1
|
Sun Y, Zhang Y, Jian C, Wang T, Cao G, Li N, Li G, Zhang S. Identification and functional analysis of the Dof transcription factor genes in sugar beet. JOURNAL OF PLANT RESEARCH 2024:10.1007/s10265-024-01588-3. [PMID: 39387971 DOI: 10.1007/s10265-024-01588-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
In this study, members of the BvDof transcription factor family were identified in the beet genome data (Beta vulgaris L.) Through systematic analysis, 22 BvDof family genes were found in the beet genome, and they were divided into nine groups by phylogenetic analysis. Fifteen members of the BvERF family were involved in the transition to rapid root tuber growth. There was a tandem replication during the generation of the Dof gene family in sugar beet. Bv1_zfms, Bv_ofna, Bv5_racn, and Bv6_augo may be involved in the regulation of secondary cambium development in the beet root tuber. Bv9_nood, Bv1_zfms, and Bv6_cdca may be related to the growth rate of root tubers. The results provide a reference for further elucidating the molecular mechanism of the BvDof transcription factor, which regulates the development of beet root tubers.
Collapse
Affiliation(s)
- Yaqing Sun
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Yongfeng Zhang
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010019, China
- Sinochem Agriculture Holdings (Inner Mongulia) Co. Ltd, Hohhot, 010052, China
| | - Caiyuan Jian
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010019, China
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010030, China
| | - Tong Wang
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Guoli Cao
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Ningning Li
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Guolong Li
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Shaoying Zhang
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010019, China.
| |
Collapse
|
2
|
Martínez-Barradas V, Galbiati M, Barco-Rubio F, Paolo D, Espinoza C, Cominelli E, Arce-Johnson P. PvMYB60 gene, a candidate for drought tolerance improvement in common bean in a climate change context. Biol Res 2024; 57:52. [PMID: 39127708 PMCID: PMC11316432 DOI: 10.1186/s40659-024-00528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/04/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Common bean (Phaseolus vulgaris) is one of the main nutritional resources in the world, and a low environmental impact source of protein. However, the majority of its cultivation areas are affected by drought and this scenario is only expected to worsen with climate change. Stomatal closure is one of the most important plant responses to drought and the MYB60 transcription factor is among the key elements regulating stomatal aperture. If targeting and mutating the MYB60 gene of common bean would be a valuable strategy to establish more drought-tolerant beans was therefore investigated. RESULTS The MYB60 gene of common bean, with orthology to the Arabidopsis AtMYB60 gene, was found to have conserved regions with MYB60 typical motifs and architecture. Stomata-specific expression of PvMYB60 was further confirmed by q-RT PCR on organs containing stomata, and stomata-enriched leaf fractions. Further, function of PvMYB60 in promoting stomata aperture was confirmed by complementing the defective phenotype of a previously described Arabidopsis myb60-1 mutant. CONCLUSIONS Our study finally points PvMYB60 as a potential target for obtaining more drought-tolerant common beans in the present context of climate change which would further greatly contribute to food security particularly in drought-prone countries.
Collapse
Affiliation(s)
- Vera Martínez-Barradas
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Massimo Galbiati
- National Research Council, Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Milan, Italy
| | - Francisco Barco-Rubio
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dario Paolo
- National Research Council, Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Milan, Italy
| | - Carmen Espinoza
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Eleonora Cominelli
- National Research Council, Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Milan, Italy.
| | - Patricio Arce-Johnson
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Mohanan MV, Pushpanathan A, Jayanarayanan AN, Selvarajan D, Ramalingam S, Govind H, Chinnaswamy A. Isolation of 5' regulatory region of COLD1 gene and its functional characterization through transient expression analysis in tobacco and sugarcane. 3 Biotech 2023; 13:228. [PMID: 37304407 PMCID: PMC10256666 DOI: 10.1007/s13205-023-03650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Chilling Tolerant Divergence 1 (COLD1) gene consists of Golgi pH Receptor (GPHR) as well as Abscisic Acid-linked G Protein-Coupled Receptor (ABA_GPCR), which are the major transmembrane proteins in plants. This gene expression has been found to be differentially regulated, under various stress conditions, in wild Saccharum-related genera, Erianthus arundinaceus, compared to commercial sugarcane variety. In this study, Rapid Amplification of Genomic Ends (RAGE) technique was employed to isolate the 5' upstream region of COLD1 gene to gain knowledge about the underlying stress regulatory mechanism. The current study established the cis-acting elements, main promoter regions, and Transcriptional Start Site (TSS) present within the isolated 5' upstream region (Cold1P) of COLD1, with the help of specific bioinformatics techniques. Phylogenetic analysis results revealed that the isolated Cold1P promoter is closely related to the species, Sorghum bicolor. Cold1P promoter-GUS gene construct was generated in pCAMBIA 1305.1 vector that displayed a constitutive expression of the GUS reporter gene in both monocot as well as dicot plants. The histochemical GUS assay outcomes confirmed that Cold1P can drive expression in both monocot as well as dicot plants. Cold1P's activities under several abiotic stresses such as cold, heat, salt, and drought, revealed its differential expression profile in commercial sugarcane variety. The highest activity of the GUS gene was found after 24 h of cold stress, driven by the isolated Cold1P promoter. The outcomes from GUS fluorimetric assay correlated with that of the GUS expression findings. This is the first report on Cold1P isolated from the species, E. arundinaceus. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03650-8.
Collapse
Affiliation(s)
| | | | | | - Dharshini Selvarajan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | | | - Hemaprabha Govind
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Appunu Chinnaswamy
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| |
Collapse
|
4
|
Negi S, Tak H, Madari S, Bhakta S, Ganapathi TR. Functional characterization of 5'-regulatory region of flavonoid 3',5'-hydroxylase-1 gene of banana plants. PROTOPLASMA 2023; 260:391-403. [PMID: 35727420 DOI: 10.1007/s00709-022-01785-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Generation of crops with broad-spectrum tolerance to biotic and abiotic stress conditions depends upon availability of genetic elements suitable for varied situations and diverse genotypes. Here, we characterize the 5'-upstream regulatory region of flavonoid 3'5'-hydroxylase-1 (F3'5'H-1) gene from banana and analyzed its tissue-specific and stress-mediated activation in genetic background of tobacco plants. MusaF3'5'H-1 is a stress-responsive gene as its expression is induced in banana after application of salicylic acid and methyl jasmonate while its transcript levels were drastically reduced in response to drought, high salinity and abscisic acid. PMusaF3'5'H-1 harbours cis-elements associated with stress conditions and those responsible for tissue-specific expression. Transgenic lines harbouring PMusaF3'5'H-1-GUS displays strong GUS expression in guard cells of stomata indicating guard cell preferred activity of PMusaF3'5'H-1 while its activity was undetectable in roots. Drought and high salinity induce strong expression of GUS in transgenic tobacco lines and exposure to abscisic acid, salicylic acid and methyl jasmonate revealed distinct profiles of GUS expression in transgenic lines confirming involvement of F3'5'H-1 in plant stress responses. Fluorescent β-galactosidase assay revealed induction profiles of PMusaF3'5'H-1 at different time points in transgenic lines exposed to salicylic acid and abscisic acid while strong suppression in GUS expression was observed after application of methyl jasmonate. The guard cell preferred activity of PMusaF3'5'H-1 and stress-mediated expression profiles of MusaF3'5'H-1 indicated the suitability of PMusaF3'5'H-1 for generating stress-enduring crops and analyzing guard cell functions.
Collapse
Affiliation(s)
- Sanjana Negi
- Department of Biotechnology, University of Mumbai, Mumbai, 400098, India
| | - Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| | - Steffi Madari
- Department of Biotechnology, University of Mumbai, Mumbai, 400098, India
| | - Subham Bhakta
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - T R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
5
|
Ma X, Ran J, Mei G, Hou X, You X. Cloning and Functional Analysis of NoMYB60 Gene Involved in Flavonoid Biosynthesis in Watercress ( Nasturtium officinale R. Br.). Genes (Basel) 2022; 13:2109. [PMID: 36421784 PMCID: PMC9690578 DOI: 10.3390/genes13112109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 06/30/2024] Open
Abstract
The MYB60 gene belongs to the R2R3-MYB subfamily, which includes the MYB31/30/96/94 genes. Although these genes have been shown to respond to heat and drought stresses, their role in flavonoid synthesis remains unclear. In this study, NoMYB60 was cloned from watercress and its structure and function were analyzed. Sequence structure analysis showed that NoMYB60 had a highly conserved R2R3 DNA-binding region at the N-terminus. Under the treatment of ABA, SA or MeJA, the expression level of NoMYB60 first significantly increased and then decreased, indicating that ABA, SA and MeJA positively regulated NoMYB60. The subcellular localization of NoMYB60-GFP indicated that NoMYB60 was localized in the nuclear region, which is consistent with the molecular characterization of the transcription factor. Gene silencing experiments were also performed to further test the function of NoMYB60. The result showed that virus-induced silencing of NoMYB60 affected the expression of enzyme genes in flavonoid synthesis pathways and promoted the synthesis of flavonoids. Moreover, we discovered that NoMYB60 interacts with NoBEH1/2. In this study, provides a reference for research on the regulation mechanism of flavonoid synthesis in Cruciferae and other crops.
Collapse
Affiliation(s)
- Xiaoqing Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiajun Ran
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Guihu Mei
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiong You
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Li T, Wang X, Elango D, Zhang W, Li M, Zhang F, Pan Q, Wu Y. Genome-wide identification, phylogenetic and expression pattern analysis of Dof transcription factors in blueberry ( Vaccinium corymbosum L.). PeerJ 2022; 10:e14087. [PMID: 36213501 PMCID: PMC9536302 DOI: 10.7717/peerj.14087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 01/20/2023] Open
Abstract
Background DNA binding with one finger (Dof) proteins are plant-specific transcription factor (TF) that plays a significant role in various biological processes such as plant growth and development, hormone regulation, and resistance to abiotic stress. The Dof genes have been identified and reported in multiple plants, but so far, the whole genome identification and analysis of Dof transcription factors in blueberry (Vaccinium corymbosum L.) have not been reported yet. Methods Using the Vaccinium genome, we have identified 51 VcDof genes in blueberry. We have further analyzed their physicochemical properties, phylogenetic relationships, gene structure, collinear analysis, selective evolutionary pressure, cis-acting promoter elements, and tissue and abiotic stress expression patterns. Results Fifty-one VcDof genes were divided into eight subfamilies, and the genes in each subfamily contained similar gene structure and motif ordering. A total of 24 pairs of colinear genes were screened; VcDof genes expanded mainly due to whole-genome duplication, which was subjected to strong purifying selection pressure during the evolution. The promoter of VcDof genes contains three types of cis-acting elements for plant growth and development, phytohormone and stress defense responsiveness. Expression profiles of VcDof genes in different tissues and fruit developmental stages of blueberry indicated that VcDof2 and VcDof45 might play a specific role in anthesis and fruit growth and development. Expression profiles of VcDof genes in different stress indicated that VcDof1, VcDof11, and VcDof15 were highly sensitive to abiotic stress. This study provides a theoretical basis for further clarifying the biological function of Dof genes in blueberry.
