) latency, KSHV latency locus-transgenic mice (referred to as latency mice) lacking IL-6 were evaluated. IL-6(-/-) latency mice had the same phenotypes as the latency mice, i.e., increased frequency of marginal zone B cells, hyperplasia, and hyperglobulinemia, indicating that the KSHV latency locus, which includes all viral microRNAs (miRNAs), can compensate for lack of IL-6 in premalignant B cell activation.
Collapse
|
26
|
Sin SH, Kim Y, Eason A, Dittmer DP. KSHV Latency Locus Cooperates with Myc to Drive Lymphoma in Mice. PLoS Pathog 2015; 11:e1005135. [PMID: 26327622 PMCID: PMC4556645 DOI: 10.1371/journal.ppat.1005135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/07/2015] [Indexed: 11/18/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) has been linked to Kaposi sarcoma and B-cell malignancies. Mechanisms of KSHV-induced oncogenesis remain elusive, however, in part due to lack of reliable in vivo models. Recently, we showed that transgenic mice expressing the KSHV latent genes, including all viral microRNAs, developed splenic B cell hyperplasia with 100% penetrance, but only a fraction converted to B cell lymphomas, suggesting that cooperative oncogenic events were missing. Myc was chosen as a possible candidate, because Myc is deregulated in many B cell lymphomas. We crossed KSHV latency locus transgenic (latency) mice to Cα Myc transgenic (Myc) mice. By itself these Myc transgenic mice develop lymphomas only rarely. In the double transgenic mice (Myc/latency) we observed plasmacytosis, severe extramedullary hematopoiesis in spleen and liver, and increased proliferation of splenocytes. Myc/latency mice developed frank lymphoma at a higher rate than single transgenic latency or Myc mice. These data indicate that the KSHV latency locus cooperates with the deregulated Myc pathways to further lymphoma progression. Kaposi’s sarcoma-associated herpesvirus (KSHV) is associated with Kaposi sarcoma as well as the B-cell malignancies primary effusion lymphoma (PEL) and multicentric Castleman’s disease (MCD). Only a few KSHV genes, including all micro RNAs, are expressed in latent infection of B cells. We already showed that KSHV latency locus transgenic mice consistently develop B cell hyperplasia. To find out possible host contributions to lymphomagenesis we evaluated the Myc oncogene. Compound KSHV latency locus and Myc mice developed plasmacytosis exemplified by increased frequency of plasma cells in the spleen, a high accelerated lymphoma development, and severe extramedullary hematopoiesis. These data show that the KSHV latency locus can cooperate with Myc activation in viral lymphomagenesis.
Collapse
Affiliation(s)
- Sang-Hoon Sin
- Department of Microbiology and Immunology, Program in Global Oncology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yongbaek Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Anthony Eason
- Department of Microbiology and Immunology, Program in Global Oncology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, Program in Global Oncology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
27
|
Mashima R. Physiological roles of miR-155. Immunology 2015; 145:323-33. [PMID: 25829072 DOI: 10.1111/imm.12468] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 12/12/2022] Open
Abstract
miR-155 is involved in non-coding microRNAs found in humans, mice and chickens of which the sequence is conserved. Historically, miR-155 was identified as a B-cell integration cluster (bic), which induces B-cell leucosis in chickens, by its activation through viral promoter insertion. Subsequent studies have shown that transgenic mice expressing miR-155 in B cells generated lymphoma, showing that miR-155 is oncogenic. Biochemical investigation identifies many substrates of miR-155, and one of them in B cells and macrophages is the SH2-domain containing inositol-5'-phosphatase 1. A deficiency of miR-155 in the immune system causes attenuated immune functions. Clinically, several types of malignancy including diffuse large B-cell lymphoma have high miR-155 expression levels.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Microbiology and Immunology, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
28
|
