1
|
Baker JM, Dickson RP. The Microbiome and Pulmonary Immune Function. Clin Chest Med 2025; 46:77-91. [PMID: 39890294 DOI: 10.1016/j.ccm.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
In the last decade, the lung microbiome field has matured into a promising area of translational and clinical research due to emerging evidence indicating a role for respiratory microbiota in lung immunity and pathogenesis. Here, we review recent insights pertaining to the lung microbiome's relationship with pulmonary immune function. We discuss areas of future investigation that will be essential to the development of immunomodulatory therapies targeting the respiratory microbiome.
Collapse
Affiliation(s)
- Jennifer M Baker
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert P Dickson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Weil Institute for Critical Care Research & Innovation, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Al-Momani H, Nelson A, Al Balawi H, Al Balawi D, Aolymat I, Khasawneh AI, Tabl H, Alsheikh A, Zueter AM, Pearson J, Ward C. Assessment of upper respiratory and gut bacterial microbiomes during COVID-19 infection in adults: potential aerodigestive transmission. Sci Rep 2025; 15:1811. [PMID: 39805887 PMCID: PMC11730684 DOI: 10.1038/s41598-025-85806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
SARS-CoV-2 is the viral pathogen responsible for COVID-19. Although morbidity and mortality frequently occur as a result of lung disease, the gastrointestinal (GI) tract is recognized as a primary location for SARS-CoV-2. Connections and interactions between the microbiome of the gut and respiratory system have been linked with viral infections via what has been referred to as the 'gut-lung axis' with potential aerodigestive communication in health and disease. This research explored the relationship between the microbiomes of the upper respiratory and GI tracts in patients with COVID-19 and examined Extraesophageal reflux (EOR), a mechanism which could contribute to dysregulated communication between the GI and respiratory tract (as identified in COVID-19). 97 patients with a laboratory diagnosis of COVID-19 infection, and 50 age-matched controls were recruited and stool, saliva and sputum were obtained from each participant. ELISA Pepsin tests and Reflux Symptom Index scores (RSI) were conducted for EOR assessment. DNA sequencing of the V4 region of the 16 S rRNA gene was performed for microbiome analysis. No differences were observed between the fecal microbiome's alpha and Shannon diversity indices; however, a distinct microbial composition was observed in COVID-19 patients (when compared to the controls). The respiratory microbiota from individuals with COVID-19 demonstrated a statistically significant reduction in Shannon diversity and bacterial richness alongside an overall reduction in the prevalence of organisms from a typical healthy respiratory microbiome. Furthermore, the bacterial richness of the stool and sputum samples was significantly lower among COVID-19 patients admitted to ICU. A significantly higher RSI score and salivary pepsin level were detected among those with COVID-19. The data indicates that COVID-19 is associated with a dysregulation of both the gut and lung microbiome with a more marked perturbation in the lung, particularly among COVID-19 patients who had been admitted to the ICU. The presence of increased RSI scores, combined with elevated levels of Pepsin, suggests that increased micro-aspiration may occur, which is consistent with of under-recognized interactions between the GI and lung microbiomes in COVID-19 patients and requires additional study. Such studies would benefit from the insights provided by biological samples which reflect the continuum of the aerodigestive tract.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan.
| | - Andrew Nelson
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Hadeel Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Dua'a Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan
| | - Ashraf I Khasawneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan
| | - Hala Tabl
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan
| | - Ayman Alsheikh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, P.O.box 2000, Zarqa, 13110, Jordan
| | - AbdelRahman M Zueter
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan
| | - Jeffrey Pearson
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, GB, United Kingdom
| | - Christopher Ward
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, GB, United Kingdom
| |
Collapse
|
3
|
Campbell S, Gerasimidis K, Milling S, Dicker AJ, Hansen R, Langley RJ. The lower airway microbiome in paediatric health and chronic disease. Paediatr Respir Rev 2024; 52:31-43. [PMID: 38538377 DOI: 10.1016/j.prrv.2024.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/13/2024] [Indexed: 12/16/2024]
Abstract
The advent of next generation sequencing has rapidly challenged the paediatric respiratory physician's understanding of lung microbiology and the role of the lung microbiome in host health and disease. In particular, the role of "microbial key players" in paediatric respiratory disease is yet to be fully explained. Accurate profiling of the lung microbiome in children is challenging since the ability to obtain lower airway samples coupled with processing "low-biomass specimens" are both technically difficult. Many studies provide conflicting results. Early microbiota-host relationships may be predictive of the development of chronic respiratory disease but attempts to correlate lower airway microbiota in premature infants and risk of developing bronchopulmonary dysplasia (BPD) have produced mixed results. There are differences in lung microbiota in asthma and cystic fibrosis (CF). The increased abundance of oral taxa in the lungs may (or may not) promote disease processes in asthma and CF. In CF, correlation between microbiota diversity and respiratory decline is commonly observed. When one considers other pathogens beyond the bacterial kingdom, the contribution and interplay of fungi and viruses within the lung microbiome further increase complexity. Similarly, the interaction between microbial communities in different body sites, such as the gut-lung axis, and the influence of environmental factors, including diet, make the co-existence of host and microbes ever more complicated. Future, multi-omics approaches may help uncover novel microbiome-based biomarkers and therapeutic targets in respiratory disease and explain how we can live in harmony with our microbial companions.
Collapse
Affiliation(s)
- S Campbell
- School of Medicine, Dentistry and Nursing, University of Glasgow
| | - K Gerasimidis
- School of Medicine, Dentistry and Nursing, University of Glasgow
| | - S Milling
- School of Infection & Immunity, University of Glasgow
| | - A J Dicker
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee
| | - R Hansen
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee
| | - R J Langley
- Department of Paediatric Respiratory & Sleep Medicine, Royal Hospital for Children, Glasgow; Department of Maternal and Child Health, School of Medicine, Dentistry and Nursing, University of Glasgow.
| |
Collapse
|
4
|
Konovalovas A, Armalytė J, Klimkaitė L, Liveikis T, Jonaitytė B, Danila E, Bironaitė D, Mieliauskaitė D, Bagdonas E, Aldonytė R. Insights into respiratory microbiome composition and systemic inflammatory biomarkers of bronchiectasis patients. Microbiol Spectr 2024; 12:e0414423. [PMID: 39535197 PMCID: PMC11619244 DOI: 10.1128/spectrum.04144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/17/2024] [Indexed: 11/16/2024] Open
Abstract
The human microbiomes, including the ones present in the respiratory tract, are described and characterized in an increasing number of studies. However, the composition and the impact of the healthy and/or impaired microbiome on pulmonary health and its interaction with the host tissues remain enigmatic. In chronic airway diseases, bronchiectasis stands out as a progressive condition characterized by microbial colonization and infection. In this study, we aimed to investigate the microbiome of the lower airways and lungs of bronchiectasis patients together with their serum cytokine and chemokine content, and gain novel insights into the pathogenesis of bronchiectasis. The microbiome of 47 patients was analyzed by sequencing of full-length 16S rRNA gene using amplicon sequencing Oxford Nanopore technologies. Their serum inflammatory mediators content was quantified in parallel. Several divergently composed microbiome groups were identified and characterized, the majority of patients displayed one dominant bacterial species, whereas others had a more diverse microbiome. The analysis of systemic immune biomarkers revealed two distinct inflammatory response groups, i.e., low and high response groups, each associated with a specific array of clinical symptoms, microbial composition, and diversity. Moreover, we have identified some microbiome compositions associated with high inflammatory response, i.e., high levels of pro- and anti-inflammatory cytokines, whereas other microbiomes were in correlation with low inflammatory responses. Although bronchiectasis pathogenetic mechanisms remain to be elucidated, it is clear that addressing microbiome composition in the airways is a valuable resource not only for diagnosis but also for personalized disease management. IMPORTANCE The population of microorganisms on/in the human body resides in distinct local microbiomes, including the respiratory microbiome. It remains unclear what defines a healthy and a diseased respiratory microbiome. We investigated the respiratory microbiome in chronic pulmonary infectious disease, i.e., bronchiectasis, and researched correlations between microbiome composition, systemic inflammatory biomarkers, and disease characteristics. The bronchoalveolar microbiome of 47 patients was sequenced, and their serum inflammatory mediators were quantified. The microbiomes were grouped based on their content and diversity. In addition, patients were also grouped into low- and high-response groups according to their inflammatory biomarkers' levels. Certain microbiome compositions, mainly single-species dominated, were associated with high levels of inflammatory cytokines, whereas others correlated with low inflammatory response and remained diverse. We conclude that respiratory microbiome composition is a valuable resource for the diagnostics and personalized management of bronchiectasis, which may include preserving microbiome diversity and introducing possible probiotics.
Collapse
Affiliation(s)
- Aleksandras Konovalovas
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Julija Armalytė
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Laurita Klimkaitė
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Tomas Liveikis
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Brigita Jonaitytė
- Clinic of Chest Diseases, Immunology, and Allergology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Edvardas Danila
- Clinic of Chest Diseases, Immunology, and Allergology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Centre of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Daiva Bironaitė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | | | - Edvardas Bagdonas
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Rūta Aldonytė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
5
|
Vaughn VM, Dickson RP, Horowitz JK, Flanders SA. Community-Acquired Pneumonia: A Review. JAMA 2024; 332:1282-1295. [PMID: 39283629 DOI: 10.1001/jama.2024.14796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Importance Community-acquired pneumonia (CAP) results in approximately 1.4 million emergency department visits, 740 000 hospitalizations, and 41 000 deaths in the US annually. Observations Community-acquired pneumonia can be diagnosed in a patient with 2 or more signs (eg, temperature >38 °C or ≤36 °C; leukocyte count <4000/μL or >10 000/μL) or symptoms (eg, new or increased cough or dyspnea) of pneumonia in conjunction with consistent radiographic findings (eg, air space density) without an alternative explanation. Up to 10% of patients with CAP are hospitalized; of those, up to 1 in 5 require intensive care. Older adults (≥65 years) and those with underlying lung disease, smoking, or immune suppression are at highest risk for CAP and complications of CAP, including sepsis, acute respiratory distress syndrome, and death. Only 38% of patients hospitalized with CAP have a pathogen identified. Of those patients, up to 40% have viruses identified as the likely cause of CAP, with Streptococcus pneumoniae identified in approximately 15% of patients with an identified etiology of the pneumonia. All patients with CAP should be tested for COVID-19 and influenza when these viruses are common in the community because their diagnosis may affect treatment (eg, antiviral therapy) and infection prevention strategies. If test results for influenza and COVID-19 are negative or when the pathogens are not likely etiologies, patients can be treated empirically to cover the most likely bacterial pathogens. When selecting empirical antibacterial therapy, clinicians should consider disease severity and evaluate the likelihood of a bacterial infection-or resistant infection-and risk of harm from overuse of antibacterial drugs. Hospitalized patients without risk factors for resistant bacteria can be treated with β-lactam/macrolide combination therapy, such as ceftriaxone combined with azithromycin, for a minimum of 3 days. Systemic corticosteroid administration within 24 hours of development of severe CAP may reduce 28-day mortality. Conclusions Community-acquired pneumonia is common and may result in sepsis, acute respiratory distress syndrome, or death. First-line therapy varies by disease severity and etiology. Hospitalized patients with suspected bacterial CAP and without risk factors for resistant bacteria can be treated with β-lactam/macrolide combination therapy, such as ceftriaxone combined with azithromycin, for a minimum of 3 days.
