1
|
Xu Y, Wang J, Qin X, Liu J. Advances in the pathogenesis and treatment of pneumococcal meningitis. Virulence 2024; 15:2387180. [PMID: 39192572 PMCID: PMC11364070 DOI: 10.1080/21505594.2024.2387180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/04/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Streptococcus pneumoniae is a common pathogen associated with community-acquired bacterial meningitis, characterized by high morbidity and mortality rates. While vaccination reduces the incidence of meningitis, many survivors experience severe brain damage and corresponding sequelae. The pathogenesis of pneumococcal meningitis has not been fully elucidated. Currently, meningitis requires bacterial disruption of the blood - brain barrier, a process that involves the interaction of bacterial surface components with host cells and various inflammatory responses. This review delineates the global prevalence, pathogenesis, and treatment strategies of pneumococcal meningitis. The objective is to enhance the thorough comprehension of the clinical manifestations and biological mechanisms of the disease, thereby enabling more efficient prevention, diagnosis, and therapeutic interventions.
Collapse
Affiliation(s)
- Yiyun Xu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Ji Wang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| |
Collapse
|
2
|
AlQadeeb H, Baltazar M, Cazares A, Poonpanichakul T, Kjos M, French N, Kadioglu A, O’Brien M. The Streptococcus agalactiae LytSR two-component regulatory system promotes vaginal colonization and virulence in vivo. Microbiol Spectr 2024; 12:e0197024. [PMID: 39400158 PMCID: PMC11537067 DOI: 10.1128/spectrum.01970-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Streptococcus agalactiae (or group B Streptococcus, GBS) is a leading cause of neonatal sepsis and meningitis globally. To sense and respond to variations in its environment, GBS possesses multiple two-component regulatory systems (TCSs), such as LytSR. Here, we aimed to investigate the role of LytSR in GBS pathogenicity. We generated an isogenic lytS knockout mutant in a clinical GBS isolate and used a combination of phenotypic in vitro assays and in vivo murine models to investigate the contribution of lytS to the colonization and invasive properties of GBS. Deletion of the lytS gene in the GBS chromosome resulted in significantly higher survival rates in mice during sepsis, accompanied by reduced bacterial loads in blood, lung, spleen, kidney, and brain tissues compared to infection with the wild-type strain. In a mouse model of GBS vaginal colonization, we also observed that the lytS knockout mutant was cleared more readily from the vaginal tract compared to its wild-type counterpart. Interestingly, lower levels of proinflammatory cytokines were found in the serum of mice infected with the lytS mutant. Our results demonstrate that the LytSR TCS plays a key role in GBS tissue invasion and pathogenesis, and persistence of mucosal colonization.IMPORTANCEStreptococcus agalactiae (group B Streptococcus, or GBS) is a common commensal of the female urogenital tract and one of WHO's priority pathogens. The bacterium has evolved mechanisms to adapt and survive in its host, many of which are regulated via two-component signal transduction systems (TCSs); however, the exact contributions of TCSs toward GBS pathogenicity remain largely obscure. We have constructed a TCS lytS-deficient mutant in a CC-17 hypervirulent GBS clinical isolate. Using murine models, we showed that LytSR regulatory system is essential for vaginal colonization via promoting biofilm production. We also observed that lytS deficiency led to significantly attenuated virulence properties and lower levels of proinflammatory cytokines in blood. Our findings are of significant importance in that they unveil a previously unreported role for LytSR in GBS and pave the way toward a better understanding of its ability to transition from an innocuous commensal to a deadly pathogen.
