1
|
Radhouani M, Starkl P. Adjuvant-independent airway sensitization and infection mouse models leading to allergic asthma. FRONTIERS IN ALLERGY 2024; 5:1423938. [PMID: 39157265 PMCID: PMC11327155 DOI: 10.3389/falgy.2024.1423938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/05/2024] [Indexed: 08/20/2024] Open
Abstract
Asthma is a chronic respiratory disease of global importance. Mouse models of allergic asthma have been instrumental in advancing research and novel therapeutic strategies for patients. The application of relevant allergens and physiological routes of exposure in such models has led to valuable insights into the complexities of asthma onset and development as well as key disease mechanisms. Furthermore, environmental microbial exposures and infections have been shown to play a fundamental part in asthma pathogenesis and alter disease outcome. In this review, we delve into physiological mouse models of allergic asthma and explore literature reports on most significant interplays between microbial infections and asthma development with relevance to human disease.
Collapse
Affiliation(s)
- Mariem Radhouani
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Philipp Starkl
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Saheb Sharif-Askari F, Ali Hussain Alsayed H, Saheb Sharif-Askari N, Saddik B, Al Sayed Hussain A, Halwani R. Risk factors and early preventive measures for long COVID in non-hospitalized patients: analysis of a large cohort in the United Arab Emirates. Public Health 2024; 230:198-206. [PMID: 38574425 DOI: 10.1016/j.puhe.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVES Long COVID is characterized by persistent symptoms lasting for 4 weeks or more following the acute infection with SARS-CoV-2. Risk factors for long COVID and the impact of pre-COVID vaccination and treatment during acute COVID-19 remain uncertain. This study aimed to investigate patient-specific factors associated with long COVID in a large cohort of non-hospitalized adult patients with mild to moderate COVID-19 in Dubai. STUDY DESIGN Cohort study. METHODS The study included 28,375 non-hospitalized adult patients diagnosed with mild to moderate COVID-19 between January 1, 2021, and September 31, 2022, in Dubai, who were followed up for 90 days. The presence of long COVID symptoms was documented by physicians during patient visits to the family medicine department. Furthermore, long COVID-related risk factors were collected and analyzed, including patient demographics, comorbidities, pre-COVID vaccination status, and the COVID-related treatments received during the acute phase of the illness. Cox proportional hazard models were applied for the statistical analysis. RESULTS Among the cohort, 2.8% of patients experienced long COVID symptoms during the 90-day follow-up. Patients with long COVID tended to be younger, female, and of Caucasian race. Common symptoms included fatigue, muscle pain, respiratory symptoms, abdominal and neurological symptoms, allergic reactions, skin rashes, and hair loss. Risk factors for long COVID were identified as diabetes mellitus, asthma, and Vitamin D deficiency. Females and Caucasians had a higher risk of long COVID during the pre-Omicron period compared to the Omicron period. Pre-COVID vaccination was associated with a reduced risk of long COVID in all patient subgroups. Treatment with favipiravir or sotrovimab during the acute phase of COVID-19 was linked to a decreased risk of long COVID, although favipiravir showed limited effectiveness in the high-risk group. CONCLUSION This study contributes to the existing knowledge by identifying risk factors for long COVID among non-hospitalized patients and emphasizing the potential benefits of pre-COVID vaccination and timely treatment.
Collapse
Affiliation(s)
- Fatemeh Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Hawra Ali Hussain Alsayed
- Department of Pharmacy, Rashid Hospital, Dubai Academic Health Corporation, Dubai, United Arab Emirates
| | - Narjes Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Basema Saddik
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Family and Community Medicine, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; School of Population Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Ali Al Sayed Hussain
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Rabih Halwani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Prince Abdullah Ben Khaled Celiac Disease Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Saudi Arabia.
| |
Collapse
|
3
|
Zhang H, Xue K, Li W, Yang X, Gou Y, Su X, Qian F, Sun L. Cullin5 drives experimental asthma exacerbations by modulating alveolar macrophage antiviral immunity. Nat Commun 2024; 15:252. [PMID: 38177117 PMCID: PMC10766641 DOI: 10.1038/s41467-023-44168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Asthma exacerbations caused by respiratory viral infections are a serious global health problem. Impaired antiviral immunity is thought to contribute to the pathogenesis, but the underlying mechanisms remain understudied. Here using mouse models we find that Cullin5 (CUL5), a key component of Cullin-RING E3 ubiquitin ligase 5, is upregulated and associated with increased neutrophil count and influenza-induced exacerbations of house dust mite-induced asthma. By contrast, CUL5 deficiency mitigates neutrophilic lung inflammation and asthma exacerbations by augmenting IFN-β production. Mechanistically, following thymic stromal lymphopoietin stimulation, CUL5 interacts with O-GlcNAc transferase (OGT) and induces Lys48-linked polyubiquitination of OGT, blocking the effect of OGT on mitochondrial antiviral-signaling protein O-GlcNAcylation and RIG-I signaling activation. Our results thus suggest that, in mouse models, pre-existing allergic injury induces CUL5 expression, impairing antiviral immunity and promoting neutrophilic inflammation for asthma exacerbations. Targeting of the CUL5/IFN-β signaling axis may thereby serve as a possible therapy for treating asthma exacerbations.
Collapse
Affiliation(s)
- Haibo Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Keke Xue
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Wen Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xinyi Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Yusen Gou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 200031, Shanghai, P.R. China
| | - Feng Qian
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
| | - Lei Sun
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
| |
Collapse
|
4
|
Cheng Q, He F, Zhao W, Xu X, Shang Y, Huang W. Histone acetylation regulates ORMDL3 expression-mediated NLRP3 inflammasome overexpression during RSV-allergic exacerbation mice. J Cell Physiol 2023; 238:2904-2923. [PMID: 37877592 DOI: 10.1002/jcp.31141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
Whether respiratory syncytial virus (RSV) infection in early life may induce orosomucoid 1-like protein 3 (ORMDL3) and lead to NOD-like receptor protein 3 (NLRP3) inflammasome overexpression in asthma, which could be alleviated by the inhibition of HAT p300. First, we explored the relationship between RSV, ORMDL3, and recurrent wheezing in the future through clinical data of infants with RSV-induced bronchiolitis. Then, we used bronchial epithelium transformed with Ad12-SV40 2B (BEAS-2B) and an asthmatic mouse model of repeated RSV infection and OVA sensitization and challenge (rRSV + OVA) in early life to assess the effects of ORMDL3 on NLRP3 inflammasome and that of histone acetylation on ORMDL3 regulation. ORMDL3 overexpression is the independent risk factor of recurrent wheezing in RSV-bronchiolitis follow-up. In BEAS-2B, ORMDL3-induced NLRP3 inflammasome expression. BEAS-2B infected by RSV resulted in overexpression of ORMDL3 and NLRP3 inflammasome and histone hyperacetylation, while ORMDL3-small interfering RNA and C646 interfered could decrease NLRP3 inflammasome. ORMDL3 overexpression in mouse lung increased NLRP3 inflammasome. The expression of ORMDL3 and NLRP3 inflammasome significantly increased, with histone hyperacetylation in the lung in rRSV + OVA mice. p300 and acetylH3 bound to ORMDL3 promoter. In C646 + rRSV + OVA mice, C646 alleviated lung inflammation and overexpression of ORMDL3 and NLRP3 inflammasome. RSV activated ORMDL3 overexpression through histone hyperacetylation and induced NLRP3 inflammasome expression.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fanghan He
- Department of Pediatric Respiratory, Xi'an Children's Hospital, Xi'an, China
| | - Wenqi Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xianhong Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wanjie Huang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Bakakos A, Sotiropoulou Z, Vontetsianos A, Zaneli S, Papaioannou AI, Bakakos P. Epidemiology and Immunopathogenesis of Virus Associated Asthma Exacerbations. J Asthma Allergy 2023; 16:1025-1040. [PMID: 37791040 PMCID: PMC10543746 DOI: 10.2147/jaa.s277455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023] Open
Abstract
Asthma is a common airway disease, affecting millions of people worldwide. Although most asthma patients experience mild symptoms, it is characterized by variable airflow limitation, which can occasionally become life threatening in the case of a severe exacerbation. The commonest triggers of asthma exacerbations in both children and adults are viral infections. In this review article, we will try to investigate the most common viruses triggering asthma exacerbations and their role in asthma immunopathogenesis, since viral infections in young adults are thought to trigger the development of asthma either right away after the infection or at a later stage of their life. The commonest viral pathogens associated with asthma include the respiratory syncytial virus, rhinoviruses, influenza and parainfluenza virus, metapneumovirus and coronaviruses. All these viruses exploit different molecular pathways to infiltrate the host. Asthmatics are more prone to severe viral infections due to their unique inflammatory response, which is mostly characterized by T2 cytokines. Unlike the normal T1 high response to viral infection, asthmatics with T2 high inflammation are less potent in containing a viral infection. Inhaled and/or systematic corticosteroids and bronchodilators remain the cornerstone of asthma exacerbation treatment, and although many targeted therapies which block molecules that viruses use to infect the host have been used in a laboratory level, none has been yet approved for clinical use. Nevertheless, further understanding of the unique pathway that each virus follows to infect an individual may be crucial in the development of targeted therapies for the commonest viral pathogens to effectively prevent asthma exacerbations. Finally, biologic therapies resulted in a complete change of scenery in the treatment of severe asthma, especially with a T2 high phenotype. All available data suggest that monoclonal antibodies are safe and able to drastically reduce the rate of viral asthma exacerbations.
Collapse
Affiliation(s)
- Agamemnon Bakakos
- 1st University Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Zoi Sotiropoulou
- 1st University Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Angelos Vontetsianos
- 1st University Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Stavroula Zaneli
- 1st University Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Andriana I Papaioannou
- 1st University Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Petros Bakakos
- 1st University Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| |
Collapse
|
6
|
The Impact of Social Distancing in 2020 on Admission Rates for Exacerbations in Asthma: A Nationwide Cohort Study. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY: IN PRACTICE 2022; 10:2086-2092.e2. [PMID: 35500879 PMCID: PMC9352355 DOI: 10.1016/j.jaip.2022.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022]
Abstract
Background Social distancing measures introduced during the coronavirus disease 2019 pandemic have reduced admission rates for various infectious and noninfectious respiratory diseases. We hypothesized that rates of asthma exacerbations would decline following the national lockdown in Denmark. Objective To determine weekly rates of in- and out-of-hospital asthma exacerbations before and during the social distancing intervention implemented on March 12, 2020. Methods All individuals older than 18 years with at least 1 outpatient hospital contact with asthma as the main diagnosis from January 1, 2013, to December 31, 2017, were included. Weekly asthma exacerbation rates from January 1, 2018, to May 22, 2020, were calculated. An interrupted time-series model with the lockdown on March 12, 2020, as the point of interruption was used. Results A total of 38,225 patients with asthma were identified. The interrupted time-series model showed no immediate fall in exacerbation rates during the first week after March 12, 2020. However, there was a significant decline in weekly exacerbation rates in the following 10 weeks (change in trend for exacerbations requiring hospitalization: −0.75 [95% CI, −1.39 to −0.12]; P < .02 and in all asthma exacerbations: −12.2 [95% CI, −19.1 to −5.4; P < .001), amounting to a reduction of approximately 1 and 16.5 exacerbations per year per 100 patients in the cohort, respectively. Conclusions The introduction of the social distancing measures in Denmark did not lead to an immediate reduction in asthma exacerbation rates; however, a gradual decline in exacerbation rates during the following 10-week period was observed.
Collapse
|
7
|
Ham J, Kim J, Ko YG, Kim HY. The Dynamic Contribution of Neutrophils in the Chronic Respiratory Diseases. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:361-378. [PMID: 35837821 PMCID: PMC9293600 DOI: 10.4168/aair.2022.14.4.361] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 01/13/2023]
Abstract
Asthma, chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis are representative chronic respiratory diseases (CRDs). Although they differ in terms of disease presentation, they are all thought to arise from unresolved inflammation. Neutrophils are not only the first responders to acute inflammation, but they also help resolve the inflammation. Notably, emerging clinical studies show that CRDs are associated with systemic and local elevation of neutrophils. Moreover, murine studies suggest that airway-infiltrating neutrophils not only help initiate airway inflammation but also prolong the inflammation. Given this background, this review describes neutrophil-mediated immune responses in CRDs and summarizes the completed, ongoing, and potential clinical trials that test the therapeutic value of targeting neutrophils in CRDs. The review also clarifies the importance of understanding how neutrophils interact with other immune cells and how these interactions contribute to chronic inflammation in specific CRDs. This information may help identify future therapeutic strategies for CRDs.
