1
|
Sayers I, John C, Chen J, Hall IP. Genetics of chronic respiratory disease. Nat Rev Genet 2024; 25:534-547. [PMID: 38448562 DOI: 10.1038/s41576-024-00695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/08/2024]
Abstract
Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma and interstitial lung diseases are frequently occurring disorders with a polygenic basis that account for a large global burden of morbidity and mortality. Recent large-scale genetic epidemiology studies have identified associations between genetic variation and individual respiratory diseases and linked specific genetic variants to quantitative traits related to lung function. These associations have improved our understanding of the genetic basis and mechanisms underlying common lung diseases. Moreover, examining the overlap between genetic associations of different respiratory conditions, along with evidence for gene-environment interactions, has yielded additional biological insights into affected molecular pathways. This genetic information could inform the assessment of respiratory disease risk and contribute to stratified treatment approaches.
Collapse
Affiliation(s)
- Ian Sayers
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, University Park, Nottingham, UK
- Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Catherine John
- University of Leicester, Leicester, UK
- University Hospitals of Leicester, Leicester, UK
| | - Jing Chen
- University of Leicester, Leicester, UK
| | - Ian P Hall
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, University Park, Nottingham, UK.
- Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, UK.
| |
Collapse
|
2
|
Milne S. Testosterone and lung function: bigger lungs, slower decline or some combination of both? Thorax 2024; 79:493-494. [PMID: 38508717 DOI: 10.1136/thorax-2024-221461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Affiliation(s)
- Stephen Milne
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Ludwig Engel Centre for Respiratory Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, New South Wales, Australia
| |
Collapse
|
3
|
Seo J, Gaddis NC, Patchen BK, Xu J, Barr RG, O'Connor G, Manichaikul AW, Gharib SA, Dupuis J, North KE, Cassano PA, Hancock DB. Exploiting meta-analysis of genome-wide interaction with serum 25-hydroxyvitamin D to identify novel genetic loci associated with pulmonary function. Am J Clin Nutr 2024; 119:1227-1237. [PMID: 38484975 PMCID: PMC11130669 DOI: 10.1016/j.ajcnut.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/12/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Higher 25-hydroxyvitamin D (25(OH)D) concentrations in serum has a positive association with pulmonary function. Investigating genome-wide interactions with 25(OH)D may reveal new biological insights into pulmonary function. OBJECTIVES We aimed to identify novel genetic variants associated with pulmonary function by accounting for 25(OH)D interactions. METHODS We included 211,264 participants from the observational United Kingdom Biobank study with pulmonary function tests (PFTs), genome-wide genotypes, and 25(OH)D concentrations from 4 ancestral backgrounds-European, African, East Asian, and South Asian. Among PFTs, we focused on forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) because both were previously associated with 25(OH)D. We performed genome-wide association study (GWAS) analyses that accounted for variant×25(OH)D interaction using the joint 2 degree-of-freedom (2df) method, stratified by participants' smoking history and ancestry, and meta-analyzed results. We evaluated interaction effects to determine how variant-PFT associations were modified by 25(OH)D concentrations and conducted pathway enrichment analysis to examine the biological relevance of our findings. RESULTS Our GWAS meta-analyses, accounting for interaction with 25(OH)D, revealed 30 genetic variants significantly associated with FEV1 or FVC (P2df <5.00×10-8) that were not previously reported for PFT-related traits. These novel variant signals were enriched in lung function-relevant pathways, including the p38 MAPK pathway. Among variants with genome-wide-significant 2df results, smoking-stratified meta-analyses identified 5 variants with 25(OH)D interactions that influenced FEV1 in both smoking groups (never smokers P1df interaction<2.65×10-4; ever smokers P1df interaction<1.71×10-5); rs3130553, rs2894186, rs79277477, and rs3130929 associations were only evident in never smokers, and the rs4678408 association was only found in ever smokers. CONCLUSION Genetic variant associations with lung function can be modified by 25(OH)D, and smoking history can further modify variant×25(OH)D interactions. These results expand the known genetic architecture of pulmonary function and add evidence that gene-environment interactions, including with 25(OH)D and smoking, influence lung function.
Collapse
Affiliation(s)
- Jungkyun Seo
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States
| | - Nathan C Gaddis
- RTI International, Research Triangle Park, NC, United States
| | - Bonnie K Patchen
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Jiayi Xu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - R Graham Barr
- Divisions of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Medical Center, New York, NY, United States
| | - George O'Connor
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Sina A Gharib
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Computational Medicine Core, Center for Lung Biology, University of Washington, Seattle, WA, United States
| | - Josée Dupuis
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States
| | - Patricia A Cassano
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States; Division of Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, NY, United States
| | - Dana B Hancock
- RTI International, Research Triangle Park, NC, United States.
| |
Collapse
|
4
|
Ghosh AJ, Moll M, Hess J, Hobbs BD, Love A, Coyne L, Cho MH, Castaldi P, Middleton FA, Perl A, Silverman EK, Hersh CP, Glatt SJ. Clinical Features of Genetic Resilience in Chronic Obstructive Pulmonary Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.06.23286843. [PMID: 36945553 PMCID: PMC10029040 DOI: 10.1101/2023.03.06.23286843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Introduction In the personalized risk quantification of chronic obstructive pulmonary disease (COPD), genome-wide association studies and polygenic risk scores (PRS) complement traditional risk factors, such as age and cigarette smoking. However, despite being at considerable levels of risk, some individuals do not develop COPD. Research on COPD resilience remains largely unexplored. Methods We applied the previously published COPD PRS to whole genome sequencing data from non-Hispanic white and African American individuals in the COPDGene study. We defined genetic resilience as individuals unaffected by COPD with a polygenic risk score above the 90 th percentile. We defined risk-matched case individuals as those with COPD (i.e., FEV 1 /FVC < 0.70) and a PRS above the 90 th percentile. We defined low risk individuals without COPD (i.e., FEV 1 /FVC > 0.70) as a polygenic risk score below the 10 th percentile. We compared genetically resilient individuals to risk-matched individuals with COPD and low risk individuals by demographics, lung function, respiratory symptoms, co-morbidities, and chest CT scan measurements. We also performed survival analyses, differential expression analysis, and matching for sensitivity analyses. Results We identified 211 resilient individuals without COPD, 605 genetic risk-matched individuals with COPD, and 527 low-risk individuals without COPD. Resilient individuals had higher FEV 1 % predicted and lower percent emphysema. In contrast, resilient individuals had higher airway wall thickness compared to low-risk unaffected individuals. While there was no difference in survival between low-risk and resilient individuals, resilient individuals had higher survival compared to risk matched cases. We also identified two genes that were differentially expressed between low-risk unaffected individuals and resilient individuals. Conclusion Genetically resilient individuals had a reduced burden of COPD disease-related measures compared to risk-matched cases but had subtly increased measures compared to low-risk unaffected individuals. Further genetic studies will be needed to illuminate the underlying pathobiology of our observations.
Collapse
|
5
|
Shrine N, Izquierdo AG, Chen J, Packer R, Hall RJ, Guyatt AL, Batini C, Thompson RJ, Pavuluri C, Malik V, Hobbs BD, Moll M, Kim W, Tal-Singer R, Bakke P, Fawcett KA, John C, Coley K, Piga NN, Pozarickij A, Lin K, Millwood IY, Chen Z, Li L, Wijnant SRA, Lahousse L, Brusselle G, Uitterlinden AG, Manichaikul A, Oelsner EC, Rich SS, Barr RG, Kerr SM, Vitart V, Brown MR, Wielscher M, Imboden M, Jeong A, Bartz TM, Gharib SA, Flexeder C, Karrasch S, Gieger C, Peters A, Stubbe B, Hu X, Ortega VE, Meyers DA, Bleecker ER, Gabriel SB, Gupta N, Smith AV, Luan J, Zhao JH, Hansen AF, Langhammer A, Willer C, Bhatta L, Porteous D, Smith BH, Campbell A, Sofer T, Lee J, Daviglus ML, Yu B, Lim E, Xu H, O'Connor GT, Thareja G, Albagha OME, Suhre K, Granell R, Faquih TO, Hiemstra PS, Slats AM, Mullin BH, Hui J, James A, Beilby J, Patasova K, Hysi P, Koskela JT, Wyss AB, Jin J, Sikdar S, Lee M, May-Wilson S, Pirastu N, Kentistou KA, Joshi PK, Timmers PRHJ, Williams AT, Free RC, Wang X, Morrison JL, Gilliland FD, Chen Z, Wang CA, Foong RE, Harris SE, Taylor A, Redmond P, Cook JP, Mahajan A, Lind L, Palviainen T, Lehtimäki T, Raitakari OT, Kaprio J, Rantanen T, Pietiläinen KH, Cox SR, Pennell CE, Hall GL, Gauderman WJ, Brightling C, Wilson JF, Vasankari T, Laitinen T, Salomaa V, Mook-Kanamori DO, Timpson NJ, Zeggini E, Dupuis J, Hayward C, Brumpton B, Langenberg C, Weiss S, Homuth G, Schmidt CO, Probst-Hensch N, Jarvelin MR, Morrison AC, Polasek O, Rudan I, Lee JH, Sayers I, Rawlins EL, Dudbridge F, Silverman EK, Strachan DP, Walters RG, Morris AP, London SJ, Cho MH, Wain LV, Hall IP, Tobin MD. Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk. Nat Genet 2023; 55:410-422. [PMID: 36914875 PMCID: PMC10011137 DOI: 10.1038/s41588-023-01314-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies.
Collapse
Affiliation(s)
- Nick Shrine
- Department of Population Health Sciences, University of Leicester, Leicester, UK.
| | - Abril G Izquierdo
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Jing Chen
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Richard Packer
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Robert J Hall
- Division of Respiratory Medicine and NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Anna L Guyatt
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Chiara Batini
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- Leicester National Institute for Health and Care Research, Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Rebecca J Thompson
- Division of Respiratory Medicine and NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Chandan Pavuluri
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Vidhi Malik
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Matthew Moll
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Wonji Kim
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Per Bakke
- Department of Clinical Science, Unversity of Bergen, Bergen, Norway
| | - Katherine A Fawcett
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Catherine John
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- Leicester National Institute for Health and Care Research, Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Kayesha Coley
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Noemi Nicole Piga
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Alfred Pozarickij
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Sara R A Wijnant
- Department of Respiratory Diseases, Ghent Universital Hospital, Ghent, Belgium
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Department of Epidemiology, Eramus Medical Center, Rotterdam, The Netherlands
| | - Lies Lahousse
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Department of Epidemiology, Eramus Medical Center, Rotterdam, The Netherlands
| | - Guy Brusselle
- Department of Respiratory Diseases, Ghent Universital Hospital, Ghent, Belgium
- Department of Epidemiology, Eramus Medical Center, Rotterdam, The Netherlands
| | - Andre G Uitterlinden
- Department of Internal Medicine, Eramus Medical Center, Rotterdam, The Netherlands
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth C Oelsner
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - R Graham Barr
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Shona M Kerr
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Matthias Wielscher
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Medea Imboden
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Department of Public Health, University of Basel, Basel, Switzerland
| | - Ayoung Jeong
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Department of Public Health, University of Basel, Basel, Switzerland
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, USA
| | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Claudia Flexeder
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefan Karrasch
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig Maximilian University, Munich, Germany
| | - Beate Stubbe
- Department of Internal Medicine B-Cardiology, Intensive Care, Pulmonary Medicine and Infectious Diseases, University Medicine Greifswald, Greifswald, Germany
| | - Xiaowei Hu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Victor E Ortega
- Division of Respiratory Medicine, Department of Internal Medicine, Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | | | | | | | - Namrata Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Albert Vernon Smith
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Jing-Hua Zhao
- Department of Public and Primary Care, Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Ailin F Hansen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Arnulf Langhammer
- HUNT Research Centre, Department of Public Health and Nursing, NTNU Norwegian University of Science and Technology, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Cristen Willer
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Laxmi Bhatta
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - David Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Bing Yu
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elise Lim
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Hanfei Xu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - George T O'Connor
- Pulmonary Center, School of Medicine, Boston University, Boston, MA, USA
| | - Gaurav Thareja
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Omar M E Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Center for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Department of Biophysics and Physiology, Weill Cornell Medicine, New York, NY, USA
| | - Raquel Granell
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tariq O Faquih
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Annelies M Slats
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Benjamin H Mullin
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Jennie Hui
- Busselton Population Medical Research Institute, QEII Medical Centre, Nedlands, Western Australia, Australia
- School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia
- PathWest Laboratory Medicine of WA, Nedlands, Western Australia, Australia
| | - Alan James
- Busselton Population Medical Research Institute, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - John Beilby
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Busselton Population Medical Research Institute, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Karina Patasova
- Department of Twin Research and Genetic Epidemiology, King's College London School of Medicine, London, UK
- Division of Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Pirro Hysi
- Department of Twin Research and Genetic Epidemiology, King's College London School of Medicine, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Jukka T Koskela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Annah B Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | | | - Sinjini Sikdar
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
- Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA, USA
| | - Mikyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Sebastian May-Wilson
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Nicola Pirastu
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Katherine A Kentistou
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Paul R H J Timmers
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Alexander T Williams
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Robert C Free
- Leicester National Institute for Health and Care Research, Biomedical Research Centre, Glenfield Hospital, Leicester, UK
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Xueyang Wang
- Leicester National Institute for Health and Care Research, Biomedical Research Centre, Glenfield Hospital, Leicester, UK
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - John L Morrison
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carol A Wang
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Rachel E Foong
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- School of Allied Health, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Sarah E Harris
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Adele Taylor
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Paul Redmond
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - James P Cook
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland-FIMM, University of Helsinki, Helsinki, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland-FIMM, University of Helsinki, Helsinki, Finland
| | - Taina Rantanen
- Faculty of Sport and Health Sciences, University of Jyvaskyla, Jyvaskyla, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Obesity and Abdominal Centers, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Simon R Cox
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Craig E Pennell
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Graham L Hall
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- School of Allied Health, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - W James Gauderman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chris Brightling
- Leicester National Institute for Health and Care Research, Biomedical Research Centre, Glenfield Hospital, Leicester, UK
- Department of Infection, Inflammation and Immunity, Institute for Lung Health, University of Leicester, Leicester, UK
| | - James F Wilson
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Tuula Vasankari
- FILHA-Finnish Lung Health Association, Helsinki, Finland
- Department of Respiratory Diseases and Allergology, University of Turku, Turku, Finland
| | - Tarja Laitinen
- Administration Center, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- ALSPAC, Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Eleftheria Zeggini
- Wellcome Sanger Institute, Cambridge, UK
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Munich, Germany
| | - Josée Dupuis
- Department of Epidemiology, Biostatistics, and Occupational Health, School of Population and Global Health, McGill University, Montreal, Quebec, Canada
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ben Brumpton
- HUNT Research Centre, Department of Public Health and Nursing, NTNU Norwegian University of Science and Technology, Levanger, Norway
- Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
- Computational Medicine, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Carsten Oliver Schmidt
- Institute for Community Medicine, SHIP-Clinical Epidemiological Research, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Probst-Hensch
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Department of Public Health, University of Basel, Basel, Switzerland
| | - Marjo-Riitta Jarvelin
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ozren Polasek
- School of Medicine, University of Split, Split, Croatia
| | - Igor Rudan
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Joo-Hyeon Lee
- Jeffrey Cheah Biomedical Centre, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ian Sayers
- Division of Respiratory Medicine and NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Emma L Rawlins
- Wellcome Trust-CRUK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Frank Dudbridge
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Edwin K Silverman
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - David P Strachan
- Population Health Research Institute, St George's University of London, London, UK
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Louise V Wain
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- Leicester National Institute for Health and Care Research, Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Ian P Hall
- Division of Respiratory Medicine and NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Martin D Tobin
- Department of Population Health Sciences, University of Leicester, Leicester, UK.
- Leicester National Institute for Health and Care Research, Biomedical Research Centre, Glenfield Hospital, Leicester, UK.
| |
Collapse
|
6
|
Li D, Kim W, An J, Kim S, Lee S, Do A, Kim W, Lee S, Yoon D, Lee K, Ha S, Silverman EK, Cho M, Shin C, Won S. Heritability Analyses Uncover Shared Genetic Effects of Lung Function and Change over Time. Genes (Basel) 2022; 13:genes13071261. [PMID: 35886044 PMCID: PMC9316642 DOI: 10.3390/genes13071261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/27/2023] Open
Abstract
Genetic influence on lung functions has been identified in previous studies; however, the relative longitudinal effects of genetic factors and their interactions with smoking on lung function remain unclear. Here, we identified the longitudinal effects of genetic variants on lung function by determining single nucleotide polymorphism (SNP) heritability and genetic correlations, and by analyzing interactions with smoking. Subject-specific means and annual change rates were calculated for eight spirometric measures obtained from 6622 Korean adults aged 40−69 years every two years for 14 years, and their heritabilities were estimated separately. Statistically significant (p < 0.05) heritability for the subject-specific means of all spirometric measures (8~32%) and change rates of forced expiratory volume in 1 s to forced vital capacity ratio (FEV1/FVC; 16%) and post-bronchodilator FEV1/FVC (17%) were detected. Significant genetic correlations of the change rate with the subject-specific mean were observed for FEV1/FVC (ρg = 0.64) and post-bronchodilator FEV1/FVC (ρg = 0.47). Furthermore, post-bronchodilator FEV1/FVC showed significant heritability of SNP-by-smoking interaction (hGXS2 = 0.4) for the annual change rate. The GWAS also detected genome-wide significant SNPs for FEV1 (rs4793538), FEV1/FVC (rs2704589, rs62201158, and rs9391733), and post-bronchodilator FEV1/FVC (rs2445936). We found statistically significant evidence of heritability role on the change in lung function, and this was shared with the effects on cross-sectional measurements. We also found some evidence of interaction with smoking for the change of lung function.
Collapse
Affiliation(s)
- Donghe Li
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea; (D.L.); (A.D.)
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118, USA
| | - Woojin Kim
- Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Jahoon An
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul 08826, Korea;
| | - Soriul Kim
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul 136701, Korea; (S.K.); (S.L.)
| | - Seungku Lee
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul 136701, Korea; (S.K.); (S.L.)
| | - Ahra Do
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea; (D.L.); (A.D.)
| | - Wonji Kim
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (W.K.); (E.K.S.); (M.C.)
| | - Sanghun Lee
- Department of Medical Consilience, Graduate School, Dankook University, Yongin 16890, Korea;
| | - Dankyu Yoon
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea;
| | - Kwangbae Lee
- Korea Medical Institute, Seoul 03173, Korea; (K.L.); (S.H.)
| | - Seounguk Ha
- Korea Medical Institute, Seoul 03173, Korea; (K.L.); (S.H.)
| | - Edwin K. Silverman
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (W.K.); (E.K.S.); (M.C.)
| | - Michael Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (W.K.); (E.K.S.); (M.C.)
| | - Chol Shin
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul 136701, Korea; (S.K.); (S.L.)
- Division of Pulmonary Sleep and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Ansan 15355, Korea
- Correspondence: (C.S.); (S.W.)
| | - Sungho Won
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea; (D.L.); (A.D.)