Collapse
Affiliation(s)
- Valerie M Vaughn
- Division of General Internal Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
- Division of Health System Innovation & Research, Department of Population Health Science, University of Utah School of Medicine, Salt Lake City
- Division of Hospital Medicine, Department of Internal Medicine, Michigan Medicine, Ann Arbor
| | - Robert P Dickson
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, Michigan Medicine, Ann Arbor
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor
- Weil Institute for Critical Care Research & Innovation, Ann Arbor, Michigan
| | - Jennifer K Horowitz
- Division of Hospital Medicine, Department of Internal Medicine, Michigan Medicine, Ann Arbor
| | - Scott A Flanders
- Division of Hospital Medicine, Department of Internal Medicine, Michigan Medicine, Ann Arbor
| |
Collapse
|
6
|
Belaid A, Roméo B, Rignol G, Benzaquen J, Audoin T, Vouret-Craviari V, Brest P, Varraso R, von Bergen M, Hugo Marquette C, Leroy S, Mograbi B, Hofman P. Impact of the Lung Microbiota on Development and Progression of Lung Cancer. Cancers (Basel) 2024; 16:3342. [PMID: 39409962 PMCID: PMC11605235 DOI: 10.3390/cancers16193342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 12/01/2024] Open
Abstract
The past several years have provided a more profound understanding of the role of microbial species in the lung. The respiratory tract is a delicate ecosystem of bacteria, fungi, parasites, and viruses. Detecting microbial DNA, pathogen-associated molecular patterns (PAMPs), and metabolites in sputum is poised to revolutionize the early diagnosis of lung cancer. The longitudinal monitoring of the lung microbiome holds the potential to predict treatment response and side effects, enabling more personalized and effective treatment options. However, most studies into the lung microbiota have been observational and have not adequately considered the impact of dietary intake and air pollutants. This gap makes it challenging to establish a direct causal relationship between environmental exposure, changes in the composition of the microbiota, lung carcinogenesis, and tumor progression. A holistic understanding of the lung microbiota that considers both diet and air pollutants may pave the way to improved prevention and management strategies for lung cancer.
Collapse
Affiliation(s)
- Amine Belaid
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Barnabé Roméo
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Guylène Rignol
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
- Laboratory of Clinical and Experimental Pathology (LPCE), Biobank (BB-0033-00025), Centre Hospitalier Universitaire (CHU) de Nice, FHU OncoAge, IHU RespirERA, 06000 Nice, France
| | - Jonathan Benzaquen
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
- Centre Hospitalier Universitaire (CHU) de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, IHU RespirERA, 06000 Nice, France
| | - Tanguy Audoin
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Valérie Vouret-Craviari
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Patrick Brest
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Raphaëlle Varraso
- Université Paris-Saclay, Équipe d’Épidémiologie Respiratoire Intégrative, CESP, INSERM, 94800 Villejuif, France;
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research GmbH—UFZ, Department of Molecular Systems Biology, Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, 04109 Leipzig, Germany;
| | - Charles Hugo Marquette
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
- Centre Hospitalier Universitaire (CHU) de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, IHU RespirERA, 06000 Nice, France
| | - Sylvie Leroy
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
- Centre Hospitalier Universitaire (CHU) de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, IHU RespirERA, 06000 Nice, France
| | - Baharia Mograbi
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Paul Hofman
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
- Laboratory of Clinical and Experimental Pathology (LPCE), Biobank (BB-0033-00025), Centre Hospitalier Universitaire (CHU) de Nice, FHU OncoAge, IHU RespirERA, 06000 Nice, France
| |
Collapse
|
7
|
Sumner JT, Pickens CI, Huttelmaier S, Moghadam AA, Abdala-Valencia H, Hauser AR, Seed PC, Wunderink RG, Hartmann EM. Transitions in lung microbiota landscape associate with distinct patterns of pneumonia progression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.02.24311426. [PMID: 39148859 PMCID: PMC11326345 DOI: 10.1101/2024.08.02.24311426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The precise microbial determinants driving clinical outcomes in severe pneumonia are unknown. Competing ecological forces produce dynamic microbiota states in health; infection and treatment effects on microbiota state must be defined to improve pneumonia therapy. Here, we leverage our unique clinical setting, which includes systematic and serial bronchoscopic sampling in patients with suspected pneumonia, to determine lung microbial ecosystem dynamics throughout pneumonia therapy. We combine 16S rRNA gene amplicon, metagenomic, and transcriptomic sequencing with bacterial load quantification to reveal clinically-relevant pneumonia progression drivers. Microbiota states are predictive of pneumonia category and exhibit differential stability and pneumonia therapy response. Disruptive forces, like aspiration, associate with cohesive changes in gene expression and microbial community structure. In summary, we show that host and microbiota landscapes change in unison with clinical phenotypes and that microbiota state dynamics reflect pneumonia progression. We suggest that distinct pathways of lung microbial community succession mediate pneumonia progression.
Collapse
Affiliation(s)
- Jack T. Sumner
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University, Chicago, IL, USA
| | - Chiagozie I. Pickens
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University, Chicago, IL, USA
| | - Stefanie Huttelmaier
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Anahid A. Moghadam
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Hiam Abdala-Valencia
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University, Chicago, IL, USA
| | | | - Alan R Hauser
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL, USA
| | - Patrick C. Seed
- Department of Medicine, Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Richard G. Wunderink
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University, Chicago, IL, USA
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Lead contact
| |
Collapse
|
8
|
Zhou J, Hou W, Zhong H, Liu D. Lung microbiota: implications and interactions in chronic pulmonary diseases. Front Cell Infect Microbiol 2024; 14:1401448. [PMID: 39233908 PMCID: PMC11372588 DOI: 10.3389/fcimb.2024.1401448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
The lungs, as vital organs in the human body, continuously engage in gas exchange with the external environment. The lung microbiota, a critical component in maintaining internal homeostasis, significantly influences the onset and progression of diseases. Beneficial interactions between the host and its microbial community are essential for preserving the host's health, whereas disease development is often linked to dysbiosis or alterations in the microbial community. Evidence has demonstrated that changes in lung microbiota contribute to the development of major chronic lung diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), asthma, and lung cancer. However, in-depth mechanistic studies are constrained by the small scale of the lung microbiota and its susceptibility to environmental pollutants and other factors, leaving many questions unanswered. This review examines recent research on the lung microbiota and lung diseases, as well as methodological advancements in studying lung microbiota, summarizing the ways in which lung microbiota impacts lung diseases and introducing research methods for investigating lung microbiota.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wang Hou
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huilin Zhong
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Margutti P, D’Ambrosio A, Zamboni S. Microbiota-Derived Extracellular Vesicle as Emerging Actors in Host Interactions. Int J Mol Sci 2024; 25:8722. [PMID: 39201409 PMCID: PMC11354844 DOI: 10.3390/ijms25168722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
The human microbiota is an intricate micro-ecosystem comprising a diverse range of dynamic microbial populations mainly consisting of bacteria, whose interactions with hosts strongly affect several physiological and pathological processes. The gut microbiota is being increasingly recognized as a critical player in maintaining homeostasis, contributing to the main functions of the intestine and distal organs such as the brain. However, gut dysbiosis, characterized by composition and function alterations of microbiota with intestinal barrier dysfunction has been linked to the development and progression of several pathologies, including intestinal inflammatory diseases, systemic autoimmune diseases, such as rheumatic arthritis, and neurodegenerative diseases, such as Alzheimer's disease. Moreover, oral microbiota research has gained significant interest in recent years due to its potential impact on overall health. Emerging evidence on the role of microbiota-host interactions in health and disease has triggered a marked interest on the functional role of bacterial extracellular vesicles (BEVs) as mediators of inter-kingdom communication. Accumulating evidence reveals that BEVs mediate host interactions by transporting and delivering into host cells effector molecules that modulate host signaling pathways and cell processes, influencing health and disease. This review discusses the critical role of BEVs from the gut, lung, skin and oral cavity in the epithelium, immune system, and CNS interactions.
Collapse
Affiliation(s)
- Paola Margutti
- Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.D.); (S.Z.)
| | | | | |
Collapse
|
10
|
David SC, Schaub A, Terrettaz C, Motos G, Costa LJ, Nolan DS, Augugliaro M, Wynn HK, Glas I, Pohl MO, Klein LK, Luo B, Bluvshtein N, Violaki K, Hugentobler W, Krieger UK, Peter T, Stertz S, Nenes A, Kohn T. Stability of influenza A virus in droplets and aerosols is heightened by the presence of commensal respiratory bacteria. J Virol 2024; 98:e0040924. [PMID: 38869284 PMCID: PMC11264603 DOI: 10.1128/jvi.00409-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
Aerosol transmission remains a major challenge for control of respiratory viruses, particularly those causing recurrent epidemics, like influenza A virus (IAV). These viruses are rarely expelled alone, but instead are embedded in a consortium of microorganisms that populate the respiratory tract. The impact of microbial communities and inter-pathogen interactions upon stability of transmitted viruses is well-characterized for enteric pathogens, but is under-studied in the respiratory niche. Here, we assessed whether the presence of five different species of commensal respiratory bacteria could influence the persistence of IAV within phosphate-buffered saline and artificial saliva droplets deposited on surfaces at typical indoor air humidity, and within airborne aerosol particles. In droplets, presence of individual species or a mixed bacterial community resulted in 10- to 100-fold more infectious IAV remaining after 1 h, due to bacterial-mediated flattening of drying droplets and early efflorescence. Even when no efflorescence occurred at high humidity or the bacteria-induced changes in droplet morphology were abolished by aerosolization instead of deposition on a well plate, the bacteria remained protective. Staphylococcus aureus and Streptococcus pneumoniae were the most stabilizing compared to other commensals at equivalent density, indicating the composition of an individual's respiratory microbiota is a previously unconsidered factor influencing expelled virus persistence.IMPORTANCEIt is known that respiratory infections such as coronavirus disease 2019 and influenza are transmitted by release of virus-containing aerosols and larger droplets by an infected host. The survival time of viruses expelled into the environment can vary depending on temperature, room air humidity, UV exposure, air composition, and suspending fluid. However, few studies consider the fact that respiratory viruses are not alone in the respiratory tract-we are constantly colonized by a plethora of bacteria in our noses, mouth, and lower respiratory system. In the gut, enteric viruses are known to be stabilized against inactivation and environmental decay by gut bacteria. Despite the presence of a similarly complex bacterial microbiota in the respiratory tract, few studies have investigated whether viral stabilization could occur in this niche. Here, we address this question by investigating influenza A virus stabilization by a range of commensal bacteria in systems representing respiratory aerosols and droplets.