Collapse
Affiliation(s)
- Jongho Ham
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Jihyun Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Young Gyun Ko
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
8
|
Sunjaya AP, Allida SM, Di Tanna GL, Jenkins C. Asthma and risk of infection, hospitalization, ICU admission and mortality from COVID-19: Systematic review and meta-analysis. J Asthma 2022; 59:866-879. [PMID: 33556287 PMCID: PMC8022341 DOI: 10.1080/02770903.2021.1888116] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE As COVID-19 spreads across the world, there are concerns that people with asthma are at a higher risk of acquiring the disease, or of poorer outcomes. This systematic review aimed to summarize evidence on the risk of infection, severe illness and death from COVID-19 in people with asthma. DATA SOURCES AND STUDY SELECTION A comprehensive search of electronic databases including preprint repositories and WHO COVID-19 database was conducted (until 26 May 2020). Studies reporting COVID-19 in people with asthma were included. For binary outcomes, we performed Sidik-Jonkman random effects meta-analysis. We explored quantitative heterogeneity by subgroup analyses, meta regression and evaluating the I2 statistic. RESULTS Fifty-seven studies with an overall sample size of 587 280 were included. The prevalence of asthma among those infected with COVID-19 was 7.46% (95% CI = 6.25-8.67). Non-severe asthma was more common than severe asthma (9.61% vs. 4.13%). Pooled analysis showed a 14% risk ratio reduction in acquiring COVID-19 (95% CI = 0.80-0.94; p < 0.0001) and 13% reduction in hospitalization with COVID-19 (95% CI = 0.77-0.99, p = 0.03) for people with asthma compared with those without. There was no significant difference in the combined risk of requiring admission to ICU and/or receiving mechanical ventilation for people with asthma (RR = 0.87 95% CI = 0.94-1.37; p = 0.19) and risk of death from COVID-19 (RR = 0.87; 95% CI = 0.68-1.10; p = 0.25). CONCLUSION The findings from this study suggest that the prevalence of people with asthma among COVID-19 patients is similar to the global prevalence of asthma. The overall findings suggest that people with asthma have a lower risk than those without asthma for acquiring COVID-19 and have similar clinical outcomes.
Collapse
Affiliation(s)
- Anthony P. Sunjaya
- Respiratory Division, The George Institute for Global Health, Newtown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Kensington, New South Wales, Australia
| | - Sabine M. Allida
- School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Kensington, New South Wales, Australia
- Mental Health Division, The George Institute for Global Health, Newtown, New South Wales, Australia
| | - Gian Luca Di Tanna
- School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Kensington, New South Wales, Australia
- Statistics Division, The George Institute for Global Health, Newtown, New South Wales, Australia
| | - Christine Jenkins
- Respiratory Division, The George Institute for Global Health, Newtown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Kensington, New South Wales, Australia
- Concord Clinical School, Medical Education Centre, Concord Repatriation General Hospital, Kensington, Concord, New South Wales, Australia
| |
Collapse
|
9
|
Wang CJ, Cheng SL, Kuo SH. Asthma and COVID-19 Associations: Focus on IgE-Related Immune Pathology. Life (Basel) 2022; 12:life12020153. [PMID: 35207441 PMCID: PMC8874771 DOI: 10.3390/life12020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Management of patients with asthma during the coronavirus disease 2019 (COVID-19) pandemic is a concern, especially since asthma predisposes patients to respiratory problems. Interestingly, asthma characterized by type 2 inflammation, also known as T-helper type 2-high endotype, displays a cellular and molecular profile that may confer protective effects against COVID-19. The results of experimental and clinical studies have established the actions of immunoglobulin E (IgE) in inducing airway hyperreactivity and weakening an interferon-mediated antiviral response following respiratory viral infection. Robust evidence supports the beneficial effect of the anti-IgE biologic treatment omalizumab on reducing respiratory virus-induced asthma exacerbations and reducing the frequency, duration, and severity of respiratory viral illness in patients with asthma. Indeed, accumulating reports of patients with severe asthma treated with omalizumab during the pandemic have reassuringly shown that continuing omalizumab treatment during COVID-19 is safe, and in fact may help prevent the severe course of COVID-19. Accordingly, guidance issued by the Global Initiative for Asthma recommends that all patients with asthma continue taking their prescribed asthma medications, including biologic therapy, during the COVID-19 pandemic. The impact of biologic treatments on patients with asthma and COVID-19 will be better understood as more evidence emerges.
Collapse
Affiliation(s)
- Chung-Jen Wang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 22056, Taiwan; (C.-J.W.); (S.-L.C.)
| | - Shih-Lung Cheng
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 22056, Taiwan; (C.-J.W.); (S.-L.C.)
- Department of Chemical Engineering and Materials Science, Yuab Ze University, Taoyuan City 32003, Taiwan
| | - Sow-Hsong Kuo
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 22056, Taiwan; (C.-J.W.); (S.-L.C.)
- Correspondence:
| |
Collapse
|
10
|
Everard ML. Precision Medicine and Childhood Asthma: A Guide for the Unwary. J Pers Med 2022; 12:82. [PMID: 35055397 PMCID: PMC8779146 DOI: 10.3390/jpm12010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Many thousands of articles relating to asthma appear in medical and scientific journals each year, yet there is still no consensus as to how the condition should be defined. Some argue that the condition does not exist as an entity and that the term should be discarded. The key feature that distinguishes it from other respiratory diseases is that airway smooth muscles, which normally vary little in length, have lost their stable configuration and shorten excessively in response to a wide range of stimuli. The lungs' and airways' limited repertoire of responses results in patients with very different pathologies experiencing very similar symptoms and signs. In the absence of objective verification of airway smooth muscle (ASM) lability, over and underdiagnosis are all too common. Allergic inflammation can exacerbate symptoms but given that worldwide most asthmatics are not atopic, these are two discrete conditions. Comorbidities are common and are often responsible for symptoms attributed to asthma. Common amongst these are a chronic bacterial dysbiosis and dysfunctional breathing. For progress to be made in areas of therapy, diagnosis, monitoring and prevention, it is essential that a diagnosis of asthma is confirmed by objective tests and that all co-morbidities are accurately detailed.
Collapse
Affiliation(s)
- Mark L Everard
- Division of Child Health, Children's Hospital, Faculty of Medicine, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
11
|
Abdelghany E, Abdelfattah RA, Shehata SR, Abdelaziz A. Prevalence and prognostic significance of chronic respiratory diseases among hospitalized patients with COVID-19 infection: a single-center study. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2022; 16:70. [PMCID: PMC9774063 DOI: 10.1186/s43168-022-00172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background WHO recognized the COVID-19 outbreak in China as a pandemic crisis on March 11, 2020. Patients with chronic respiratory diseases (CRDs) have limited physiological reserve; this lead to the assumption that COVID-19 infection in such patients could carry worse prognosis. Aim of study To detect the prevalence and prognostic significance of CRDs among hospitalized patients with COVID-19 infection. Methods The study was carried out at Minia Cardiothoracic University Hospital; all hospitalized COVID-19 patients during the period from January 2021 to August 2021 were included. Patients were subjected to full medical history taking, full blood count, inflammatory markers (CRP, serum ferritin, serum lactate dehydrogenase (LDH), serum D-dimer, PCR for COVID-19 infection), and HRCT chest. Need for and duration of mechanical ventilation whether invasive or non-invasive, duration of hospital stay, and condition at hospital discharge were recorded. Diagnosis for chronic respiratory disease was considered when patients have documented previous history and investigations compatible with the diagnosis, e.g., previous pulmonary function tests, chest CT, or sleep study. Results Comorbid chronic respiratory diseases were present in 57 patients (17.6%). Regarding presenting symptoms, no significant difference exists between patients with and without CRDs except for sputum production which was more frequent among patients with underlying CRDs. Elevated inflammatory markers (ferritin, D-dimer, and LDH) were more frequently observed in patients without CRDs (p < 0.0001, 0.033, and 0.008, respectively). COVID-19 with comorbid CRDs patients were more hypoxemic at presentation than other patients (p = 0.032). There was significant number of COVID-19 patients with CRDs were discharged on home oxygen therapy (p = 0.003). Regarding mortality in our cohort of patients, no significant difference exist between patients with and without CRDs (p 0.374) Among patients with comorbid CRDs, the highest mortality was observed on patients with OSA followed by ILDS and then COPD. Conclusion The presence of CRD was not found to be a poor prognostic value of COVID-19. Inflammatory markers (ferritin, D-dimer, and LDH) were significantly higher in COVID-19 patients without CRD than COVID-19 with CRD.
Collapse
Affiliation(s)
- E. Abdelghany
- grid.411806.a0000 0000 8999 4945Department of Chest Diseases, Faculty of Medicine, Minia University, Minia, Egypt
| | - Rasha A. Abdelfattah
- grid.411806.a0000 0000 8999 4945Department of Chest Diseases, Faculty of Medicine, Minia University, Minia, Egypt
| | - S. Rabea Shehata
- grid.411806.a0000 0000 8999 4945Department of Chest Diseases, Faculty of Medicine, Minia University, Minia, Egypt
| | - A. Abdelaziz
- grid.411806.a0000 0000 8999 4945Department of Chest Diseases, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
12
|
Furci F, Caminati M, Senna G, Gangemi S. The potential protective role of corticosteroid therapy in patients with asthma and COPD against COVID-19. Clin Mol Allergy 2021; 19:19. [PMID: 34719394 PMCID: PMC8557959 DOI: 10.1186/s12948-021-00159-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/02/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The observation of patients hospitalized for coronavirus disease (COVID-19) led us to note a lower prevalence of patients affected by chronic respiratory disease, in particular asthmatic patients, compared to the general population. Therefore, the aim of this paper is to evaluate the possible protective role of corticosteroid therapy in patients with chronic lung disease, regarding the risk of contracting severe COVID-19. MAIN BODY SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) receptors to enter the cells. Considering the high number of these receptors in patients affected by asthma and chronic obstructive pulmonary disease (COPD), the evidence that these patients do not have a high risk of hospitalization for COVID-19 needs further study to understand what the possible protective "factors" are in these patients. In particular, the finding in some studies of reduced coronavirus replication in cell lines treated with steroids, molecules commonly used for treating chronic lung diseases, needs further attention. SHORT CONCLUSION The hypothesis that corticosteroids, commonly used in treating airways diseases, might modify the severity of SARS-CoV-2 disease has become a key point and a possible predictive factor of a positive outcome of COVID-19 in patients treated everyday with these molecules.
Collapse
Affiliation(s)
- Fabiana Furci
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico "G. Martino", Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - Marco Caminati
- Department of Medicine, University of Verona and Verona University Hospital, Verona, Italy
| | - Gianenrico Senna
- Department of Medicine, University of Verona and Verona University Hospital, Verona, Italy.,Asthma Centre and Allergy Unit, University of Verona and Verona University Hospital, Verona, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico "G. Martino", Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
13
|
Durdagi S, Avsar T, Orhan MD, Serhatli M, Balcioglu BK, Ozturk HU, Kayabolen A, Cetin Y, Aydinlik S, Bagci-Onder T, Tekin S, Demirci H, Guzel M, Akdemir A, Calis S, Oktay L, Tolu I, Butun YE, Erdemoglu E, Olkan A, Tokay N, Işık Ş, Ozcan A, Acar E, Buyukkilic S, Yumak Y. The neutralization effect of montelukaston SARS-CoV-2 is shown by multiscale in silicosimulations and combined in vitro studies. Mol Ther 2021; 30:963-974. [PMID: 34678509 PMCID: PMC8524809 DOI: 10.1016/j.ymthe.2021.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022] Open
Abstract
Small molecule inhibitors have previously been investigated in different studies as possible therapeutics in the treatment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In the current drug repurposing study, we identified the leukotriene (D4) receptor antagonist montelukast as a novel agent that simultaneously targets two important drug targets of SARS-CoV-2. We initially demonstrated the dual inhibition profile of montelukast through multiscale molecular modeling studies. Next, we characterized its effect on both targets by different in vitro experiments including the enzyme (main protease) inhibition-based assay, surface plasmon resonance (SPR) spectroscopy, pseudovirus neutralization on HEK293T/hACE2+TMPRSS2, and virus neutralization assay using xCELLigence MP real-time cell analyzer. Our integrated in silico and in vitro results confirmed the dual potential effect of montelukast both on the main protease enzyme inhibition and virus entry into the host cell (spike/ACE2). The virus neutralization assay results showed that SARS-CoV-2 virus activity was delayed with montelukast for 20 h on the infected cells. The rapid use of new small molecules in the pandemic is very important today. Montelukast, whose pharmacokinetic and pharmacodynamic properties are very well characterized and has been widely used in the treatment of asthma since 1998, should urgently be completed in clinical phase studies and, if its effect is proved in clinical phase studies, it should be used against coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Serdar Durdagi
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey.
| | - Timucin Avsar
- Department of Medical Biology, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Muge Didem Orhan
- Department of Medical Biology, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Muge Serhatli
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Bertan Koray Balcioglu
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Hasan Umit Ozturk
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Alisan Kayabolen
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450 Istanbul, Turkey
| | - Yuksel Cetin
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Seyma Aydinlik
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450 Istanbul, Turkey; Koç University Research Center for Translational Medicine, 34450 Istanbul, Turkey
| | - Saban Tekin
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli; Department of Basic Sciences, Division of Medical Biology, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Hasan Demirci
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Mustafa Guzel
- Department of Medical Pharmacology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Atilla Akdemir
- Department of Pharmacology, Computer-aided Drug Discovery Laboratory, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Seyma Calis
- Department of Medical Biology, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Department of Molecular Biology-Genetics and Biotechnology, Istanbul Technical University, 34485 Istanbul, Turkey
| | - Lalehan Oktay
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Ilayda Tolu
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Yasar Enes Butun
- Department of Medical Pharmacology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ece Erdemoglu
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Alpsu Olkan
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Nurettin Tokay
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Şeyma Işık
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Aysenur Ozcan
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Elif Acar
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Sehriban Buyukkilic
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Yesim Yumak
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Science and Letters, Tokat Gaziosmanpaşa University, Tokat, Turkey
| |
Collapse
|
14
|
Howell D, Verma H, Ho KS, Narasimhan B, Steiger D, Rogers L. Asthma and COVID-19: lessons learned and questions that remain. Expert Rev Respir Med 2021; 15:1377-1386. [PMID: 34570678 DOI: 10.1080/17476348.2021.1985763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Asthma is one of the most common chronic diseases worldwide. As a disease of the respiratory tract, the site of entry for the SARS-CoV-2 virus, there may be an important interplay between asthma and COVID-19 disease. AREAS COVERED We report asthma prevalence among hospitalized cohorts with COVID-19. Those with non-allergic and severe asthma may be at increased risk of a worsened clinical outcome from COVID-19 infection. We explore the epidemiology of asthma as a risk factor for the severity of COVID-19 infection. We then consider the role COVID-19 may play in leading to exacerbations of asthma. The impact of asthma endotype on outcome is discussed. Lastly, we address the safety of common asthma therapeutics. A literature search was performed with relevant terms for each of the sections of the review using PubMed, Google Scholar, and Medline. EXPERT OPINION Asthma diagnosis may be a risk factor for severe COVID-19 especially for those with severe disease or nonallergic phenotypes. COVID-19 does not appear to provoke asthma exacerbations and asthma therapeutics should be continued for patients with exposure to COVID-19. Clearly much regarding this topic remains unknown and we identify some key questions that may be of interest for future researchers.[Figure: see text].