Collapse
Affiliation(s)
- Hajar AlQadeeb
- Department of Medical Laboratory, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Murielle Baltazar
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Adrian Cazares
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Tiraput Poonpanichakul
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Nakhon Pathom, Thailand
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Neil French
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Marie O’Brien
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- ReNewVax Ltd, Liverpool, United Kingdom
| |
Collapse
|
3
|
Takahara Y, Sumitomo T, Kono M, Takemura M, Akamatsu Y, Hirose Y, Yamaguchi M, Nakata M, Hotomi M, Kawabata S. Pneumolysin contributes to dysfunction of nasal epithelial barrier for promotion of pneumococcal dissemination into brain tissue. mSphere 2024; 9:e0065524. [PMID: 39345124 PMCID: PMC11520308 DOI: 10.1128/msphere.00655-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Streptococcus pneumoniae is one of the major pathogens responsible for bacterial meningitis and neurological sequelae. The present study was conducted to identify a non-hematogenous route used by S. pneumoniae to gain access to brain tissue without causing bacteremia or pneumonia, as well as bacterial and host factors involved in this process. To investigate the molecular mechanisms and dissemination pathways of pneumococcal infection in brain tissue, mice were intranasally inoculated with S. pneumoniae strain EF3030, a clinical isolate from a patient with otitis media. Pneumococci were isolated from the frontal olfactory bulb, caudal cerebrum, and cerebellum, with neither bacteremia nor pneumonia observed in the present model. Immunostaining imaging revealed the presence of S. pneumoniae organisms in olfactory nerve fibers. Knockout of the ply gene encoding pneumolysin (PLY) markedly compromised the ability of the bacterial organisms to disseminate into brain tissue, whereas the dissemination efficiency of the complemented strain was restored to nearly the same level as the wild type. Notably, distinct upregulation of Gli1 and Snail1, which are involved in the transcriptional repression of junctional proteins, along with downregulation of E-cadherin, was detected in nasal lavage samples from mice infected with the wild-type or complemented strain, but not in those from mice infected with the ply mutant. Taken together, the present findings indicate that PLY induces Gli1-Snail1-dependent dysfunction of the nasal epithelial barrier, thus allowing pneumococcal dissemination to brain tissue that occurs in a non-hematogenous manner.IMPORTANCEBacterial meningitis, considered to be caused by bacteremia, can lead to blood-brain barrier disruption and bacterial dissemination into the central nervous system. Despite the availability of intravenously administered antibiotics with cerebrospinal fluid transferability, bacterial meningitis remains associated with high rates of morbidity and mortality. Here, we utilized Streptococcus pneumoniae strain EF3030, clinically isolated from otitis media, for the construction of a murine infection model to investigate the molecular mechanisms by which nasally colonized pneumococci disseminate into brain tissue. The obtained findings indicate that pneumolysin (PLY) induces Gli1-Snail1-dependent dysfunction of the nasal epithelial barrier, which facilitates pneumococcal dissemination to brain tissue in a non-hematogenous manner. Our results support the existence of an alternative route by which S. pneumoniae can reach the central nervous system and indicate the need for the development of novel therapeutic strategies, which would be an important contribution to the clinical management of bacterial meningitis.