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul 08826, Korea;
- Institute of Health and Environment, Seoul National University, Seoul 08826, Korea
- RexSoft Inc., Seoul 08826, Korea
- Correspondence: (C.S.); (S.W.)
| |
Collapse
|
7
|
Fasola S, Ferrante G, Cilluffo G, Malizia V, Alfano P, Montalbano L, Cuttitta G, La Grutta S. Asthma Comorbidities: Frequency, Risk Factors, and Associated Burden in Children and Adolescents. CHILDREN 2022; 9:children9071001. [PMID: 35883985 PMCID: PMC9322654 DOI: 10.3390/children9071001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
Identifying asthma comorbidities in children is fundamental for improving disease management. We aimed to investigate the frequency of allergy-related comorbidities in children and adolescents with asthma, and to identify associated risk factors and disease burden. Between September 2015 and December 2018, 508 asthmatic patients (5–17 years) were consecutively enrolled. Parents answered a standardized questionnaire on the history of disease and risk factors. Comorbidities were classified based on the involvement of respiratory and/or extra-respiratory districts: asthma only (A, 13%), asthma with respiratory comorbidities (AR, 37%), asthma with extra-respiratory comorbidities (AER, 10%), and asthma with both respiratory and extra-respiratory comorbidities (ARER, 40%). Multinomial logistic regression showed that membership in the AR group was significantly associated with a maternal history of asthma (OR = 3.08, 95% CI: 1.23–7.72), breastfeeding ≥ three months (OR = 1.92, 1.06–3.46), early mold exposure (OR = 2.39, 1.12–5.11), and current environmental tobacco smoke exposure (OR = 2.06, 1.11–3.83). Membership in the AER group was significantly associated with the female gender (OR = 3.43, 1.54–7.68), breastfeeding ≥ three months (OR = 2.77, 1.23–6.22). ARER was significantly associated with all the aforementioned exposures. Patients with AR reported exacerbations in the last 12 months more frequently (p = 0.009). Several personal and environmental risk factors are associated with comorbidities in asthmatic children and adolescents, possibly worsening the disease burden.
Collapse
Affiliation(s)
- Salvatore Fasola
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy; (V.M.); (P.A.); (L.M.); (G.C.); (S.L.G.)
- Correspondence:
| | - Giuliana Ferrante
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Pediatric Division, University of Verona, 37134 Verona, Italy;
| | - Giovanna Cilluffo
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy;
| | - Velia Malizia
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy; (V.M.); (P.A.); (L.M.); (G.C.); (S.L.G.)
| | - Pietro Alfano
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy; (V.M.); (P.A.); (L.M.); (G.C.); (S.L.G.)
| | - Laura Montalbano
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy; (V.M.); (P.A.); (L.M.); (G.C.); (S.L.G.)
| | - Giuseppina Cuttitta
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy; (V.M.); (P.A.); (L.M.); (G.C.); (S.L.G.)
| | - Stefania La Grutta
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy; (V.M.); (P.A.); (L.M.); (G.C.); (S.L.G.)
| |
Collapse
|
8
|
Christenson SA, Smith BM, Bafadhel M, Putcha N. Chronic obstructive pulmonary disease. Lancet 2022; 399:2227-2242. [PMID: 35533707 DOI: 10.1016/s0140-6736(22)00470-6] [Citation(s) in RCA: 344] [Impact Index Per Article: 172.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity, mortality, and health-care use worldwide. COPD is caused by exposure to inhaled noxious particles, notably tobacco smoke and pollutants. However, the broad range of factors that increase the risk of development and progression of COPD throughout the life course are increasingly being recognised. Innovations in omics and imaging techniques have provided greater insight into disease pathobiology, which might result in advances in COPD prevention, diagnosis, and treatment. Although few novel treatments have been approved for COPD in the past 5 years, advances have been made in targeting existing therapies to specific subpopulations using new biomarker-based strategies. Additionally, COVID-19 has undeniably affected individuals with COPD, who are not only at higher risk for severe disease manifestations than healthy individuals but also negatively affected by interruptions in health-care delivery and social isolation. This Seminar reviews COPD with an emphasis on recent advances in epidemiology, pathophysiology, imaging, diagnosis, and treatment.
Collapse
Affiliation(s)
- Stephanie A Christenson
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Benjamin M Smith
- Department of Medicine, Columbia University Medical Center, New York, NY, USA; Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Mona Bafadhel
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Department of Respiratory Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Moll M, Boueiz A, Ghosh AJ, Saferali A, Lee S, Xu Z, Yun JH, Hobbs BD, Hersh CP, Sin DD, Tal-Singer R, Silverman EK, Cho MH, Castaldi PJ. Development of a Blood-based Transcriptional Risk Score for Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2022; 205:161-170. [PMID: 34739356 PMCID: PMC8787248 DOI: 10.1164/rccm.202107-1584oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/03/2021] [Indexed: 01/17/2023] Open
Abstract
Rationale: The ability of peripheral blood biomarkers to assess chronic obstructive pulmonary disease (COPD) risk and progression is unknown. Genetics and gene expression may capture important aspects of COPD-related biology that predict disease activity. Objectives: Develop a transcriptional risk score (TRS) for COPD and assess the contribution of the TRS and a polygenic risk score (PRS) for disease susceptibility and progression. Methods: We randomly split 2,569 COPDGene (Genetic Epidemiology of COPD) participants with whole-blood RNA sequencing into training (n = 1,945) and testing (n = 624) samples and used 468 ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points) COPD cases with microarray data for replication. We developed a TRS using penalized regression (least absolute shrinkage and selection operator) to model FEV1/FVC and studied the predictive value of TRS for COPD (Global Initiative for Chronic Obstructive Lung Disease 2-4), prospective FEV1 change (ml/yr), and additional COPD-related traits. We adjusted for potential confounders, including age and smoking. We evaluated the predictive performance of the TRS in the context of a previously derived PRS and clinical factors. Measurements and Main Results: The TRS included 147 transcripts and was associated with COPD (odds ratio, 3.3; 95% confidence interval [CI], 2.4-4.5; P < 0.001), FEV1 change (β, -17 ml/yr; 95% CI, -28 to -6.6; P = 0.002), and other COPD-related traits. In ECLIPSE cases, we replicated the association with FEV1 change (β, -8.2; 95% CI, -15 to -1; P = 0.025) and the majority of other COPD-related traits. Models including PRS, TRS, and clinical factors were more predictive of COPD (area under the receiver operator characteristic curve, 0.84) and annualized FEV1 change compared with models with one risk score or clinical factors alone. Conclusions: Blood transcriptomics can improve prediction of COPD and lung function decline when added to a PRS and clinical risk factors.
Collapse
Affiliation(s)
- Matthew Moll
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine, and
| | - Adel Boueiz
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine, and
| | - Auyon J. Ghosh
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine, and
| | | | - Sool Lee
- Channing Division of Network Medicine
- Department of Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina
| | | | - Jeong H. Yun
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine, and
| | - Brian D. Hobbs
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine, and
| | - Craig P. Hersh
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine, and
| | - Don D. Sin
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, British Columbia, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; and
| | | | - Edwin K. Silverman
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine, and
| | - Michael H. Cho
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine, and
| | - Peter J. Castaldi
- Channing Division of Network Medicine
- Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
10
|
Kim W, Moll M, Qiao D, Hobbs BD, Shrine N, Sakornsakolpat P, Tobin MD, Dudbridge F, Wain LV, Ladd-Acosta C, Chatterjee N, Silverman EK, Cho MH, Beaty TH. Interaction of Cigarette Smoking and Polygenic Risk Score on Reduced Lung Function. JAMA Netw Open 2021; 4:e2139525. [PMID: 34913977 PMCID: PMC8678715 DOI: 10.1001/jamanetworkopen.2021.39525] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPORTANCE The risk of airflow limitation and chronic obstructive pulmonary disease (COPD) is influenced by combinations of cigarette smoking and genetic susceptibility, yet it remains unclear whether gene-by-smoking interactions are associated with quantitative measures of lung function. OBJECTIVE To assess the interaction of cigarette smoking and polygenic risk score in association with reduced lung function. DESIGN, SETTING, AND PARTICIPANTS This UK Biobank cohort study included UK citizens of European ancestry aged 40 to 69 years with genetic and spirometry data passing quality control metrics. Data was analyzed from July 2020 to March 2021. EXPOSURES PRS of combined forced expiratory volume in 1 second (FEV1) and percent of forced vital capacity exhaled in the first second (FEV1/FVC), self-reported pack-years of smoking, ever- vs never-smoking status, and current- vs former- or never-smoking status. MAIN OUTCOMES AND MEASURES FEV1/FVC was the primary outcome. Models were used to test for interactions with models, including the main effects of PRS, different smoking variables, and their cross-product terms. The association between pack-years of smoking and FEV1/FVC were compared for those in the highest vs lowest decile of estimated genetic risk for low lung function. RESULTS We included 319 730 individuals, of whom 24 915 (8%) had moderate-to-severe COPD cases, and 44.4% were men. Participants had a mean (SD) age 56.5 of (8.02) years. The PRS and pack-years were significantly associated with lower FEV1/FVC (PRS: β, -0.03; 95% CI, -0.031 to -0.03; pack-years: β, -0.0064; 95% CI, -0.0064 to -0.0063) and the interaction term (β, -0.0028; 95% CI, -0.0029 to -0.0026). A stepwise increment in estimated effect sizes for these interaction terms was observed per 10 pack-years of smoking exposure. The interaction of PRS with 11 to 20, 31 to 40, and more than 50 pack-years categories were β (interaction) -0.0038 (95% CI, -0.0046 to -0.0031); -0.013 (95% CI, -0.014 to -0.012); and -0.017 (95% CI, -0.019 to -0.016), respectively. There was evidence of significant interaction between PRS with ever- or never- smoking status (β, interaction; -0.0064; 95% CI, -0.0068 to -0.0060) and current or not-current smoking (β, interaction; -0.0091; 95% CI, -0.0097 to -0.0084). For any given level of pack-years of smoking exposure, FEV1/FVC was significantly lower for individuals in the tenth decile (ie, highest risk) than the first decile (ie, lowest risk) of genetic risk. For every 20 pack-years of smoking, those in the tenth decile compared with the first decile of genetic risk showed nearly a 2-fold reduction in FEV1/FVC. CONCLUSIONS AND RELEVANCE COPD is characterized by diminished lung function, and our analyses suggest there is substantial interaction between genome-wide PRS and smoking exposures. While smoking was associated with decreased lung function across all genetic risk categories, the associations were strongest in individuals with higher estimated genetic risk.
Collapse
Affiliation(s)
- Woori Kim
- Systems Biology and Computer Science Program, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Matthew Moll
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Dandi Qiao
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Brian D. Hobbs
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Phuwanat Sakornsakolpat
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Martin D. Tobin
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Frank Dudbridge
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Louise V. Wain
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Christine Ladd-Acosta
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Nilanjan Chatterjee
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Michael H. Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Terri H. Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
11
|
Ahmad K, Kabir E, Ormsby GM, Khanam R. Clustering of asthma and related comorbidities and their association with maternal health during pregnancy: evidence from an Australian birth cohort. BMC Public Health 2021; 21:1952. [PMID: 34706695 PMCID: PMC8555145 DOI: 10.1186/s12889-021-11997-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background The population-based classification of asthma severity is varied and needs further classification. This study identified clusters of asthma and related comorbidities of Australian children aged 12–13 years; determined health outcome differences among clusters; and investigated the associations between maternal asthma and other health conditions during pregnancy and the children’s clustered groups. Methods Participants were 1777 children in the birth cohort of the Longitudinal Study of Australian Children (LSAC) who participated in the Health CheckPoint survey and the LSAC 7th Wave. A latent class analysis (LCA) was conducted to identify clusters of children afflicted with eight diseases, such as asthma (ever diagnosed or current), wheezing, eczema, sleep problem/snoring/breathing problem, general health status, having any health condition and food allergy. Multinomial logistic regression was used to investigate the association between maternal asthma or other health conditions and LCA clusters. Results The study identified four clusters: (i) had asthma – currently healthy (11.0%), (ii) never asthmatic & healthy (64.9%), (iii) early-onset asthmatic or allergic (10.7%), and (iv) asthmatic unhealthy (13.4%). The asthmatic unhealthy cluster was in poor health in terms of health-related quality of life, general wellbeing and lung functions compared to other clusters. Children whose mothers had asthma during pregnancy were 3.31 times (OR 3.31, 95% CI: 2.06–5.30) more likely to be in the asthmatic unhealthy cluster than children whose mothers were non-asthmatic during pregnancy. Conclusion Using LCA analysis, this study improved a classification strategy for children with asthma and related morbidities to identify the most vulnerable groups within a population-based sample.
Collapse
Affiliation(s)
- Kabir Ahmad
- School of Business, University of Southern Queensland, Toowoomba, QLD, 4350, Australia. .,Centre for Health Research, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
| | - Enamul Kabir
- Centre for Health Research, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.,School of Sciences, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Gail M Ormsby
- Independent Researcher, School of Education, Faculty of Business, Education, Law and Arts, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Rasheda Khanam
- School of Business, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.,Centre for Health Research, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| |
Collapse
|
12
|
Zhu Z, Li J, Si J, Ma B, Shi H, Lv J, Cao W, Guo Y, Millwood IY, Walters RG, Lin K, Yang L, Chen Y, Du H, Yu B, Hasegawa K, Camargo CA, Moffatt MF, Cookson WOC, Chen J, Chen Z, Li L, Yu C, Liang L. A large-scale genome-wide association analysis of lung function in the Chinese population identifies novel loci and highlights shared genetic aetiology with obesity. Eur Respir J 2021; 58:2100199. [PMID: 33766948 PMCID: PMC8513692 DOI: 10.1183/13993003.00199-2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/02/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Lung function is a heritable complex phenotype with obesity being one of its important risk factors. However, knowledge of their shared genetic basis is limited. Most genome-wide association studies (GWASs) for lung function have been based on European populations, limiting the generalisability across populations. Large-scale lung function GWASs in other populations are lacking. METHODS We included 100 285 subjects from the China Kadoorie Biobank (CKB). To identify novel loci for lung function, single-trait GWAS analyses were performed on forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC in the CKB. We then performed genome-wide cross-trait analysis between lung function and obesity traits (body mass index (BMI), BMI-adjusted waist-to-hip ratio and BMI-adjusted waist circumference) to investigate the shared genetic effects in the CKB. Finally, polygenic risk scores (PRSs) of lung function were developed in the CKB and their interaction with BMI's association on lung function were examined. We also conducted cross-trait analysis in parallel with the CKB using up to 457 756 subjects from the UK Biobank (UKB) for replication and investigation of ancestry-specific effects. RESULTS We identified nine genome-wide significant novel loci for FEV1, six for FVC and three for FEV1/FVC in the CKB. FEV1 and FVC showed significant negative genetic correlation with obesity traits in both the CKB and UKB. Genetic loci shared between lung function and obesity traits highlighted important biological pathways, including cell proliferation, embryo, skeletal and tissue development, and regulation of gene expression. Mendelian randomisation analysis suggested significant negative causal effects of BMI on FEV1 and on FVC in both the CKB and UKB. Lung function PRSs significantly modified the effect of change in BMI on change in lung function during an average follow-up of 8 years. CONCLUSION This large-scale GWAS of lung function identified novel loci and shared genetic aetiology between lung function and obesity. Change in BMI might affect change in lung function differently according to a subject's polygenic background. These findings may open new avenues for the development of molecular-targeted therapies for obesity and lung function improvement.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Program in Genetic Epidemiology and Statistical Genetics, Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Dept of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- These four authors contributed equally to this article
| | - Jiachen Li
- Dept of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- These four authors contributed equally to this article
| | - Jiahui Si
- Program in Genetic Epidemiology and Statistical Genetics, Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Dept of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- These four authors contributed equally to this article
| | - Baoshan Ma
- College of Information Science and Technology, Dalian Maritime University, Dalian, China
- These four authors contributed equally to this article
| | - Huwenbo Shi
- Program in Genetic Epidemiology and Statistical Genetics, Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jun Lv
- Dept of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China
- Peking University Institute of Environmental Medicine, Beijing, China
| | - Weihua Cao
- Dept of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yu Guo
- Chinese Academy of Medical Sciences, Beijing, China
| | - Iona Y Millwood
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Dept of Population Health, University of Oxford, Oxford, UK
| | - Robin G Walters
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Dept of Population Health, University of Oxford, Oxford, UK
| | - Kuang Lin
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Dept of Population Health, University of Oxford, Oxford, UK
| | - Ling Yang
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Dept of Population Health, University of Oxford, Oxford, UK
| | - Yiping Chen
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Dept of Population Health, University of Oxford, Oxford, UK
| | - Huaidong Du
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Dept of Population Health, University of Oxford, Oxford, UK
| | - Bo Yu
- NCDs Prevention and Control Dept, Nangang CDC, Harbin, China
| | - Kohei Hasegawa
- Dept of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Camargo
- Program in Genetic Epidemiology and Statistical Genetics, Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Dept of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Miriam F Moffatt
- Section of Genomic Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - William O C Cookson
- Section of Genomic Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Junshi Chen
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Dept of Population Health, University of Oxford, Oxford, UK
| | - Liming Li
- Dept of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Canqing Yu
- Dept of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- These two authors contributed equally to this article as lead authors and supervised the work
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Dept of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- These two authors contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
13
|
Ramírez-Venegas A, Montiel-Lopez F, Falfan-Valencia R, Pérez-Rubio G, Sansores RH. The "Slow Horse Racing Effect" on Lung Function in Adult Life in Chronic Obstructive Pulmonary Disease Associated to Biomass Exposure. Front Med (Lausanne) 2021; 8:700836. [PMID: 34307427 PMCID: PMC8295605 DOI: 10.3389/fmed.2021.700836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/15/2021] [Indexed: 01/31/2023] Open
Abstract
Although different trajectories in lung function decline have been identified in patients with COPD associated to tobacco exposure (TE-COPD), genetic, environmental, and infectious factors affecting lung function throughout life have not been fully elucidated in patients with COPD associated to biomass (BE-COPD). In this review, we present current epidemiological findings and notable advances in the natural history of lung decline in BE-COPD, as well as conditions modeling the FEV1 trajectory, such as health insults, during the first years of childhood. Evidence shows that women exposed to biomass smoke reach adult life with a lower FEV1 than expected. However, in contrast to the “horse racing effect” predicting an excessive lung-function decline in forthcoming years, as observed in smokers, this decline is slower in non-smokers, and no rapid decliners are observed. Accordingly, BE-COPD might be considered another phenotype of COPD based on assessments of lung function decline. Likewise, other functional and clinical aspects described in this review suggest that this condition might be similar to TE-COPD. More research is needed to fully characterize this subgroup of variants of COPD.
Collapse
Affiliation(s)
- Alejandra Ramírez-Venegas
- Department of Tobacco Smoking and COPD Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Francisco Montiel-Lopez
- Department of Tobacco Smoking and COPD Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Ramces Falfan-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Raúl H Sansores
- Department of Respiratory Medicine, Medica Sur Clinic and Foundation, Mexico City, Mexico
| |
Collapse
|
14
|
Reay WR, El Shair SI, Geaghan MP, Riveros C, Holliday EG, McEvoy MA, Hancock S, Peel R, Scott RJ, Attia JR, Cairns MJ. Genetic association and causal inference converge on hyperglycaemia as a modifiable factor to improve lung function. eLife 2021; 10:63115. [PMID: 33720009 PMCID: PMC8060032 DOI: 10.7554/elife.63115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Measures of lung function are heritable, and thus, we sought to utilise genetics to propose drug-repurposing candidates that could improve respiratory outcomes. Lung function measures were found to be genetically correlated with seven druggable biochemical traits, with further evidence of a causal relationship between increased fasting glucose and diminished lung function. Moreover, we developed polygenic scores for lung function specifically within pathways with known drug targets and investigated their relationship with pulmonary phenotypes and gene expression in independent cohorts to prioritise individuals who may benefit from particular drug-repurposing opportunities. A transcriptome-wide association study (TWAS) of lung function was then performed which identified several drug–gene interactions with predicted lung function increasing modes of action. Drugs that regulate blood glucose were uncovered through both polygenic scoring and TWAS methodologies. In summary, we provided genetic justification for a number of novel drug-repurposing opportunities that could improve lung function. Chronic respiratory disorders like asthma affect around 600 million people worldwide. Although these illnesses are widespread, they can have several different underlying causes, making them difficult to treat. Drugs that work well on one type of respiratory disorder may be completely ineffective on another. Understanding the biological and environmental factors that cause these illnesses will allow them to be treated more effectively by tailoring therapies to each patient. Reduced lung function is a factor in respiratory disorders and it can have many genetic causes. Studying the genes of patients with reduced lung function can reveal the genes involved, some of which may already be targets of existing drugs for other illnesses. So, could a patient’s genetics be used to repurpose existing drugs to treat their respiratory disorders? Reay et al. combined three methods to link genetics and biological processes to the causes of reduced lung function. The results reveal several factors that could lead to new treatments. In one example, reduced lung function showed a link to genes associated with high blood sugar. As such, treatments used in diabetes might help improve lung function in some patients. Reay et al. also developed a scoring system that could predict the efficacy of a treatment based on a patient’s genetics. The study suggests that COVID-19 infection could be affected by blood sugar levels too. Chronic respiratory disorders are a critical issue worldwide and have proven difficult to treat, but these results suggest a way to identify new therapies and target them to the right patients. The findings also support a connection between lung function and blood sugar levels. This implies that perhaps existing diabetes treatments – including diet and lifestyle changes aimed at reducing or limiting blood sugar – could be repurposed to treat respiratory disorders in some patients. The next step will be to perform clinical trials to test whether these therapies are in fact effective.