Collapse
Affiliation(s)
- Daniel Howell
- Division of Pulmonary and Critical Care, Woodhull Hospital, New York University, New York, USA
| | - Hannah Verma
- Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kam Sing Ho
- Department of Medicine, Mount Sinai Morningside & Mount Sinai West Hospitals, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Bharat Narasimhan
- Department of Medicine, Mount Sinai Morningside & Mount Sinai West Hospitals, Icahn School of Medicine at Mount Sinai, New York, USA
| | - David Steiger
- Division of Pulmonary & Critical Care, Mount Sinai Beth Israel, Mount Sinai Morningside, & Mount Sinai West Hospitals, Icahn School of Medicine at Mount Sinai, New York, USA
| | | |
Collapse
|
15
|
Liu X, Nguyen TH, Sokulsky L, Li X, Garcia Netto K, Hsu ACY, Liu C, Laurie K, Barr I, Tay H, Eyers F, Foster PS, Yang M. IL-17A is a common and critical driver of impaired lung function and immunopathology induced by influenza virus, rhinovirus and respiratory syncytial virus. Respirology 2021; 26:1049-1059. [PMID: 34472161 DOI: 10.1111/resp.14141] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/08/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVE Influenza virus (FLU), rhinovirus (RV) and respiratory syncytial virus (RSV) are the most common acute respiratory infections worldwide. Infection can cause severe health outcomes, while therapeutic options are limited, primarily relieving symptoms without attenuating the development of lesions or impaired lung function. We therefore examined the inflammatory response to these infections with the intent to identify common components that are critical drivers of immunopathogenesis and thus represent potential therapeutic targets. METHODS BALB/c mice were infected with FLU, RV or RSV, and lung function, airway inflammation and immunohistopathology were measured over a 10-day period. Anti-IL-17A mAb was administered to determine the impact of attenuating this cytokine's function on the development and severity of disease. RESULTS All three viruses induced severe airway constriction and inflammation at 2 days post-infection (dpi). However, only FLU induced prolonged inflammation till 10 dpi. Increased IL-17A expression was correlated with the alterations in lung function and its persistence. Neutralization of IL-17A did not affect the viral replication but led to the resolution of airway hyperresponsiveness. Furthermore, anti-IL-17A treatment resulted in reduced infiltration of neutrophils (in RV- and FLU-infected mice at 2 dpi) and lymphocytes (in RSV-infected mice at 2 dpi and FLU-infected mice at 10 dpi), and attenuated the severity of immunopathology. CONCLUSION IL-17A is a common pathogenic molecule regulating disease induced by three prevalent respiratory viruses. Targeting the IL-17A pathway may provide a unified approach to the treatment of these respiratory infections alleviating both inflammation-induced lesions and difficulties in breathing.
Collapse
Affiliation(s)
- Xiaoming Liu
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Thi Hiep Nguyen
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Leon Sokulsky
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Xiang Li
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Keilah Garcia Netto
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia.,School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Programme in Emerging Infectious Diseases, Duke - National University of Singapore (NUS) Medical School, Singapore
| | - Chi Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Karen Laurie
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hock Tay
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Fiona Eyers
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Paul S Foster
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Ming Yang
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
16
|
Averell CM, Laliberté F, Germain G, Slade DJ, Duh MS, Spahn J. Disease burden and treatment adherence among children and adolescent patients with asthma. J Asthma 2021; 59:1687-1696. [PMID: 34346263 DOI: 10.1080/02770903.2021.1955377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To assess asthma burden and medication adherence in a US de-identified patient level claims database. METHODS This retrospective observational study used the IQVIA PHARMETRICS PLUS database to identify patients aged 5-17 years, diagnosed with asthma between 01/01/2012-09/30/2017 (asthma cohort), and those initiating treatment with twice-daily inhaled corticosteroids (ICS) or twice-daily ICS/long-acting beta2 agonists (LABA) (treatment cohorts; index date = first dispensing). Patient characteristics, asthma medication, and healthcare resource utilization were assessed over a 12-month baseline period. Treatment cohort endpoints were assessed in a 12-month follow-up period, including: adherence using proportion of days covered (PDC); persistence (no gap >45 days between dispensings). RESULTS The asthma cohort included 186,868 patients (112,689 children, mean age 7.9 years; 74,179 adolescents, mean age 14.3 years). During baseline, 34.5% used ICS or ICS/LABA, 24% used oral corticosteroids, 11.1% had ≥1 asthma-related emergency department visit, 2.2% had ≥1 asthma-related hospitalization. Among treatment cohorts, 47,276 and 10,247 patients initiated twice-daily ICS and ICS/LABA, respectively (mean ages: 9.9; 12.5 years). Mean PDC adherence to twice-daily ICS and ICS/LABA was 30% and 34% at 6 months (PDC ≥0.8: 4.3%; 6.1%); 21% and 24% at 12 months (PDC ≥0.8: 1.8%; 2.8%). Persistence with twice-daily ICS and ICS/LABA was 10.1% and 14.2% at 6 months; 5.6% and 8.0% at 12 months. CONCLUSIONS A large disease burden and unmet need exist among US children/adolescent asthma patients, evidenced by low use of, and poor adherence to, ICS-containing medication, the notable proportion of oral corticosteroid users, and higher-than-expected asthma-related emergency department and hospitalization rates.
Collapse
Affiliation(s)
| | | | | | - David J Slade
- GlaxoSmithKline plc., Research Triangle Park, NC, USA
| | - Mei S Duh
- Analysis Group, Inc., Boston, MA, USA
| | - Joseph Spahn
- GlaxoSmithKline plc., Research Triangle Park, NC, USA
| |
Collapse
|
17
|
Aveyard P, Gao M, Lindson N, Hartmann-Boyce J, Watkinson P, Young D, Coupland CAC, Tan PS, Clift AK, Harrison D, Gould DW, Pavord ID, Hippisley-Cox J. Association between pre-existing respiratory disease and its treatment, and severe COVID-19: a population cohort study. THE LANCET. RESPIRATORY MEDICINE 2021; 9:909-923. [PMID: 33812494 PMCID: PMC8016404 DOI: 10.1016/s2213-2600(21)00095-3] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Previous studies suggested that the prevalence of chronic respiratory disease in patients hospitalised with COVID-19 was lower than its prevalence in the general population. The aim of this study was to assess whether chronic lung disease or use of inhaled corticosteroids (ICS) affects the risk of contracting severe COVID-19. METHODS In this population cohort study, records from 1205 general practices in England that contribute to the QResearch database were linked to Public Health England's database of SARS-CoV-2 testing and English hospital admissions, intensive care unit (ICU) admissions, and deaths for COVID-19. All patients aged 20 years and older who were registered with one of the 1205 general practices on Jan 24, 2020, were included in this study. With Cox regression, we examined the risks of COVID-19-related hospitalisation, admission to ICU, and death in relation to respiratory disease and use of ICS, adjusting for demographic and socioeconomic status and comorbidities associated with severe COVID-19. FINDINGS Between Jan 24 and April 30, 2020, 8 256 161 people were included in the cohort and observed, of whom 14 479 (0·2%) were admitted to hospital with COVID-19, 1542 (<0·1%) were admitted to ICU, and 5956 (0·1%) died. People with some respiratory diseases were at an increased risk of hospitalisation (chronic obstructive pulmonary disease [COPD] hazard ratio [HR] 1·54 [95% CI 1·45-1·63], asthma 1·18 [1·13-1·24], severe asthma 1·29 [1·22-1·37; people on three or more current asthma medications], bronchiectasis 1·34 [1·20-1·50], sarcoidosis 1·36 [1·10-1·68], extrinsic allergic alveolitis 1·35 [0·82-2·21], idiopathic pulmonary fibrosis 1·59 [1·30-1·95], other interstitial lung disease 1·66 [1·30-2·12], and lung cancer 2·24 [1·89-2·65]) and death (COPD 1·54 [1·42-1·67], asthma 0·99 [0·91-1·07], severe asthma 1·08 [0·98-1·19], bronchiectasis 1·12 [0·94-1·33], sarcoidosis 1·41 [0·99-1·99), extrinsic allergic alveolitis 1·56 [0·78-3·13], idiopathic pulmonary fibrosis 1·47 [1·12-1·92], other interstitial lung disease 2·05 [1·49-2·81], and lung cancer 1·77 [1·37-2·29]) due to COVID-19 compared with those without these diseases. Admission to ICU was rare, but the HR for people with asthma was 1·08 (0·93-1·25) and severe asthma was 1·30 (1·08-1·58). In a post-hoc analysis, relative risks of severe COVID-19 in people with respiratory disease were similar before and after shielding was introduced on March 23, 2020. In another post-hoc analysis, people with two or more prescriptions for ICS in the 150 days before study start were at a slightly higher risk of severe COVID-19 compared with all other individuals (ie, no or one ICS prescription): HR 1·13 (1·03-1·23) for hospitalisation, 1·63 (1·18-2·24) for ICU admission, and 1·15 (1·01-1·31) for death. INTERPRETATION The risk of severe COVID-19 in people with asthma is relatively small. People with COPD and interstitial lung disease appear to have a modestly increased risk of severe disease, but their risk of death from COVID-19 at the height of the epidemic was mostly far lower than the ordinary risk of death from any cause. Use of inhaled steroids might be associated with a modestly increased risk of severe COVID-19. FUNDING National Institute for Health Research Oxford Biomedical Research Centre and the Wellcome Trust.
Collapse
Affiliation(s)
- Paul Aveyard
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals, NHS Foundation Trust, Oxford, UK.
| | - Min Gao
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals, NHS Foundation Trust, Oxford, UK; School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Nicola Lindson
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Jamie Hartmann-Boyce
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals, NHS Foundation Trust, Oxford, UK
| | - Peter Watkinson
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals, NHS Foundation Trust, Oxford, UK
| | - Duncan Young
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Carol A C Coupland
- University of Nottingham, Division of Primary Care, Faculty of Medicine & Health Sciences, University Park, Nottingham, UK
| | - Pui San Tan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Ashley K Clift
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - David Harrison
- Intensive Care National Audit & Research Centre, London, UK
| | - Doug W Gould
- Intensive Care National Audit & Research Centre, London, UK
| | - Ian D Pavord
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals, NHS Foundation Trust, Oxford, UK
| | - Julia Hippisley-Cox
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Mthembu N, Ikwegbue P, Brombacher F, Hadebe S. Respiratory Viral and Bacterial Factors That Influence Early Childhood Asthma. FRONTIERS IN ALLERGY 2021; 2:692841. [PMID: 35387053 PMCID: PMC8974778 DOI: 10.3389/falgy.2021.692841] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Asthma is a chronic respiratory condition characterised by episodes of shortness of breath due to reduced airway flow. The disease is triggered by a hyperreactive immune response to innocuous allergens, leading to hyper inflammation, mucus production, changes in structural cells lining the airways, and airway hyperresponsiveness. Asthma, although present in adults, is considered as a childhood condition, with a total of about 6.2 million children aged 18 and below affected globally. There has been progress in understanding asthma heterogeneity in adults, which has led to better patient stratification and characterisation of multiple asthma endotypes with distinct, but overlapping inflammatory features. The asthma inflammatory profile in children is not well-defined and heterogeneity of the disease is less described. Although many factors such as genetics, food allergies, antibiotic usage, type of birth, and cigarette smoke exposure can influence asthma development particularly in children, respiratory infections are thought to be the major contributing factor in poor lung function and onset of the disease. In this review, we focus on viral and bacterial respiratory infections in the first 10 years of life that could influence development of asthma in children. We also review literature on inflammatory immune heterogeneity in asthmatic children and how this overlaps with early lung development, poor lung function and respiratory infections. Finally, we review animal studies that model early development of asthma and how these studies could inform future therapies and better understanding of this complex disease.