Collapse
Affiliation(s)
- Tianjie Li
- Tianjin Agricultural University, Tianjin, China
| | - Xiaoyu Wang
- Inner Mongolia Minzu University, Mongolia, China
| | | | | | - Min Li
- Inner Mongolia Minzu University, Mongolia, China
| | - Fan Zhang
- Tianjin Agricultural University, Tianjin, China
| | - Qi Pan
- Tianjin Agricultural University, Tianjin, China
| | - Ying Wu
- Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
7
|
Liu L, Chao N, Yidilisi K, Kang X, Cao X. Comprehensive analysis of the MYB transcription factor gene family in Morus alba. BMC PLANT BIOLOGY 2022; 22:281. [PMID: 35676625 PMCID: PMC9175366 DOI: 10.1186/s12870-022-03626-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/03/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND The V-myb myeloblastosis viral oncogene homolog (MYB) family of proteins is large, containing functionally diverse transcription factors. However, MYBs in Morus are still poorly annotated and a comprehensive functional analysis of these transcription factors is lacking. RESULTS In the present study, a genome-wide identification of MYBs in Morus alba was performed. In total 166 MaMYBs were identified, including 103 R2R3-MYBs and four 3R-MaMYBs. Comprehensive analyses, including the phylogenetic analysis with putative functional annotation, motif and structure analysis, gene structure organization, promoter analysis, chromosomal localization, and syntenic relationships of R2R3-MaMYBs and 3R-MaMYBs, provided primary characterization for these MaMYBs. R2R3-MaMYBs covered the subgroups reported for R2R3-MYBs in Arabidopsis and Populus, and had two Morus-specific subgroups, indicating the high retention of MYBs in Morus. Motif analysis revealed high conservative residues at the start and end of each helix and residues consisting of the third helix in R2 and R3 repeats. Thirteen intron/exon patterns (a-m) were summarized, and the intron/exon pattern of two introns with phase numbers of 0 and 2 was the prevalent pattern for R2R3-MaMYBs. Various cis-elements in promoter regions were identified, and were mainly related to light response, development, phytohormone response, and abiotic and biotic stress response and secondary metabolite production. Expression patterns of R2R3-MaMYBs in different organs showed that MaMYBs involved in secondary cell wall components and stress responsiveness were preferentially expressed in roots or stems. R2R3-MaMYBs involved in flavonoid biosynthesis and anthocyanin accumulation were identified and characterized based on functional annotation and correlation of their expression levels with anthocyanin contents. CONCLUSION Based on a comprehensive analysis, this work provided functional annotation for R2R3-MYBs and an informative reference for further functional dissection of MYBs in Morus.
Collapse
Affiliation(s)
- Li Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China.
| | - Nan Chao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China
| | - Keermula Yidilisi
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Xiaoru Kang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Xu Cao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China
| |
Collapse
|
8
|
Moriwaki K, Yanagisawa S, Iba K, Negi J. Two independent cis-acting elements are required for the guard cell-specific expression of SCAP1, which is essential for late stomatal development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:440-451. [PMID: 35061307 DOI: 10.1111/tpj.15679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Regulating the stomatal aperture to adapt to environmental changes is critical for plants as stomatal guard cells are responsible for gas exchange between plants and the atmosphere. We previously showed that a plant-specific DNA-binding with one finger (Dof)-type transcription factor, SCAP1, functions as a key regulator in the final stages of guard cell differentiation. In the present study, we performed deletion and gain-of-function analyses with the 5' flanking region of SCAP1 to identify the regulatory region controlling the guard cell-specific expression of SCAP1. The results revealed that two cis-acting elements, 5'-CACGAGA-3' and 5'-CACATGTTTCCC-3', are crucial for the guard cell-specific expression of SCAP1. Consistently, when an 80-bp promoter region including these two cis-elements was fused to a gene promoter that is not active in guard cells, it functioned as a promoter that directed gene expression in guard cells. Furthermore, the promoter region of HT1 encoding the central regulator of stomatal CO2 signaling was also found to contain a 5'-CACGAGA-3' sequence, which was confirmed to function as a cis-element necessary for guard cell-specific expression of HT1. These findings suggest the existence of a novel transcriptional regulatory mechanism that synchronously promotes the expression of multiple genes required for the stomatal maturation and function.
Collapse
Affiliation(s)
- Kosuke Moriwaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Shuichi Yanagisawa
- Agro-Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Koh Iba
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Juntaro Negi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Simeoni F, Skirycz A, Simoni L, Castorina G, de Souza LP, Fernie AR, Alseekh S, Giavalisco P, Conti L, Tonelli C, Galbiati M. The AtMYB60 transcription factor regulates stomatal opening by modulating oxylipin synthesis in guard cells. Sci Rep 2022; 12:533. [PMID: 35017563 PMCID: PMC8752683 DOI: 10.1038/s41598-021-04433-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/06/2021] [Indexed: 12/04/2022] Open
Abstract
Stomata are epidermal pores formed by pairs of specialized guard cells, which regulate gas exchanges between the plant and the atmosphere. Modulation of transcription has emerged as an important level of regulation of stomatal activity. The AtMYB60 transcription factor was previously identified as a positive regulator of stomatal opening, although the details of its function remain unknown. Here, we propose a role for AtMYB60 as a negative modulator of oxylipins synthesis in stomata. The atmyb60-1 mutant shows reduced stomatal opening and accumulates increased levels of 12-oxo-phytodienoic acid (12-OPDA), jasmonic acid (JA) and jasmonoyl-L-isoleucine (JA-Ile) in guard cells. We provide evidence that 12-OPDA triggers stomatal closure independently of JA and cooperatively with abscisic acid (ABA) in atmyb60-1. Our study highlights the relevance of oxylipins metabolism in stomatal regulation and indicates AtMYB60 as transcriptional integrator of ABA and oxylipins responses in guard cells.
Collapse
Affiliation(s)
- Fabio Simeoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | | | - Laura Simoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Giulia Castorina
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Milan, Italy
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Patrick Giavalisco
- Metabolomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Lucio Conti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Chiara Tonelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Massimo Galbiati
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle Ricerche, Milan, Italy.
| |
Collapse
|
10
|
Singha DL, Das D, Sarki YN, Chowdhury N, Sharma M, Maharana J, Chikkaputtaiah C. Harnessing tissue-specific genome editing in plants through CRISPR/Cas system: current state and future prospects. PLANTA 2021; 255:28. [PMID: 34962611 DOI: 10.1007/s00425-021-03811-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. CRISPR/Cas is a powerful genome-editing tool with a wide range of applications for the genetic improvement of crops. However, the constitutive genome editing of vital genes is often associated with pleiotropic effects on other genes, needless metabolic burden, or interference in the cellular machinery. Tissue-specific genome editing (TSGE), on the other hand, enables researchers to study those genes in specific cells, tissues, or organs without disturbing neighboring groups of cells. Until recently, there was only limited proof of the TSGE concept, where the CRISPR-TSKO tool was successfully used in Arabidopsis, tomato, and cotton, laying a solid foundation for crop improvement. In this review, we have laid out valuable insights into the concept and application of TSGE on relatively unexplored areas such as grain trait improvement under favorable or unfavorable conditions. We also enlisted some of the prominent tissue-specific promoters and described the procedure of their isolation with several TSGE promoter expression systems in detail. Moreover, we highlighted potential negative regulatory genes that could be targeted through TSGE using tissue-specific promoters. In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement.
Collapse
Affiliation(s)
- Dhanawantari L Singha
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India.
| | - Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Yogita N Sarki
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Naimisha Chowdhury
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Monica Sharma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Jitendra Maharana
- Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Tak H, Negi S, Ganapathi TR. The 5'-upstream region of WRKY18 transcription factor from banana is a stress-inducible promoter with strong expression in guard cells. PHYSIOLOGIA PLANTARUM 2021; 173:1335-1350. [PMID: 33421142 DOI: 10.1111/ppl.13326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/07/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Increasing crop productivity in an ever-changing environmental scenario is a major challenge for maintaining the food supply worldwide. Generation of crops having broad-spectrum pathogen resistance with the ability to cope with water scarcity is the only solution to feed the expanding world population. Stomatal closure has implications on pathogen colonization and drought tolerance. Recent studies have provided novel insights into networks involved in stomatal closure which is being used in biotechnological applications for improving crop endurance. Despite that genetic engineering of stomata requires guard cell preferred or specific regulatory regions to avoid undesirable side effects. In the present study, we describe the 5'-upstream regulatory region of the WRKY18 transcription factor of banana and functionally analyzed its stress meditated activation and strong guard cell preferred activity. Expression of MusaWRKY18 is augmented in leaves of banana cultivars Karibale Monthan, Rasthali and Grand Nain under multiple stress conditions suggesting its role in stress responses of banana plants. Transgenic tobacco lines harboring PMusaWRKY18 -β-D-glucuronidase (GUS) were regenerated and GUS staining demonstrated substantial GUS expression in guard cells which corroborates with multiple Dof1 binding cis-elements in PMusaWRKY18 . Fluorescent β-galactosidase assay demonstrated the stress-mediated strong induction profiles of PMusaWRKY18 at different time points in transgenic tobacco lines exposed to drought, high-salinity, cold, and applications of abscisic acid, salicylic acid, methyl jasmonate, and ethephon. This study sheds novel insights into guard cell preferred expression of WRKY genes under stress and confirm the utility of PMusaWRKY18 for exploring guard cell functions and guard cell engineering.
Collapse
Affiliation(s)
- Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sanjana Negi
- Department of Biotechnology, University of Mumbai, Mumbai, India
| | - Thumballi R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
12
|
Negi S, Madari S, Tak H, Bhakta S, Ganapathi TR. Studies on the tissue specific nature and stress inducible activation of the CHI-1 gene from banana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:62-69. [PMID: 34619599 DOI: 10.1016/j.plaphy.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
In the present study, the 5'-regulatory region of chalcone isomerase gene (MusaCHI-1) of banana was functionally analysed for its tissue specific, stress mediated and strong guard cell preferred activity. Expression of MusaCHI-1 was altered in leaves of banana plants exposed to various stress conditions and signalling molecules. Transgenic lines of tobacco harbouring PMusaCHI-1-GUS displays prominent GUS staining in vascular region and guard cells of leaves which corroborates with array of Dof1 binding cis-elements in PMusaCHI-1 region. Multiple cis-elements associated with various stress conditions were detected in PMusaCHI-1 which directly correlates with alteration of MusaCHI-1 transcript level in banana exposed to stress conditions. GUS staining of transgenic tobacco plants harbouring PMusaCHI-1-GUS and exposed to drought, salinity, and applications of methyl jasmonate and abscisic acid indicated activation of PMusaCHI-1 under these conditions while exposure of salicylic acid strongly suppresses GUS expression from PMusaCHI-1.