Collapse
Affiliation(s)
- William R Reay
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, Newcastle, Australia
| | - Sahar I El Shair
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, Australia
| | - Michael P Geaghan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, Newcastle, Australia
| | - Carlos Riveros
- Hunter Medical Research Institute, Newcastle, Australia.,School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
| | - Elizabeth G Holliday
- Hunter Medical Research Institute, Newcastle, Australia.,School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
| | - Mark A McEvoy
- Hunter Medical Research Institute, Newcastle, Australia.,School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
| | - Stephen Hancock
- Hunter Medical Research Institute, Newcastle, Australia.,School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
| | - Roseanne Peel
- Hunter Medical Research Institute, Newcastle, Australia.,School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, Newcastle, Australia
| | - John R Attia
- Hunter Medical Research Institute, Newcastle, Australia.,School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, Newcastle, Australia
| |
Collapse
|
15
|
Lee KS, Kim KH, Oh YM, Han B, Kim WJ. A genome wide association study for lung function in the Korean population using an exome array. Korean J Intern Med 2021; 36:S142-S150. [PMID: 32336055 PMCID: PMC8009153 DOI: 10.3904/kjim.2019.204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIMS Lung function is an objective indicator of diagnosis and prognosis of respiratory diseases. Many common genetic variants have been associated with lung function in multiple ethnic populations. We looked for coding variants associated with forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity (FVC) in the Korean general population. METHODS We carried out exome array analysis and lung function measurements of the FEV1 and FEV1/FVC in 7,524 individuals of the Korean population. We evaluated single variants with minor allele frequency greater than 0.5%. We performed look-ups for candidate coding variants associations in the UK Biobank, SpiroMeta, and CHARGE consortia. RESULTS We identified coding variants in the SMIM29 (C6orf1) (p = 1.2 × 10-5) and HMGA1 locus on chromosome 6p21, the GIT2 (p = 6.5 × 10-5) locus on chromosome 12q24, and the ARHGEF40 (p = 9.9 × 10-5) locus on chromosome 14q11 as having a significant association with lung function (FEV1). We also confirmed a previously reported association with lung function and chronic obstructive pulmonary disease in the FAM13A (p = 4.54 × 10-6) locus on chromosome 4q22, in TNXB (p = 1.30 × 10-6) and in AGER (p = 1.09 × 10-8) locus on chromosome 6p21. CONCLUSION Our exome array analysis identified that several protein coding variants were associated with lung function in the Korean population. Common coding variants in SMIM29 (C6orf1), HMGA1, GIT2, FAM13A, TNXB, AGER and low-frequency variant in ARHGEF40 potentially affect lung function, which warrant further study.
Collapse
Affiliation(s)
- Kyu-Sun Lee
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Kun Hee Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Disease, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Buhm Han
- Department of Medical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
- Correspondence to Woo Jin Kim, M.D. Department of Internal Medicine, Kangwon National University School of Medicine, 156 Baengnyeong-ro, Chuncheon 24289, Korea Tel: +82-33-250-7815 Fax: +82-33-255-6567 E-mail:
| |
Collapse
|
16
|
Moll M, Lutz SM, Ghosh AJ, Sakornsakolpat P, Hersh CP, Beaty TH, Dudbridge F, Tobin MD, Mittleman MA, Silverman EK, Hobbs BD, Cho MH. Relative contributions of family history and a polygenic risk score on COPD and related outcomes: COPDGene and ECLIPSE studies. BMJ Open Respir Res 2020; 7:e000755. [PMID: 33239407 PMCID: PMC7689586 DOI: 10.1136/bmjresp-2020-000755] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Family history is a risk factor for chronic obstructive pulmonary disease (COPD). We previously developed a COPD risk score from genome-wide genetic markers (Polygenic Risk Score, PRS). Whether the PRS and family history provide complementary or redundant information for predicting COPD and related outcomes is unknown. METHODS We assessed the predictive capacity of family history and PRS on COPD and COPD-related outcomes in non-Hispanic white (NHW) and African American (AA) subjects from COPDGene and ECLIPSE studies. We also performed interaction and mediation analyses. RESULTS In COPDGene, family history and PRS were significantly associated with COPD in a single model (PFamHx <0.0001; PPRS<0.0001). Similar trends were seen in ECLIPSE. The area under the receiver operator characteristic curve for a model containing family history and PRS was significantly higher than a model with PRS (p=0.00035) in NHWs and a model with family history (p<0.0001) alone in NHWs and AAs. Both family history and PRS were significantly associated with measures of quantitative emphysema and airway thickness. There was a weakly positive interaction between family history and the PRS under the additive, but not multiplicative scale in NHWs (relative excess risk due to interaction=0.48, p=0.04). Mediation analyses found that a significant proportion of the effect of family history on COPD was mediated through PRS in NHWs (16.5%, 95% CI 9.4% to 24.3%), but not AAs. CONCLUSION Family history and the PRS provide complementary information for predicting COPD and related outcomes. Future studies can address the impact of obtaining both measures in clinical practice.
Collapse
Affiliation(s)
- Matthew Moll
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Sharon M Lutz
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Pilgrim Health Care, Wellesley, Massachusetts, USA
| | - Auyon J Ghosh
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Phuwanat Sakornsakolpat
- Department of Medicine, Mahidol University Faculty of Medicine Siriraj Hospital, Bangkok, Bangkok, Thailand
| | - Craig P Hersh
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Terri H Beaty
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Frank Dudbridge
- Health Sciences, University of Leicester, Leicester, Leicestershire, UK
| | - Martin D Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, Leicestershire, UK
- National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Murray A Mittleman
- Harvard Medical School, Boston, Massachusetts, USA
- Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Díaz-Peña R, Silva RS, Hosgood HD, Jaime S, Miravitlles M, Olloquequi J. HLA-DRB1 Alleles are Associated With COPD in a Latin American Admixed Population. Arch Bronconeumol 2020; 57:291-297. [PMID: 32948369 DOI: 10.1016/j.arbres.2020.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/19/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION While the molecular mechanisms of COPD pathogenesis remain obscure, there is mounting evidence supporting a key role for autoimmunity. Although human leukocyte antigens (HLA) alleles have been repeatedly associated with autoimmune processes, the relation between HLA and COPD remains largely unexplored, especially in Latin American (LA) populations. Consequently, this study aimed to investigate the presence of HLA class I and II alleles in COPD patients and healthy controls in a LA population with admixed ancestry. METHODS COPD patients (n=214) and age-matched controls (n=193) were genotyped using the Illumina Infinium Global Screening Array. The classic HLA alleles were imputed using HLA Genotype Imputation with Attribute Bagging (HIBAG) and the Hispanic reference panel. Finally, the distribution of HLA-DRB1 alleles was reexamined in 510 randomly recruited unrelated volunteers. RESULTS CODP patients showed a higher HLA-DRB1*01:02 allele frequency (6.54%) than healthy controls (3.27%, p=0.04, OR=2.07). HLA-DRB1*01:02 was also significantly associated with FEV1 (p=0.04) and oxygen saturation (p=0.02), and the FEV1/FVC ratio was higher in HLA-DRB1*15:01-positive patients (p=9×10-3). CONCLUSION We report an association among HLA-DRB1 alleles, COPD risk and pulmonary function parameters for the first time in Latin Americans. Since HLA-DRB1 genetic variability relates to the individual autoimmune response, these results support a role of autoimmunity in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Roberto Díaz-Peña
- Laboratory of Cellular and Molecular Pathology, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile; Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Rafael S Silva
- Unidad Respiratorio, Centro de Diagnóstico Terapéutico, Hospital Regional de Talca, Talca, Chile
| | - H Dean Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sergio Jaime
- Unidad Respiratorio, Centro de Diagnóstico Terapéutico, Hospital Regional de Talca, Talca, Chile
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), Barcelona, CIBER Enfermedades Respiratorias (CIBERES), Spain
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile.
| |
Collapse
|
18
|
Moll M, Sakornsakolpat P, Shrine N, Hobbs BD, DeMeo DL, John C, Guyatt AL, McGeachie MJ, Gharib SA, Obeidat M, Lahousse L, Wijnant SRA, Brusselle G, Meyers DA, Bleecker ER, Li X, Tal-Singer R, Manichaikul A, Rich SS, Won S, Kim WJ, Do AR, Washko GR, Barr RG, Psaty BM, Bartz TM, Hansel NN, Barnes K, Hokanson JE, Crapo JD, Lynch D, Bakke P, Gulsvik A, Hall IP, Wain L, Weiss ST, Silverman EK, Dudbridge F, Tobin MD, Cho MH. Chronic obstructive pulmonary disease and related phenotypes: polygenic risk scores in population-based and case-control cohorts. THE LANCET. RESPIRATORY MEDICINE 2020; 8:696-708. [PMID: 32649918 PMCID: PMC7429152 DOI: 10.1016/s2213-2600(20)30101-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/24/2020] [Accepted: 02/17/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Genetic factors influence chronic obstructive pulmonary disease (COPD) risk, but the individual variants that have been identified have small effects. We hypothesised that a polygenic risk score using additional variants would predict COPD and associated phenotypes. METHODS We constructed a polygenic risk score using a genome-wide association study of lung function (FEV1 and FEV1/forced vital capacity [FVC]) from the UK Biobank and SpiroMeta. We tested this polygenic risk score in nine cohorts of multiple ethnicities for an association with moderate-to-severe COPD (defined as FEV1/FVC <0·7 and FEV1 <80% of predicted). Associations were tested using logistic regression models, adjusting for age, sex, height, smoking pack-years, and principal components of genetic ancestry. We assessed predictive performance of models by area under the curve. In a subset of studies, we also studied quantitative and qualitative CT imaging phenotypes that reflect parenchymal and airway pathology, and patterns of reduced lung growth. FINDINGS The polygenic risk score was associated with COPD in European (odds ratio [OR] per SD 1·81 [95% CI 1·74-1·88] and non-European (1·42 [1·34-1·51]) populations. Compared with the first decile, the tenth decile of the polygenic risk score was associated with COPD, with an OR of 7·99 (6·56-9·72) in European ancestry and 4·83 (3·45-6·77) in non-European ancestry cohorts. The polygenic risk score was superior to previously described genetic risk scores and, when combined with clinical risk factors (ie, age, sex, and smoking pack-years), showed improved prediction for COPD compared with a model comprising clinical risk factors alone (AUC 0·80 [0·79-0·81] vs 0·76 [0·75-0·76]). The polygenic risk score was associated with CT imaging phenotypes, including wall area percent, quantitative and qualitative measures of emphysema, local histogram emphysema patterns, and destructive emphysema subtypes. The polygenic risk score was associated with a reduced lung growth pattern. INTERPRETATION A risk score comprised of genetic variants can identify a small subset of individuals at markedly increased risk for moderate-to-severe COPD, emphysema subtypes associated with cigarette smoking, and patterns of reduced lung growth. FUNDING US National Institutes of Health, Wellcome Trust.
Collapse
Affiliation(s)
- Matthew Moll
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Phuwanat Sakornsakolpat
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nick Shrine
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Brian D Hobbs
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Catherine John
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Anna L Guyatt
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, Department of Medicine, University of Washington, Seattle, WA, USA; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ma'en Obeidat
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Lies Lahousse
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, Netherlands; Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sara R A Wijnant
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, Netherlands; Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Guy Brusselle
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, Netherlands; Department of Respiratory Medicine, Erasmus Medical Centre, Rotterdam, Netherlands; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | - Xingnan Li
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Ruth Tal-Singer
- GlaxoSmithKline Research and Development, Collegeville, PA, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Sungho Won
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Interdisciplinary Program of Bioinformatics, College of National Sciences, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University, Chuncheon, South Korea
| | - Ah Ra Do
- Interdisciplinary Program of Bioinformatics, College of National Sciences, Seoul National University, Seoul, South Korea
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - R Graham Barr
- Department of Medicine and Department of Epidemiology, Columbia University Medical Center, New York, NY, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA; Kaiser Permanente Washington Health Research Institute, Seattle, WA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nadia N Hansel
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kathleen Barnes
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - James D Crapo
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - David Lynch
- Department of Radiology, National Jewish Health, Denver, CO, USA
| | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Amund Gulsvik
- Division of Respiratory Medicine, Queen's Medical Centre, Nottingham, UK
| | - Ian P Hall
- National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Louise Wain
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK; National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Frank Dudbridge
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Martin D Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK; National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK.
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
19
|
Mak ACY, Sajuthi S, Joo J, Xiao S, Sleiman PM, White MJ, Lee EY, Saef B, Hu D, Gui H, Keys KL, Lurmann F, Jain D, Abecasis G, Kang HM, Nickerson DA, Germer S, Zody MC, Winterkorn L, Reeves C, Huntsman S, Eng C, Salazar S, Oh SS, Gilliland FD, Chen Z, Kumar R, Martínez FD, Wu AC, Ziv E, Hakonarson H, Himes BE, Williams LK, Seibold MA, Burchard EG. Lung Function in African American Children with Asthma Is Associated with Novel Regulatory Variants of the KIT Ligand KITLG/SCF and Gene-By-Air-Pollution Interaction. Genetics 2020; 215:869-886. [PMID: 32327564 PMCID: PMC7337089 DOI: 10.1534/genetics.120.303231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/22/2020] [Indexed: 01/12/2023] Open
Abstract
Baseline lung function, quantified as forced expiratory volume in the first second of exhalation (FEV1), is a standard diagnostic criterion used by clinicians to identify and classify lung diseases. Using whole-genome sequencing data from the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine project, we identified a novel genetic association with FEV1 on chromosome 12 in 867 African American children with asthma (P = 1.26 × 10-8, β = 0.302). Conditional analysis within 1 Mb of the tag signal (rs73429450) yielded one major and two other weaker independent signals within this peak. We explored statistical and functional evidence for all variants in linkage disequilibrium with the three independent signals and yielded nine variants as the most likely candidates responsible for the association with FEV1 Hi-C data and expression QTL analysis demonstrated that these variants physically interacted with KITLG (KIT ligand, also known as SCF), and their minor alleles were associated with increased expression of the KITLG gene in nasal epithelial cells. Gene-by-air-pollution interaction analysis found that the candidate variant rs58475486 interacted with past-year ambient sulfur dioxide exposure (P = 0.003, β = 0.32). This study identified a novel protective genetic association with FEV1, possibly mediated through KITLG, in African American children with asthma. This is the first study that has identified a genetic association between lung function and KITLG, which has established a role in orchestrating allergic inflammation in asthma.
Collapse
Affiliation(s)
- Angel C Y Mak
- Department of Medicine, University of California, San Francisco, California 94143
| | - Satria Sajuthi
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado 80206
| | - Jaehyun Joo
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Shujie Xiao
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan 48202
| | - Patrick M Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Pennsylvania, 19104
- Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Marquitta J White
- Department of Medicine, University of California, San Francisco, California 94143
| | - Eunice Y Lee
- Department of Medicine, University of California, San Francisco, California 94143
| | - Benjamin Saef
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, California 94143
| | - Hongsheng Gui
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan 48202
| | - Kevin L Keys
- Department of Medicine, University of California, San Francisco, California 94143
- Berkeley Institute for Data Science, University of California, Berkeley, California 94720
| | | | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, Washington 98195
| | - Gonçalo Abecasis
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan 48109
| | - Hyun Min Kang
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan 48109
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
- Northwest Genomics Center, Seattle, Washington, 98195
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, 98195
| | | | | | | | | | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, California 94143
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, California 94143
| | - Sandra Salazar
- Department of Medicine, University of California, San Francisco, California 94143
| | - Sam S Oh
- Department of Medicine, University of California, San Francisco, California 94143
| | - Frank D Gilliland
- Department of Preventive Medicine, Division of Environmental Health, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Zhanghua Chen
- Department of Preventive Medicine, Division of Environmental Health, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Rajesh Kumar
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611
| | - Fernando D Martínez
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona 85721
| | - Ann Chen Wu
- Precision Medicine Translational Research (PRoMoTeR) Center, Department of Population Medicine, Harvard Medical School and Pilgrim Health Care Institute, Boston, Massachusetts 02215
| | - Elad Ziv
- Department of Medicine, University of California, San Francisco, California 94143
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Pennsylvania, 19104
- Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan 48202
| | - Max A Seibold
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, California 94143
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143
| |
Collapse
|
20
|
Williams PT. Spirometric traits show quantile-dependent heritability, which may contribute to their gene-environment interactions with smoking and pollution. PeerJ 2020; 8:e9145. [PMID: 32461834 PMCID: PMC7233273 DOI: 10.7717/peerj.9145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/17/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND "Quantile-dependent expressivity" refers to a genetic effect that is dependent upon whether the phenotype (e.g., spirometric data) is high or low relative to its population distribution. Forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and the FEV1/FVC ratio are moderately heritable spirometric traits. The aim of the analyses is to test whether their heritability (h2 ) is constant over all quantiles of their distribution. METHODS Quantile regression was applied to the mean age, sex, height and smoking-adjusted spirometric data over multiple visits in 9,993 offspring-parent pairs and 1,930 sibships from the Framingham Heart Study to obtain robust estimates of offspring-parent (βOP), offspring-midparent (βOM), and full-sib regression slopes (βFS). Nonparametric significance levels were obtained from 1,000 bootstrap samples. βOPs were used as simple indicators of quantile-specific heritability (i.e., h 2 = 2βOP/(1+rspouse), where rspouse was the correlation between spouses). RESULTS βOP ± standard error (SE) decreased by 0.0009 ± 0.0003 (P = 0.003) with every one-percent increment in the population distribution of FEV1/FVC, i.e., βOP ± SE were: 0.182 ± 0.031, 0.152 ± 0.015; 0.136 ± 0.011; 0.121 ± 0.013; and 0.099 ± 0.013 at the 10th, 25th, 50th, 75th, and 90th percentiles of the FEV1/FVC distribution, respectively. These correspond to h2 ± SEs of 0.350 ± 0.060 at the 10th, 0.292 ± 0.029 at the 25th, 0.262 ± 0.020 at the 50th, 0.234 ± 0.025 at the 75th, and 0.191 ± 0.025 at the 90th percentiles of the FEV1/FVC ratio. Maximum mid-expiratory flow (MMEF) h2 ± SEs increased 0.0025 ± 0.0007 (P = 0.0004) with every one-percent increment in its distribution, i.e.: 0.467 ± 0.046, 0.467 ± 0.033, 0.554 ± 0.038, 0.615 ± 0.042, and 0.675 ± 0.060 at the 10th, 25th, 50th, 75th, and 90th percentiles of its distribution. This was due to forced expiratory flow at 75% of FVC (FEF75%), whose quantile-specific h2 increased an average of 0.0042 ± 0.0008 for every one-percent increment in its distribution. It is speculated that previously reported gene-environment interactions may be partially attributable to quantile-specific h2 , i.e., greater heritability in individuals with lower FEV1/FVC due to smoking or airborne particles exposure vs. nonsmoking, unexposed individuals. CONCLUSION Heritabilities of FEV1/FVC, MMEF, and FEF75% from quantile-regression of offspring-parent and sibling spirometric data suggest their quantile-dependent expressivity.