Collapse
Affiliation(s)
- Nontobeko Mthembu
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Paul Ikwegbue
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Immunology, Health Science Faculty, International Centre for Genetic Engineering and Biotechnology (ICGEB) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Sabelo Hadebe
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
19
|
Lombardi C, Gani F, Berti A, Comberiati P, Peroni D, Cottini M. Asthma and COVID-19: a dangerous liaison? Asthma Res Pract 2021; 7:9. [PMID: 34261543 PMCID: PMC8279806 DOI: 10.1186/s40733-021-00075-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), provoked the most striking international public health crisis of our time. COVID-19 can cause a range of breathing problems, from mild to critical, with potential evolution to respiratory failure and acute respiratory distress syndrome. Elderly adults and those affected with chronic cardiovascular, metabolic, and respiratory conditions carry a higher risk of severe COVID-19. Given the global burden of asthma, there are well-founded concerns that the relationship between COVID-19 and asthma could represent a "dangerous liaison".Here we aim to review the latest evidence on the links between asthma and COVID-19 and provide reasoned answers to current concerns, such as the risk of developing SARS-CoV-2 infection and/or severe COVID-19 stratified by asthmatic patients, the contribution of type-2 vs. non-type-2 asthma and asthma-COPD overlap to the risk of COVID-19 development. We also address the potential role of both standard anti-inflammatory asthma therapies and new biological agents for severe asthma, such as mepolizumab, reslizumab, and benralizumab, on the susceptibility to SARS-CoV-2 infection and severe COVID-19 outcomes.
Collapse
Affiliation(s)
- Carlo Lombardi
- Departmental Unit of Allergology, Immunology & Pulmonary Diseases, Fondazione Poliambulanza, Brescia, Italy.
- Departmental Unit of Pneumology & Allergology, Fondazione Poliambulanza Istituto Ospedaliero, Via Bissolati, 57, 25100, Brescia, Italy.
| | | | - Alvise Berti
- Ospedale Santa Chiara and Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Thoracic Disease Research Unit, Mayo Clinic, Rochester, MN, USA
| | - Pasquale Comberiati
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
- Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Diego Peroni
- Thoracic Disease Research Unit, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
20
|
Wu X, Xu Y, Jin L, Wang X, Zhu H, Xie Y. Association of Preexisting Asthma and Other Allergic Diseases With Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2021; 8:670744. [PMID: 34249969 PMCID: PMC8264065 DOI: 10.3389/fmed.2021.670744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Respiratory viruses are known to contribute to asthma exacerbations. A meta-analysis of three studies reported no association between coronavirus disease 2019 (COVID-19) mortality and preexisting asthma. This study aimed to investigate the mortality of patients with COVID-19 in relation to preexisting asthma and other allergic diseases associated with changes in respiratory function. Methods: PubMed, Embase, and the Cochrane Library were queried for papers published up to April 9, 2021: (1) population: patients who tested positive for SARS-CoV-2 according to the WHO guidelines; (2) exposure: preexisting asthma or allergic rhinitis; (3) outcomes: mortality, ICU admission, and/or hospitalization; and (4) language: English. For studies that reported adjusted models, the most adjusted model was used for this meta-analysis; otherwise, unadjusted results were used. Results: Twenty-four studies (1,169,441 patients) were included in this meta-analysis. Patients who died of COVID-19 were not more likely to have preexisting asthma (OR = 0.95, 95%CI: 0.78-1.15, P = 0.602; I2 = 63.5%, Pheterogeneity < 0.001). Patients with COVID-19 and admitted to the ICU (OR = 1.17, 95%CI: 0.81-1.68, P = 0.407; I2 = 91.1%, Pheterogeneity = 0.407), or hospitalized (OR = 0.91, 95%CI: 0.76-1.10, P = 0.338; I2 = 79.1%, Pheterogeneity < 0.001) were not more likely to have preexisting asthma. The results for mortality and hospitalization remained non-significant when considering the adjusted and unadjusted models separately. The results from the sensitivity analyses were consistent with the primary analyses, suggesting the robustness of our results. Conclusion: This meta-analysis suggests that the patients who died from COVID-19, were admitted to the ICU, or hospitalized were not more likely to have asthma.
Collapse
Affiliation(s)
- Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yihua Xu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine (TCM), Chengdu, China
| | - Lina Jin
- Department of Respiratory, Yanbian Hospital of Traditional Chinese Medicine, Yanji City Hospital of Traditional Chinese Medicine, Jilin, China
| | - Xiaoou Wang
- Department of Nephrology, Yanbian Hospital of Traditional Chinese Medicine, Yanji City Hospital of Traditional Chinese Medicine, Jilin, China
| | - Haiyan Zhu
- Integrated Traditional Chinese Medicine (TCM) & Western Medicine Department, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yiqiang Xie
- Traditional Chinese Medicine (TCM) College, Hainan Medical University, Haikou, China
| |
Collapse
|
21
|
Hosseini B, Berthon BS, Starkey MR, Collison A, McLoughlin RF, Williams EJ, Nichol K, Wark PA, Jensen ME, Da Silva Sena CR, Baines KJ, Mattes J, Wood LG. Children With Asthma Have Impaired Innate Immunity and Increased Numbers of Type 2 Innate Lymphoid Cells Compared With Healthy Controls. Front Immunol 2021; 12:664668. [PMID: 34220812 PMCID: PMC8248177 DOI: 10.3389/fimmu.2021.664668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
Background Asthma is the most frequent cause of hospitalisation among children; however, little is known regarding the effects of asthma on immune responses in children. Objective The present study aimed to evaluate cytokine responses of peripheral blood mononuclear cells (PBMCs), PBMC composition and lung function in children with and without asthma. Methods Using a case-control design, we compared 48 children with asthma aged 3-11 years with 14 age-matched healthy controls. PBMC composition and cytokine production including interferon (IFN)-γ, interleukin (IL)-1β, IL-5 and lL-6 following stimulation with rhinovirus-1B (RV1B), house dust mite (HDM) and lipopolysaccharide (LPS) were measured. Lung function was assessed using impulse oscillometry and nitrogen multiple breath washout. Results The frequency of group 2 innate lymphoid cells were significantly higher in asthmatics and PBMCs from asthmatics had deficient IFN-γ production in response to both RV1B and LPS compared with controls (P<0.01). RV1B-induced IL-1β response and HDM-stimulated IL-5 production was higher in asthmatics than controls (P<0.05). In contrast, IL-1β and IL-6 were significantly reduced in response to HDM and LPS in asthmatics compared to controls (P<0.05). Children with asthma also had reduced pulmonary function, indicated by lower respiratory reactance as well as higher area of-reactance and lung clearance index values compared with controls (P<0.05). Conclusion Our study indicates that children with asthma have a reduced lung function in concert with impaired immune responses and altered immune cell subsets. Improving our understanding of immune responses to viral and bacterial infection in childhood asthma can help to tailor management of the disease.
Collapse
Affiliation(s)
- Banafshe Hosseini
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Bronwyn S Berthon
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.,Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Adam Collison
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.,Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Rebecca F McLoughlin
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Evan J Williams
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Kristy Nichol
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Peter Ab Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Megan E Jensen
- Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Carla Rebeca Da Silva Sena
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Katherine J Baines
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Joerg Mattes
- Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.,Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
22
|
Sen P, Majumdar U, Zein J, Hatipoğlu U, Attaway AH. Inhaled corticosteroids do not adversely impact outcomes in COVID-19 positive patients with COPD: An analysis of Cleveland Clinic's COVID-19 registry. PLoS One 2021; 16:e0252576. [PMID: 34081722 PMCID: PMC8174679 DOI: 10.1371/journal.pone.0252576] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inhaled Corticosteroids (ICS) are commonly prescribed to patients with severe COPD and recurrent exacerbations. It is not known what impact ICS cause in terms of COVID-19 positivity or disease severity in COPD. This study examined 27,810 patients with COPD from the Cleveland Clinic COVID-19 registry between March 8th and September 16th, 2020. Electronic health records were used to determine diagnosis of COPD, ICS use, and clinical outcomes. Multivariate logistic regression was used to adjust for demographics, month of COVID-19 testing, and comorbidities known to be associated with increased risk for severe COVID-19 disease. Amongst the COPD patients who were tested for COVID-19, 44.1% of those taking an ICS-containing inhaler tested positive for COVID-19 versus 47.2% who tested negative for COVID-19 (p = 0.033). Of those who tested positive for COVID-19 (n = 1288), 371 (28.8%) required hospitalization. In-hospital outcomes were not significantly different when comparing ICS versus no ICS in terms of ICU admission (36.8% [74/201] vs 31.2% [53/170], p = 0.30), endotracheal intubation (21.9% [44/201] vs 16.5% [28/170], p = 0.24), or mortality (18.4% [37/201] vs 20.0% [34/170], p = 0.80). Multivariate logistic regression demonstrated no significant differences in hospitalization (adj OR 1.12, CI: 0.90-1.38), ICU admission (adj OR: 1.31, CI: 0.82-2.10), need for mechanical ventilation (adj OR 1.65, CI: 0.69-4.02), or mortality (OR: 0.80, CI: 0.43-1.49). In conclusion, ICS therapy did not increase COVID-19 related healthcare utilization or mortality outcome in patients with COPD followed at the Cleveland Clinic health system. These findings should encourage clinicians to continue ICS therapy for COPD patients during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Payal Sen
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Uddalak Majumdar
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Joe Zein
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Umur Hatipoğlu
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Amy H. Attaway
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
23
|
Laanesoo A, Urgard E, Periyasamy K, Laan M, Bochkov YA, Aab A, Magilnick N, Pooga M, Gern JE, Johnston SL, Coquet JM, Boldin MP, Wengel J, Altraja A, Bochenek G, Jakiela B, Rebane A. Dual role of the miR-146 family in rhinovirus-induced airway inflammation and allergic asthma exacerbation. Clin Transl Med 2021; 11:e427. [PMID: 34185416 PMCID: PMC8161513 DOI: 10.1002/ctm2.427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Rhinovirus (RV) infections are associated with asthma exacerbations. MicroRNA-146a and microRNA-146b (miR-146a/b) are anti-inflammatory miRNAs that suppress signaling through the nuclear factor kappa B (NF-κB) pathway and inhibit pro-inflammatory chemokine production in primary human bronchial epithelial cells (HBECs). In the current study, we aimed to explore whether miR-146a/b could regulate cellular responses to RVs in HBECs and airways during RV-induced asthma exacerbation. We demonstrated that expression of miR-146a/b and pro-inflammatory chemokines was increased in HBECs and mouse airways during RV infection. However, transfection with cell-penetrating peptide (CPP)-miR-146a nanocomplexes before infection with RV significantly reduced the expression of the pro-inflammatory chemokines CCL5, IL-8 and CXCL1, increased interferon-λ production, and attenuated infection with the green fluorescent protein (GFP)-expressing RV-A16 in HBECs. Concordantly, compared to wild-type (wt) mice, Mir146a/b-/- mice exhibited more severe airway neutrophilia and increased T helper (Th)1 and Th17 cell infiltration in response to RV-A1b infection and a stronger Th17 response with a less prominent Th2 response in house dust mite extract (HDM)-induced allergic airway inflammation and RV-induced exacerbation models. Interestingly, intranasal administration of CPP-miR-146a nanocomplexes reduced HDM-induced allergic airway inflammation without a significant effect on the Th2/Th1/Th17 balance in wild-type mice. In conclusion, the overexpression of miR-146a has a strong anti-inflammatory effect on RV infection in HBECs and a mouse model of allergic airway inflammation, while a lack of miR-146a/b leads to attenuated type 2 cell responses in mouse models of allergic airway inflammation and RV-induced exacerbation of allergic airway inflammation. Furthermore, our data indicate that the application of CPP-miR-146a nanocomplexes has therapeutic potential for targeting airway inflammation.
Collapse
Affiliation(s)
- Anet Laanesoo
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - Egon Urgard
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - Kapilraj Periyasamy
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - Martti Laan
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - Yury A. Bochkov
- School of Medicine and Public Health University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Alar Aab
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - Nathaniel Magilnick
- Department of Molecular and Cellular BiologyBeckman Research Institute of City of Hope National Medical CenterDuarteCaliforniaUSA
| | - Margus Pooga
- Institute of TechnologyUniversity of TartuTartuEstonia
| | - James E. Gern
- School of Medicine and Public Health University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Sebastian L. Johnston
- National Heart and Lung InstituteImperial College LondonLondonUK
- Imperial College Healthcare NHS TrustLondonUK
| | - Jonathan M. Coquet
- Department of MicrobiologyTumor and Cell Biology (MTC)Karolinska InstitutetStockholmSweden
| | - Mark P. Boldin
- Department of Molecular and Cellular BiologyBeckman Research Institute of City of Hope National Medical CenterDuarteCaliforniaUSA
| | - Jesper Wengel
- Nucleic Acid CenterDepartment of PhysicsChemistry and PharmacyUniversity of Southern DenmarkOdenseDenmark
| | - Alan Altraja
- Department of Pulmonary MedicineUniversity of TartuTartuEstonia
- Lung Clinic of the Tartu University HospitalTartuEstonia
| | - Grazyna Bochenek
- Department of MedicineJagiellonian University Medical CollegeKrakowPoland
| | - Bogdan Jakiela
- Department of MedicineJagiellonian University Medical CollegeKrakowPoland
| | - Ana Rebane
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| |
Collapse
|
24
|
Infection-Associated Mechanisms of Neuro-Inflammation and Neuro-Immune Crosstalk in Chronic Respiratory Diseases. Int J Mol Sci 2021; 22:ijms22115699. [PMID: 34071807 PMCID: PMC8197882 DOI: 10.3390/ijms22115699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive airway diseases are characterized by airflow obstruction and airflow limitation as well as chronic airway inflammation. Especially bronchial asthma and chronic obstructive pulmonary disease (COPD) cause considerable morbidity and mortality worldwide, can be difficult to treat, and ultimately lack cures. While there are substantial knowledge gaps with respect to disease pathophysiology, our awareness of the role of neurological and neuro-immunological processes in the development of symptoms, the progression, and the outcome of these chronic obstructive respiratory diseases, is growing. Likewise, the role of pathogenic and colonizing microorganisms of the respiratory tract in the development and manifestation of asthma and COPD is increasingly appreciated. However, their role remains poorly understood with respect to the underlying mechanisms. Common bacteria and viruses causing respiratory infections and exacerbations of chronic obstructive respiratory diseases have also been implicated to affect the local neuro-immune crosstalk. In this review, we provide an overview of previously described neuro-immune interactions in asthma, COPD, and respiratory infections that support the hypothesis of a neuro-immunological component in the interplay between chronic obstructive respiratory diseases, respiratory infections, and respiratory microbial colonization.
