1
|
Mirabedini Z, Niyyati M, Mohammad Rahimi H, Soleimani Jevinani S, Fatemi M, Tanhaei M, Mohebbi SR, Yadegar A, Abolghasemi S, Arab Mazar Z, Mirjalali H. The presence of yeasts and bacteria in free-living amoebae isolated from COVID-19 patients: concern for secondary infections. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-14. [PMID: 39428626 DOI: 10.1080/09603123.2024.2409830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024]
Abstract
This study aimed to investigate the presence of SARS-CoV-2, yeasts, and bacteria in isolated free-living amoeba (FLA) from COVID-19 patients. Nasopharyngeal swabs (n = 60) were obtained from COVID-19 patients. After cultivation, morphological characterization, and RNA/DNA extraction, the presence of selected microorganisms was investigated. From 60 COVID-19 samples, 18 (30%) were positive for FLA. Acanthamoeba sp. Naegleria australiensis, Tetramitus sp. and Vermamoeba vermiformis were characterized in 12 (80%), 1 (6.66%), 2 (13.33%), and 7 (38.88%) of samples, respectively. SARS-CoV-2 RNA was not detected in FLA. Candida albicans, C. tropicalis, and C. parapsilosis were detected in (11/18; 61.11%), (3/18; 16.67%), and (3/18; 16.67%) of samples, respectively. Geotrichum candidum was detected in 10/18 (55.55%) of samples. Streptococcus spp. and Staphylococcus spp. were identified in 16/18 (88.88%) and 3/18 (16.67%), respectively. The presence of yeasts and bacteria signifies the possible role of FLA in distribution of secondary infections in susceptible patients.
Collapse
Affiliation(s)
- Zahra Mirabedini
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Soleimani Jevinani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marziye Fatemi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Tanhaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Abolghasemi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Arab Mazar
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Gu Q, Draheim M, Planchais C, He Z, Mu F, Gong S, Shen C, Zhu H, Zhivaki D, Shahin K, Collard JM, Su M, Zhang X, Mouquet H, Lo-Man R. Intestinal newborn regulatory B cell antibodies modulate microbiota communities. Cell Host Microbe 2024; 32:1787-1804.e9. [PMID: 39243760 DOI: 10.1016/j.chom.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
The role of immunoglobulins produced by IL-10-producing regulatory B cells remains unknown. We found that a particular newborn regulatory B cell population (nBreg) negatively regulates the production of immunoglobulin M (IgM) via IL-10 in an autocrine manner, limiting the intensity of the polyreactive antibody response following innate activation. Based on nBreg scRNA-seq signature, we identify these cells and their repertoire in fetal and neonatal intestinal tissues. By characterizing 205 monoclonal antibodies cloned from intestinal nBreg, we show that newborn germline-encoded antibodies display reactivity against bacteria representing six different phyla of the early microbiota. nBreg-derived antibodies can influence the diversity and the cooperation between members of early microbial communities, at least in part by modulating energy metabolism. These results collectively suggest that nBreg populations help facilitate early-life microbiome establishment and shed light on the paradoxical activities of regulatory B cells in early life.
Collapse
Affiliation(s)
- Qisheng Gu
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; Université Paris Cite, Paris, France
| | - Marion Draheim
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cyril Planchais
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cite, INSERM U1222, Paris, France
| | - Zihan He
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fan Mu
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shijie Gong
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chun Shen
- Children's Hospital of Fudan University, Shanghai, China
| | - Haitao Zhu
- Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, China
| | - Dania Zhivaki
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Khashayar Shahin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan Microbiome Center, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jean-Marc Collard
- Enteric Bacterial Pathogens Unit & French National Reference Center for Escherichia Coli, Shigella and Salmonella, Institut Pasteur, Paris, France
| | - Min Su
- Obstetrics department, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoming Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Innate Defense and Immune Modulation, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Hugo Mouquet
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cite, INSERM U1222, Paris, France.
| | - Richard Lo-Man
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; Université Paris Cite, Paris, France.
| |
Collapse
|
3
|
Talwar C, Davuluri GVN, Kamal AHM, Coarfa C, Han SJ, Veeraragavan S, Parsawar K, Putluri N, Hoffman K, Jimenez P, Biest S, Kommagani R. Identification of distinct stool metabolites in women with endometriosis for non-invasive diagnosis and potential for microbiota-based therapies. MED 2024:S2666-6340(24)00373-8. [PMID: 39395412 DOI: 10.1016/j.medj.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/15/2024] [Accepted: 09/13/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Endometriosis, a poorly studied gynecological condition, is characterized by the presence of ectopic endometrial lesions resulting in pelvic pain, inflammation, and infertility. These associated symptoms contribute to a significant burden, often exacerbated by delayed diagnosis. Current diagnostic methods involve invasive procedures, and existing treatments provide no cure. METHODS Microbiome-metabolome signatures in stool samples from individuals with and without endometriosis were determined using unbiased metabolomics and 16S bacteria sequencing. Functional studies for selected microbiota-derived metabolites were conducted in vitro using patient-derived cells and in vivo by employing murine and human xenograft pre-clinical disease models. FINDINGS We discovered a unique bacteria-derived metabolite signature intricately linked to endometriosis. The altered fecal metabolite profile exhibits a strong correlation with that observed in inflammatory bowel disease (IBD), revealing intriguing connections between these two conditions. Notably, we validated 4-hydroxyindole, a gut-bacteria-derived metabolite that is lower in stool samples of endometriosis. Extensive in vivo studies found that 4-hydroxyindole suppressed the initiation and progression of endometriosis-associated inflammation and hyperalgesia in heterologous mouse and in pre-clinical models of the disease. CONCLUSIONS Our findings are the first to provide a distinct stool metabolite signature in women with endometriosis, which could serve as stool-based non-invasive diagnostics. Further, the gut-microbiota-derived 4-hydroxyindole poses as a therapeutic candidate for ameliorating endometriosis. FUNDING This work was funded by the NIH/NICHD grants (R01HD102680, R01HD104813) and a Research Scholar Grant from the American Cancer Society to R.K.
Collapse
Affiliation(s)
- Chandni Talwar
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Cristian Coarfa
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA; Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Surabi Veeraragavan
- Department of Molecular Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Krishna Parsawar
- Analytical and Biological Mass Spectrometry Core Facility, University of Arizona, Tucson, AZ 85721, USA
| | - Nagireddy Putluri
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kristi Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patricia Jimenez
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Scott Biest
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO 63110, USA; Division of Minimally Invasive Gynecologic Surgery, Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Díaz-Sánchez S, Vaz-Rodrigues R, Contreras M, Rafael M, Villar M, González-García A, Artigas-Jerónimo S, Gortázar C, de la Fuente J. Zebrafish gut microbiota composition in response to tick saliva biomolecules correlates with allergic reactions to mammalian meat consumption. Microbiol Res 2024; 285:127786. [PMID: 38820703 DOI: 10.1016/j.micres.2024.127786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
The α-Gal syndrome (AGS) is an IgE-mediated tick borne-allergy that results in delayed anaphylaxis to the consumption of mammalian meat and products containing α-Gal. Considering that α-Gal-containing microbiota modulates natural antibody production to this glycan, this study aimed to evaluate the influence on tick salivary compounds on the gut microbiota composition in the zebrafish (Danio rerio) animal model. Sequencing of 16 S rDNA was performed in a total of 75 zebrafish intestine samples, representing different treatment groups: PBS control, Ixodes ricinus tick saliva, tick saliva non-protein fraction (NPF), tick saliva protein fraction (PF), and tick saliva protein fractions 1-5 with NPF (F1-5). The results revealed that treatment with tick saliva and different tick salivary fractions, combined with α-Gal-positive dog food feeding, resulted in specific variations in zebrafish gut microbiota composition at various taxonomic levels and affected commensal microbial alpha and beta diversities. Metagenomics results were corroborated by qPCR, supporting the overrepresentation of phylum Firmicutes in the tick saliva group, phylum Fusobacteriota in group F1, and phylum Cyanobacteria in F2 and F5 compared to the PBS-control. qPCRs results at genus level sustained significant enrichment of Plesiomonas spp. in groups F3 and F5, Rhizobium spp. in NPF and F4, and Cloacibacterium spp. dominance in the PBS control group. This study provides new results on the role of gut microbiota in allergic reactions to tick saliva components using a zebrafish model of AGS. Overall, gut microbiota composition in response to tick saliva biomolecules may be associated with allergic reactions to mammalian meat consumption in AGS.
Collapse
Affiliation(s)
- Sandra Díaz-Sánchez
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Área de Microbiología, Entrada Campus Anchieta, 4, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands 38200, Spain
| | - Rita Vaz-Rodrigues
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain
| | - Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain
| | - Marta Rafael
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain; Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Almudena González-García
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain
| | - Sara Artigas-Jerónimo
- Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Christian Gortázar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13071, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
5
|
Noruzpour A, Gholam-Mostafaei FS, Looha MA, Dabiri H, Ahmadipour S, Rouhani P, Ciacci C, Rostami-Nejad M. Assessment of salivary microbiota profile as a potential diagnostic tool for pediatric celiac disease. Sci Rep 2024; 14:16712. [PMID: 39030381 PMCID: PMC11271620 DOI: 10.1038/s41598-024-67677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
The association between oral dysbiosis and celiac disease (CD) remains poorly understood, as does the impact of CD-associated dysbiosis on disease development or exacerbation. This study aims to investigate alterations in salivary microbial composition among children with CD. In this cross-sectional study, saliva samples from 12 children with active CD (A-CD group), 14 children with CD on a gluten-free diet (GFD), and 10 healthy control (HC) children were analyzed using DNA sequencing targeting the 16S ribosomal RNA. Both patients in A-CD and GFD groups showed a significant increase (p = 0.0001) in the Bacteroidetes phylum, while the Actinobacteria phylum showed a significant decrease (p = 0.0001). Notably, the Rothia genus and R.aeria also demonstrated a significant decrease (p = 0.0001) within the both CD groups as compare to HC. Additionally, the control group displayed a significant increase (p = 0.006) in R.mucilaginosa species compared to both CD patient groups. Distinct bacterial strains were abundant in the saliva of patients with active CD, indicating a unique composition of the salivary microbiome in individuals with CD. These findings suggest that our approach to assessing salivary microbiota changes may contribute to developing noninvasive methods for diagnosing and treating CD.
Collapse
Affiliation(s)
- Asal Noruzpour
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medial Science, Tehran, Iran
| | - Fahimeh Sadat Gholam-Mostafaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Azizmohammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Dabiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medial Science, Tehran, Iran
| | - Shokoufeh Ahmadipour
- Pediatric Gastroenterologist, Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Pejman Rouhani
- Department of Pediatric Gastroenterology and Hepatology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Carolina Ciacci
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Zhang X, Wang J, Zhang T, Li S, Liu J, Li M, Lu J, Zhang M, Chen H. Updated Progress on Polysaccharides with Anti-Diabetic Effects through the Regulation of Gut Microbiota: Sources, Mechanisms, and Structure-Activity Relationships. Pharmaceuticals (Basel) 2024; 17:456. [PMID: 38675416 PMCID: PMC11053653 DOI: 10.3390/ph17040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes mellitus (DM) is a common chronic metabolic disease worldwide. The disturbance of the gut microbiota has a complex influence on the development of DM. Polysaccharides are one type of the most important natural components with anti-diabetic effects. Gut microbiota can participate in the fermentation of polysaccharides, and through this, polysaccharides regulate the gut microbiota and improve DM. This review begins by a summary of the sources, anti-diabetic effects and the gut microbiota regulation functions of natural polysaccharides. Then, the mechanisms of polysaccharides in regulating the gut microbiota to exert anti-diabetic effects and the structure-activity relationship are summarized. It is found that polysaccharides from plants, fungi, and marine organisms show great hypoglycemic activities and the gut microbiota regulation functions. The mechanisms mainly include repairing the gut burrier, reshaping gut microbiota composition, changing the metabolites, regulating anti-inflammatory activity and immune function, and regulating the signal pathways. Structural characteristics of polysaccharides, such as monosaccharide composition, molecular weight, and type of glycosidic linkage, show great influence on the anti-diabetic activity of polysaccharides. This review provides a reference for the exploration and development of the anti-diabetic effects of polysaccharides.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Jingyang Lu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China;
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| |
Collapse
|
7
|
Almeida PP, Da Cruz BO, Thomasi B, Menezes ÁC, Brito ML, Costa NDS, Ito RVA, Degani VAN, Daleprane JB, Magliano DC, Tavares-Gomes AL, Stockler-Pinto MB. Brazil Nut-Enriched Diet Modulates Enteric Glial Cells and Gut Microbiota in an Experimental Model of Chronic Kidney Disease. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:201-212. [PMID: 37611162 DOI: 10.1080/27697061.2023.2247057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Introduction: Chronic kidney disease (CKD) promotes gut dysbiosis, and enteric glial reactivity, a feature of intestinal inflammation. Brazil nut modulated enteric glial profile in healthy animals and could modulate these cells in 5/6 nephrectomized rats.Methods: A 5/6 nephrectomy-induced CKD and Sham-operated rats were divided as follows: CKD and Sham received a standard diet and CKD-BN and Sham-BN received a 5% Brazil nut enriched-diet. The protein content of glial fibrillary acid protein (GFAP), enteric glial marker, and GPx protein content and activity were assessed in the colon. The major phyla of gut microbiota were assessed.Results: CKD-BN group presented a decrease in GFAP content (p = 0.0001). The CKD-BN group modulated the abundance of Firmicutes, increasing its proportion compared to the CKD group. The CKD-BN group showed increased GPx activity in the colon (p = 0.0192), despite no significant difference in protein content.Conclusion: Brazil nut-enriched diet consumption decreased enteric glial reactivity and modulated gut microbiota in the CKD experimental model.