Collapse
Affiliation(s)
- Paul T. Williams
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| |
Collapse
|
21
|
Oelsner EC, Ortega VE, Smith BM, Nguyen JN, Manichaikul AW, Hoffman EA, Guo X, Taylor KD, Woodruff PG, Couper DJ, Hansel NN, Martinez FJ, Paine R, Han MK, Cooper C, Dransfield MT, Criner G, Krishnan JA, Bowler R, Bleecker ER, Peters S, Rich SS, Meyers DA, Rotter JI, Barr RG. A Genetic Risk Score Associated with Chronic Obstructive Pulmonary Disease Susceptibility and Lung Structure on Computed Tomography. Am J Respir Crit Care Med 2020; 200:721-731. [PMID: 30925230 DOI: 10.1164/rccm.201812-2355oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) has been associated with numerous genetic variants, yet the extent to which its genetic risk is mediated by variation in lung structure remains unknown.Objectives: To characterize associations between a genetic risk score (GRS) associated with COPD susceptibility and lung structure on computed tomography (CT).Methods: We analyzed data from MESA Lung (Multi-Ethnic Study of Atherosclerosis Lung Study), a U.S. general population-based cohort, and SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study). A weighted GRS was calculated from 83 SNPs that were previously associated with lung function. Lung density, spatially matched airway dimensions, and airway counts were assessed on full-lung CT. Generalized linear models were adjusted for age, age squared, sex, height, principal components of genetic ancestry, smoking status, pack-years, CT model, milliamperes, and total lung volume.Measurements and Main Results: MESA Lung and SPIROMICS contributed 2,517 and 2,339 participants, respectively. Higher GRS was associated with lower lung function and increased COPD risk, as well as lower lung density, smaller airway lumens, and fewer small airways, without effect modification by smoking. Adjustment for CT lung structure, particularly small airway measures, attenuated associations between the GRS and FEV1/FVC by 100% and 60% in MESA and SPIROMICS, respectively. Lung structure (P < 0.0001), but not the GRS (P > 0.10), improved discrimination of moderate-to-severe COPD cases relative to clinical factors alone.Conclusions: A GRS associated with COPD susceptibility was associated with CT lung structure. Lung structure may be an important mediator of heritability and determinant of personalized COPD risk.
Collapse
Affiliation(s)
- Elizabeth C Oelsner
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, New York
| | - Victor E Ortega
- Division of Pulmonary, Critical Care, Allergy, and Immunologic Medicine, Department of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Benjamin M Smith
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, New York
| | - Jennifer N Nguyen
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Eric A Hoffman
- Department of Radiology.,Department of Medicine, and.,Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | | | | | - Prescott G Woodruff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California
| | - David J Couper
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Robert Paine
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Meilan K Han
- Division of Pulmonary and Critical Care Medicine, Michigan Medicine, Ann Arbor, Michigan
| | - Christopher Cooper
- Department of Medicine, and.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Mark T Dransfield
- Division of Pulmonary, Allergy, and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gerard Criner
- Department of Thoracic Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jerry A Krishnan
- Division of Pulmonary and Critical Care, University of Illinois, Chicago, Illinois
| | - Russell Bowler
- Division of Pulmonary and Critical Care, National Jewish, Denver, Colorado; and
| | | | - Stephen Peters
- Division of Pulmonary, Critical Care, Allergy, and Immunologic Medicine, Department of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | | | | | - R Graham Barr
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, New York
| |
Collapse
|
22
|
Hobbs BD, Cho MH. Why is Disease Penetration So Variable? Role of Genetic Modifiers of Lung Function in Alpha-1 Antitrypsin Deficiency. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:214-223. [PMID: 32621460 DOI: 10.15326/jcopdf.7.3.2019.0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Individuals with alpha-1 antitrypsin deficiency (AATD) have marked heterogeneity in lung function, suspected to be related to a combination of both environmental (e.g., cigarette smoking) and genetic factors. Lung function is heritable in the general population and in persons with severe AATD. Several genetic modifiers of lung function in persons with AATD have been described; however, replication is lacking. A genome-wide association study (GWAS) of lung function in persons with AATD has yet to be performed and may inform whether genetic determinants of lung function are overlapping in persons with AATD and in the general population. As GWASs require large sample sizes for adequate power, genetic risk scores offer an alternate approach to assess the overlap of genetic determinants of lung function in the general population in persons with AATD. Where GWASs are limited to common genetic variant discovery, whole genome sequencing (for rare variant discovery) and integrative genomic studies (examining the influence of genetic variants on gene, protein, and metabolite levels) offer potential for an expanded discovery of genetic modifiers of lung function in AATD. In the following review we examine past descriptions of genetic modifiers of lung function in AATD and describe a path forward to further investigate and define the likely genetic modifiers of lung function in AATD.
Collapse
Affiliation(s)
- Brian D Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
23
|
Welsh L, Kathriachchige G, Raheem T, Grobler AC, Wake M, Ranganathan S. Lung function: population epidemiology and concordance in Australian children aged 11-12 years and their parents. BMJ Open 2019; 9:53-62. [PMID: 31273016 PMCID: PMC6624041 DOI: 10.1136/bmjopen-2018-023486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES To describe the epidemiology of lung function in Australian children aged 11-12 years and their parents, and explore the degree of intergenerational concordance. DESIGN Cross-sectional study (the Child Health CheckPoint) nested in the Longitudinal Study of Australian Children (LSAC). SETTING Assessment centres in seven Australian cities and eight regional towns, February 2015 to March 2016. Families unable to attend a clinic appointment were offered a home visit during the same period. PARTICIPANTS 1874 families (53% of all eligible) participated in the study. Lung function data were available for 1759 children aged 11-12 years and 1774 parents (1668 biological pairs). OUTCOME MEASURES Participants completed spirometry with measures including forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and mid expiratory flow (MEF), converted to z-scores using Global Lung Initiative equations. Parent-child concordance was assessed using Pearson's correlation coefficients and multivariable linear regression models. Survey weights and methods accounted for LSAC's complex sampling, stratification and clustering within postcodes. RESULTS All lung function measures followed approximately normal distributions. Mean (SD) for FEV1, FVC and MEF z-scores in children were 0.33 (1.07), 0.83 (1.14) and -0.48 (1.09), respectively. Mean (SD) in parents were 0.28 (1.10), 0.85 (1.15) and -0.45 (1.10), respectively. Parent FEV1, FVC and MEF were associated with child lung function with significant positive correlation coefficients (0.22, 95% CI 0.17 to 0.26; 0.24, 95% CI 0.20 to 0.29; and 0.24, 95% CI 0.20 to 0.29, respectively). CONCLUSIONS Mean lung volumes were larger but with smaller airway size than international standards for both parents and children in this population sample. Modest associations between parent and child lung function highlight the potential for better identification of 'at risk' populations. Therefore, these findings may aid the development of health policy that aims to prevent the onset or limit the progression of lung disease.
Collapse
Affiliation(s)
- Liam Welsh
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Respiratory Medicine, The Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Gayan Kathriachchige
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Tahmeed Raheem
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Anneke C Grobler
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Melissa Wake
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
- Department of Paediatrics and The Liggins Institute, The University of Auckland, Grafton, Auckland, New Zealand
| | - Sarath Ranganathan
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Respiratory Medicine, The Royal Children’s Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
24
|
Bermingham ML, Walker RM, Marioni RE, Morris SW, Rawlik K, Zeng Y, Campbell A, Redmond P, Whalley HC, Adams MJ, Hayward C, Deary IJ, Porteous DJ, McIntosh AM, Evans KL. Identification of novel differentially methylated sites with potential as clinical predictors of impaired respiratory function and COPD. EBioMedicine 2019; 43:576-586. [PMID: 30935889 PMCID: PMC6557748 DOI: 10.1016/j.ebiom.2019.03.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
Background The causes of poor respiratory function and COPD are incompletely understood, but it is clear that genes and the environment play a role. As DNA methylation is under both genetic and environmental control, we hypothesised that investigation of differential methylation associated with these phenotypes would permit mechanistic insights, and improve prediction of COPD. We investigated genome-wide differential DNA methylation patterns using the recently released 850 K Illumina EPIC array. This is the largest single population, whole-genome epigenetic study to date. Methods Epigenome-wide association studies (EWASs) of respiratory function and COPD were performed in peripheral blood samples from the Generation Scotland: Scottish Family Health Study (GS:SFHS) cohort (n = 3781; 274 COPD cases and 2919 controls). In independent COPD incidence data (n = 149), significantly differentially methylated sites (DMSs; p < 3.6 × 10−8) were evaluated for their added predictive power when added to a model including clinical variables, age, sex, height and smoking history using receiver operating characteristic analysis. The Lothian Birth Cohort 1936 (LBC1936) was used to replicate association (n = 895) and prediction (n = 178) results. Findings We identified 28 respiratory function and/or COPD associated DMSs, which mapped to genes involved in alternative splicing, JAK-STAT signalling, and axon guidance. In prediction analyses, we observed significant improvement in discrimination between COPD cases and controls (p < .05) in independent GS:SFHS (p = .016) and LBC1936 (p = .010) datasets by adding DMSs to a clinical model. Interpretation Identification of novel DMSs has provided insight into the molecular mechanisms regulating respiratory function and aided prediction of COPD risk. Further studies are needed to assess the causality and clinical utility of identified associations. Fund Wellcome Trust Strategic Award 10436/Z/14/Z.
Collapse
Affiliation(s)
- Mairead L Bermingham
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Stewart W Morris
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Konrad Rawlik
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, UK
| | - Yanni Zeng
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Paul Redmond
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
25
|
Shrine N, Guyatt AL, Erzurumluoglu AM, Jackson VE, Hobbs BD, Melbourne CA, Batini C, Fawcett KA, Song K, Sakornsakolpat P, Li X, Boxall R, Reeve NF, Obeidat M, Zhao JH, Wielscher M, Weiss S, Kentistou KA, Cook JP, Sun BB, Zhou J, Hui J, Karrasch S, Imboden M, Harris SE, Marten J, Enroth S, Kerr SM, Surakka I, Vitart V, Lehtimäki T, Allen RJ, Bakke PS, Beaty TH, Bleecker ER, Bossé Y, Brandsma CA, Chen Z, Crapo JD, Danesh J, DeMeo DL, Dudbridge F, Ewert R, Gieger C, Gulsvik A, Hansell AL, Hao K, Hoffman JD, Hokanson JE, Homuth G, Joshi PK, Joubert P, Langenberg C, Li X, Li L, Lin K, Lind L, Locantore N, Luan J, Mahajan A, Maranville JC, Murray A, Nickle DC, Packer R, Parker MM, Paynton ML, Porteous DJ, Prokopenko D, Qiao D, Rawal R, Runz H, Sayers I, Sin DD, Smith BH, Soler Artigas M, Sparrow D, Tal-Singer R, Timmers PRHJ, Van den Berge M, Whittaker JC, Woodruff PG, Yerges-Armstrong LM, Troyanskaya OG, Raitakari OT, Kähönen M, Polašek O, Gyllensten U, Rudan I, Deary IJ, Probst-Hensch NM, Schulz H, James AL, Wilson JF, Stubbe B, Zeggini E, Jarvelin MR, Wareham N, Silverman EK, Hayward C, Morris AP, Butterworth AS, Scott RA, Walters RG, Meyers DA, Cho MH, Strachan DP, Hall IP, Tobin MD, Wain LV. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat Genet 2019; 51:481-493. [PMID: 30804560 PMCID: PMC6397078 DOI: 10.1038/s41588-018-0321-7] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/27/2018] [Indexed: 02/02/2023]
Abstract
Reduced lung function predicts mortality and is key to the diagnosis of chronic obstructive pulmonary disease (COPD). In a genome-wide association study in 400,102 individuals of European ancestry, we define 279 lung function signals, 139 of which are new. In combination, these variants strongly predict COPD in independent populations. Furthermore, the combined effect of these variants showed generalizability across smokers and never smokers, and across ancestral groups. We highlight biological pathways, known and potential drug targets for COPD and, in phenome-wide association studies, autoimmune-related and other pleiotropic effects of lung function-associated variants. This new genetic evidence has potential to improve future preventive and therapeutic strategies for COPD.
Collapse
Affiliation(s)
- Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Anna L Guyatt
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Victoria E Jackson
- Department of Health Sciences, University of Leicester, Leicester, UK
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Brian D Hobbs
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Carl A Melbourne
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Chiara Batini
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Kijoung Song
- Target Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | - Phuwanat Sakornsakolpat
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Xingnan Li
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Ruth Boxall
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Nicola F Reeve
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Ma'en Obeidat
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, British Columbia, Canada
| | - Jing Hua Zhao
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, UK
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Katherine A Kentistou
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Benjamin B Sun
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jian Zhou
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Jennie Hui
- Busselton Population Medical Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Population Health, The University of Western Australia, Crawley, Western Australia, Australia
- PathWest Laboratory Medicine of WA, Sir Charles Gairdner Hospital, Crawley, Western Australia, Australia
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Western Australia, Australia
| | - Stefan Karrasch
- Institute of Epidemiology, Helmholtz Zentrum Muenchen-German Research Center for Environmental Health, Neuherberg, Germany
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala Universitet, Uppsala, Sweden
| | - Shona M Kerr
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ida Surakka
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- The National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Richard J Allen
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Per S Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, MD, USA
| | - Eugene R Bleecker
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Québec, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - James D Crapo
- National Jewish Health, Denver, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cambridge Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, UK
- Department of Human Genetics, Wellcome Trust Sanger Institute, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Frank Dudbridge
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Ralf Ewert
- Department of Internal Medicine B - Cardiology, Intensive Care, Pulmonary Medicine and Infectious Diseases, University Medicine Greifswald, Greifswald, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Neuherberg, Germany
| | - Amund Gulsvik
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anna L Hansell
- Centre for Environmental Health & Sustainability, University of Leicester, Leicester, UK
- UK Small Area Health Statistics Unit, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, St Mary's Hospital, London, UK
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - John E Hokanson
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University, Québec, Canada
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Xuan Li
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, British Columbia, Canada
| | - Liming Li
- Department of Epidemiology & Biostatistics, Peking University Health Science Center, Beijing, China
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | | | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Alison Murray
- The Institute of Medical Sciences, Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - David C Nickle
- MRL, Merck & Co., Inc, Kenilworth, NJ, USA
- Gossamer Bio, San Diego, CA, USA
| | - Richard Packer
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Margaret M Parker
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Megan L Paynton
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - David J Porteous
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Dmitry Prokopenko
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dandi Qiao
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Rajesh Rawal
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Heiko Runz
- MRL, Merck & Co., Inc, Kenilworth, NJ, USA
| | - Ian Sayers
- Division of Respiratory Medicine and NIHR-Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Don D Sin
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, British Columbia, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - David Sparrow
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | - Paul R H J Timmers
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Maarten Van den Berge
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - John C Whittaker
- Target Sciences - R&D, GSK Medicines Research Centre, Stevenage, UK
| | - Prescott G Woodruff
- UCSF Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | | | - Olga G Troyanskaya
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Ozren Polašek
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- University of Split School of Medicine, Split, Croatia
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala Universitet, Uppsala, Sweden
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Nicole M Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Holger Schulz
- Institute of Epidemiology, Helmholtz Zentrum Muenchen-German Research Center for Environmental Health, Neuherberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Alan L James
- Busselton Population Medical Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - James F Wilson
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Beate Stubbe
- Department of Internal Medicine B - Cardiology, Intensive Care, Pulmonary Medicine and Infectious Diseases, University Medicine Greifswald, Greifswald, Germany
| | - Eleftheria Zeggini
- Wellcome Sanger Institute, Hinxton, UK
- Institute of Translational Genomics, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Neuherberg, Germany
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Adam S Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Robert A Scott
- Target Sciences - R&D, GSK Medicines Research Centre, Stevenage, UK
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Deborah A Meyers
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, London, UK
| | - Ian P Hall
- Division of Respiratory Medicine and NIHR-Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK.
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK.
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK.
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK.
| |
Collapse
|
26
|
Karimi A, Razaghi R. The role of smoking on the mechanical properties of the human lung. Technol Health Care 2018; 26:963-972. [DOI: 10.3233/thc-181340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Alireza Karimi
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | | |
Collapse
|
27
|
Hall R, Hall IP, Sayers I. Genetic risk factors for the development of pulmonary disease identified by genome-wide association. Respirology 2018; 24:204-214. [PMID: 30421854 DOI: 10.1111/resp.13436] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/31/2018] [Accepted: 09/20/2018] [Indexed: 12/17/2022]
Abstract
Chronic respiratory diseases are a major cause of morbidity and mortality. Asthma and chronic obstructive pulmonary disease (COPD) combined affect over 500 million people worldwide. While environmental factors are important in disease progression, asthma and COPD have long been known to be heritable with genetic components playing an important role in the risk of developing disease. Identification of genetic variation contributing to disease progression is important for a number of reasons including identification of risk alleles, understanding underlying disease mechanisms and development of novel therapies. Genome-wide association studies (GWAS) have been successful in identifying many loci associated with lung function, COPD and asthma. In recent years, meta-analyses and improved imputation have facilitated the growth of GWAS in terms of numbers of subjects and the number of single nucleotide polymorphisms (SNP) that can be interrogated. As a consequence, there has been a significant increase in the number of signals associated with asthma, COPD and lung function. SNP that have shown association with lung function reassuringly show a significant overlap with SNP associated with COPD giving a glimpse at pathways that may be involved in COPD mechanisms including genes in, for example, developmental pathways. In asthma, association signals are often in or near genes involved in both adaptive and innate immune response pathways, epithelial cell homeostasis and airway structural changes. The challenges now are translating these genetic signals into a new understanding of lung biology, understanding how variants impact health and disease and how they may provide opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Robert Hall
- Division of Respiratory Medicine, NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Ian P Hall
- Division of Respiratory Medicine, NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Ian Sayers
- Division of Respiratory Medicine, NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
28
|
Genome-wide assessment of gene-by-smoking interactions in COPD. Sci Rep 2018; 8:9319. [PMID: 29915320 PMCID: PMC6006158 DOI: 10.1038/s41598-018-27463-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/30/2018] [Indexed: 12/14/2022] Open
Abstract
Cigarette smoke exposure is a major risk factor in chronic obstructive pulmonary disease (COPD) and its interactions with genetic variants could affect lung function. However, few gene-smoking interactions have been reported. In this report, we evaluated the effects of gene-smoking interactions on lung function using Korea Associated Resource (KARE) data with the spirometric variables—forced expiratory volume in 1 s (FEV1). We found that variations in FEV1 were different among smoking status. Thus, we considered a linear mixed model for association analysis under heteroscedasticity according to smoking status. We found a previously identified locus near SOX9 on chromosome 17 to be the most significant based on a joint test of the main and interaction effects of smoking. Smoking interactions were replicated with Gene-Environment of Interaction and phenotype (GENIE), Multi-Ethnic Study of Atherosclerosis-Lung (MESA-Lung), and COPDGene studies. We found that individuals with minor alleles, rs17765644, rs17178251, rs11870732, and rs4793541, tended to have lower FEV1 values, and lung function decreased much faster with age for smokers. There have been very few reports to replicate a common variant gene-smoking interaction, and our results revealed that statistical models for gene-smoking interaction analyses should be carefully selected.