Collapse
Affiliation(s)
- Yuki Takahara
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Fixed Prosthodontics and Orofacial Function, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Tomoko Sumitomo
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Oral Microbiology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masamitsu Kono
- Department of Otorhinolaryngology—Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Moe Takemura
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Oral Surgery, Rinku General Medical Center, Izumisano, Osaka, Japan
| | - Yukako Akamatsu
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
- Division of Special Care Dentistry, Osaka University Dental Hospital, Osaka, Japan
| | - Yujiro Hirose
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masaya Yamaguchi
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
- Bioinformatics Research Unit, Osaka University Graduate School of Dentistry, Osaka, Japan
- Bioinformatics Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Muneki Hotomi
- Department of Otorhinolaryngology—Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Shigetada Kawabata
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Cassiano LMG, de Oliveira DB, Candiani TMS, Campi-Azevedo AC, Martins-Filho OA, Kroon EG, Kohlhoff M, Coimbra RS. The neurotoxic branch of the kynurenine pathway is highly activated in the central nervous system of patients with pneumococcal meningitis. Cytokine 2023; 168:156237. [PMID: 37257305 DOI: 10.1016/j.cyto.2023.156237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Acute bacterial meningitis (ABM) causes excessive activation of N-methyl-D-aspartate receptors (NMDAr), leading to cortical and hippocampal neuron death. As opposite, enteroviral meningitis is more frequently benign. The kynurenine (KYN) pathway is the major catabolic route of tryptophan (TRP) and some of its metabolites are agonists or antagonists of NMDAr. METHODS In order to investigate the pathogen-specific patterns of KYN pathway modulation in the central nervous system of children with acute meningococcal (MM), pneumococcal (PM) or enteroviral (VM) meningitis, the cerebrospinal fluid (CSF) concentrations of TRP, KYN, kynurenic acid (KYNA) and quinolinic acid (QUINA) were evaluated by ultra-high performance liquid chromatography (uHPLC) coupled to mass spectrometry. In addition, CSF levels of IL-6, IL-10 and TNF-α were quantified by multi-analyte flow assay. The data was mined and integrated using statistical and machine learning methods. RESULTS The three forms of meningitis investigated herein up-regulated the neurotoxic branch of the KYN pathway within the intrathecal space. However, this response, represented by the concentration of QUINA, was six and nine times higher in PM patients compared to MM or VM, respectively. CSF levels of IL-6, TNF-α, and IL-10 were increased in MM and PM patients when compared to controls. In VM, CSF IL-6 and IL-10, but not TNF-α were increased compared to controls, although not reaching the high levels found in bacterial meningitis. No correlation was found between the concentrations or the ratios of any pair of KYN metabolites and any cytokine or standard cytochemical parameter tested. CONCLUSIONS CNS infection with meningococci, pneumococci, and enteroviruses intrathecally activate the KYN pathway, favoring its neurotoxic branch. However, in PM, higher CSF levels of QUINA, compared to MM and VM, may contribute to its poorer neurologic outcome.
Collapse
Affiliation(s)
- Larissa M Gomes Cassiano
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, MG 30190-002, Brazil; Programa de Pós-Graduação em Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danilo Bretas de Oliveira
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG 39100-000, Brazil
| | | | - Ana Carolina Campi-Azevedo
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fiocruz, Belo Horizonte, MG 30190-002, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fiocruz, Belo Horizonte, MG 30190-002, Brazil
| | - Erna Geessien Kroon
- Laboratório de Virologia, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Markus Kohlhoff
- Química de Produtos Naturais Bioativos, Instituto René Rachou, Fiocruz, Belo Horizonte, MG 30190-002, Brazil
| | - Roney Santos Coimbra
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, MG 30190-002, Brazil.
| |
Collapse
|
5
|
Caragheorgheopol R, Țucureanu C, Lazăr V, Florescu SA, Lazăr DS, Caraş I. Cerebrospinal fluid cytokines and chemokines exhibit distinct profiles in bacterial meningitis and viral meningitis. Exp Ther Med 2023; 25:204. [PMID: 37090083 PMCID: PMC10119981 DOI: 10.3892/etm.2023.11903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/24/2023] [Indexed: 04/25/2023] Open
Abstract