Collapse
Affiliation(s)
- Patricia Pereira Almeida
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Beatriz Oliveira Da Cruz
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Beatriz Thomasi
- Department of Physiology, Neuroscience Program, Michigan State University (MSU), East Lansing, Michigan, USA
| | - Ágatha Cristie Menezes
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Michele Lima Brito
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Nathalia da Silva Costa
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | | | - Viviane Alexandre Nunes Degani
- Clinic and Animal Reproduction Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - D'Angelo Carlo Magliano
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Ana Lúcia Tavares-Gomes
- Neurosciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Milena Barcza Stockler-Pinto
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Nutrition Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Böhringer AC, Deters L, Windfelder AG, Merzendorfer H. Dextran sulfate sodium and uracil induce inflammatory effects and disrupt the chitinous peritrophic matrix in the midgut of Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 163:104029. [PMID: 37907139 DOI: 10.1016/j.ibmb.2023.104029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Dextran sulfate sodium is used in inflammatory bowel disease (IBD) mice models to trigger chronic intestinal inflammation. In this study, we have analyzed DSS effects in the genetic model and pest beetle, Tribolium castaneum, which can be easily and cost-effectively cultivated and examined in very large quantities compensating for individual variations. We fed the larvae with DSS and uracil, which is known to induce the production of reactive oxygen species by activating DUOX, a member of the NADPH oxidase family. Both chemicals induced IBD-like phenotypes, including impaired growth and development, midgut thickening, epithelial swelling, and a loss of epithelial barrier function. RNAi mediated knockdown of DUOX expression enhanced the effects of DSS and uracil on mortality. Finally, we showed that both treatments result in an altered activity of the intestinal microbiome, similar as observed in IBD patients. Our findings suggest that both chemicals impair the epithelial barrier by increasing the permeability of the peritrophic matrix. The loss of the barrier function may facilitate the entry of midgut bacteria triggering innate immune responses that also affect the intestinal microbiome. As the observed effects resemble those induced by DSS treatment in mice, T. castaneum might be suitable high-throughput invertebrate model for IBD research and preclinical studies.
Collapse
Affiliation(s)
| | - Lara Deters
- University of Siegen, Department of Chemistry-Biology, 57068, Siegen, Germany
| | - Anton George Windfelder
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 35392, Gießen, Germany; Experimental Radiology, Department of Medicine, Justus Liebig University, 35392, Gießen, Germany
| | - Hans Merzendorfer
- University of Siegen, Department of Chemistry-Biology, 57068, Siegen, Germany.
| |
Collapse
|
9
|
Olyaiee A, Yadegar A, Mirsamadi ES, Sadeghi A, Mirjalali H. Profiling of the fecal microbiota and circulating microRNA-16 in IBS subjects with Blastocystis infection : a case-control study. Eur J Med Res 2023; 28:483. [PMID: 37932792 PMCID: PMC10626746 DOI: 10.1186/s40001-023-01441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a prevalent gastrointestinal (GI) tract disorder. Although the main reason for IBS is not clear, the interaction between intestinal microorganisms and the gut barrier seems to play an important role in pathogenesis of IBS. The current study aimed to investigate the effect of Blastocystis on the gut microbiota profile and the circulation levels of microRNA (mir)-16 of IBS patients compared to healthy subjects. Stool and blood samples were collected from 80 participants including 40 samples from each IBS and healthy group. Upon DNA extraction from stool samples, barcoding region and quantitative real-time PCR were analyzed to investigate Blastocystis and the microbiota profile, respectively. RNA was extracted from serum samples of included subjects and the expression of mir-16 was evaluated using stem-loop protocol and qreal-time PCR. Significant changes between IBS patients and healthy controls was observed in Firmicutes, Actinobacteria, Faecalibacterium, and Alistipes. In IBS patients, the relative abundance of Bifidobacteria was directly correlated with the presence of Blastocystis, while Alistipes was decreased with Blastocystis. Lactobacillus was significantly increased in Blastocystis carriers. In healthy subjects, the relative abundance of Bifidobacteria was decreased, but Alistipes was increased in Blastocystis carriers. The changes in the Firmicutes/Bacteroidetes ratio was not significant in different groups. The relative expression of mir-16 in Blastocystis-negative IBS patients and healthy carriers was significantly overexpressed compared to control group. The presence of Blastocystis, decreased the relative expression of mir-16 in IBS patients compared to Blastocystis-negative IBS patients. The present study revealed that Blastocystis has the ability to change the abundance of some phyla/genera of bacteria in IBS and healthy subjects. Moreover, Blastocystis seems to modulate the relative expression of microRNAs to control the gut atmosphere, apply its pathogenicity, and provide a favor niche for its colonization.
Collapse
Affiliation(s)
- Alireza Olyaiee
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Sadat Mirsamadi
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Rashnaei N, Akhavan Sepahi A, Siadat SD, Shahsavand-Ananloo E, Bahramali G. Characterization of gut microbiota profile in Iranian patients with bipolar disorder compared to healthy controls. Front Cell Infect Microbiol 2023; 13:1233687. [PMID: 37808915 PMCID: PMC10552146 DOI: 10.3389/fcimb.2023.1233687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction The human gut microbiota plays a crucial role in mental health through the gut-brain axis, impacting central nervous system functions, behavior, mood, and anxiety. Consequently, it is implicated in the development of neuropsychiatric disorders. This study aimed to assess and compare the gut microbiota profiles and populations of individuals with bipolar disorder and healthy individuals in Iran. Methods Fecal samples were collected from 60 participants, including 30 bipolar patients (BPs) and 30 healthy controls (HCs), following rigorous entry criteria. Real-time quantitative PCR was utilized to evaluate the abundance of 10 bacterial genera/species and five bacterial phyla. Results Notably, Actinobacteria and Lactobacillus exhibited the greatest fold change in BPs compared to HCs at the phylum and genus level, respectively, among the bacteria with significant population differences. Ruminococcus emerged as the most abundant genus in both groups, while Proteobacteria and Bacteroidetes showed the highest abundance in BPs and HCs, respectively, at the phylum level. Importantly, our investigation revealed a lower Firmicutes/Bacteroidetes ratio, potentially serving as a health indicator, in HCs compared to BPs. Conclusion This study marks the first examination of an Iranian population and provides compelling evidence of significant differences in gut microbiota composition between BPs and HCs, suggesting a potential link between brain functions and the gut microbial profile and population.
Collapse
Affiliation(s)
- Nassir Rashnaei
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Esmaeil Shahsavand-Ananloo
- Department of Psychosomatic, Imam Khomeini Hospital Complex, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Golnaz Bahramali
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Kim YC, Qi M, Dong X, Seok S, Sun H, Kemper B, Fu T, Kemper JK. Transgenic mice lacking FGF15/19-SHP phosphorylation display altered bile acids and gut bacteria, promoting nonalcoholic fatty liver disease. J Biol Chem 2023; 299:104946. [PMID: 37348559 PMCID: PMC10359637 DOI: 10.1016/j.jbc.2023.104946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Dysregulated bile acid (BA)/lipid metabolism and gut bacteria dysbiosis are tightly associated with the development of obesity and non-alcoholic fatty liver disease (NAFLD). The orphan nuclear receptor, Small Heterodimer Partner (SHP/NR0B2), is a key regulator of BA/lipid metabolism, and its gene-regulating function is markedly enhanced by phosphorylation at Thr-58 mediated by a gut hormone, fibroblast growth factor-15/19 (FGF15/19). To investigate the role of this phosphorylation in whole-body energy metabolism, we generated transgenic SHP-T58A knock-in mice. Compared with wild-type (WT) mice, the phosphorylation-defective SHP-T58A mice gained weight more rapidly with decreased energy expenditure and increased lipid/BA levels. This obesity-prone phenotype was associated with the upregulation of lipid/BA synthesis genes and downregulation of lipophagy/β-oxidation genes. Mechanistically, defective SHP phosphorylation selectively impaired its interaction with LRH-1, resulting in de-repression of SHP/LRH-1 target BA/lipid synthesis genes. Remarkably, BA composition and selective gut bacteria which are known to impact obesity, were also altered in these mice. Upon feeding a high-fat diet, fatty liver developed more severely in SHP-T58A mice compared to WT mice. Treatment with antibiotics substantially improved the fatty liver phenotypes in both groups but had greater effects in the T58A mice so that the difference between the groups was largely eliminated. These results demonstrate that defective phosphorylation at a single nuclear receptor residue can impact whole-body energy metabolism by altering BA/lipid metabolism and gut bacteria, promoting complex metabolic disorders like NAFLD. Since posttranslational modifications generally act in gene- and context-specific manners, the FGF15/19-SHP phosphorylation axis may allow more targeted therapy for NAFLD.
Collapse
Affiliation(s)
- Young-Chae Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ming Qi
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xingchen Dong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sunmi Seok
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hao Sun
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ting Fu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
12
|
Lee JH, Kim S, Kim ES, Keum GB, Doo H, Kwak J, Pandey S, Cho JH, Ryu S, Song M, Cho JH, Kim S, Kim HB. Comparative analysis of the pig gut microbiome associated with the pig growth performance. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:856-864. [PMID: 37970497 PMCID: PMC10640952 DOI: 10.5187/jast.2022.e122] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 11/17/2023]
Abstract
There are a variety of microorganisms in the animal intestine, and it has been known that they play important roles in the host such as suppression of potentially pathogenic microorganisms, modulation of the gut immunity. In addition, the gut microbiota and the livestock growth performance have long been known to be related. Therefore, we evaluated the interrelation between the growth performance and the gut microbiome of the pigs from 3 different farms, with pigs of varied ages ready to be supplied to the market. When pigs reached average market weight of 118 kg, the average age of pigs in three different farms were < 180 days, about 190 days, and > 200 days, respectively. Fecal samples were collected from pigs of age of 70 days, 100 days, 130 days, and 160 days. The output data of the 16S rRNA gene sequencing by the Illumina Miseq platform was filtered and analyzed using Quantitative Insights into Microbial Ecology (QIIME)2, and the statistical analysis was performed using Statistical Analysis of Metagenomic Profiles (STAMP). The results of this study showed that the gut microbial communities shifted as pigs aged along with significant difference in the relative abundance of different phyla and genera in different age groups of pigs from each farm. Even though, there was no statistical differences among groups in terms of Chao1, the number of observed operational taxonomic units (OTUs), and the Shannon index, our results showed higher abundances of Bifidobacterium, Clostridium and Lactobacillus in the feces of pigs with rapid growth rate. These results will help us to elucidate important gut microbiota that can affect the growth performance of pigs.
Collapse
Affiliation(s)
| | - San Kim
- BRD Korea, Hwaseong 18471,
Korea
| | - Eun Sol Kim
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Gi Beom Keum
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Hyunok Doo
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Jinok Kwak
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Sriniwas Pandey
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Jae Hyoung Cho
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Sumin Ryu
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Minho Song
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Jin Ho Cho
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Sheena Kim
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|
13
|
Gholam-Mostafaei FS, Azimirad M, Naseri K, Nabavi-Rad A, Asadzadeh Aghdaei H, Shahrokh S, Ebrahimi Daryani N, Yadegar A, Zali MR. Intestinal microbiota changes pre- and post-fecal microbiota transplantation for treatment of recurrent Clostridioides difficile infection among Iranian patients with concurrent inflammatory bowel disease. Front Microbiol 2023; 14:1147945. [PMID: 36910213 PMCID: PMC9998922 DOI: 10.3389/fmicb.2023.1147945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
Introduction Patients with inflammatory bowel disease (IBD) are at a greater risk for the recurrence of Clostridioides difficile infection (rCDI) that is triggered by intestinal microbiota dysbiosis. Fecal microbiota transplantation (FMT) has emerged as a highly effective therapeutic option for this complication. However, little is known about the impact of FMT on intestinal microbiota alterations in rCDI patients suffering from IBD. In this study, we aimed to investigate post-FMT intestinal microbiota alterations in Iranian rCDI patients with underlying IBD. Methods A total of 21 fecal samples were collected including 14 samples pre- and post-FMT and 7 samples from healthy donors. Microbial analysis was performed by quantitative real-time PCR (RT-qPCR) assay targeting the 16S rRNA gene. The pre-FMT profile and composition of the fecal microbiota were compared to the microbial changes of samples collected 28 days after FMT. Results and discussion Overall, the fecal microbiota profile of recipients was more similar to donor samples after the transplantation. We observed a significant increase in the relative abundance of Bacteroidetes post-FMT, compared to the pre-FMT microbial profile. Furthermore, there were remarkable differences between the microbial profile of pre-FMT, post-FMT, and healthy donor samples by PCoA analysis based on the ordination distance. This study demonstrates FMT as a safe and effective approach to restore the indigenous composition of the intestinal microbiota in rCDI patients and ultimately results in the treatment of concurrent IBD.
