1
|
Marzari A, Racotta IS, Escobedo-Fregoso C, Artigaud S, Kraffe E, Salgado-García RL. Reproductive effort affects cellular response in the mantle of Nodipecten subnodosus scallops exposed to acute hyperthermia. Comp Biochem Physiol A Mol Integr Physiol 2024; 299:111766. [PMID: 39426584 DOI: 10.1016/j.cbpa.2024.111766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
In marine ecosystems, temperature regulates the energy metabolism of animals. In the last decades, the temperature increase was related to mass mortality events of marine ectotherms, particularly during high-energy investment for reproduction. In scallops, the mantle has been poorly investigated while this tissue covers more than 40 % of the body mass, contributing to the perception of surrounding environmental stimuli. Our aim was to assess the cellular and molecular responses linked to energy metabolism in the mantle of adult N. subnodosus facing acute hyperthermia during reproductive effort. Scallops collected in spring (late gametogenesis) and summer (ripe gonads) were exposed to a control temperature (22 °C) or acute hyperthermia (30 °C) for 24 h. In spring, increased arginine kinase (AK) activity together with increased pyruvate kinase/citrate synthase ratio (PK/CS) suggested an enhanced carbohydrate, pyruvate, and arginine metabolism to maintain the adenylate energy charge (AEC) in the mantle of scallops coping with acute thermal increase. In summer, animals decreased their AEC (5 %) and arginine phosphate pool (40 %) and increased their anaerobic metabolism as shown by enhanced activities of lactate-dehydrogenase (LDH) and octopine dehydrogenase (ODH), respectively. The abundance of twenty proteins involved in energy metabolism (isocitrate dehydrogenase, ATP synthase subunit β), protein protection (cognate heat shock protein 70), and cytoskeleton (actins and tubulins) were affected only by season. These results underlie the role of the mantle of N. subnodosus in the seasonal responses of this tissue to thermal fluctuations during reproductive effort with possible implications for the physiological performance of scallops under heat waves in wild or harvest conditions.
Collapse
Affiliation(s)
- A Marzari
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Univ Brest, CNRS, IRD, Ifremer, IUEM, F-29280 Plouzane, France.
| | - I S Racotta
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, B.C.S, Mexico.
| | - C Escobedo-Fregoso
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, B.C.S, Mexico.
| | - S Artigaud
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Univ Brest, CNRS, IRD, Ifremer, IUEM, F-29280 Plouzane, France.
| | - E Kraffe
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Univ Brest, CNRS, IRD, Ifremer, IUEM, F-29280 Plouzane, France.
| | - R L Salgado-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, B.C.S, Mexico.
| |
Collapse
|
2
|
Zhang Y, Geng S, Yu G, Hong Y, Hu B. Research progress on formation mechanism of pearl. Heliyon 2024; 10:e35015. [PMID: 39170518 PMCID: PMC11336291 DOI: 10.1016/j.heliyon.2024.e35015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Pearls are deeply cherished for their rich color and gorgeous luster, and their quality directly affects their value. Currently, the evaluation of pearl quality is mainly based on four aspects: color, shape, size and smoothness. The quality of pearls is influenced by a variety of factors, categorized into internal factors, such as the structural composition of the nacreous layer and genetic factors of the mussels, and external factors, including the aquaculture environment. Existing research results indicates that genetic factors are the dominant factor controlling the pearl quality. However, the macromolecules such as metal ions, organic pigments and various physical and chemical factors in the aquaculture water environment will also significantly impact pearl quality. Among these, matrix proteins are organic macromolecules found in the nacreous layer that play an important role in pearl quality. They participate in the deposition of calcium carbonate and the construction of the organic framework, affecting the pearls' size and shape. The color of pearls is influenced by the deposition of metal ions, the transport of organic pigments and the regulation of microstructure.
Collapse
Affiliation(s)
- Yingyu Zhang
- School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
| | - Shiyu Geng
- School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
| | - Guilan Yu
- School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yijiang Hong
- School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, Jiangxi Province, China
| | - Beijuan Hu
- School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
3
|
Li Z, Yang M, Zhou C, Shi P, Hu P, Liang B, Jiang Q, Zhang L, Liu X, Lai C, Zhang T, Song H. Deciphering the molecular toolkit: regulatory elements governing shell biomineralization in marine molluscs. Integr Zool 2024. [PMID: 39030865 DOI: 10.1111/1749-4877.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
The intricate process of shell biomineralization in marine molluscs is governed by a complex interplay of regulatory elements, encompassing secretomes, transporters, and noncoding RNA. This review delves into recent advancements in understanding these regulatory mechanisms, emphasizing their significance in elucidating the functions and evolutionary dynamics of the molluscan shell biomineralization process. Central to this intricate orchestration are secretomes with diverse functional domains, selectively exported to the extrapallial space, which directly regulate crystal growth and morphology. Transporters are crucial for substrate transportation in the calcification and maintenance of cellular homeostasis. Beyond proteins and transporters, noncoding RNA molecules are integral components influencing shell biomineralization. This review underscores the nonnegligible roles played by these genetic elements at the molecular level. To comprehend the complexity of biomineralization in mollusc, we explore the origin and evolutionary history of regulatory elements, primarily secretomes. While some elements have recently evolved, others are ancient genes that have been co-opted into the biomineralization toolkit. These elements undergo structural and functional evolution through rapidly evolving repetitive low-complexity domains and domain gain/loss/rearrangements, ultimately shaping a distinctive set of secretomes characterized by both conserved features and evolutionary innovations. This comprehensive review enhances our understanding of molluscan biomineralization at the molecular and genetic levels.
Collapse
Affiliation(s)
- Zhuoqing Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meijie Yang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cong Zhou
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pu Shi
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengpeng Hu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Liang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingtian Jiang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lili Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaoyan Liu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Changping Lai
- Lianyungang Blue Carbon Marine Technology Co., Lianyungang, China
| | - Tao Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Song
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Liu H, Liu C, Zhang W, Yuan Y, Wang Z, Huang J. Similar construction of spicules and shell plates: Implications for the origin of chiton biomineralization. J Proteomics 2024; 296:105126. [PMID: 38364902 DOI: 10.1016/j.jprot.2024.105126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
The hard shells of mollusks are products of biomineralization, a distinctive feature of the Cambrian explosion. Despite our understanding of shell structure and mechanical properties, their origin remains mysterious. In addition to their shell plates, most chitons have calcium deposits on their girdles. However, the similarity of these two mineralized structures still needs to be determined, limiting our comprehension of their origins. In our study, we analyzed the matrix proteins in the spicules of chiton (Acanthopleura loochooana) and compared them with the matrix proteins in the shells of the same species. Proteomics identified 96 unique matrix proteins in spicules. Comparison of biomineralization-related matrix proteins in shell plates and spicules revealed shared proteins, including carbonic anhydrases, tyrosinase-hemocyanin, von Willebrand factor type A, cadherin, and glycine-rich unknown proteins. Based on similarities in key matrix proteins, we propose that spicules and shell plates originated from a common mineralization system in their ancestral lineage, suggesting the existence of a common core or toolkit of matrix proteins among calcifying organisms. SIGNIFICANCE: In this study, we try to understand the types and diversity of matrix proteins in the biomineralization of chiton shell plates and spicules. Through a comparative analysis, we seek insights into the core biomineralization toolkit of ancestral mollusks. To achieve this, we conducted LC-MS/MS and RT-qPCR analyses to identify the types and relative expression levels of matrix proteins in both shell plates and spicules. The analysis revealed 96 matrix proteins in the spicules. A comparison of biomineralization-related matrix proteins in shell plates and spicules from the same species revealed shared proteins including many unknown proteins unique to chitons. Blast searching reveals a universal conservation of these proteins among other chitons. Hence, we propose that spicules and shell plates originated from a common mineralization system in their ancestral lineage. Our work provides a molecular basis for studying biomineralization in polyplacophoran mollusks and understanding biomineralization evolution. In addition, it identifies potential matrix proteins that could be applied to control crystal growth.
Collapse
Affiliation(s)
- Haipeng Liu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Chuang Liu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China.
| | - Wenjing Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Yang Yuan
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | | |
Collapse
|
5
|
Hanif MA, Han JD, Kim SC, Hossen S, Kho KH. EF-Hand-Binding Secreted Protein Hdh-SMP5 Regulates Shell Biomineralization and Responses to Stress in Pacific Abalone, Haliotis discus hannai. Curr Issues Mol Biol 2023; 45:10079-10096. [PMID: 38132475 PMCID: PMC10741955 DOI: 10.3390/cimb45120629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The development of a shell is a complex calcium metabolic process involving shell matrix proteins (SMPs). In this study, we describe the isolation, characterization, and expression of SMP5 and investigate its potential regulatory role in the shell biomineralization of Pacific abalone Haliotis discus hannai. The full-length Hdh-SMP5 cDNA contains 685 bp and encodes a polypeptide of 134 amino acids. Structurally, the Hdh-SMP5 protein belongs to the EF-hand-binding superfamily, which possesses three EF-hand Ca2+-binding regions and is rich in aspartic acid. The distinct clustering patterns in the phylogenetic tree indicate that the amino acid composition and structure of this protein may vary among different SMPs. During early development, significantly higher expression was observed in the trochophore and veliger stages. Hdh-SMP5 was also upregulated during shell biomineralization in Pacific abalone. Long periods of starvation cause Hdh-SMP5 expression to decrease. Furthermore, Hdh-SMP5 expression was observed to be significantly higher under thermal stress at temperatures of 15, 30, and 25 °C for durations of 6 h, 12 h, and 48 h, respectively. Our study is the first to characterize Hdh-SMP5 comprehensively and analyze its expression to elucidate its dynamic roles in ontogenetic development, shell biomineralization, and the response to starvation and thermal stress.
Collapse
Affiliation(s)
- Md Abu Hanif
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea; (M.A.H.); (S.H.)
| | - Ji Do Han
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea; (J.D.H.); (S.C.K.)
| | - Soo Cheol Kim
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea; (J.D.H.); (S.C.K.)
| | - Shaharior Hossen
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea; (M.A.H.); (S.H.)
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea; (M.A.H.); (S.H.)
| |
Collapse
|
6
|
Wang Y, Mao J, Fan Z, Hang Y, Tang A, Tian Y, Wang X, Hao Z, Han B, Ding J, Chang Y. Transcriptome analysis reveals core lncRNA-mRNA networks regulating melanization and biomineralization in Patinopecten yessoensis shell-infested by Polydora. BMC Genomics 2023; 24:723. [PMID: 38031026 PMCID: PMC10687851 DOI: 10.1186/s12864-023-09837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Patinopecten yessoensis, a large and old molluscan group, has been one of the most important aquaculture shellfish in Asian countries because of its high economic value. However, the aquaculture of the species has recently been seriously affected by the frequent outbreaks of Polydora disease, causing great economic losses. Long non-coding RNAs (lncRNAs) exhibit exhibit crucial effects on diverse biological processes, but still remain poorly studied in scallops, limiting our understanding of the molecular regulatory mechanism of P. yessoensis in response to Polydora infestation. RESULTS In this study, a high-throughput transcriptome analysis was conducted in the mantles of healthy and Polydora-infected P. yessoensis by RNA sequencing. A total of 19,133 lncRNAs with 2,203 known and 16,930 novel were identified. The genomic characterizations of lncRNAs showed shorter sequence and open reading frame (ORF) length, fewer number of exons and lower expression levels in comparison with mRNAs. There were separately 2280 and 1636 differentially expressed mRNAs and lncRNAs (DEGs and DELs) detected in diseased individuals. The target genes of DELs were determined by both co-location and co-expression analyses. Functional enrichment analysis revealed that DEGs involved in melanization and biomineralization were significantly upregulated; further, obviously increased melanin granules were observed in epithelial cells of the edge mantle in diseased scallops by histological and TEM study, indicating the crucial role of melanizaiton and biomineralization in P. yessoensis to resist against Polydora infestation. Moreover, many key genes, such as Tyrs, Frizzled, Wnts, calmodulins, Pifs, perlucin, laccase, shell matrix protein, mucins and chitins, were targeted by DELs. Finally, a core lncRNA-mRNA interactive network involved in melanization and biomineralization was constructed and validated by qRT-PCR. CONCLUSIONS This work provides valuable resources for studies of lncRNAs in scallops, and adds a new insight into the molecular regulatory mechanisms of P. yessoensis defending against Polydora infestation, which will contribute to Polydora disease control and breeding of disease-resistant varieties in molluscs.