Collapse
Affiliation(s)
- Sanjana Negi
- Department of Biotechnology, University of Mumbai, Mumbai, 400098, India
| | - Steffi Madari
- Department of Biotechnology, University of Mumbai, Mumbai, 400098, India
| | - Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| | - Subham Bhakta
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - T R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
13
|
Kurt F. An Insight into Oligopeptide Transporter 3 (OPT3) Family Proteins. Protein Pept Lett 2021; 28:43-54. [PMID: 32586240 DOI: 10.2174/0929866527666200625202028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/11/2020] [Accepted: 04/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND OPT3s are involved in the transport of Fe from xylem to phloem, in loading Fe into phloem, and in the transmission of shoot-to-root iron signaling. Yet, apart from Arabidopsis, little is known about these transporters'functions in other plant species. OBJECTIVE OPT3 proteins of several plant species were characterized using bioinformatical tools. Also, a probable Fe chelating protein, GSH, was used in docking analyses to shed light on the interactions of ligand binding sites of OPT3s. METHODS The multiple sequence alignment (MSA) analysis, protein secondary and tertiary structure analyses, molecular phylogeny analysis, transcription factor binding site analyses, co-expression and docking analyses were performed using up-to-date bioinformatical tools. RESULTS All OPT3s in this study appear to be transmembrane proteins. They appear to have broad roles and substrate specificities in different metabolic processes. OPT3 gene structures were highly conserved. Promoter analysis showed that bZIP, WRKY, Dof and AT-Hook Transcription factors (TFs) may regulate the expression of OPT3 genes. Consequently, they seemed to be taking part in both biotic and abiotic stress responses as well as growth and developmental processes. CONCLUSION The results showed that OPT3 proteins are involved in ROS regulation, plant stress responses, and basal pathogen resistance. They have species-specific roles in biological processes. Lastly, the transport of iron through OPT3s may occur with GSH according to the binding affinity results of the docking analyses.
Collapse
Affiliation(s)
- Fırat Kurt
- Department of Plant Production and Technologies, Faculty of Applied Sciences, Mus Alparslan University, Mus, Turkey
| |
Collapse
|
14
|
Wong JH, Klejchová M, Snipes SA, Nagpal P, Bak G, Wang B, Dunlap S, Park MY, Kunkel EN, Trinidad B, Reed JW, Blatt MR, Gray WM. SAUR proteins and PP2C.D phosphatases regulate H+-ATPases and K+ channels to control stomatal movements. PLANT PHYSIOLOGY 2021; 185:256-273. [PMID: 33631805 PMCID: PMC8133658 DOI: 10.1093/plphys/kiaa023] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/27/2020] [Indexed: 05/12/2023]
Abstract
Activation of plasma membrane (PM) H+-ATPase activity is crucial in guard cells to promote light-stimulated stomatal opening, and in growing organs to promote cell expansion. In growing organs, SMALL AUXIN UP RNA (SAUR) proteins inhibit the PP2C.D2, PP2C.D5, and PP2C.D6 (PP2C.D2/5/6) phosphatases, thereby preventing dephosphorylation of the penultimate phosphothreonine of PM H+-ATPases and trapping them in the activated state to promote cell expansion. To elucidate whether SAUR-PP2C.D regulatory modules also affect reversible cell expansion, we examined stomatal apertures and conductances of Arabidopsis thaliana plants with altered SAUR or PP2C.D activity. Here, we report that the pp2c.d2/5/6 triple knockout mutant plants and plant lines overexpressing SAUR fusion proteins exhibit enhanced stomatal apertures and conductances. Reciprocally, saur56 saur60 double mutants, lacking two SAUR genes normally expressed in guard cells, displayed reduced apertures and conductances, as did plants overexpressing PP2C.D5. Although altered PM H+-ATPase activity contributes to these stomatal phenotypes, voltage clamp analysis showed significant changes also in K+ channel gating in lines with altered SAUR and PP2C.D function. Together, our findings demonstrate that SAUR and PP2C.D proteins act antagonistically to facilitate stomatal movements through a concerted targeting of both ATP-dependent H+ pumping and channel-mediated K+ transport.
Collapse
Affiliation(s)
- Jeh Haur Wong
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota 55108, USA
- Present address: Department of Biological Sciences, National University of Singapore, Singapore
| | - Martina Klejchová
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, UK
| | - Stephen A Snipes
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Punita Nagpal
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Gwangbae Bak
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Bryan Wang
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Sonja Dunlap
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Mee Yeon Park
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Emma N Kunkel
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Brendan Trinidad
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Jason W Reed
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, UK
| | - William M Gray
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota 55108, USA
- Author for communication:
| |
Collapse
|
15
|
Isolation and molecular characterization of MYB60 in Solanum lycopersicum. Mol Biol Rep 2021; 48:1579-1587. [PMID: 33502700 DOI: 10.1007/s11033-021-06168-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/15/2021] [Indexed: 12/28/2022]
Abstract
Stomatal closure is a common adaptation response of plants to the onset of drought condition and its regulation is controlled by transcription factors. MYB60, a transcription factor involved in the regulation of light-induced stomatal opening, has been characterized in arabidopsis and grapevine. In this work, we studied the role of MYB60 homolog SIMYB60 in tomato plants. We identified, isolated, and sequenced the SIMYB60 coding sequence, and found domains and motifs characteristic of other MYB60 proteins. We determined that SlMYB60 is mainly expressed in leaves, and its expression is repressed by abscisic acid. Next, we isolated a putative promoter region containing regulatory elements responsible for guard cell expression and other putative regulatory elements related to ABA repression and vascular tissue expression. Protein localization assays demonstrated that SlMYB60 localizes to the nucleus. Finally, SlMYB60 is able to complement the mutant phenotype of atmyb60-1 in Arabidopsis. Together, these results indicate that SlMYB60 is the homologous gene in tomato and potentially offer a molecular target to improve crops.
Collapse
|
16
|
Zabala G, Kour A, Vodkin LO. Overexpression of an ethylene-forming ACC oxidase (ACO) gene precedes the Minute Hilum seed coat phenotype in Glycine max. BMC Genomics 2020; 21:716. [PMID: 33066734 PMCID: PMC7566151 DOI: 10.1186/s12864-020-07130-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/08/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To elucidate features of seed development, we investigated the transcriptome of a soybean isoline from the germplasm collection that contained an introgressed allele known as minute hilum (mi) which confers a smaller hilum region where the seed attaches to the pod and also results in seed coat cracking surrounding the hilum region. RESULTS RNAs were extracted from immature seed from an extended hilum region (i.e., the hilum and a small ring of tissue surrounding the hilum in which the cracks form) at three different developmental stages:10-25, 25-50 and 50-100 mg seed fresh weight in two independent replicates for each stage. The transcriptomes of these samples from both the Clark isoline containing the mi allele (PI 547628, UC413, ii R t mi G), and its recurrent Clark 63 parent isoline (PI 548532, UC7, ii R T Mi g), which was used for six generations of backcrossing, were compared for differential expression of 88,648 Glyma models of the soybean genome Wm82.a2. The RNA sequence data obtained from the 12 cDNA libraries were subjected to padj value < 0.05 and at least two-fold expression differences to select with confidence genes differentially expressed in the hilum-containing tissue of the seed coat between the two lines. Glyma.09G008400 annotated as encoding an ethylene forming enzyme, ACC oxidase (ACO), was found to be highly overexpressed in the mi hilum region at 165 RPKMs (reads per kilobase per million mapped reads) compared to the standard line at just 0.03 RPKMs. Evidence of changes in expression of genes downstream of the ethylene pathway included those involved in auxin and gibberellin hormone action and extensive differences in expression of cell wall protein genes. These changes are postulated to determine the restricted hilum size and cracking phenotypes. CONCLUSIONS We present transcriptome and phenotypic evidence that substantially higher expression of an ethylene-forming ACO gene likely shifts hormone balance and sets in motion downstream changes resulting in a smaller hilum phenotype and the cracks observed in the minute hilum (mi) isoline as compared to its recurrent parent.
Collapse
Affiliation(s)
- Gracia Zabala
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61981, USA
| | - Anupreet Kour
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61981, USA
- Present address: Robert M. Berne Cardiovascular Research Institute, University of Virginia School of Medicine, Charlottesville, Virginia, 22908, USA
| | - Lila O Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61981, USA.
| |
Collapse
|
17
|
|
18
|
Simon NML, Graham CA, Comben NE, Hetherington AM, Dodd AN. The Circadian Clock Influences the Long-Term Water Use Efficiency of Arabidopsis. PLANT PHYSIOLOGY 2020; 183:317-330. [PMID: 32179629 PMCID: PMC7210627 DOI: 10.1104/pp.20.00030] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/25/2020] [Indexed: 05/04/2023]
Abstract
In plants, water use efficiency (WUE) is a complex trait arising from numerous physiological and developmental characteristics. Here, we investigated the involvement of circadian regulation in long-term WUE in Arabidopsis (Arabidopsis thaliana) under light and dark conditions. Circadian rhythms are generated by the circadian oscillator, which provides a cellular measure of the time of day. In plants, the circadian oscillator contributes to the regulation of many aspects of physiology, including stomatal opening, rate of photosynthesis, carbohydrate metabolism, and developmental processes such as the initiation of flowering. We investigated the impact of the misregulation of numerous genes encoding various components of the circadian oscillator on whole plant, long-term WUE. From this analysis, we identified a role for the circadian oscillator in WUE. It appears that the circadian clock contributes to the control of transpiration and biomass accumulation. We also established that the circadian oscillator within guard cells can contribute to long-term WUE. Our experiments indicate that knowledge of circadian regulation will be important for developing crops with improved WUE.
Collapse
Affiliation(s)
- Noriane M L Simon
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Calum A Graham
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
- John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Nicholas E Comben
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | | | | |
Collapse
|
19
|
Zhang J, Zhou M, Ge Z, Shen J, Zhou C, Gotor C, Romero LC, Duan X, Liu X, Wu D, Yin X, Xie Y. Abscisic acid-triggered guard cell l-cysteine desulfhydrase function and in situ hydrogen sulfide production contributes to heme oxygenase-modulated stomatal closure. PLANT, CELL & ENVIRONMENT 2020; 43:624-636. [PMID: 31734942 DOI: 10.1111/pce.13685] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 05/25/2023]
Abstract
Recent studies have demonstrated that hydrogen sulfide (H2 S) produced through the activity of l-cysteine desulfhydrase (DES1) is an important gaseous signaling molecule in plants that could participate in abscisic acid (ABA)-induced stomatal closure. However, the coupling of the DES1/H2 S signaling pathways to guard cell movement has not been thoroughly elucidated. The results presented here provide genetic evidence for a physiologically relevant signaling pathway that governs guard cell in situ DES1/H2 S function in stomatal closure. We discovered that ABA-activated DES1 produces H2 S in guard cells. The impaired guard cell ABA phenotype of the des1 mutant can be fully complemented when DES1/H2 S function has been specifically rescued in guard cells and epidermal cells, but not mesophyll cells. This research further characterized DES1/H2 S function in the regulation of LONG HYPOCOTYL1 (HY1, a member of the heme oxygenase family) signaling. ABA-induced DES1 expression and H2 S production are hyper-activated in the hy1 mutant, both of which can be fully abolished by the addition of H2 S scavenger. Impaired guard cell ABA phenotype of des1/hy1 can be restored by H2 S donors. Taken together, this research indicated that guard cell in situ DES1 function is involved in ABA-induced stomatal closure, which also acts as a pivotal hub in regulating HY1 signaling.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Mingjian Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Zhenglin Ge
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jie Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Can Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Xingliang Duan
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xin Liu
- Key Laboratory of Plant Biotechnology in Universities of Shandong Province, Life Science College, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Deliang Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, People's Republic of China
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Nanjing, People's Republic of China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Xianchao Yin
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, People's Republic of China
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Nanjing, People's Republic of China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
20
|
Martignago D, Rico-Medina A, Blasco-Escámez D, Fontanet-Manzaneque JB, Caño-Delgado AI. Drought Resistance by Engineering Plant Tissue-Specific Responses. FRONTIERS IN PLANT SCIENCE 2020; 10:1676. [PMID: 32038670 PMCID: PMC6987726 DOI: 10.3389/fpls.2019.01676] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/28/2019] [Indexed: 05/18/2023]
Abstract
Drought is the primary cause of agricultural loss globally, and represents a major threat to food security. Currently, plant biotechnology stands as one of the most promising fields when it comes to developing crops that are able to produce high yields in water-limited conditions. From studies of Arabidopsis thaliana whole plants, the main response mechanisms to drought stress have been uncovered, and multiple drought resistance genes have already been engineered into crops. So far, most plants with enhanced drought resistance have displayed reduced crop yield, meaning that there is still a need to search for novel approaches that can uncouple drought resistance from plant growth. Our laboratory has recently shown that the receptors of brassinosteroid (BR) hormones use tissue-specific pathways to mediate different developmental responses during root growth. In Arabidopsis, we found that increasing BR receptors in the vascular plant tissues confers resistance to drought without penalizing growth, opening up an exceptional opportunity to investigate the mechanisms that confer drought resistance with cellular specificity in plants. In this review, we provide an overview of the most promising phenotypical drought traits that could be improved biotechnologically to obtain drought-tolerant cereals. In addition, we discuss how current genome editing technologies could help to identify and manipulate novel genes that might grant resistance to drought stress. In the upcoming years, we expect that sustainable solutions for enhancing crop production in water-limited environments will be identified through joint efforts.