Differential diagnosis of bacterial meningitis (BM) and viral meningitis (VM) is a critical clinical challenge, as the early and accurate identification of the causative agent determines the appropriate treatment regimen and markedly improves patient outcomes. Clinical and experimental studies have demonstrated that the pathogen and the host immune response contribute to mortality and neurological sequelae. As BM is associated with the activation of an inflammatory cascade, the patterns of pro- and anti-inflammatory cytokines/chemokines (CTs/CKs) present in the cerebrospinal fluid (CSF) in response to the immune assault may be useful as sensitive markers for differentiating BM from VM. In the present study, the ability of CTs/CKs in the CSF to differentiate between BM and VM was investigated. For this, biochemical markers and CT/CK profiles were analysed in 145 CSF samples, divided into three groups: BM (n=61), VM (n=58) and the control group (C; n=26) comprising patients with meningism. The CSF concentrations of monocyte chemoattractant protein-1, interleukin (IL)-8, IL-1β, IL-6, macrophage inflammatory protein-1α (MIP-1α), epithelial-neutrophil activating peptide, IL-10, tumour necrosis factor-α (TNF-α), proteins and white blood cells were significantly higher and the CSF glucose level was significantly lower in the BM group compared with the VM and C groups (P<0.01). Correlation analysis identified 28 significant correlations between various CTs/CKs in the BM group (P<0.01), with the strongest positive correlations being for TNF-α/IL-6 (r=0.75), TNF-α/MIP-1α (r=0.69), TNF-α/IL-1β (r=0.64) and IL-1β/MIP-1α (r=0.64). To identify the optimum CT/CK patterns for predicting and classifying BM and VM, a dataset of 119 BM and VM samples was divided into training (n=90) and testing (n=29) subsets for use as input for a Random Forest (RF) machine learning algorithm. For the 29 test samples (15 BM and 14 VM), the RF algorithm correctly classified 28 samples, with 92% sensitivity and 93% specificity. The results show that the patterns of CT/CK levels in the CSF can be used to aid discrimination of BM and VM.
Collapse
Affiliation(s)
- Ramona Caragheorgheopol
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest 77206, Romania
- Immunology Laboratory, ‘Cantacuzino’ National Institute for Medico-Military Research and Development, Bucharest 050096, Romania
- Correspondence to: Mrs. Ramona Caragheorgheopol, Immunology Laboratory, ‘Cantacuzino’ National Institute for Medico-Military Research and Development, 103 Splaiul Independentei, Bucharest 050096, Romania
| | - Cătălin Țucureanu
- Immunology Laboratory, ‘Cantacuzino’ National Institute for Medico-Military Research and Development, Bucharest 050096, Romania
| | - Veronica Lazăr
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest 77206, Romania
| | - Simin Aysel Florescu
- Infectious Diseases Department II, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 050474, Romania
- Clinical Department A5 for Infectious and Tropical Diseases, ‘Dr Victor Babes’ Clinical Hospital for Infectious and Tropical Diseases, Bucharest 030303, Romania
| | - Dragoş Stefan Lazăr
- Infectious Diseases Department II, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 050474, Romania
- Adults Department B2, ‘Dr Victor Babes’ Clinical Hospital for Infectious and Tropical Diseases, Bucharest 030303, Romania
| | - Iuliana Caraş
- Immunology Laboratory, ‘Cantacuzino’ National Institute for Medico-Military Research and Development, Bucharest 050096, Romania
| |
Collapse
|
6
|
Qi K, Yi X, Wang M, Wang J, Sun H, Liang P, Xu J, Zheng H. Streptococcus parasuis, an Emerging Zoonotic Pathogen, Possesses the Capacity to Induce Cerebral Inflammatory Responses. Pathogens 2023; 12:pathogens12040600. [PMID: 37111486 PMCID: PMC10141694 DOI: 10.3390/pathogens12040600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/17/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
To date, three Streptococcus parasuis strains, BS26, BS27, and NN1, have been isolated from the blood cultures of patients with peritonitis, pneumonia, and arthritis, indicating that S. parasuis is an emerging threat to susceptible people. There is thus an urgent need to further evaluate the pathogenesis of S. parasuis clinical strains in order to design efficient anti-inflammatory strategies. Our previous study demonstrated the capacity of S. parasuis clinical strains to enter the central nervous system (CNS) of infected mice. However, the characteristics and inflammatory mechanism of CNS infections caused by S. parasuis are still non-available. In the present study, we investigated the proportion and time of two clinical S. parasuis strains NN1 and BS26 infected mice that developed neurological symptoms. The characteristics of histopathological changes and the cerebral immune response in mice with neurological symptoms were analyzed. Furthermore, we evaluated the roles of microglia and astrocytes in the S. parasuis clinical strain-induced cerebral inflammation. Our data indicated that S. parasuis clinical strains possess a high potential to induce cerebral inflammation in susceptible people at the early phase of infection. Our study contributes to increasing the understanding of the pathogenicity of S. parasuis and the inflammatory mechanisms of the brain against infection caused by S. parasuis.