Collapse
Affiliation(s)
- Fahimeh Sadat Gholam-Mostafaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Naseri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Ebrahimi Daryani
- Department of Gastroenterology and Hepatology, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Diet-driven microbial ecology underpins associations between cancer immunotherapy outcomes and the gut microbiome. Nat Med 2022; 28:2344-2352. [PMID: 36138151 DOI: 10.1038/s41591-022-01965-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/22/2022] [Indexed: 01/14/2023]
Abstract
The gut microbiota shapes the response to immune checkpoint inhibitors (ICIs) in cancer, however dietary and geographic influences have not been well-studied in prospective trials. To address this, we prospectively profiled baseline gut (fecal) microbiota signatures and dietary patterns of 103 trial patients from Australia and the Netherlands treated with neoadjuvant ICIs for high risk resectable metastatic melanoma and performed an integrated analysis with data from 115 patients with melanoma treated with ICIs in the United States. We observed geographically distinct microbial signatures of response and immune-related adverse events (irAEs). Overall, response rates were higher in Ruminococcaceae-dominated microbiomes than in Bacteroidaceae-dominated microbiomes. Poor response was associated with lower fiber and omega 3 fatty acid consumption and elevated levels of C-reactive protein in the peripheral circulation at baseline. Together, these data provide insight into the relevance of native gut microbiota signatures, dietary intake and systemic inflammation in shaping the response to and toxicity from ICIs, prompting the need for further studies in this area.
Collapse
|
15
|
A Panax quinquefolius-Based Preparation Prevents the Impact of 5-FU on Activity/Exploration Behaviors and Not on Cognitive Functions Mitigating Gut Microbiota and Inflammation in Mice. Cancers (Basel) 2022; 14:cancers14184403. [PMID: 36139563 PMCID: PMC9496716 DOI: 10.3390/cancers14184403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Chemotherapy-related cognitive impairment (CRCI) and fatigue worsen the quality of life (QoL) of cancer patients. Multicenter studies have shown that Panax quinquefolius and vitamin C, respectively, were effective in reducing the symptoms of fatigue in treated cancer patients. We developed a behavioral C57Bl/6j mouse model to study the impact of 5-Fluorouracil (5-FU) chemotherapy on activity/fatigue, emotional reactivity and cognitive functions. We used this model to evaluate the potentially beneficial role of a Panax quinquefolius-based solution containing vitamin C (Qiseng®) or vitamin C alone in these chemotherapy side effects. We established that Qiseng® prevents the reduction in activity/exploration and symptoms of fatigue induced by 5-FU and dampens chemotherapy-induced intestinal dysbiosis and systemic inflammation. We further showed that Qiseng® decreases macrophage infiltration in the intestinal compartment, thus preventing, at least in part, the systemic elevation of IL-6 and MCP-1 and further reducing the neuroinflammation likely responsible for the fatigue induced by chemotherapy, a major advance toward improving the QoL of patients. Abstract Chemotherapy-related cognitive impairment (CRCI) and fatigue constitute common complaints among cancer patient survivors. Panax quinquefolius has been shown to be effective against fatigue in treated cancer patients. We developed a behavioral C57Bl/6j mouse model to study the role of a Panax quinquefolius-based solution containing vitamin C (Qiseng®) or vitamin C alone in activity/fatigue, emotional reactivity and cognitive functions impacted by 5-Fluorouracil (5-FU) chemotherapy. 5-FU significantly reduces the locomotor/exploration activity potentially associated with fatigue, evokes spatial cognitive impairments and leads to a decreased neurogenesis within the hippocampus (Hp). Qiseng® fully prevents the impact of chemotherapy on activity/fatigue and on neurogenesis, specifically in the ventral Hp. We observed that the chemotherapy treatment induces intestinal damage and inflammation associated with increased levels of Lactobacilli in mouse gut microbiota and increased expression of plasma pro-inflammatory cytokines, notably IL-6 and MCP-1. We demonstrated that Qiseng® prevents the 5-FU-induced increase in Lactobacilli levels and further compensates the 5-FU-induced cytokine release. Concomitantly, in the brains of 5-FU-treated mice, Qiseng® partially attenuates the IL-6 receptor gp130 expression associated with a decreased proliferation of neural stem cells in the Hp. In conclusion, Qiseng® prevents the symptoms of fatigue, reduced chemotherapy-induced neuroinflammation and altered neurogenesis, while regulating the mouse gut microbiota composition, thus protecting against intestinal and systemic inflammation.
Collapse
|
16
|
Przemieniecki SW, Kosewska A, Kosewska O, Purwin C, Lipiński K, Ciesielski S. Polyethylene, polystyrene and lignocellulose wastes as mealworm (Tenebrio molitor L.) diets and their impact on the breeding condition, biometric parameters, metabolism, and digestive microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154758. [PMID: 35339543 DOI: 10.1016/j.scitotenv.2022.154758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to identify the extent to which a diet of oatmeal and polymers affects the development of mealworms, their microbiome, the biochemical activity of their digestive system, and their feed-metabolizing capacity. With a polystyrene diet, feed loss was most significant, as indicated by FTIR (Fourier-transform infrared spectroscopy) of frass, which showed that polystyrene was the only compound that was chemically modified. Compared to the control diet, mealworm larvae developed best on polyethylene regranulate (PE-reg), quickly transiting from one developmental stage to another with minor mass loss. A lignocellulose-based diet was the least beneficial for mealworm development. A polystyrene diet was most beneficial in terms of the protein content in larvae, but the contents and quality (usefulness as food) of fatty acids in the insects fed these wastes were significantly lower than in the control insects. For each diet, specific microbial cultures formed, and the presence of protozoa and various biochemical activities suggested different survival strategies and assimilation mechanisms facilitating survival. Despite profound changes in the microbiota and biochemistry of the digestive tract of mealworms fed waste-based diets, this study indicates their potential for utilizing PE-reg and polystyrene.
Collapse
Affiliation(s)
- Sebastian Wojciech Przemieniecki
- University of Warmia and Mazury in Olsztyn, Department of Entomology, Phytopathology and Molecular Diagnostics, Prawocheńskiego 17, 10-720 Olsztyn, Poland.
| | - Agnieszka Kosewska
- University of Warmia and Mazury in Olsztyn, Department of Entomology, Phytopathology and Molecular Diagnostics, Prawocheńskiego 17, 10-720 Olsztyn, Poland
| | - Olga Kosewska
- University of Warmia and Mazury in Olsztyn, Department of Entomology, Phytopathology and Molecular Diagnostics, Prawocheńskiego 17, 10-720 Olsztyn, Poland
| | - Cezary Purwin
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Krzysztof Lipiński
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Sławomir Ciesielski
- University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, Słoneczna 45G, 10-719 Olsztyn, Poland
| |
Collapse
|
17
|
Paul SS, Rama Rao SV, Hegde N, Williams NJ, Chatterjee RN, Raju MVLN, Reddy GN, Kumar V, Phani Kumar PS, Mallick S, Gargi M. Effects of Dietary Antimicrobial Growth Promoters on Performance Parameters and Abundance and Diversity of Broiler Chicken Gut Microbiome and Selection of Antibiotic Resistance Genes. Front Microbiol 2022; 13:905050. [PMID: 35783415 PMCID: PMC9244563 DOI: 10.3389/fmicb.2022.905050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial growth promoters (AGPs) are commonly used in broiler production. There is a huge societal concern around their use and their contribution to the proliferation of antimicrobial resistance (AMR) in food-producing animals and dissemination to humans or the environment. However, there is a paucity of comprehensive experimental data on their impact on poultry production and the AMR resistome. Here, we investigated the effect of five antimicrobial growth promoters (virginiamycin, chlortetracycline, bacitracin methyl disalicylate, lincomycin, and tylosin) used in the commercial broiler production in the Indian subcontinent and in the different parts of the world for three consecutive production cycles on performance variables and also the impact on gut bacteria, bacteriophage, and resistome profile using culture-independent approaches. There was no significant effect of AGPs on the cumulative growth or feed efficiency parameters at the end of the production cycles and cumulative mortality rates were also similar across groups. Many antibiotic resistance genes (ARGs) were ubiquitous in the chicken gut irrespective of AGP supplementation. In total, 62 ARGs from 15 antimicrobial classes were detected. Supplementation of AGPs influenced the selection of several classes of ARGs; however, this was not correlated necessarily with genes relevant to the AGP drug class; some AGPs favored the selection of ARGs related to antimicrobials not structurally related to the AGP. AGPs did not impact the gut bacterial community structure, including alpha or beta diversity significantly, with only 16-20 operational taxonomic units (OTUs) of bacteria being altered significantly. However, several AGPs significantly reduced the population density of some of the potential pathogenic genera of bacteria, such as Escherichia coli. Chlortetracycline increased the abundance of Escherichia phage, whereas other AGPs did not influence the abundance of bacteriophage significantly. Considering the evidence that AGPs used in poultry production can select for resistance to more than one class of antimicrobial resistance, and the fact that their effect on performance is not significant, their use needs to be reduced and there is a need to monitor the spread of ARGs in broiler chicken farms.
Collapse
Affiliation(s)
- Shyam Sundar Paul
- Poultry Nutrition Lab, ICAR-Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research, Hyderabad, India
| | - Savaram Venkata Rama Rao
- Poultry Nutrition Lab, ICAR-Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research, Hyderabad, India
| | - Nagendra Hegde
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Nicola J. Williams
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Rudra Nath Chatterjee
- Director’s Lab, ICAR-Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research, Hyderabad, India
| | | | - Godumagadda Narender Reddy
- Poultry Nutrition Lab, ICAR-Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research, Hyderabad, India
| | - Vikas Kumar
- Poultry Nutrition Lab, ICAR-Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research, Hyderabad, India
| | - Prakki Santosh Phani Kumar
- Poultry Nutrition Lab, ICAR-Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research, Hyderabad, India
| | - Sathi Mallick
- National Institute of Animal Biotechnology, Hyderabad, India
| | | |
Collapse
|
18
|
Determination of the Optimal Level of Dietary Zinc for Newly Weaned Pigs: A Dose-Response Study. Animals (Basel) 2022; 12:ani12121552. [PMID: 35739888 PMCID: PMC9219510 DOI: 10.3390/ani12121552] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Piglets have a very low feed intake immediately after weaning. We hypothesise that the EU-legislated maximum dietary zinc concentration (150 mg zinc/kg diet) will increase the risk of zinc deficiency after weaning. Zinc deficiency includes symptoms such as impaired growth and increased risk of diarrhoea. However, a high dietary zinc concentration has an antimicrobial effect on the bacteria and increases the risk of antimicrobial resistance. The findings of this study show that the dietary zinc level had a quadratic effect on growth, with a turning point at an approximately 1400 mg zinc per kg diet. The risk of diarrhoea increased up to 60% for pigs that had a blood zinc concentration which decreased after weaning. Maintaining the blood zinc concentration seven days after weaning required up to 1121 mg zinc per kg diet. There was no evidence for an antimicrobial effect when feeding pigs a diet with up to 1601 mg zinc per kg. Abstract One hundred and eighty individually housed piglets with an initial body weight of 7.63 ± 0.98 kg (at 28 days of age) were fed a diet containing either 153, 493, 1022, 1601, 2052 or 2407 mg zinc/kg (added Zn as zinc oxide; ZnO) from day 0–21 post weaning to determine the optimal level of Zn for weaned piglets. Body weight, feed intake and faecal scores were recorded, and blood and faecal samples were collected. Dietary Zn content quadratically affected both feed intake and gain in the first two weeks, with an approximately 1400 mg Zn/kg diet and a Zn intake of 400 mg/day as the optimal levels. The relative risk of diarrhoea increased up to 60% at day 7 and 14 if serum Zn status dropped below the weaning level (767 µg/L), and maintain the weaning serum Zn status required approximately 1100 mg Zn/kg (166 mg Zn/day) during week 1. Blood markers of intestinal integrity (D-lactate and diamine oxidase) were unaffected by dietary Zn, and dietary Zn levels of 1022 and 1601 mg/kg did not affect the faecal numbers of total bacteria, Lactobacilli and E. Coli bacteria compared to 153 mg Zn/kg. These results indicate that the requirement for Zn in newly weaned piglets may be substantially higher than currently assumed.
Collapse
|
19
|
Dreier M, Meola M, Berthoud H, Shani N, Wechsler D, Junier P. High-throughput qPCR and 16S rRNA gene amplicon sequencing as complementary methods for the investigation of the cheese microbiota. BMC Microbiol 2022; 22:48. [PMID: 35130830 PMCID: PMC8819918 DOI: 10.1186/s12866-022-02451-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/17/2022] [Indexed: 12/31/2022] Open
Abstract
Background Next-generation sequencing (NGS) methods and especially 16S rRNA gene amplicon sequencing have become indispensable tools in microbial ecology. While they have opened up new possibilities for studying microbial communities, they also have one drawback, namely providing only relative abundances and thus compositional data. Quantitative PCR (qPCR) has been used for years for the quantification of bacteria. However, this method requires the development of specific primers and has a low throughput. The constraint of low throughput has recently been overcome by the development of high-throughput qPCR (HT-qPCR), which allows for the simultaneous detection of the most prevalent bacteria in moderately complex systems, such as cheese and other fermented dairy foods. In the present study, the performance of the two approaches, NGS and HT-qPCR, was compared by analyzing the same DNA samples from 21 Raclette du Valais protected designation of origin (PDO) cheeses. Based on the results obtained, the differences, accuracy, and usefulness of the two approaches were studied in detail. Results The results obtained using NGS (non-targeted) and HT-qPCR (targeted) show considerable agreement in determining the microbial composition of the cheese DNA samples studied, albeit the fundamentally different nature of these two approaches. A few inconsistencies in species detection were observed, particularly for less abundant ones. The detailed comparison of the results for 15 bacterial species/groups measured by both methods revealed a considerable bias for certain bacterial species in the measurements of the amplicon sequencing approach. We identified as probable origin to this PCR bias due to primer mismatches, variations in the number of copies for the 16S rRNA gene, and bias introduced in the bioinformatics analysis. Conclusion As the normalized microbial composition results of NGS and HT-qPCR agreed for most of the 21 cheese samples analyzed, both methods can be considered as complementary and reliable for studying the microbial composition of cheese. Their combined application proved to be very helpful in identifying potential biases and overcoming methodological limitations in the quantitative analysis of the cheese microbiota. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02451-y.