Collapse
Affiliation(s)
| | | | | | | | - Ana I. Caño-Delgado
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| |
Collapse
|
21
|
Papanatsiou M, Petersen J, Henderson L, Wang Y, Christie JM, Blatt MR. Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth. Science 2019; 363:1456-1459. [PMID: 30923223 DOI: 10.1126/science.aaw0046] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/27/2019] [Indexed: 01/02/2023]
Abstract
Stomata serve dual and often conflicting roles, facilitating carbon dioxide influx into the plant leaf for photosynthesis and restricting water efflux via transpiration. Strategies for reducing transpiration without incurring a cost for photosynthesis must circumvent this inherent coupling of carbon dioxide and water vapor diffusion. We expressed the synthetic, light-gated K+ channel BLINK1 in guard cells surrounding stomatal pores in Arabidopsis to enhance the solute fluxes that drive stomatal aperture. BLINK1 introduced a K+ conductance and accelerated both stomatal opening under light exposure and closing after irradiation. Integrated over the growth period, BLINK1 drove a 2.2-fold increase in biomass in fluctuating light without cost in water use by the plant. Thus, we demonstrate the potential of enhancing stomatal kinetics to improve water use efficiency without penalty in carbon fixation.
Collapse
Affiliation(s)
- M Papanatsiou
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.,Plant Science Group, Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - J Petersen
- Plant Science Group, Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - L Henderson
- Plant Science Group, Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Y Wang
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.,Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - J M Christie
- Plant Science Group, Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.
| | - M R Blatt
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK. .,Plant Science Group, Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.,Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
22
|
Ali S, Kim WC. A Fruitful Decade Using Synthetic Promoters in the Improvement of Transgenic Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1433. [PMID: 31737027 PMCID: PMC6838210 DOI: 10.3389/fpls.2019.01433] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/16/2019] [Indexed: 05/17/2023]
Abstract
Advances in plant biotechnology provide various means to improve crop productivity and greatly contributing to sustainable agriculture. A significant advance in plant biotechnology has been the availability of novel synthetic promoters for precise spatial and temporal control of transgene expression. In this article, we review the development of various synthetic promotors and the rise of their use over the last several decades for regulating the transcription of various transgenes. Similarly, we provided a brief description of the structure and scope of synthetic promoters and the engineering of their cis-regulatory elements for different targets. Moreover, the functional characteristics of different synthetic promoters, their modes of regulating the expression of candidate genes in response to different conditions, and the resulting plant trait improvements reported in the past decade are discussed.
Collapse
|
23
|
Shrestha A, Khan A, Dey N. Identification of Novel Pararetroviral Promoters for Designing Efficient Plant Gene Expression Systems. Methods Mol Biol 2019; 1991:207-222. [PMID: 31041775 DOI: 10.1007/978-1-4939-9458-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Plant-infecting viruses, particularly the Pararetroviruses, have been used for many years as versatile genetic resources to design efficient plant expression vectors. The Pararetroviruses (members of the Caulimoviridae) typically contain two transcriptional promoters (the sub-genomic transcript promoter and the full-length transcript promoter) and 6-7 overlapping open reading frames (ORFs) with a genome size of 7-9 kB. Their promoter elements have been extensively exploited during the last two decades to construct effective gene expression systems. At the same time, the caulimoviral promoters have also been genetically manipulated with different molecular approaches to develop synthetic "chimeras" exhibiting precise functionality. Native and "tailor-made" synthetic promoters of Pararetroviruses are particularly attractive for formulating unique gene expression cassettes that perform extremely well in gene-stacking and gene-pyramiding in plant cells. In this chapter, we will mainly discuss important protocols associated with identifying novel/unique pararetroviral promoters that have optimal lengths with appropriate activities for developing efficient plant gene expression systems.
Collapse
Affiliation(s)
- Ankita Shrestha
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Government of India, Bhubaneswar, Odisha, India
| | - Ahamed Khan
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Government of India, Bhubaneswar, Odisha, India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Government of India, Bhubaneswar, Odisha, India.
| |
Collapse
|
24
|
Yang Q, Chen Q, Zhu Y, Li T. Identification of MdDof genes in apple and analysis of their response to biotic or abiotic stress. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:528-541. [PMID: 32290992 DOI: 10.1071/fp17288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/07/2017] [Indexed: 06/11/2023]
Abstract
As a classic plant-specific transcription factor family - the Dof domain proteins - are involved in a variety of biological processes in organisms ranging from unicellular Chlamydomonas to higher plants. However, there are limited reports of MdDof (Malus domestica Borkh. DNA-binding One Zinc Finger) domain proteins in fruit trees, especially in apple. In this study we identified 54 putative Dof transcription factors in the apple genome. We analysed the gene structures, protein motifs, and chromosome locations of each of the MdDof genes. Next, we characterised all 54 MdDofs their expression patterns under different abiotic and biotic stress conditions. It was found that MdDof6,26 not only played an important role in the biotic/abiotic stress but may also be involved in many molecular functions. Further, both in flower development and pollen tube growth it was found that the relative expression of MdDof24 increased rapidly, also with gene ontology analysis it was indicated that MdDof24 was involved in the chemical reaction and flower development pathways. Taken together, our results provide useful clues as to the function of MdDof genes in apple and serve as a reference for studies of Dof zinc finger genes in other plants.
Collapse
Affiliation(s)
- Qing Yang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiuju Chen
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yuandi Zhu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
25
|
Negi S, Tak H, Ganapathi TR. A banana NAC transcription factor (MusaSNAC1) impart drought tolerance by modulating stomatal closure and H 2O 2 content. PLANT MOLECULAR BIOLOGY 2018; 96:457-471. [PMID: 29470695 DOI: 10.1007/s11103-018-0710-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/17/2018] [Indexed: 05/28/2023]
Abstract
MusaSNAC1 function in H2O2 mediated stomatal closure and promote drought tolerance by directly binding to CGT[A/G] motif in regulatory region of multiple stress-related genes. Drought is a abiotic stress-condition, causing reduced plant growth and diminished crop yield. Guard cells of the stomata control photosynthesis and transpiration by regulating CO2 exchange and water loss, thus affecting growth and crop yield. Roles of NAC (NAM, ATAF1/2 and CUC2) protein in regulation of stress-conditions has been well documented however, their control over stomatal aperture is largely unknown. In this study we report a banana NAC protein, MusaSNAC1 which induced stomatal closure by elevating H2O2 content in guard cells during drought stress. Overexpression of MusaSNAC1 in banana resulted in higher number of stomata closure causing reduced water loss and thus elevated drought-tolerance. During drought, expression of GUS (β-glucuronidase) under P MusaSNAC1 was remarkably elevated in guard cells of stomata which correlated with its function as a transcription factor regulating stomatal aperture closing. MusaSNAC1 is a transcriptional activator belonging to SNAC subgroup and its 5'-upstream region contain multiple Dof1 elements as well as stress-associated cis-elements. Moreover, MusaSNAC1 also regulate multiple stress-related genes by binding to core site of NAC-proteins CGT[A/G] in their 5'-upstream region. Results indicated an interesting mechanism of drought tolerance through stomatal closure by H2O2 generation in guard cells, regulated by a NAC-protein in banana.
Collapse
Affiliation(s)
- Sanjana Negi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, AnushaktiNagar, Mumbai, 400094, India
| | - Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, AnushaktiNagar, Mumbai, 400094, India
| | - T R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
| |
Collapse
|
26
|
Moghaddas Sani H, Hamzeh-Mivehroud M, Silva AP, Walshe JL, Mohammadi SA, Rahbar-Shahrouziasl M, Abbasi M, Jamshidi O, Low JKK, Dastmalchi S, Mackay JP. Expression, purification and DNA-binding properties of zinc finger domains of DOF proteins from Arabidopsis thaliana. BIOIMPACTS : BI 2018; 8:167-176. [PMID: 30211076 PMCID: PMC6128974 DOI: 10.15171/bi.2018.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/22/2018] [Indexed: 01/14/2023]
Abstract
Introduction: DOF proteins are a family of plant-specific transcription factors with a conserved zinc finger (ZF) DNA-binding domain. Although several studies have demonstrated their specific DNA binding, quantitative affinity data is not available for the binding of DOF domains to their binding sites. Methods: ZF domains of DOF2.1, DOF3.4, and DOF5.8 from Arabidopsis thaliana were expressed and purified. Their DNA binding affinities were assessed using gel retardation assays and microscale thermophoresis with two different oligonucleotide probes containing one and two copies of recognition sequence AAAG. Results: DOF zinc finger domains (DOF-ZFs) were shown to form independently folded structures. Assessments using microscale thermophoresis demonstrated that DOF-ZFs interact more tightly (~ 100 fold) with double-motif probe than the single-motif probe. The overall Kd values for the DOF3.4-ZF and DOF5.8-ZF to the double-motif probe were ~2.3±1 and 2.5±1 µM, respectively. Conclusion: Studied DOF-ZF domains formed stable complexes with the double-motif probe. Although DOF3.4-ZF and DOF5.8-ZF do not dimerize with an appreciable affinity in the absence of DNA (judging from size-exclusion and multiangle laser light scattering data), it is possible that these ZFs form protein-protein contacts when bound to this oligonucleotide, consistent with previous reports that DOF proteins can homo- and hetero-dimerize.