Collapse
Affiliation(s)
- Shannon C. David
- Laboratory of Environmental Virology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aline Schaub
- Laboratory of Environmental Virology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Céline Terrettaz
- Laboratory of Environmental Virology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ghislain Motos
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laura J. Costa
- Laboratory of Environmental Virology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Daniel S. Nolan
- Laboratory of Environmental Virology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marta Augugliaro
- Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland
| | - Htet Kyi Wynn
- Laboratory of Environmental Virology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Irina Glas
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Marie O. Pohl
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Liviana K. Klein
- Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland
| | - Beiping Luo
- Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland
| | - Nir Bluvshtein
- Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland
| | - Kalliopi Violaki
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Walter Hugentobler
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ulrich K. Krieger
- Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| | - Tamar Kohn
- Laboratory of Environmental Virology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
11
|
Zinter MS, Dvorak CC, Mayday MY, Reyes G, Simon MR, Pearce EM, Kim H, Shaw PJ, Rowan CM, Auletta JJ, Martin PL, Godder K, Duncan CN, Lalefar NR, Kreml EM, Hume JR, Abdel-Azim H, Hurley C, Cuvelier GDE, Keating AK, Qayed M, Killinger JS, Fitzgerald JC, Hanna R, Mahadeo KM, Quigg TC, Satwani P, Castillo P, Gertz SJ, Moore TB, Hanisch B, Abdel-Mageed A, Phelan R, Davis DB, Hudspeth MP, Yanik GA, Pulsipher MA, Sulaiman I, Segal LN, Versluys BA, Lindemans CA, Boelens JJ, DeRisi JL. Pathobiological signatures of dysbiotic lung injury in pediatric patients undergoing stem cell transplantation. Nat Med 2024; 30:1982-1993. [PMID: 38783139 PMCID: PMC11271406 DOI: 10.1038/s41591-024-02999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024]
Abstract
Hematopoietic cell transplantation (HCT) uses cytotoxic chemotherapy and/or radiation followed by intravenous infusion of stem cells to cure malignancies, bone marrow failure and inborn errors of immunity, hemoglobin and metabolism. Lung injury is a known complication of the process, due in part to disruption in the pulmonary microenvironment by insults such as infection, alloreactive inflammation and cellular toxicity. How microorganisms, immunity and the respiratory epithelium interact to contribute to lung injury is uncertain, limiting the development of prevention and treatment strategies. Here we used 278 bronchoalveolar lavage (BAL) fluid samples to study the lung microenvironment in 229 pediatric patients who have undergone HCT treated at 32 children's hospitals between 2014 and 2022. By leveraging paired microbiome and human gene expression data, we identified high-risk BAL compositions associated with in-hospital mortality (P = 0.007). Disadvantageous profiles included bacterial overgrowth with neutrophilic inflammation, microbiome contraction with epithelial fibroproliferation and profound commensal depletion with viral and staphylococcal enrichment, lymphocytic activation and cellular injury, and were replicated in an independent cohort from the Netherlands (P = 0.022). In addition, a broad array of previously occult pathogens was identified, as well as a strong link between antibiotic exposure, commensal bacterial depletion and enrichment of viruses and fungi. Together these lung-immune system-microorganism interactions clarify the important drivers of fatal lung injury in pediatric patients who have undergone HCT. Further investigation is needed to determine how personalized interpretation of heterogeneous pulmonary microenvironments may be used to improve pediatric HCT outcomes.
Collapse
Affiliation(s)
- Matt S Zinter
- Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
| | - Christopher C Dvorak
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Madeline Y Mayday
- Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- Departments of Laboratory Medicine and Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Gustavo Reyes
- Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Miriam R Simon
- Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Emma M Pearce
- Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Hanna Kim
- Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Peter J Shaw
- The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Courtney M Rowan
- Department of Pediatrics, Division of Critical Care Medicine, Indiana University, Indianapolis, IN, USA
| | - Jeffrey J Auletta
- Hematology/Oncology/BMT and Infectious Diseases, Nationwide Children's Hospital, Columbus, OH, USA
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN, USA
| | - Paul L Martin
- Division of Pediatric and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | - Kamar Godder
- Cancer and Blood Disorders Center, Nicklaus Children's Hospital, Miami, FL, USA
| | - Christine N Duncan
- Division of Pediatric Oncology Harvard Medical School Department of Pediatrics, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
| | - Nahal R Lalefar
- Division of Pediatric Hematology/Oncology, Benioff Children's Hospital Oakland, University of California, San Francisco, Oakland, CA, USA
| | - Erin M Kreml
- Department of Child Health, Division of Critical Care Medicine, University of Arizona, Phoenix, AZ, USA
| | - Janet R Hume
- Department of Pediatrics, Division of Critical Care Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Hisham Abdel-Azim
- Department of Pediatrics, Division of Hematology/Oncology and Transplant and Cell Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Loma Linda University School of Medicine, Cancer Center, Children Hospital and Medical Center, Loma Linda, CA, USA
| | - Caitlin Hurley
- Department of Pediatric Medicine, Division of Critical Care, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Geoffrey D E Cuvelier
- CancerCare Manitoba, Manitoba Blood and Marrow Transplant Program, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amy K Keating
- Division of Pediatric Oncology Harvard Medical School Department of Pediatrics, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado and University of Colorado, Aurora, CO, USA
| | - Muna Qayed
- Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - James S Killinger
- Department of Pediatrics, Division of Pediatric Critical Care, Weill Cornell Medicine, New York, NY, USA
| | - Julie C Fitzgerald
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Rabi Hanna
- Department of Pediatric Hematology, Oncology and Blood and Marrow Transplantation, Pediatric Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kris M Mahadeo
- Division of Pediatric and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
- Department of Pediatrics, Division of Hematology/Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Troy C Quigg
- Pediatric Blood and Marrow Transplantation Program, Texas Transplant Institute, Methodist Children's Hospital, San Antonio, TX, USA
- Section of Pediatric BMT and Cellular Therapy, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Prakash Satwani
- Department of Pediatrics, Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Columbia University, New York, NY, USA
| | - Paul Castillo
- UF Health Shands Children's Hospital, University of Florida, Gainesville, FL, USA
| | - Shira J Gertz
- Department of Pediatrics, Division of Critical Care Medicine, Joseph M Sanzari Children's Hospital at Hackensack University Medical Center, Hackensack, NJ, USA
- Department of Pediatrics, Division of Critical Care Medicine, St. Barnabas Medical Center, Livingston, NJ, USA
| | - Theodore B Moore
- Department of Pediatric Hematology-Oncology, Mattel Children's Hospital, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin Hanisch
- Department of Pediatrics, Division of Infectious Diseases, Children's National Hospital, Washington DC, USA
| | - Aly Abdel-Mageed
- Section of Pediatric BMT and Cellular Therapy, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Rachel Phelan
- Department of Pediatrics, Division of Pediatric Hematology/Oncology/BMT, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Dereck B Davis
- Department of Pediatrics, Hematology/Oncology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michelle P Hudspeth
- Adult and Pediatric Blood & Marrow Transplantation, Pediatric Hematology/Oncology, Medical University of South Carolina Children's Hospital/Hollings Cancer Center, Charleston, SC, USA
| | - Greg A Yanik
- Pediatric Blood and Bone Marrow Transplantation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Michael A Pulsipher
- Division of Hematology, Oncology, Transplantation, and Immunology, Primary Children's Hospital, Huntsman Cancer Institute, Spense Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT, USA
| | - Imran Sulaiman
- Department of Respiratory Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Leopoldo N Segal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Birgitta A Versluys
- Department of Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Division of Pediatrics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Caroline A Lindemans
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA
- Department of Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jaap J Boelens
- Department of Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Division of Pediatrics, University Medical Center Utrecht, Utrecht, the Netherlands
- Transplantation and Cellular Therapy, MSK Kids, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
12
|
Barnett CR, Krolikowski K, Postelnicu R, Mukherjee V, Sulaiman I, Chung M, Angel L, Tsay JCJ, Wu BG, Yeung ST, Duerr R, Desvignes L, Khanna K, Li Y, Schluger R, Rafeq S, Collazo D, Kyeremateng Y, Amoroso N, Pradhan D, Das S, Evans L, Uyeki TM, Ghedin E, Silverman GJ, Segal LN, Brosnahan SB. Impaired immune responses in the airways are associated with poor outcome in critically ill COVID-19 patients. ERJ Open Res 2024; 10:00789-2023. [PMID: 38978558 PMCID: PMC11228597 DOI: 10.1183/23120541.00789-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/27/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction Mounting evidence indicates that an individual's humoral adaptive immune response plays a critical role in the setting of SARS-CoV-2 infection, and that the efficiency of the response correlates with disease severity. The relationship between the adaptive immune dynamics in the lower airways with those in the systemic circulation, and how these relate to an individual's clinical response to SARS-CoV-2 infection, are less understood and are the focus of this study. Material and methods We investigated the adaptive immune response to SARS-CoV-2 in paired samples from the lower airways and blood from 27 critically ill patients during the first wave of the pandemic (median time from symptom onset to intubation 11 days). Measurements included clinical outcomes (mortality), bronchoalveolar lavage fluid (BALF) and blood specimen antibody levels, and BALF viral load. Results While there was heterogeneity in the levels of the SARS-CoV-2-specific antibodies, we unexpectedly found that some BALF specimens displayed higher levels than the paired concurrent plasma samples, despite the known dilutional effects common in BALF samples. We found that survivors had higher levels of anti-spike, anti-spike-N-terminal domain and anti-spike-receptor-binding domain IgG antibodies in their BALF (p<0.05), while there was no such association with antibody levels in the systemic circulation. Discussion Our data highlight the critical role of local adaptive immunity in the airways as a key defence mechanism against primary SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Clea R. Barnett
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Kelsey Krolikowski
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Radu Postelnicu
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Vikramjit Mukherjee
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Imran Sulaiman
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Matthew Chung
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luis Angel
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Jun-Chieh J. Tsay
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Division of Pulmonary and Critical Care Medicine, VA New York Harbor Healthcare System, New York, NY, USA
| | - Benjamin G. Wu
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Division of Pulmonary and Critical Care Medicine, VA New York Harbor Healthcare System, New York, NY, USA
| | - Stephen T. Yeung
- Department of Microbiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ralf Duerr
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Microbiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Vaccine Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Ludovic Desvignes
- Department of Microbiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Kamal Khanna
- Department of Microbiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Yonghua Li
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Rosemary Schluger
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Samaan Rafeq
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Destiny Collazo
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Yaa Kyeremateng
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Nancy Amoroso
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Deepak Pradhan
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Sanchita Das
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Laura Evans
- Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Timothy M. Uyeki
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gregg J. Silverman
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Leopoldo N. Segal
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY, USA
| | - Shari B. Brosnahan
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| |
Collapse
|
13
|
Mac Aogáin M, Dicker AJ, Mertsch P, Chotirmall SH. Infection and the microbiome in bronchiectasis. Eur Respir Rev 2024; 33:240038. [PMID: 38960615 PMCID: PMC11220623 DOI: 10.1183/16000617.0038-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis is marked by bronchial dilatation, recurrent infections and significant morbidity, underpinned by a complex interplay between microbial dysbiosis and immune dysregulation. The identification of distinct endophenotypes have refined our understanding of its pathogenesis, including its heterogeneous disease mechanisms that influence treatment and prognosis responses. Next-generation sequencing (NGS) has revolutionised the way we view airway microbiology, allowing insights into the "unculturable". Understanding the bronchiectasis microbiome through targeted amplicon sequencing and/or shotgun metagenomics has provided key information on the interplay of the microbiome and host immunity, a central feature of disease progression. The rapid increase in translational and clinical studies in bronchiectasis now provides scope for the application of precision medicine and a better understanding of the efficacy of interventions aimed at restoring microbial balance and/or modulating immune responses. Holistic integration of these insights is driving an evolving paradigm shift in our understanding of bronchiectasis, which includes the critical role of the microbiome and its unique interplay with clinical, inflammatory, immunological and metabolic factors. Here, we review the current state of infection and the microbiome in bronchiectasis and provide views on the future directions in this field.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital, Dublin, Ireland
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Alison J Dicker
- Respiratory Research Group, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Pontus Mertsch
- Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center (CPC), Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
14
|
Bongers KS, Massett A, O'Dwyer DN. The Oral-Lung Microbiome Axis in Connective Tissue Disease-Related Interstitial Lung Disease. Semin Respir Crit Care Med 2024; 45:449-458. [PMID: 38626906 DOI: 10.1055/s-0044-1785673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Connective tissue disease-related interstitial lung disease (CTD-ILD) is a frequent and serious complication of CTD, leading to high morbidity and mortality. Unfortunately, its pathogenesis remains poorly understood; however, one intriguing contributing factor may be the microbiome of the mouth and lungs. The oral microbiome, which is a major source of the lung microbiome through recurrent microaspiration, is altered in ILD patients. Moreover, in recent years, several lines of evidence suggest that changes in the oral and lung microbiota modulate the pulmonary immune response and thus may play a role in the pathogenesis of ILDs, including CTD-ILD. Here, we review the existing data demonstrating oral and lung microbiota dysbiosis and possible contributions to the development of CTD-ILD in rheumatoid arthritis, Sjögren's syndrome, systemic sclerosis, and systemic lupus erythematosus. We identify several areas of opportunity for future investigations into the role of the oral and lung microbiota in CTD-ILD.