Collapse
|
29
|
Jackson VE, Latourelle JC, Wain LV, Smith AV, Grove ML, Bartz TM, Obeidat M, Province MA, Gao W, Qaiser B, Porteous DJ, Cassano PA, Ahluwalia TS, Grarup N, Li J, Altmaier E, Marten J, Harris SE, Manichaikul A, Pottinger TD, Li-Gao R, Lind-Thomsen A, Mahajan A, Lahousse L, Imboden M, Teumer A, Prins B, Lyytikäinen LP, Eiriksdottir G, Franceschini N, Sitlani CM, Brody JA, Bossé Y, Timens W, Kraja A, Loukola A, Tang W, Liu Y, Bork-Jensen J, Justesen JM, Linneberg A, Lange LA, Rawal R, Karrasch S, Huffman JE, Smith BH, Davies G, Burkart KM, Mychaleckyj JC, Bonten TN, Enroth S, Lind L, Brusselle GG, Kumar A, Stubbe B, Kähönen M, Wyss AB, Psaty BM, Heckbert SR, Hao K, Rantanen T, Kritchevsky SB, Lohman K, Skaaby T, Pisinger C, Hansen T, Schulz H, Polasek O, Campbell A, Starr JM, Rich SS, Mook-Kanamori DO, Johansson Å, Ingelsson E, Uitterlinden AG, Weiss S, Raitakari OT, Gudnason V, North KE, Gharib SA, Sin DD, Taylor KD, O'Connor GT, Kaprio J, Harris TB, Pederson O, Vestergaard H, Wilson JG, Strauch K, Hayward C, Kerr S, Deary IJ, Barr RG, de Mutsert R, Gyllensten U, Morris AP, Ikram MA, Probst-Hensch N, Gläser S, Zeggini E, Lehtimäki T, Strachan DP, Dupuis J, Morrison AC, Hall IP, Tobin MD, London SJ. Meta-analysis of exome array data identifies six novel genetic loci for lung function. Wellcome Open Res 2018; 3:4. [PMID: 30175238 PMCID: PMC6081985 DOI: 10.12688/wellcomeopenres.12583.3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2018] [Indexed: 01/05/2023] Open
Abstract
Background: Over 90 regions of the genome have been associated with lung function to date, many of which have also been implicated in chronic obstructive pulmonary disease. Methods: We carried out meta-analyses of exome array data and three lung function measures: forced expiratory volume in one second (FEV 1), forced vital capacity (FVC) and the ratio of FEV 1 to FVC (FEV 1/FVC). These analyses by the SpiroMeta and CHARGE consortia included 60,749 individuals of European ancestry from 23 studies, and 7,721 individuals of African Ancestry from 5 studies in the discovery stage, with follow-up in up to 111,556 independent individuals. Results: We identified significant (P<2·8x10 -7) associations with six SNPs: a nonsynonymous variant in RPAP1, which is predicted to be damaging, three intronic SNPs ( SEC24C, CASC17 and UQCC1) and two intergenic SNPs near to LY86 and FGF10. Expression quantitative trait loci analyses found evidence for regulation of gene expression at three signals and implicated several genes, including TYRO3 and PLAU. Conclusions: Further interrogation of these loci could provide greater understanding of the determinants of lung function and pulmonary disease.
Collapse
Affiliation(s)
| | | | - Louise V. Wain
- Department of Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research, Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Albert V. Smith
- Icelandic Heart Association, 201 Kopavogur, Iceland
- University of Iceland, 101 Reykjavik, Iceland
| | - Megan L. Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Traci M. Bartz
- Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, 98101, USA
| | - Ma'en Obeidat
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
| | - Michael A. Province
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Wei Gao
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Beenish Qaiser
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
| | - David J. Porteous
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Patricia A. Cassano
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medical College, New York City, NY, USA
| | - Tarunveer S. Ahluwalia
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, 2820, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jin Li
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Elisabeth Altmaier
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh , EH4 2XU, UK
| | - Sarah E. Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Tess D. Pottinger
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Preventive Medicine - Division of Health and Biomedical Informatics, Northwestern University - Feinberg School of Medicine, Chicago, IL, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Allan Lind-Thomsen
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lies Lahousse
- Respiratory Medicine, Ghent University Hospital, Ghent, BE9000, Belgium
- Bioanalysis, Ghent University, Ghent, BE9000, Belgium
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Bram Prins
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland
- Department of Clinical Chemistry, Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33014, Finland
| | | | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC 27514, USA
| | - Colleen M. Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, NL9713 GZ, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Aldi Kraja
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Anu Loukola
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
| | - Wenbo Tang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Boehringer Ingelheim , Danbury, CT, USA
| | - Yongmei Liu
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Allan Linneberg
- Centre for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
- Department of Clinical Experimental Research, Rigshospitalet, 2600 Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Leslie A. Lange
- Department of Medicine, Division of Bioinformatics and Personalized Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Rajesh Rawal
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Stefan Karrasch
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jennifer E. Huffman
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh , EH4 2XU, UK
| | - Blair H. Smith
- Division of Population Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Kristin M. Burkart
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Josyf C. Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Tobias N. Bonten
- Department of Pulmonology, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Stefan Enroth
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | - Guy G. Brusselle
- Respiratory Medicine, Ghent University Hospital, Ghent, BE9000, Belgium
- Epidemiology, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
- Respiratory Medicine, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
| | - Ashish Kumar
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Beate Stubbe
- Internal Medicine B, University Medicine Greifswald, Greifswald, 17475, Germany
| | - Understanding Society Scientific Group
- Department of Health Sciences, University of Leicester, Leicester, UK
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- National Institute for Health Research, Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
- Icelandic Heart Association, 201 Kopavogur, Iceland
- University of Iceland, 101 Reykjavik, Iceland
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, 98101, USA
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medical College, New York City, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, 2820, Denmark
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh , EH4 2XU, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Preventive Medicine - Division of Health and Biomedical Informatics, Northwestern University - Feinberg School of Medicine, Chicago, IL, USA
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Respiratory Medicine, Ghent University Hospital, Ghent, BE9000, Belgium
- Bioanalysis, Ghent University, Ghent, BE9000, Belgium
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland
- Department of Clinical Chemistry, Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33014, Finland
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC 27514, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec, Canada
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, NL9713 GZ, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Boehringer Ingelheim , Danbury, CT, USA
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Centre for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
- Department of Clinical Experimental Research, Rigshospitalet, 2600 Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Medicine, Division of Bioinformatics and Personalized Medicine, University of Colorado Denver, Aurora, CO, USA
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- Division of Population Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Department of Pulmonology, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
- Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
- Epidemiology, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
- Respiratory Medicine, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Internal Medicine B, University Medicine Greifswald, Greifswald, 17475, Germany
- Department of Clinical Physiology, Tampere University Hospital, Tampere, 33521, Finland
- Department of Clinical Physiology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33014, Finland
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, 27709, USA
- Cardiovascular Health Research Unit, Departments of Epidemiology, Medicine and Health Services, University of Washington, Seattle, WA, 98101, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA, 98101, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Fl-40014, Finland
- Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Germany
- Faculty of Medicine, University of Split, Split, Croatia
- Alzheimer Scotland Research Centre, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Internal Medicine, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, 17475, Germany
- DZHK (German Centre for Cardiovascular Research), partner site: Greifswald, Greifswald, Germany
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, 20521, Finland
- Research Centre of Applied and Preventative Cardiovascular Medicine, University of Turku, Turku, 20014, Finland
- Department of Epidemiology and Carolina Center for Genome Science, University of North Carolina, Chapel Hill, NC, 27514, USA
- Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, 01702, USA
- Department of Health, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Public Health, National Institute for Health and Welfare, Helsinki, FI-00271, Finland
- National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, 81377, Germany
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
- Department of Biostatistics, University of Liverpool, Liverpool, L69 3GL, UK
- Radiology, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
- Neurology, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
- Department of Internal Medicine - Pulmonary Diseases, Vivantes Klinikum Spandau Berlin, Berlin, 13585, Germany
- Population Health Research Institute, St George's, University of London, London, SW17 0RE, UK
- NIHR Nottingham Biomedical Research Centre and Division of Respiratory Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, 33521, Finland
- Department of Clinical Physiology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33014, Finland
| | - Annah B. Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology, Medicine and Health Services, University of Washington, Seattle, WA, 98101, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA, 98101, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Taina Rantanen
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Fl-40014, Finland
| | | | - Kurt Lohman
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Tea Skaaby
- Centre for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
| | - Charlotta Pisinger
- Centre for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Holger Schulz
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Germany
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
| | - Archie Campbell
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Alzheimer Scotland Research Centre, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Dennis O. Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Åsa Johansson
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - André G. Uitterlinden
- Epidemiology, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
- Internal Medicine, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, 17475, Germany
- DZHK (German Centre for Cardiovascular Research), partner site: Greifswald, Greifswald, Germany
| | - Olli T. Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, 20521, Finland
- Research Centre of Applied and Preventative Cardiovascular Medicine, University of Turku, Turku, 20014, Finland
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201 Kopavogur, Iceland
- University of Iceland, 101 Reykjavik, Iceland
| | - Kari E. North
- Department of Epidemiology and Carolina Center for Genome Science, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Sina A. Gharib
- Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Don D. Sin
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - George T. O'Connor
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, 01702, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
- Department of Health, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Public Health, National Institute for Health and Welfare, Helsinki, FI-00271, Finland
| | - Tamara B. Harris
- National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Oluf Pederson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, 2820, Denmark
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, 81377, Germany
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh , EH4 2XU, UK
| | - Shona Kerr
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh , EH4 2XU, UK
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - R. Graham Barr
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Ulf Gyllensten
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
| | - Andrew P. Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biostatistics, University of Liverpool, Liverpool, L69 3GL, UK
| | - M. Arfan Ikram
- Epidemiology, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
- Radiology, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
- Neurology, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sven Gläser
- Internal Medicine B, University Medicine Greifswald, Greifswald, 17475, Germany
- Department of Internal Medicine - Pulmonary Diseases, Vivantes Klinikum Spandau Berlin, Berlin, 13585, Germany
| | | | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland
- Department of Clinical Chemistry, Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33014, Finland
| | - David P. Strachan
- Population Health Research Institute, St George's, University of London, London, SW17 0RE, UK
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ian P. Hall
- NIHR Nottingham Biomedical Research Centre and Division of Respiratory Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Martin D. Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research, Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Stephanie J. London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
30
|
Jackson VE, Latourelle JC, Wain LV, Smith AV, Grove ML, Bartz TM, Obeidat M, Province MA, Gao W, Qaiser B, Porteous DJ, Cassano PA, Ahluwalia TS, Grarup N, Li J, Altmaier E, Marten J, Harris SE, Manichaikul A, Pottinger TD, Li-Gao R, Lind-Thomsen A, Mahajan A, Lahousse L, Imboden M, Teumer A, Prins B, Lyytikäinen LP, Eiriksdottir G, Franceschini N, Sitlani CM, Brody JA, Bossé Y, Timens W, Kraja A, Loukola A, Tang W, Liu Y, Bork-Jensen J, Justesen JM, Linneberg A, Lange LA, Rawal R, Karrasch S, Huffman JE, Smith BH, Davies G, Burkart KM, Mychaleckyj JC, Bonten TN, Enroth S, Lind L, Brusselle GG, Kumar A, Stubbe B, Kähönen M, Wyss AB, Psaty BM, Heckbert SR, Hao K, Rantanen T, Kritchevsky SB, Lohman K, Skaaby T, Pisinger C, Hansen T, Schulz H, Polasek O, Campbell A, Starr JM, Rich SS, Mook-Kanamori DO, Johansson Å, Ingelsson E, Uitterlinden AG, Weiss S, Raitakari OT, Gudnason V, North KE, Gharib SA, Sin DD, Taylor KD, O'Connor GT, Kaprio J, Harris TB, Pederson O, Vestergaard H, Wilson JG, Strauch K, Hayward C, Kerr S, Deary IJ, Barr RG, de Mutsert R, Gyllensten U, Morris AP, Ikram MA, Probst-Hensch N, Gläser S, Zeggini E, Lehtimäki T, Strachan DP, Dupuis J, Morrison AC, Hall IP, Tobin MD, London SJ. Meta-analysis of exome array data identifies six novel genetic loci for lung function. Wellcome Open Res 2018; 3:4. [PMID: 30175238 PMCID: PMC6081985 DOI: 10.12688/wellcomeopenres.12583.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2018] [Indexed: 07/26/2023] Open
Abstract
Background: Over 90 regions of the genome have been associated with lung function to date, many of which have also been implicated in chronic obstructive pulmonary disease. Methods: We carried out meta-analyses of exome array data and three lung function measures: forced expiratory volume in one second (FEV 1), forced vital capacity (FVC) and the ratio of FEV 1 to FVC (FEV 1/FVC). These analyses by the SpiroMeta and CHARGE consortia included 60,749 individuals of European ancestry from 23 studies, and 7,721 individuals of African Ancestry from 5 studies in the discovery stage, with follow-up in up to 111,556 independent individuals. Results: We identified significant (P<2·8x10 -7) associations with six SNPs: a nonsynonymous variant in RPAP1, which is predicted to be damaging, three intronic SNPs ( SEC24C, CASC17 and UQCC1) and two intergenic SNPs near to LY86 and FGF10. Expression quantitative trait loci analyses found evidence for regulation of gene expression at three signals and implicated several genes, including TYRO3 and PLAU. Conclusions: Further interrogation of these loci could provide greater understanding of the determinants of lung function and pulmonary disease.
Collapse
Affiliation(s)
| | | | - Louise V. Wain
- Department of Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research, Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Albert V. Smith
- Icelandic Heart Association, 201 Kopavogur, Iceland
- University of Iceland, 101 Reykjavik, Iceland
| | - Megan L. Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Traci M. Bartz
- Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, 98101, USA
| | - Ma'en Obeidat
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
| | - Michael A. Province
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Wei Gao
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Beenish Qaiser
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
| | - David J. Porteous
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Patricia A. Cassano
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medical College, New York City, NY, USA
| | - Tarunveer S. Ahluwalia
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, 2820, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jin Li
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Elisabeth Altmaier
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh , EH4 2XU, UK
| | - Sarah E. Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Tess D. Pottinger
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Preventive Medicine - Division of Health and Biomedical Informatics, Northwestern University - Feinberg School of Medicine, Chicago, IL, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Allan Lind-Thomsen
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lies Lahousse
- Respiratory Medicine, Ghent University Hospital, Ghent, BE9000, Belgium
- Bioanalysis, Ghent University, Ghent, BE9000, Belgium
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Bram Prins
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland
- Department of Clinical Chemistry, Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33014, Finland
| | | | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC 27514, USA
| | - Colleen M. Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, NL9713 GZ, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Aldi Kraja
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Anu Loukola
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
| | - Wenbo Tang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Boehringer Ingelheim , Danbury, CT, USA
| | - Yongmei Liu
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Allan Linneberg
- Centre for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
- Department of Clinical Experimental Research, Rigshospitalet, 2600 Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Leslie A. Lange
- Department of Medicine, Division of Bioinformatics and Personalized Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Rajesh Rawal
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Stefan Karrasch
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jennifer E. Huffman
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh , EH4 2XU, UK
| | - Blair H. Smith
- Division of Population Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Kristin M. Burkart
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Josyf C. Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Tobias N. Bonten
- Department of Pulmonology, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Stefan Enroth
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | - Guy G. Brusselle
- Respiratory Medicine, Ghent University Hospital, Ghent, BE9000, Belgium
- Epidemiology, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
- Respiratory Medicine, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
| | - Ashish Kumar
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Beate Stubbe
- Internal Medicine B, University Medicine Greifswald, Greifswald, 17475, Germany
| | | | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, 33521, Finland
- Department of Clinical Physiology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33014, Finland
| | - Annah B. Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology, Medicine and Health Services, University of Washington, Seattle, WA, 98101, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA, 98101, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Taina Rantanen
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Fl-40014, Finland
| | | | - Kurt Lohman
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Tea Skaaby
- Centre for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
| | - Charlotta Pisinger
- Centre for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Holger Schulz
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Germany
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
| | - Archie Campbell
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Alzheimer Scotland Research Centre, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Dennis O. Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Åsa Johansson
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - André G. Uitterlinden
- Epidemiology, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
- Internal Medicine, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, 17475, Germany
- DZHK (German Centre for Cardiovascular Research), partner site: Greifswald, Greifswald, Germany
| | - Olli T. Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, 20521, Finland
- Research Centre of Applied and Preventative Cardiovascular Medicine, University of Turku, Turku, 20014, Finland
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201 Kopavogur, Iceland
- University of Iceland, 101 Reykjavik, Iceland
| | - Kari E. North
- Department of Epidemiology and Carolina Center for Genome Science, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Sina A. Gharib
- Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Don D. Sin
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - George T. O'Connor
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, 01702, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
- Department of Health, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Public Health, National Institute for Health and Welfare, Helsinki, FI-00271, Finland
| | - Tamara B. Harris
- National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Oluf Pederson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, 2820, Denmark
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, 81377, Germany
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh , EH4 2XU, UK
| | - Shona Kerr
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh , EH4 2XU, UK
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - R. Graham Barr
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Ulf Gyllensten
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
| | - Andrew P. Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biostatistics, University of Liverpool, Liverpool, L69 3GL, UK
| | - M. Arfan Ikram
- Epidemiology, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
- Radiology, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
- Neurology, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sven Gläser
- Internal Medicine B, University Medicine Greifswald, Greifswald, 17475, Germany
- Department of Internal Medicine - Pulmonary Diseases, Vivantes Klinikum Spandau Berlin, Berlin, 13585, Germany
| | | | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland
- Department of Clinical Chemistry, Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33014, Finland
| | - David P. Strachan
- Population Health Research Institute, St George's, University of London, London, SW17 0RE, UK
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ian P. Hall
- NIHR Nottingham Biomedical Research Centre and Division of Respiratory Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Martin D. Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research, Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Stephanie J. London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
31
|
Jackson VE, Latourelle JC, Wain LV, Smith AV, Grove ML, Bartz TM, Obeidat M, Province MA, Gao W, Qaiser B, Porteous DJ, Cassano PA, Ahluwalia TS, Grarup N, Li J, Altmaier E, Marten J, Harris SE, Manichaikul A, Pottinger TD, Li-Gao R, Lind-Thomsen A, Mahajan A, Lahousse L, Imboden M, Teumer A, Prins B, Lyytikäinen LP, Eiriksdottir G, Franceschini N, Sitlani CM, Brody JA, Bossé Y, Timens W, Kraja A, Loukola A, Tang W, Liu Y, Bork-Jensen J, Justesen JM, Linneberg A, Lange LA, Rawal R, Karrasch S, Huffman JE, Smith BH, Davies G, Burkart KM, Mychaleckyj JC, Bonten TN, Enroth S, Lind L, Brusselle GG, Kumar A, Stubbe B, Kähönen M, Wyss AB, Psaty BM, Heckbert SR, Hao K, Rantanen T, Kritchevsky SB, Lohman K, Skaaby T, Pisinger C, Hansen T, Schulz H, Polasek O, Campbell A, Starr JM, Rich SS, Mook-Kanamori DO, Johansson Å, Ingelsson E, Uitterlinden AG, Weiss S, Raitakari OT, Gudnason V, North KE, Gharib SA, Sin DD, Taylor KD, O'Connor GT, Kaprio J, Harris TB, Pederson O, Vestergaard H, Wilson JG, Strauch K, Hayward C, Kerr S, Deary IJ, Barr RG, de Mutsert R, Gyllensten U, Morris AP, Ikram MA, Probst-Hensch N, Gläser S, Zeggini E, Lehtimäki T, Strachan DP, Dupuis J, Morrison AC, Hall IP, Tobin MD, London SJ. Meta-analysis of exome array data identifies six novel genetic loci for lung function. Wellcome Open Res 2018; 3:4. [PMID: 30175238 PMCID: PMC6081985 DOI: 10.12688/wellcomeopenres.12583.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2018] [Indexed: 08/09/2023] Open
Abstract
Background: Over 90 regions of the genome have been associated with lung function to date, many of which have also been implicated in chronic obstructive pulmonary disease. Methods: We carried out meta-analyses of exome array data and three lung function measures: forced expiratory volume in one second (FEV 1), forced vital capacity (FVC) and the ratio of FEV 1 to FVC (FEV 1/FVC). These analyses by the SpiroMeta and CHARGE consortia included 60,749 individuals of European ancestry from 23 studies, and 7,721 individuals of African Ancestry from 5 studies in the discovery stage, with follow-up in up to 111,556 independent individuals. Results: We identified significant (P<2·8x10 -7) associations with six SNPs: a nonsynonymous variant in RPAP1, which is predicted to be damaging, three intronic SNPs ( SEC24C, CASC17 and UQCC1) and two intergenic SNPs near to LY86 and FGF10. Expression quantitative trait loci analyses found evidence for regulation of gene expression at three signals and implicated several genes, including TYRO3 and PLAU. Conclusions: Further interrogation of these loci could provide greater understanding of the determinants of lung function and pulmonary disease.