Collapse
Affiliation(s)
- Hakimeh Moghaddas Sani
- Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ana P. Silva
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - James L. Walshe
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | | | | | - Milad Abbasi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Jamshidi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jason KK Low
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, POBOX:99138, Nicosia, North Cyprus, Mersin 10, Turkey
| | - Joel P. Mackay
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
27
|
Zhang T, Huang L, Wang Y, Wang W, Zhao X, Zhang S, Zhang J, Hu F, Fu B, Li Z. Differential transcriptome profiling of chilling stress response between shoots and rhizomes of Oryza longistaminata using RNA sequencing. PLoS One 2017; 12:e0188625. [PMID: 29190752 PMCID: PMC5708648 DOI: 10.1371/journal.pone.0188625] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/11/2017] [Indexed: 11/18/2022] Open
Abstract
Rice (Oryza sativa) is very sensitive to chilling stress at seedling and reproductive stages, whereas wild rice, O. longistaminata, tolerates non-freezing cold temperatures and has overwintering ability. Elucidating the molecular mechanisms of chilling tolerance (CT) in O. longistaminata should thus provide a basis for rice CT improvement through molecular breeding. In this study, high-throughput RNA sequencing was performed to profile global transcriptome alterations and crucial genes involved in response to long-term low temperature in O. longistaminata shoots and rhizomes subjected to 7 days of chilling stress. A total of 605 and 403 genes were respectively identified as up- and down-regulated in O. longistaminata under 7 days of chilling stress, with 354 and 371 differentially expressed genes (DEGs) found exclusively in shoots and rhizomes, respectively. GO enrichment and KEGG pathway analyses revealed that multiple transcriptional regulatory pathways were enriched in commonly induced genes in both tissues; in contrast, only the photosynthesis pathway was prevalent in genes uniquely induced in shoots, whereas several key metabolic pathways and the programmed cell death process were enriched in genes induced only in rhizomes. Further analysis of these tissue-specific DEGs showed that the CBF/DREB1 regulon and other transcription factors (TFs), including AP2/EREBPs, MYBs, and WRKYs, were synergistically involved in transcriptional regulation of chilling stress response in shoots. Different sets of TFs, such as OsERF922, OsNAC9, OsWRKY25, and WRKY74, and eight genes encoding antioxidant enzymes were exclusively activated in rhizomes under long-term low-temperature treatment. Furthermore, several cis-regulatory elements, including the ICE1-binding site, the GATA element for phytochrome regulation, and the W-box for WRKY binding, were highly abundant in both tissues, confirming the involvement of multiple regulatory genes and complex networks in the transcriptional regulation of CT in O. longistaminata. Finally, most chilling-induced genes with alternative splicing exclusive to shoots were associated with photosynthesis and regulation of gene expression, while those enriched in rhizomes were primarily related to stress signal transduction; this indicates that tissue-specific transcriptional and post-transcriptional regulation mechanisms synergistically contribute to O. longistaminata long-term CT. Our findings provide an overview of the complex regulatory networks of CT in O. longistaminata.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liyu Huang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Agriculture, Yunnan University, Yunnan, China
- Research Center for Perennial Rice Engineering and Technology, Yunnan University, Yunnan, China
| | - Yinxiao Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shilai Zhang
- School of Agriculture, Yunnan University, Yunnan, China
- Research Center for Perennial Rice Engineering and Technology, Yunnan University, Yunnan, China
| | - Jing Zhang
- School of Agriculture, Yunnan University, Yunnan, China
- Research Center for Perennial Rice Engineering and Technology, Yunnan University, Yunnan, China
| | - Fengyi Hu
- School of Agriculture, Yunnan University, Yunnan, China
- Research Center for Perennial Rice Engineering and Technology, Yunnan University, Yunnan, China
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Institute for Innovative Breeding, Chinese Academy of Agricultural Sciences, Shenzhen, China
- * E-mail:
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Institute for Innovative Breeding, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
28
|
Molina-Hidalgo FJ, Medina-Puche L, Cañete-Gómez C, Franco-Zorrilla JM, López-Vidriero I, Solano R, Caballero JL, Rodríguez-Franco A, Blanco-Portales R, Muñoz-Blanco J, Moyano E. The fruit-specific transcription factor FaDOF2 regulates the production of eugenol in ripe fruit receptacles. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4529-4543. [PMID: 28981772 DOI: 10.1093/jxb/erx257] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Only a few transcription factors have been described in the regulation of the strawberry (Fragaria x ananassa) fruit ripening process. Using a transcriptomic approach, we identified and functionally characterized FaDOF2, a DOF-type ripening-related transcription factor, which is hormonally regulated and specific to the receptacle, though high expression levels were also found in petals. The expression pattern of FaDOF2 correlated with eugenol content, a phenylpropanoid volatile, in both fruit receptacles and petals. When FaDOF2 expression was silenced in ripe strawberry receptacles, the expression of FaEOBII and FaEGS2, two key genes involved in eugenol production, were down-regulated. These fruits showed a concomitant decrease in eugenol content, which confirmed that FaDOF2 is a transcription factor that is involved in eugenol production in ripe fruit receptacles. By using the yeast two-hybrid system and bimolecular fluorescence complementation, we demonstrated that FaDOF2 interacts with FaEOBII, a previously reported regulator of eugenol production, which determines fine-tuning of the expression of key genes that are involved in eugenol production. These results provide evidence that FaDOF2 plays a subsidiary regulatory role with FaEOBII in the expression of genes encoding enzymes that control eugenol production. Taken together, our results provide new insights into the regulation of the volatile phenylpropanoid pathway in ripe strawberry receptacles.
Collapse
Affiliation(s)
- Francisco Javier Molina-Hidalgo
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Laura Medina-Puche
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba, Spain
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Carlos Cañete-Gómez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | | | | | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049-Madrid, Spain
| | - José Luis Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Antonio Rodríguez-Franco
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Enriqueta Moyano
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| |
Collapse
|
29
|
Fasani E, DalCorso G, Varotto C, Li M, Visioli G, Mattarozzi M, Furini A. The MTP1 promoters from Arabidopsis halleri reveal cis-regulating elements for the evolution of metal tolerance. THE NEW PHYTOLOGIST 2017; 214:1614-1630. [PMID: 28332702 DOI: 10.1111/nph.14529] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/14/2017] [Indexed: 05/08/2023]
Abstract
In the hyperaccumulator Arabidopsis halleri, the zinc (Zn) vacuolar transporter MTP1 is a key component of hypertolerance. Because protein sequences and functions are highly conserved between A. halleri and Arabidopsis thaliana, Zn tolerance in A. halleri may reflect the constitutively higher MTP1 expression compared with A. thaliana, based on copy number expansion and different cis regulation. Three MTP1 promoters were characterized in A. halleri ecotype I16. The comparison with the A. thaliana MTP1 promoter revealed different expression profiles correlated with specific cis-acting regulatory elements. The MTP1 5' untranslated region, highly conserved among A. thaliana, Arabidopsis lyrata and A. halleri, contains a dimer of MYB-binding motifs in the A. halleri promoters absent in the A. thaliana and A. lyrata sequences. Site-directed mutagenesis of these motifs revealed their role for expression in trichomes. A. thaliana mtp1 transgenic lines expressing AtMTP1 controlled by the native A. halleri promoter were more Zn-tolerant than lines carrying mutations on MYB-binding motifs. Differences in Zn tolerance were associated with different distribution of Zn among plant organs and in trichomes. The different cis-acting elements in the MTP1 promoters of A. halleri, particularly the MYB-binding sites, are probably involved in the evolution of Zn tolerance.
Collapse
Affiliation(s)
- Elisa Fasani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Giovanni DalCorso
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all'Adige (TN), 38010, Italy
| | - Mingai Li
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all'Adige (TN), 38010, Italy
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze, 11/A, Parma, 43124, Italy
| | - Monica Mattarozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze, 11/A, Parma, 43124, Italy
| | - Antonella Furini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona, 37134, Italy
| |
Collapse
|
30
|
Kelly G, Lugassi N, Belausov E, Wolf D, Khamaisi B, Brandsma D, Kottapalli J, Fidel L, Ben-Zvi B, Egbaria A, Acheampong AK, Zheng C, Or E, Distelfeld A, David-Schwartz R, Carmi N, Granot D. The Solanum tuberosum KST1 partial promoter as a tool for guard cell expression in multiple plant species. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2885-2897. [PMID: 28531314 PMCID: PMC5853950 DOI: 10.1093/jxb/erx159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/19/2017] [Indexed: 05/10/2023]
Abstract
To date, guard cell promoters have been examined in only a few species, primarily annual dicots. A partial segment of the potato (Solanum tuberosum) KST1 promoter (KST1 partial promoter, KST1ppro) has previously been shown to confer guard cell expression in potato, tomato (Solanum lycopersicum), citrus [Troyer citrange (C. sinensis×Poncirus trifoliata)], and Arabidopsis (Arabidopsis thaliana). Here, we describe an extensive analysis of the expression pattern of KST1ppro in eight (previously reported, as well as new) species from five different angiosperm families, including the Solanaceae and the Cucurbitaceae, Arabidopsis, the monocot barley (Hordeum vulgare), and two perennial species: grapevine (Vitis vinifera) and citrus. Using confocal imaging and three-dimensional movies, we demonstrate that KST1ppro drives guard cell expression in all of these species, making it the first dicot-originated guard cell promoter shown to be active in a monocot and the first promoter reported to confer guard cell expression in barley and cucumber (Cucumis sativus). The results presented here indicate that KST1ppro can be used to drive constitutive guard cell expression in monocots and dicots and in both annual and perennial plants. In addition, we show that the KST1ppro is active in guard cells shortly after the symmetric division of the guard mother cell and generates stable expression in mature guard cells. This allows us to follow the spatial and temporal distribution of stomata in cotyledons and true leaves.
Collapse
Affiliation(s)
- Gilor Kelly
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Nitsan Lugassi
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Eduard Belausov
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Dalia Wolf
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Belal Khamaisi
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Danja Brandsma
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
- Horticulture and Product Physiology, Wageningen University, AP Wageningen, The Netherlands
| | - Jayaram Kottapalli
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Lena Fidel
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Batsheva Ben-Zvi
- Faculty of Life Sciences, Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Israel
| | - Aiman Egbaria
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Atiako Kwame Acheampong
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Chuanlin Zheng
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Etti Or
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Assaf Distelfeld
- Faculty of Life Sciences, Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Israel
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Nir Carmi
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
31
|
Alves GSC, Torres LF, Déchamp E, Breitler JC, Joët T, Gatineau F, Andrade AC, Bertrand B, Marraccini P, Etienne H. Differential fine-tuning of gene expression regulation in coffee leaves by CcDREB1D promoter haplotypes under water deficit. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3017-3031. [PMID: 28830103 PMCID: PMC5853422 DOI: 10.1093/jxb/erx166] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/25/2017] [Indexed: 05/02/2023]
Abstract
Despite the importance of the DREB1D gene (also known as CBF4) in plant responses to water deficit and cold stress, studies analysing its regulation by transgenic approaches are lacking. In the current work, a functional study of three CcDREB1D promoter haplotypes (named HP15, HP16 and HP17) isolated from drought-tolerant and drought-sensitive clones of Coffea canephora was carried out in plants of C. arabica stably transformed by Agrobacterium tumefaciens by analysing their ability to regulate the expression of the uidA reporter gene in response to water deficit mimicked by polyethylene glycol (-2.0 MPa) and low relative humidity treatments. A deletion analysis of their corresponding 5'-upstream regions revealed increased specificity of β-glucuronidase activity in the polyethylene glycol and low relative humidity treatments, with high expression in leaf mesophyll and guard cells in full-length constructs. RT-qPCR assays also revealed that the HP16 haplotype (specific to clone tolerant to water deficit) had stronger and earlier activity compared with the HP15 and HP17 haplotypes. As most of the cis-regulatory elements involved in ABA-dependent and -independent networks, tissue specificity and light regulation are common to these haplotypes, we propose that their organization, as well as the nucleic acid polymorphisms present outside these boxes, may play a role in modulating activities of DREB1D promoters in guard cells.