Collapse
Affiliation(s)
- Kale S Bongers
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Angeline Massett
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - David N O'Dwyer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
15
|
Lipinksi JH, Ranjan P, Dickson RP, O’Dwyer DN. The Lung Microbiome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1269-1275. [PMID: 38560811 PMCID: PMC11073614 DOI: 10.4049/jimmunol.2300716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/01/2024] [Indexed: 04/04/2024]
Abstract
Although the lungs were once considered a sterile environment, advances in sequencing technology have revealed dynamic, low-biomass communities in the respiratory tract, even in health. Key features of these communities-composition, diversity, and burden-are consistently altered in lung disease, associate with host physiology and immunity, and can predict clinical outcomes. Although initial studies of the lung microbiome were descriptive, recent studies have leveraged advances in technology to identify metabolically active microbes and potential associations with their immunomodulatory by-products and lung disease. In this brief review, we discuss novel insights in airway disease and parenchymal lung disease, exploring host-microbiome interactions in disease pathogenesis. We also discuss complex interactions between gut and oropharyngeal microbiota and lung immunobiology. Our advancing knowledge of the lung microbiome will provide disease targets in acute and chronic lung disease and may facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Jay H. Lipinksi
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Piyush Ranjan
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Robert P. Dickson
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, MI, USA
| | - David N. O’Dwyer
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Marrella V, Nicchiotti F, Cassani B. Microbiota and Immunity during Respiratory Infections: Lung and Gut Affair. Int J Mol Sci 2024; 25:4051. [PMID: 38612860 PMCID: PMC11012346 DOI: 10.3390/ijms25074051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Bacterial and viral respiratory tract infections are the most common infectious diseases, leading to worldwide morbidity and mortality. In the past 10 years, the importance of lung microbiota emerged in the context of pulmonary diseases, although the mechanisms by which it impacts the intestinal environment have not yet been fully identified. On the contrary, gut microbial dysbiosis is associated with disease etiology or/and development in the lung. In this review, we present an overview of the lung microbiome modifications occurring during respiratory infections, namely, reduced community diversity and increased microbial burden, and of the downstream consequences on host-pathogen interaction, inflammatory signals, and cytokines production, in turn affecting the disease progression and outcome. Particularly, we focus on the role of the gut-lung bidirectional communication in shaping inflammation and immunity in this context, resuming both animal and human studies. Moreover, we discuss the challenges and possibilities related to novel microbial-based (probiotics and dietary supplementation) and microbial-targeted therapies (antibacterial monoclonal antibodies and bacteriophages), aimed to remodel the composition of resident microbial communities and restore health. Finally, we propose an outlook of some relevant questions in the field to be answered with future research, which may have translational relevance for the prevention and control of respiratory infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy;
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Federico Nicchiotti
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, 20089 Milan, Italy;
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, 20089 Milan, Italy;
| |
Collapse
|
17
|
Mac Aogáin M, Tiew PY, Jaggi TK, Narayana JK, Singh S, Hansbro PM, Segal LN, Chotirmall SH. Targeting respiratory microbiomes in COPD and bronchiectasis. Expert Rev Respir Med 2024; 18:111-125. [PMID: 38743428 DOI: 10.1080/17476348.2024.2355155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION This review summarizes our current understanding of the respiratory microbiome in COPD and Bronchiectasis. We explore the interplay between microbial communities, host immune responses, disease pathology, and treatment outcomes. AREAS COVERED We detail the dynamics of the airway microbiome, its influence on chronic respiratory diseases, and analytical challenges. Relevant articles from PubMed and Medline (January 2010-March 2024) were retrieved and summarized. We examine clinical correlations of the microbiome in COPD and bronchiectasis, assessing how current therapies impact upon it. The potential of emerging immunotherapies, antiinflammatories and antimicrobial strategies is discussed, with focus on the pivotal role of commensal taxa in maintaining respiratory health and the promising avenue of microbiome remodeling for disease management. EXPERT OPINION Given the heterogeneity in microbiome composition and its pivotal role in disease development and progression, a shift toward microbiome-directed therapeutics is appealing. This transition, from traditional 'pathogencentric' diagnostic and treatment modalities to those acknowledging the microbiome, can be enabled by evolving crossdisciplinary platforms which have the potential to accelerate microbiome-based interventions into routine clinical practice. Bridging the gap between comprehensive microbiome analysis and clinical application, however, remains challenging, necessitating continued innovation in research, diagnostics, trials, and therapeutic development pipelines.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Department of Biochemistry, St. James's Hospital, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Shivani Singh
- Division of Pulmonary Critical Care & Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Leopoldo N Segal
- Division of Pulmonary Critical Care & Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
18
|
Hosmer J, McEwan AG, Kappler U. Bacterial acetate metabolism and its influence on human epithelia. Emerg Top Life Sci 2024; 8:1-13. [PMID: 36945843 PMCID: PMC10903459 DOI: 10.1042/etls20220092] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Short-chain fatty acids are known modulators of host-microbe interactions and can affect human health, inflammation, and outcomes of microbial infections. Acetate is the most abundant but least well-studied of these modulators, with most studies focusing on propionate and butyrate, which are considered to be more potent. In this mini-review, we summarize current knowledge of acetate as an important anti-inflammatory modulator of interactions between hosts and microorganisms. This includes a summary of the pathways by which acetate is metabolized by bacteria and human cells, the functions of acetate in bacterial cells, and the impact that microbially derived acetate has on human immune function.
Collapse
Affiliation(s)
- Jennifer Hosmer
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Alastair G. McEwan
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
19
|
Lim S, Lee D, Jeong S, Park JW, Im J, Choi B, Gwak D, Yun CH, Seo HS, Han SH. Serotype-Dependent Inhibition of Streptococcus pneumoniae Growth by Short-Chain Fatty Acids. J Microbiol Biotechnol 2024; 34:47-55. [PMID: 38044707 PMCID: PMC10840490 DOI: 10.4014/jmb.2309.09003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023]
Abstract
Streptococcus pneumoniae (pneumococcus) is an opportunistic pathogen that can cause severe infectious diseases such as pneumonia, meningitis, and otitis media. Despite the availability of antibiotics and pneumococcal vaccines against some invasive serotypes, pneumococcal infection remains a tremendous clinical challenge due to the increasing frequency of infection by antimicrobial resistant, nonencapsulated, and/or non-vaccine serotype strains. Short-chain fatty acids (SCFAs), which are produced at various mucosal sites in the body, have potent antimicrobial activity, including inhibition of pathogen growth and/or bacterial biofilm formation. In this study, we investigated the antimicrobial activity of SCFAs (acetate, propionate, and butyrate) against various serotypes pneumococci. Propionate generally inhibited the growth of S. pneumoniae serotypes included in the pneumococcal conjugate vaccine (PCV) 13, except for serotypes 3 and 7F, though butyrate and acetate showed no or low inhibition, depending on the serotypes. Of note, butyrate showed strong inhibition against serotype 3, the most prevalent invasive strain since the introduction of the PCV. No SCFAs showed inhibitory effects against serotype 7F. Remarkably, the nonencapsulated pneumococcal strain had more sensitivity to SCFAs than encapsulated parental strains. Taken together, these results suggest that propionate showing the most potent inhibition of pneumococcal growth may be used as an alternative treatment for pneumococcal infection, and that butyrate could be used against serotype 3, which is becoming a serious threat.
Collapse
Affiliation(s)
- Suwon Lim
- Department of Oral Microbiology Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongwook Lee
- Department of Oral Microbiology Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungho Jeong
- Department of Oral Microbiology Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Woo Park
- Department of Oral Microbiology Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jintaek Im
- Department of Oral Microbiology Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Bokeum Choi
- Department of Oral Microbiology Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Donghyun Gwak
- Department of Oral Microbiology Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
20
|
Zinter MS, Dvorak CC, Mayday MY, Reyes G, Simon MR, Pearce EM, Kim H, Shaw PJ, Rowan CM, Auletta JJ, Martin PL, Godder K, Duncan CN, Lalefar NR, Kreml EM, Hume JR, Abdel-Azim H, Hurley C, Cuvelier GDE, Keating AK, Qayed M, Killinger JS, Fitzgerald JC, Hanna R, Mahadeo KM, Quigg TC, Satwani P, Castillo P, Gertz SJ, Moore TB, Hanisch B, Abdel-Mageed A, Phelan R, Davis DB, Hudspeth MP, Yanik GA, Pulsipher MA, Sulaiman I, Segal LN, Versluys BA, Lindemans CA, Boelens JJ, DeRisi JL. Pulmonary microbiome and transcriptome signatures reveal distinct pathobiologic states associated with mortality in two cohorts of pediatric stem cell transplant patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.29.23299130. [PMID: 38077035 PMCID: PMC10705623 DOI: 10.1101/2023.11.29.23299130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Lung injury is a major determinant of survival after pediatric hematopoietic cell transplantation (HCT). A deeper understanding of the relationship between pulmonary microbes, immunity, and the lung epithelium is needed to improve outcomes. In this multicenter study, we collected 278 bronchoalveolar lavage (BAL) samples from 229 patients treated at 32 children's hospitals between 2014-2022. Using paired metatranscriptomes and human gene expression data, we identified 4 patient clusters with varying BAL composition. Among those requiring respiratory support prior to sampling, in-hospital mortality varied from 22-60% depending on the cluster (p=0.007). The most common patient subtype, Cluster 1, showed a moderate quantity and high diversity of commensal microbes with robust metabolic activity, low rates of infection, gene expression indicating alveolar macrophage predominance, and low mortality. The second most common cluster showed a very high burden of airway microbes, gene expression enriched for neutrophil signaling, frequent bacterial infections, and moderate mortality. Cluster 3 showed significant depletion of commensal microbes, a loss of biodiversity, gene expression indicative of fibroproliferative pathways, increased viral and fungal pathogens, and high mortality. Finally, Cluster 4 showed profound microbiome depletion with enrichment of Staphylococci and viruses, gene expression driven by lymphocyte activation and cellular injury, and the highest mortality. BAL clusters were modeled with a random forest classifier and reproduced in a geographically distinct validation cohort of 57 patients from The Netherlands, recapitulating similar cluster-based mortality differences (p=0.022). Degree of antibiotic exposure was strongly associated with depletion of BAL microbes and enrichment of fungi. Potential pathogens were parsed from all detected microbes by analyzing each BAL microbe relative to the overall microbiome composition, which yielded increased sensitivity for numerous previously occult pathogens. These findings support personalized interpretation of the pulmonary microenvironment in pediatric HCT, which may facilitate biology-targeted interventions to improve outcomes.