Collapse
Affiliation(s)
- Matthias Dreier
- Agroscope, Schwarzenburgstrasse 161, CH-3003, Bern, Switzerland. .,Laboratory of Microbiology, University of Neuchâtel, Emile-Argand 11, CH-2000, Neuchâtel, Switzerland.
| | - Marco Meola
- Agroscope, Schwarzenburgstrasse 161, CH-3003, Bern, Switzerland.,Department of Biomedicine, Applied Microbiology Research, University of Basel, Basel, Switzerland.,Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Hélène Berthoud
- Agroscope, Schwarzenburgstrasse 161, CH-3003, Bern, Switzerland
| | - Noam Shani
- Agroscope, Schwarzenburgstrasse 161, CH-3003, Bern, Switzerland
| | - Daniel Wechsler
- Agroscope, Schwarzenburgstrasse 161, CH-3003, Bern, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Emile-Argand 11, CH-2000, Neuchâtel, Switzerland
| |
Collapse
|
20
|
Azcarate-Peril MA, Roach J, Marsh A, Chey WD, Sandborn WJ, Ritter AJ, Savaiano DA, Klaenhammer TR. A double-blind, 377-subject randomized study identifies Ruminococcus, Coprococcus, Christensenella, and Collinsella as long-term potential key players in the modulation of the gut microbiome of lactose intolerant individuals by galacto-oligosaccharides. Gut Microbes 2022; 13:1957536. [PMID: 34365905 PMCID: PMC8354614 DOI: 10.1080/19490976.2021.1957536] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background. Our recent publication (Chey et al., Nutrients 2020) showed that a 30-day administration of pure galacto-oligosaccharides (GOS) significantly reduced symptoms and altered the fecal microbiome in patients with lactose intolerance (LI). Results. In this addendum, we performed an in-depth analysis of the fecal microbiome of the 377 LI patients randomized to one of two GOS doses (Low, 10-15 grams/day or High, 15-20 grams/day), or placebo in a multi-center, double-blinded, placebo-controlled trial. Sequencing of 16S rRNA amplicons was done on GOS or placebo groups at weeks zero (baseline), four (end of treatment), nine, 16 and 22. Taxa impacted by treatment and subsequent dairy consumption included lactose-fermenting species of Bifidobacterium, Lactobacillus, Lactococcus, and Streptococcus. Increased secondary fermentation microorganisms included Coprococcus and Ruminococcus species, Blautia producta, and Methanobrevibacterium. Finally, tertiary fermenters that use acetate to generate butyrate were also increased, including Faecalibacterium prausnitzii, Roseburia faecis, and C. eutactus. Conclusions. Results confirmed and expanded data on GOS microbiome modulation in LI individuals. Microbiome analysis at 16 and 22 weeks after treatment further suggested relatively long-term benefits when individuals continued consumption of dairy products.
Collapse
Affiliation(s)
- M. A. Azcarate-Peril
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA,UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, USA,CONTACT M. A. Azcarate-Peril Department of Medicine, School of Medicine, University of North Carolina, 332 Isaac Taylor Hall, Chapel Hill, NC27599-7545
| | - J. Roach
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, USA,UNC Information Technology Services and Research Computing, University of North Carolina, Chapel Hill, NC, USA
| | - A. Marsh
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA,UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - William D. Chey
- Departments of Internal Medicine and Nutritional Sciences, University of Michigan Health System, Ann Arbor, MI, USA
| | - William J. Sandborn
- Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| | | | - Dennis A. Savaiano
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - T. R. Klaenhammer
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
21
|
Liu Y, He W, Yang J, He Y, Wang Z, Li K. The effects of preoperative intestinal dysbacteriosis on postoperative recovery in colorectal cancer surgery: a prospective cohort study. BMC Gastroenterol 2021; 21:446. [PMID: 34823504 PMCID: PMC8620658 DOI: 10.1186/s12876-021-02035-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 11/17/2021] [Indexed: 02/08/2023] Open
Abstract
Background Accumulating evidence suggests a critical role of intestinal dysbacteriosis in surgical site infections and anastomotic leakage after abdominal surgery. However, a direct correlation between pre-existing dysbacteriosis and postoperative infectious complications has not yet been established clinically. Methods A total of 353 consecutive patients who underwent colorectal cancer (CRC) surgery were enrolled. Gram-stained faecal smears were tested at admission and the first defecation after surgery. Intestinal dysbacteriosis was graded into three groups: normal or slightly decreased intestinal microflora (grade 1), moderate dysbacteriosis (grade 2), and severe dysbacteriosis (grade 3). Clinical outcomes were postoperative infections and anastomotic leakage within 30 days after surgery. Results At the preoperative assessment, 268 (75.9%) patients had normal or slightly decreased intestinal microflora, 58 (16.4%) patients had moderate dysbacteriosis, and 27 (7.6%) patients had severe dysbacteriosis. The patients with preoperative dysbacteriosis had a higher rate of early postoperative diarrhoea (grade 2: OR = 4.53, 95% CI 2.28–9.00, grade 3: OR = 4.52, 95% CI 1.81–11.31), total complications (grade 3 40.7% vs. grade 2 25.9% vs. grade 1 12.7%, P < 0.001), and anastomotic leakage (grade 3 11.1% vs. grade 2 5.2% vs. grade 1 1.5%, P = 0.002). An interaction effect among preoperative dysbacteriosis and early postoperative diarrhoea on total complications was observed in rectal cancer patients (P for interaction = 0.007). Conclusions An imbalance of the intestinal microbiome exists in a considerable proportion of CRC patients before surgery. Preoperative dysbacteriosis is associated with higher rates of early postoperative diarrhoea, which further correlates with infectious complications and anastomotic leakage. However, the contribution of preoperative dysbacteriosis to the occurrence of anastomotic leakage needs to be clarified in further studies. Trial registration ChiCTR, ChiCTR1800018755. Registered 8 October 2018—Retrospectively registered, http://www.chictr.org.cn/ChiCTR1800018755. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-021-02035-6.
Collapse
Affiliation(s)
- Yuwei Liu
- West China School of Nursing, Sichuan University/Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Nursing Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Wanbin He
- West China School of Nursing, Sichuan University/Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jie Yang
- West China School of Nursing, Sichuan University/Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yuhua He
- West China School of Nursing, Sichuan University/Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ziqiang Wang
- West China School of Nursing, Sichuan University/Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ka Li
- West China School of Nursing, Sichuan University/Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China. .,Nursing Key Laboratory of Sichuan Province, Chengdu, People's Republic of China.
| |
Collapse
|
22
|
Samarasinghe MB, Sehested J, Weisbjerg MR, van der Heide ME, Nørgaard JV, Vestergaard M, Hernández-Castellano LE. Feeding milk supplemented with Ulva sp., Ascophyllum nodosum, or Saccharina latissima to preweaning dairy calves: Effects on growth, gut microbiota, gut histomorphology, and short-chain fatty acids in digesta. J Dairy Sci 2021; 104:12117-12126. [PMID: 34454759 DOI: 10.3168/jds.2021-20680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022]
Abstract
Emerging knowledge shows the importance of preweaning nutrition on programming the gastrointestinal microbiome and development of the gut barrier function. The aim of this study was to assess the effects of supplementing cow milk with either intact dried Ulva sp., Ascophyllum nodosum, or Saccharina latissima on growth performance and several gut health parameters of preweaning dairy calves. Forty male Holstein calves were selected based on birth weight (41 ± 4 kg) and plasma Brix percentage (≥8.7%) at d 2 of life. From d 2 to d 42 of life, the control calves (n = 10) were fed with cow milk (8 L/d) without seaweed supplementation, and the experimental calves were fed with cow milk (8 L/d) supplemented with either Ulva sp. (n = 10), A. nodosum (n = 10), or S. latissima (n = 10) at a concentration of 50 g/8 L of cow milk per day (i.e., 5% on a dry matter basis). Calves were weighed every week, and body weight gain and calf starter intake were monitored weekly. At d 42 ± 3 of life, calves were slaughtered. The organ weights and digesta pH from the reticulorumen, mid- and end small intestine, and mid-colon were recorded. A tissue sample (5 cm) collected from the mid-small intestine was analyzed for histomorphology. Digesta from the mid-small intestine and mid-colon were analyzed for lactobacilli, Escherichia coli, and Enterobacteriaceae, and short-chain fatty acid profile. Weight gain of the calves was not affected by seaweed supplementation. Proportional organ weights were not affected by seaweed supplementation except for reticulorumen weight, which was higher in calves fed Ulva sp. Both the mid-small intestinal and mid-colonic digesta populations of lactobacilli, Enterobacteriaceae, and E. coli, as well as the mid-small intestinal histomorphology in seaweed-supplemented calves were not different from control calves. However, acetic acid proportion in mid-colonic digesta was increased in calves fed Ulva sp. and A. nodosum, whereas butyric acid proportion was decreased compared with the control calves. Digesta pH in mid- and end small intestine and mid-colon were not affected, whereas ruminal pH was increased in calves fed Ulva sp. compared with the control calves. In conclusion, intact dried seaweed supplementation did not improve the growth or selected gut health parameters (i.e., histomorphology, digesta pH, bacteria, and short-chain fatty acids) in preweaning Holstein calves.
Collapse
Affiliation(s)
- M B Samarasinghe
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark.
| | - J Sehested
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | - M R Weisbjerg
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | - M E van der Heide
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | - J V Nørgaard
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | - M Vestergaard
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | - L E Hernández-Castellano
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark; Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain.
| |
Collapse
|
23
|
Goolam Mahomed T, Peters R, Pretorius G, Goolam Mahomed A, Ueckermann V, Kock MM, Ehlers MM. Comparison of targeted metagenomics and IS-Pro methods for analysing the lung microbiome. BMC Microbiol 2021; 21:228. [PMID: 34407769 PMCID: PMC8371770 DOI: 10.1186/s12866-021-02288-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/29/2021] [Indexed: 12/23/2022] Open
Abstract
Background Targeted metagenomics and IS-Pro method are two of the many methods that have been used to study the microbiome. The two methods target different regions of the 16 S rRNA gene. The aim of this study was to compare targeted metagenomics and IS-Pro methods for the ability to discern the microbial composition of the lung microbiome of COPD patients. Methods Spontaneously expectorated sputum specimens were collected from COPD patients. Bacterial DNA was extracted and used for targeted metagenomics and IS-Pro method. The analysis was performed using QIIME2 (targeted metagenomics) and IS-Pro software (IS-Pro method). Additionally, a laboratory cost per isolate and time analysis was performed for each method. Results Statistically significant differences were observed in alpha diversity when targeted metagenomics and IS-Pro methods’ data were compared using the Shannon diversity measure (p-value = 0.0006) but not with the Simpson diversity measure (p-value = 0.84). Distinct clusters with no overlap between the two technologies were observed for beta diversity. Targeted metagenomics had a lower relative abundance of phyla, such as the Proteobacteria, and higher relative abundance of phyla, such as Firmicutes when compared to the IS-Pro method. Haemophilus, Prevotella and Streptococcus were most prevalent genera across both methods. Targeted metagenomics classified 23 % (144/631) of OTUs to a species level, whereas IS-Pro method classified 86 % (55/64) of OTUs to a species level. However, unclassified OTUs accounted for a higher relative abundance when using the IS-Pro method (35 %) compared to targeted metagenomics (5 %). The two methods performed comparably in terms of cost and time; however, the IS-Pro method was more user-friendly. Conclusions It is essential to understand the value of different methods for characterisation of the microbiome. Targeted metagenomics and IS-Pro methods showed differences in ability in identifying and characterising OTUs, diversity and microbial composition of the lung microbiome. The IS-Pro method might miss relevant species and could inflate the abundance of Proteobacteria. However, the IS-Pro kit identified most of the important lung pathogens, such as Burkholderia and Pseudomonas and may work in a more diagnostics-orientated setting. Both methods were comparable in terms of cost and time; however, the IS-Pro method was easier to use. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02288-x.