Ballon G, Akar G, Cesarman E. Systemic expression of Kaposi sarcoma herpesvirus (KSHV) Vflip in endothelial cells leads to a profound proinflammatory phenotype and myeloid lineage remodeling in vivo. PLoS Pathog 2015; 11:e1004581. [PMID: 25607954 PMCID: PMC4301867 DOI: 10.1371/journal.ppat.1004581] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 11/16/2014] [Indexed: 12/02/2022] Open
Abstract
KSHV is the causative agent of Kaposi sarcoma (KS), a spindle-shaped endothelial cell neoplasm accompanied by an inflammatory infiltrate. To evaluate the role of KSHV vFLIP in the pathogenesis of KS, we constructed mice with inducible expression of vFLIP in endothelial cells. Abnormal cells with endothelial marker expression and fusiform appearance were observed in several tissues reminiscent of the spindle cells found in KS. Serum cytokines displayed a profound perturbation similar to that described in KSHV inflammatory cytokine syndrome (KICS), a recently described clinical condition characterized by elevated IL6 and IL10. An increased myeloid component with suppressive immune phenotype was found, which may contribute to functional changes in the microenvironment and cellular heterogeneity as observed in KS. These mice represent the first in vivo demonstration that vFLIP is capable of inducing vascular abnormalities and changes in host microenvironment with important implications for understanding the pathogenesis and treating KSHV-associated diseases. Kaposi’s sarcoma (KS) is the most common cancer in men infected with HIV, and also among the most frequent malignancies in Sub-Equatorial Africa. KS is a tumor of endothelial cell origin that is caused by infection with a gamma-herpesvirus, called KS herpesvirus (KSHV) or human herpesvirus 8 (HHV-8). KSHV vFLIP is a viral oncoprotein expressed during latent infection. We report here the generation and characterization of mice expressing KSHV vFLIP in an inducible manner in endothelial cells. Transgenic mice showed: 1) systemic endothelial abnormalities, with the presence of fusiform cells reminiscent of the spindle cells found in KS, 2) development of a profound perturbation in serum cytokines, reminiscent of the cytokine storm characteristic of KSHV-associated cytokine syndrome (KICS), and 3) remodeling of myeloid differentiation with expansion of myeloid cells displaying a suppressive immunophenotype that potentially favors host immune evasion, angiogenesis and tumor progression. This is the first example of significant changes in myeloid differentiation, vascular abnormalities and cytokine perturbation entirely initiated by ectopic expression of a single viral gene, making this mouse model a useful system to dissect the mechanisms viruses use to manipulate the host microenvironment culminating in sabotage of immunity and development of vascular lesions.
Collapse
Affiliation(s)
- Gianna Ballon
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: , (GB); (EC)
| | - Gunkut Akar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: , (GB); (EC)
| |
Collapse
|
29
|
Interleukin 1 receptor-associated kinase 1 (IRAK1) mutation is a common, essential driver for Kaposi sarcoma herpesvirus lymphoma. Proc Natl Acad Sci U S A 2014; 111:E4762-8. [PMID: 25341731 DOI: 10.1073/pnas.1405423111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Primary effusion lymphoma (PEL) is an AIDS-defining cancer. All PELs carry Kaposi sarcoma-associated herpesvirus (KSHV). X chromosome-targeted sequencing of PEL identified 34 common missense mutations in 100% of cases. This included a Phe196Ser change in the interleukin 1 receptor-associated kinase 1 (IRAK1). The mutation was verified in primary PEL exudates. IRAK1 is the binding partner of MyD88, which is mutated in a fraction of Waldenström macroglobulinemia. Together, these two mediate toll-like receptor (TLR) signaling. IRAK1 was constitutively phosphorylated in PEL and required for survival, implicating IRAK1 and TLR signaling as a driver pathway in PEL and as a new drug development target.
Collapse
|
30
|
Ajiro M, Zheng ZM. Oncogenes and RNA splicing of human tumor viruses. Emerg Microbes Infect 2014; 3:e63. [PMID: 26038756 PMCID: PMC4185361 DOI: 10.1038/emi.2014.62] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/29/2014] [Accepted: 06/29/2014] [Indexed: 02/07/2023]
Abstract
Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein–Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis.