Collapse
Affiliation(s)
- Yiying Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Junxia Mao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| | - Zhiyue Fan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yunna Hang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - AnQi Tang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Ying Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xubo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Zhenlin Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Bing Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| |
Collapse
|
7
|
Sleight VA. Cell type and gene regulatory network approaches in the evolution of spiralian biomineralisation. Brief Funct Genomics 2023; 22:509-516. [PMID: 37592885 PMCID: PMC10658180 DOI: 10.1093/bfgp/elad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
Biomineralisation is the process by which living organisms produce hard structures such as shells and bone. There are multiple independent origins of biomineralised skeletons across the tree of life. This review gives a glimpse into the diversity of spiralian biominerals and what they can teach us about the evolution of novelty. It discusses different levels of biological organisation that may be informative to understand the evolution of biomineralisation and considers the relationship between skeletal and non-skeletal biominerals. More specifically, this review explores if cell type and gene regulatory network approaches could enhance our understanding of the evolutionary origins of biomineralisation.
Collapse
Affiliation(s)
- Victoria A Sleight
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
8
|
Jafari F, Naeemi AS, Sohani MM, Noorinezhad M. Effect of elevated temperature, sea water acidification, and phenanthrene on the expression of genes involved in the shell and pearl formation of economic pearl oyster (Pinctada radiata). MARINE POLLUTION BULLETIN 2023; 196:115603. [PMID: 37793272 DOI: 10.1016/j.marpolbul.2023.115603] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/04/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Our study aims to examine the effect of some stressors on the gene expression levels of shell matrix proteins in a pearl oyster. Oysters were exposed to the different combinations of the temperature, pH, and phenanthrene concentration is currently measured in the Persian Gulf and the predicted ocean warming and acidification for 28 days. The expression of all the studied genes was significantly downregulated. Time and temperature had the greatest effects on the decreases in n19 and n16 genes expression, respectively. Aspein and msi60 genes expression were highly influenced by pH. Pearlin was affected by double interaction temperature and phenanthrene. Moreover, a correlation was observed among the expression levels of studied genes. This study represents basic data on the relationship between mRNA transcription genes involved in the shell and pearl formation and climate changes in pollutant presence conditions and acclimatizing mechanism of the oyster to the future scenario as well.
Collapse
Affiliation(s)
- Fatemeh Jafari
- University of Guilan, Faculty of Sciences, Department of Biology, Rasht, Iran
| | - Akram Sadat Naeemi
- University of Guilan, Faculty of Sciences, Department of Biology, Rasht, Iran.
| | - Mohammad Mehdi Sohani
- University of Guilan, Faculty of Agricultural Sciences, Department of Biotechnology, Rasht, Iran
| | - Mohsen Noorinezhad
- Iranian Shrimp Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education & Extension Organization (AREEO), Bushehr, Iran
| |
Collapse
|
9
|
Mesli N, Rouane-Hacene O, Bouchikhi-Tani Z, Richir J. A first study on the bioaccumulation of trace metals in Rhyssoplax olivacea (Mediterranean Polyplacophora). MARINE POLLUTION BULLETIN 2023; 194:115202. [PMID: 37595455 DOI: 10.1016/j.marpolbul.2023.115202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 08/20/2023]
Abstract
This study investigates, for the first time, the bioaccumulation of trace metals in the chiton Rhyssoplax olivacea. Fe, Cu, Co, Cr and Cd were measured in the shell and soft tissue of R. olivacea sampled in five sites along the Algerian west coast during the cold and hot seasons. Physiological and contamination indices were calculated. The condition index provides information on habitat quality and on R. olivacea reproductive performance and physiological status. The metal/shell-weight index informs on the bioavailability of trace metals. The trace element pollution index is used to assign a global contamination status to the studied sites. The trace element spatial variation index ranks Cd and Cr as trace metals of primary environmental concern based on the overall variability of their levels. An exhaustive review compiling data on trace element bioaccumulation in chitons is performed. The potential use of R. olivacea as bioindicator species is discussed.
Collapse
Affiliation(s)
- Nacima Mesli
- University of Tlemcen Abou Bekr Belkaid, Laboratoire Valorisation des actions de l'Homme pour la protection de l'environnement et application en santé publique (VAHPEASP), Department of Biology, BP 119, 13000 Tlemcen, Algeria.
| | - Omar Rouane-Hacene
- University of Oran 1 Ahmed Ben Bella, Department of Biology, 31000 Oran, Algeria
| | - Zoheir Bouchikhi-Tani
- University of Tlemcen Abou Bekr Belkaid, Laboratoire Valorisation des actions de l'Homme pour la protection de l'environnement et application en santé publique (VAHPEASP), Department of Biology, BP 119, 13000 Tlemcen, Algeria
| | - Jonathan Richir
- Station de Recherches Sous-marines et Océanographiques, Punta Revellata, BP33, 20260 Calvi, France; SciSca, 5330 Maillen, Belgium.
| |
Collapse
|
10
|
He G, Xiong X, Peng Y, Yang C, Xu Y, Liu X, Liang J, Masanja F, Yang K, Xu X, Zheng Z, Deng Y, Leung JYS, Zhao L. Transcriptomic responses reveal impaired physiological performance of the pearl oyster following repeated exposure to marine heatwaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158726. [PMID: 36108834 DOI: 10.1016/j.scitotenv.2022.158726] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/28/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Marine heatwaves are predicted to become more intense and frequent in the future, possibly threatening the survival of marine organisms and devastating their communities. While recent evidence reveals the adaptability of marine organisms to heatwaves, substantially overlooked is whether they can also adjust to repeated heatwave exposure, which can occur in nature. By analysing transcriptome, we examined the fitness and recoverability of the pearl oyster (Pinctada maxima) after two consecutive heatwaves (24 °C to 32 °C for 3 days; recovery at 24 °C for 4 days). In the first heatwave, 331 differentially expressed genes (DEGs) were found, such as AGE-RAGE, MAPK, JAK-STAT, FoxO and mTOR. Despite the recovery after the first heatwave, 2511 DEGs related to energy metabolism, body defence, cell proliferation and biomineralization were found, where 1655 of them were downregulated, suggesting a strong negative response to the second heatwave. Our findings imply that some marine organisms can indeed tolerate heatwaves by boosting energy metabolism to support molecular defence, cell proliferation and biomineralization, but this capacity can be overwhelmed by repeated exposure to heatwaves. Since recurrence of heatwaves within a short period of time is predicted to be more prevalent in the future, the functioning of marine ecosystems would be disrupted if marine organisms fail to accommodate repeated extreme thermal stress.
Collapse
Affiliation(s)
- Guixiang He
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xinwei Xiong
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yalan Peng
- Zhuhai Central Station of Marine Environmental Monitoring, Ministry of Natural Resources, Zhuhai 519015, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yang Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaolong Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jian Liang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | | | - Ke Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xin Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhe Zheng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jonathan Y S Leung
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia 5005, Australia.
| | - Liqiang Zhao
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
11
|
Yu Y, Tian D, Han Y, Huang L, Tang Y, Zhang W, Zhou W, Shi W, Yu Y, Liu G. Impacts of microplastics and carbamazepine on the shell formation of thick-shell mussels and the underlying mechanisms of action. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156442. [PMID: 35660597 DOI: 10.1016/j.scitotenv.2022.156442] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Forming calcareous exoskeletons is crucial for the health and survival of calcifiers such as bivalves. However, the impacts of waterborne emergent pollutants on this important process remain largely unknown. In this study, the effects of two types of emergent pollutants, microplastics (MPs) and carbamazepine (CBZ), which are ubiquitously present in ocean environments, on shell formation were assessed in the thick-shell mussel (Mytilus coruscus) with a shell regeneration experiment. In addition, their impacts on the in vivo contents of ATP, Ca2+, carbonic anhydrase (CA), and bone morphogenetic protein receptor type-2 (BMPR2), the activity of phosphofructokinase (PFK) and Ca2+-ATPase, and the expression of shell-formation related genes were analyzed. The data collected demonstrated that shell regeneration after mechanical injury was significantly arrested by CBZ and/or MPs. Besides, all the physiological and molecular parameters investigated were markedly suppressed by these two pollutants. Furthermore, synergistic impacts on most of the parameters examined were observed between CBZ and MPs. Our results indicate that these two pollutants may disrupt shell formation by constraining the availability of raw materials and energy, inhibiting the formation of the organic shell matrix, and interfering with the regulation of crystallization, which may have far-reaching impacts on the health of marine calcifiers.
Collapse
Affiliation(s)
- Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Lin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
12
|
Fifer JE, Yasuda N, Yamakita T, Bove CB, Davies SW. Genetic divergence and range expansion in a western North Pacific coral. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152423. [PMID: 34942242 DOI: 10.1016/j.scitotenv.2021.152423] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Coral poleward range expansions have recently been observed in response to warming oceans. Range expansion can lead to reduced genetic diversity and increased frequency of deleterious mutations that were rare in core populations, potentially limiting the ability for adaptation and persistence in novel environments. Successful expansions that overcome these founder effects and colonize new habitat have been attributed to multiple introductions from different sources, hybridization with native populations, or rapid adaptive evolution. Here, we investigate population genomic patterns of the reef-building coral Acropora hyacinthus along a latitudinal cline that includes a well-established range expansion front in Japan using 2b-RAD sequencing. A total of 184 coral samples were collected across seven sites spanning from ~24°N to near its northern range front at ~33°N. We uncover the presence of three cryptic lineages of A. hyacinthus, which occupy discrete reefs within this region. Only one lineage is present along the expansion front and we find evidence for its historical occupation of marginal habitats. Within this lineage we also find evidence of bottleneck pressures associated with expansion events including higher clonality, increased linkage disequilibrium, and lower genetic diversity in range edge populations compared to core populations. Asymmetric migration between populations was also detected with lower migration from edge sites. Lastly, we describe genomic signatures of local adaptation potentially attributed to lower winter temperatures experienced at the more recently expanded northern populations. Together these data illuminate the genomic consequences of range expansion in a coral and highlight how adaptation to discrete environments along expansion fronts may facilitate further range expansion in this temperate coral lineage.
Collapse
Affiliation(s)
- James E Fifer
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | - Nina Yasuda
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki 889-2192, Japan.
| | - Takehisa Yamakita
- Marine Biodiversity and Environmental Assessment Research Center, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushimacho, Yokosuka, Kanagawa 237-0061, Japan
| | - Colleen B Bove
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
13
|
Zafar B, Campbell J, Cooke J, Skirtach AG, Volodkin D. Modification of Surfaces with Vaterite CaCO 3 Particles. MICROMACHINES 2022; 13:473. [PMID: 35334765 PMCID: PMC8954061 DOI: 10.3390/mi13030473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
Former studies have demonstrated a strong interest toward the crystallization of CaCO3 polymorphs in solution. Nowadays, CaCO3 crystallization on solid surfaces is extensively being studied using biomolecules as substrates for the control of the growth aiming at various applications of CaCO3. Calcium carbonate exists in an amorphous state, as three anhydrous polymorphs (aragonite, calcite and vaterite), and as two hydrated polymorphs (monohydrocalcite and ikaite). The vaterite polymorph is considered as one of the most attractive forms due to its large surface area, biocompatibility, mesoporous nature, and other features. Based on physical or chemical immobilization approaches, vaterite can be grown directly on solid surfaces using various (bio)molecules, including synthetic polymers, biomacromolecules such as proteins and peptides, carbohydrates, fibers, extracellular matrix components, and even biological cells such as bacteria. Herein, the progress on the modification of solid surfaces by vaterite CaCO3 crystals is reviewed, focusing on main findings and the mechanism of vaterite growth initiated by various substances mentioned above, as well as the discussion of the applications of such modified surfaces.