Collapse
Affiliation(s)
- Matt S Zinter
- Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher C Dvorak
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Madeline Y Mayday
- Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- Departments of Laboratory Medicine and Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Gustavo Reyes
- Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Miriam R Simon
- Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Emma M Pearce
- Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Hanna Kim
- Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Peter J Shaw
- The Children`s Hospital at Westmead, Sydney, Australia
| | - Courtney M Rowan
- Indiana University, Department of Pediatrics, Division of Critical Care Medicine, Indianapolis, IN, USA
| | - Jeffrey J Auletta
- Hematology/Oncology/BMT and Infectious Diseases, Nationwide Children's Hospital, Columbus, OH, USA
- CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN, USA
| | - Paul L Martin
- Division of Pediatric and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | - Kamar Godder
- Cancer and Blood Disorders Center, Nicklaus Children's Hospital, Miami, FL, USA
| | - Christine N Duncan
- Harvard Medical School, Boston, Massachusetts; Division of Pediatric Oncology, Department of Pediatrics, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
| | - Nahal R Lalefar
- Division of Pediatric Hematology/Oncology, UCSF Benioff Children's Hospital Oakland, University of California San Francisco, Oakland, CA, USA
| | - Erin M Kreml
- Department of Child Health, Division of Critical Care Medicine, University of Arizona, Phoenix, AZ, USA
| | - Janet R Hume
- University of Minnesota, Department of Pediatrics, Division of Critical Care Medicine, Minneapolis, MN, USA
| | - Hisham Abdel-Azim
- Department of Pediatrics, Division of Hematology/Oncology and Transplant and Cell Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Loma Linda University School of Medicine, Cancer Center, Children Hospital and Medical Center, Loma Linda, CA, USA
| | - Caitlin Hurley
- Division of Critical Care, Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Geoffrey D E Cuvelier
- CancerCare Manitoba, Manitoba Blood and Marrow Transplant Program, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amy K Keating
- Center for Cancer and Blood Disorders, Children's Hospital Colorado and University of Colorado, Aurora, CO, USA
- Harvard Medical School, Boston, Massachusetts; Division of Pediatric Oncology, Department of Pediatrics, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
| | - Muna Qayed
- Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - James S Killinger
- Division of Pediatric Critical Care, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Julie C Fitzgerald
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Rabi Hanna
- Department of Pediatric Hematology, Oncology and Blood and Marrow Transplantation, Pediatric Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kris M Mahadeo
- Department of Pediatrics, Division of Hematology/Oncology, MD Anderson Cancer Center, Houston, TX, USA
- Division of Pediatric and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | - Troy C Quigg
- Pediatric Blood and Marrow Transplantation Program, Texas Transplant Institute, Methodist Children's Hospital, San Antonio, TX, USA
- Section of Pediatric BMT and Cellular Therapy, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Prakash Satwani
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Columbia University, New York, NY, USA
| | - Paul Castillo
- University of Florida, Gainesville, UF Health Shands Children's Hospital, Gainesville, FL, USA
| | - Shira J Gertz
- Department of Pediatrics, Division of Critical Care Medicine, Joseph M Sanzari Children's Hospital at Hackensack University Medical Center, Hackensack, NJ, USA
- Department of Pediatrics, St. Barnabas Medical Center, Livingston, NJ, USA
| | - Theodore B Moore
- Department of Pediatric Hematology-Oncology, Mattel Children's Hospital, University of California, Los Angeles, CA, USA
| | - Benjamin Hanisch
- Children's National Hospital, Washington, District of Columbia, USA
| | - Aly Abdel-Mageed
- Section of Pediatric BMT and Cellular Therapy, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Rachel Phelan
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Dereck B Davis
- Department of Pediatrics, Hematology/Oncology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michelle P Hudspeth
- Adult and Pediatric Blood & Marrow Transplantation, Pediatric Hematology/Oncology, Medical University of South Carolina Children's Hospital/Hollings Cancer Center, Charleston, SC, USA
| | - Greg A Yanik
- Pediatric Blood and Bone Marrow Transplantation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Michael A Pulsipher
- Division of Hematology, Oncology, Transplantation, and Immunology, Primary Children's Hospital, Huntsman Cancer Institute, Spense Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT, USA
| | - Imran Sulaiman
- Departments of Respiratory Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, USA
| | - Leopoldo N Segal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, USA
| | - Birgitta A Versluys
- Department of Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Division of Pediatrics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Caroline A Lindemans
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, USA
- Department of Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Jaap J Boelens
- Department of Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Division of Pediatrics, University Medical Center Utrecht, Utrecht, Netherlands
- Transplantation and Cellular Therapy, MSK Kids, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
21
|
Sulaiman I, Wu BG, Chung M, Isaacs B, Tsay JCJ, Holub M, Barnett CR, Kwok B, Kugler MC, Natalini JG, Singh S, Li Y, Schluger R, Carpenito J, Collazo D, Perez L, Kyeremateng Y, Chang M, Campbell CD, Hansbro PM, Oppenheimer BW, Berger KI, Goldring RM, Koralov SB, Weiden MD, Xiao R, D’Armiento J, Clemente JC, Ghedin E, Segal LN. Lower Airway Dysbiosis Augments Lung Inflammatory Injury in Mild-to-Moderate Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2023; 208:1101-1114. [PMID: 37677136 PMCID: PMC10867925 DOI: 10.1164/rccm.202210-1865oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 09/07/2023] [Indexed: 09/09/2023] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) is associated with high morbidity, mortality, and healthcare costs. Cigarette smoke is a causative factor; however, not all heavy smokers develop COPD. Microbial colonization and infections are contributing factors to disease progression in advanced stages. Objectives: We investigated whether lower airway dysbiosis occurs in mild-to-moderate COPD and analyzed possible mechanistic contributions to COPD pathogenesis. Methods: We recruited 57 patients with a >10 pack-year smoking history: 26 had physiological evidence of COPD, and 31 had normal lung function (smoker control subjects). Bronchoscopy sampled the upper airways, lower airways, and environmental background. Samples were analyzed by 16S rRNA gene sequencing, whole genome, RNA metatranscriptome, and host RNA transcriptome. A preclinical mouse model was used to evaluate the contributions of cigarette smoke and dysbiosis on lower airway inflammatory injury. Measurements and Main Results: Compared with smoker control subjects, microbiome analyses showed that the lower airways of subjects with COPD were enriched with common oral commensals. The lower airway host transcriptomics demonstrated differences in markers of inflammation and tumorigenesis, such as upregulation of IL-17, IL-6, ERK/MAPK, PI3K, MUC1, and MUC4 in mild-to-moderate COPD. Finally, in a preclinical murine model exposed to cigarette smoke, lower airway dysbiosis with common oral commensals augments the inflammatory injury, revealing transcriptomic signatures similar to those observed in human subjects with COPD. Conclusions: Lower airway dysbiosis in the setting of smoke exposure contributes to inflammatory injury early in COPD. Targeting the lower airway microbiome in combination with smoking cessation may be of potential therapeutic relevance.
Collapse
Affiliation(s)
- Imran Sulaiman
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
- Department of Respiratory Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Respiratory Medicine, Beaumont Hospital, Dublin, Ireland
| | - Benjamin G. Wu
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs (VA) New York Harbor Healthcare System, New York, New York
| | - Matthew Chung
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Bradley Isaacs
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Jun-Chieh J. Tsay
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs (VA) New York Harbor Healthcare System, New York, New York
| | - Meredith Holub
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Hartford Health Care, Hartford, Connecticut
| | - Clea R. Barnett
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Benjamin Kwok
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | | | - Jake G. Natalini
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Shivani Singh
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Yonghua Li
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Rosemary Schluger
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Joseph Carpenito
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Destiny Collazo
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Luisanny Perez
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Yaa Kyeremateng
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Miao Chang
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Christina D. Campbell
- Department of Respiratory Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Respiratory Medicine, Beaumont Hospital, Dublin, Ireland
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Sydney, New South Wales, Australia
| | | | - Kenneth I. Berger
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | | | | | - Michael D. Weiden
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Rui Xiao
- Department of Physiology and Cellular Biophysics, Columbia University School of Medicine, New York, New York; and
| | - Jeanine D’Armiento
- Department of Physiology and Cellular Biophysics, Columbia University School of Medicine, New York, New York; and
| | - Jose C. Clemente
- Department of Genetics and Genomic Sciences and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Leopoldo N. Segal
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, New York
| |
Collapse
|
22
|
Lameire S, Hammad H. Lung epithelial cells: Upstream targets in type 2-high asthma. Eur J Immunol 2023; 53:e2250106. [PMID: 36781404 DOI: 10.1002/eji.202250106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Over the last years, technological advances in the field of asthma have led to the identification of two disease endotypes, namely, type 2-high and type 2-low asthma, characterized by different pathophysiologic mechanisms at a cellular and molecular level. Although specific immune cells are important contributors to each of the recognized asthma endotype, the lung epithelium is now regarded as a crucial player able to orchestrate responses to inhaled environmental triggers such as allergens and microbes. The impact of the epithelium goes beyond its physical barrier. It is nowadays considered as a part of the innate immune system that can actively respond to insults. Activated epithelial cells, by producing a specific set of cytokines, trigger innate and adaptive immune cells to cause pathology. Here, we review how the epithelium contributes to the development of Th2 sensitization to allergens and asthma with a "type 2-high" signature, in both murine models and human studies of this asthma endotype. We also discuss epithelial responses to respiratory viruses, such as rhinovirus, respiratory syncytial virus, and SARS-CoV-2, and how these triggers influence not only asthma development but also asthma exacerbation. Finally, we also summarize the results of promising clinical trials using biologicals targeting epithelial-derived cytokines in asthmatic patients.
Collapse
Affiliation(s)
- Sahine Lameire
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Gao J, Yi X, Wang Z. The application of multi-omics in the respiratory microbiome: Progresses, challenges and promises. Comput Struct Biotechnol J 2023; 21:4933-4943. [PMID: 37867968 PMCID: PMC10585227 DOI: 10.1016/j.csbj.2023.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
The study of the respiratory microbiome has entered a multi-omic era. Through integrating different omic data types such as metagenome, metatranscriptome, metaproteome, metabolome, culturome and radiome surveyed from respiratory specimens, holistic insights can be gained on the lung microbiome and its interaction with host immunity and inflammation in respiratory diseases. The power of multi-omics have moved the field forward from associative assessment of microbiome alterations to causative understanding of the lung microbiome in the pathogenesis of chronic, acute and other types of respiratory diseases. However, the application of multi-omics in respiratory microbiome remains with unique challenges from sample processing, data integration, and downstream validation. In this review, we first introduce the respiratory sample types and omic data types applicable to studying the respiratory microbiome. We next describe approaches for multi-omic integration, focusing on dimensionality reduction, multi-omic association and prediction. We then summarize progresses in the application of multi-omics to studying the microbiome in respiratory diseases. We finally discuss current challenges and share our thoughts on future promises in the field.
Collapse
Affiliation(s)
- Jingyuan Gao
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| |
Collapse
|
24
|
Ray A, Kale SL, Ramonell RP. Bridging the Gap between Innate and Adaptive Immunity in the Lung: Summary of the Aspen Lung Conference 2022. Am J Respir Cell Mol Biol 2023; 69:266-280. [PMID: 37043828 PMCID: PMC10503303 DOI: 10.1165/rcmb.2023-0057ws] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/12/2023] [Indexed: 04/14/2023] Open
Abstract
Although significant strides have been made in the understanding of pulmonary immunology, much work remains to be done to comprehensively explain coordinated immune responses in the lung. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic only served to highlight the inadequacy of current models of host-pathogen interactions and reinforced the need for current and future generations of immunologists to unravel complex biological questions. As part of that effort, the 64th Annual Thomas L. Petty Aspen Lung Conference was themed "Bridging the Gap between Innate and Adaptive Immunity in the Lung" and featured exciting work from renowned immunologists. This report summarizes the proceedings of the 2022 Aspen Lung Conference, which was convened to discuss the roles played by innate and adaptive immunity in disease pathogenesis, evaluate the interface between the innate and adaptive immune responses, assess the role of adaptive immunity in the development of autoimmunity and autoimmune lung disease, discuss lessons learned from immunologic cancer treatments and approaches, and define new paradigms to harness the immune system to prevent and treat lung diseases.