Collapse
Affiliation(s)
| | | | - Louise V. Wain
- Department of Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research, Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Albert V. Smith
- Icelandic Heart Association, 201 Kopavogur, Iceland
- University of Iceland, 101 Reykjavik, Iceland
| | - Megan L. Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Traci M. Bartz
- Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, 98101, USA
| | - Ma'en Obeidat
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
| | - Michael A. Province
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Wei Gao
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Beenish Qaiser
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
| | - David J. Porteous
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Patricia A. Cassano
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medical College, New York City, NY, USA
| | - Tarunveer S. Ahluwalia
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, 2820, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jin Li
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Elisabeth Altmaier
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh , EH4 2XU, UK
| | - Sarah E. Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Tess D. Pottinger
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Preventive Medicine - Division of Health and Biomedical Informatics, Northwestern University - Feinberg School of Medicine, Chicago, IL, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Allan Lind-Thomsen
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lies Lahousse
- Respiratory Medicine, Ghent University Hospital, Ghent, BE9000, Belgium
- Bioanalysis, Ghent University, Ghent, BE9000, Belgium
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Bram Prins
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland
- Department of Clinical Chemistry, Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33014, Finland
| | | | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC 27514, USA
| | - Colleen M. Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, NL9713 GZ, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Aldi Kraja
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Anu Loukola
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
| | - Wenbo Tang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Boehringer Ingelheim , Danbury, CT, USA
| | - Yongmei Liu
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Allan Linneberg
- Centre for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
- Department of Clinical Experimental Research, Rigshospitalet, 2600 Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Leslie A. Lange
- Department of Medicine, Division of Bioinformatics and Personalized Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Rajesh Rawal
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Stefan Karrasch
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jennifer E. Huffman
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh , EH4 2XU, UK
| | - Blair H. Smith
- Division of Population Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Kristin M. Burkart
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Josyf C. Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Tobias N. Bonten
- Department of Pulmonology, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Stefan Enroth
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | - Guy G. Brusselle
- Respiratory Medicine, Ghent University Hospital, Ghent, BE9000, Belgium
- Epidemiology, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
- Respiratory Medicine, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
| | - Ashish Kumar
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Beate Stubbe
- Internal Medicine B, University Medicine Greifswald, Greifswald, 17475, Germany
| | | | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, 33521, Finland
- Department of Clinical Physiology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33014, Finland
| | - Annah B. Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology, Medicine and Health Services, University of Washington, Seattle, WA, 98101, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA, 98101, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Taina Rantanen
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Fl-40014, Finland
| | | | - Kurt Lohman
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Tea Skaaby
- Centre for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
| | - Charlotta Pisinger
- Centre for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Holger Schulz
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Germany
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
| | - Archie Campbell
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Alzheimer Scotland Research Centre, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Dennis O. Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Åsa Johansson
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - André G. Uitterlinden
- Epidemiology, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
- Internal Medicine, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, 17475, Germany
- DZHK (German Centre for Cardiovascular Research), partner site: Greifswald, Greifswald, Germany
| | - Olli T. Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, 20521, Finland
- Research Centre of Applied and Preventative Cardiovascular Medicine, University of Turku, Turku, 20014, Finland
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201 Kopavogur, Iceland
- University of Iceland, 101 Reykjavik, Iceland
| | - Kari E. North
- Department of Epidemiology and Carolina Center for Genome Science, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Sina A. Gharib
- Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Don D. Sin
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - George T. O'Connor
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, 01702, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
- Department of Health, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Public Health, National Institute for Health and Welfare, Helsinki, FI-00271, Finland
| | - Tamara B. Harris
- National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Oluf Pederson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, 2820, Denmark
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, 81377, Germany
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh , EH4 2XU, UK
| | - Shona Kerr
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh , EH4 2XU, UK
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - R. Graham Barr
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Ulf Gyllensten
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
| | - Andrew P. Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biostatistics, University of Liverpool, Liverpool, L69 3GL, UK
| | - M. Arfan Ikram
- Epidemiology, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
- Radiology, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
- Neurology, Erasmus Medical Center, Rotterdam, 3000CA, Netherlands
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sven Gläser
- Internal Medicine B, University Medicine Greifswald, Greifswald, 17475, Germany
- Department of Internal Medicine - Pulmonary Diseases, Vivantes Klinikum Spandau Berlin, Berlin, 13585, Germany
| | | | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland
- Department of Clinical Chemistry, Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33014, Finland
| | - David P. Strachan
- Population Health Research Institute, St George's, University of London, London, SW17 0RE, UK
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ian P. Hall
- NIHR Nottingham Biomedical Research Centre and Division of Respiratory Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Martin D. Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research, Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Stephanie J. London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
32
|
Harris SE, Riggio V, Evenden L, Gilchrist T, McCafferty S, Murphy L, Wrobel N, Taylor AM, Corley J, Pattie A, Cox SR, Martin-Ruiz C, Prendergast J, Starr JM, Marioni RE, Deary IJ. Age-related gene expression changes, and transcriptome wide association study of physical and cognitive aging traits, in the Lothian Birth Cohort 1936. Aging (Albany NY) 2017; 9:2489-2503. [PMID: 29207374 PMCID: PMC5764388 DOI: 10.18632/aging.101333] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/26/2017] [Indexed: 12/11/2022]
Abstract
Gene expression is influenced by both genetic variants and the environment. As individuals age, changes in gene expression may be associated with decline in physical and cognitive abilities. We measured transcriptome-wide expression levels in lymphoblastoid cell lines derived from members of the Lothian Birth Cohort 1936 at mean ages 70 and 76 years. Changes in gene expression levels were identified for 1,741 transcripts in 434 individuals. Gene Ontology enrichment analysis indicated an enrichment of biological processes involved in the immune system. Transcriptome-wide association analysis was performed for eleven cognitive, fitness, and biomedical aging-related traits at age 70 years (N=665 to 781) and with mortality. Transcripts for genes (F2RL3, EMILIN1 and CDC42BPA) previously identified as being differentially methylated or expressed in smoking or smoking-related cancers were overexpressed in smokers compared to non-smokers and the expression of transcripts for genes (HERPUD1, GAB2, FAM167A and GLS) previously associated with stress response, autoimmune disease and cancer were associated with telomere length. No associations between expression levels and other traits, or mortality were identified.
Collapse
Affiliation(s)
- Sarah E. Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK
- Medical Genetics Section, University of Edinburgh Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Valentina Riggio
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Louise Evenden
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Tamara Gilchrist
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Sarah McCafferty
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Nicola Wrobel
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Adele M. Taylor
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Janie Corley
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Alison Pattie
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Simon R. Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Carmen Martin-Ruiz
- Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - James Prendergast
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Riccardo E. Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK
- Medical Genetics Section, University of Edinburgh Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, UK
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, QLD, Australia
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| |
Collapse
|
33
|
Busch R, Cho MH, Silverman EK. Progress in disease progression genetics: dissecting the genetic origins of lung function decline in COPD. Thorax 2017; 72:389-390. [PMID: 28292852 DOI: 10.1136/thoraxjnl-2016-209666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Robert Busch
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Wain LV, Shrine N, Artigas MS, Erzurumluoglu AM, Noyvert B, Bossini-Castillo L, Obeidat M, Henry AP, Portelli MA, Hall RJ, Billington CK, Rimington TL, Fenech AG, John C, Blake T, Jackson VE, Allen RJ, Prins BP, Campbell A, Porteous DJ, Jarvelin MR, Wielscher M, James AL, Hui J, Wareham NJ, Zhao JH, Wilson JF, Joshi PK, Stubbe B, Rawal R, Schulz H, Imboden M, Probst-Hensch NM, Karrasch S, Gieger C, Deary IJ, Harris SE, Marten J, Rudan I, Enroth S, Gyllensten U, Kerr SM, Polasek O, Kähönen M, Surakka I, Vitart V, Hayward C, Lehtimäki T, Raitakari OT, Evans DM, Henderson AJ, Pennell CE, Wang CA, Sly PD, Wan ES, Busch R, Hobbs BD, Litonjua AA, Sparrow DW, Gulsvik A, Bakke PS, Crapo JD, Beaty TH, Hansel NN, Mathias RA, Ruczinski I, Barnes KC, Bossé Y, Joubert P, van den Berge M, Brandsma CA, Paré PD, Sin DD, Nickle DC, Hao K, Gottesman O, Dewey FE, Bruse SE, Carey DJ, Kirchner HL, Jonsson S, Thorleifsson G, Jonsdottir I, Gislason T, Stefansson K, Schurmann C, Nadkarni G, Bottinger EP, Loos RJF, Walters RG, Chen Z, Millwood IY, Vaucher J, Kurmi OP, Li L, Hansell AL, Brightling C, Zeggini E, Cho MH, Silverman EK, Sayers I, Trynka G, Morris AP, Strachan DP, Hall IP, Tobin MD. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat Genet 2017; 49:416-425. [PMID: 28166213 PMCID: PMC5326681 DOI: 10.1038/ng.3787] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/13/2017] [Indexed: 12/15/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by reduced lung function and is the third leading cause of death globally. Through genome-wide association discovery in 48,943 individuals, selected from extremes of the lung function distribution in UK Biobank, and follow-up in 95,375 individuals, we increased the yield of independent signals for lung function from 54 to 97. A genetic risk score was associated with COPD susceptibility (odds ratio per 1 s.d. of the risk score (∼6 alleles) (95% confidence interval) = 1.24 (1.20-1.27), P = 5.05 × 10-49), and we observed a 3.7-fold difference in COPD risk between individuals in the highest and lowest genetic risk score deciles in UK Biobank. The 97 signals show enrichment in genes for development, elastic fibers and epigenetic regulation pathways. We highlight targets for drugs and compounds in development for COPD and asthma (genes in the inositol phosphate metabolism pathway and CHRM3) and describe targets for potential drug repositioning from other clinical indications.
Collapse
Affiliation(s)
- Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research, Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | | | - Boris Noyvert
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Ma'en Obeidat
- University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, British Columbia, Canada
| | - Amanda P Henry
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
| | - Michael A Portelli
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
| | - Robert J Hall
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
| | | | - Tracy L Rimington
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
| | - Anthony G Fenech
- Department of Clinical Pharmacology and Therapeutics, University of Malta, Msida, Malta
| | - Catherine John
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Tineka Blake
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Richard J Allen
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Bram P Prins
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Archie Campbell
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - David J Porteous
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Faculty of Medicine, Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Alan L James
- Busselton Population Medical Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| | - Jennie Hui
- Busselton Population Medical Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Population Health, University of Western Australia, Crawley, Western Australia, Australia
- PathWest Laboratory Medicine of Western Australia, Sir Charles Gairdner Hospital, Crawley, Western Australia, Australia
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Jing Hua Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - James F Wilson
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Beate Stubbe
- Department of Internal Medicine B-Cardiology, Intensive Care, Pulmonary Medicine and Infectious Diseases, University Medicine Greifswald, Greifswald, Germany
| | - Rajesh Rawal
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Holger Schulz
- Institute of Epidemiology I, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Neuherberg, Germany
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicole M Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Stefan Karrasch
- Institute of Epidemiology I, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Sarah E Harris
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Uppsala Universitet, Science for Life Laboratory, Uppsala, Sweden
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Uppsala Universitet, Science for Life Laboratory, Uppsala, Sweden
| | - Shona M Kerr
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ozren Polasek
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- University of Split School of Medicine, Split, Croatia
| | - Mika Kähönen
- Department of Clinical Physiology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Ida Surakka
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and School of Medicine University of Tampere, Tampere, Finland
- Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere, Finland
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - David M Evans
- University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, Queensland, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - A John Henderson
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Craig E Pennell
- School of Women's and Infants' Health, University of Western Australia, Perth, Western Australia, Australia
| | - Carol A Wang
- School of Women's and Infants' Health, University of Western Australia, Perth, Western Australia, Australia
| | - Peter D Sly
- Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Emily S Wan
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Robert Busch
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Augusto A Litonjua
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - David W Sparrow
- VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Amund Gulsvik
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Per S Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - James D Crapo
- National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
| | - Nadia N Hansel
- Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rasika A Mathias
- Division of Allergy and Clinical Immunology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathleen C Barnes
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Quebec City, Quebec, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Quebec, Canada
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, GRIAC Research Institute, Groningen, the Netherlands
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, GRIAC Research Institute, Groningen, the Netherlands
| | - Peter D Paré
- University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, British Columbia, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Don D Sin
- University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, British Columbia, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - David C Nickle
- Merck Research Laboratories, Genetics and Pharmacogenomics, Boston, Massachusetts, USA
| | - Ke Hao
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Omri Gottesman
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Frederick E Dewey
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Shannon E Bruse
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - David J Carey
- Geisinger Health System, Danville, Pennsylvania, USA
| | | | | | | | - Ingileif Jonsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Thorarinn Gislason
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Respiratory Medicine and Sleep, Landspitali University Hospital Reykjavik, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Claudia Schurmann
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Girish Nadkarni
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Erwin P Bottinger
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mindich Child Health Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
| | - Julien Vaucher
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Om P Kurmi
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Liming Li
- Chinese Academy of Medical Sciences, Beijing, China
- Department of Epidemiology and Biostatistics, Peking University Health Science Centre, Peking University, Beijing, China
| | - Anna L Hansell
- UK Small Area Health Statistics Unit, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, St Mary's Hospital, Paddington, London, UK
| | - Chris Brightling
- National Institute for Health Research, Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
- Department of Infection, Inflammation and Immunity, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Eleftheria Zeggini
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ian Sayers
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
| | | | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, London, UK
| | - Ian P Hall
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research, Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| |
Collapse
|
35
|
Kim HJ, Min JY, Min KB, Seo YS, Sung J, Yun JM, Kwon H, Cho B, Park JH, Kim JI. CDH13 gene-by-PM 10 interaction effect on lung function decline in Korean men. CHEMOSPHERE 2017; 168:583-589. [PMID: 27839881 DOI: 10.1016/j.chemosphere.2016.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
Lung function can be influenced by genetic factors, which may explain individual differences in susceptibility to the effects of air pollution. This study investigated whether the effect of particulate matter with an aerodynamic diameter ≤10 μm (PM10) on lung function is modified by Cadherin 13 (CDH13) genetic variants in Korean men. This study included a total of 1827 men who were recruited from two health check-up centers, and the annual average PM10 concentrations were used. A total of 200 single-nucleotide polymorphisms (SNPs) of the CDH13 gene were selected for this study. We found that a SNP in CHD13 intron, rs1862830, had the strongest associations with both forced expiratory volume in 1 s (FEV1) (pint = 1.90 × 10-4) and forced vital capacity (FVC) (pint = 1.88 × 10-3) by interacting with PM10 in a recessive model. A stratified association analysis according to this SNP showed that PM10 in the AG or GG genotype group was not significantly associated with either FEV1 or FVC, whereas in homozygous risk-allele carriers (AA), FEV1 and FVC decreased significantly (by 3.8% and 3.1%, respectively) per 10 μg/m3 of increase in PM10 concentration. This pattern was also reproducible in the independent subgroups that were classified according to recruitment site. The present study replicated the CDH13 gene-by-PM10 interaction effect on lung function at the gene level, revealing that a genetic variant of CDH13 modified the relationship between PM10 and lung function decline in Korean men.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- Institute of Health and Environment, Seoul National University, Seoul 08826, South Korea
| | - Jin-Young Min
- Institute of Health and Environment, Seoul National University, Seoul 08826, South Korea
| | - Kyoung-Bok Min
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul 03080, South Korea
| | - Yong-Seok Seo
- Institute of Health and Environment, Seoul National University, Seoul 08826, South Korea
| | - Joohon Sung
- Institute of Health and Environment, Seoul National University, Seoul 08826, South Korea
| | - Jae Moon Yun
- Department of Family Medicine, Seoul National University Hospital, Seoul 03080, South Korea
| | - Hyuktae Kwon
- Department of Family Medicine, Seoul National University Hospital, Seoul 03080, South Korea
| | - Belong Cho
- Department of Family Medicine, Seoul National University Hospital, Seoul 03080, South Korea
| | - Jin-Ho Park
- Department of Family Medicine, Seoul National University Hospital, Seoul 03080, South Korea.
| | - Jong-Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, South Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, South Korea.
| |
Collapse
|
36
|
Li LSK, Paquet C, Johnston K, Williams MT. "What are my chances of developing COPD if one of my parents has the disease?" A systematic review and meta-analysis of prevalence of co-occurrence of COPD diagnosis in parents and offspring. Int J Chron Obstruct Pulmon Dis 2017; 12:403-415. [PMID: 28182144 PMCID: PMC5279828 DOI: 10.2147/copd.s123933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Introduction Intergenerational associations in chronic obstructive pulmonary disease (COPD) have been well recognized and may result from genetic, gene environment, or exposure to life course factors. Consequently, adult offspring of parents with COPD may be at a greater risk of developing COPD. The aim of this study was to review the prevalence of co-occurrence of COPD in adult offspring with one or both parents having COPD independent of specific genetic variations. Methods In total, five databases were searched for original studies in which prevalence of COPD was reported in both offspring (children) and one or both parents. Studies were excluded if COPD was not clearly defined, COPD was linked to specific genetic variations, COPD was combined with other chronic respiratory conditions, or estimates included other first-degree relatives. Data extraction (ie, sample characteristics, prevalence of COPD, and odds ratio [OR] if reported) was completed by two independent reviewers. A meta-analysis of prevalence and OR was conducted, where possible. Results Of the 3,382 citations, 129 full texts were reviewed to include eight studies (six case–control, one cross-sectional, and one cohort) reflecting either prevalence of COPD in offspring of parents with COPD (descendent approach, n=3), which ranged from 0% to 17.3%, or prevalence of people with COPD reporting positive parental history of COPD (antecedent approach, n=5), for which the pooled prevalence was 28.6%. Offspring of people with COPD had 1.57 times greater odds (95% confidence interval =1.29–1.93; P<0.001) of having COPD compared with people not having a parental history of COPD. Conclusion The prevalence of COPD in adult offspring of people with COPD is greater than population-based estimates, and the ORs indicate a higher risk in this group. This offers clinicians a potential strategy for opportunistic screening, early identification, and intervention in this at-risk group.