Collapse
Affiliation(s)
- Bushra Zafar
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (B.Z.); (J.C.); (J.C.)
| | - Jack Campbell
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (B.Z.); (J.C.); (J.C.)
| | - Jake Cooke
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (B.Z.); (J.C.); (J.C.)
| | - Andre G. Skirtach
- Nanotechnology Laboratory, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Dmitry Volodkin
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (B.Z.); (J.C.); (J.C.)
| |
Collapse
|
14
|
Xu Q, Nie H, Yin Z, Zhang Y, Huo Z, Yan X. MiRNA-mRNA Integration Analysis Reveals the Regulatory Roles of MiRNAs in Shell Pigmentation of the Manila clam (Ruditapes philippinarum). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:976-993. [PMID: 34773538 DOI: 10.1007/s10126-021-10080-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The shell color of the Manila clam (Ruditapes philippinarum) is an economically important trait. We used high-throughput sequencing and transcriptome analysis to study the molecular mechanisms that underlie shell color formation and regulation in this species. We constructed small RNA libraries from mantle tissues from four shell color strains of Manila clam, subjected them to high-throughput sequencing. Notably, the results suggested that a number of pigment-associated genes including Mitf, HERC2, were negatively regulated by nvi-miR-2a, tgu-miR-133-3p, respectively. They might be involved in melanin formation via the activation of the melanogenesis pathway. And aae-miR-71-5p and dme-miR-7-5p linked to shell formation-related genes such as Calmodulin and IMSP3 were considered to participate in the calcium signaling pathway. We then used quantitative PCR to verify the candidate miRNAs and target genes in different shell color groups. Our results indicated that miR-7, miR-71, and miR-133 may regulate target mRNAs to participate in shell color pigmentation. These results provide the foundation to further characterize miRNA effects on the regulation of shell color and have significant implications for the breeding of new varieties of clams.
Collapse
Affiliation(s)
- Qiaoyue Xu
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| | - Zhihui Yin
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Yanming Zhang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Zhongming Huo
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
15
|
Takeuchi T, Fujie M, Koyanagi R, Plasseraud L, Ziegler-Devin I, Brosse N, Broussard C, Satoh N, Marin F. The 'Shellome' of the Crocus Clam Tridacna crocea Emphasizes Essential Components of Mollusk Shell Biomineralization. Front Genet 2021; 12:674539. [PMID: 34168677 PMCID: PMC8217771 DOI: 10.3389/fgene.2021.674539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/13/2021] [Indexed: 01/31/2023] Open
Abstract
Molluscan shells are among the most fascinating research objects because of their diverse morphologies and textures. The formation of these delicate biomineralized structures is a matrix-mediated process. A question that arises is what are the essential components required to build these exoskeletons. In order to understand the molecular mechanisms of molluscan shell formation, it is crucial to identify organic macromolecules in different shells from diverse taxa. In the case of bivalves, however, taxon sampling in previous shell proteomics studies are focused predominantly on representatives of the class Pteriomorphia such as pearl oysters, edible oysters and mussels. In this study, we have characterized the shell organic matrix from the crocus clam, Tridacna crocea, (Heterodonta) using various biochemical techniques, including SDS-PAGE, FT-IR, monosaccharide analysis, and enzyme-linked lectin assay (ELLA). Furthermore, we have identified a number of shell matrix proteins (SMPs) using a comprehensive proteomics approach combined to RNA-seq. The biochemical studies confirmed the presence of proteins, polysaccharides, and sulfates in the T. crocea shell organic matrix. Proteomics analysis revealed that the majority of the T. crocea SMPs are novel and dissimilar to known SMPs identified from the other bivalve species. Meanwhile, the SMP repertoire of the crocus clam also includes proteins with conserved functional domains such as chitin-binding domain, VWA domain, and protease inhibitor domain. We also identified BMSP (Blue Mussel Shell Protein, originally reported from Mytilus), which is widely distributed among molluscan shell matrix proteins. Tridacna SMPs also include low-complexity regions (LCRs) that are absent in the other molluscan genomes, indicating that these genes may have evolved in specific lineage. These results highlight the diversity of the organic molecules – in particular proteins – that are essential for molluscan shell formation.
Collapse
Affiliation(s)
- Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Ryo Koyanagi
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Laurent Plasseraud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Faculté des Sciences Mirande, Université de Bourgogne - Franche-Comté (UBFC), Dijon, France
| | - Isabelle Ziegler-Devin
- LERMAB, Faculté des Sciences et Technologies - Campus Aiguillettes, Université de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Nicolas Brosse
- LERMAB, Faculté des Sciences et Technologies - Campus Aiguillettes, Université de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Cédric Broussard
- 3P5 Proteomic Platform, Cochin Institute, University of Paris, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Frédéric Marin
- UMR CNRS 6282 Biogéosciences, Bâtiment des Sciences Gabriel, Université de Bourgogne - Franche-Comté (UBFC), Dijon, France
| |
Collapse
|
16
|
Jackson HJ, Larsson J, Davison A. Quantitative measures and 3D shell models reveal interactions between bands and their position on growing snail shells. Ecol Evol 2021; 11:6634-6648. [PMID: 34141246 PMCID: PMC8207382 DOI: 10.1002/ece3.7517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 11/10/2022] Open
Abstract
The nature of shell growth in gastropods is useful because it preserves the ontogeny of shape, colour, and banding patterns, making them an ideal system for understanding how inherited variation develops, is established and maintained within a population. However, qualitative scoring of inherited shell characters means there is a lack of knowledge regarding the mechanisms that control fine variation. Here, we combine empirical measures of quantitative variation and 3D modeling of shells to understand how bands are placed and interact. By comparing five-banded Cepaea individuals to shells lacking individual bands, we show that individual band absence has minor but significant impacts upon the position of remaining bands, implying that the locus controlling band presence/absence mainly acts after position is established. Then, we show that the shell grows at a similar rate, except for the region below the lowermost band. This demonstrates that wider bands of Cepaea are not an artifact of greater shell growth on the lower shell; they begin wider and grow at the same rate as other bands. Finally, we show that 3D models of shell shape and banding pattern, inferred from 2D photos using ShellShaper software, are congruent with empirical measures. This work therefore establishes a method that may be used for comparative studies of quantitative banding variation in snail shells, extraction of growth parameters, and morphometrics. In the future, studies that link the banding phenotype to the network of shell matrix proteins involved in biomineralization and patterning may ultimately aid in understanding the diversity of shell forms found in molluscs.
Collapse
Affiliation(s)
| | - Jenny Larsson
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Angus Davison
- School of Life SciencesUniversity of NottinghamNottinghamUK
| |
Collapse
|
17
|
Stenger PL, Ky CL, Reisser CMO, Cosseau C, Grunau C, Mege M, Planes S, Vidal-Dupiol J. Environmentally Driven Color Variation in the Pearl Oyster Pinctada margaritifera var. cumingii (Linnaeus, 1758) Is Associated With Differential Methylation of CpGs in Pigment- and Biomineralization-Related Genes. Front Genet 2021; 12:630290. [PMID: 33815466 PMCID: PMC8018223 DOI: 10.3389/fgene.2021.630290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/19/2021] [Indexed: 11/15/2022] Open
Abstract
Today, it is common knowledge that environmental factors can change the color of many animals. Studies have shown that the molecular mechanisms underlying such modifications could involve epigenetic factors. Since 2013, the pearl oyster Pinctada margaritifera var. cumingii has become a biological model for questions on color expression and variation in Mollusca. A previous study reported color plasticity in response to water depth variation, specifically a general darkening of the nacre color at greater depth. However, the molecular mechanisms behind this plasticity are still unknown. In this paper, we investigate the possible implication of epigenetic factors controlling shell color variation through a depth variation experiment associated with a DNA methylation study performed at the whole genome level with a constant genetic background. Our results revealed six genes presenting differentially methylated CpGs in response to the environmental change, among which four are linked to pigmentation processes or regulations (GART, ABCC1, MAPKAP1, and GRL101), especially those leading to darker phenotypes. Interestingly, the genes perlucin and MGAT1, both involved in the biomineralization process (deposition of aragonite and calcite crystals), also showed differential methylation, suggesting that a possible difference in the physical/spatial organization of the crystals could cause darkening (iridescence or transparency modification of the biomineral). These findings are of great interest for the pearl production industry, since wholly black pearls and their opposite, the palest pearls, command a higher value on several markets. They also open the route of epigenetic improvement as a new means for pearl production improvement.
Collapse
Affiliation(s)
- Pierre-Louis Stenger
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Montpellier, France
| | - Chin-Long Ky
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Montpellier, France
| | - Céline M. O. Reisser
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Céline Cosseau
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Perpignan, France
| | - Christoph Grunau
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Perpignan, France
| | - Mickaël Mege
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- IFREMER, PDG-RBE-SGMM-LGPMM, La Tremblade, France
| | - Serge Planes
- EPHE-UPVD-CNRS, USR 3278 CRIOBE, Labex Corail, PSL Research University, Université de Perpignan, Perpignan, France
| | - Jeremie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Montpellier, France
| |
Collapse
|
18
|
Liu C, Zhang R. Biomineral proteomics: A tool for multiple disciplinary studies. J Proteomics 2021; 238:104171. [PMID: 33652138 DOI: 10.1016/j.jprot.2021.104171] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/06/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022]
Abstract
The hard tissues of animals, such as skeletons and teeth, are constructed by a biologically controlled process called biomineralization. In invertebrate animals, biominerals are considered important for their evolutionary success. These biominerals are hieratical biocomposites with excellent mechanical properties, and their formation has intrigued researchers for decades. Although proteins account for ~5 wt% of biominerals, they are critical players in biomineralization. With the development of high-throughput analysis methods, such as proteomics, biomineral protein data are rapidly accumulating, thus necessitating a refined model for biomineralization. This review focuses on biomineral proteomics in invertebrate animals to highlight the diversity of biomineral proteins (generally 40-80 proteins), and the results indicate that biomineralization includes thermodynamic crystal growth as well as intense extracellular matrix activity and/or vesicle transport. Biominerals have multiple functions linked to biological immunity and antipathogen activity. A comparison of proteomes across species and biomineral types showed that von Willebrand factor type A and epidermal growth factor, which frequently couple with other extracellular domains, are the most common domains. Combined with species-specific repetitive low complexity domains, shell matrix proteins can be employed to predict biomineral types. Furthermore, this review discusses the applications of biomineral proteomics in diverse fields, such as tissue regeneration, developmental biology, archeology, environmental science, and material science.
Collapse
Affiliation(s)
- Chuang Liu
- College of Oceanography, Hohai University, Xikang Road, Nanjing, Jiangsu 210098, China.
| | - Rongqing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, PR China; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
19
|
Zhang G, Xu M, Zhang C, Jia H, Zhang H, He M, Liu W. Comparative Transcriptomic and Expression Profiles Between the Foot Muscle and Mantle Tissues in the Giant Triton Snail Charonia tritonis. Front Physiol 2021; 12:632518. [PMID: 33732164 PMCID: PMC7959727 DOI: 10.3389/fphys.2021.632518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/03/2021] [Indexed: 11/22/2022] Open
Abstract
The giant triton snail (Charonia tritonis), an endangered gastropod species of ecological and economic importance, is widely distributed in coral reef ecosystems of the Indo-West Pacific region and the tropical waters of the South China Sea. Limited research on molecular mechanisms can be conducted because the complete genomic information on this species is unavailable. Hence, we performed transcriptome sequencing of the C. tritonis foot muscle and mantle using the Illumina HiSeq sequencing platform. In 109,722 unigenes, we detected 7,994 (3,196 up-regulated and 4,798 down-regulated) differentially expressed genes (DEGs) from the C. tritonis foot muscle and mantle transcriptomes. These DEGs will provide valuable resources to improve the understanding of molecular mechanisms involved in biomineralization of C. tritonis. In the Gene Ontology (GO) database, DEGs were clustered into three main categories (biological processes, molecular functions, and cellular components) and were involved in 50 functional subcategories. The top 20 GO terms in the molecular function category included sulfotransferase activity, transferring sulfur-containing groups, and calcium ion binding, which are terms considered to be related to biomineralization. In KEGG classifications, transcriptomic DEGs were mainly enriched in glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulfate, and sulfur metabolism pathway, which may be related to biomineralization. The results of qPCR showed that three of the eight genes examined were significantly up-regulated in the mantle. The phylogenetic tree of BMP1 suggested a significant divergence between homologous genes in C. tritonis. Our results improve the understanding of biomineralization in C. tritonis and provide fundamental transcriptome information to study other molecular mechanisms such as reproduction.