Collapse
Affiliation(s)
- Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sagar L. Kale
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Richard P. Ramonell
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| |
Collapse
|
25
|
Zhou Y, Liu M, Liu K, Wu G, Tan Y. Lung microbiota and potential treatment of respiratory diseases. Microb Pathog 2023:106197. [PMID: 37321423 DOI: 10.1016/j.micpath.2023.106197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
The unique microbiome found in the lungs has been studied and shown to be associated with both pulmonary homeostasis and lung diseases. The lung microbiome has the potential to produce metabolites that modulate host-microbe interactions. Specifically, short-chain fatty acids (SCFAs) produced by certain strains of the lung microbiota have been shown to regulate immune function and maintain gut mucosal health. In response, this review described the distribution and composition of the microbiota in lung diseases and discussed the impact of the lung microbiota on health and lung disease. In addition, the review further elaborated on the mechanism of microbial metabolites in microbial-host interaction and their application in the treatment of lung diseases. A better understanding of the interaction between the microbiota, metabolites, and host will provide potential strategies for the development of novel methods for the treatment of pulmonary microbial induced lung diseases.
Collapse
Affiliation(s)
- Yaxuan Zhou
- Department of Psychiatry, Department of Medicine, Xiangya School of Medical, Central South University, Changsha, 410083, Hunan, China
| | - Mengjun Liu
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, 410083, Hunan, China
| | - Kaixuan Liu
- Department of Excellent Doctor Training, Xiangya School of Medicine, Central South University, Changsha, 410083, Hunan, China
| | - Guojun Wu
- Department of Medical Microbiology, School of Basic Medicine, Central South University, Changsha, 410083, Hunan, China.
| | - Yurong Tan
- Department of Medical Microbiology, School of Basic Medicine, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
26
|
Myszor IT, Gudmundsson GH. Modulation of innate immunity in airway epithelium for host-directed therapy. Front Immunol 2023; 14:1197908. [PMID: 37251385 PMCID: PMC10213533 DOI: 10.3389/fimmu.2023.1197908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Innate immunity of the mucosal surfaces provides the first-line defense from invading pathogens and pollutants conferring protection from the external environment. Innate immune system of the airway epithelium consists of several components including the mucus layer, mucociliary clearance of beating cilia, production of host defense peptides, epithelial barrier integrity provided by tight and adherens junctions, pathogen recognition receptors, receptors for chemokines and cytokines, production of reactive oxygen species, and autophagy. Therefore, multiple components interplay with each other for efficient protection from pathogens that still can subvert host innate immune defenses. Hence, the modulation of innate immune responses with different inducers to boost host endogenous front-line defenses in the lung epithelium to fend off pathogens and to enhance epithelial innate immune responses in the immunocompromised individuals is of interest for host-directed therapy. Herein, we reviewed possibilities of modulation innate immune responses in the airway epithelium for host-directed therapy presenting an alternative approach to standard antibiotics.
Collapse
Affiliation(s)
- Iwona T. Myszor
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Hrafn Gudmundsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Abstract
New methods and technologies within the field of lung biology are beginning to shed new light into the microbial world of the respiratory tract. Long considered to be a sterile environment, it is now clear that the human lungs are frequently exposed to live microbes and their by-products. The nature of the lung microbiome is quite distinct from other microbial communities inhabiting our bodies such as those in the gut. Notably, the microbiome of the lung exhibits a low biomass and is dominated by dynamic fluxes of microbial immigration and clearance, resulting in a bacterial burden and microbiome composition that is fluid in nature rather than fixed. As our understanding of the microbial ecology of the lung improves, it is becoming increasingly apparent that certain disease states can disrupt the microbial-host interface and ultimately affect disease pathogenesis. In this Review, we provide an overview of lower airway microbial dynamics in health and disease and discuss future work that is required to uncover novel therapeutic targets to improve lung health.
Collapse
|
28
|
Understanding the Functional Role of the Microbiome and Metabolome in Asthma. Curr Allergy Asthma Rep 2023; 23:67-76. [PMID: 36525159 DOI: 10.1007/s11882-022-01056-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Asthma is a heterogenous respiratory disease characterized by airway inflammation and obstruction. However, the causes of asthma are unknown. Several studies have reported microbial and metabolomic dysbiosis in asthmatic patients; but, little is known about the functional role of the microbiota or the host-microbe metabolome in asthma pathophysiology. Current multi-omic studies are linking both the metabolome and microbiome in different organ systems to help identify the interactions involved in asthma, with the goal of better identifying endotypes/phenotypes, causal links, and potential targets of treatment. This review thus endeavors to explore the benefits of and current advances in studying microbiome-metabolome interactions in asthma. RECENT FINDINGS This is a narrative review of the current state of research surrounding the interaction between the microbiome and metabolome and their role in asthma. Associations with asthma onset, severity, and phenotype have been identified in both the microbiome and the metabolome, most frequently in the gut. More recently, studies have begun to investigate the role of the respiratory microbiome in airway disease and its association with the systemic metabolome, which has provided further insights into its role in asthma phenotypes. This review also identifies gaps in the field in understanding the direct link between respiratory microbiome and metabolome, hypothesizes the benefits for conducting such studies in the future for asthma treatment and prevention, and identifies current analytical limitations that need to be addressed to advance the field. This is a comprehensive review of the current state of research on the interaction between the microbiome and metabolome and their role in asthma.
Collapse
|
29
|
Antunes KH, Singanayagam A, Williams L, Faiez TS, Farias A, Jackson MM, Faizi FK, Aniscenko J, Kebadze T, Chander Veerati P, Wood L, Bartlett NW, Duarte de Souza AP, Johnston SL. Airway-delivered short-chain fatty acid acetate boosts antiviral immunity during rhinovirus infection. J Allergy Clin Immunol 2023; 151:447-457.e5. [PMID: 36216081 DOI: 10.1016/j.jaci.2022.09.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 08/03/2022] [Accepted: 09/09/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Microbiota are recognized to play a major role in regulation of immunity through release of immunomodulatory metabolites such as short-chain fatty acids (SCFAs). Rhinoviruses (RVs) induce upper respiratory tract illnesses and precipitate exacerbations of asthma and chronic obstructive pulmonary disease through poorly understood mechanisms. Local interactions between SCFAs and antiviral immune responses in the respiratory tract have not been previously investigated. OBJECTIVE We sought to investigate whether pulmonary metabolite manipulation through lung-delivered administration of SCFAs can modulate antiviral immunity to RV infection. METHODS We studied the effects of intranasal administration of the SCFAs acetate, butyrate, and propionate on basal expression of antiviral signatures, and of acetate in a mouse model of RV infection and in RV-infected lung epithelial cell lines. We additionally assessed the effects of acetate, butyrate, and propionate on RV infection in differentiated human primary bronchial epithelial cells. RESULTS Intranasal acetate administration induced basal upregulation of IFN-β, an effect not observed with other SCFAs. Butyrate induced RIG-I expression. Intranasal acetate treatment of mice increased interferon-stimulated gene and IFN-λ expression during RV infection and reduced lung virus loads at 8 hours postinfection. Acetate ameliorated virus-induced proinflammatory responses with attenuated pulmonary mucin and IL-6 expression observed at day 4 and 6 postinfection. This interferon-enhancing effect of acetate was confirmed in human bronchial and alveolar epithelial cell lines. In differentiated primary bronchial epithelial cells, butyrate treatment better modulated IFN-β and IFN-λ gene expression during RV infection. CONCLUSIONS SCFAs augment antiviral immunity and reduce virus load and proinflammatory responses during RV infection.
Collapse
Affiliation(s)
- Krist Helen Antunes
- Laboratory of Clinical and Experimental Immunology - Pontifical Catholic University of Rio Grande do Sul, Porto Alegre; National Heart and Lung Institute and, Department of Infectious Disease, Imperial College London, London
| | - Aran Singanayagam
- Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London
| | - Lily Williams
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle
| | - Tasnim Syakirah Faiez
- Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London
| | - Ana Farias
- National Heart and Lung Institute and, Department of Infectious Disease, Imperial College London, London
| | - Millie M Jackson
- Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London
| | - Fatima K Faizi
- Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London
| | - Julia Aniscenko
- National Heart and Lung Institute and, Department of Infectious Disease, Imperial College London, London
| | - Tatiana Kebadze
- National Heart and Lung Institute and, Department of Infectious Disease, Imperial College London, London
| | | | - Lisa Wood
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle
| | - Nathan W Bartlett
- National Heart and Lung Institute and, Department of Infectious Disease, Imperial College London, London; School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle
| | - Ana Paula Duarte de Souza
- Laboratory of Clinical and Experimental Immunology - Pontifical Catholic University of Rio Grande do Sul, Porto Alegre; National Heart and Lung Institute and, Department of Infectious Disease, Imperial College London, London.
| | - Sebastian L Johnston
- National Heart and Lung Institute and, Department of Infectious Disease, Imperial College London, London; Asthma UK Centre in Allergic Mechanisms of Asthma, London.
| |
Collapse
|
30
|
Bongers KS, Stringer KA, Dickson RP. The gut microbiome in ARDS: from the "whether" and "what" to the "how". Eur Respir J 2023; 61:2202233. [PMID: 36796848 DOI: 10.1183/13993003.02233-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/07/2023] [Indexed: 02/18/2023]
Affiliation(s)
- Kale S Bongers
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Kathleen A Stringer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, MI, USA
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
31
|
The Lung Microbiome: A New Frontier for Lung and Brain Disease. Int J Mol Sci 2023; 24:ijms24032170. [PMID: 36768494 PMCID: PMC9916971 DOI: 10.3390/ijms24032170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Due to the limitations of culture techniques, the lung in a healthy state is traditionally considered to be a sterile organ. With the development of non-culture-dependent techniques, the presence of low-biomass microbiomes in the lungs has been identified. The species of the lung microbiome are similar to those of the oral microbiome, suggesting that the microbiome is derived passively within the lungs from the oral cavity via micro-aspiration. Elimination, immigration, and relative growth within its communities all contribute to the composition of the lung microbiome. The lung microbiome is reportedly altered in many lung diseases that have not traditionally been considered infectious or microbial, and potential pathways of microbe-host crosstalk are emerging. Recent studies have shown that the lung microbiome also plays an important role in brain autoimmunity. There is a close relationship between the lungs and the brain, which can be called the lung-brain axis. However, the problem now is that it is not well understood how the lung microbiota plays a role in the disease-specifically, whether there is a causal connection between disease and the lung microbiome. The lung microbiome includes bacteria, archaea, fungi, protozoa, and viruses. However, fungi and viruses have not been fully studied compared to bacteria in the lungs. In this review, we mainly discuss the role of the lung microbiome in chronic lung diseases and, in particular, we summarize the recent progress of the lung microbiome in multiple sclerosis, as well as the lung-brain axis.
Collapse
|
32
|
Di Simone SK, Rudloff I, Nold-Petry CA, Forster SC, Nold MF. Understanding respiratory microbiome-immune system interactions in health and disease. Sci Transl Med 2023; 15:eabq5126. [PMID: 36630485 DOI: 10.1126/scitranslmed.abq5126] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Interactions between the developing microbiome and maturing immune system in early life are critical for establishment of a homeostasis beneficial to both host and commensals. The lung harbors a diverse community of microbes associated with health and local or systemic disease. We discuss how early life colonization and community changes correlate with immune development and health and disease throughout infancy, childhood, and adult life. We highlight key advances in microbiology, immunology, and computational biology that allow investigation of the functional relevance of interactions between the respiratory microbiome and host immune system, which may unlock the potential for microbiome-based therapeutics.