Collapse
Affiliation(s)
- Gabriel Sergio Costa Alves
- EMBRAPA Recursos Genéticos e Biotecnologia (LGM), Parque EB, Brasilia, DF, Brazil
- CIRAD, UMR IPME, F-34394 Montpellier, France
- Universidade Federal de Lavras, Departamento de Química, Laboratório Central de Biologia Molecular (LCBM), Lavras, MG, Brazil
| | - Luana Ferreira Torres
- CIRAD, UMR IPME, F-34394 Montpellier, France
- Universidade Federal de Lavras, Departamento de Química, Laboratório Central de Biologia Molecular (LCBM), Lavras, MG, Brazil
| | | | | | - Thierry Joët
- IRD, UMR DIADE, 911 Avenue Agropolis, Montpellier, France
| | | | - Alan Carvalho Andrade
- EMBRAPA Recursos Genéticos e Biotecnologia (LGM), Parque EB, Brasilia, DF, Brazil
- Embrapa Café, INOVACAFÉ, Campus UFLA, Lavras, MG, Brazil
| | | | - Pierre Marraccini
- EMBRAPA Recursos Genéticos e Biotecnologia (LGM), Parque EB, Brasilia, DF, Brazil
- CIRAD, UMR AGAP, F-34398 Montpellier, France
| | | |
Collapse
|
32
|
Rymen B, Kawamura A, Schäfer S, Breuer C, Iwase A, Shibata M, Ikeda M, Mitsuda N, Koncz C, Ohme-Takagi M, Matsui M, Sugimoto K. ABA Suppresses Root Hair Growth via the OBP4 Transcriptional Regulator. PLANT PHYSIOLOGY 2017; 173:1750-1762. [PMID: 28167701 PMCID: PMC5338652 DOI: 10.1104/pp.16.01945] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/03/2017] [Indexed: 05/20/2023]
Abstract
Plants modify organ growth and tune morphogenesis in response to various endogenous and environmental cues. At the cellular level, organ growth is often adjusted by alterations in cell growth, but the molecular mechanisms underlying this control remain poorly understood. In this study, we identify the DNA BINDING WITH ONE FINGER (DOF)-type transcription regulator OBF BINDING PROTEIN4 (OBP4) as a repressor of cell growth. Ectopic expression of OBP4 in Arabidopsis (Arabidopsis thaliana) inhibits cell growth, resulting in severe dwarfism and the repression of genes involved in the regulation of water transport, root hair development, and stress responses. Among the basic helix-loop-helix transcription factors known to control root hair growth, OBP4 binds the ROOT HAIR DEFECTIVE6-LIKE2 (RSL2) promoter to repress its expression. The accumulation of OBP4 proteins is detected in expanding root epidermal cells, and its expression level is increased by the application of abscisic acid (ABA) at concentrations sufficient to inhibit root hair growth. ABA-dependent induction of OBP4 is associated with the reduced expression of RSL2 Furthermore, ectopic expression of OBP4 or loss of RSL2 function results in ABA-insensitive root hair growth. Taken together, our results suggest that OBP4-mediated transcriptional repression of RSL2 contributes to the ABA-dependent inhibition of root hair growth in Arabidopsis.
Collapse
Affiliation(s)
- Bart Rymen
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Ayako Kawamura
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Sabine Schäfer
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Christian Breuer
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Akira Iwase
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Michitaro Shibata
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Miho Ikeda
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Nobutaka Mitsuda
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Csaba Koncz
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Masaru Ohme-Takagi
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Minami Matsui
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Keiko Sugimoto
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.);
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.);
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan;
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| |
Collapse
|
33
|
Castorina G, Fox S, Tonelli C, Galbiati M, Conti L. A novel role for STOMATAL CARPENTER 1 in stomata patterning. BMC PLANT BIOLOGY 2016; 16:172. [PMID: 27484174 PMCID: PMC4970199 DOI: 10.1186/s12870-016-0851-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/08/2016] [Indexed: 05/27/2023]
Abstract
BACKGROUND Guard cells (GCs) are specialised cells within the plant epidermis which form stomatal pores, through which gas exchange can occur. The GCs derive through a specialised lineage of cell divisions which is specified by the transcription factor SPEECHLESS (SPCH), the expression of which can be detected in undifferentiated epidermal cells prior to asymmetric division. Other transcription factors may act before GC specification and be required for correct GC patterning. Previously, the DOF transcription factor STOMATAL CARPENTER 1 (SCAP1) was shown to be involved in GC function, by activating a set of GC-specific genes required for GC maturation and activity. It is thus far unknown whether SCAP1 can also affect stomatal development. RESULTS Here we show that SCAP1 expression can also be observed in young leaf primordia, before any GC differentiation occurs. The study of transgenic plants carrying a proSCAP1:GUS-GFP transcriptional fusion, coupled with qPCR analyses, indicate that SCAP1 expression peaks in a temporal window which is coincident with expression of stomatal patterning genes. Independent scap1 loss-of-function mutants have a reduced number of GCs whilst SCAP1 over expression lines have an increased number of GCs, in addition to altered GC distribution and spacing patterns. The study of early markers for stomatal cell lineage in a background carrying gain-of-function alleles of SCAP1 revealed that, compared to the wild type, an increased number of protodermal cells are recruited in the GC lineage, which is reflected in an increased number of meristemoids. CONCLUSIONS Our results suggest an early role for SCAP1 in GC differentiation. We propose that a function of SCAP1 is to integrate different aspects of GC biology including specification, spacing, maturation and function.
Collapse
Affiliation(s)
- Giulia Castorina
- Dipartimento di Bioscienze, Università degli studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Samantha Fox
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH UK
| | - Chiara Tonelli
- Dipartimento di Bioscienze, Università degli studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Massimo Galbiati
- Dipartimento di Bioscienze, Università degli studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Lucio Conti
- Dipartimento di Bioscienze, Università degli studi di Milano, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
34
|
Genome-wide identification and characterization of the Dof gene family in moso bamboo (Phyllostachys heterocycla var. pubescens). Genes Genomics 2016. [DOI: 10.1007/s13258-016-0418-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Mahoney AK, Anderson EM, Bakker RA, Williams AF, Flood JJ, Sullivan KC, Pillitteri LJ. Functional analysis of the Arabidopsis thaliana MUTE promoter reveals a regulatory region sufficient for stomatal-lineage expression. PLANTA 2016; 243:987-98. [PMID: 26748914 PMCID: PMC4819751 DOI: 10.1007/s00425-015-2445-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/11/2015] [Indexed: 05/26/2023]
Abstract
The MUTE promoter contains a 175-bp region rich in Dof regulatory elements (AAAG) that is necessary and sufficient for initiation of transcription in meristemoids and the stomatal lineage. The molecular mechanism underlying the decision to divide or differentiate is a central question in developmental biology. During stomatal development, expression of the master regulator MUTE triggers the differentiation of meristemoids into stomata. In this study, we carried out MUTE promoter deletion analysis to define a regulatory region that promotes the initiation of expression in meristemoids. Expression constructs with truncated promoter fragments fused to β-glucuronidase (GUS) were developed. The full-length promoter and promoter truncations of at least 500 bp from the translational start site exhibited normal spatiotemporal expression patterns. Further truncation revealed a 175-bp promoter fragment that was necessary and sufficient for stomatal-lineage expression. Known cis-elements were identified and tested for functional relevance. Comparison of orthologous MUTE promoters suggested DNA binding with one finger (Dof) regulatory elements and novel motifs may be important for regulation. Our data highlight the complexity and combinatorial control of gene regulation and provides tools to further investigate the genetic control of stomatal development.
Collapse
Affiliation(s)
- Aaron K Mahoney
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Elizabeth M Anderson
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Rachael A Bakker
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Anthony F Williams
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Jake J Flood
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Katrina C Sullivan
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Lynn J Pillitteri
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA.
| |
Collapse
|
36
|
Wu Z, Cheng J, Cui J, Xu X, Liang G, Luo X, Chen X, Tang X, Hu K, Qin C. Genome-Wide Identification and Expression Profile of Dof Transcription Factor Gene Family in Pepper (Capsicum annuum L.). FRONTIERS IN PLANT SCIENCE 2016; 7:574. [PMID: 27200047 PMCID: PMC4850169 DOI: 10.3389/fpls.2016.00574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/13/2016] [Indexed: 05/02/2023]
Abstract
Dof (DNA-binding One Zinc Finger) transcription factor family is unique to plants and has diverse roles associated with plant-specific phenomena, such as light, phytohormone and defense responses as well as seed development and germination. Although, genome-wide analysis of this family has been performed in many species, information regarding Dof genes in the pepper, Capsicum annuum L., is extremely limited. In this study, exhaustive searches of pepper genome revealed 33 potential CaDofs that were phylogenetically clustered into four subgroups. Twenty-nine of the 33 Dof genes could be mapped on 11 chromosomes, except for chromosome 7. The intron/exon organizations and conserved motif compositions of these genes were also analyzed. Additionally, phylogenetic analysis and classification of the Dof transcription factor family in eight plant species revealed that S. lycopersicum and C. annuum as well as O. sativa and S. bicolor Dof proteins may have evolved conservatively. Moreover, comprehensive expression analysis of CaDofs using a RNA-seq atlas and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that these genes exhibit a variety of expression patterns. Most of the CaDofs were expressed in at least one of the tissues tested, whereas several genes were identified as being highly responsive to heat and salt stresses. Overall, this study describes the first genome-wide analysis of the pepper Dof family, whose genes exhibited different expression patterns in all primary fruit developmental stages and tissue types, as in response to abiotic stress. In particular, some Dof genes might be used as biomarkers for heat and salt stress. The results could expand our understanding of the roles of Dof genes in pepper.