Collapse
|
25
|
Farmani AR, Mahdavinezhad F, Moslemi R, Mehrabi Z, Noori A, Kouhestani M, Noroozi Z, Ai J, Rezaei N. Anti-IgE monoclonal antibodies as potential treatment in COVID-19. Immunopharmacol Immunotoxicol 2021; 43:259-264. [PMID: 34018464 PMCID: PMC8146297 DOI: 10.1080/08923973.2021.1925906] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is associated with irreversible effects on vital organs, especially the respiratory and cardiac systems. While the immune system plays a key role in the survival of patients to viral infections, in COVID-19, there is a hyperinflammatory immune response evoked by all the immune cells, such as neutrophils, monocytes, and includes release of various cytokines, resulting in an exaggerated immune response, named cytokine storm. This severe, dysregulated immune response causes multi-organ damage, which eventually leads to high mortality. One of the most important components of hypersensitivity is immunoglobulin E (IgE), which plays a major role in susceptibility to respiratory infections and can lead to the activation of mast cells. There is also a negative association between IgE and IFN-α, which can reduce Toll-like receptor (TLR) nine receptor expression and TLR-7 signaling to disrupt IFN production. Moreover, anti-IgE drugs such as omalizumab reduces the severity and duration of COVID-19. In addition to its anti-IgE effect, omalizumab inhibits inflammatory cells such as neutrophils. Hence, blockade of IgE may have clinical utility as an immunotherapy for COVID-19.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Tissue Engineering Department, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Mahdavinezhad
- Anatomy Department-School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rohollah Moslemi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Mehrabi
- Internal Medicine Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Noori
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Kouhestani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Noroozi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
26
|
Laura G, Liu Y, Fernandes K, Willis-Owen SAG, Ito K, Cookson WO, Moffatt MF, Zhang Y. ORMDL3 regulates poly I:C induced inflammatory responses in airway epithelial cells. BMC Pulm Med 2021; 21:167. [PMID: 34001091 PMCID: PMC8127224 DOI: 10.1186/s12890-021-01496-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Oroscomucoid 3 (ORMDL3) has been linked to susceptibility of childhood asthma and respiratory viral infection. Polyinosinic-polycytidylic acid (poly I:C) is a synthetic analog of viral double-stranded RNA, a toll-like receptor 3 (TLR3) ligand and mimic of viral infection. METHODS To investigate the functional role of ORMDL3 in the poly I:C-induced inflammatory response in airway epithelial cells, ORMDL3 knockdown and over-expression models were established in human A549 epithelial cells and primary normal human bronchial epithelial (NHBE) cells. The cells were stimulated with poly I:C or the Th17 cytokine IL-17A. IL-6 and IL-8 levels in supernatants, mRNA levels of genes in the TLR3 pathway and inflammatory response from cell pellets were measured. ORMDL3 knockdown models in A549 and BEAS-2B epithelial cells were then infected with live human rhinovirus (HRV16) followed by IL-6 and IL-8 measurement. RESULTS ORMDL3 knockdown and over-expression had little influence on the transcript levels of TLR3 in airway epithelial cells. Time course studies showed that ORMDL3-deficient A549 and NHBE cells had an attenuated IL-6 and IL-8 response to poly I:C stimulation. A549 and NHBE cells over-expressing ORMDL3 released relatively more IL-6 and IL-8 following poly I:C stimulation. IL-17A exhibited a similar inflammatory response in ORMDL3 knockdown and over-expressing cells, but co-stimulation of poly I:C and IL-17A did not significantly enhance the IL-6 and IL-8 response. Transcript abundance of IFNB following poly I:C stimulation was not significantly altered by ORMDL3 knockdown or over-expression. Dampening of the IL-6 response by ORMDL3 knockdown was confirmed in HRV16 infected BEAS-2B and A549 cells. CONCLUSIONS ORMDL3 regulates the viral inflammatory response in airway epithelial cells via mechanisms independent of the TLR3 pathway.
Collapse
Affiliation(s)
- Gemma Laura
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Yi Liu
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Kieran Fernandes
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | | | - Kazuhiro Ito
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK.,Pulmocide Ltd., London, WC2A 1AP, UK
| | - William O Cookson
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Youming Zhang
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK.
| |
Collapse
|
27
|
Deliyannis G, Wong CY, McQuilten HA, Bachem A, Clarke M, Jia X, Horrocks K, Zeng W, Girkin J, Scott NE, Londrigan SL, Reading PC, Bartlett NW, Kedzierska K, Brown LE, Mercuri F, Demaison C, Jackson DC, Chua BY. TLR2-mediated activation of innate responses in the upper airways confers antiviral protection of the lungs. JCI Insight 2021; 6:140267. [PMID: 33561017 PMCID: PMC8021123 DOI: 10.1172/jci.insight.140267] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
The impact of respiratory virus infections on global health is felt not just during a pandemic, but endemic seasonal infections pose an equal and ongoing risk of severe disease. Moreover, vaccines and antiviral drugs are not always effective or available for many respiratory viruses. We investigated how induction of effective and appropriate antigen-independent innate immunity in the upper airways can prevent the spread of respiratory virus infection to the vulnerable lower airways. Activation of TLR2, when restricted to the nasal turbinates, resulted in prompt induction of innate immune-driven antiviral responses through action of cytokines, chemokines, and cellular activity in the upper but not the lower airways. We have defined how nasal epithelial cells and recruitment of macrophages work in concert and play pivotal roles to limit progression of influenza virus to the lungs and sustain protection for up to 7 days. These results reveal underlying mechanisms of how control of viral infection in the upper airways can occur and support the implementation of strategies that can activate TLR2 in nasal passages to provide rapid protection, especially for at-risk populations, against severe respiratory infection when vaccines and antiviral drugs are not always effective or available.
Collapse
Affiliation(s)
- Georgia Deliyannis
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Chinn Yi Wong
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley A. McQuilten
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Annabell Bachem
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michele Clarke
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kylie Horrocks
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Weiguang Zeng
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jason Girkin
- Viral Immunology and Respiratory Disease group, School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sarah L. Londrigan
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Patrick C. Reading
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Nathan W. Bartlett
- Viral Immunology and Respiratory Disease group, School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lorena E. Brown
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | | | - David C. Jackson
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brendon Y. Chua
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Woodby B, Arnold MM, Valacchi G. SARS-CoV-2 infection, COVID-19 pathogenesis, and exposure to air pollution: What is the connection? Ann N Y Acad Sci 2021; 1486:15-38. [PMID: 33022781 PMCID: PMC7675684 DOI: 10.1111/nyas.14512] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
Exposure to air pollutants has been previously associated with respiratory viral infections, including influenza, measles, mumps, rhinovirus, and respiratory syncytial virus. Epidemiological studies have also suggested that air pollution exposure is associated with increased cases of SARS-CoV-2 infection and COVID-19-associated mortality, although the molecular mechanisms by which pollutant exposure affects viral infection and pathogenesis of COVID-19 remain unknown. In this review, we suggest potential molecular mechanisms that could account for this association. We have focused on the potential effect of exposure to nitrogen dioxide (NO2 ), ozone (O3 ), and particulate matter (PM) since there are studies investigating how exposure to these pollutants affects the life cycle of other viruses. We have concluded that pollutant exposure may affect different stages of the viral life cycle, including inhibition of mucociliary clearance, alteration of viral receptors and proteases required for entry, changes to antiviral interferon production and viral replication, changes in viral assembly mediated by autophagy, prevention of uptake by macrophages, and promotion of viral spread by increasing epithelial permeability. We believe that exposure to pollutants skews adaptive immune responses toward bacterial/allergic immune responses, as opposed to antiviral responses. Exposure to air pollutants could also predispose exposed populations toward developing COIVD-19-associated immunopathology, enhancing virus-induced tissue inflammation and damage.
Collapse
Affiliation(s)
- Brittany Woodby
- Animal Science DepartmentPlants for Human Health Institute, N.C. Research Campus, North Carolina State UniversityKannapolisNorth Carolina
| | - Michelle M. Arnold
- Department of Microbiology and ImmunologyCenter for Molecular and Tumor VirologyLouisiana State University Health Sciences CenterShreveportLouisiana
| | - Giuseppe Valacchi
- Animal Science DepartmentPlants for Human Health Institute, N.C. Research Campus, North Carolina State UniversityKannapolisNorth Carolina
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
- Department of Food and NutritionKyung Hee UniversitySeoulSouth Korea
| |
Collapse
|
29
|
Tiwari D, Gupta P. Nuclear Receptors in Asthma: Empowering Classical Molecules Against a Contemporary Ailment. Front Immunol 2021; 11:594433. [PMID: 33574813 PMCID: PMC7870687 DOI: 10.3389/fimmu.2020.594433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
The escalation in living standards and adoption of 'Western lifestyle' has an allied effect on the increased allergy and asthma burden in both developed and developing countries. Current scientific reports bespeak an association between allergic diseases and metabolic dysfunction; hinting toward the critical requirement of organized lifestyle and dietary habits. The ubiquitous nuclear receptors (NRs) translate metabolic stimuli into gene regulatory signals, integrating diet inflences to overall developmental and physiological processes. As a consequence of such promising attributes, nuclear receptors have historically been at the cutting edge of pharmacy world. This review discusses the recent findings that feature the cardinal importance of nuclear receptors and how they can be instrumental in modulating current asthma pharmacology. Further, it highlights a possible future employment of therapy involving dietary supplements and synthetic ligands that would engage NRs and aid in eliminating both asthma and linked comorbidities. Therefore, uncovering new and evolving roles through analysis of genomic changes would represent a feasible approach in both prevention and alleviation of asthma.
Collapse
Affiliation(s)
| | - Pawan Gupta
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
30
|
Savino F, Pellegrino F, Daprà V, Calvi C, Alliaudi C, Montanari P, Galliano I, Bergallo M. Macrophage Receptor With Collagenous Structure Polymorphism and Recurrent Respiratory Infections and Wheezing During Infancy: A 5-Years Follow-Up Study. Front Pediatr 2021; 9:666423. [PMID: 34386467 PMCID: PMC8353117 DOI: 10.3389/fped.2021.666423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Recurrent wheezing is a common clinical manifestation in childhood, and respiratory syncytial virus infection is a well-known risk factor. However, the genetic background favoring the development of recurrent wheezing is not fully understood. A possible role of macrophage receptor with collagenous gene (MARCO) polymorphism has been recently proposed. Objective: To investigate a correlation between MARCO rs1318645 polymorphisms and susceptibility to recurrent wheezing during childhood. Methods: We prospectively recruited 116 infants, of which 58 with respiratory syncytial virus bronchiolitis and 58 controls hospitalized at Regina Margherita Children's Hospital, Turin, Italy, between November 2014 and April 2015. All subjects were investigated for MARCO rs1318645 polymorphisms in the first period of life. Genotyping of rs1318645 was carried out by TaqMan mismatch amplification mutation assay real-time polymerase chain reaction procedure. Subjects were then enrolled in a 5-year follow-up study to monitor the occurrence of wheezing and respiratory infections. Results: The analysis of MARCO rs1318645 of allelic frequencies shows an increasingly significant risk to develop recurrent infection (p = 0.00065) and recurrent wheezing (p = 0.000084) with a wild-type C allele compared with a G allele. No correlation was found between wheezing and past respiratory syncytial virus infection (p = 0.057) and for a history of atopy in the family (p = 0.859). Conclusion: Our finding showed that subjects with C allelic MARCO rs1318645 polymorphism are at higher risk for recurrent infection and wheezing episodes during the first 5 years of life. Future studies of genetic associations should also consider other types of polymorphisms.