Collapse
Affiliation(s)
- Sara K Di Simone
- Department of Paediatrics, Monash University, Melbourne 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia.,Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medical Research, Melbourne 3168, Australia
| | - Ina Rudloff
- Department of Paediatrics, Monash University, Melbourne 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia
| | - Claudia A Nold-Petry
- Department of Paediatrics, Monash University, Melbourne 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia
| | - Samuel C Forster
- Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medical Research, Melbourne 3168, Australia.,Department of Molecular and Translational Science, Monash University, Melbourne 3168, Australia
| | - Marcel F Nold
- Department of Paediatrics, Monash University, Melbourne 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia.,Monash Newborn, Monash Children's Hospital, Melbourne 3168, Australia
| |
Collapse
|
33
|
Xu LQ, Yang J, Liang W, Chen J, Sun Z, Zhang Q, Liu X, Qiao F, Li J. LDMD: A database of microbes in human lung disease. Front Microbiol 2023; 13:1085079. [PMID: 36704562 PMCID: PMC9873265 DOI: 10.3389/fmicb.2022.1085079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
Background Lungs were initially thought to be sterile. However, with the development of sequencing technologies, various commensal microorganisms, especially bacteria, have been observed in the lungs of healthy humans. Several studies have also linked lung microbes to infectious lung diseases. However, few databases have focused on the metagenomics of lungs to provide microbial compositions and corresponding metadata information. Such a database would be handy for researching and treating lung diseases. Methods To provide researchers with a preliminary understanding of lung microbes and their research methods, the LDMD collated nearly 10,000 studies in the literature covering over 30 diseases, gathered basic information such as the sources of lung microbe samples, sequencing methods, and processing software, as well as analyzed the metagenomic sequencing characteristics of lung microbes. Besides, the LDMD also contained data collected in our laboratory. Results In this study, we established the Lung Disease Microorganisms Database (LDMD), a comprehensive database of microbes involved in lung disease. The LDMD offered sequence analysis capabilities, allowing users to upload their sequencing results, align them with the data collated in the database, and visually analyze the results. Conclusion In conclusion, the LDMD possesses various functionalities that provide a convenient and comprehensive resource to study the lung metagenome and treat lung diseases.
Collapse
Affiliation(s)
- Li-Qun Xu
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China,*Correspondence: Li-Qun Xu, ✉
| | - Jing Yang
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Weicheng Liang
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jiang Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Zepeng Sun
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Qiang Zhang
- Department of Respirology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xinlong Liu
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Feng Qiao
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China,Jian Li, ✉
| |
Collapse
|
34
|
De Nuccio F, Piscitelli P, Toraldo DM. Gut-lung Microbiota Interactions in Chronic Obstructive Pulmonary Disease (COPD): Potential Mechanisms Driving Progression to COPD and Epidemiological Data. Lung 2022; 200:773-781. [PMID: 36241745 DOI: 10.1007/s00408-022-00581-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/30/2022] [Indexed: 12/30/2022]
Abstract
This paper focuses on the gut-lung axis in the context of Inflammatory Bowel Disease (IBD) and Chronic Obstructive Pulmonary Disease (COPD), highlighting the key role played by microbial dysbiosis and the impact of environmental and genetic factors on the innate and acquired immune system and on chronic inflammation in the intestinal and pulmonary tracts. Recent evidence indicates that Antigen-Presenting Cells (APCs) perform regulatory activity influencing the composition of the microbiota. APCs (macrophages, dendritic cells, B cells) possess membrane receptors known as Pattern Recognition Receptors (PRRs), a category of toll-like receptors (TLRs). PRRs recognise distinct microbial structures and microbial metabolites called Signals, which modulate the saprophytic microbial equilibrium of the healthy microbiota by recognising molecular profiles associated with commensal microbes (Microbe-Associated Molecular Patterns, MAMPs). During dysbiosis, pathogenic bacteria can prompt an inflammatory response, producing PAMPs (Pathogen-Associated Molecular Patterns) thereby activating the proliferation of inflammatory response cells, both local and systemic. This series of regulatory and immune-response events is responsible (together with chronic infection, incorrect diet, obesity, etc.) for the systemic chronic inflammation (SCI) known as "low-grade inflammation" typical of COPD and IBD. This review looks at immunological research and explores the role of the microbiota, looking at two recent clinical studies, SPIROMICS and AERIS. There is a need for further clinical studies to characterize the pulmonary microbiota and to obtain new information about the pathogenesis of lung disease to improve our knowledge and treatment strategies and identify new therapeutic targets.
Collapse
Affiliation(s)
- Francesco De Nuccio
- Laboratory Human Anatomy, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | | | | |
Collapse
|
35
|
Chotirmall SH, Bogaert D, Chalmers JD, Cox MJ, Hansbro PM, Huang YJ, Molyneaux PL, O’Dwyer DN, Pragman AA, Rogers GB, Segal LN, Dickson RP. Therapeutic Targeting of the Respiratory Microbiome. Am J Respir Crit Care Med 2022; 206:535-544. [PMID: 35549655 PMCID: PMC9716896 DOI: 10.1164/rccm.202112-2704pp] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - Debby Bogaert
- Center for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, the Netherlands
| | - James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom
| | - Michael J. Cox
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Yvonne J. Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Philip L. Molyneaux
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - David N. O’Dwyer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Alexa A. Pragman
- Department of Medicine, Minneapolis Veterans Affairs Medical Center, Minneapolis, Minnesota
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Geraint B. Rogers
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Leopoldo N. Segal
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, New York; and
| | - Robert P. Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, Michigan
| |
Collapse
|
36
|
Lipinski JH, Erb-Downward JR, Huffnagle GB, Flaherty KR, Martinez FJ, Moore BB, Dickson RP, Noth I, O’Dwyer DN. Toll-Interacting Protein and Altered Lung Microbiota in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2022; 206:224-227. [PMID: 35446241 PMCID: PMC9887421 DOI: 10.1164/rccm.202111-2590le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
| | | | | | | | | | | | | | - Imre Noth
- University of VirginiaCharlottesville, Virginia
| | - David N. O’Dwyer
- University of MichiganAnn Arbor, Michigan,Corresponding author (e-mail: )
| |
Collapse
|
37
|
Birla P, Shaikh FY. De- "bug"-ing the microbiome in lung cancer. Cancer Metastasis Rev 2022; 41:335-346. [PMID: 35588337 DOI: 10.1007/s10555-022-10036-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
The identification of microbes enriched in the healthy lung has led to the compelling discovery that microbes may contribute to lung cancer pathogenesis. Here, we review the recent literature showing microbial associations with lung cancer as well as the functional features that have been identified in human and murine studies. Most biomarker data remain limited due to variable findings. However, multiple studies have found that lung tumors or ipsilateral airway samples have decreased α diversity compared to normal tissue. Specific genera, such as Veillonella and Streptococcus, were also found in association with lung tumors using multiple sampling methodologies. These microbes, which are generally found in the upper respiratory track, are associated with an IL-17 signature in the lung, potentially resulting in a pro-tumorigenic environment. Studies detailing these immune mechanisms are limited, and further investigation is necessary to delineate how these bacteria, their metabolites, and potentially tumor-associated neoantigens modulate the immune response in cancer.
Collapse
Affiliation(s)
- Pakhi Birla
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street CRB1 Bldg, Suite 4M 441, Baltimore, MD, 21231, USA
| | - Fyza Y Shaikh
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street CRB1 Bldg, Suite 4M 441, Baltimore, MD, 21231, USA.
| |
Collapse
|
38
|
Inhaled Corticosteroids Selectively Alter the Microbiome and Host Transcriptome in the Small Airways of Patients with Chronic Obstructive Pulmonary Disease. Biomedicines 2022; 10:biomedicines10051110. [PMID: 35625847 PMCID: PMC9138653 DOI: 10.3390/biomedicines10051110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Patients with chronic obstructive pulmonary disease (COPD) are commonly treated with inhaled corticosteroid/long-acting ß2-agonist combination therapy. While previous studies have investigated the host–microbiome interactions in COPD, the effects of specific steroid formulations on this complex cross-talk remain obscure. Methods: We collected and evaluated data from the Study to Investigate the Differential Effects of Inhaled Symbicort and Advair on Lung Microbiota (DISARM), a randomized controlled trial. Bronchoscopy was performed on COPD patients before and after treatment with salmeterol/fluticasone, formoterol/budesonide or formoterol-only. Bronchial brush samples were processed for microbial 16S rRNA gene sequencing and host mRNA sequencing. Longitudinal changes in the microbiome at a community, phylum and genus level were correlated with changes in host gene expression using a Spearman’s rank correlation test. Findings: In COPD patients treated with salmeterol/fluticasone, the expression levels of 676 host genes were significantly correlated to changes in the alpha diversity of the small airways. At a genus level, the expression levels of 122 host genes were significantly related to changes in the relative abundance of Haemophilus. Gene enrichment analyses revealed the enrichment of pathways and biological processes related to innate and adaptive immunity and inflammation. None of these changes were evident in patients treated with formoterol/budesonide or formoterol alone. Interpretation: Changes in the microbiome following salmeterol/fluticasone treatment are related to alterations in the host transcriptome in the small airways of patients with COPD. These data may provide insights into why some COPD patients treated with inhaled corticosteroids may be at an increased risk for airway infection, including pneumonia. Funding: The Canadian Institute of Health Research, the British Columbia Lung Association, and an investigator-initiated grant from AstraZeneca.
Collapse
|
39
|
Morton R, Singanayagam A. The respiratory tract microbiome: moving from correlation to causation. Eur Respir J 2022; 59:59/5/2103079. [PMID: 35512808 DOI: 10.1183/13993003.03079-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Richard Morton
- Centre for Molecular Bacteriology and Infection, Dept of Life Sciences, Imperial College London, London, UK
| | - Aran Singanayagam
- Centre for Molecular Bacteriology and Infection, Dept of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
40
|
Singh S, Natalini JG, Segal LN. Lung microbial-host interface through the lens of multi-omics. Mucosal Immunol 2022; 15:837-845. [PMID: 35794200 PMCID: PMC9391302 DOI: 10.1038/s41385-022-00541-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023]
Abstract
In recent years, our understanding of the microbial world within us has been revolutionized by the use of culture-independent techniques. The use of multi-omic approaches can now not only comprehensively characterize the microbial environment but also evaluate its functional aspects and its relationship with the host immune response. Advances in bioinformatics have enabled high throughput and in-depth analyses of transcripts, proteins and metabolites and enormously expanded our understanding of the role of the human microbiome in different conditions. Such investigations of the lower airways have specific challenges but as the field develops, new approaches will be facilitated. In this review, we focus on how integrative multi-omics can advance our understanding of the microbial environment and its effects on the host immune tone in the lungs.