Collapse
Affiliation(s)
- Gege Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Meng Xu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | | | - Huixia Jia
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Hua Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Wenguang Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
20
|
Jackson DJ. Mantle Modularity Underlies the Plasticity of the Molluscan Shell: Supporting Data From Cepaea nemoralis. Front Genet 2021; 12:622400. [PMID: 33613640 PMCID: PMC7894901 DOI: 10.3389/fgene.2021.622400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/04/2021] [Indexed: 01/18/2023] Open
Abstract
Molluscs have evolved the capacity to fabricate a wide variety of shells over their 540+ million-year history. While modern sequencing and proteomic technologies continue to expand the catalog of molluscan shell-forming proteins, a complete functional understanding of how any mollusc constructs its shell remains an ambitious goal. This lack of understanding also constrains our understanding of how evolution has generated a plethora of molluscan shell morphologies. Taking advantage of a previous expression atlas for shell-forming genes in Lymnaea stagnalis, I have characterized the spatial expression patterns of seven shell-forming genes in the terrestrial gastropod Cepaea nemoralis, with the aim of comparing and contrasting their expression patterns between the two species. Four of these genes were selected from a previous proteomic screen of the C. nemoralis shell, two were targeted by bioinformatics criteria designed to identify likely shell-forming gene products, and the final one was a clear homolog of a peroxidase sequence in the L. stagnalis dataset. While the spatial expression patterns of all seven C. nemoralis genes could be recognized as falling into distinct zones within the mantle tissue similar to those established in L. stagnalis, some zones have apparently been modified. These similarities and differences hint at a modularity to the molluscan mantle that may provide a mechanistic explanation as to how evolution has efficiently generated a diversity of molluscan shells.
Collapse
Affiliation(s)
- Daniel J Jackson
- Department of Geobiology, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Diversified Biomineralization Roles of Pteria penguin Pearl Shell Lectins as Matrix Proteins. Int J Mol Sci 2021; 22:ijms22031081. [PMID: 33499178 PMCID: PMC7865697 DOI: 10.3390/ijms22031081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/03/2022] Open
Abstract
Previously, we isolated jacalin-related lectins termed PPL2, PPL3 (PPL3A, 3B and 3C) and PPL4 from the mantle secretory fluid of Pteria penguin (Mabe) pearl shell. They showed the sequence homology with the plant lectin family, jacalin-related β-prism fold lectins (JRLs). While PPL3s and PPL4 shared only 35%–50% homology to PPL2A, respectively, they exhibited unique carbohydrate binding properties based on the multiple glycan-binding profiling data sets from frontal affinity chromatography analysis. In this paper, we investigated biomineralization properties of these lectins and compared their biomineral functions. It was found that these lectins showed different effects on CaCO3 crystalization, respectively, although PPL3 and PPL2A showed similar carbohydrate binding specificities. PPL3 suppressed the crystal growth of CaCO3 calcite, while PPL2A increased the number of contact polycrystalline calcite composed of more than one crystal with various orientations. Furthermore, PPL4 alone showed no effect on CaCO3 crystalization; however, PPL4 regulated the size of crystals collaborated with N-acetyl-D-glucosamine and chitin oligomer, which are specific in recognizing carbohydrates for PPL4. These observations highlight the unique functions and molecular evolution of this lectin family involved in the mollusk shell formation.
Collapse
|
22
|
McDougall C, Aguilera F, Shokoohmand A, Moase P, Degnan BM. Pearl Sac Gene Expression Profiles Associated With Pearl Attributes in the Silver-Lip Pearl Oyster, Pinctada maxima. Front Genet 2021; 11:597459. [PMID: 33488672 PMCID: PMC7820862 DOI: 10.3389/fgene.2020.597459] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/07/2020] [Indexed: 11/21/2022] Open
Abstract
Pearls are highly prized biomineralized gemstones produced by molluscs. The appearance and mineralogy of cultured pearls can vary markedly, greatly affecting their commercial value. To begin to understand the role of pearl sacs—organs that form in host oysters from explanted mantle tissues that surround and synthesize pearls—we undertook transcriptomic analyses to identify genes that are differentially expressed in sacs producing pearls with different surface and structural characteristics. Our results indicate that gene expression profiles correlate with different pearl defects, suggesting that gene regulation in the pearl sac contributes to pearl appearance and quality. For instance, pearl sacs that produced pearls with surface non-lustrous calcification significantly down-regulate genes associated with cilia and microtubule function compared to pearl sacs giving rise to lustrous pearls. These results suggest that gene expression profiling can advance our understanding of processes that control biomineralization, which may be of direct value to the pearl industry, particularly in relation to defects that result in low value pearls.
Collapse
Affiliation(s)
- Carmel McDougall
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia.,Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Felipe Aguilera
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Ali Shokoohmand
- Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Patrick Moase
- Clipper Pearls and Autore Pearling, Broome, WA, Australia
| | - Bernard M Degnan
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
23
|
Gardon T, Morvan L, Huvet A, Quillien V, Soyez C, Le Moullac G, Le Luyer J. Microplastics induce dose-specific transcriptomic disruptions in energy metabolism and immunity of the pearl oyster Pinctada margaritifera. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115180. [PMID: 32673975 DOI: 10.1016/j.envpol.2020.115180] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
A combined approach integrating bioenergetics and major biological activities is essential to properly understand the impact of microplastics (MP) on marine organisms. Following experimental exposure of polystyrene microbeads (micro-PS of 6 and 10 μm) at 0.25, 2.5, and 25 μg L-1, which demonstrated a dose-dependent decrease of energy balance in the pearl oyster Pinctada margaritifera, a transcriptomic study was conducted on mantle tissue. Transcriptomic data helped us to decipher the molecular mechanisms involved in P. margaritifera responses to micro-PS and search more broadly for effects on energetically expensive maintenance functions. Genes related to the detoxification process were impacted by long-term micro-PS exposure through a decrease in antioxidant response functioning, most likely leading to oxidative stress and damage, especially at higher micro-PS doses. The immune response was also found to be dose-specific, with a stress-related activity stimulated by the lowest dose present after a 2-month exposure period. This stress response was not observed following exposure to higher doses, reflecting an energy-limited capacity of pearl oysters to cope with prolonged stress and a dramatic shift to adjust to pessimum conditions, mostly limited and hampered by a lowered energetic budget. This preliminary experiment lays the foundation for exploring pathways and gene expression in P. margaritifera, and marine mollusks in general, under MP exposure. We also propose a conceptual framework to properly assess realistic MP effects on organisms and population resilience in future investigations.
Collapse
Affiliation(s)
- Tony Gardon
- Ifremer, Institut Louis-Malardé, IRD, Univ Polynésie Française, EIO, F-98719, Taravao, Tahiti, Polynésie française, France
| | - Lucie Morvan
- Ifremer, Institut Louis-Malardé, IRD, Univ Polynésie Française, EIO, F-98719, Taravao, Tahiti, Polynésie française, France
| | - Arnaud Huvet
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Virgile Quillien
- Ifremer, Institut Louis-Malardé, IRD, Univ Polynésie Française, EIO, F-98719, Taravao, Tahiti, Polynésie française, France; Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Claude Soyez
- Ifremer, Institut Louis-Malardé, IRD, Univ Polynésie Française, EIO, F-98719, Taravao, Tahiti, Polynésie française, France
| | - Gilles Le Moullac
- Ifremer, Institut Louis-Malardé, IRD, Univ Polynésie Française, EIO, F-98719, Taravao, Tahiti, Polynésie française, France
| | - Jérémy Le Luyer
- Ifremer, Institut Louis-Malardé, IRD, Univ Polynésie Française, EIO, F-98719, Taravao, Tahiti, Polynésie française, France.
| |
Collapse
|
24
|
Auffret P, Le Luyer J, Sham Koua M, Quillien V, Ky CL. Tracing key genes associated with the Pinctada margaritifera albino phenotype from juvenile to cultured pearl harvest stages using multiple whole transcriptome sequencing. BMC Genomics 2020; 21:662. [PMID: 32977773 PMCID: PMC7517651 DOI: 10.1186/s12864-020-07015-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Albino mutations are commonly observed in the animal kingdom, including in bivalves. In the black-lipped pearl oyster Pinctada margaritifera, albino specimens are characterized by total or partial absence of colouration resulting in typical white shell phenotype expression. The relationship of shell colour with resulting cultured pearl colour is of great economic interest in P. margaritifera, on which a pearl industry is based. Hence, the albino phenotype provides a useful way to examine the molecular mechanisms underlying pigmentation. RESULTS Whole transcriptome RNA-sequencing analysis comparing albino and black wild-type phenotypes at three stages over the culture cycle of P. margaritifera revealed a total of 1606, 798 and 187 differentially expressed genes in whole juvenile, adult mantle and pearl sac tissue, respectively. These genes were found to be involved in five main molecular pathways, tightly linked to known pigmentation pathways: melanogenesis, calcium signalling pathway, Notch signalling pathway, pigment transport and biomineralization. Additionally, significant phenotype-associated SNPs were selected (N = 159), including two located in the Pif biomineralization gene, which codes for nacre formation. Interestingly, significantly different transcript splicing was detected between juvenile (N = 1366) and adult mantle tissue (N = 313) in, e.g., the tyrosinase Tyr-1 gene, which showed more complex regulation in mantle, and the Notch1 encoding gene, which was upregulated in albino juveniles. CONCLUSION This multiple RNA-seq approach provided new knowledge about genes associated with the P. margaritifera albino phenotype, highlighting: 1) new molecular pathways, such as the Notch signalling pathway in pigmentation, 2) associated SNP markers with biomineraliszation gene of interest like Pif for marker-assisted selection and prevention of inbreeding, and 3) alternative gene splicing for melanin biosynthesis implicating tyrosinase.
Collapse
Affiliation(s)
- Pauline Auffret
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, Polynéise française France
| | - Jérémy Le Luyer
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, Polynéise française France
| | - Manaarii Sham Koua
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, Polynéise française France
| | - Virgile Quillien
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, Polynéise française France
- Ifremer, UMR LEMAR UBO CNRS Ifremer IRD 6539, ZI Pointe Diable CS 10070, F-29280 Plouzane, France
| | - Chin-Long Ky
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, Polynéise française France
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, F-34090 Montpellier, France
| |
Collapse
|
25
|
Zhou Y, Yan Y, Yang D, Zheng G, Xie L, Zhang R. Cloning, characterization, and functional analysis of chitinase-like protein 1 in the shell of Pinctada fucata. Acta Biochim Biophys Sin (Shanghai) 2020; 52:954-966. [PMID: 32634202 DOI: 10.1093/abbs/gmaa076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/01/2020] [Accepted: 06/05/2020] [Indexed: 11/14/2022] Open
Abstract
Biomineralization, especially shell formation, is a sophisticated process regulated by various matrix proteins. Pinctada fucata chitinase-like protein 1 (Pf-Clp1), which belongs to the GH18 family, was discovered by our group using in-depth proteomic analysis. However, its function is still unclear. In this study, we first obtained the full-length cDNA sequence of Pf-Clp1 by RACE. Real-time polymerase chain reaction results revealed that Pf-Clp1 was highly expressed in the important biomineralization tissues, the mantle edge and the mantle pallial. We expressed and purified recombinant protein rPf-Clp1 in vitro to investigate the function of Pf-Clp1 on CaCO3 crystallization. Scanning electron microscopy imaging and Raman spectroscopy revealed that rPf-Clp1 was able to affect the morphologies of calcite crystal in vitro. Shell notching experiments suggested that Pf-Clp1 might function as a negative regulator during shell formation in vivo. Knockdown of Pf-Clp1 by RNAi led to the overgrowth of aragonite tablets, further confirming its potential negative regulation on biomineralization, especially in the nacreous layer. Our work revealed the potential function of molluscan Clp in shell biomineralization for the first time and unveiled some new understandings toward the molecular mechanism of shell formation.