Collapse
Affiliation(s)
- Francesco Savino
- Early Infancy Special Care Unit, Regina Margherita Children Hospital, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | | | - Valentina Daprà
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, Medical School, University of Turin, Turin, Italy
| | - Cristina Calvi
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, Medical School, University of Turin, Turin, Italy
| | - Carla Alliaudi
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, Medical School, University of Turin, Turin, Italy
| | - Paola Montanari
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, Medical School, University of Turin, Turin, Italy
| | - Ilaria Galliano
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, Medical School, University of Turin, Turin, Italy
| | - Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, Medical School, University of Turin, Turin, Italy
| |
Collapse
|
31
|
Chen Q, Tan KS, Liu J, Ong HH, Zhou S, Huang H, Chen H, Ong YK, Thong M, Chow VT, Qiu Q, Wang DY. Host Antiviral Response Suppresses Ciliogenesis and Motile Ciliary Functions in the Nasal Epithelium. Front Cell Dev Biol 2020; 8:581340. [PMID: 33409274 PMCID: PMC7779769 DOI: 10.3389/fcell.2020.581340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Background Respiratory viral infections are one of the main drivers of development and exacerbation for chronic airway inflammatory diseases. Increased viral susceptibility and impaired mucociliary clearance are often associated with chronic airway inflammatory diseases and served as risk factors of exacerbations. However, the links between viral susceptibility, viral clearance, and impaired mucociliary functions are unclear. Therefore, the objective of this study is to provide the insights into the effects of improper clearance of respiratory viruses from the epithelium following infection, and their resulting persistent activation of antiviral response, on mucociliary functions. Methods In order to investigate the effects of persistent antiviral responses triggered by viral components from improper clearance on cilia formation and function, we established an in vitro air–liquid interface (ALI) culture of human nasal epithelial cells (hNECs) and used Poly(I:C) as a surrogate of viral components to simulate their effects toward re-epithelization and mucociliary functions of the nasal epithelium following damages from a viral infection. Results Through previous and current viral infection expression data, we found that respiratory viral infection of hNECs downregulated motile cilia gene expression. We then further tested the effects of antiviral response activation on the differentiation of hNECs using Poly(I:C) stimulation on differentiating human nasal epithelial stem/progenitor cells (hNESPCs). Using this model, we observed reduced ciliated cell differentiation compared to goblet cells, reduced protein and mRNA in ciliogenesis-associated markers, and increased mis-assembly and mis-localization of ciliary protein DNAH5 following treatment with 25 μg/ml Poly(I:C) in differentiating hNECs. Additionally, the cilia length and ciliary beat frequency (CBF) were also decreased, which suggest impairment of ciliary function as well. Conclusion Our results suggest that the impairments of ciliogenesis and ciliary function in hNECs may be triggered by specific expression of host antiviral response genes during re-epithelization of the nasal epithelium following viral infection. This event may in turn drive the development and exacerbation of chronic airway inflammatory diseases.
Collapse
Affiliation(s)
- Qianmin Chen
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai Sen Tan
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hsiao Hui Ong
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suizi Zhou
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hongming Huang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Otolaryngology, Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Hailing Chen
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yew Kwang Ong
- Department of Otolaryngology, Head and Neck Surgery, National University Health System, National University Hospital, Singapore, Singapore
| | - Mark Thong
- Department of Otolaryngology, Head and Neck Surgery, National University Health System, National University Hospital, Singapore, Singapore
| | - Vincent T Chow
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Qianhui Qiu
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
32
|
Breiteneder H, Peng Y, Agache I, Diamant Z, Eiwegger T, Fokkens WJ, Traidl‐Hoffmann C, Nadeau K, O'Hehir RE, O'Mahony L, Pfaar O, Torres MJ, Wang D, Zhang L, Akdis CA. Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy 2020; 75:3039-3068. [PMID: 32893900 PMCID: PMC7756301 DOI: 10.1111/all.14582] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Modern health care requires a proactive and individualized response to diseases, combining precision diagnosis and personalized treatment. Accordingly, the approach to patients with allergic diseases encompasses novel developments in the area of personalized medicine, disease phenotyping and endotyping, and the development and application of reliable biomarkers. A detailed clinical history and physical examination followed by the detection of IgE immunoreactivity against specific allergens still represents the state of the art. However, nowadays, further emphasis focuses on the optimization of diagnostic and therapeutic standards and a large number of studies have been investigating the biomarkers of allergic diseases, including asthma, atopic dermatitis, allergic rhinitis, food allergy, urticaria and anaphylaxis. Various biomarkers have been developed by omics technologies, some of which lead to a better classification of distinct phenotypes or endotypes. The introduction of biologicals to clinical practice increases the need for biomarkers for patient selection, prediction of outcomes and monitoring, to allow for an adequate choice of the duration of these costly and long‐lasting therapies. Escalating healthcare costs together with questions about the efficacy of the current management of allergic diseases require further development of a biomarker‐driven approach. Here, we review biomarkers in diagnosis and treatment of asthma, atopic dermatitis, allergic rhinitis, viral infections, chronic rhinosinusitis, food allergy, drug hypersensitivity and allergen immunotherapy with a special emphasis on specific IgE, the microbiome and the epithelial barrier. In addition, EAACI guidelines on biologicals are discussed within the perspective of biomarkers.
Collapse
Affiliation(s)
- Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Ya‐Qi Peng
- Swiss Institute of Allergy and Asthma Research (SIAF) University Zurich Davos Switzerland
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
- Otorhinolaryngology Hospital The First Affiliated Hospital Sun Yat‐Sen University Guangzhou China
| | - Ioana Agache
- Department of Allergy and Clinical Immunology Faculty of Medicine Transylvania University of Brasov Brasov Romania
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Institute for Clinical Science Skane University Hospital Lund University Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
- Department of Clinical Pharmacy & Pharmacology University of GroningenUniversity Medical Center Groningen Groningen Netherlands
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute Hospital for Sick Children Toronto ON Canada
- Department of Immunology University of Toronto Toronto ON Canada
- Division of Immunology and Allergy Food Allergy and Anaphylaxis Program The Hospital for Sick Children Departments of Paediatrics and Immunology University of Toronto Toronto ON Canada
| | - Wytske J. Fokkens
- Department of Otorhinolaryngology Amsterdam University Medical Centres Amsterdam The Netherlands
| | - Claudia Traidl‐Hoffmann
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
- Chair and Institute of Environmental Medicine UNIKA‐T Technical University of Munich and Helmholtz Zentrum München Augsburg Germany
- ZIEL ‐ Institute for Food & Health Technical University of Munich Freising‐Weihenstephan Germany
| | - Kari Nadeau
- Sean N. Parker Center for Allergy & Asthma Research Stanford University Stanford CA USA
| | - Robyn E. O'Hehir
- Department of Allergy, immunology and Respiratory Medicine Central Clinical School Monash University Melbourne Vic. Australia
- Allergy, Asthma and Clinical Immunology Service Alfred Health Melbourne Vic. Australia
| | - Liam O'Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland National University of Ireland Cork Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital MarburgPhilipps‐Universität Marburg Marburg Germany
| | - Maria J. Torres
- Allergy Unit Regional University Hospital of Malaga‐IBIMA‐UMA‐ARADyAL Malaga Spain
| | - De‐Yun Wang
- Department of Otolaryngology Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery and Department of Allergy Beijing TongRen Hospital Beijing China
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University Zurich Davos Switzerland
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
| |
Collapse
|
33
|
Ahmed MH, Hassan A. Dexamethasone for the Treatment of Coronavirus Disease (COVID-19): a Review. ACTA ACUST UNITED AC 2020; 2:2637-2646. [PMID: 33163859 PMCID: PMC7599121 DOI: 10.1007/s42399-020-00610-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
The World Health Organization (WHO) declared COVID-19 (novel coronavirus) as a global pandemic in the middle of March 2020, after the disease spread to more than 150 countries and territories leading to tens of thousands of cases within a couple of months. To date, there are no effective pharmaceutical treatments available. As well as that, the novel vaccines have not yet been approved as establishing their efficacy will take time. This study aims to summarize the evidence regarding corticosteroids such as dexamethasone for the treatment of COVID-19. Electronic searches were conducted on 7 September 2020 on Google Scholar database, MEDLINE and PubMed. A further search was conducted on the World Health Organization’s COVID-19 research article database. The findings of recent investigations that proved, both, the in vitro and in vivo activity of corticosteroids against COVID-19 and other coronavirus-related pneumonia were discussed. Low doses of corticosteroids (dexamethasone) could reduce the mortality in patients with severe COVID-19 disease; however, they had no effect on the mortality rate of those patients with a mild form of the condition. Moreover, the liberal use of corticosteroids was not advocated for, as high doses of the drug can cause more harm than good.
Collapse
Affiliation(s)
- Mukhtar H Ahmed
- SISAF Nanotechnology Drug Delivery, Ulster University, BT37 0QB Belfast, UK
| | - Arez Hassan
- School of Medicine, Queen's University, Belfast, BT9 7BL UK
| |
Collapse
|
34
|
Hypercapnia: An Aggravating Factor in Asthma. J Clin Med 2020; 9:jcm9103207. [PMID: 33027886 PMCID: PMC7599850 DOI: 10.3390/jcm9103207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Asthma is a common chronic respiratory disorder with relatively good outcomes in the majority of patients with appropriate maintenance therapy. However, in a small minority, patients can experience severe asthma with respiratory failure and hypercapnia, necessitating intensive care unit admission. Hypercapnia occurs due to alveolar hypoventilation and insufficient removal of carbon dioxide (CO2) from the blood. Although mild hypercapnia is generally well tolerated in patients with asthma, there is accumulating evidence that elevated levels of CO2 can act as a gaso-signaling molecule, triggering deleterious effects in various organs such as the lung, skeletal muscles and the innate immune system. Here, we review recent advances on pathophysiological response to hypercapnia and discuss potential detrimental effects of hypercapnia in patients with asthma.
Collapse
|
35
|
Abstract
Purpose of Review Lung tissues are highly susceptible to airway inflammation as they are inevitably exposed to inhaled pathogens and allergens. In the lungs, clearance of infectious agents and regulation of inflammatory responses are important for the first-line defense, where surfactants play a role in host defense mechanisms. In this review, clinical significance of pulmonary surfactants in asthma has been highlighted. Recent Findings Surfactants, such as surfactant protein A (SP-A) and SP-D released from alveolar epithelium, reduce pathogen infection and control immune-cell activation. Especially, SP-D directly binds to eosinophil surface, leading to inhibition of extracellular trap formation and reduction in airway inflammation. Production of surfactants is commonly determined by both genetic (single nucleotide polymorphisms) and environmental factors influencing processes involved in the development of asthma. In addition, nintedanib (an intracellular inhibitor of tyrosine kinases) could increase SP-D levels and is used in patients with idiopathic pulmonary fibrosis. These findings may provide a possible application of SP-D in asthma. Summary Surfactants are key players contributing to host defense through maintaining the immune system. As clinical implications of surfactants involved in asthma have been suggested, further translational studies are needed to apply surfactants as an effective therapeutic target in patients with asthma.
Collapse
Affiliation(s)
- Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Jaehyuk Jang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, South Korea.
| |
Collapse
|
36
|
Painter JD, Galle-Treger L, Akbari O. Role of Autophagy in Lung Inflammation. Front Immunol 2020; 11:1337. [PMID: 32733448 PMCID: PMC7358431 DOI: 10.3389/fimmu.2020.01337] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a cellular recycling system found in almost all types of eukaryotic organisms. The system is made up of a variety of proteins which function to deliver intracellular cargo to lysosomes for formation of autophagosomes in which the contents are degraded. The maintenance of cellular homeostasis is key in the survival and function of a variety of human cell populations. The interconnection between metabolism and autophagy is extensive, therefore it has a role in a variety of different cell functions. The disruption or dysfunction of autophagy in these cell types have been implicated in the development of a variety of inflammatory diseases including asthma. The role of autophagy in non-immune and immune cells both lead to the pathogenesis of lung inflammation. Autophagy in pulmonary non-immune cells leads to tissue remodeling which can develop into chronic asthma cases with long term effects. The role autophagy in the lymphoid and myeloid lineages in the pathology of asthma differ in their functions. Impaired autophagy in lymphoid populations have been shown, in general, to decrease inflammation in both asthma and inflammatory disease models. Many lymphoid cells rely on autophagy for effector function and maintained inflammation. In stark contrast, autophagy deficient antigen presenting cells have been shown to have an activated inflammasome. This is largely characterized by a TH17 response that is accompanied with a much worse prognosis including granulocyte mediated inflammation and steroid resistance. The cell specificity associated with changes in autophagic flux complicates its targeting for amelioration of asthmatic symptoms. Differing asthmatic phenotypes between TH2 and TH17 mediated disease may require different autophagic modulations. Therefore, treatments call for a more cell specific and personalized approach when looking at chronic asthma cases. Viral-induced lung inflammation, such as that caused by SARS-CoV-2, also may involve autophagic modulation leading to inflammation mediated by lung resident cells. In this review, we will be discussing the role of autophagy in non-immune cells, myeloid cells, and lymphoid cells for their implications into lung inflammation and asthma. Finally, we will discuss autophagy's role viral pathogenesis, immunometabolism, and asthma with insights into autophagic modulators for amelioration of lung inflammation.
Collapse
Affiliation(s)
- Jacob D Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lauriane Galle-Treger
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
37
|
Garcia-Pachon E, Zamora-Molina L, Soler-Sempere MJ, Baeza-Martinez C, Grau-Delgado J, Canto-Reig V, Ramon-Sanchez A, Padilla-Navas I, Ruiz-Garcia M, Gonzalo-Jimenez N. Asthma prevalence in patients with SARS-CoV-2 infection detected by RT-PCR not requiring hospitalization. Respir Med 2020; 171:106084. [PMID: 32658837 PMCID: PMC7334641 DOI: 10.1016/j.rmed.2020.106084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/03/2020] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The prevalence of asthma in patients hospitalized with SARS-CoV-2 has been studied and varies widely in the different series. However, the prevalence in SARS-infected patients not requiring hospitalization is not known. The objective of this study was to analyze the presence of asthma in a consecutive series of patients who tested positive in the RT-PCR assay for SARS-CoV-2 and did not require hospital admission. METHODS AND RESULTS A total of 218 patients (58% of those who tested positive) did not require hospitalization; they had a median age of 45 years (IQR 34-57) and 57% were female. Six patients (2.8%) had a previous diagnosis of asthma. Only one patient developed a mild aggravation of asthma symptoms associated with SARS-CoV-2 infection. CONCLUSIONS Few patients with asthma were infected by SARS-CoV-2, and this infection was not a significant cause of asthma exacerbation.