Collapse
Affiliation(s)
- Zhiming Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and EngineeringGuangzhou, China
| | - Jiaowen Cheng
- College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Junjie Cui
- College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Xiaowan Xu
- Vegetable Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
| | - Guansheng Liang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and EngineeringGuangzhou, China
| | - Xirong Luo
- Pepper Institute, Zunyi Academy of Agricultural SciencesZunyi, China
| | - Xiaocui Chen
- Pepper Institute, Zunyi Academy of Agricultural SciencesZunyi, China
| | - Xiangqun Tang
- Pepper Institute, Zunyi Academy of Agricultural SciencesZunyi, China
| | - Kailin Hu
- College of Horticulture, South China Agricultural UniversityGuangzhou, China
- *Correspondence: Kailin Hu
| | - Cheng Qin
- Pepper Institute, Zunyi Academy of Agricultural SciencesZunyi, China
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical UniversityZunyi, China
- Cheng Qin
| |
Collapse
|
37
|
Dey N, Sarkar S, Acharya S, Maiti IB. Synthetic promoters in planta. PLANTA 2015; 242:1077-94. [PMID: 26250538 DOI: 10.1007/s00425-015-2377-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/22/2015] [Indexed: 05/03/2023]
Abstract
This paper reviews the importance, prospective and development of synthetic promoters reported in planta. A review of the synthetic promoters developed in planta would help researchers utilize the available resources and design new promoters to benefit fundamental research and agricultural applications. The demand for promoters for the improvement and application of transgenic techniques in research and agricultural production is increasing. Native/naturally occurring promoters have some limitations in terms of their induction conditions, transcription efficiency and size. The strength and specificity of native promoter can be tailored by manipulating its 'cis-architecture' by the use of several recombinant DNA technologies. Newly derived chimeric promoters with specific attributes are emerging as an efficient tool for plant molecular biology. In the last three decades, synthetic promoters have been used to regulate plant gene expression. To better understand synthetic promoters, in this article, we reviewed promoter structure, the scope of cis-engineering, strategies for their development, their importance in plant biology and the total number of such promoters (188) developed in planta to date; we then categorized them under different functional regimes as biotic stress-inducible, abiotic stress-inducible, light-responsive, chemical-inducible, hormone-inducible, constitutive and tissue-specific. Furthermore, we identified a set of 36 synthetic promoters that control multiple types of expression in planta. Additionally, we illustrated the differences between native and synthetic promoters and among different synthetic promoter in each group, especially in terms of efficiency and induction conditions. As a prospective of this review, the use of ideal synthetic promoters is one of the prime requirements for generating transgenic plants suitable for promoting sustainable agriculture and plant molecular farming.
Collapse
Affiliation(s)
- Nrisingha Dey
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India.
| | - Shayan Sarkar
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Sefali Acharya
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Indu B Maiti
- KTRDC, College of Agriculture-Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| |
Collapse
|
38
|
Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms. Int J Mol Sci 2015; 16:15811-51. [PMID: 26184177 PMCID: PMC4519927 DOI: 10.3390/ijms160715811] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/18/2015] [Accepted: 06/25/2015] [Indexed: 11/17/2022] Open
Abstract
Water scarcity is one of the major causes of poor plant performance and limited crop yields worldwide and it is the single most common cause of severe food shortage in developing countries. Several molecular networks involved in stress perception, signal transduction and stress responses in plants have been elucidated so far. Transcription factors are major players in water stress signaling. In recent years, different MYB transcription factors, mainly in Arabidopsis thaliana (L.) Heynh. but also in some crops, have been characterized for their involvement in drought response. For some of them there is evidence supporting a specific role in response to water stress, such as the regulation of stomatal movement, the control of suberin and cuticular waxes synthesis and the regulation of flower development. Moreover, some of these genes have also been characterized for their involvement in other abiotic or biotic stresses, an important feature considering that in nature, plants are often simultaneously subjected to multiple rather than single environmental perturbations. This review summarizes recent studies highlighting the role of the MYB family of transcription factors in the adaptive responses to drought stress. The practical application value of MYBs in crop improvement, such as stress tolerance engineering, is also discussed.
Collapse
|
39
|
Chidambaram R, Venkataraman G, Parida A. Analysis of transcriptional regulation and tissue-specific expression of Avicennia marina Plasma Membrane Protein 3 suggests it contributes to Na(+) transport and homoeostasis in A. marina. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:89-102. [PMID: 26025523 DOI: 10.1016/j.plantsci.2015.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 05/15/2023]
Abstract
Plasma membrane proteins (PMP3) play a role in cation homoeostasis. The 5' flanking sequence of stress inducible, Avicennia marina PMP3 (AmPMP3prom) was transcriptionally fused to (a) GUS or (b) GFP-AmPMP3 and analyzed in transgenic tobacco. Tissue-histochemical GUS and GFP:AmPMP3 localization are co-incident under basal and stress conditions. AmPMP3prom directed GUS activity is highest in roots. Basal transcription is conferred by a 388bp segment upstream of the translation start site. A 463bp distal enhancer in the AmPMP3prom confers enhanced expression under salinity in all tissues and also responds to increases in salinity. The effect of a central, stem-specific negative regulatory region is suppressed by the distal enhancer. The A. marina rhizosphere encounters dynamic changes in salinity at the inter-tidal interface. The complex, tissue-specific transcriptional responsiveness of AmPMP3 to salinity appears to have evolved in response to these changes. Under salinity, guard cell and phloem-specific expression of GFP:AmPMP3 is highly enhanced. Mesophyll, trichomes, bundle sheath, parenchymatous cortex and xylem parenchyma also show GFP:AmPMP3 expression. Cis-elements conferring stress, root and vascular-specific expression are enriched in the AmPMP3 promoter. Pronounced vascular-specific AmPMP3 expression suggests a role in salinity induced Na(+) transport, storage, and secretion in A. marina.
Collapse
Affiliation(s)
- Rajalakshmi Chidambaram
- Department of Plant Molecular Biology, M.S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, India 600 113.
| | - Gayatri Venkataraman
- Department of Plant Molecular Biology, M.S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, India 600 113.
| | - Ajay Parida
- Department of Plant Molecular Biology, M.S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, India 600 113.
| |
Collapse
|
40
|
Gupta S, Malviya N, Kushwaha H, Nasim J, Bisht NC, Singh VK, Yadav D. Insights into structural and functional diversity of Dof (DNA binding with one finger) transcription factor. PLANTA 2015; 241:549-62. [PMID: 25564353 DOI: 10.1007/s00425-014-2239-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/25/2014] [Indexed: 05/18/2023]
Abstract
The structural, functional and in-silico studies of Dof transcription factor attempted so far reveals immense opportunity to analyze the plant genomes in terms of number of Dof genes and discuss in light of the evolution. The multiple functions of Dof genes needs to explored for crop improvement. Transcription factors play a very vital role in gene regulation at transcriptional level and are being extensively studied across phylas. In recent years, sequencing of plant genomes has led to genome-wide identification and characterizations of diverse types of plant-specific transcription factor gene family providing key insights into their structural and functional diversity. The DNA binding with one finger (Dof), a class belonging to C2H2-type zinc finger family proteins, is a plant-specific transcription factor having multiple roles such as seed maturation and germination, phytohormone and light-mediated regulation and plant responses to biotic and abiotic stresses. Dof proteins are present across plant lineage, from green algae to higher angiosperm, and represent a unique class of transcription factor having bifunctional binding activities, with both DNA and proteins, to regulate the complex transcriptional machinery in plant cells. The structural and functional diversity of the Dof transcription factor family along with the bioinformatics analysis highlighting the phylogeny of Dof families is reviewed in light of its importance in plant biotechnology for crop improvement.
Collapse
Affiliation(s)
- S Gupta
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, 273 009, Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
41
|
Sahoo DK, Sarkar S, Raha S, Maiti IB, Dey N. Comparative analysis of synthetic DNA promoters for high-level gene expression in plants. PLANTA 2014; 240:855-75. [PMID: 25092118 DOI: 10.1007/s00425-014-2135-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/21/2014] [Indexed: 05/25/2023]
Abstract
MAIN CONCLUSION We have designed two near- constitutive and stress-inducible promoters (CmYLCV9.11 and CmYLCV4); those are highly efficient in both dicot and monocot plants and have prospective to substitute the CaMV 35S promoter. We performed structural and functional studies of the full-length transcript promoter from Cestrum yellow leaf curling virus (CmYLCV) employing promoter/leader deletion and activating cis-sequence analysis. We designed a 465-bp long CmYLCV9.11 promoter fragment (-329 to +137 from transcription start site) that showed enhanced promoter activity and was highly responsive to both biotic and abiotic stresses. The CmYLCV9.11 promoter was about 28-fold stronger than the CaMV35S promoter in transient and stable transgenic assays using β-glucuronidase (GUS) reporter gene. The CmYLCV9.11 promoter also demonstrated stronger activity than the previously reported CmYLCV promoter fragments, CmpC (-341 to +5) and CmpS (-349 to +59) in transient systems like maize protoplasts and onion epidermal cells as well as transgenic systems. A good correlation between CmYLCV9.11 promoter-driven GUS-accumulation/enzymatic activities with corresponding uidA-mRNA level in transgenic tobacco plants was shown. Histochemical (X-Gluc) staining of transgenic seedlings, root and floral parts expressing the GUS under the control of CmYLCV9.11, CaMV35S, CmpC and CmpS promoters also support the above findings. The CmYLCV9.11 promoter is a constitutive promoter and the expression level in tissues of transgenic tobacco plants was in the following order: root > leaf > stem. The tobacco transcription factor TGA1a was found to bind strongly to the CmYLCV9.11 promoter region, as shown by Gel-shift assay and South-Western blot analysis. In addition, the CmYLCV9.11 promoter was regulated by a number of abiotic and biotic stresses as studied in transgenic Arabidopsis and tobacco plants. The newly derived CmYLCV9.11 promoter is an efficient tool for biotechnological applications.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- KTRDC, College of Agriculture, University of Kentucky, Lexington, KY, 40546, USA,
| | | | | | | | | |
Collapse
|
42
|
Lawson T, Simkin AJ, Kelly G, Granot D. Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour. THE NEW PHYTOLOGIST 2014; 203:1064-1081. [PMID: 25077787 DOI: 10.1111/nph.12945] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/02/2014] [Indexed: 05/19/2023]
Abstract
Stomata control gaseous fluxes between the internal leaf air spaces and the external atmosphere. Guard cells determine stomatal aperture and must operate to ensure an appropriate balance between CO2 uptake for photosynthesis (A) and water loss, and ultimately plant water use efficiency (WUE). A strong correlation between A and stomatal conductance (gs ) is well documented and often observed, but the underlying mechanisms, possible signals and metabolites that promote this relationship are currently unknown. In this review we evaluate the current literature on mesophyll-driven signals that may coordinate stomatal behaviour with mesophyll carbon assimilation. We explore a possible role of various metabolites including sucrose and malate (from several potential sources; including guard cell photosynthesis) and new evidence that improvements in WUE have been made by manipulating sucrose metabolism within the guard cells. Finally we discuss the new tools and techniques available for potentially manipulating cell-specific metabolism, including guard and mesophyll cells, in order to elucidate mesophyll-derived signals that coordinate mesophyll CO2 demands with stomatal behaviour, in order to provide a mechanistic understanding of these processes as this may identify potential targets for manipulations in order to improve plant WUE and crop yield.