Collapse
Affiliation(s)
- Kexin Qi
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xueli Yi
- Center for Clinical Laboratory Diagnosis and Research, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Mingliu Wang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning 530021, China
| | - Jianping Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Pujun Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin 541002, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
7
|
Barichello T, Rocha Catalão CH, Rohlwink UK, van der Kuip M, Zaharie D, Solomons RS, van Toorn R, Tutu van Furth M, Hasbun R, Iovino F, Namale VS. Bacterial meningitis in Africa. Front Neurol 2023; 14:822575. [PMID: 36864913 PMCID: PMC9972001 DOI: 10.3389/fneur.2023.822575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
Bacterial meningitis differs globally, and the incidence and case fatality rates vary by region, country, pathogen, and age group; being a life-threatening disease with a high case fatality rate and long-term complications in low-income countries. Africa has the most significant prevalence of bacterial meningitis illness, and the outbreaks typically vary with the season and the geographic location, with a high incidence in the meningitis belt of the sub-Saharan area from Senegal to Ethiopia. Streptococcus pneumoniae (pneumococcus) and Neisseria meningitidis (meningococcus) are the main etiological agents of bacterial meningitis in adults and children above the age of one. Streptococcus agalactiae (group B Streptococcus), Escherichia coli, and Staphylococcus aureus are neonatal meningitis's most common causal agents. Despite efforts to vaccinate against the most common causes of bacterial neuro-infections, bacterial meningitis remains a significant cause of mortality and morbidity in Africa, with children below 5 years bearing the heaviest disease burden. The factors attributed to this continued high disease burden include poor infrastructure, continued war, instability, and difficulty in diagnosis of bacterial neuro-infections leading to delay in treatment and hence high morbidity. Despite having the highest disease burden, there is a paucity of African data on bacterial meningitis. In this article, we discuss the common etiologies of bacterial neuroinfectious diseases, diagnosis and the interplay between microorganisms and the immune system, and the value of neuroimmune changes in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Tatiana Barichello
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Carlos Henrique Rocha Catalão
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Neuroscience and Behavioral Science, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirao Preto, SP, Brazil
| | - Ursula K. Rohlwink
- Pediatric Neurosurgery Unit, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
- Division of Neurosurgery, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Martijn van der Kuip
- Department of Pediatric Infectious Diseases and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Dan Zaharie
- Department of Anatomical Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Services, Tygerberg Hospital, Cape Town, South Africa
| | - Regan S. Solomons
- Department of Pediatric and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ronald van Toorn
- Department of Pediatric and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marceline Tutu van Furth
- Department of Pediatric Infectious Diseases and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Rodrigo Hasbun
- Division of Infectious Diseases, Department of Internal Medicine, UT Health, McGovern Medical School, Houston, TX, United States
| | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vivian Ssonko Namale
- Columbia University Irving Medical Center and New York Presbyterian Hospital, New York, NY, United States
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
8
|
Gil E, Wall E, Noursadeghi M, Brown JS. Streptococcus pneumoniae meningitis and the CNS barriers. Front Cell Infect Microbiol 2023; 12:1106596. [PMID: 36683708 PMCID: PMC9845635 DOI: 10.3389/fcimb.2022.1106596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Streptococcus pneumoniae (SPN) is a globally significant cause of meningitis, the pathophysiology of which involves damage to the brain by both bacterial virulence factors and the host inflammatory response. In most cases of SPN meningitis bacteria translocate from the blood into the central nervous system (CNS). The principal site of SPN translocation into the CNS is not known, with possible portals of entry proposed to be the cerebral or meningeal blood vessels or the choroid plexus. All require SPN to bind to and translocate across the vascular endothelial barrier, and subsequently the basement membrane and perivascular structures, including an additional epithelial barrier in the case of the blood-CSF barrier. The presence of SPN in the CNS is highly inflammatory resulting in marked neutrophilic infiltration. The secretion of toxic inflammatory mediators by activated neutrophils within the CNS damages pathogen and host alike, including the non-replicative neurons which drives morbidity and mortality. As with the translocation of SPN, the recruitment of neutrophils into the CNS in SPN meningitis necessitates the translocation of neutrophils from the circulation across the vascular barrier, a process that is tightly regulated under basal conditions - a feature of the 'immune specialization' of the CNS. The brain barriers are therefore central to SPN meningitis, both through a failure to exclude bacteria and maintain CNS sterility, and subsequently through the active recruitment and/or failure to exclude circulating leukocytes. The interactions of SPN with these barriers, barrier inflammatory responses, along with their therapeutic implications, are explored in this review.