Collapse
Affiliation(s)
- Masahiko Ajiro
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, MD 21702, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, MD 21702, USA
| |
Collapse
|
31
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8) is the etiologic agent of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. These cancers often occur in the context of immunosuppression, which has made KSHV-associated malignancies an increasing global health concern with the persistence of the AIDS epidemic. KSHV has also been linked to several acute inflammatory diseases. KSHV exists between a lytic and latent lifecycle, which allows the virus to transition between active replication and quiescent infection. KSHV encodes a number of proteins and small RNAs that are thought to inadvertently transform host cells while performing their functions of helping the virus persist in the infected host. KSHV also has an arsenal of components that aid the virus in evading the host immune response, which help the virus establish a successful lifelong infection. In this comprehensive chapter, we will discuss the diseases associated with KSHV infection, the biology of latent and lytic infection, and individual proteins and microRNAs that are known to contribute to host cell transformation and immune evasion.
Collapse
Affiliation(s)
- Louise Giffin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
32
|
Abstract
In this issue of Blood, Fish et al uncover how Epstein-Barr virus (EBV) enhances MYC-driven B-cell lymphoma by crossing EBV Em-EBV latent membrane protein 2A (LMP2A) transgenic mice with immunoglobulin-l (Igl)-MYC transgenic mice.
Collapse
|
33
|
Azzi S, Smith SS, Dwyer J, Leclair HM, Alexia C, Hebda JK, Dupin N, Bidère N, Gavard J. YGLF motif in the Kaposi sarcoma herpes virus G-protein-coupled receptor adjusts NF-κB activation and paracrine actions. Oncogene 2013; 33:5609-18. [PMID: 24292677 DOI: 10.1038/onc.2013.503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/25/2013] [Accepted: 10/18/2013] [Indexed: 12/17/2022]
Abstract
Kaposi sarcoma (KS) and primary effusion lymphoma (PEL) are two pathologies associated with KS herpes virus (KSHV/HHV-8) infection. KSHV genome contains several oncogenes, among which, the viral G-protein-coupled receptor (vGPCR open reading frame 74) has emerged as a major factor in KS pathogenicity. Indeed, vGPCR is a constitutively active receptor, whose expression is sufficient to drive cell transformation in vitro and tumour development in mice. However, neither the role of vGPCR in KSHV-infected B-lymphocytes nor the molecular basis for its constitutive activation is well understood. Here, we show that vGPCR expression contributes to nuclear factor-κB (NF-κB)-dependent cellular survival in both PEL cells and primary B cells from HIV-negative KS patients. We further identified within vGPCR an AP2 consensus binding motif, Y326GLF, that directs its localization between the plasma membrane and clathrin-coated vesicles. The introduction of a mutation in this site (Y326A) increased NF-κB activity and proinflammatory cytokines production. This correlated with exacerbated morphological rearrangement, migration and proliferation of non-infected monocytes. Collectively, our work raises the possibility that KSHV-infected B-lymphocytes use vGPCR to impact ultimately the immune response and communication within the tumour microenvironment in KSHV-associated pathologies.
Collapse
Affiliation(s)
- S Azzi
- 1] CNRS, UMR8104, Paris, France [2] INSERM, U1016, Paris, France [3] Universite Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - S S Smith
- 1] CNRS, UMR8104, Paris, France [2] INSERM, U1016, Paris, France [3] Universite Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - J Dwyer
- 1] CNRS, UMR8104, Paris, France [2] INSERM, U1016, Paris, France [3] Universite Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - H M Leclair
- 1] CNRS, UMR8104, Paris, France [2] INSERM, U1016, Paris, France [3] Universite Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - C Alexia
- 1] INSERM, U1014, Hopital Paul Brousse, Villejuif, France [2] Universite Paris-Sud P11, Orsay, France [3] Equipe Labellisee Ligue contre le Cancer, Villejuif, France
| | - J K Hebda
- 1] CNRS, UMR8104, Paris, France [2] INSERM, U1016, Paris, France [3] Universite Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - N Dupin
- 1] Universite Paris Descartes, Sorbonne Paris Cite, Paris, France [2] Service de dermatologie, Hopital Cochin-Tarnier, AP-HP, Paris, France
| | - N Bidère
- 1] INSERM, U1014, Hopital Paul Brousse, Villejuif, France [2] Universite Paris-Sud P11, Orsay, France [3] Equipe Labellisee Ligue contre le Cancer, Villejuif, France
| | - J Gavard
- 1] CNRS, UMR8104, Paris, France [2] INSERM, U1016, Paris, France [3] Universite Paris Descartes, Sorbonne Paris Cite, Paris, France
| |
Collapse
|
34
|
Abstract
MicroRNA-155 (miR-155) is expressed in many cancers. It also executes evolutionary conserved functions in normal B cell development. We show that the Kaposi's sarcoma-associated herpesvirus (KSHV) latency locus, which contains an ortholog of miR-155, miR-K12-11, complements B cell deficiencies in miR-155 knockout mice. Germinal center (GC) formation was rescued in spleen, lymph node, and Peyer's patches. Immunoglobulin levels were restored. This demonstrates that KSHV can complement the normal, physiological function of miR-155.