Collapse
Affiliation(s)
- T Goolam Mahomed
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Rph Peters
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa.,CAPHRI School for Public Health & Primary Care, Department of Medical Microbiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | - V Ueckermann
- Department of Internal Medicine, University of Pretoria, Pretoria, South Africa
| | - M M Kock
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa.,Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Tshwane, South Africa
| | - M M Ehlers
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa. .,Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Tshwane, South Africa.
| |
Collapse
|
24
|
Ostadmohammadi S, Azimirad M, Houri H, Naseri K, Javanmard E, Mirjalali H, Yadegar A, Sadeghi A, Asadzadeh Aghdaei H, Zali MR. Characterization of the gut microbiota in patients with primary sclerosing cholangitis compared to inflammatory bowel disease and healthy controls. Mol Biol Rep 2021; 48:5519-5529. [PMID: 34304365 DOI: 10.1007/s11033-021-06567-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease. Its etiology remains largely unknown, although frequent concomitant inflammatory bowel disease (IBD) hints towards common factors underlying intestinal and bile duct inflammation. Herein, we aimed to explore the relative abundance of fecal microbiota in PSC-IBD patients compared to IBD-only subjects and controls. METHODS AND RESULTS We included 14 PSC-IBD patients, 12 IBD-only patients, and 8 healthy controls (HCs). A quantitative real-time PCR (qPCR) assay was used to determine a selection of bacterial phyla, families, and genera. Relative abundance of taxa showed that Bacteroidetes was the most abundant phylum among the patients with PSC-IBD (29.46%) and also HCs (39.34%), whereas the bacterial species belonging to the phylum Firmicutes were the most frequent group in IBD-only subjects (37.61%). The relative abundance of the Enterobacteriaceae family in fecal samples of PSC-IBD patients was similar to those with IBD-only, which was significantly higher than HCs (p value = 0.031), and thus, could be used as a PSC-IBD or IBD-only associated microbial signature. CONCLUSIONS Our findings showed that intestinal microbiota composition in PSC-IBD patients was completely different from that of IBD-only patients. Further studies using large-scale cohorts should be performed to better describe the contribution of the gut microbiota to PSC pathogenesis with underlying IBD.
Collapse
Affiliation(s)
- Samaneh Ostadmohammadi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Naseri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Javanmard
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Crovesy L, El-Bacha T, Rosado EL. Modulation of the gut microbiota by probiotics and symbiotics is associated with changes in serum metabolite profile related to a decrease in inflammation and overall benefits to metabolic health: a double-blind randomized controlled clinical trial in women with obesity. Food Funct 2021; 12:2161-2170. [PMID: 33565558 DOI: 10.1039/d0fo02748k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modulation of the gut microbiota may help in treating obesity by improving host metabolic health. We aimed to evaluate the effects of probiotics or symbiotics on body weight and serum metabolite profile in women with obesity. A double-blind, parallel, randomized, controlled clinical trial was conducted with 32 adult women with body mass index ranging from 30 to 34.9 kg m-2. Volunteers followed a low-energy diet and were subjected to 8 weeks intervention: probiotic group (PG - Bifidobacterium lactis UBBLa-70, n = 10), symbiotic group (SG - Bifidobacterium lactis UBBLa-70 and fructooligosaccharide, n = 11), or control group (CG - placebo, n = 11). Analyses of anthropometric variables, gut microbiota and serum metabolites by 1H nuclear magnetic resonance (NMR) were performed at baseline and after the intervention. Multivariate statistics showed that all groups presented a decrease in glycerol and increase in arginine, glutamine and 2-oxoisovalerate. Therefore, a low-energy diet per se promoted changes in the metabolite profile related to decreased inflammation and positive effects on body weight. SG presented unique changes in metabolites (increase in pyruvate and alanine and decrease in citrate and BCAA). Negative correlations between arginine and glutamine with fat mass were observed in the SG. PG presented a decrease in 1H NMR lipid signals and negative correlation between Verrucomicrobia and Firmicutes with (CH2)n lipids. Both probiotics and symbiotics promoted changes in metabolites related to improved metabolic health. Specific metabolite changes following symbiotic intervention might suggest some advantage in providing Bifidobacterium lactis in combination with fructooligosaccharide in a low-energy diet, rather than probiotics or diet alone. Clinical trial: NCT02505854.
Collapse
Affiliation(s)
- Louise Crovesy
- Department of Nutrition and Dietetics (DND), Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro - RJ, Brazil.
| | - Tatiana El-Bacha
- Lebiome - Núcleo de estudos com bioativos, Mitocôndria e metabolismo da placenta, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro - RJ, Brazil
| | - Eliane Lopes Rosado
- Department of Nutrition and Dietetics (DND), Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro - RJ, Brazil.
| |
Collapse
|
26
|
Bierut T, Duckworth L, Grabowsky M, Ordiz MI, Laury ML, Callaghan-Gillespie M, Maleta K, Manary MJ. The effect of bovine colostrum/egg supplementation compared with corn/soy flour in young Malawian children: a randomized, controlled clinical trial. Am J Clin Nutr 2021; 113:420-427. [PMID: 33330913 DOI: 10.1093/ajcn/nqaa325] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Bovine colostrum with egg powder (BC/egg) is rich in essential amino acids and immunoactive compounds. OBJECTIVES This trial tested the hypothesis that a daily supplement of BC/egg would reduce linear growth faltering and environmental enteric dysfunction (EED) in Malawian infants when compared with an isoenergetic ration of corn/soy flour used as a control. EED was defined by a lactulose permeability test. METHODS This was a prospective, randomized, blinded, placebo-controlled clinical trial in which 9-mo-old infants received BC/egg or a control for 3 mo. The primary outcomes were change in length-for-age z-score (ΔLAZ) and urinary lactulose excretion (%L) at 12-mo-old. Secondary outcomes included episodes of diarrhea, stunting, EED, and the 16S configuration of the fecal microbiota. RESULTS Of the 277 children enrolled, 267 completed the intervention phase of the study. LAZ decreased in all children from 9 to 17 mo, although ΔLAZ was less in children receiving BC/egg from 9 to 12 mo (difference = 0.12 z-scores; P = 0.0011). This difference persisted after feeding was completed, with less ΔLAZ (difference = 0.09 z-scores). A lower prevalence of stunting was seen in the intervention group (n = 47/137) than the control group (n = 62/127) at 17 mo (RR = 0.70; 95% CI: 0.52, 0.94).The median %L at 12 mo of age in the children receiving BC/egg was 0.14%, compared with 0.17% in the control group (P = 0.74). In children with %L >0.45% at enrollment (severe EED), the BC/egg group had more children with normal %L at 12 mo of age (10/20, 50%) than was seen in controls (2/15, 13%; P = 0.024). Episodes of diarrhea and β-diversity of the 16S configuration of fecal microbiota did not differ between the 2 groups. CONCLUSIONS Addition of BC/egg to complementary feeding in Malawian infants resulted in less linear growth faltering. This trial was registered at clinicaltrials.gov as NCT03801317.
Collapse
Affiliation(s)
- Tatiana Bierut
- Department of Pediatrics, Washington University in St Louis, St Louis, MO, USA
| | - Laura Duckworth
- Department of Pediatrics, Washington University in St Louis, St Louis, MO, USA
| | | | - M Isabel Ordiz
- Department of Pediatrics, Washington University in St Louis, St Louis, MO, USA
| | - Marie L Laury
- Genome Technology Access Center, Washington University in St Louis, MO, USA
| | | | - Ken Maleta
- Department of Community Health, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Mark J Manary
- Department of Pediatrics, Washington University in St Louis, St Louis, MO, USA
- Department of Community Health, College of Medicine, University of Malawi, Blantyre, Malawi
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Houston, TX, USA
| |
Collapse
|
27
|
Gui DD, Luo W, Yan BJ, Ren Z, Tang ZH, Liu LS, Zhang JF, Jiang ZS. Effects of gut microbiota on atherosclerosis through hydrogen sulfide. Eur J Pharmacol 2021; 896:173916. [PMID: 33529724 DOI: 10.1016/j.ejphar.2021.173916] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases are the leading cause of death and morbidity worldwide. Atherosclerotic cardiovascular disease (ASCVD) is affected by both environmental and genetic factors. Microenvironmental disorders of the human gut flora are associated with a variety of health problems, not only gastrointestinal diseases, such as inflammatory bowel disease, but also extralintestinal organs. Hydrogen sulfide (H2S) is the third gas signaling molecule other than nitric oxide and carbon monoxide. In the cardiovascular system, H2S plays important roles in the regulation of blood pressure, angiogenesis, smooth muscle cell proliferation and apoptosis, anti-oxidative stress, cardiac functions. This review is aiming to explore the potential role of gut microbiota in the development of atherosclerosis through hydrogen sulfide production as a novel therapeutic direction for atherosclerosis.
Collapse
Affiliation(s)
- Dan-Dan Gui
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Wen Luo
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Bin-Jie Yan
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Ji-Feng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China.
| |
Collapse
|
28
|
Arnold JW, Roach J, Fabela S, Moorfield E, Ding S, Blue E, Dagher S, Magness S, Tamayo R, Bruno-Barcena JM, Azcarate-Peril MA. The pleiotropic effects of prebiotic galacto-oligosaccharides on the aging gut. MICROBIOME 2021; 9:31. [PMID: 33509277 PMCID: PMC7845053 DOI: 10.1186/s40168-020-00980-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/16/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Prebiotic galacto-oligosaccharides (GOS) have an extensively demonstrated beneficial impact on intestinal health. In this study, we determined the impact of GOS diets on hallmarks of gut aging: microbiome dysbiosis, inflammation, and intestinal barrier defects ("leaky gut"). We also evaluated if short-term GOS feeding influenced how the aging gut responded to antibiotic challenges in a mouse model of Clostridioides difficile infection. Finally, we assessed if colonic organoids could reproduce the GOS responder-non-responder phenotypes observed in vivo. RESULTS Old animals had a distinct microbiome characterized by increased ratios of non-saccharolytic versus saccharolytic bacteria and, correspondingly, a lower abundance of β-galactosidases compared to young animals. GOS reduced the overall diversity, increased the abundance of specific saccharolytic bacteria (species of Bacteroides and Lactobacillus), increased the abundance of β-galactosidases in young and old animals, and increased the non-saccharolytic organisms; however, a robust, homogeneous bifidogenic effect was not observed. GOS reduced age-associated increased intestinal permeability and increased MUC2 expression and mucus thickness in old mice. Clyndamicin reduced the abundance Bifidobacterium while increasing Akkermansia, Clostridium, Coprococcus, Bacillus, Bacteroides, and Ruminococcus in old mice. The antibiotics were more impactful than GOS on modulating serum markers of inflammation. Higher serum levels of IL-17 and IL-6 were observed in control and GOS diets in the antibiotic groups, and within those groups, levels of IL-6 were higher in the GOS groups, regardless of age, and higher in the old compared to young animals in the control diet groups. RTqPCR revealed significantly increased gene expression of TNFα in distal colon tissue of old mice, which was decreased by the GOS diet. Colon transcriptomics analysis of mice fed GOS showed increased expression of genes involved in small-molecule metabolic processes and specifically the respirasome in old animals, which could indicate an increased oxidative metabolism and energetic efficiency. In young mice, GOS induced the expression of binding-related genes. The galectin gene Lgals1, a β-galactosyl-binding lectin that bridges molecules by their sugar moieties and is an important modulator of the immune response, and the PI3K-Akt and ECM-receptor interaction pathways were also induced in young mice. Stools from mice exhibiting variable bifidogenic response to GOS injected into colon organoids in the presence of prebiotics reproduced the response and non-response phenotypes observed in vivo suggesting that the composition and functionality of the microbiota are the main contributors to the phenotype. CONCLUSIONS Dietary GOS modulated homeostasis of the aging gut by promoting changes in microbiome composition and host gene expression, which was translated into decreased intestinal permeability and increased mucus production. Age was a determining factor on how prebiotics impacted the microbiome and expression of intestinal epithelial cells, especially apparent from the induction of galectin-1 in young but not old mice. Video abstract.
Collapse
Affiliation(s)
- Jason W Arnold
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease (CGIBD), School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffery Roach
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease (CGIBD), School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- UNC Information Technology Services and Research Computing, University of North Carolina, Chapel Hill, NC, USA
| | - Salvador Fabela
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease (CGIBD), School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Current affiliation: Programa de Inmunología Molecular Microbiana. Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Emily Moorfield
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Shengli Ding
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Eric Blue
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Suzanne Dagher
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Scott Magness
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Jose M Bruno-Barcena
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - M Andrea Azcarate-Peril
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease (CGIBD), School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
29
|
Michaelis L, Treß M, Löw HC, Klees J, Klameth C, Lange A, Grießhammer A, Schäfer A, Menz S, Steimle A, Schulze-Osthoff K, Frick JS. Gut Commensal-Induced IκBζ Expression in Dendritic Cells Influences the Th17 Response. Front Immunol 2021; 11:612336. [PMID: 33542719 PMCID: PMC7851057 DOI: 10.3389/fimmu.2020.612336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Intestinal commensal bacteria can have a large impact on the state of health and disease of the host. Regulation of Th17 cell development by gut commensals is known to contribute to their dichotomous role in promoting gut homeostasis and host defense, or development of autoimmune diseases. Yet, the underlying mechanisms remain to be fully elucidated. One candidate factor contributing to Th17 differentiation, and the expression of which could be influenced by commensals is the atypical nuclear IκB protein IκBζ. IκBζ acts as a transcriptional regulator of the expression of Th17-related secondary response genes in many cell types including dendritic cells (DCs). Insights into the regulation of IκBζ in DCs could shed light on how these immune sentinel cells at the interface between commensals, innate and adaptive immune system drive an immune-tolerogenic or inflammatory Th17 cell response. In this study, the influence of two gut commensals of low (Bacteroides vulgatus) or high (Escherichia coli) immunogenicity on IκBζ expression in DCs and its downstream effects was analyzed. We observed that the amount of IκBζ expression and secretion of Th17-inducing cytokines correlated with the immunogenicity of these commensals. However, under immune-balanced conditions, E. coli also strongly induced an IκBζ-dependent secretion of anti-inflammatory IL-10, facilitating a counter-regulative Treg response as assessed in in vitro CD4+ T cell polarization assays. Yet, in an in vivo mouse model of T cell-induced colitis, prone to inflammatory and autoimmune conditions, administration of E. coli promoted an expansion of rather pro-inflammatory T helper cell subsets whereas administration of B. vulgatus resulted in the induction of protective T helper cell subsets. These findings might contribute to the development of new therapeutic strategies for the treatment of autoimmune diseases using commensals or commensal-derived components.