Collapse
Affiliation(s)
- Shivani Singh
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Jake G. Natalini
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY,NYU Langone Lung Transplant Institute, New York University Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Leopoldo N. Segal
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY
| |
Collapse
|
41
|
Campbell CD, Barnett C, Sulaiman I. A clinicians’ review of the respiratory microbiome. Breathe (Sheff) 2022; 18:210161. [PMID: 36338247 PMCID: PMC9584600 DOI: 10.1183/20734735.0161-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/02/2022] [Indexed: 11/25/2022] Open
Abstract
The respiratory microbiome and its impact in health and disease is now well characterised. With the development of next-generation sequencing and the use of other techniques such as metabolomics, the functional impact of microorganisms in different host environments can be elucidated. It is now clear that the respiratory microbiome plays an important role in respiratory disease. In some diseases, such as bronchiectasis, examination of the microbiome can even be used to identify patients at higher risk of poor outcomes. Furthermore, the microbiome can aid in phenotyping. Finally, development of multi-omic analysis has revealed interactions between the host and microbiome in some conditions. This review, although not exhaustive, aims to outline how the microbiome is investigated, the healthy respiratory microbiome and its role in respiratory disease. The respiratory microbiome encompasses bacterial, fungal and viral communities. In health, it is a dynamic structure and dysbiotic in disease. Dysbiosis can be related to disease severity and may be utilised to predict patients at clinical risk.https://bit.ly/3pNSgnA
Collapse
|
42
|
Zinter MS, Versluys AB, Lindemans CA, Mayday MY, Reyes G, Sunshine S, Chan M, Fiorino EK, Cancio M, Prevaes S, Sirota M, Matthay MA, Kharbanda S, Dvorak CC, Boelens JJ, DeRisi JL. Pulmonary microbiome and gene expression signatures differentiate lung function in pediatric hematopoietic cell transplant candidates. Sci Transl Med 2022; 14:eabm8646. [PMID: 35263147 PMCID: PMC9487170 DOI: 10.1126/scitranslmed.abm8646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Impaired baseline lung function is associated with mortality after pediatric allogeneic hematopoietic cell transplantation (HCT), yet limited knowledge of the molecular pathways that characterize pretransplant lung function has hindered the development of lung-targeted interventions. In this study, we quantified the association between bronchoalveolar lavage (BAL) metatranscriptomes and paired pulmonary function tests performed a median of 1 to 2 weeks before allogeneic HCT in 104 children in The Netherlands. Abnormal pulmonary function was recorded in more than half the cohort, consisted most commonly of restriction and impaired diffusion, and was associated with both all-cause and lung injury-related mortality after HCT. Depletion of commensal supraglottic taxa, such as Haemophilus, and enrichment of nasal and skin taxa, such as Staphylococcus, in the BAL microbiome were associated with worse measures of lung capacity and gas diffusion. In addition, BAL gene expression signatures of alveolar epithelial activation, epithelial-mesenchymal transition, and down-regulated immunity were associated with impaired lung capacity and diffusion, suggesting a postinjury profibrotic response. Detection of microbial depletion and abnormal epithelial gene expression in BAL enhanced the prognostic utility of pre-HCT pulmonary function tests for the outcome of post-HCT mortality. These findings suggest a potentially actionable connection between microbiome depletion, alveolar injury, and pulmonary fibrosis in the pathogenesis of pre-HCT lung dysfunction.
Collapse
Affiliation(s)
- Matt S Zinter
- School of Medicine, Department of Pediatrics, Division of Critical Care Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,School of Medicine, Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, San Francisco, CA 94143, USA
| | - A Birgitta Versluys
- University Medical Center Utrecht, Department of Pediatric Stem Cell Transplantation, Utrecht, 3584 CX, Netherlands.,Princess Maxima Center for Pediatric Oncology, Department of Hematopoietic Cell Transplantation, Utrecht 3584 CX, Netherlands
| | - Caroline A Lindemans
- University Medical Center Utrecht, Department of Pediatric Stem Cell Transplantation, Utrecht, 3584 CX, Netherlands.,Princess Maxima Center for Pediatric Oncology, Department of Hematopoietic Cell Transplantation, Utrecht 3584 CX, Netherlands
| | - Madeline Y Mayday
- Department of Pathology, Graduate Program in Experimental Pathology, and Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA
| | - Gustavo Reyes
- School of Medicine, Department of Pediatrics, Division of Critical Care Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sara Sunshine
- School of Medicine, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marilynn Chan
- School of Medicine, Department of Pediatrics, Division of Pulmonology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elizabeth K Fiorino
- WC Medical College, Department of Pediatrics, Division of Pulmonology, Allergy and Immunology, Cornell University, New York City, NY 10065, USA
| | - Maria Cancio
- WC Medical College, Department of Pediatrics, Cornell University, New York City, NY 10065, USA.,Department of Pediatric Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Sabine Prevaes
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, 3584 CX, Netherlands
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,School of Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael A Matthay
- School of Medicine, Cardiovascular Research Institute, Departments of Medicine and Anesthesiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sandhya Kharbanda
- School of Medicine, Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher C Dvorak
- School of Medicine, Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jaap J Boelens
- WC Medical College, Department of Pediatrics, Cornell University, New York City, NY 10065, USA.,Department of Pediatric Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Joseph L DeRisi
- School of Medicine, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
43
|
Affiliation(s)
- John E McGinniss
- Perelman School of Medicine University of Pennsylvania Philadelphia, Pennsylvania
| | - Ronald G Collman
- Perelman School of Medicine University of Pennsylvania Philadelphia, Pennsylvania
| |
Collapse
|
44
|
Narayana JK, Mac Aogáin M, Goh WWB, Xia K, Tsaneva-Atanasova K, Chotirmall SH. Mathematical-based microbiome analytics for clinical translation. Comput Struct Biotechnol J 2021; 19:6272-6281. [PMID: 34900137 PMCID: PMC8637001 DOI: 10.1016/j.csbj.2021.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
Traditionally, human microbiology has been strongly built on the laboratory focused culture of microbes isolated from human specimens in patients with acute or chronic infection. These approaches primarily view human disease through the lens of a single species and its relevant clinical setting however such approaches fail to account for the surrounding environment and wide microbial diversity that exists in vivo. Given the emergence of next generation sequencing technologies and advancing bioinformatic pipelines, researchers now have unprecedented capabilities to characterise the human microbiome in terms of its taxonomy, function, antibiotic resistance and even bacteriophages. Despite this, an analysis of microbial communities has largely been restricted to ordination, ecological measures, and discriminant taxa analysis. This is predominantly due to a lack of suitable computational tools to facilitate microbiome analytics. In this review, we first evaluate the key concerns related to the inherent structure of microbiome datasets which include its compositionality and batch effects. We describe the available and emerging analytical techniques including integrative analysis, machine learning, microbial association networks, topological data analysis (TDA) and mathematical modelling. We also present how these methods may translate to clinical settings including tools for implementation. Mathematical based analytics for microbiome analysis represents a promising avenue for clinical translation across a range of acute and chronic disease states.
Collapse
Affiliation(s)
- Jayanth Kumar Narayana
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James’s Hospital, Dublin, Ireland
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Wilson Wen Bin Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kelin Xia
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics & Living Systems Institute, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
45
|
Abstract
The healthy lung was long thought of as sterile, but recent advances using molecular sequencing approaches have detected bacteria at low levels. Healthy lung bacteria largely reflect communities present in the upper respiratory tract that enter the lung via microaspiration, which is balanced by mechanical and immune clearance and likely involves limited local replication. The nature and dynamics of the lung microbiome, therefore, differ from those of ecological niches with robust self-sustaining microbial communities. Aberrant populations (dysbiosis) have been demonstrated in many pulmonary diseases not traditionally considered microbial in origin, and potential pathways of microbe-host crosstalk are emerging. The question now is whether and how dysbiotic microbiota contribute to initiation or perpetuation of injury. The fungal microbiome and virome are less well studied. This Review highlights features of the lung microbiome, unique considerations in studying it, examples of dysbiosis in selected disease, emerging concepts in lung microbiome-host interactions, and critical areas for investigation.
Collapse
|
46
|
Baker JM, Dickson RP. Is the lung microbiome alive? Lessons from Antarctic soil. Eur Respir J 2021; 58:58/1/2100321. [PMID: 34326174 DOI: 10.1183/13993003.00321-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/22/2023]
Affiliation(s)
- Jennifer M Baker
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Dept of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA .,Dept of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.,Michigan Center for Integrative Research in Critical Care, Ann Arbor, MI, USA
| |
Collapse
|
47
|
Pantaleón García J, Hinkle KJ, Falkowski NR, Evans SE, Dickson RP. Selective Modulation of the Pulmonary Innate Immune Response Does not Change Lung Microbiota in Healthy Mice. Am J Respir Crit Care Med 2021; 204:734-736. [PMID: 34153197 DOI: 10.1164/rccm.202104-0836le] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jezreel Pantaleón García
- The University of Texas MD Anderson Cancer Center, 4002, Pulmonary Medicine, Houston, Texas, United States
| | - Kevin J Hinkle
- University of Michigan Health System, 21707, Internal Medicine, Ann Arbor, Michigan, United States
| | - Nicole R Falkowski
- University of Michigan Health System, 21707, Internal Medicine, Ann Arbor, Michigan, United States
| | - Scott E Evans
- University of Texas-M.D. Anderson Cancer Center, Pulmonary Medicine, Houston, Texas, United States
| | - Robert P Dickson
- University of Michigan Health System, 21707, Internal Medicine, Ann Arbor, Michigan, United States;
| |
Collapse
|
48
|
Baker JM, Hinkle KJ, McDonald RA, Brown CA, Falkowski NR, Huffnagle GB, Dickson RP. Whole lung tissue is the preferred sampling method for amplicon-based characterization of murine lung microbiota. MICROBIOME 2021; 9:99. [PMID: 33952355 PMCID: PMC8101028 DOI: 10.1186/s40168-021-01055-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/22/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Low-biomass microbiome studies (such as those of the lungs, placenta, and skin) are vulnerable to contamination and sequencing stochasticity, which obscure legitimate microbial signal. While human lung microbiome studies have rigorously identified sampling strategies that reliably capture microbial signal from these low-biomass microbial communities, the optimal sampling strategy for characterizing murine lung microbiota has not been empirically determined. Performing accurate, reliable characterization of murine lung microbiota and distinguishing true microbial signal from noise in these samples will be critical for further mechanistic microbiome studies in mice. RESULTS Using an analytic approach grounded in microbial ecology, we compared bacterial DNA from the lungs of healthy adult mice collected via two common sampling approaches: homogenized whole lung tissue and bronchoalveolar lavage (BAL) fluid. We quantified bacterial DNA using droplet digital PCR, characterized bacterial communities using 16S rRNA gene sequencing, and systematically assessed the quantity and identity of bacterial DNA in both specimen types. We compared bacteria detected in lung specimens to each other and to potential source communities: negative (background) control specimens and paired oral samples. By all measures, whole lung tissue in mice contained greater bacterial signal and less evidence of contamination than did BAL fluid. Relative to BAL fluid, whole lung tissue exhibited a greater quantity of bacterial DNA, distinct community composition, decreased sample-to-sample variation, and greater biological plausibility when compared to potential source communities. In contrast, bacteria detected in BAL fluid were minimally different from those of procedural, reagent, and sequencing controls. CONCLUSIONS An ecology-based analytical approach discriminates signal from noise in this low-biomass microbiome study and identifies whole lung tissue as the preferred specimen type for murine lung microbiome studies. Sequencing, analysis, and reporting of potential source communities, including negative control specimens and contiguous biological sites, are crucial for biological interpretation of low-biomass microbiome studies, independent of specimen type. Video abstract.
Collapse
Affiliation(s)
- Jennifer M Baker
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5642, USA
| | - Kevin J Hinkle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5642, USA
| | - Roderick A McDonald
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5642, USA
| | - Christopher A Brown
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5642, USA
| | - Nicole R Falkowski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5642, USA
| | - Gary B Huffnagle
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5642, USA
- Department of Molecular, Cellular, & Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Robert P Dickson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5642, USA.
- Michigan Center for Integrative Research in Critical Care, Ann Arbor, MI, USA.
| |
Collapse
|