Collapse
Affiliation(s)
- Eduardo Garcia-Pachon
- Section of Respiratory Medicine, Hospital General Universitario de Elche, Alicante, Spain; Department of Clinical Medicine, Universidad Miguel Hernandez de Elche, Alicante, Spain.
| | - Lucia Zamora-Molina
- Section of Respiratory Medicine, Hospital General Universitario de Elche, Alicante, Spain
| | - Maria J Soler-Sempere
- Section of Respiratory Medicine, Hospital General Universitario de Elche, Alicante, Spain
| | - Carlos Baeza-Martinez
- Section of Respiratory Medicine, Hospital General Universitario de Elche, Alicante, Spain
| | - Justo Grau-Delgado
- Section of Respiratory Medicine, Hospital General Universitario de Elche, Alicante, Spain
| | | | | | - Isabel Padilla-Navas
- Section of Respiratory Medicine, Hospital General Universitario de Elche, Alicante, Spain
| | | | | |
Collapse
|
38
|
Akenroye AT, Wood R, Keet C. Asthma, biologics, corticosteroids, and coronavirus disease 2019. Ann Allergy Asthma Immunol 2020; 125:12-13. [PMID: 32387535 PMCID: PMC7202805 DOI: 10.1016/j.anai.2020.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Ayobami T Akenroye
- Division of Pediatric Allergy and Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
| | - Robert Wood
- Division of Pediatric Allergy and Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Corinne Keet
- Division of Pediatric Allergy and Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
39
|
Halpin DMG, Singh D, Hadfield RM. Inhaled corticosteroids and COVID-19: a systematic review and clinical perspective. Eur Respir J 2020; 55:2001009. [PMID: 32341100 PMCID: PMC7236828 DOI: 10.1183/13993003.01009-2020] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 11/05/2022]
Abstract
The current coronavirus 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection, raises important questions as to whether pre-morbid use or continued administration of inhaled corticosteroids (ICS) affects the outcomes of acute respiratory infections due to coronavirus. Many physicians are concerned about whether individuals positive for SARS-CoV-2 and taking ICS should continue them or stop them, given that ICS are often regarded as immunosuppressive. A number of key questions arise. Are people with asthma or COPD at increased risk of developing COVID-19? Do ICS modify this risk, either increasing or decreasing it? Do ICS influence the clinical course of COVID-19? (figure 1). Whether ICS modify the risk of developing COVID-19 or the clinical course of COVID-19 in people who do not have lung disease should also be considered (figure 1). There is no evidence on benefits or harms of inhaled steroids in COVID-19. It is essential that epidemiological studies of COVID-19 include detailed information on comorbidities and prior medication to help answer this question. https://bit.ly/2XVwIsa
Collapse
Affiliation(s)
- David M G Halpin
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
- Global Initiative for Chronic Obstructive Lung Disease (GOLD)
| | - Dave Singh
- Global Initiative for Chronic Obstructive Lung Disease (GOLD)
- University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ruth M Hadfield
- Global Initiative for Chronic Obstructive Lung Disease (GOLD)
- Macquarie University, Sydney, Australia
| |
Collapse
|
40
|
Anthracopoulos MB, Everard ML. Asthma: A Loss of Post-natal Homeostatic Control of Airways Smooth Muscle With Regression Toward a Pre-natal State. Front Pediatr 2020; 8:95. [PMID: 32373557 PMCID: PMC7176812 DOI: 10.3389/fped.2020.00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
The defining feature of asthma is loss of normal post-natal homeostatic control of airways smooth muscle (ASM). This is the key feature that distinguishes asthma from all other forms of respiratory disease. Failure to focus on impaired ASM homeostasis largely explains our failure to find a cure and contributes to the widespread excessive morbidity associated with the condition despite the presence of effective therapies. The mechanisms responsible for destabilizing the normal tight control of ASM and hence airways caliber in post-natal life are unknown but it is clear that atopic inflammation is neither necessary nor sufficient. Loss of homeostasis results in excessive ASM contraction which, in those with poor control, is manifest by variations in airflow resistance over short periods of time. During viral exacerbations, the ability to respond to bronchodilators is partially or almost completely lost, resulting in ASM being "locked down" in a contracted state. Corticosteroids appear to restore normal or near normal homeostasis in those with poor control and restore bronchodilator responsiveness during exacerbations. The mechanism of action of corticosteroids is unknown and the assumption that their action is solely due to "anti-inflammatory" effects needs to be challenged. ASM, in evolutionary terms, dates to the earliest land dwelling creatures that required muscle to empty primitive lungs. ASM appears very early in embryonic development and active peristalsis is essential for the formation of the lungs. However, in post-natal life its only role appears to be to maintain airways in a configuration that minimizes resistance to airflow and dead space. In health, significant constriction is actively prevented, presumably through classic negative feedback loops. Disruption of this robust homeostatic control can develop at any age and results in asthma. In order to develop a cure, we need to move from our current focus on immunology and inflammatory pathways to work that will lead to an understanding of the mechanisms that contribute to ASM stability in health and how this is disrupted to cause asthma. This requires a radical change in the focus of most of "asthma research."
Collapse
Affiliation(s)
| | - Mark L. Everard
- Division of Paediatrics & Child Health, Perth Children's Hospital, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
41
|
Tan KS, Lim RL, Liu J, Ong HH, Tan VJ, Lim HF, Chung KF, Adcock IM, Chow VT, Wang DY. Respiratory Viral Infections in Exacerbation of Chronic Airway Inflammatory Diseases: Novel Mechanisms and Insights From the Upper Airway Epithelium. Front Cell Dev Biol 2020; 8:99. [PMID: 32161756 PMCID: PMC7052386 DOI: 10.3389/fcell.2020.00099] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
Respiratory virus infection is one of the major sources of exacerbation of chronic airway inflammatory diseases. These exacerbations are associated with high morbidity and even mortality worldwide. The current understanding on viral-induced exacerbations is that viral infection increases airway inflammation which aggravates disease symptoms. Recent advances in in vitro air-liquid interface 3D cultures, organoid cultures and the use of novel human and animal challenge models have evoked new understandings as to the mechanisms of viral exacerbations. In this review, we will focus on recent novel findings that elucidate how respiratory viral infections alter the epithelial barrier in the airways, the upper airway microbial environment, epigenetic modifications including miRNA modulation, and other changes in immune responses throughout the upper and lower airways. First, we reviewed the prevalence of different respiratory viral infections in causing exacerbations in chronic airway inflammatory diseases. Subsequently we also summarized how recent models have expanded our appreciation of the mechanisms of viral-induced exacerbations. Further we highlighted the importance of the virome within the airway microbiome environment and its impact on subsequent bacterial infection. This review consolidates the understanding of viral induced exacerbation in chronic airway inflammatory diseases and indicates pathways that may be targeted for more effective management of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rachel Liyu Lim
- Infectious Disease Research and Training Office, National Centre for Infectious Diseases, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hsiao Hui Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vivian Jiayi Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui Fang Lim
- Division of Respiratory and Critical Care Medicine, National University Hospital, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kian Fan Chung
- Airway Disease, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- Airway Disease, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Vincent T Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
42
|
Liu K, Li S, Qian ZM, Dharmage SC, Bloom MS, Heinrich J, Jalaludin B, Markevych I, Morawska L, Knibbs LD, Hinyard L, Xian H, Liu S, Lin S, Leskinen A, Komppula M, Jalava P, Roponen M, Hu LW, Zeng XW, Hu W, Chen G, Yang BY, Guo Y, Dong GH. Benefits of influenza vaccination on the associations between ambient air pollution and allergic respiratory diseases in children and adolescents: New insights from the Seven Northeastern Cities study in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113434. [PMID: 31672350 DOI: 10.1016/j.envpol.2019.113434] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Little information exists on interaction effects between air pollution and influenza vaccination on allergic respiratory diseases. We conducted a large population-based study to evaluate the interaction effects between influenza vaccination and long-term exposure to ambient air pollution on allergic respiratory diseases in children and adolescents. METHODS A cross-sectional study was investigated during 2012-2013 in 94 schools from Seven Northeastern Cities (SNEC) in China. Questionnaires surveys were obtained from 56 137 children and adolescents aged 2-17 years. Influenza vaccination was defined as receipt of the influenza vaccine. We estimated air pollutants exposure [nitrogen dioxide (NO2) and particulate matter with aerodynamic diameters ≤1 μm (PM1), ≤2.5 μm (PM2.5) and ≤10 μm (PM10)] using machine learning methods. We employed two-level generalized linear mix effects model to examine interactive effects between influenza vaccination and air pollution exposure on allergic respiratory diseases (asthma, asthma-related symptoms and allergic rhinitis), after controlling for important covariates. RESULTS We found statistically significant interactions between influenza vaccination and air pollutants on allergic respiratory diseases and related symptoms (doctor-diagnosed asthma, current wheeze, wheeze, persistent phlegm and allergic rhinitis). The adjusted ORs for doctor-diagnosed asthma, current wheeze and allergic rhinitis among the unvaccinated group per interquartile range (IQR) increase in PM1 and PM2.5 were significantly higher than the corresponding ORs among the vaccinated group [For PM1, doctor-diagnosed asthma: OR: 1.89 (95%CI: 1.57-2.27) vs 1.65 (95%CI: 1.36-2.00); current wheeze: OR: 1.50 (95%CI: 1.22-1.85) vs 1.10 (95%CI: 0.89-1.37); allergic rhinitis: OR: 1.38 (95%CI: 1.15-1.66) vs 1.21 (95%CI: 1.00-1.46). For PM2.5, doctor-diagnosed asthma: OR: 1.81 (95%CI: 1.52-2.14) vs 1.57 (95%CI: 1.32-1.88); current wheeze: OR: 1.46 (95%CI: 1.21-1.76) vs 1.11 (95%CI: 0.91-1.35); allergic rhinitis: OR: 1.35 (95%CI: 1.14-1.60) vs 1.19 (95%CI: 1.00-1.42)]. The similar patterns were observed for wheeze and persistent phlegm. The corresponding p values for interactions were less than 0.05, respectively. We assessed the risks of PM1-related and PM2.5-related current wheeze were decreased by 26.67% (95%CI: 1.04%-45.66%) and 23.97% (95%CI: 0.21%-42.08%) respectively, which was attributable to influenza vaccination (both p for efficiency <0.05). CONCLUSIONS Influenza vaccination may play an important role in mitigating the detrimental effects of long-term exposure to ambient air pollution on childhood allergic respiratory diseases. Policy targeted at increasing influenza vaccination may yield co-benefits in terms of reduced allergic respiratory diseases.
Collapse
Affiliation(s)
- Kangkang Liu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Zhengmin Min Qian
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis, 63104, USA
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, 3052, Australia
| | - Michael S Bloom
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Department of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig-Maximilian-University, Munich, 80336, Germany
| | - Bin Jalaludin
- School of Public Health and Community Medicine, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Iana Markevych
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany; Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Ludwig-Maximilians-University of Munich, Munich, 80336, Germany; Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig-Maximilian-University, Munich, 80336, Germany
| | - Lidia Morawska
- International Laboratory for Air Quality & Health (ILAQH), Science and Engineering Faculty, Institute of Health Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, 4059, Australia
| | - Luke D Knibbs
- School of Public Health, The University of Queensland, Herston, Queensland, 4006, Australia
| | - Leslie Hinyard
- Center for Health Outcomes Research, Saint Louis University, Saint Louis, 63104, USA
| | - Hong Xian
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis, 63104, USA
| | - Shan Liu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Shao Lin
- Department of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Ari Leskinen
- Finnish Meteorological Institute, Kuopio, 70211, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Kuopio, 70211, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Li-Wen Hu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenbiao Hu
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, 4059, Australia
| | - Gongbo Chen
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, 430000, China
| | - Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
43
|
Amati F, Simonetta E, Gramegna A, Tarsia P, Contarini M, Blasi F, Aliberti S. The biology of pulmonary exacerbations in bronchiectasis. Eur Respir Rev 2019; 28:28/154/190055. [PMID: 31748420 DOI: 10.1183/16000617.0055-2019] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Bronchiectasis is a heterogeneous chronic disease. Heterogeneity characterises bronchiectasis not only in the stable state but also during exacerbations, despite evidence on clinical and biological aspects of bronchiectasis, exacerbations still remain poorly understood.Although the scientific community recognises that bacterial infection is a cornerstone in the development of bronchiectasis, there is a lack of data regarding other trigger factors for exacerbations. In addition, a huge amount of data suggest a primary role of neutrophils in the stable state and exacerbation of bronchiectasis, but the inflammatory reaction involves many other additional pathways. Cole's vicious cycle hypothesis illustrates how airway dysfunction, airway inflammation, infection and structural damage are linked. The introduction of the concept of a "vicious vortex" stresses the complexity of the relationships between the components of the cycle. In this model of disease, exacerbations work as a catalyst, accelerating the progression of disease. The roles of microbiology and inflammation need to be considered as closely linked and will need to be investigated in different ways to collect samples. Clinical and translational research is of paramount importance to achieve a better comprehension of the pathophysiology of bronchiectasis, microbiology and inflammation both in the stable state and during exacerbations.