Collapse
Affiliation(s)
- Lena Michaelis
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Marcel Treß
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Hanna-Christine Löw
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Johanna Klees
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christian Klameth
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Anna Lange
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Anne Grießhammer
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Andrea Schäfer
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Sarah Menz
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Alex Steimle
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | | | - Julia-Stefanie Frick
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
30
|
Dreier M, Berthoud H, Shani N, Wechsler D, Junier P. Development of a High-Throughput Microfluidic qPCR System for the Quantitative Determination of Quality-Relevant Bacteria in Cheese. Front Microbiol 2021; 11:619166. [PMID: 33488561 PMCID: PMC7817891 DOI: 10.3389/fmicb.2020.619166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
The composition of the cheese microbiome has an important impact on the sensorial quality and safety of cheese. Therefore, much effort has been made to investigate the microbial community composition of cheese. Quantitative real-time polymerase chain reaction (qPCR) is a well-established method for detecting and quantifying bacteria. High-throughput qPCR (HT-qPCR) using microfluidics brings further advantages by providing fast results and by decreasing the cost per sample. We have developed a HT-qPCR approach for the rapid and cost-efficient quantification of microbial species in cheese by designing qPCR assays targeting 24 species/subspecies commonly found in cheese. Primer pairs were evaluated on the Biomark (Fluidigm) microfluidic HT-qPCR system using DNA from single strains and from artificial mock communities. The qPCR assays worked efficiently under identical PCR conditions, and the validation showed satisfying inclusivity, exclusivity, and amplification efficiencies. Preliminary results obtained from the HT-qPCR analysis of DNA samples of model cheeses made with the addition of adjunct cultures confirmed the potential of the microfluidic HT-qPCR system to screen for selected bacterial species in the cheese microbiome. HT-qPCR data of DNA samples of two downgraded commercial cheeses showed that this approach provides valuable information that can help to identify the microbial origin of quality defects. This newly developed HT-qPCR system is a promising approach that will allow simultaneous monitoring of quality-relevant species in fermented foods with high bacterial diversity, thereby opening up new perspectives for the control and assurance of high product quality.
Collapse
Affiliation(s)
- Matthias Dreier
- Agroscope, Bern, Switzerland.,Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | | | | | | | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
31
|
Modulation of the Gut Microbiota and Serum Biomarkers After Laparoscopic Sleeve Gastrectomy: a 1-Year Follow-Up Study. Obes Surg 2021; 31:1949-1956. [PMID: 33409976 DOI: 10.1007/s11695-020-05139-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Bariatric surgery is a treatment option for those affected by severe obesity. This study investigated changes in gut microbiota and serum biomarkers after laparoscopic sleeve gastrectomy (LSG). MATERIALS AND METHODS A total of 126 patients with morbid obesity who underwent LSG were enrolled in this study. Routine biochemical tests, hormonal (insulin and glucagon), and cytokine levels (IL-6, IL-1β, TNF-α, IL-10, and TGF-β 1) were measured, in addition, real-time PCR (quantitative PCR, qPCR) quantitated gut microbiota. All the parameters were measured pre-operatively, 3, and 12 months post-surgery (F0, F3, and F12, respectively). RESULTS At F3, the level of FBS, HbA1c, HOMA-IR, triglyceride, cholesterol, LDL, BUN, creatinine, urea, SGOT, SGPT, IL-1β, IL-6, IFNγ, insulin, glucagon, the abundance of Prevotella and Bacteroides fragilis group, as well as the concentration of Firmicutes spp. showed significant decrease (P < 0.01), and HDL level, Akkermansia muciniphila and Roseburia spp. abundance, and Bacteroidetes and Bifidobacterium spp. concentration showed significant increase (P < 0.0001). The observed pattern continued or remained stable at F12 for all of these variables. IL-10 and TGF-β1 remained unchanged until F3 and showed a significant drop at F12. At F3, Clostridium cluster IV increased significantly and remained at that level afterward. Moreover, concentration of Phylum Actinobacteria showed an initial drop at F3 and a later increase at F12 (P < 0.0001). CONCLUSION LSG is associated with a significant improvement in serum biomarkers, as well as significant changes in fecal microbiota. Future systems biology analyses would shed more light on the underlying interactions of these parameters, and could help in developing novel diagnostic and therapeutic strategies for obesity management.
Collapse
|
32
|
Xu S, Wang X, Nageen Y, Pecoraro L. Analysis of gut-associated fungi from Chinese mitten crab Eriocheir sinensis. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1939171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Shihan Xu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Xiao Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Yumna Nageen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|
33
|
Tabasi M, Eybpoosh S, Sadeghpour Heravi F, Siadat SD, Mousavian G, Elyasinia F, Soroush A, Bouzari S. Gut Microbiota and Serum Biomarker Analyses in Obese Patients Diagnosed with Diabetes and Hypothyroid Disorder. Metab Syndr Relat Disord 2020; 19:144-151. [PMID: 33232646 DOI: 10.1089/met.2020.0119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Variations of serum biomarkers and bacterial diversity of the gastrointestinal tract in obese patients with diabetes or hypothyroid are poorly understood. The aim of this study was to provide recent findings in this regard. Methods: A total of 119 obese patients [17 with diabetes, 23 with hypothyroid, and 79 patients without either diabetes or hypothyroid (control)] were recruited in this study. Serum biomarkers such as biochemical, hormonal (insulin and glucagon), and cytokine levels [interleukin (IL)-6, IL-1β, tumor necrosis factor-alpha, IL-10, and transforming growth factor beta-1 (TGF-β1)] were measured under fasting conditions. Bacterial abundance of gut microbiota was also quantitated by real-time polymerase chain reaction using 16S rRNA gene-based specific primers. Results: Average value of blood sugar (P: 0.0184), hemoglobin A1c, insulin, homeostasis model assessment insulin resistance, TGF-β 1, IL-6, IL-1β, interferon gamma (Pfor each < 0.001), and phylum Actinobacteria [odds ratio (OR): 1.5, P: 0.032] was significantly higher in diabetic versus control group. In contrast, the levels of IL-10 (P < 0.001), Firmicutes (OR: 0.6, P: 0.058), and Akkermansia muciniphila (OR: 0.4, P: 0.053) were significantly lower in diabetic versus control group. However, there was no statistically significant difference between the values in hypothyroid versus control group either in crude or adjusted models. Conclusion: While there are some relationships between serum biomarkers or bacterial abundance with diabetes prediction in obese patients, this prognostication is less likely in obese patients with hypothyroid. Further investigation is warranted in the application of identified preclinical biomarkers in the diagnosis of diabetes or hypothyroid in obese patients.
Collapse
Affiliation(s)
- Mohsen Tabasi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.,Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Sana Eybpoosh
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemah Sadeghpour Heravi
- Surgical Infection Research Group, Faculty of Medicine and Health Science, Macquarie University, Sydney, Australia
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ghazal Mousavian
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Fezzeh Elyasinia
- Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Soroush
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
34
|
Raza MF, Yao Z, Bai S, Cai Z, Zhang H. Tephritidae fruit fly gut microbiome diversity, function and potential for applications. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:423-437. [PMID: 32041675 DOI: 10.1017/s0007485319000853] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The family Tephritidae (order: Diptera), commonly known as fruit flies, comprises a widely distributed group of agricultural pests. The tephritid pests infest multiple species of fruits and vegetables, resulting in huge crop losses. Here, we summarize the composition and diversity of tephritid gut-associated bacteria communities and host intrinsic and environmental factors that influence the microbiome structures. Diverse members of Enterobacteriaceae, most commonly Klebsiella and Enterobacter bacteria, are prevalent in fruit flies guts. Roles played by gut bacteria in host nutrition, development, physiology and resistance to insecticides and pathogens are also addressed. This review provides an overview of fruit fly microbiome structure and points to diverse roles that it can play in fly physiology and survival. It also considers potential use of this knowledge for the control of economically important fruit flies, including the sterile insect technique and cue-lure baiting.
Collapse
Affiliation(s)
- Muhammad Fahim Raza
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhichao Yao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shuai Bai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhaohui Cai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
35
|
Kappler K, Lasanajak Y, Smith DF, Opitz L, Hennet T. Increased Antibody Response to Fucosylated Oligosaccharides and Fucose-Carrying Bacteroides Species in Crohn's Disease. Front Microbiol 2020; 11:1553. [PMID: 32765449 PMCID: PMC7381230 DOI: 10.3389/fmicb.2020.01553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel disease is associated with intestinal dysbiosis and with elevated antibody production toward microbial epitopes. The underlying processes linking the gut microbiota with inflammation are still unclear. Considering the constant induction of antibodies by gut microbial glycans, the aim of this study was to address whether the repertoire of carbohydrate-specific antibodies is altered in Crohn's disease or ulcerative colitis. IgG and IgM reactivities to oligosaccharides representative of mucosal glycans were tested in blood serum from 20 healthy control subjects, 17 ulcerative colitis patients, and 23 Crohn's disease patients using glycan arrays. An increased IgG and IgM reactivity toward fucosylated oligosaccharides was detected in Crohn's disease but not in ulcerative colitis. To address the antibody reactivity to the gut microbiota, IgG binding to members of a complex intestinal microbiota was measured and observed to be increased in sera of patients with Crohn's disease. Based on the elevated reactivity to fucosylated oligosaccharides, gut bacteria were tested for recognition by the fucose-binding Aleuria aurantia lectin. Bacteroides stercoris was detected in IgG- and lectin-positive fractions and reactivity of A. aurantia lectin was demonstrated for additional Bacteroides species. IgG reactivity to these Bacteroides species was significantly increased in inflammatory bowel disease patients, indicating that the increased reactivity to fucosylated oligosaccharides detected in Crohn's disease may be induced by fucose-carrying intestinal bacteria. Enhanced antibody response to fucosylated epitopes may have systemic effects by altering the binding of circulating antibodies to endogenous glycoproteins.
Collapse
Affiliation(s)
| | - Yi Lasanajak
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - David F. Smith
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - Lennart Opitz
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Kumar A, Dubey A. Rhizosphere microbiome: Engineering bacterial competitiveness for enhancing crop production. J Adv Res 2020; 24:337-352. [PMID: 32461810 PMCID: PMC7240055 DOI: 10.1016/j.jare.2020.04.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Accepted: 04/25/2020] [Indexed: 12/29/2022] Open
Abstract
Plants in nature are constantly exposed to a variety of abiotic and biotic stresses which limits their growth and production. Enhancing crop yield and production to feed exponentially growing global population in a sustainable manner by reduced chemical fertilization and agrochemicals will be a big challenge. Recently, the targeted application of beneficial plant microbiome and their cocktails to counteract abiotic and biotic stress is gaining momentum and becomes an exciting frontier of research. Advances in next generation sequencing (NGS) platform, gene editing technologies, metagenomics and bioinformatics approaches allows us to unravel the entangled webs of interactions of holobionts and core microbiomes for efficiently deploying the microbiome to increase crops nutrient acquisition and resistance to abiotic and biotic stress. In this review, we focused on shaping rhizosphere microbiome of susceptible host plant from resistant plant which comprises of specific type of microbial community with multiple potential benefits and targeted CRISPR/Cas9 based strategies for the manipulation of susceptibility genes in crop plants for improving plant health. This review is significant in providing first-hand information to improve fundamental understanding of the process which helps in shaping rhizosphere microbiome.
Collapse
Affiliation(s)
- Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, M.P., India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, M.P., India
| |
Collapse
|
37
|
de Alencar Junior H, Paiotti APR, de Araújo Filho HB, Oshima CTF, Miszputen SJ, Ambrogini-Júnior O. The relationship between the commensal microbiota levels and Crohn's disease activity. JGH OPEN 2020; 4:784-789. [PMID: 33102745 PMCID: PMC7578322 DOI: 10.1002/jgh3.12338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/18/2020] [Accepted: 03/28/2020] [Indexed: 12/30/2022]
Abstract
Background and aim Human gut microbiota play an important role in metabolism and host physiology. Perturbations of the gut microbial communities lead to the development of various diseases such as inflammatory bowel disease, celiac disease, allergic diseases, and metabolic diseases. Crohn's disease is a chronic inflammatory bowel disease characterized by periods of remission and relapse. Several studies suggest that intestinal inflammation arises due to an abnormal response of the intestinal immune system to the fecal microbiota. The goal of the study was to evaluate the relative amount of four bacterial groups in fecal samples of Crohn's disease patients and their relation to the inflammatory activity. Methods We studied stool samples of 105 individuals, 54 with Crohn's disease and 51 as a control group. The DNA extracted from the stool samples was subjected to real‐time polymerase chain reaction (qPCR) for quantification of the Bacteroidetes phylum, class Bacilli, and Bifidobacteriaceae and Enterobacteriaceae families. Results We found a significant increase in Bacteroidetes in Crohn's disease samples when compared to the control group (14 650 and 2060 CFU/ng DNA, respectively) (P = 0.014). On the other hand, we observed a significant reduction in Bacilli and Bifidobacteriaceae (13 and 58 CFU/ng DNA, respectively) (P < 0.0001). In contrast, patients without any drug treatment presented an increase of Bacilli and Bifidobacteriaceae (102 521 and 6235 CFU/ng DNA, respectively) (P < 0.0001). Conclusion The commensal bacteria were decreased in fecal samples of participants with Crohn's disease when compared to the control group. There was no relation between the disease location and/or disease activity with the microbiota.