Collapse
Affiliation(s)
- Yunpin Zhou
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Yan
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dong Yang
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guilan Zheng
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liping Xie
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rongqing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
26
|
Huang S, Jiang H, Zhang L, Gu Q, Wang W, Wen Y, Luo F, Jin W, Cao X. Integrated proteomic and transcriptomic analysis reveals that polymorphic shell colors vary with melanin synthesis in Bellamya purificata snail. J Proteomics 2020; 230:103950. [PMID: 32871245 DOI: 10.1016/j.jprot.2020.103950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
The snail Bellamya purificata is an ecologically and economically important freshwater gastropod species. However, limited genomic resources are available for this snail. In this study, the transcriptome of mantle tissues and proteome of shells of B. purificata with two shell colors (namely light-cyan line (LC) and light-purple line (LP)) were deeply sequenced and characterized. A total of 5.72 million contigs were assembled into 157,015 unigenes, 21,455 (13.66%) of these unigenes were significantly matched to NR, Swiss-Prot, KOG, GO and KEGG database. 1807 differentially expressed genes (DEGs) were identified between the two different shell color lines. These DEGs were significantly enriched in five KEGG pathways including tyrosine metabolism, tryptophan metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and histidine metabolism, which suggested that the shell color polymorphism in B. purificata was a result of melanin synthesis variation. A total of 1521 proteins were identified in B. purificata here as well. The differentially expressed protein analysis showed that the tyrosinase content in LP was significantly decreased in comparison to LC, which agreed with the transcriptome analysis results. This study provides valuable genomic resources of B. purificata and improves our understanding of molecular mechanisms of biomineralization and shell color polymorphism in snail.
Collapse
Affiliation(s)
- Songqian Huang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Hanjun Jiang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Zhang
- College of Marxism, Shanghai University of Finance and Economics, Shanghai 200433, China
| | - Qianhong Gu
- The State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| | - Weimin Wang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanhong Wen
- Liuzhou Aquaculture Technology Extending Station, Liuzhou, China
| | - Fuguang Luo
- Liuzhou Aquaculture Technology Extending Station, Liuzhou, China
| | - Wu Jin
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China.
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
27
|
Intracellular pH regulation in mantle epithelial cells of the Pacific oyster, Crassostrea gigas. J Comp Physiol B 2020; 190:691-700. [PMID: 32816118 PMCID: PMC7520413 DOI: 10.1007/s00360-020-01303-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 07/31/2020] [Accepted: 08/09/2020] [Indexed: 12/26/2022]
Abstract
Shell formation and repair occurs under the control of mantle epithelial cells in bivalve molluscs. However, limited information is available on the precise acid–base regulatory machinery present within these cells, which are fundamental to calcification. Here, we isolate mantle epithelial cells from the Pacific oyster, Crassostrea gigas and utilise live cell imaging in combination with the fluorescent dye, BCECF-AM to study intracellular pH (pHi) regulation. To elucidate the involvement of various ion transport mechanisms, modified seawater solutions (low sodium, low bicarbonate) and specific inhibitors for acid–base proteins were used. Diminished pH recovery in the absence of Na+ and under inhibition of sodium/hydrogen exchangers (NHEs) implicate the involvement of a sodium dependent cellular proton extrusion mechanism. In addition, pH recovery was reduced under inhibition of carbonic anhydrases. These data provide the foundation for a better understanding of acid–base regulation underlying the physiology of calcification in bivalves.
Collapse
|
28
|
A novel matrix protein PfX regulates shell ultrastructure by binding to specific calcium carbonate crystal faces. Int J Biol Macromol 2020; 156:302-313. [PMID: 32289403 DOI: 10.1016/j.ijbiomac.2020.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 11/24/2022]
Abstract
Here, we have identified a novel matrix protein, named PfX, from the pearl oyster Pinctada fucada, and investigated the effects of recombinant PfX protein on calcium carbonate crystallization. The expression of PfX was spatially concentrated in the mantle tissue and gill, the former of which is responsible for the formation of shell structures. The shell notching assay showed a PfX expression response during injured shell repair and regeneration, suggesting the potential involvement of this matrix protein in shell biomineralization. Further, an in vitro crystallization assay showed that PfX could alter the CaCO3 morphologies of both calcite and aragonite polymorphs. Correspondingly, a binding assay indicated that PfX has strong binding affinity for CaCO3 crystals, especially aragonite. Further, the protein's calcite binding capacity increased obviously when particular crystal faces were induced. In addition, PfX conjugated with fluorescent dye cyanine-5 (cy5) was preferentially distributed on rough crystal faces instead of the smooth and common (1 0 4) faces of calcite during the crystallization. These results suggest that matrix protein PfX might regulate CaCO3 morphology via selective binding and inhibit the growth of certain crystal faces, providing new clues for understanding biomineralization mechanisms in mollusk.
Collapse
|
29
|
Clark MS, Peck LS, Arivalagan J, Backeljau T, Berland S, Cardoso JCR, Caurcel C, Chapelle G, De Noia M, Dupont S, Gharbi K, Hoffman JI, Last KS, Marie A, Melzner F, Michalek K, Morris J, Power DM, Ramesh K, Sanders T, Sillanpää K, Sleight VA, Stewart-Sinclair PJ, Sundell K, Telesca L, Vendrami DLJ, Ventura A, Wilding TA, Yarra T, Harper EM. Deciphering mollusc shell production: the roles of genetic mechanisms through to ecology, aquaculture and biomimetics. Biol Rev Camb Philos Soc 2020; 95:1812-1837. [PMID: 32737956 DOI: 10.1111/brv.12640] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
Most molluscs possess shells, constructed from a vast array of microstructures and architectures. The fully formed shell is composed of calcite or aragonite. These CaCO3 crystals form complex biocomposites with proteins, which although typically less than 5% of total shell mass, play significant roles in determining shell microstructure. Despite much research effort, large knowledge gaps remain in how molluscs construct and maintain their shells, and how they produce such a great diversity of forms. Here we synthesize results on how shell shape, microstructure, composition and organic content vary among, and within, species in response to numerous biotic and abiotic factors. At the local level, temperature, food supply and predation cues significantly affect shell morphology, whilst salinity has a much stronger influence across latitudes. Moreover, we emphasize how advances in genomic technologies [e.g. restriction site-associated DNA sequencing (RAD-Seq) and epigenetics] allow detailed examinations of whether morphological changes result from phenotypic plasticity or genetic adaptation, or a combination of these. RAD-Seq has already identified single nucleotide polymorphisms associated with temperature and aquaculture practices, whilst epigenetic processes have been shown significantly to modify shell construction to local conditions in, for example, Antarctica and New Zealand. We also synthesize results on the costs of shell construction and explore how these affect energetic trade-offs in animal metabolism. The cellular costs are still debated, with CaCO3 precipitation estimates ranging from 1-2 J/mg to 17-55 J/mg depending on experimental and environmental conditions. However, organic components are more expensive (~29 J/mg) and recent data indicate transmembrane calcium ion transporters can involve considerable costs. This review emphasizes the role that molecular analyses have played in demonstrating multiple evolutionary origins of biomineralization genes. Although these are characterized by lineage-specific proteins and unique combinations of co-opted genes, a small set of protein domains have been identified as a conserved biomineralization tool box. We further highlight the use of sequence data sets in providing candidate genes for in situ localization and protein function studies. The former has elucidated gene expression modularity in mantle tissue, improving understanding of the diversity of shell morphology synthesis. RNA interference (RNAi) and clustered regularly interspersed short palindromic repeats - CRISPR-associated protein 9 (CRISPR-Cas9) experiments have provided proof of concept for use in the functional investigation of mollusc gene sequences, showing for example that Pif (aragonite-binding) protein plays a significant role in structured nacre crystal growth and that the Lsdia1 gene sets shell chirality in Lymnaea stagnalis. Much research has focused on the impacts of ocean acidification on molluscs. Initial studies were predominantly pessimistic for future molluscan biodiversity. However, more sophisticated experiments incorporating selective breeding and multiple generations are identifying subtle effects and that variability within mollusc genomes has potential for adaption to future conditions. Furthermore, we highlight recent historical studies based on museum collections that demonstrate a greater resilience of molluscs to climate change compared with experimental data. The future of mollusc research lies not solely with ecological investigations into biodiversity, and this review synthesizes knowledge across disciplines to understand biomineralization. It spans research ranging from evolution and development, through predictions of biodiversity prospects and future-proofing of aquaculture to identifying new biomimetic opportunities and societal benefits from recycling shell products.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, U.K
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, U.K
| | - Jaison Arivalagan
- UMR 7245 CNRS/MNHN Molécules de Communications et Adaptations des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France.,Proteomics Center of Excellence, Northwestern University, 710 N Fairbanks Ct, Chicago, IL, U.S.A
| | - Thierry Backeljau
- Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Brussels, B-1000, Belgium.,Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
| | - Sophie Berland
- UMR 7208 CNRS/MNHN/UPMC/IRD Biologie des Organismes Aquatiques et Ecosystèmes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Joao C R Cardoso
- Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Carlos Caurcel
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, U.K
| | - Gauthier Chapelle
- Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Brussels, B-1000, Belgium
| | - Michele De Noia
- Department of Animal Behavior, University of Bielefeld, Postfach 100131, Bielefeld, 33615, Germany.,Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, U.K
| | - Sam Dupont
- Department of Biological and Environmental Sciences, University of Göteburg, Box 463, Göteburg, SE405 30, Sweden
| | - Karim Gharbi
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, U.K
| | - Joseph I Hoffman
- Department of Animal Behavior, University of Bielefeld, Postfach 100131, Bielefeld, 33615, Germany
| | - Kim S Last
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, U.K
| | - Arul Marie
- UMR 7245 CNRS/MNHN Molécules de Communications et Adaptations des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Frank Melzner
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Kati Michalek
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, U.K
| | - James Morris
- Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Brussels, B-1000, Belgium
| | - Deborah M Power
- Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Kirti Ramesh
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Trystan Sanders
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Kirsikka Sillanpää
- Swemarc, Department of Biological and Environmental Science, University of Gothenburg, Box 463, Gothenburg, SE405 30, Sweden
| | - Victoria A Sleight
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, U.K
| | | | - Kristina Sundell
- Swemarc, Department of Biological and Environmental Science, University of Gothenburg, Box 463, Gothenburg, SE405 30, Sweden
| | - Luca Telesca
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, U.K
| | - David L J Vendrami
- Department of Animal Behavior, University of Bielefeld, Postfach 100131, Bielefeld, 33615, Germany
| | - Alexander Ventura
- Department of Biological and Environmental Sciences, University of Göteburg, Box 463, Göteburg, SE405 30, Sweden
| | - Thomas A Wilding
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, U.K
| | - Tejaswi Yarra
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, U.K.,Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, U.K
| | - Elizabeth M Harper
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, U.K
| |
Collapse
|
30
|
Klein AH, Ballard KR, Storey KB, Motti CA, Zhao M, Cummins SF. Multi-omics investigations within the Phylum Mollusca, Class Gastropoda: from ecological application to breakthrough phylogenomic studies. Brief Funct Genomics 2020; 18:377-394. [PMID: 31609407 DOI: 10.1093/bfgp/elz017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
Gastropods are the largest and most diverse class of mollusc and include species that are well studied within the areas of taxonomy, aquaculture, biomineralization, ecology, microbiome and health. Gastropod research has been expanding since the mid-2000s, largely due to large-scale data integration from next-generation sequencing and mass spectrometry in which transcripts, proteins and metabolites can be readily explored systematically. Correspondingly, the huge data added a great deal of complexity for data organization, visualization and interpretation. Here, we reviewed the recent advances involving gastropod omics ('gastropodomics') research from hundreds of publications and online genomics databases. By summarizing the current publicly available data, we present an insight for the design of useful data integrating tools and strategies for comparative omics studies in the future. Additionally, we discuss the future of omics applications in aquaculture, natural pharmaceutical biodiscovery and pest management, as well as to monitor the impact of environmental stressors.