Collapse
Affiliation(s)
- Eliza Gil
- Division of Infection and Immunity, University College London, London, United Kingdom,*Correspondence: Eliza Gil,
| | - Emma Wall
- Francis Crick Institute, London, United Kingdom,UCLH Biomedical Research Centre, London, United Kingdom
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jeremy S. Brown
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
9
|
Jaleel LK, Umran MA, Kaddo KB, Ad'hiah AH. Evaluation of human β‑defensins in the cerebrospinal fluid of suspected meningitis. Biomed Rep 2022; 18:10. [PMID: 36570800 PMCID: PMC9764057 DOI: 10.3892/br.2022.1592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Human β-defensins (HBDs) are an important class of antimicrobial peptides that have immunomodulatory functions; however, the role of HBDs have not been well explored in the pathogenesis of meningitis. A cross-sectional study was performed to explore the levels of HBD1, HBD2, HBD3, and HBD4 in the cerebrospinal fluid (CSF) of 176 suspected meningitis cases. CSF samples were first subjected to PCR analysis using a set of universal primers targeting a portion of the eubacteria 16S rRNA gene. The analysis demonstrated that 66 samples (37.5%) were PCR-positive, whilst 110 samples (62.5%) were PCR-negative. DNA sequence analysis of the PCR-positive products identified two broad categories of bacteria, Gram-negative (68.2%) and Gram-positive (31.8%). A total of 88 PCR-negative CSF samples showed abnormal leukocyte counts, glucose concentrations, and/or protein concentrations, and were considered abnormal (ABN). The remaining 22 CSF samples were considered normal (NOR). HBD1, HBD2, and HBD4 levels did not exhibit significant differences between PCR-positive, ABN, and NOR CSF samples. However, HBD3 levels were significantly higher in the ABN CSF samples than in the NOR CSF samples (P=0.005). HBD3 levels were also elevated in the PCR-positive CSF samples compared with the NOR CSF samples, but the difference was not significant (P=0.151). HBD2, HBD3, and HBD4 were correlated with leukocyte counts, glucose concentration, and protein concentration. In conclusion, HBD3 levels were significantly elevated in the CSF of suspected meningitis cases regardless of the cause of meningitis. The CSF levels of certain HBDs were affected by specific diagnostic laboratory parameters for meningitis, including leukocyte counts, glucose concentration, and protein concentration.