Collapse
Affiliation(s)
| | - Ana Paula Ribeiro Paiotti
- Division of Gastroenterology Universidade Federal de São Paulo-Paulista Medical School, UNIFESP São Paulo Brazil
| | | | | | - Sender Jankiel Miszputen
- Division of Gastroenterology Universidade Federal de São Paulo-Paulista Medical School, UNIFESP São Paulo Brazil
| | - Orlando Ambrogini-Júnior
- Division of Gastroenterology Universidade Federal de São Paulo-Paulista Medical School, UNIFESP São Paulo Brazil
| |
Collapse
|
38
|
Zhu LF, Chen X, Ahmad Z, Peng Y, Chang MW. A core–shell multi-drug platform to improve gastrointestinal tract microbial health using 3D printing. Biofabrication 2020; 12:025026. [DOI: 10.1088/1758-5090/ab782c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Gao J, Azad MAK, Han H, Wan D, Li T. Impact of Prebiotics on Enteric Diseases and Oxidative Stress. Curr Pharm Des 2020; 26:2630-2641. [PMID: 32066357 DOI: 10.2174/1381612826666200211121916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
In animals, the gastrointestinal microbiota are reported to play a major role in digestion, nutrient absorption and the release of energy through metabolism of food. Therefore, microbiota may be a factor for association between diet and enteric diseases and oxidative stress. The gut microbial composition and concentration are affected by diet throughout the life of an animal, and respond rapidly and efficiently to dietary alterations, in particular to the use of prebiotics. Prebiotics, which play an important role in mammalian nutrition, are defined as dietary ingredients that lead to specific changes in both the composition and activity of the gastrointestinal microbiota through suppressing the proliferation of pathogens and by modifying the growth of beneficial microorganisms in the host intestine. A review of the evidence suggests possible beneficial effects of prebiotics on host intestinal health, including immune stimulation, gut barrier enhancement and the alteration of the gastrointestinal microbiota, and these effects appear to be dependent on alteration of the bacterial composition and short-chain fatty acid (SCFA) production. The production of SCFAs depends on the microbes available in the gut and the type of prebiotics available. The SCFAs most abundantly generated by gastrointestinal microbiota are acetate, butyrate and propionate, which are reported to have physiological effects on the health of the host. Nowadays, prebiotics are widely used in a range of food products to improve the intestinal microbiome and stimulate significant changes to the immune system. Thus, a diet with prebiotic supplements may help prevent enteric disease and oxidative stress by promoting a microbiome associated with better growth performance. This paper provides an overview of the hypothesis that a combination of ingestible prebiotics, chitosan, fructooligosaccharides and inulin will help relieve the dysbiosis of the gut and the oxidative stress of the host.
Collapse
Affiliation(s)
- Jing Gao
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China,University of Chinese Academy of Sciences, Beijing, China
| | - Md A K Azad
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China,University of Chinese Academy of Sciences, Beijing, China
| | - Hui Han
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China,University of Chinese Academy of Sciences, Beijing, China
| | - Dan Wan
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China,University of Chinese Academy of Sciences, Beijing, China
| | - TieJun Li
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Dreier M, Berthoud H, Shani N, Wechsler D, Junier P. SpeciesPrimer: a bioinformatics pipeline dedicated to the design of qPCR primers for the quantification of bacterial species. PeerJ 2020; 8:e8544. [PMID: 32110486 PMCID: PMC7034379 DOI: 10.7717/peerj.8544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/10/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Quantitative real-time PCR (qPCR) is a well-established method for detecting and quantifying bacteria, and it is progressively replacing culture-based diagnostic methods in food microbiology. High-throughput qPCR using microfluidics brings further advantages by providing faster results, decreasing the costs per sample and reducing errors due to automatic distribution of samples and reagents. In order to develop a high-throughput qPCR approach for the rapid and cost-efficient quantification of microbial species in complex systems such as fermented foods (for instance, cheese), the preliminary setup of qPCR assays working efficiently under identical PCR conditions is required. Identification of target-specific nucleotide sequences and design of specific primers are the most challenging steps in this process. To date, most available tools for primer design require either laborious manual manipulation or high-performance computing systems. RESULTS We developed the SpeciesPrimer pipeline for automated high-throughput screening of species-specific target regions and the design of dedicated primers. Using SpeciesPrimer, specific primers were designed for four bacterial species of importance in cheese quality control, namely Enterococcus faecium, Enterococcus faecalis, Pediococcus acidilactici and Pediococcus pentosaceus. Selected primers were first evaluated in silico and subsequently in vitro using DNA from pure cultures of a variety of strains found in dairy products. Specific qPCR assays were developed and validated, satisfying the criteria of inclusivity, exclusivity and amplification efficiencies. CONCLUSION In this work, we present the SpeciesPrimer pipeline, a tool to design species-specific primers for the detection and quantification of bacterial species. We use SpeciesPrimer to design qPCR assays for four bacterial species and describe a workflow to evaluate the designed primers. SpeciesPrimer facilitates efficient primer design for species-specific quantification, paving the way for a fast and accurate quantitative investigation of microbial communities.
Collapse
Affiliation(s)
- Matthias Dreier
- Agroscope, Bern, Switzerland
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | | | | | | | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
41
|
Dieme C, Zmarlak NM, Brito-Fravallo E, Travaillé C, Pain A, Cherrier F, Genève C, Calvo-Alvarez E, Riehle MM, Vernick KD, Rotureau B, Mitri C. Exposure of Anopheles mosquitoes to trypanosomes reduces reproductive fitness and enhances susceptibility to Plasmodium. PLoS Negl Trop Dis 2020; 14:e0008059. [PMID: 32032359 PMCID: PMC7032731 DOI: 10.1371/journal.pntd.0008059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/20/2020] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
During a blood meal, female Anopheles mosquitoes are potentially exposed to diverse microbes in addition to the malaria parasite, Plasmodium. Human and animal African trypanosomiases are frequently co-endemic with malaria in Africa. It is not known whether exposure of Anopheles to trypanosomes influences their fitness or ability to transmit Plasmodium. Using cell and molecular biology approaches, we found that Trypanosoma brucei brucei parasites survive for at least 48h after infectious blood meal in the midgut of the major malaria vector, Anopheles coluzzii before being cleared. This transient survival of trypanosomes in the midgut is correlated with a dysbiosis, an alteration in the abundance of the enteric bacterial flora in Anopheles coluzzii. Using a developmental biology approach, we found that the presence of live trypanosomes in mosquito midguts also reduces their reproductive fitness, as it impairs the viability of laid eggs by affecting their hatching. Furthermore, we found that Anopheles exposure to trypanosomes enhances their vector competence for Plasmodium, as it increases their infection prevalence. A transcriptomic analysis revealed that expression of only two Anopheles immune genes are modulated during trypanosome exposure and that the increased susceptibility to Plasmodium was microbiome-dependent, while the reproductive fitness cost was dependent only on the presence of live trypanosomes but was microbiome independent. Taken together, these results demonstrate multiple effects upon Anopheles vector competence for Plasmodium caused by eukaryotic microbes interacting with the host and its microbiome, which may in turn have implications for malaria control strategies in co-endemic areas. In nature, females Anopheles mosquitoes that transmit the malaria parasites Plasmodium, take successive blood meals to maximize their offspring. During these blood meals, mosquitoes are exposed to a variety of microbes present in the host blood in addition to Plasmodium, the obligate parasite that causes malaria. The Trypanosoma parasites, causing trypanosomiases, are sympatric with the malaria parasites in numerous African regions, therefore, a single female mosquito could be in contact with both pathogens concurrently or through successive blood meals. In this work, we showed that exposure of females Anopheles mosquitoes to Trypanosoma enhanced their susceptibility to malaria parasites, reduced their reproductive fitness and modulated their bacterial gut flora. While the effect of trypanosomes ingestion on Plasmodium infection is microbiome dependent, the phenotype on the reproductive fitness is microbiome independent. These results highlight the need for considering the effect of eukaryotic microbes on Anopheles biology for malaria control strategies.
Collapse
Affiliation(s)
- Constentin Dieme
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Natalia Marta Zmarlak
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Universities, UPMC Paris VI, Paris, France
| | - Emma Brito-Fravallo
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Christelle Travaillé
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Adrien Pain
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
- Institut Pasteur–Bioinformatics and Biostatistics Hub–C3BI, USR 3756 IP CNRS–Paris, France
| | - Floriane Cherrier
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Corinne Genève
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Estefanía Calvo-Alvarez
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Michelle M. Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Kenneth D. Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
- * E-mail: (BR); (CM)
| | - Christian Mitri
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
- * E-mail: (BR); (CM)
| |
Collapse
|
42
|
Przemieniecki SW, Kosewska A, Ciesielski S, Kosewska O. Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113265. [PMID: 31733968 DOI: 10.1016/j.envpol.2019.113265] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/15/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Recent studies have demonstrated the ability of mealworm (Tenebrio molitor) for plastic degradation. This study is focused on changes in microbiome structure depending on diets. Microbial community obtained from oat and cellulose diet formed similar group, two kinds of polyethylene formed another group, while polystyrene diet showed the highest dissimilarity. The highest relative abundance of bacteria colonizing gut was in PE-oxodegradable feeding, nevertheless all applied diets were higher in comparison to oat. Dominant phyla consisted of Proteobacteria, Bacteroides, Firmicutes and Actinobacteria, however after PS feeding frequency in Planctomycetes and Nitrospirae increased. The unique bacteria characteristic for cellulose diet belonged to Selenomonas, while Pantoea were characteristic for both polyethylene diets, Lactococcus and Elizabethkingia were unique for each plastic diet, and potential diazotropic bacteria were characteristic for polystyrene diet (Agrobacterium, Nitrosomonas, Nitrospira). Enzymatic similarity between oatmeal and cellulose diets, was shown. All three plastics diet resulted in different activity in both, digestive tract and bacteria. The enzymes with the highest activity were included phosphatases, esterases, leucine arylamidase, β-galactosidase, β-glucuronidase, α-glucosidase, β-glucosidase, chitinase, α-mannosidase and α-fucosidase. The activity of digestive tract was stronger than cultured gut bacteria. In addition to known polyethylene degradation methods, larvae may degrade polyethylene with esterase, cellulose and oatmeal waste activity is related with the activity of sugar-degrading enzymes, degradation of polystyrene with anaerobic processes and diazotrophs.
Collapse
Affiliation(s)
- Sebastian W Przemieniecki
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720, Olsztyn, Poland.
| | - Agnieszka Kosewska
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720, Olsztyn, Poland
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-917, Olsztyn, Poland
| | - Olga Kosewska
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720, Olsztyn, Poland
| |
Collapse
|
43
|
Ide K, Shinohara M, Yamagishi S, Endo A, Nishifuji K, Tochio T. Kestose supplementation exerts bifidogenic effect within fecal microbiota and increases fecal butyrate concentration in dogs. J Vet Med Sci 2019; 82:1-8. [PMID: 31761826 PMCID: PMC6983673 DOI: 10.1292/jvms.19-0071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Kestose, a fructooligosaccharide (FOS) with one fructose monomer linked to sucrose, is a key component of the prebiotic activity of FOS. This study aimed to evaluate the prebiotic potential
of Kestose in terms of the impact on population change in the intestinal microbiota and fecal short-chain fatty acid (SCFA) concentration in dogs. Kestose 2 g per dog was administered daily
with conventional diet to 6 healthy, adult beagle dogs for 8 weeks followed by 4 weeks of follow-up period without Kestose supplementation. Fresh fecal samples were obtained before and every
4 weeks until the end of the follow-up period. Genomic DNA extracted from the fecal samples was subjected to 16S rRNA gene analysis using next generation sequencer and to quantitative
polymerase chain reaction (qPCR). Fecal acetate, propionate, butyrate, lactate and ethanol concentrations were measured by high-performance liquid chromatography. 16S rRNA gene analysis and
qPCR showed increasing trend of genus Bifidobacterium after Kestose supplementation while genera Bacteroides and Sutterella decreased.
Clostridium perfringens decreased below the detection limit within first 4 weeks after starting Kestose supplementation. Fecal butyrate concentration was significantly
increased at week 8 and returned to the base level after 4 weeks of the washing period. To the best of our knowledge, this is the first study to reveal effect of Kestose on the populational
changes in fecal microbiota and fecal butyrate concentration in dogs.