Collapse
Affiliation(s)
- Anne H Klein
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kaylene R Ballard
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville Queensland 4810, Australia
| | - Min Zhao
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Scott F Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| |
Collapse
|
31
|
Cardoso JCR, Félix RC, Ferreira V, Peng M, Zhang X, Power DM. The calcitonin-like system is an ancient regulatory system of biomineralization. Sci Rep 2020; 10:7581. [PMID: 32371888 PMCID: PMC7200681 DOI: 10.1038/s41598-020-64118-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/06/2020] [Indexed: 12/27/2022] Open
Abstract
Biomineralization is the process by which living organisms acquired the capacity to accumulate minerals in tissues. Shells are the biomineralized exoskeleton of marine molluscs produced by the mantle but factors that regulate mantle shell building are still enigmatic. This study sought to identify candidate regulatory factors of molluscan shell mineralization and targeted family B G-protein coupled receptors (GPCRs) and ligands that include calcium regulatory factors in vertebrates, such as calcitonin (CALC). In molluscs, CALC receptor (CALCR) number was variable and arose through lineage and species-specific duplications. The Mediterranean mussel (Mytilus galloprovincialis) mantle transcriptome expresses six CALCR-like and two CALC-precursors encoding four putative mature peptides. Mussel CALCR-like are activated in vitro by vertebrate CALC but only receptor CALCRIIc is activated by the mussel CALCIIa peptide (EC50 = 2.6 ×10-5 M). Ex-vivo incubations of mantle edge tissue and mantle cells with CALCIIa revealed they accumulated significantly more calcium than untreated tissue and cells. Mussel CALCIIa also significantly decreased mantle acid phosphatase activity, which is associated with shell remodelling. Our data indicate the CALC-like system as candidate regulatory factors of shell mineralization. The identification of the CALC system from molluscs to vertebrates suggests it is an ancient and conserved calcium regulatory system of mineralization.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Vinícius Ferreira
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - MaoXiao Peng
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Xushuai Zhang
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
32
|
Sun Q, Jiang Y, Fan M, Zhang X, Xu H, Liao Z. Characterization of a novel shell matrix protein with vWA domain from Mytilus coruscus. Biosci Biotechnol Biochem 2020; 84:1629-1644. [PMID: 32314940 DOI: 10.1080/09168451.2020.1756735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mollusk shell is a product of biomineralization with excellent mechanical properties, and the shell matrix proteins (SMPs) have important functions in shell formation. A vWA domain-containing protein (VDCP) was identified from the shell of Mytilus coruscus as a novel shell matrix protein. The VDCP gene is expressed at a high level in specific locations in the mantle and adductor muscle. Recombinant VDCP (rVDCP) showed abilities to alter the morphology of both calcite and aragonite, induce the polymorph change of calcite, bind calcite, and decrease the crystallization rate of calcite. In addition, immunohistochemistry analyses revealed the specific location of VDCP in the mantle, the adductor muscle, and the myostracum layer of the shell. Furthermore, a pull-down analysis revealed eight protein interaction partners of VDCP in shell matrices and provided a possible protein-protein interaction network of VDCP in the shell.
Collapse
Affiliation(s)
- Qi Sun
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| | - Yuting Jiang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| | - Meihua Fan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| | - Huanzhi Xu
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| | - Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| |
Collapse
|
33
|
Fan S, Zheng Z, Hao R, Du X, Jiao Y, Huang R. PmCBP, a novel poly (chitin-binding domain) gene, participates in nacreous layer formation of Pinctada fucata martensii. Comp Biochem Physiol B Biochem Mol Biol 2019; 240:110374. [PMID: 31733296 DOI: 10.1016/j.cbpb.2019.110374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/22/2019] [Accepted: 10/25/2019] [Indexed: 11/29/2022]
Abstract
Chitin participates in shell formation as the main component of an organic framework. Chitin-binding protein contains domains that can bind to chitin specifically. In this study, a novel chitin-binding protein from Pinctada fucata martensii (PmCBP) with poly (chitin-binding domain) was cloned, which contains a 5'-untranslated region (UTR) of 114 bp and 3'UTR of 116 bp, and encodes a putative protein of 2044 amino acids. The predicted PmCBP protein was structurally typical of the CBP family with 20 ChtBD2 domains. Phylogenetic and linear relation analyses showed that the ChtBD2 domain has a highly conserved structure among the three species of P. f. martensii, Crassostrea gigas, and Mizuhopecten yessoensis. qRT-PCR and in-situ hybridization analysis revealed that PmCBP was most abundant in the mantle pallium whose expression level was significantly correlated with the growth traits. After RNAi, PmCBP expression was significantly inhibited in the mantle pallium (P < 0.05) and the microstructure of nacreous layers showed a disordered growth in the experiment group. These results indicated that PmCBP may be involved in nacreous layer formation through participation in the process of binding chitin in pearl oyster P. f. martensii.
Collapse
Affiliation(s)
- Shanshan Fan
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China.
| | - Ruijuan Hao
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China.
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China
| | - Ronglian Huang
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
34
|
Blay C, Planes S, Ky CL. Crossing Phenotype Heritability and Candidate Gene Expression in Grafted Black-Lipped Pearl Oyster Pinctada margaritifera, an Animal Chimera. J Hered 2019; 109:510-519. [PMID: 29584922 DOI: 10.1093/jhered/esy015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/23/2018] [Indexed: 12/13/2022] Open
Abstract
Grafting mantle tissue of a donor pearl oyster into the gonad of a recipient oyster results in the formation of a chimera, the pearl sac. The phenotypic variations of this chimera are hypothesized to be the result of interactions between the donor and recipient genomes. In this study, the heritability of phenotypic variation and its association with gene expression were investigated for the first time during Pinctada margaritifera pearl production. Genetic variance was evaluated at different levels, 1) before the graft operation (expression in graft tissue), 2) after grafting (pearl sac tissue expression in chimera), and 3) on the product of the graft (pearl phenotype traits) based on controlled biparental crosses and the F1 generation. Donor-related genetic parameter estimates clearly demonstrate heritability for nacre weight and thickness, darkness and color, and surface defects and grade, which signifies a genetic basis in the donor oyster. In graft relative gene expression, the value of heritability was superior to 0.20 in for almost all genes; whereas in pearl sac, heritability estimates were low (h2 < 0.10; except for CALC1 and Aspein). Pearl sac expression seems to be more influenced by residual variance than the graft, which can be explained by environmental effects that influence pearls sac gene expression and act as a recipient additive genetic component. The interactions between donor and recipient are very complex, and further research is required to understand the role of the recipient oysters on pearl phenotypic and gene expression variances.
Collapse
Affiliation(s)
- Carole Blay
- Ifremer, UMR EIO 241, Labex Corail, Centre du Pacifique, Taravao, Tahiti, Polynésie Française.,PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Labex Corail, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex, France
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Labex Corail, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex, France
| | - Chin-Long Ky
- Ifremer, UMR EIO 241, Labex Corail, Centre du Pacifique, Taravao, Tahiti, Polynésie Française
| |
Collapse
|
35
|
Mao J, Zhang W, Wang X, Song J, Yin D, Tian Y, Hao Z, Han B, Chang Y. Histological and Expression Differences Among Different Mantle Regions of the Yesso Scallop (Patinopecten yessoensis) Provide Insights into the Molecular Mechanisms of Biomineralization and Pigmentation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:683-696. [PMID: 31385168 DOI: 10.1007/s10126-019-09913-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The molecular mechanisms of shell formation and pigmentation are issues of great interest in molluscan studies due to the unique physical and biological properties of shells. The Yesso scallop, Patinopecten yessoensis, is one of the most important maricultural bivalves in Asian countries, and its shell color shows polymorphism. To gain more information about the underlying mechanisms of shell formation and pigmentation, this study presents the first analyses of histological and transcriptional differences between different mantle regions of the Yesso scallop, which are thought to be responsible for the formation of different shell layers. The results showed major microstructural differences between the edge and central mantles, which were closely associated with their functions. Different biomineralization-related GO functions, which might participate in the formation of different shell layers, were significantly enriched in the different mantle regions, indicating the different molecular functions of the two mantle regions in shell formation. The melanogenesis pathway, which controls melanin biosynthesis, was the most significantly enriched pathway in the DEGs between the two mantle regions, indicating its important role in shell pigmentation. Tyr, the key and rate-limiting gene in melanogenesis, was expressed at a remarkably high level in the central mantle, while the upstream regulatory genes included in melanogenesis were mainly upregulated in the edge mantle, suggesting the different molecular functions of the two mantle regions in shell pigmentation.
Collapse
Affiliation(s)
- Junxia Mao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Wenjing Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xubo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Jian Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Donghong Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Ying Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Zhenlin Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Bing Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| |
Collapse
|
36
|
Glycan Binding Profiling of Jacalin-Related Lectins from the Pteria Penguin Pearl Shell. Int J Mol Sci 2019; 20:ijms20184629. [PMID: 31540487 PMCID: PMC6769917 DOI: 10.3390/ijms20184629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/14/2019] [Accepted: 09/15/2019] [Indexed: 11/25/2022] Open
Abstract
We determined the primary structures of jacalin-related lectins termed PPL3s (PPL3A, 3B, and 3C, which are dimers consisting of sequence variants α + α, α + β, β + β, respectively) and PPL4, which is heterodimer consisting of α + β subunits, isolated from mantle secretory fluid of Pteria penguin (Mabe) pearl shell. Their carbohydrate-binding properties were analyzed, in addition to that of PPL2A, which was previously reported as a matrix protein. PPL3s and PPL4 shared only 35–50% homology to PPL2A, respectively; they exhibited significantly different carbohydrate-binding specificities based on the multiple glycan binding profiling data sets from frontal affinity chromatography analysis. The carbohydrate-binding specificity of PPL3s was similar to that of PPL2A, except only for Man3Fuc1Xyl1GlcNAc2 oligosaccharide, while PPL4 showed different carbohydrate-binding specificity compared with PPL2A and PPL3s. PPL2A and PPL3s mainly recognize agalactosylated- and galactosylated-type glycans. On the other hand, PPL4 binds to high-mannose-and hybrid-type N-linked glycans but not agalactosylated- and galactosylated-type glycans.
Collapse
|
37
|
Purification and functional analysis of the shell matrix protein N66 from the shell of the pearl oyster Pteria sterna. Comp Biochem Physiol B Biochem Mol Biol 2019; 235:19-29. [PMID: 31129291 DOI: 10.1016/j.cbpb.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 11/22/2022]
Abstract
Mollusk biomineralization is a process controlled by a complex interplay of proteins, ions and external regulators. In spite of several studies, there is a lack of knowledge of who (molecules involved), how (mechanism) and why (evolution and adaptation) mollusk are designed as we know them. In this study, a shell matrix protein, N66, has been purified and characterized biochemically from the shell of Pteria sterna. Two protein bands with carbohydrates associated were separated with a molecular weight of ~60 and 64 kDa. It has carbonic anhydrase activity and it is able to form crystal polymorphs of calcium carbonate in vitro. The mRNA N66 was obtained from the mantle tissue of Pteria sterna and the deduced amino acid sequence contained a carbonic anhydrase (CA) domain and a Asn/Gly-rich domain (aa243-439). The CA domain contained three His residues acting as zinc ligands and the gate-keeper residues present in all α-CAs (Glu166-Thr525), being thus similar to the human isoform hCAVII. Also, to test whether the posttranslational modifications present on the native N66 affects the CA activity and its crystallization capability in vitro, a recombinant N66 was overexpressed in Escherichia coli and functionally characterized. Our results show that recombinant N66 has higher CA activity and produce larger size crystals in vitro than the native N66 protein, suggesting that intrinsic properties of the native N66, such as glycosylations and/or phosphorylations, might regulate its activity.