Collapse
Affiliation(s)
- Francesco Amati
- Dept of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Edoardo Simonetta
- Dept of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Gramegna
- Dept of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Tarsia
- Dept of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Contarini
- Dept of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Blasi
- Dept of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Aliberti
- Dept of Pathophysiology and Transplantation, University of Milan, Milan, Italy .,Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
44
|
|
45
|
Chen W, Safari A, FitzGerald JM, Sin DD, Tavakoli H, Sadatsafavi M. Economic burden of multimorbidity in patients with severe asthma: a 20-year population-based study. Thorax 2019; 74:1113-1119. [PMID: 31534029 DOI: 10.1136/thoraxjnl-2019-213223] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/18/2019] [Accepted: 08/23/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND The economic impact of multimorbidity in severe or difficult-to-treat asthma has not been comprehensively investigated. AIMS To estimate the incremental healthcare costs of coexisting chronic conditions (comorbidities) in patients with severe asthma, compared with non-severe asthma and no asthma. METHODS Using health administrative data in British Columbia, Canada (1996-2016), we identified, based on the intensity of drug use and occurrence of exacerbations, individuals who experienced severe asthma in an incident year. We also constructed matched cohorts of individuals without an asthma diagnosis and those who had mild/dormant or moderate asthma (non-severe asthma) throughout their follow-up. Health service use records during follow-up were categorised into 16 major disease categories based on the International Classification of Diseases. Incremental costs (in 2016 Canadian Dollars, CAD$1=US$0.75=₤0.56=€0.68) were estimated as the adjusted difference in healthcare costs between individuals with severe asthma compared with those with non-severe asthma and non-asthma. RESULTS Relative to no asthma, incremental costs of severe asthma were $2779 per person-year (95% CI 2514 to 3045), with 54% ($1508) being attributed to comorbidities. Relative to non-severe asthma, severe asthma was associated with incremental costs of $1922 per person-year (95% CI 1670 to 2174), with 52% ($1003) being attributed to comorbidities. In both cases, the most costly comorbidity was respiratory conditions other than asthma ($468 (17%) and $451 (23%), respectively). CONCLUSIONS Comorbidities accounted for more than half of the incremental medical costs in patients with severe asthma. This highlights the importance of considering the burden of multimorbidity in evidence-informed decision making for patients with severe asthma.
Collapse
Affiliation(s)
- Wenjia Chen
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Abdollah Safari
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Mark FitzGerald
- Respiratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Don D Sin
- University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Hamid Tavakoli
- Institute for Heart and Lung Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohsen Sadatsafavi
- Division of Respiratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
46
|
Hamdan SJ, Al-Attar Z, Hashim I. Prevalence of Montelukast Use as an Add-On Therapy among Iraqi Asthmatics on Treatment Attending Al-Kindy Teaching Hospital and Al-Zahraa Center of Asthma and Allergy. Open Access Maced J Med Sci 2019; 7:2246-2250. [PMID: 31592270 PMCID: PMC6765087 DOI: 10.3889/oamjms.2019.645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND: Montelukast (Singulair) is a cysteinyl leukotriene receptor antagonist, used for the maintenance treatment of asthma and to relieve symptoms of seasonal allergic rhinitis and asthma, also used for exercise-induced bronchospasm. AIM: This study was performed to determine the prevalence of Montelukast use as an add-on therapy among Iraqi asthmatic patients on treatment. Comparing the effectiveness of regimens with and without montelukast. METHODS: This descriptive cross-sectional study was carried out on 73 Iraqi asthmatic patients on treatment of both sexes with age range (18-60) years old, attending Al-Kindy Teaching Hospital and Al-Zahraa Centre of Asthma and Allergy, Baghdad, for the period between February and March 2017. A questionnaire was specifically prepared to meet the objectives and was used to collect the data of the study. RESULTS: There was a significant statistical reduction of frequency in asthmatic attacks after Montelukast treatment (p-value < 0.05). Out of 73 patients, 39 were males, and 34 were females, 46 were jobless, 37 were married, 63 were urban residents, 63 were educated. Prevalence of exacerbation factors was as following: infection was found in 60.3% of the patients, exercise in 57.5%, dust in 72.6%, smoking in 60.6%, food in 24.7%, others (stress, perfumes) in 20.5%. The prevalence of Montelukast use in this study was 46% (34 patients). Out of 34 patients using Montelukast, 28 were using inhaled salbutamol, 5 were using oral salbutamol, 15 were using inhaled corticosteroids, 9 were using systematic corticosteroids, 2 were using xanthines, and 6 were using ketotifen. CONCLUSION: Montelukast was used as add-on therapy with the inhaled corticosteroids to reduce the required dose of inhaled corticosteroids also the use of Montelukast lead to reduced number of exacerbations which will be reflected on the use of inhaled salbutamol and systematic corticosteroids. Also, Montelukast was superior to xanthines and ketotifen as an add-on therapy.
Collapse
Affiliation(s)
- Saba Jassim Hamdan
- Department of Pharmacology, Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq
| | - Zaid Al-Attar
- Department of Pharmacology, Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq
| | - Imad Hashim
- Department of Pharmacology, Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
47
|
Efthimiou J, Poll C, Barnes PJ. Dual mechanism of action of T2 inhibitor therapies in virally induced exacerbations of asthma: evidence for a beneficial counter-regulation. Eur Respir J 2019; 54:13993003.02390-2018. [PMID: 31000674 DOI: 10.1183/13993003.02390-2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/29/2019] [Indexed: 01/21/2023]
Abstract
Biological agents such as omalizumab and monoclonal antibodies (mAbs) that inhibit type 2 (T2) immunity significantly reduce exacerbations, which are mainly due to viral infections, when added to inhaled corticosteroids in patients with severe asthma. The mechanisms for the therapeutic benefit of T2 inhibitors in reducing virally induced exacerbations, however, remain to be fully elucidated. Pre-clinical and clinical evidence supports the existence of a close counter-regulation of the high-affinity IgE receptor and interferon (IFN) pathways, and a potential dual mechanism of action and therapeutic benefit for omalizumab and other T2 inhibitors that inhibit IgE activity, which may enhance the prevention and treatment of virally induced asthma exacerbations. Similar evidence regarding some novel T2 inhibitor therapies, including mAbs and small-molecule inhibitors, suggests that such a dual mechanism of action with enhancement of IFN production working through non-IgE pathways might also exist. The specific mechanisms for this dual effect could be related to the close counter-regulation between T2 and T1 immune pathways, and potential key underlying mechanisms are discussed. Further basic research and better understanding of these underlying counter-regulatory mechanisms could provide novel therapeutic targets for the prevention and treatment of virally induced asthma exacerbations, as well as T2- and non-T2-driven asthma. Future clinical research should examine the effects of T2 inhibitors on IFN responses and other T1 immune pathways, in addition to any effects on the frequency and severity of viral and other infections and related exacerbations in patients with asthma as a priority.
Collapse
Affiliation(s)
| | - Chris Poll
- Independent Respiratory Scientist, Cambridge, UK
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
48
|
Poowuttikul P, Taki M, Daher R, Secord E. T Cell Profile After Systemic Steroid Burst in Inner-City Asthmatic Children with Recurrent Infections. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2019; 32:56-62. [PMID: 31508257 DOI: 10.1089/ped.2018.0988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/01/2019] [Indexed: 11/12/2022]
Abstract
Background: Systemic corticosteroids are the standard of care for acute asthma exacerbation. Respiratory infections are known as common triggers of asthma exacerbation, but the risk of immune suppression from frequent periodic use of systemic steroids in poorly controlled asthmatic children is not well studied. Materials and Methods: We conducted a retrospective chart review of 26 children, 3-15 years old with poorly controlled, moderate-to-severe persistent asthma who received ≥2 systemic corticosteroid/year. The data collected include absolute T cell, B cell, and natural killer (NK) cell counts; lymphocyte proliferation studies to phytohemagglutinin (PHA), concanavalin A (CON A), and pokeweed mitogen; immunoglobulin G and M; and antibody titers to tetanus, diphtheria, and pneumococcus. Frequency tables and crosstabs were used to analyze the data. Results: Low CD4+ T cell counts were found in 47.8% of the patients, and 45.8% had low CD3+ T cell counts. The lymphocyte proliferation studies data exhibited variability, but 21.4%-75% of the subjects who demonstrated normal T cell counts had decreased lymphocyte proliferation studies to PHA and CON A. All the patients had normal immunoglobulins, B cell, and NK cell counts. All but 1 patient had adequate antibody responses to Streptococcus pneumoniae. Conclusions: Frequent systemic corticosteroid use may suppress T cell number and function in asthmatic children. This can potentially lead to increase susceptibility for future infections and asthma exacerbations. Depressed lymphocyte proliferations are observed even in patients who demonstrated normal T cell counts. This emphasizes the importance of adherence to asthma controller medications, and control of asthma triggers, to limit the frequency of steroid use.
Collapse
Affiliation(s)
- Pavadee Poowuttikul
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, Michigan
| | - Mohamed Taki
- Department of Pediatrics, Children's Hospital of Michigan, Detroit, Michigan
| | - Roula Daher
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, Michigan
| | - Elizabeth Secord
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, Michigan.,Department of Pediatrics, Children's Hospital of Michigan, Detroit, Michigan
| |
Collapse
|
49
|
Dias ASO, Santos ICL, Delphim L, Fernandes G, Endlich LR, Cafasso MOSD, Maranhão AL, da Silva SR, Andrade RM, Agrawal A, Linhares UC, Bento CAM. Serum leptin levels correlate negatively with the capacity of vitamin D to modulate the in vitro cytokines production by CD4 + T cells in asthmatic patients. Clin Immunol 2019; 205:93-105. [PMID: 31173888 DOI: 10.1016/j.clim.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/25/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022]
Abstract
Both obesity and low vitamin D levels have been associated with allergic asthma (AA) severity. In the present study, severity of AA was associated with obesity but to the in vitro IgE production. In those patients, higher levels of IL-5, IL-6 and IL-17 were quantified in CD4+ T-cell cultures as compared with patients with mild and moderate AA. In addition, the lowest IL-10 levels were detected in the cell cultures from patients with a worse prognosis. Interestingly, the occurrence of AA elevates the plasma levels of leptin, and this adipokine was positively correlated with the release of IL-5, IL-6 and IL-17, but inversely correlated with IL-10 production, by CD4+ T-cells from patients. In AA-derived CD4+ T-cell cultures, 1,25(OH)2D3 was less efficient at inhibiting IL-5, IL-6 and IL-17 production, and up regulating IL-10 release, as those from healthy subjects. Interestingly, the in vitro immunomodulatory effects of vitamin D were inversely correlated with serum leptin levels. In summary, our findings suggested that obesity, probably due to the overproduction of leptin, negatively impacts AA as it favors imbalance between Th2/Th17 and regulatory phenotypes. The deleterious effects of leptin may also be due to its ability to counter-regulate the immunosuppressive effects of vitamin D.
Collapse
Affiliation(s)
- Aleida S O Dias
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil; Post-graduate Program in Microbiology, University of the State of Rio de Janeiro, Brazil
| | - Isabelle C L Santos
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil
| | - Letícia Delphim
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil
| | - Gabriel Fernandes
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil
| | - Larissa R Endlich
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil
| | | | - Ana Lúcia Maranhão
- Pulmonology Service, Federal University of the State of Rio de Janeiro, Brazil
| | | | - Regis M Andrade
- Department of General Medicine Department, Federal University of the State of Rio de Janeiro, Brazil
| | - Anshu Agrawal
- Department of Medicine, University of California, Irvine, CA, USA
| | - Ulisses C Linhares
- Department of Morphological Sciences, Federal University of the State of Rio de Janeiro, Brazil
| | - Cleonice A M Bento
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil; Post-graduate Program in Microbiology, University of the State of Rio de Janeiro, Brazil.
| |
Collapse
|
50
|
Genomic mosaicism: A neglected factor that promotes variability in asthma diagnosis. Med Hypotheses 2019; 127:112-115. [PMID: 31088633 DOI: 10.1016/j.mehy.2019.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/12/2019] [Indexed: 11/22/2022]
Abstract
To elucidate the genetic architecture of asthma continues to be a challenge for molecular biologists and medical researchers. However, powerful genomic technologies are at disposal to help decipher complete human genomes; the genetic variability in asthma hinders the discovery of common molecular markers for this disease. In this context, we purpose to explore genomic mosaicism on asthma cells' biology as a strategy to discover key mechanisms, which can complement or re-define asthma diagnosis. Recent evidences showed that genomic mosaicism could be a normal event. In brains, each neuron may harbor hundreds of genetic alterations, which may contribute to neuronal diversity. Thus, can mosaicism be a natural motor of diversity in asthma? Why this genetic event is little described in scientific literature? To discuss these questions, we perform a critical review about the normality of genomic mosaicism; moreover, we examine the difficulty of current experimental approaches to detect different genotypes in cell populations of one individual.
Collapse
|