Collapse
Affiliation(s)
- Kaori Ide
- Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Mikako Shinohara
- B Food Science Co., Ltd., 24-12 Kitahama, Chita, Aichi 478-0046, Japan
| | - Shohei Yamagishi
- Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Akihito Endo
- Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan
| | - Koji Nishifuji
- Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Takumi Tochio
- B Food Science Co., Ltd., 24-12 Kitahama, Chita, Aichi 478-0046, Japan
| |
Collapse
|
44
|
Luk AW, Beckmann S, Manefield M. Dependency of DNA extraction efficiency on cell concentration confounds molecular quantification of microorganisms in groundwater. FEMS Microbiol Ecol 2019; 94:5066166. [PMID: 30137345 DOI: 10.1093/femsec/fiy146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Quantification of microbes in water systems is essential to industrial practices ranging from drinking water and wastewater treatment to groundwater remediation. While quantification using DNA-based molecular methods is precise, the accuracy is dependent on DNA extraction efficiencies. We show that the DNA yield is strongly impacted by the cell concentration in groundwater samples (r = -0.92, P < 0.0001). This has major implications for industrial applications using quantitative polymerase chain reaction (qPCR) to determine cell concentrations in water, including bioremediation. We propose a simple normalization method using a DNA recovery ratio, calculated with the total cell count and DNA yield. Application of this method to enumeration of bacteria and archaea in groundwater samples targeting phylogenetic markers (16S rRNA) demonstrated an increased goodness of fit after normalization (7.04 vs 0.94 difference in Akaike's information criteria). Furthermore, normalization was applied to qPCR quantification of functional genes and combined with DNA sequencing of archaeal and bacterial 16S rRNA genes to monitor changes in abundance of methanogenic archaea and sulphate-reducing bacteria in groundwater. The integration of qPCR and DNA sequencing with appropriate normalization enables high-throughput quantification of microbial groups using increasingly affordable and accessible techniques. This research has implications for microbial ecology and engineering research as well as industrial practice.
Collapse
Affiliation(s)
- Alison Ws Luk
- School of Chemical Engineering, University of New South Wales, NSW 2052, Australia
| | - Sabrina Beckmann
- School of Chemical Engineering, University of New South Wales, NSW 2052, Australia
| | - Mike Manefield
- School of Chemical Engineering, University of New South Wales, NSW 2052, Australia.,School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia
| |
Collapse
|
45
|
Bang S, Yoo D, Kim SJ, Jhang S, Cho S, Kim H. Establishment and evaluation of prediction model for multiple disease classification based on gut microbial data. Sci Rep 2019; 9:10189. [PMID: 31308384 PMCID: PMC6629854 DOI: 10.1038/s41598-019-46249-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
Diseases prediction has been performed by machine learning approaches with various biological data. One of the representative data is the gut microbial community, which interacts with the host's immune system. The abundance of a few microorganisms has been used as markers to predict diverse diseases. In this study, we hypothesized that multi-classification using machine learning approach could distinguish the gut microbiome from following six diseases: multiple sclerosis, juvenile idiopathic arthritis, myalgic encephalomyelitis/chronic fatigue syndrome, acquired immune deficiency syndrome, stroke and colorectal cancer. We used the abundance of microorganisms at five taxonomy levels as features in 696 samples collected from different studies to establish the best prediction model. We built classification models based on four multi-class classifiers and two feature selection methods including a forward selection and a backward elimination. As a result, we found that the performance of classification is improved as we use the lower taxonomy levels of features; the highest performance was observed at the genus level. Among four classifiers, LogitBoost-based prediction model outperformed other classifiers. Also, we suggested the optimal feature subsets at the genus-level obtained by backward elimination. We believe the selected feature subsets could be used as markers to distinguish various diseases simultaneously. The finding in this study suggests the potential use of selected features for the diagnosis of several diseases.
Collapse
Affiliation(s)
- Sohyun Bang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 151-742, Republic of Korea
- C&K genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea
| | - DongAhn Yoo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Soo-Jin Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Soyun Jhang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 151-742, Republic of Korea
- C&K genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea
| | - Seoae Cho
- C&K genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 151-742, Republic of Korea.
- C&K genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea.
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Grabinger T, Glaus Garzon JF, Hausmann M, Geirnaert A, Lacroix C, Hennet T. Alleviation of Intestinal Inflammation by Oral Supplementation With 2-Fucosyllactose in Mice. Front Microbiol 2019; 10:1385. [PMID: 31275292 PMCID: PMC6593069 DOI: 10.3389/fmicb.2019.01385] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/03/2019] [Indexed: 12/30/2022] Open
Abstract
Milk oligosaccharides exert a prebiotic action that contributes to the development of the infant gut microbiota during lactation. Given that milk oligosaccharides remain intact after passage through stomach and small intestine, they can potentially influence the composition of the gut microbiota when ingested as dietary supplements after weaning. To address the regulatory effects of specific oligosaccharides in colitis linked to the microbiota composition, we have supplemented interleukin-10 null (Il10 -/-) mice with four fucosylated and sialylated oligosaccharides. We found that oral supplementation with 2-fucosyllactose significantly decreased the severity of colitis as displayed by reduced inflammatory marker expression, histological and diarrhea scores, an increased epithelial integrity and less pronounced colon shortening. Oral supplementation with 2-fucosyllactose led to a marked expansion of the commensal Ruminococcus gnavus, which was accompanied by an enhanced cecal concentration of propionate. Decreased activation of immune cells by R. gnavus was confirmed by reconstitution of antibiotic-treated Il10 -/- mice and by stimulation of dendritic cells in vitro. This study demonstrates that post-weaning administration of specific oligosaccharides can shift the composition of the gut microbiota to lessen chronic inflammation as observed in Il10 -/- mice. The expansion of R. gnavus sets a positive microbial environment at the cost of pro-inflammatory Gram-negative bacteria, thereby lowering intestinal inflammation.
Collapse
Affiliation(s)
- Thomas Grabinger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich - University of Zurich, Zurich, Switzerland
| | - Annelies Geirnaert
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
Armato C, Ahmed D, Agostino V, Traversi D, Degan R, Tommasi T, Margaria V, Sacco A, Gilli G, Quaglio M, Saracco G, Schilirò T. Anodic microbial community analysis of microbial fuel cells based on enriched inoculum from freshwater sediment. Bioprocess Biosyst Eng 2019; 42:697-709. [PMID: 30694390 DOI: 10.1007/s00449-019-02074-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/11/2019] [Indexed: 01/30/2023]
Abstract
The characterization of anodic microbial communities is of great importance in the study of microbial fuel cells (MFCs). These kinds of devices mainly require a high abundance of anode respiring bacteria (ARB) in the anode chamber for optimal performance. This study evaluated the effect of different enrichments of environmental freshwater sediment samples used as inocula on microbial community structures in MFCs. Two enrichment media were compared: ferric citrate (FeC) enrichment, with the purpose of increasing the ARB percentage, and general enrichment (Gen). The microbial community dynamics were evaluated by polymerase chain reaction followed by denaturing gradient gel electrophoresis (PCR-DGGE) and real time polymerase chain reaction (qPCR). The enrichment effect was visible on the microbial community composition both during precultures and in anode MFCs. Both enrichment approaches affected microbial communities. Shannon diversity as well as β-Proteobacteria and γ-Proteobacteria percentages decreased during the enrichment steps, especially for FeC (p < 0.01). Our data suggest that FeC enrichment excessively reduced the diversity of the anode community, rather than promoting the proliferation of ARB, causing a condition that did not produce advantages in terms of system performance.
Collapse
Affiliation(s)
- Caterina Armato
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Turin, Italy.,Centre for Sustainable Future Technologies (CSFT@PoliTo), Istituto Italiano di Tecnologia, Turin, Italy
| | - Daniyal Ahmed
- Centre for Sustainable Future Technologies (CSFT@PoliTo), Istituto Italiano di Tecnologia, Turin, Italy.,Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Valeria Agostino
- Centre for Sustainable Future Technologies (CSFT@PoliTo), Istituto Italiano di Tecnologia, Turin, Italy.,Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Deborah Traversi
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Turin, Italy
| | - Raffaella Degan
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Turin, Italy
| | - Tonia Tommasi
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Valentina Margaria
- Centre for Sustainable Future Technologies (CSFT@PoliTo), Istituto Italiano di Tecnologia, Turin, Italy
| | - Adriano Sacco
- Centre for Sustainable Future Technologies (CSFT@PoliTo), Istituto Italiano di Tecnologia, Turin, Italy
| | - Giorgio Gilli
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Turin, Italy
| | - Marzia Quaglio
- Centre for Sustainable Future Technologies (CSFT@PoliTo), Istituto Italiano di Tecnologia, Turin, Italy
| | - Guido Saracco
- Centre for Sustainable Future Technologies (CSFT@PoliTo), Istituto Italiano di Tecnologia, Turin, Italy
| | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Turin, Italy.
| |
Collapse
|
48
|
Liu H, Hou C, Li N, Zhang X, Zhang G, Yang F, Zeng X, Liu Z, Qiao S. Microbial and metabolic alterations in gut microbiota of sows during pregnancy and lactation. FASEB J 2019; 33:4490-4501. [PMID: 30653349 DOI: 10.1096/fj.201801221rr] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The gut microbiota plays a critical role in various physiologic processes; however, maternal microbial and metabolic changes during pregnancy and lactation remain elusive. Using pigs as an animal model, we conducted comparative analyses of gut microbiota and short-chain fatty acid (SCFA) profiles across different stages of gestation, lactation, and the empty (nonpregnancy) phase in 2 distinct breeds of sow, Rongchang (RS) and Landrace (LS). Coriobacteriaceae were found to gradually increase over gestational time irrespective of breed, which was further validated in an independent cohort of sows, indicating that Coriobacteriaceae are likely associated with the progression of pregnancy. Escherichia increased as well. Relative to empty and gestation, lactation was associated with an increase in SCFA producers and a concomitant augmentation in SCFA production in both breeds. A comparison between the 2 breeds revealed that Ruminococcaceae were more abundant in RSs than in LSs, consistent with the strong ability of Rongchang pigs to digest highly fibrous feedstuffs. Taken together, we revealed characteristic structural and metabolic changes in maternal gut microbiota throughout pregnancy, lactation, and the empty phase, which could potentially help improve the pregnancy and lactation outcomes for both animals and humans.-Liu, H., Hou, C., Li, N., Zhang, X., Zhang, G., Yang, F., Zeng, X., Liu, Z., Qiao, S. Microbial and metabolic alterations in gut microbiota of sows during pregnancy and lactation.
Collapse
Affiliation(s)
- Hongbin Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ning Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Xiaoya Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, USA; and
| | - Feiyun Yang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Zuohua Liu
- Chongqing Academy of Animal Science, Chongqing, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| |
Collapse
|
49
|
Huang S, Rabah H, Ferret-Bernard S, Le Normand L, Gaucher F, Guerin S, Nogret I, Le Loir Y, Chen XD, Jan G, Boudry G, Jeantet R. Propionic fermentation by the probiotic Propionibacterium freudenreichii to functionalize whey. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
50
|
Wampach L, Heintz-Buschart A, Fritz JV, Ramiro-Garcia J, Habier J, Herold M, Narayanasamy S, Kaysen A, Hogan AH, Bindl L, Bottu J, Halder R, Sjöqvist C, May P, Andersson AF, de Beaufort C, Wilmes P. Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nat Commun 2018; 9:5091. [PMID: 30504906 PMCID: PMC6269548 DOI: 10.1038/s41467-018-07631-x] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/13/2018] [Indexed: 01/07/2023] Open
Abstract
The rate of caesarean section delivery (CSD) is increasing worldwide. It remains unclear whether disruption of mother-to-neonate transmission of microbiota through CSD occurs and whether it affects human physiology. Here we perform metagenomic analysis of earliest gut microbial community structures and functions. We identify differences in encoded functions between microbiomes of vaginally delivered (VD) and CSD neonates. Several functional pathways are over-represented in VD neonates, including lipopolysaccharide (LPS) biosynthesis. We link these enriched functions to individual-specific strains, which are transmitted from mothers to neonates in case of VD. The stimulation of primary human immune cells with LPS isolated from early stool samples of VD neonates results in higher levels of tumour necrosis factor (TNF-α) and interleukin 18 (IL-18). Accordingly, the observed levels of TNF-α and IL-18 in neonatal blood plasma are higher after VD. Taken together, our results support that CSD disrupts mother-to-neonate transmission of specific microbial strains, linked functional repertoires and immune-stimulatory potential during a critical window for neonatal immune system priming.
Collapse
Affiliation(s)
- Linda Wampach
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg
- Laboratoire National de Santé, rue Louis Rech 1, 3555, Dudelange, Luxembourg
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Helmholtz Centre for Environmental Research GmbH - UFZ, Theodor-Lieser-Str. 4, 06120, Halle (Saale), Germany
| | - Joëlle V Fritz
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg
- Centre Hospitalier de Luxembourg, rue Nicolas Ernest Barblé 4, 1210, Luxembourg, Luxembourg
| | - Javier Ramiro-Garcia
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg
| | - Janine Habier
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg
| | - Malte Herold
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg
| | - Shaman Narayanasamy
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg
- Megeno S.A., avenue des Hauts-Fourneaux 9, 4362, Esch-sur-Alzette, Luxembourg
| | - Anne Kaysen
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg
- Centre Hospitalier de Luxembourg, rue Nicolas Ernest Barblé 4, 1210, Luxembourg, Luxembourg
| | - Angela H Hogan
- Integrated BioBank of Luxembourg, rue Louis Rech 1, 3555, Dudelange, Luxembourg
| | - Lutz Bindl
- Centre Hospitalier de Luxembourg, rue Nicolas Ernest Barblé 4, 1210, Luxembourg, Luxembourg
| | - Jean Bottu
- Centre Hospitalier de Luxembourg, rue Nicolas Ernest Barblé 4, 1210, Luxembourg, Luxembourg
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg
| | - Conny Sjöqvist
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, Tomtebodavägen 23a, 17165, Solna, Sweden
- Environmental and Marine Biology, Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg
| | - Anders F Andersson
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, Tomtebodavägen 23a, 17165, Solna, Sweden
| | - Carine de Beaufort
- Centre Hospitalier de Luxembourg, rue Nicolas Ernest Barblé 4, 1210, Luxembourg, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|