Collapse
Affiliation(s)
- Sang-Hoon Sin
- Department of Microbiology and Immunology, Program in Global Oncology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yong Baek Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, Program in Global Oncology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
35
|
The product of Kaposi's sarcoma-associated herpesvirus immediate early gene K4.2 regulates immunoglobulin secretion and calcium homeostasis by interacting with and inhibiting pERP1. J Virol 2013; 87:12069-79. [PMID: 23986581 DOI: 10.1128/jvi.01900-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chaperones are proteins that assist the noncovalent folding and assembly of macromolecular polypeptide chains, ultimately preventing the formation of nonfunctional or potentially toxic protein aggregates. Plasma cell-induced-endoplasmic reticulum (ER)-resident protein 1 (pERP1) is a cellular chaperone that is preferentially expressed in marginal-zone B cells and is highly upregulated during plasma cell differentiation. While initially identified as a dedicated factor for the assembly of secreted IgM, pERP1 has since been implicated in suppressing calcium mobilization, and its expression is misregulated in multiple tumors. A number of herpesvirus immediate early gene products play important roles in the regulation of viral gene expression and/or evasion of host immune responses. Here, we report that the Kaposi's sarcoma-associated herpesvirus (KSHV) immediate early viral gene K4.2 encodes an endoplasmic reticulum-localized protein that interacts with and inhibits pERP1. Consequently, K4.2 expression interfered with immunoglobulin secretion by delaying the kinetics of immunoglobulin assembly and also led to increased responsiveness of B-cell receptor signal transduction by enhancing phosphotyrosine signals and intracellular calcium fluxes. Furthermore, K4.2 expression also appeared to contribute to maximal lytic replication by enhancing viral glycoprotein expression levels and ultimately promoting infectious-virus production. Finally, immunohistochemistry analysis showed that pERP1 expression was readily detected in KSHV-positive cells from multicentric Castleman's disease (MCD) and Kaposi's sarcoma (KS) lesions, suggesting that pERP1 may have potential roles in the KSHV life cycle and malignancy. In conclusion, our data suggest that K4.2 participates in lytic replication by enhancing calcium flux and viral glycoprotein expression, but also by interfering with immunoglobulin assembly to potentially dampen the adaptive immune response.
Collapse
|
36
|
Chugh PE, Sin SH, Ozgur S, Henry DH, Menezes P, Griffith J, Eron JJ, Damania B, Dittmer DP. Systemically circulating viral and tumor-derived microRNAs in KSHV-associated malignancies. PLoS Pathog 2013; 9:e1003484. [PMID: 23874201 PMCID: PMC3715412 DOI: 10.1371/journal.ppat.1003484] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/24/2013] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are stable, small non-coding RNAs that modulate many downstream target genes. Recently, circulating miRNAs have been detected in various body fluids and within exosomes, prompting their evaluation as candidate biomarkers of diseases, especially cancer. Kaposi's sarcoma (KS) is the most common AIDS-associated cancer and remains prevalent despite Highly Active Anti-Retroviral Therapy (HAART). KS is caused by KS-associated herpesvirus (KSHV), a gamma herpesvirus also associated with Primary Effusion Lymphoma (PEL). We sought to determine the host and viral circulating miRNAs in plasma, pleural fluid or serum from patients with the KSHV-associated malignancies KS and PEL and from two mouse models of KS. Both KSHV-encoded miRNAs and host miRNAs, including members of the miR-17–92 cluster, were detectable within patient exosomes and circulating miRNA profiles from KSHV mouse models. Further characterization revealed a subset of miRNAs that seemed to be preferentially incorporated into exosomes. Gene ontology analysis of signature exosomal miRNA targets revealed several signaling pathways that are known to be important in KSHV pathogenesis. Functional analysis of endothelial cells exposed to patient-derived exosomes demonstrated enhanced cell migration and IL-6 secretion. This suggests that exosomes derived from KSHV-associated malignancies are functional and contain a distinct subset of miRNAs. These could represent candidate biomarkers of disease and may contribute to the paracrine phenotypes that are a characteristic of KS. Circulating microRNAs (miRNAs), such as those found in exosomes, have emerged as diagnostic tools and hold promise as minimally invasive, stable biomarkers. Transfer of tumor-derived exosomal miRNAs to surrounding cells may be an important form of cellular communication. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), the most common AIDS-defining cancer worldwide. Here, we survey systemically circulating miRNAs and reveal potential biomarkers for KS and Primary Effusion Lymphoma (PEL). This expands previous tissue culture studies by profiling clinical samples and by using two new mouse models of KSHV tumorigenesis. Profiling of circulating miRNAs revealed that oncogenic and viral miRNAs were present in exosomes from KS patient plasma, pleural effusions and mouse models of KS. Analysis of human oncogenic miRNAs, including the well-known miR-17-92 cluster, revealed that several miRNAs were preferentially incorporated into exosomes in our KS mouse model. Gene ontology analysis of upregulated miRNAs showed that the majority of pathways affected were known targets of KSHV signaling pathways. Transfer of these oncogenic exosomes to immortalized hTERT-HUVEC cells enhanced cell migration and IL-6 secretion. These circulating miRNAs and KS derived exosomes may therefore be part of the paracrine signaling mechanism that mediates KSHV pathogenesis.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Biomarkers/metabolism
- Body Fluids/metabolism
- Body Fluids/virology
- Cell Line
- Cell Movement
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/virology
- Exosomes/metabolism
- Exosomes/ultrastructure
- Exosomes/virology
- Gene Expression Profiling
- Herpesvirus 8, Human/isolation & purification
- Herpesvirus 8, Human/metabolism
- Humans
- Interleukin-6/metabolism
- Mice
- MicroRNAs/blood
- MicroRNAs/metabolism
- Pleural Cavity
- Pleural Effusion, Malignant/etiology
- RNA, Neoplasm/blood
- RNA, Neoplasm/metabolism
- RNA, Viral/blood
- RNA, Viral/metabolism
- Sarcoma, Kaposi/diagnosis
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/physiopathology
- Sarcoma, Kaposi/virology
- Up-Regulation
- Viral Load
Collapse
Affiliation(s)
- Pauline E. Chugh
- Lineberger Comprehensive Cancer Center, Program in Global Oncology, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sang-Hoon Sin
- Lineberger Comprehensive Cancer Center, Program in Global Oncology, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sezgin Ozgur
- Lineberger Comprehensive Cancer Center, Program in Global Oncology, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David H. Henry
- Department of Oncology, Joan Karnell Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Prema Menezes
- Department of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jack Griffith
- Lineberger Comprehensive Cancer Center, Program in Global Oncology, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joseph J. Eron
- Department of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, Program in Global Oncology, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dirk P. Dittmer
- Lineberger Comprehensive Cancer Center, Program in Global Oncology, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
37
|
Dittmer DP, Damania B. Kaposi sarcoma associated herpesvirus pathogenesis (KSHV)--an update. Curr Opin Virol 2013; 3:238-44. [PMID: 23769237 PMCID: PMC3716290 DOI: 10.1016/j.coviro.2013.05.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/03/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is the etiological agent of several human malignancies. The virus is able to modulate pro-proliferative pathways to its advantage, while simultaneously inhibiting pro-apoptotic signaling pathways. These functions are carried out by multiple viral proteins acting in concert. The overall outcome is the survival and proliferation of the infected cell. Additionally, the virus also modulates innate immune pathways to allow for prolonged survival of the infected cell following primary infection, and during viral latency. Here we review the latest advances in our knowledge of KSHV pathogenesis.
Collapse
Affiliation(s)
- Dirk P. Dittmer
- Lineberger Comprehensive Cancer Center and Department of Microbiology & Immunology, Program in Global Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology & Immunology, Program in Global Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|