Collapse
|
38
|
Cardoso JCR, Ferreira V, Zhang X, Anjos L, Félix RC, Batista FM, Power DM. Evolution and diversity of alpha-carbonic anhydrases in the mantle of the Mediterranean mussel (Mytilus galloprovincialis). Sci Rep 2019; 9:10400. [PMID: 31320702 PMCID: PMC6639325 DOI: 10.1038/s41598-019-46913-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/05/2019] [Indexed: 01/17/2023] Open
Abstract
The α-carbonic anhydrases (α-CAs) are a large and ancient group of metazoan-specific enzymes. They generate bicarbonate from metabolic carbon dioxide and through calcium carbonate crystal formation play a key role in the regulation of mineralized structures. To better understand how α-CAs contribute to shell mineralization in the marine Mediterranean mussel (Mytilus galloprovincialis) we characterized them in the mantle. Phylogenetic analysis revealed that mollusc α-CA evolution was affected by lineage and species-specific events. Ten α-CAs were found in the Mediterranean mussel mantle and the most abundant form was named, MgNACR, as it grouped with oyster nacreins (NACR). Exposure of the Mediterranean mussel to reduced water salinity (18 vs 37 ppt), caused a significant reduction (p < 0.05) in mantle esterase activity and MgNACR transcript abundance (p < 0.05). Protonograms revealed multiple proteins in the mantle with α-CA hydratase activity and mapped to a protein with a similar size to that deduced for monomeric MgNACR. Our data indicate that MgNACR is a major α-CA enzyme in mantle and that by homology with oyster nacreins likely regulates mussel shell production. We propose that species-dependent α-CA evolution may contribute to explain the diversity of bivalve shell structures and their vulnerability to environmental changes.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Vinicius Ferreira
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Xushuai Zhang
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Liliana Anjos
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Frederico M Batista
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.,Centre for Environment Fisheries and Aquaculture Science (CEFAS), Weymouth, Dorset, UK
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal. .,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China. .,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
39
|
Rivera-Perez C, Magallanes-Dominguez C, Dominguez-Beltran RV, Ojeda-Ramirez de Areyano JJ, Hernandez-Saavedra NY. Biochemical and molecular characterization of N66 from the shell of Pinctada mazatlanica. PeerJ 2019; 7:e7212. [PMID: 31293836 PMCID: PMC6599672 DOI: 10.7717/peerj.7212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/30/2019] [Indexed: 11/20/2022] Open
Abstract
Mollusk shell mineralization is a tightly controlled process made by shell matrix proteins (SMPs). However, the study of SMPs has been limited to a few model species. In this study, the N66 mRNA of the pearl oyster Pinctada mazatlanica was cloned and functionally characterized. The full sequence of the N66 mRNA comprises 1,766 base pairs, and encodes one N66 protein. A sequence analysis revealed that N66 contained two carbonic anhydrase (CA) domains, a NG domain and several glycosylation sites. The sequence showed similarity to the CA VII but also with its homolog protein nacrein. The native N66 protein was isolated from the shell and identified by mass spectrometry, the peptide sequence matched to the nucleotide sequence obtained. Native N66 is a glycoprotein with a molecular mass of 60-66 kDa which displays CA activity and calcium carbonate precipitation ability in presence of different salts. Also, a recombinant form of N66 was produced in Escherichia coli, and functionally characterized. The recombinant N66 displayed higher CA activity and crystallization capability than the native N66, suggesting that the lack of posttranslational modifications in the recombinant N66 might modulate its activity.
Collapse
Affiliation(s)
- Crisalejandra Rivera-Perez
- Department of Fisheries Ecology, CONACyT-Centro de Investigaciones Biologicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| | - Catalina Magallanes-Dominguez
- Department of Fisheries Ecology, Molecular Genetics Laboratory, Centro de Investigaciones Biologicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| | | | - Josafat Jehu Ojeda-Ramirez de Areyano
- Department of Fisheries Ecology, Molecular Genetics Laboratory, Centro de Investigaciones Biologicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| | - Norma Y. Hernandez-Saavedra
- Department of Fisheries Ecology, Molecular Genetics Laboratory, Centro de Investigaciones Biologicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| |
Collapse
|
40
|
Huang S, Ichikawa Y, Yoshitake K, Kinoshita S, Igarashi Y, Omori F, Maeyama K, Nagai K, Watabe S, Asakawa S. Identification and Characterization of microRNAs and Their Predicted Functions in Biomineralization in the Pearl Oyster ( Pinctada fucata). BIOLOGY 2019; 8:biology8020047. [PMID: 31212990 PMCID: PMC6627748 DOI: 10.3390/biology8020047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 11/16/2022]
Abstract
The biological process of pearl formation is an ongoing research topic, and a number of genes associated with this process have been identified. However, the involvement of microRNAs (miRNAs) in biomineralization in the pearl oyster, Pinctada fucata, is not well understood. In order to investigate the divergence and function of miRNAs in P. fucata, we performed a transcriptome analysis of small RNA libraries prepared from adductor muscle, gill, ovary, and mantle tissues. We identified 186 known and 42 novel miRNAs in these tissues. Clustering analysis showed that the expression patterns of miRNAs were similar among the somatic tissues, but they differed significantly between the somatic and ovary tissues. To validate the existence of the identified miRNAs, nine known and three novel miRNAs were verified by stem-loop qRT-PCR using U6 snRNA as an internal reference. The expression abundance and target prediction between miRNAs and biomineralization-related genes indicated that miR-1990c-3p, miR-876, miR-9a-3p, and novel-3 may be key factors in the regulatory network that act by controlling the formation of matrix proteins or the differentiation of mineralogenic cells during shell formation in mantle tissue. Our findings serve to further clarify the processes underlying biomineralization in P. fucata.
Collapse
Affiliation(s)
- Songqian Huang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Yuki Ichikawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Shigeharu Kinoshita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Yoji Igarashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Fumito Omori
- Mikimoto Pharmaceutical CO., LTD., Kurose 1425, Ise, Mie 516-8581, Japan.
| | - Kaoru Maeyama
- Mikimoto Pharmaceutical CO., LTD., Kurose 1425, Ise, Mie 516-8581, Japan.
| | - Kiyohito Nagai
- Pearl Research Laboratory, K. MIKIMOTO & CO., LTD., Osaki Hazako 923, Hamajima, Shima, Mie 517-0403, Japan.
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0313, Japan.
| | - Shuichi Asakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
41
|
Xu M, Huang J, Shi Y, Zhang H, He M. Comparative transcriptomic and proteomic analysis of yellow shell and black shell pearl oysters, Pinctada fucata martensii. BMC Genomics 2019; 20:469. [PMID: 31176356 PMCID: PMC6555990 DOI: 10.1186/s12864-019-5807-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/17/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The pearl oyster Pinctada fucata martensii (Pfu.), widely cultured in the South China Sea, is a precious source of sea pearls and calcifying materials. A yellow shell variety of Pfu. was obtained after years of artificial breeding. To identify differentially expressed genes between yellow shell and normal black shell pearl oysters, we performed transcriptomic sequencing and proteomic analyses using mantle edge tissues. RESULTS A total of 56,969 unigenes were obtained from transcriptomic, of which 21,610 were annotated, including 385 annotated significant up-regulated genes and 227 significant down-regulated genes in yellow shell oysters (| log2 (fold change) | ≥2 and false discovery rate < 0.001). Tyrosine metabolism, calcium signalling pathway, phototransduction, melanogenesis pathways and rhodopsin related Gene Ontology (GO) terms were enriched with significant differentially expressed genes (DEGs) in transcriptomic. Proteomic sequencing identified 1769 proteins, of which 51 were significantly differentially expressed in yellow shell oysters. Calmodulin, N66 matrix protein, nacre protein and Kazal-type serine protease inhibitor were up-regulated in yellow shell oysters at both mRNA and protein levels, while glycine-rich protein shematrin-2, mantle gene 4, and sulphide: quinone oxidoreductase were down-regulated at two omics levels. Particularly, calmodulin, nacre protein N16.3, mantle gene 4, sulphide: quinone oxidoreductase, tyrosinase-like protein 3, cytochrome P450 3A were confirmed by quantitative real-time PCR. Yellow shell oysters possessed higher total carotenoid content (TCC) compared than black shell oyster based on spectrophotography. CONCLUSIONS The yellow phenotype of pearl oysters, characterised by higher total carotenoids content, may reflect differences in retinal and rhodopsin metabolism, melanogenesis, calcium signalling pathway and biomineralisation. These results provide insights for exploring the relationships between calcium regulation, biomineralisation and yellow shell colour pigmentation.
Collapse
Affiliation(s)
- Meng Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Hua Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
42
|
Mariom, Take S, Igarashi Y, Yoshitake K, Asakawa S, Maeyama K, Nagai K, Watabe S, Kinoshita S. Gene expression profiles at different stages for formation of pearl sac and pearl in the pearl oyster Pinctada fucata. BMC Genomics 2019; 20:240. [PMID: 30909870 PMCID: PMC6434816 DOI: 10.1186/s12864-019-5579-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Background The most critical step in the pearl formation during aquaculture is issued to the proliferation and differentiation of outer epithelial cells of mantle graft into pearl sac. This pearl sac secretes various matrix proteins to produce pearls by a complex physiological process which has not been well-understood yet. Here, we aimed to unravel the genes involved in the development of pearl sac and pearl, and the sequential expression patterns of different shell matrix proteins secreted from the pearl sac during pearl formation by pearl oyster Pinctada fucata using high-throughput transcriptome profiling. Results Principal component analysis (PCA) showed clearly different gene expression profiles between earlier (before 1 week) and later stages (1 week to 3 months) of grafting. Immune-related genes were highly expressed between 0 h – 24 h (donor dependent) and 48 h – 1 w (host dependent), and in the course of wound healing process pearl sac was developed by two weeks of graft transplantation. Moreover, for the first time, we identified some stem cell marker genes including ABCG2, SOX2, MEF2A, HES1, MET, NRP1, ESR1, STAT6, PAX2, FZD1 and PROM1 that were expressed differentially during the formation of pearl sac. The expression profiling of 192 biomineralization-related genes demonstrated that most of the shell matrix proteins (SMPs) involved in prismatic layer formation were first up-regulated and then gradually down-regulated indicating their involvement in the development of pearl sac and the onset of pearl mineralization. Most of the nacreous layer forming SMPs were up-regulated at 2 weeks after the maturation of pearl sac. Nacrein, MSI7 and shematrin involved in both layer formation were highly expressed during 0 h – 24 h, down-regulated up to 1 week and then up-regulated again after accomplishment of pearl sac formation. Conclusions Using an RNA-seq approach we unraveled the expression pattern of the key genes involved in the development of pearl sac and pearl as a result of host immune response after grafting. These findings provide valuable information in understanding the molecular mechanism of pearl formation and immune response in P. fucata. Electronic supplementary material The online version of this article (10.1186/s12864-019-5579-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mariom
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.,Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Saori Take
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Yoji Igarashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Shuichi Asakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Kaoru Maeyama
- Mikimoto Pharmaceutical CO., LTD, Kurose 1425, Ise, Mie, 516-8581, Japan
| | - Kiyohito Nagai
- Pearl Research Laboratory, K. MIKIMOTO & CO., LTD, Osaki Hazako 923, Hamajima, Shima, Mie, 517-0403, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Minami, Sagamihara, Kanagawa, 252-0313, Japan
| | - Shigeharu Kinoshita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
43
|
Huang J, Xie L, Zhang R. Shell repair and the potential microbial causal in a shell disease of the pearl oyster Pinctada fucata. FISH & SHELLFISH IMMUNOLOGY 2019; 86:934-941. [PMID: 30576776 DOI: 10.1016/j.fsi.2018.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/13/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
The pearl oyster Pinctada fucata is famous for producing luxurious pearls. As filter feeders, they are confronted with various infectious microorganisms. Despite a long history of aquaculture, diseases in P. fucata are not well studied, which limits the development of the pearl industry. We report here a shell disease in P. fucata and a study of the shell repair processes. Scanning electron microscopy (SEM) revealed that the nacreous layer gradually recovered from disordered CaCO3 deposition, accompanied by a polymorphic transition from a calcite-aragonite mixture to an aragonite-dominant composition, as revealed by X-ray diffraction analysis. SEM also showed that numerous microbes were embedded in the abnormal shell layers. Similar indications were induced by a high concentration of microbes injected into the extrapallial space, suggesting the potential pathogenic effect of uncontrolled microbes. Furthermore, hemocytes were found to participate in pathogens resistance and might promote shell repair. These results further our understanding of pathogen-host interactions in pearl oysters and have implications for biotic control in pearl aquaculture.