Collapse
Affiliation(s)
- Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Andrew J Simkin
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Gilor Kelly
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet-Dagan, 50250, Israel
| | - David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet-Dagan, 50250, Israel
| |
Collapse
|
43
|
Na JK, Metzger JD. Chimeric promoter mediates guard cell-specific gene expression in tobacco under water deficit. Biotechnol Lett 2014; 36:1893-9. [PMID: 24863295 DOI: 10.1007/s10529-014-1553-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
Abstract
The engineering of stomatal activity under water deficit through guard cell-specific gene regulation is an effective approach to improve drought tolerance of crops but it requires an appropriate promoter(s) inducible by water deficit in guard cells. We report that a chimeric promoter can induce guard cell-specific gene expression under water deficit. A chimeric promoter, p4xKST82-rd29B, was constructed using a tetramer of the 82 bp guard cell-specific regulatory region of potato KST1 promoter (4xKST82) and Arabidopsis dehydration-responsive rd29B promoter. Transgenic tobacco plants carrying p4xKST82-rd29B:mGFP-GUS exhibited GUS expression in response to water deficit. GUS enzyme activity of p4xKST82-rd29B:mGFP-GUS transgenic plants increased ~300 % by polyethylene glycol treatment compared to that of control plant but not by abscisic acid (ABA), indicating that the p4xKST82-rd29B chimeric promoter can be used to induce the guard cell-specific expression of genes of interest in response to water deficit in an ABA-independent manner.
Collapse
Affiliation(s)
- Jong-Kuk Na
- Division of Molecular Breeding, National Academy of Agricultural Science, RDA, Suwon, 441-701, Republic of Korea,
| | | |
Collapse
|
44
|
Genome wide analysis of Arabidopsis thaliana reveals high frequency of AAAGN7CTTT motif. Meta Gene 2014; 2:606-15. [PMID: 25606443 PMCID: PMC4288566 DOI: 10.1016/j.mgene.2014.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/14/2014] [Indexed: 11/20/2022] Open
Abstract
Sequence specific elements in DNA regulate transcription by recruiting transcription factors. The Dof proteins are a large family of transcription factors that share a single highly conserved zinc finger. The core to which Dof proteins bind has a consensus AAAG or ACTTTA sequence. These motifs have been over represented in many promoters. We performed a genome wide analysis of AAAG repeat elements increasing the spacer length from 0 to 25. Similar analyses was done with AAAG-CTTT motifs. We report unusual high frequency of AAAGN7CTTT in Arabidopsis thaliana genome. We also conclude that there is a preference for A/G nucleotides in spacer sequence between two AAAG repeats.
Collapse
|
45
|
Burgess D, Freeling M. The most deeply conserved noncoding sequences in plants serve similar functions to those in vertebrates despite large differences in evolutionary rates. THE PLANT CELL 2014; 26:946-61. [PMID: 24681619 PMCID: PMC4001403 DOI: 10.1105/tpc.113.121905] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In vertebrates, conserved noncoding elements (CNEs) are functionally constrained sequences that can show striking conservation over >400 million years of evolutionary distance and frequently are located megabases away from target developmental genes. Conserved noncoding sequences (CNSs) in plants are much shorter, and it has been difficult to detect conservation among distantly related genomes. In this article, we show not only that CNS sequences can be detected throughout the eudicot clade of flowering plants, but also that a subset of 37 CNSs can be found in all flowering plants (diverging ∼170 million years ago). These CNSs are functionally similar to vertebrate CNEs, being highly associated with transcription factor and development genes and enriched in transcription factor binding sites. Some of the most highly conserved sequences occur in genes encoding RNA binding proteins, particularly the RNA splicing-associated SR genes. Differences in sequence conservation between plants and animals are likely to reflect differences in the biology of the organisms, with plants being much more able to tolerate genomic deletions and whole-genome duplication events due, in part, to their far greater fecundity compared with vertebrates.
Collapse
|
46
|
Negi J, Hashimoto-Sugimoto M, Kusumi K, Iba K. New approaches to the biology of stomatal guard cells. PLANT & CELL PHYSIOLOGY 2014; 55:241-50. [PMID: 24104052 PMCID: PMC3913439 DOI: 10.1093/pcp/pct145] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 09/26/2013] [Indexed: 05/19/2023]
Abstract
CO2 acts as an environmental signal that regulates stomatal movements. High CO2 concentrations reduce stomatal aperture, whereas low concentrations trigger stomatal opening. In contrast to our advanced understanding of light and drought stress responses in guard cells, the molecular mechanisms underlying stomatal CO2 sensing and signaling are largely unknown. Leaf temperature provides a convenient indicator of transpiration, and can be used to detect mutants with altered stomatal control. To identify genes that function in CO2 responses in guard cells, CO2-insensitive mutants were isolated through high-throughput leaf thermal imaging. The isolated mutants are categorized into three groups according to their phenotypes: (i) impaired in stomatal opening under low CO2 concentrations; (ii) impaired in stomatal closing under high CO2 concentrations; and (iii) impaired in stomatal development. Characterization of these mutants has begun to yield insights into the mechanisms of stomatal CO2 responses. In this review, we summarize the current status of the field and discuss future prospects.
Collapse
Affiliation(s)
- Juntaro Negi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581 Japan
- These authors contributed equally to this work
| | - Mimi Hashimoto-Sugimoto
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581 Japan
- These authors contributed equally to this work
| | - Kensuke Kusumi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581 Japan
| | - Koh Iba
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581 Japan
| |
Collapse
|
47
|
Wang H, Kanagarajan S, Han J, Hao M, Yang Y, Lundgren A, Brodelius PE. Studies on the expression of linalool synthase using a promoter-β-glucuronidase fusion in transgenic Artemisia annua. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:85-96. [PMID: 24331423 DOI: 10.1016/j.jplph.2013.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/21/2013] [Accepted: 09/28/2013] [Indexed: 05/22/2023]
Abstract
Artemisinin, an antimalarial endoperoxide sesquiterpene, is synthesized in glandular trichomes of Artemisia annua L. A number of other enzymes of terpene metabolism utilize intermediates of artemisinin biosynthesis, such as isopentenyl and farnesyl diphosphate, and may thereby influence the yield of artemisinin. In order to study the expression of such enzymes, we have cloned the promoter regions of some enzymes and fused them to β-glucuronidase (GUS). In this study, we have investigated the expression of the monoterpene synthase linalool synthase (LIS) using transgenic A. annua carrying the GUS gene under the control of the LIS promoter. The 652bp promoter region was cloned by the genome walker method. A number of putative cis-acting elements were predicted indicating that the LIS is driven by a complex regulation mechanism. Transgenic plants carrying the promoter-GUS fusion showed specific expression of GUS in T-shaped trichomes (TSTs) but not in glandular secretory trichomes, which is the site for artemisinin biosynthesis. GUS expression was observed at late stage of flower development in styles of florets and in TSTs and guard cells of basal bracts. GUS expression after wounding showed that LIS is involved in plant responsiveness to wounding. Furthermore, the LIS promoter responded to methyl jasmonate (MeJA). These results indicate that the promoter carries a number of cis-acting regulatory elements involved in the tissue-specific expression of LIS and in the response of the plant to wounding and MeJA treatment. Southern blot analysis indicated that the GUS gene was integrated in the A. annua genome as single or multi copies in different transgenic lines. Promoter activity analysis by qPCR showed that both the wild-type and the recombinant promoter are active in the aerial parts of the plant while only the recombinant promoter was active in roots. Due to the expression in TSTs but not in glandular trichomes, it may be concluded that LIS expression will most likely have little or no effect on artemisinin production.
Collapse
Affiliation(s)
- Hongzhen Wang
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Selvaraju Kanagarajan
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Junli Han
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Mengshu Hao
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Yiyi Yang
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Anneli Lundgren
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Peter E Brodelius
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.
| |
Collapse
|
48
|
|
49
|
Noguero M, Atif RM, Ochatt S, Thompson RD. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 209:32-45. [PMID: 23759101 DOI: 10.1016/j.plantsci.2013.03.016] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 05/18/2023]
Abstract
The DOF (DNA-binding One Zinc Finger) family of transcription factors is involved in many fundamental processes in higher plants, including responses to light and phytohormones as well as roles in seed maturation and germination. DOF transcription factor genes are restricted in their distribution to plants, where they are in many copies in both gymnosperms and angiosperms and also present in lower plants such as the moss Physcomitrella patens and in the alga Chlamydomonas reinhardtii which possesses a single DOF gene. DOF transcription factors bind to their promoter targets at the consensus sequence AAAG. This binding depends upon the presence of the highly conserved DOF domain in the protein. Depending on the target gene, DOF factor binding may activate or repress transcription. DOF factors are expressed in most if not all tissues of higher plants, but frequently appear to be functionally redundant. Recent next-generation sequencing data provide a more comprehensive survey of the distribution of DOF sequence classes among plant species and within tissue types, and clues as to the evolution of functions assumed by this transcription factor family. DOFs do not appear to be implicated in the initial differentiation of the plant body plan into organs via the resolution of meristematic zones, in contrast to MADS-box and homeobox transcription factors, which are found in other non-plant eukaryotes, and this may reflect a more recent evolutionary origin.
Collapse
|
50
|
Rusconi F, Simeoni F, Francia P, Cominelli E, Conti L, Riboni M, Simoni L, Martin CR, Tonelli C, Galbiati M. The Arabidopsis thaliana MYB60 promoter provides a tool for the spatio-temporal control of gene expression in stomatal guard cells. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3361-71. [PMID: 23828545 PMCID: PMC3733157 DOI: 10.1093/jxb/ert180] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants have evolved different strategies to resist drought, of which the best understood is the abscisic acid (ABA)-induced closure of stomatal pores to reduce water loss by transpiration. The availability of useful promoters that allow for precise spatial and temporal control of gene expression in stomata is essential both for investigating stomatal regulation in model systems and for biotechnological applications in field crops. Previous work indicated that the regulatory region of the transcription factor AtMYB60 specifically drives gene expression in guard cells of Arabidopsis, although its activity is rapidly down-regulated by ABA. Here, the activity of the full-length and minimal AtMYB60 promoters is reported in rice (Oryza sativa), tobacco (Nicotiana tabacum), and tomato (Solanum lycopersicum), using a reporter gene approach. In rice, the activity of both promoters was completely abolished, whereas it was spatially restricted to guard cells in tobacco and tomato. To overcome the negative effect of ABA on the AtMYB60 promoter, a chimeric inducible system was developed, which combined the cellular specificity of the AtMYB60 minimal promoter with the positive responsiveness to dehydration and ABA of the rd29A promoter. Remarkably, the synthetic module specifically up-regulated gene expression in guard cells of Arabidopsis, tobacco, and tomato in response to dehydration or ABA. The comparative analysis of different native and synthetic regulatory modules derived from the AtMYB60 promoter offers new insights into the functional conservation of the cis-mechanisms that mediate gene expression in guard cells in distantly related dicotyledonous species and provides novel tools for modulating stomatal activity in plants.
Collapse
Affiliation(s)
| | - Fabio Simeoni
- Fondazione Filarete, Milano, Italy
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Milano, Milano, Italy
| | - Priscilla Francia
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- * Present address: Dipartimento Formazione e Apprendimento SUPSI-DFA, Locarno, Switzerland
| | - Eleonora Cominelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- Present address: Istituto di Biologia e Biotecnologia Agraria, CNR, Milano, Italy
| | - Lucio Conti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Matteo Riboni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | | | | | - Chiara Tonelli
- Fondazione Filarete, Milano, Italy
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Massimo Galbiati
- Fondazione Filarete, Milano, Italy
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|