Collapse
Affiliation(s)
- Lok Sze Katrina Li
- School of Health Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia
| | - Catherine Paquet
- Center for Population Health Research, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia
| | - Kylie Johnston
- School of Health Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia
| | - Marie T Williams
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
37
|
Artigas MS, Wain LV, Shrine N, McKeever TM, Sayers I, Hall IP, Tobin MD. Targeted Sequencing of Lung Function Loci in Chronic Obstructive Pulmonary Disease Cases and Controls. PLoS One 2017; 12:e0170222. [PMID: 28114305 PMCID: PMC5256917 DOI: 10.1371/journal.pone.0170222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 01/01/2017] [Indexed: 12/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide; smoking is the main risk factor for COPD, but genetic factors are also relevant contributors. Genome-wide association studies (GWAS) of the lung function measures used in the diagnosis of COPD have identified a number of loci, however association signals are often broad and collectively these loci only explain a small proportion of the heritability. In order to examine the association with COPD risk of genetic variants down to low allele frequencies, to aid fine-mapping of association signals and to explain more of the missing heritability, we undertook a targeted sequencing study in 300 COPD cases and 300 smoking controls for 26 loci previously reported to be associated with lung function. We used a pooled sequencing approach, with 12 pools of 25 individuals each, enabling high depth (30x) coverage per sample to be achieved. This pooled design maximised sample size and therefore power, but led to challenges during variant-calling since sequencing error rates and minor allele frequencies for rare variants can be very similar. For this reason we employed a rigorous quality control pipeline for variant detection which included the use of 3 independent calling algorithms. In order to avoid false positive associations we also developed tests to detect variants with potential batch effects and removed them before undertaking association testing. We tested for the effects of single variants and the combined effect of rare variants within a locus. We followed up the top signals with data available (only 67% of collapsing methods signals) in 4,249 COPD cases and 11,916 smoking controls from UK Biobank. We provide suggestive evidence for the combined effect of rare variants on COPD risk in TNXB and in sliding windows within MECOM and upstream of HHIP. These findings can lead to an improved understanding of the molecular pathways involved in the development of COPD.
Collapse
Affiliation(s)
- María Soler Artigas
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Louise V. Wain
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research (NIHR), Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Nick Shrine
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Tricia M. McKeever
- Division of Respiratory Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | | | - Ian Sayers
- Division of Respiratory Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ian P. Hall
- Division of Respiratory Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Martin D. Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research (NIHR), Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
38
|
McGeachie MJ, Clemmer GL, Croteau-Chonka DC, Castaldi PJ, Cho MH, Sordillo JE, Lasky-Su JA, Raby BA, Tantisira KG, Weiss ST. Whole genome prediction and heritability of childhood asthma phenotypes. IMMUNITY INFLAMMATION AND DISEASE 2016; 4:487-496. [PMID: 27980782 PMCID: PMC5134727 DOI: 10.1002/iid3.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/01/2016] [Accepted: 09/04/2016] [Indexed: 01/19/2023]
Abstract
Introduction While whole genome prediction (WGP) methods have recently demonstrated successes in the prediction of complex genetic diseases, they have not yet been applied to asthma and related phenotypes. Longitudinal patterns of lung function differ between asthmatics, but these phenotypes have not been assessed for heritability or predictive ability. Herein, we assess the heritability and genetic predictability of asthma‐related phenotypes. Methods We applied several WGP methods to a well‐phenotyped cohort of 832 children with mild‐to‐moderate asthma from CAMP. We assessed narrow‐sense heritability and predictability for airway hyperresponsiveness, serum immunoglobulin E, blood eosinophil count, pre‐ and post‐bronchodilator forced expiratory volume in 1 sec (FEV1), bronchodilator response, steroid responsiveness, and longitudinal patterns of lung function (normal growth, reduced growth, early decline, and their combinations). Prediction accuracy was evaluated using a training/testing set split of the cohort. Results We found that longitudinal lung function phenotypes demonstrated significant narrow‐sense heritability (reduced growth, 95%; normal growth with early decline, 55%). These same phenotypes also showed significant polygenic prediction (areas under the curve [AUCs] 56% to 62%). Including additional demographic covariates in the models increased prediction 4–8%, with reduced growth increasing from 62% to 66% AUC. We found that prediction with a genomic relatedness matrix was improved by filtering available SNPs based on chromatin evidence, and this result extended across cohorts. Conclusions Longitudinal reduced lung function growth displayed extremely high heritability. All phenotypes with significant heritability showed significant polygenic prediction. Using SNP‐prioritization increased prediction across cohorts. WGP methods show promise in predicting asthma‐related heritable traits.
Collapse
Affiliation(s)
- Michael J McGeachie
- Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School Boston Massachusetts
| | - George L Clemmer
- Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School Boston Massachusetts
| | - Damien C Croteau-Chonka
- Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School Boston Massachusetts
| | - Peter J Castaldi
- Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School Boston Massachusetts
| | - Michael H Cho
- Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School Boston Massachusetts
| | - Joanne E Sordillo
- Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School Boston Massachusetts
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School Boston Massachusetts
| | - Benjamin A Raby
- Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School Boston Massachusetts
| | - Kelan G Tantisira
- Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School Boston Massachusetts
| | - Scott T Weiss
- Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School Boston Massachusetts
| |
Collapse
|
39
|
Minelli C, Dean CH, Hind M, Alves AC, Amaral AFS, Siroux V, Huikari V, Soler Artigas M, Evans DM, Loth DW, Bossé Y, Postma DS, Sin D, Thompson J, Demenais F, Henderson J, Bouzigon E, Jarvis D, Järvelin MR, Burney P. Association of Forced Vital Capacity with the Developmental Gene NCOR2. PLoS One 2016; 11:e0147388. [PMID: 26836265 PMCID: PMC4737618 DOI: 10.1371/journal.pone.0147388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/04/2016] [Indexed: 12/31/2022] Open
Abstract
Background Forced Vital Capacity (FVC) is an important predictor of all-cause mortality in the absence of chronic respiratory conditions. Epidemiological evidence highlights the role of early life factors on adult FVC, pointing to environmental exposures and genes affecting lung development as risk factors for low FVC later in life. Although highly heritable, a small number of genes have been found associated with FVC, and we aimed at identifying further genetic variants by focusing on lung development genes. Methods Per-allele effects of 24,728 SNPs in 403 genes involved in lung development were tested in 7,749 adults from three studies (NFBC1966, ECRHS, EGEA). The most significant SNP for the top 25 genes was followed-up in 46,103 adults (CHARGE and SpiroMeta consortia) and 5,062 children (ALSPAC). Associations were considered replicated if the replication p-value survived Bonferroni correction (p<0.002; 0.05/25), with a nominal p-value considered as suggestive evidence. For SNPs with evidence of replication, effects on the expression levels of nearby genes in lung tissue were tested in 1,111 lung samples (Lung eQTL consortium), with further functional investigation performed using public epigenomic profiling data (ENCODE). Results NCOR2-rs12708369 showed strong replication in children (p = 0.0002), with replication unavailable in adults due to low imputation quality. This intronic variant is in a strong transcriptional enhancer element in lung fibroblasts, but its eQTL effects could not be tested due to low imputation quality in the eQTL dataset. SERPINE2-rs6754561 replicated at nominal level in both adults (p = 0.036) and children (p = 0.045), while WNT16-rs2707469 replicated at nominal level only in adults (p = 0.026). The eQTL analyses showed association of WNT16-rs2707469 with expression levels of the nearby gene CPED1. We found no statistically significant eQTL effects for SERPINE2-rs6754561. Conclusions We have identified a new gene, NCOR2, in the retinoic acid signalling pathway pointing to a role of vitamin A metabolism in the regulation of FVC. Our findings also support SERPINE2, a COPD gene with weak previous evidence of association with FVC, and suggest WNT16 as a further promising candidate.
Collapse
Affiliation(s)
- Cosetta Minelli
- Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College, London, United Kingdom
- * E-mail:
| | - Charlotte H. Dean
- Leukocyte Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Mammalian Genetics Unit, MRC Harwell, Oxon, United Kingdom
| | - Matthew Hind
- Respiratory Department, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| | - Alexessander Couto Alves
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - André F. S. Amaral
- Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College, London, United Kingdom
- MRC-PHE Centre for Environment & Health, London, United Kingdom
| | - Valerie Siroux
- Univ. Grenoble Alpes, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, F-38000, Grenoble, France
- INSERM, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, F-38000, Grenoble, France
- CHU de Grenoble, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, F-38000, Grenoble, France
| | | | - María Soler Artigas
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - David M. Evans
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Daan W. Loth
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Dirkje S. Postma
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Don Sin
- The University of British Columbia Center for Heart Lung Innovation, St-Paul’s Hospital, Vancouver, Canada
| | - John Thompson
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Florence Demenais
- INSERM, UMRS-946, Genetic Variation of Human Diseases Unit, Paris, France
- Univ. Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d’Hématologie, F-75007, Paris, France
| | - John Henderson
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - SpiroMeta consortium
- SpiroMeta consortium, Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - CHARGE consortium
- CHARGE consortium, Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Emmanuelle Bouzigon
- INSERM, UMRS-946, Genetic Variation of Human Diseases Unit, Paris, France
- Univ. Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d’Hématologie, F-75007, Paris, France
| | - Deborah Jarvis
- Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College, London, United Kingdom
- MRC-PHE Centre for Environment & Health, London, United Kingdom
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- MRC-PHE Centre for Environment & Health, London, United Kingdom
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Center for Life Course Epidemiology, Faculty of Medicine, P.O. Box 5000, FI-90014 University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Kajaanintie 50, P.O. Box 20, FI-90220, Oulu, 90029 OYS, Finland
| | - Peter Burney
- Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College, London, United Kingdom
- MRC-PHE Centre for Environment & Health, London, United Kingdom
| |
Collapse
|
40
|
Artigas MS, Wain LV, Miller S, Kheirallah AK, Huffman JE, Ntalla I, Shrine N, Obeidat M, Trochet H, McArdle WL, Alves AC, Hui J, Zhao JH, Joshi PK, Teumer A, Albrecht E, Imboden M, Rawal R, Lopez LM, Marten J, Enroth S, Surakka I, Polasek O, Lyytikäinen LP, Granell R, Hysi PG, Flexeder C, Mahajan A, Beilby J, Bossé Y, Brandsma CA, Campbell H, Gieger C, Gläser S, González JR, Grallert H, Hammond CJ, Harris SE, Hartikainen AL, Heliövaara M, Henderson J, Hocking L, Horikoshi M, Hutri-Kähönen N, Ingelsson E, Johansson Å, Kemp JP, Kolcic I, Kumar A, Lind L, Melén E, Musk AW, Navarro P, Nickle DC, Padmanabhan S, Raitakari OT, Ried JS, Ripatti S, Schulz H, Scott RA, Sin DD, Starr JM, Viñuela A, Völzke H, Wild SH, Wright AF, Zemunik T, Jarvis DL, Spector TD, Evans DM, Lehtimäki T, Vitart V, Kähönen M, Gyllensten U, Rudan I, Deary IJ, Karrasch S, Probst-Hensch NM, Heinrich J, Stubbe B, Wilson JF, Wareham NJ, James AL, Morris AP, Jarvelin MR, Hayward C, Sayers I, Strachan DP, Hall IP, Tobin MD. Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation. Nat Commun 2015; 6:8658. [PMID: 26635082 PMCID: PMC4686825 DOI: 10.1038/ncomms9658] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 09/17/2015] [Indexed: 01/11/2023] Open
Abstract
Lung function measures are used in the diagnosis of chronic obstructive pulmonary disease. In 38,199 European ancestry individuals, we studied genome-wide association of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC with 1000 Genomes Project (phase 1)-imputed genotypes and followed up top associations in 54,550 Europeans. We identify 14 novel loci (P<5 × 10(-8)) in or near ENSA, RNU5F-1, KCNS3, AK097794, ASTN2, LHX3, CCDC91, TBX3, TRIP11, RIN3, TEKT5, LTBP4, MN1 and AP1S2, and two novel signals at known loci NPNT and GPR126, providing a basis for new understanding of the genetic determinants of these traits and pulmonary diseases in which they are altered.
Collapse
Affiliation(s)
- María Soler Artigas
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Louise V. Wain
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Suzanne Miller
- Division of Respiratory Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Abdul Kader Kheirallah
- Division of Respiratory Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jennifer E. Huffman
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH8 9AD, UK
| | - Ioanna Ntalla
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Nick Shrine
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Ma'en Obeidat
- University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, British Columbia, Canada V6Z 1Y6
| | - Holly Trochet
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH8 9AD, UK
- Generation Scotland, A Collaboration between the University Medical Schools and NHS, Aberdeen, Dundee, Edinburgh, Glasgow EH4 2XU, UK
| | - Wendy L. McArdle
- School of Social and Community Medicine, University of Bristol, Bristol BS8 1TH, UK
| | - Alexessander Couto Alves
- Department of Epidemiology and Biostatistics, MRC -PHE Centre for Environment & Health, School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - Jennie Hui
- Busselton Population Medical Research Institute, Busselton, Western Australia 6280, Australia
- PathWest Laboratory Medicine WA, Sir Charles Gairdner Hospital, Western Australia 6009, Australia
- School of Population Health, The University of Western Australia, Western Australia 6009, Australia
- School of Pathology and Laboratory Medicine, The University of Western Australia, Western Australia 6009, Australia
| | - Jing Hua Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0SL, UK
| | - Peter K. Joshi
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AD, Scotland, UK
| | - Alexander Teumer
- University Medicine Greifswald, Community Medicine, SHIP—Clinical Epidemiological Research, Greifswald 17489, Germany
- Department for Genetics and Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17489, Germany
| | - Eva Albrecht
- Institute of Genetic Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel 4051, Switzerland
- University of Basel, Basel 4001, Switzerland
| | - Rajesh Rawal
- Institute of Genetic Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg D-85764, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Lorna M. Lopez
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9AD, UK
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9AD, UK
| | - Jonathan Marten
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH8 9AD, UK
| | - Stefan Enroth
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, Uppsala 751 23, Sweden
| | - Ida Surakka
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
- The National Institute for Health and Welfare (THL), Helsinki FI-00271, Finland
| | - Ozren Polasek
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AD, Scotland, UK
- Department of Public Health, Faculty of Medicine, University of Split, Split 21000, Croatia
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere FI-33101, Finland
- Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere FI-33520, Finland
| | - Raquel Granell
- School of Social and Community Medicine, University of Bristol, Bristol BS8 1TH, UK
| | - Pirro G. Hysi
- KCL Department of Twins Research and Genetic Epidemiology, King's College London, London WC2R 2LS, UK
| | - Claudia Flexeder
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - John Beilby
- Busselton Population Medical Research Institute, Busselton, Western Australia 6280, Australia
- PathWest Laboratory Medicine WA, Sir Charles Gairdner Hospital, Western Australia 6009, Australia
- School of Pathology and Laboratory Medicine, The University of Western Australia, Western Australia 6009, Australia
| | - Yohan Bossé
- Department of Molecular Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada G1V 0A6
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9700, The Netherlands
| | - Harry Campbell
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AD, Scotland, UK
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg D-85764, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Sven Gläser
- Department of Internal Medicine B, Pneumology, Cardiology, Intensive Care, Weaning, Field of Research: Pneumological Epidemiology, University Medicine Greifswald, Greifswald 17489, Germany
| | - Juan R. González
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona E-08003, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain
- Pompeu Fabra University (UPF), Barcelona 08002, Catalonia, Spain
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Chris J. Hammond
- KCL Department of Twins Research and Genetic Epidemiology, King's College London, London WC2R 2LS, UK
| | - Sarah E. Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9AD, UK
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh EH8 9AD, UK
| | - Anna-Liisa Hartikainen
- Department of Obstetrics and Gynecology of Oulu University Hospital ,MRC of Oulu University, Oulu 90220, Finland
| | - Markku Heliövaara
- The National Institute for Health and Welfare (THL), Helsinki FI-00271, Finland
| | - John Henderson
- School of Social and Community Medicine, University of Bristol, Bristol BS8 1TH, UK
| | - Lynne Hocking
- Generation Scotland, A Collaboration between the University Medical Schools and NHS, Aberdeen, Dundee, Edinburgh, Glasgow EH4 2XU, UK
- Division of Applied Health Sciences, University of Aberdeen, Aberdeen, Scotland AB24 3FX, UK
| | - Momoko Horikoshi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX1 2JD, UK
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University Hospital, Tampere 33521, Finland
- Department of Pediatrics, University of Tampere School of Medicine, Tampere FI-33520, Finland
| | - Erik Ingelsson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala 751 23, Sweden
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Åsa Johansson
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, Uppsala 751 23, Sweden
- Uppsala Clinical Research Centre, Uppsala University, Uppsala 751 23, Sweden
| | - John P. Kemp
- School of Social and Community Medicine, University of Bristol, Bristol BS8 1TH, UK
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, Queensland QLD 4072, Australia
- MRC Integrative Epidemiology Unit, Bristol BS8 1TH, UK
| | - Ivana Kolcic
- Department of Public Health, Faculty of Medicine, University of Split, Split 21000, Croatia
| | - Ashish Kumar
- Swiss Tropical and Public Health Institute, Basel 4051, Switzerland
- University of Basel, Basel 4001, Switzerland
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 7, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala 751 23, Sweden
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet and Sachs' Children's Hospital, Stockholm SE-171 7, Sweden
| | - Arthur W. Musk
- Busselton Population Medical Research Institute, Busselton, Western Australia 6280, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Western Australia 6009, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Western Australia 6009, Australia
| | - Pau Navarro
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH8 9AD, UK
| | - David C. Nickle
- Genetics and Pharmacogenomics, Merck Research Labs, Boston, Massachusetts 02115, USA
| | - Sandosh Padmanabhan
- Generation Scotland, A Collaboration between the University Medical Schools and NHS, Aberdeen, Dundee, Edinburgh, Glasgow EH4 2XU, UK
- Division of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, UK
| | - Olli T. Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20520, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20014, Finland
| | - Janina S. Ried
- Institute of Genetic Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
- Department of Public Health, University of Helsinki, Helsinki FI-00014, Finland
- Department of Human Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Holger Schulz
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich 85764, Germany
| | - Robert A. Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0SL, UK
| | - Don D. Sin
- University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, British Columbia, Canada V6Z 1Y6
- Respiratory Division, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9AD, UK
- Alzheimer Scotland Research Centre, University of Edinburgh, Edinburgh EH8 9AD, UK
| | - Ana Viñuela
- KCL Department of Twins Research and Genetic Epidemiology, King's College London, London WC2R 2LS, UK
| | - Henry Völzke
- University Medicine Greifswald, Community Medicine, SHIP—Clinical Epidemiological Research, Greifswald 17489, Germany
| | - Sarah H. Wild
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AD, Scotland, UK
| | - Alan F. Wright
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH8 9AD, UK
| | - Tatijana Zemunik
- Department of Medical Biology, Faculty of Medicine, University of Split, Split 21000, Croatia
| | - Deborah L. Jarvis
- Respiratory Epidemiology and Public Health, Imperial College London, London SW7 2AZ, UK
- MRC Health Protection Agency (HPA) Centre for Environment and Health, Imperial College London, London SW7 2AZ, UK
| | - Tim D. Spector
- KCL Department of Twins Research and Genetic Epidemiology, King's College London, London WC2R 2LS, UK
| | - David M. Evans
- School of Social and Community Medicine, University of Bristol, Bristol BS8 1TH, UK
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, Queensland QLD 4072, Australia
- MRC Integrative Epidemiology Unit, Bristol BS8 1TH, UK
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere FI-33101, Finland
- Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere FI-33520, Finland
| | - Veronique Vitart
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH8 9AD, UK
| | - Mika Kähönen
- Department of Clinical Physiology, University of Tampere and Tampere University Hospital, Tampere 33521, Finland
| | - Ulf Gyllensten
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, Uppsala 751 23, Sweden
| | - Igor Rudan
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AD, Scotland, UK
- Centre for Population Health Sciences, Medical School, University of Edinburgh, Edinburgh EH8 9AD, Scotland, UK
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9AD, UK
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9AD, UK
| | - Stefan Karrasch
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany
- Institute of General Practice, University Hospital Klinikum rechts der Isar, Technische Universität München, Munich D - 81675, Germany
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-Universität, Munich 80539, Germany
| | - Nicole M. Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel 4051, Switzerland
- University of Basel, Basel 4001, Switzerland
| | - Joachim Heinrich
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich 85764, Germany
- University Hospital Munich, Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilian University Munich, Munich 80539, Germany
| | - Beate Stubbe
- Department of Internal Medicine B, Pneumology, Cardiology, Intensive Care, Weaning, Field of Research: Pneumological Epidemiology, University Medicine Greifswald, Greifswald 17489, Germany
| | - James F. Wilson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH8 9AD, UK
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AD, Scotland, UK
| | - Nicholas J. Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0SL, UK
| | - Alan L. James
- Busselton Population Medical Research Institute, Busselton, Western Australia 6280, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Western Australia 6009, Australia
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Western Australia 6009, Australia
| | - Andrew P. Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Department of Biostatistics, University of Liverpool, Liverpool L69 7ZX, UK
- Estonian Genome Centre, University of Tartu, Tartu 50090, Estonia
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC -PHE Centre for Environment & Health, School of Public Health, Imperial College London, London SW7 2AZ, UK
- Center for Life Course Epidemiology, Faculty of Medicine, P.O.Box 5000, FI-90014 University of Oulu, Oulu FI-01051, Finland
- Biocenter Oulu, P.O.Box 5000, Aapistie 5A, FI-90014 University of Oulu, Oulu FI-01051, Finland
- Unit of Primary Care, Oulu University Hospital, Kajaanintie 50, P.O.Box 20, FI-90220 Oulu, 90029 OYS, Finland
| | - Caroline Hayward
- Generation Scotland, A Collaboration between the University Medical Schools and NHS, Aberdeen, Dundee, Edinburgh, Glasgow EH4 2XU, UK
| | - Ian Sayers
- Division of Respiratory Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - David P. Strachan
- Population Health Research Institute, St George's, University of London, Cranmer Terrace, London WC1B 5DN, UK
| | - Ian P. Hall
- Division of Respiratory Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Martin D. Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
- National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| |
Collapse
|
41
|
Probert K, Miller S, Kheirallah AK, Hall IP. Developmental genetics of the COPD lung. ACTA ACUST UNITED AC 2015. [DOI: 10.1186/s40749-015-0014-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Family-Based Association Study of Pulmonary Function in a Population in Northeast Asia. PLoS One 2015; 10:e0139716. [PMID: 26430897 PMCID: PMC4592257 DOI: 10.1371/journal.pone.0139716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 09/15/2015] [Indexed: 12/22/2022] Open
Abstract
The spirometric measurement of pulmonary function by measuring the forced expiratory volume in one second (FEV1) is a heritable trait that reflects the physiological condition of the lung and airways. Genome-wide linkage and association studies have identified a number of genes and genetic loci associated with pulmonary function. However, limited numbers of studies have been reported for Asian populations. In this study, we aimed to investigate genetic evidence of pulmonary function in a population in northeast Asia. We conducted a family-based association test with 706 GENDISCAN study participants from 72 Mongolian families to determine candidate genetic determinants of pulmonary function. For the replication, we chose seven candidate single nucleotide polymorphisms (SNPs) from the 5 loci, and tested 1062 SNPs for association with FEV1 from 2,729 subjects of the Korea Healthy Twin study. We identified TMEM132C as a potential candidate gene at 12q24.3, which is a previously reported locus of asthma and spirometric indices. We also found two adjacent candidate genes (UNC93A and TTLL2) in the 6q27 region, which has been previously identified as a pulmonary function locus in the Framingham cohort study. Our findings suggest that novel candidate genes (TMEM132C, UNC93A and TTLL2) in two different regions are associated with pulmonary function in a population in northeast Asia.