Collapse
Affiliation(s)
- Jingliang Huang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Liping Xie
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Rongqing Zhang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, 314000, China.
| |
Collapse
|
44
|
Le Luyer J, Auffret P, Quillien V, Leclerc N, Reisser C, Vidal-Dupiol J, Ky CL. Whole transcriptome sequencing and biomineralization gene architecture associated with cultured pearl quality traits in the pearl oyster, Pinctada margaritifera. BMC Genomics 2019; 20:111. [PMID: 30727965 PMCID: PMC6366105 DOI: 10.1186/s12864-019-5443-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/09/2019] [Indexed: 01/31/2023] Open
Abstract
Background Cultured pearls are unique gems produced by living organisms, mainly molluscs of the Pinctada genus, through the biomineralization properties of pearl sac tissue. Improvement of P. margaritifera pearl quality is one of the biggest challenges that Polynesian research has faced to date. To achieve this goal, a better understanding of the complex mechanisms related to nacre and pearl formation is essential and can now be approached through the use of massive parallel sequencing technologies. The aim of this study was to use RNA-seq to compare whole transcriptome expression of pearl sacs that had producing pearls with high and low quality. For this purpose, a comprehensive reference transcriptome of P. margaritifera was built based on multi-tissue sampling (mantle, gonad, whole animal), including different living stages (juvenile, adults) and phenotypes (colour morphotypes, sex). Results Strikingly, few genes were found to be up-regulated for high quality pearls (n = 16) compared to the up-regulated genes in low quality pearls (n = 246). Biomineralization genes up-regulated in low quality pearls were specific to prismatic and prism-nacre layers. Alternative splicing was further identified in several key biomineralization genes based on a recent P. margaritifera draft genome. Conclusion This study lifts the veil on the multi-level regulation of biomineralization genes associated with pearl quality determination. Electronic supplementary material The online version of this article (10.1186/s12864-019-5443-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Le Luyer
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - P Auffret
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - V Quillien
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - N Leclerc
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - C Reisser
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - J Vidal-Dupiol
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia.,Ifremer, UMR 5244 Interactions Hôtes-Pathogènes-Environnements, Université de Montpellier, Place Eugène Bataillon CC 80, 34095, Montpellier, France
| | - C-L Ky
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia.
| |
Collapse
|
45
|
Mao J, Zhang W, Zhang X, Tian Y, Wang X, Hao Z, Chang Y. Transcriptional changes in the Japanese scallop (Mizuhopecten yessoensis) shellinfested by Polydora provide insights into the molecular mechanism of shell formation and immunomodulation. Sci Rep 2018; 8:17664. [PMID: 30518937 PMCID: PMC6281612 DOI: 10.1038/s41598-018-35749-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/07/2018] [Indexed: 01/19/2023] Open
Abstract
The Japanese scallop (Mizuhopecten yessoensis) is one of the most important aquaculture species in Asian countries; however, it has suffered severe infection by Polydora in northern China in recent years, causing great economic losses. The Polydora parasitizes the shell of scallops, badly destroying the shell's structure. To investigate the molecular response mechanism of M. yessoensis to Polydora infestion, a comprehensive and niche-targeted cDNA sequence database for diseased scallops was constructed. Additionally, the transcriptional changes in the edge mantle, central mantle and hemocytes, tissues directly related to the disease, were first described in this study. The results showed that genes involved in shell formation and immunomodulation were significantly differentially expressed due to the infestation. Different transcriptional changes existed between the two mantle regions, indicating the different molecular functions likely responsible for the formation of different shell layers. The differential expression of genes for immune recognition, signal transduction and pathogen elimination presented an integrated immune response process in scallops. Moreover, neuromodulation and glycometabolism involved in the regulation process with relevant function significantly enriched. The study provides valuable information for mechanism study of shell formation and immunomodulation in scallops.
Collapse
Affiliation(s)
- Junxia Mao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Wenjing Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xiaosen Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Ying Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xubo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Zhenlin Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| |
Collapse
|
46
|
Shi Y, Xu M, Huang J, Zhang H, Liu W, Ou Z, He M. Transcriptome analysis of mantle tissues reveals potential biomineralization-related genes in Tectus pyramis Born. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 29:131-144. [PMID: 30469052 DOI: 10.1016/j.cbd.2018.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/11/2018] [Indexed: 10/27/2022]
Abstract
The marine mollusk Tectus pyramis is a valuable shellfish primarily distributed in the tropical waters of the South China Sea, as well as in the Indo-Pacific Ocean and areas near the southern portion of the Japanese Peninsula. Despite major economic interest in this mollusk, limited genomic resources are available for this species, which has prevented studies of the molecular mechanism, such as biomineralization. Here, we report the first comprehensive transcript dataset of T. pyramis mantle tissue. From a total of 16,801,141 reads, 173,671 unique transcripts were assembled, which provides new genomic resources for the understanding of biomineralization in T. pyramis. The most abundant unique sequences of the top 30 most highly expressed genes were annotated as shematrin, while other highly expressed genes included glycine-rich protein and shematrin-1. Based on transcriptome annotation and Gene Ontology classification, 130 biomineralization-related genes were found including members of the BMP (bone morphogenetic proteins), calmodulin, perlucin, and shematrin families, as well as mantle genes, nacrein, and MSI60. The results of qPCR showed that 14 of 24 examined genes were highly expressed in the mantle. A phylogenetic tree of BMP, perlucin, shematrin proteins revealed conservation of their structure and functions and indicated that some members participated in biomineralization in T. pyramis. Taken together, the results presented herein will be useful in studies of molecular mechanisms and pathways of biomineralization in T. pyramis, as well as provide new insight into the mechanisms of biomineralization in gastropods.
Collapse
Affiliation(s)
- Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Meng Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jing Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Hua Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Wenguang Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Zekui Ou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| |
Collapse
|
47
|
Sillanpää JK, Sundh H, Sundell KS. Calcium transfer across the outer mantle epithelium in the Pacific oyster, Crassostrea gigas. Proc Biol Sci 2018; 285:20181676. [PMID: 30429301 PMCID: PMC6253367 DOI: 10.1098/rspb.2018.1676] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/24/2018] [Indexed: 11/12/2022] Open
Abstract
Calcium transport is essential for bivalves to be able to build and maintain their shells. Ionized calcium (Ca2+) is taken up from the environment and eventually transported through the outer mantle epithelium (OME) to the shell growth area. However, the mechanisms behind this process are poorly understood. The objective of the present study was to characterize the Ca2+ transfer performed by the OME of the Pacific oyster, Crassostrea gigas, as well as to develop an Ussing chamber technique for the functional assessment of transport activities in epithelia of marine bivalves. Kinetic studies revealed that the Ca2+ transfer across the OME consists of one saturable and one linear component, of which the saturable component fits best to Michaelis-Menten kinetics and is characterized by a Km of 6.2 mM and a Vmax of 3.3 nM min-1 The transcellular transfer of Ca2+ accounts for approximately 60% of the total Ca2+ transfer across the OME of C. gigas at environmental Ca2+ concentrations. The use of the pharmacological inhibitors: verapamil, ouabain and caloxin 1a1 revealed that voltage-gated Ca2+-channels, plasma-membrane Ca2+-ATPase and Na+/Ca2+-exchanger all participate in the transcellular Ca2+ transfer across the OME and a model for this Ca2+ transfer is presented and discussed.
Collapse
Affiliation(s)
- J Kirsikka Sillanpää
- Department of Biological and Environmental Sciences, Swedish Mariculture Research Center, University of Gothenburg, Box 463, Gothenburg 40530, Sweden
| | - Henrik Sundh
- Department of Biological and Environmental Sciences, Swedish Mariculture Research Center, University of Gothenburg, Box 463, Gothenburg 40530, Sweden
| | - Kristina S Sundell
- Department of Biological and Environmental Sciences, Swedish Mariculture Research Center, University of Gothenburg, Box 463, Gothenburg 40530, Sweden
| |
Collapse
|
48
|
Le Moullac G, Schuck L, Chabrier S, Belliard C, Lyonnard P, Broustal F, Soyez C, Saulnier D, Brahmi C, Ky CL, Beliaeff B. Influence of temperature and pearl rotation on biomineralization in the pearl oyster, Pinctada margaritifera. ACTA ACUST UNITED AC 2018; 221:jeb.186858. [PMID: 30072384 DOI: 10.1242/jeb.186858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/25/2018] [Indexed: 11/20/2022]
Abstract
The objective of this study was to observe the impact of temperature on pearl formation using an integrative approach describing the rotation of the pearls, the rate of nacre deposition, the thickness of the aragonite tablets and the biomineralizing potential of the pearl sac tissue though the expression level of some key genes. Fifty pearl oysters were grafted with magnetized nuclei to allow the rotation of the pearls to be described. Four months later, 32 of these pearl oysters were exposed to four temperatures (22, 26, 30 and 34°C) for 2 weeks. Results showed that the rotation speed differed according to the movement direction: pearls with axial movement had a significantly higher rotation speed than those with random movement. Pearl growth rate was influenced by temperature, with a maximum between 26 and 30°C but almost no growth at 34°C. Lastly, among the nine genes implicated in the biomineralization process, only Pmarg-Pif177 expression was significantly modified by temperature. These results showed that the rotation speed of the pearls was not linked to pearl growth or to the expression profiles of biomineralizing genes targeted in this study. On the basis of our results, we consider that pearl rotation is a more complex process than formerly thought. Mechanisms involved could include a strong environmental forcing in immediate proximity to the pearl. Another implication of our findings is that, in the context of ocean warming, pearl growth and quality can be expected to decrease in pearl oysters exposed to temperatures above 30°C.
Collapse
Affiliation(s)
- Gilles Le Moullac
- Ifremer, UMR EIO 241, Labex Corail, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, French Polynesia
| | - Lucie Schuck
- Ifremer, UMR EIO 241, Labex Corail, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, French Polynesia
| | - Sébastien Chabrier
- Université de Polynésie Française, laboratoire GEPASUD, BP 6570, 98702 Faa'a, Tahiti, French Polynesia
| | - Corinne Belliard
- Ifremer, UMR EIO 241, Labex Corail, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, French Polynesia
| | - Pierre Lyonnard
- Ifremer, UMR EIO 241, Labex Corail, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, French Polynesia
| | - Floriane Broustal
- Ifremer, UMR EIO 241, Labex Corail, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, French Polynesia
| | - Claude Soyez
- Ifremer, UMR EIO 241, Labex Corail, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, French Polynesia
| | - Denis Saulnier
- Ifremer, UMR EIO 241, Labex Corail, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, French Polynesia
| | - Chloé Brahmi
- Université de Polynésie Française, UMR EIO 241, Labex Corail, BP 6570, 98702 Faa'a, Tahiti, French Polynesia
| | - Chin-Long Ky
- Ifremer, UMR EIO 241, Labex Corail, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, French Polynesia
| | - Benoit Beliaeff
- Ifremer, UMR EIO 241, Labex Corail, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, French Polynesia
| |
Collapse
|
49
|
Blay C, Planes S, Ky CL. Cultured Pearl Surface Quality Profiling by the Shell Matrix Protein Gene Expression in the Biomineralised Pearl Sac Tissue of Pinctada margaritifera. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:490-501. [PMID: 29663093 DOI: 10.1007/s10126-018-9811-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Nucleated pearls are produced by molluscs of the Pinctada genus through the biomineralisation activity of the pearl sac tissue within the recipient oyster. The pearl sac originates from graft tissue taken from the donor oyster mantle and its functioning is crucial in determining key factors that impact pearl quality surface characteristics. The specific role of related gene regulation during gem biogenesis was unknown, so we analysed the expression profiles of eight genes encoding nacreous (PIF, MSI60, PERL1) or prismatic (SHEM5, PRISM, ASP, SHEM9) shell matrix proteins or both (CALC1) in the pearl sac (N = 211) of Pinctada margaritifera during pearl biogenesis. The pearls and pearl sacs analysed were from a uniform experimental graft with sequential harvests at 3, 6 and 9 months post-grafting. Quality traits of the corresponding pearls were recorded: surface defects, surface deposits and overall quality grade. Results showed that (1) the first 3 months of culture seem crucial for pearl quality surface determination and (2) all the genes (SHEM5, PRISM, ASP, SHEM9) encoding proteins related to calcite layer formation were over-expressed in the pearl sacs that produced low pearl surface quality. Multivariate regression tree building clearly identified three genes implicated in pearl surface quality, SHEM9, ASP and PIF. SHEM9 and ASP were clearly implicated in low pearl quality, whereas PIF was implicated in high quality. Results could be used as biomarkers for genetic improvement of P. margaritifera pearl quality and constitute a novel perspective to understanding the molecular mechanism of pearl formation.
Collapse
Affiliation(s)
- Carole Blay
- Ifremer, UMR EIO241, Labex Corail, Centre du Pacifique, BP 49, 98719, Taravao, Tahiti, French Polynesia
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
- Laboratoire d'Excellence "CORAIL", Tahiti, French Polynesia
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
- Laboratoire d'Excellence "CORAIL", Tahiti, French Polynesia
| | - Chin-Long Ky
- Ifremer, UMR EIO241, Labex Corail, Centre du Pacifique, BP 49, 98719, Taravao, Tahiti, French Polynesia.
- Laboratoire d'Excellence "CORAIL", Tahiti, French Polynesia.
| |
Collapse
|
50
|
Sivka U, Toplak N, Koren S, Jakše J. De novo transcriptome of the pallial gland of the date mussel ( Lithophaga lithophaga ). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 26:1-9. [DOI: 10.1016/j.cbd.2018.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 11/28/2022]
|