Collapse
|
43
|
Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. THE LANCET. RESPIRATORY MEDICINE 2015; 3:769-81. [PMID: 26423011 PMCID: PMC4593935 DOI: 10.1016/s2213-2600(15)00283-0] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Understanding the genetic basis of airflow obstruction and smoking behaviour is key to determining the pathophysiology of chronic obstructive pulmonary disease (COPD). We used UK Biobank data to study the genetic causes of smoking behaviour and lung health. METHODS We sampled individuals of European ancestry from UK Biobank, from the middle and extremes of the forced expiratory volume in 1 s (FEV1) distribution among heavy smokers (mean 35 pack-years) and never smokers. We developed a custom array for UK Biobank to provide optimum genome-wide coverage of common and low-frequency variants, dense coverage of genomic regions already implicated in lung health and disease, and to assay rare coding variants relevant to the UK population. We investigated whether there were shared genetic causes between different phenotypes defined by extremes of FEV1. We also looked for novel variants associated with extremes of FEV1 and smoking behaviour and assessed regions of the genome that had already shown evidence for a role in lung health and disease. We set genome-wide significance at p<5 × 10(-8). FINDINGS UK Biobank participants were recruited from March 15, 2006, to July 7, 2010. Sample selection for the UK BiLEVE study started on Nov 22, 2012, and was completed on Dec 20, 2012. We selected 50,008 unique samples: 10,002 individuals with low FEV1, 10,000 with average FEV1, and 5002 with high FEV1 from each of the heavy smoker and never smoker groups. We noted a substantial sharing of genetic causes of low FEV1 between heavy smokers and never smokers (p=2.29 × 10(-16)) and between individuals with and without doctor-diagnosed asthma (p=6.06 × 10(-11)). We discovered six novel genome-wide significant signals of association with extremes of FEV1, including signals at four novel loci (KANSL1, TSEN54, TET2, and RBM19/TBX5) and independent signals at two previously reported loci (NPNT and HLA-DQB1/HLA-DQA2). These variants also showed association with COPD, including in individuals with no history of smoking. The number of copies of a 150 kb region containing the 5' end of KANSL1, a gene that is important for epigenetic gene regulation, was associated with extremes of FEV1. We also discovered five new genome-wide significant signals for smoking behaviour, including a variant in NCAM1 (chromosome 11) and a variant on chromosome 2 (between TEX41 and PABPC1P2) that has a trans effect on expression of NCAM1 in brain tissue. INTERPRETATION By sampling from the extremes of the lung function distribution in UK Biobank, we identified novel genetic causes of lung function and smoking behaviour. These results provide new insight into the specific mechanisms underlying airflow obstruction, COPD, and tobacco addiction, and show substantial shared genetic architecture underlying airflow obstruction across individuals, irrespective of smoking behaviour and other airway disease. FUNDING Medical Research Council.
Collapse
|
44
|
Ortega VE, Kumar R. The Effect of Ancestry and Genetic Variation on Lung Function Predictions: What Is "Normal" Lung Function in Diverse Human Populations? Curr Allergy Asthma Rep 2015; 15:16. [PMID: 26130473 DOI: 10.1007/s11882-015-0516-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lung function measures are an invaluable screening test for respiratory health and have been associated with the morbidity and mortality related to different airway disease as well as all-cause mortality. Currently, reference values for spirometric measurements are obtained using equations derived from individual ethnic or racial groups. The rapid expansion of more racially and ethnically diverse populations will challenge current race-based lung function reference equations. Recent international general population studies and ancestry-based genetic studies have found that ancestry and genetic variation are determinants of lung function and have suggested a role for genetic ancestry or gene variants in future lung function reference equations. In this review, we discuss the potential limitations of current lung function reference equations in a global society which is becoming more ethnically, racially, and, thus, genetically diverse. We also focus on how an individual's ancestral background or genetic profile could provide the basis for more accurate, personalized predictions of an individual's baseline lung function.
Collapse
Affiliation(s)
- Victor E Ortega
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA,
| | | |
Collapse
|
45
|
Bokov P, Chevalier-Bidaud B, Al Dandachi G, Londner C, Plantier L, Bonfils P, Delclaux C. Tracheal section is an independent predictor of asthma in patients with nasal polyposis. Respir Physiol Neurobiol 2014; 203:15-8. [PMID: 25174298 DOI: 10.1016/j.resp.2014.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/11/2014] [Accepted: 08/22/2014] [Indexed: 11/24/2022]
Abstract
Airway anatomy could be a risk factor for asthma in susceptible patients with airway hyperresponsiveness. This anatomy can be described by only two parameters, the tracheal cross-sectional area and the homothety ratio, which describes the reduction of calibre at each subsequent generation. Thus, we hypothesized that the tracheal area would be linked to the risk of asthma presence. Tracheal area (measured by acoustic reflexion method) and airway responsiveness to metacholine (expressed as Dose Response Slope) were evaluated in 71 consecutive adult patients with nasal polyposis and normal baseline lung function. Hyperresponsiveness was evidenced in 30/71 patients (42%), and 20/71 patients (28%) were asthmatics. Forced expiratory flows were related to tracheal areas (mean value: 3.22±1.32cm(2)). In a logistic multivariate analysis, tracheal area and the degree of responsiveness were independent predictors of asthma. In conclusion, this study suggests that airway anatomy, crudely assessed by tracheal section, is an independent determinant of asthma.
Collapse
Affiliation(s)
- Plamen Bokov
- AP-HP, Hôpital européen Georges-Pompidou, Service de Physiologie - Clinique de la Dyspnée, 75015 Paris, France
| | - Brigitte Chevalier-Bidaud
- AP-HP, Hôpital européen Georges-Pompidou, Unité d'Épidémiologie et de Recherche Clinique, 75015 Paris, France
| | - Ghanima Al Dandachi
- AP-HP, Hôpital européen Georges-Pompidou, Service de Physiologie - Clinique de la Dyspnée, 75015 Paris, France
| | - Cécile Londner
- AP-HP, Hôpital européen Georges-Pompidou, Service de Physiologie - Clinique de la Dyspnée, 75015 Paris, France
| | - Laurent Plantier
- AP-HP, Hôpital européen Georges-Pompidou, Service de Physiologie - Clinique de la Dyspnée, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75006 Paris, France
| | - Pierre Bonfils
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75006 Paris, France; AP-HP, Hôpital européen Georges-Pompidou, Service d'Otorhinolaryngologie, 75015 Paris, France
| | - Christophe Delclaux
- AP-HP, Hôpital européen Georges-Pompidou, Service de Physiologie - Clinique de la Dyspnée, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, EA2511, 75014 Paris, France; CIC 9201 Plurithématique, Hôpital Européen Georges Pompidou, 75015 Paris, France.
| |
Collapse
|
46
|
Genome-wide association analysis identifies six new loci associated with forced vital capacity. Nat Genet 2014; 46:669-77. [PMID: 24929828 DOI: 10.1038/ng.3011] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 05/22/2014] [Indexed: 12/11/2022]
Abstract
Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10(-8)) with FVC in or near EFEMP1, BMP6, MIR129-2-HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease.
Collapse
|
47
|
Johansson SL, Tan Q, Holst R, Christiansen L, Hansen NCG, Hojland AT, Wulf-Johansson H, Schlosser A, Titlestad IL, Vestbo J, Holmskov U, Kyvik KO, Sorensen GL. Surfactant protein D is a candidate biomarker for subclinical tobacco smoke-induced lung damage. Am J Physiol Lung Cell Mol Physiol 2014; 306:L887-95. [DOI: 10.1152/ajplung.00340.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Variation in surfactant protein D (SP-D) is associated with lung function in tobacco smoke-induced chronic respiratory disease. We hypothesized that the same association exists in the general population and could be used to identify individuals sensitive to smoke-induced lung damage. The association between serum SP-D (sSP-D) and expiratory lung function was assessed in a cross-sectional design in a Danish twin population ( n = 1,512, 18–72 yr old). The adjusted heritability estimates for expiratory lung function, associations between SP-D gene ( SFTPD) single-nucleotide polymorphisms or haplotypes, and expiratory lung function were assessed using twin study methodology and mixed-effects models. Significant inverse associations were evident between sSP-D and the forced expiratory volume in 1 s and forced vital capacity in the presence of current tobacco smoking but not in nonsmokers. The two SFTPD single-nucleotide polymorphisms, rs1923536 and rs721917, and haplotypes, including these single-nucleotide polymorphisms or rs2243539, were inversely associated with expiratory lung function in interaction with smoking. In conclusion, SP-D is phenotypically and genetically associated with lung function measures in interaction with tobacco smoking. The obtained data suggest sSP-D as a candidate biomarker in risk assessments for subclinical tobacco smoke-induced lung damage. The data and derived conclusion warrant confirmation in a longitudinal population following chronic obstructive pulmonary disease initiation and development.
Collapse
Affiliation(s)
| | - Qihua Tan
- The Danish Twin Registry, Epidemiology, Institute of Public Health, and
- Departments of 4Clinical Genetics and
| | - René Holst
- Institute of Regional Health Research, Department of Biostatistics, University of Southern Denmark, Odense
| | - Lene Christiansen
- The Danish Twin Registry, Epidemiology, Institute of Public Health, and
- Departments of 4Clinical Genetics and
| | | | - Allan T. Hojland
- The Danish Twin Registry, Epidemiology, Institute of Public Health, and
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | | | - Anders Schlosser
- Cardiovascular and Renal Research, Institute of Molecular Medicine,
| | | | | | - Uffe Holmskov
- Cardiovascular and Renal Research, Institute of Molecular Medicine,
| | - Kirsten O. Kyvik
- Institute of Regional Health Research, Department of Biostatistics, University of Southern Denmark, Odense
- Odense Patient Data Explorative Network (OPEN), Odense University Hospital, Odense
| | | |
Collapse
|
48
|
Yao TC, Du G, Han L, Sun Y, Hu D, Yang JJ, Mathias R, Roth LA, Rafaels N, Thompson EE, Loisel DA, Anderson R, Eng C, Arruabarrena Orbegozo M, Young M, Klocksieben JM, Anderson E, Shanovich K, Lester LA, Williams LK, Barnes KC, Burchard EG, Nicolae DL, Abney M, Ober C. Genome-wide association study of lung function phenotypes in a founder population. J Allergy Clin Immunol 2013; 133:248-55.e1-10. [PMID: 23932459 DOI: 10.1016/j.jaci.2013.06.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/18/2013] [Accepted: 06/12/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Lung function is a long-term predictor of mortality and morbidity. OBJECTIVE We sought to identify single nucleotide polymorphisms (SNPs) associated with lung function. METHODS We performed a genome-wide association study (GWAS) of FEV1, forced vital capacity (FVC), and FEV1/FVC in 1144 Hutterites aged 6 to 89 years, who are members of a founder population of European descent. We performed least absolute shrinkage and selection operation regression to select the minimum set of SNPs that best predict FEV1/FVC in the Hutterites and used the GRAIL algorithm to mine the Gene Ontology database for evidence of functional connections between genes near the predictive SNPs. RESULTS Our GWAS identified significant associations between FEV1/FVC and SNPs at the THSD4-UACA-TLE3 locus on chromosome 15q23 (P = 5.7 × 10(-8) to 3.4 × 10(-9)). Nine SNPs at or near 4 additional loci had P < 10(-5) with FEV1/FVC. Only 2 SNPs were found with P < 10(-5) for FEV1 or FVC. We found nominal levels of significance with SNPs at 9 of the 27 previously reported loci associated with lung function measures. Among a predictive set of 80 SNPs, 6 loci were identified that had a significant degree of functional connectivity (GRAIL P < .05), including 3 clusters of β-defensin genes, 2 chemokine genes (CCL18 and CXCL12), and TNFRSF13B. CONCLUSION This study identifies genome-wide significant associations and replicates results of previous GWASs. Multimarker modeling implicated for the first time common variation in genes involved in antimicrobial immunity in airway mucosa that influences lung function.
Collapse
Affiliation(s)
- Tsung-Chieh Yao
- Department of Human Genetics, University of Chicago, Chicago, Ill; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Gaixin Du
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Lide Han
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Ying Sun
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, Calif
| | - James J Yang
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Mich
| | - Rasika Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University, Baltimore, Md
| | - Lindsey A Roth
- Department of Medicine, University of California, San Francisco, Calif
| | - Nicholas Rafaels
- Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University, Baltimore, Md
| | - Emma E Thompson
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Dagan A Loisel
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Rebecca Anderson
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, Calif
| | | | - Melody Young
- Department of Pediatrics, University of Chicago, Chicago, Ill
| | | | | | | | | | - L Keoki Williams
- Center for Health Services Research and Department of Internal Medicine, Henry Ford Health System, Detroit, Mich
| | - Kathleen C Barnes
- Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University, Baltimore, Md
| | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, Calif; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Calif
| | - Dan L Nicolae
- Department of Human Genetics, University of Chicago, Chicago, Ill; Department of Pediatrics, University of Chicago, Chicago, Ill; Department of Statistics, University of Chicago, Chicago, Ill
| | - Mark Abney
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill.
| |
Collapse
|
49
|
Wain LV, Soler Artigas M, Tobin MD. What can genetics tell us about the cause of fixed airflow obstruction? Clin Exp Allergy 2012; 42:1176-82. [PMID: 22805464 DOI: 10.1111/j.1365-2222.2012.03967.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of chronic morbidity and mortality worldwide with smoking being the most important risk factor of the disease. However, lung function and COPD are known to also have a genetic component and a deeper knowledge of the genetic architecture of the disease could lead to further understanding of predisposition to COPD and also to development of new therapeutic interventions. Genetic linkage studies and candidate gene association studies have not provided evidence to convincingly identify the genes underlying lung function or COPD. However, recent large genome-wide association studies (GWAS) including tens of thousands of individuals have identified 26 variants at different loci in the human genome that show robust association with quantitative lung function measures in the general population. A growing number of these variants are being shown to be associated with COPD. Following the identification of these new lung function loci, the challenge now lies in refining the signals to identify the causative variants underlying the association signals and relating these signals to the molecular pathways that underlie lung function.
Collapse
Affiliation(s)
- L V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | | |
Collapse
|
50
|
Imboden M, Bouzigon E, Curjuric I, Ramasamy A, Kumar A, Hancock DB, Wilk JB, Vonk JM, Thun GA, Siroux V, Nadif R, Monier F, Gonzalez JR, Wjst M, Heinrich J, Loehr LR, Franceschini N, North KE, Altmüller J, Koppelman GH, Guerra S, Kronenberg F, Lathrop M, Moffatt MF, O'Connor GT, Strachan DP, Postma DS, London SJ, Schindler C, Kogevinas M, Kauffmann F, Jarvis DL, Demenais F, Probst-Hensch NM. Genome-wide association study of lung function decline in adults with and without asthma. J Allergy Clin Immunol 2012; 129:1218-28. [PMID: 22424883 DOI: 10.1016/j.jaci.2012.01.074] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 10/26/2011] [Accepted: 01/24/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND Genome-wide association studies have identified determinants of chronic obstructive pulmonary disease, asthma, and lung function level; however, none have addressed decline in lung function. OBJECTIVE We conducted the first genome-wide association study on the age-related decrease in FEV(1) and its ratio to forced vital capacity (FVC) stratified a priori by asthma status. METHODS Discovery cohorts included adults of European ancestry (1,441 asthmatic and 2,677 nonasthmatic participants: the Epidemiological Study on the Genetics and Environment of Asthma, the Swiss Cohort Study on Air Pollution and Lung and Heart Disease in Adults, and the European Community Respiratory Health Survey). The associations of FEV(1) and FEV(1)/FVC ratio decrease with 2.5 million single nucleotide polymorphisms (SNPs) were estimated. Thirty loci were followed up by in silico replication (1,160 asthmatic and 10,858 nonasthmatic participants: Atherosclerosis Risk in Communities, the Framingham Heart Study, the British 1958 Birth Cohort, and the Dutch Asthma Study). RESULTS Main signals identified differed between asthmatic and nonasthmatic participants. None of the SNPs reached genome-wide significance. The association between the height-related gene DLEU7 and FEV(1) decrease suggested for nonasthmatic participants in the discovery phase was replicated (discovery, P = 4.8 × 10(-6); replication, P = .03), and additional sensitivity analyses point to a relation to growth. The top ranking signal, TUSC3, which is associated with FEV(1)/FVC ratio decrease in asthmatic participants (P = 5.3 × 10(-8)), did not replicate. SNPs previously associated with cross-sectional lung function were not prominently associated with decline. CONCLUSIONS Genetic heterogeneity of lung function might be extensive. Our results suggest that genetic determinants of longitudinal and cross-sectional lung function differ and vary by asthma status.
Collapse
Affiliation(s)
- Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|