Collapse
Affiliation(s)
- Lena K. Jaleel
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad 10070, Iraq
| | - Mahfoodha A. Umran
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad 10070, Iraq
| | - Khansaa B.J. Kaddo
- Ibn-Sina Research Center, Corporation of Research and Industrial Development, Ministry of Industry and Minerals, Baghdad 10070, Iraq
| | - Ali H. Ad'hiah
- Tropical-Biological Research Unit, College of Science, University of Baghdad, Baghdad 10070, Iraq,Correspondence to: Professor Ali H. Ad'hiah, Tropical-Biological Research Unit, College of Science, University of Baghdad, Al-Jadriya, Karrada, Baghdad 10070, Iraq
| |
Collapse
|
10
|
Lassarén P, Lindblad C, Frostell A, Carpenter KLH, Guilfoyle MR, Hutchinson PJA, Helmy A, Thelin EP. Systemic inflammation alters the neuroinflammatory response: a prospective clinical trial in traumatic brain injury. J Neuroinflammation 2021; 18:221. [PMID: 34563211 PMCID: PMC8464153 DOI: 10.1186/s12974-021-02264-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/30/2021] [Indexed: 01/31/2023] Open
Abstract
Background Neuroinflammation following traumatic brain injury (TBI) has been shown to be associated with secondary injury development; however, how systemic inflammatory mediators affect this is not fully understood. The aim of this study was to see how systemic inflammation affects markers of neuroinflammation, if this inflammatory response had a temporal correlation between compartments and how different compartments differ in cytokine composition. Methods TBI patients recruited to a previous randomised controlled trial studying the effects of the drug anakinra (Kineret®), a human recombinant interleukin-1 receptor antagonist (rhIL1ra), were used (n = 10 treatment arm, n = 10 control arm). Cytokine concentrations were measured in arterial and jugular venous samples twice a day, as well as in microdialysis-extracted brain extracellular fluid (ECF) following pooling every 6 h. C-reactive protein level (CRP), white blood cell count (WBC), temperature and confirmed systemic clinical infection were used as systemic markers of inflammation. Principal component analyses, linear mixed-effect models, cross-correlations and multiple factor analyses were used. Results Jugular and arterial blood held similar cytokine information content, but brain-ECF was markedly different. No clear arterial to jugular gradient could be seen. No substantial delayed temporal associations between blood and brain compartments were detected. The development of a systemic clinical infection resulted in a significant decrease of IL1-ra, G-CSF, PDGF-ABBB, MIP-1b and RANTES (p < 0.05, respectively) in brain-ECF, even if adjusting for injury severity and demographic factors, while an increase in several cytokines could be seen in arterial blood. Conclusions Systemic inflammation, and infection in particular, alters cytokine levels with different patterns seen in brain and in blood. Cerebral inflammatory monitoring provides independent information from arterial and jugular samples, which both demonstrate similar information content. These findings could present potential new treatment options in severe TBI patients, but novel prospective trials are warranted to confirm these associations. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02264-2.
Collapse
Affiliation(s)
- Philipp Lassarén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Arvid Frostell
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mathew R Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J A Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. .,Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
11
|
El-Obeid A, Yahya WB, Almuzzaini B, Tuwaijri AA, Najdi M, Hassib A, Matou-Nasri S. Herbal melanin induces interleukin-1β secretion and production by human THP-1 monocytes via Toll-like receptor 2 and p38 MAPK activation. Exp Ther Med 2021; 22:1081. [PMID: 34447474 PMCID: PMC8355711 DOI: 10.3892/etm.2021.10515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Herbal melanin (HM), extracted from Nigella sativa, is known for its immunogenic properties through the modulation of cytokine production via Toll-like receptor (TLR)4. TLRs play a crucial role in the host defense through the regulation of innate and adaptive immune responses. However, the potential effect of HM on the production of interleukin-1β (IL-1β), the main immunoregulatory cytokine secreted by activated monocytes, has not been reported. The present study aimed to investigate the effects of HM on IL-1β secretion and production, detected by enzyme-linked immunosorbent assay, western blotting and mRNA expression monitored by reverse transcription-PCR, in human monocytes and a monocytic cell line, THP-1. Signaling pathways involved in the HM-induced IL-1β production was investigated in the THP-1 cells. It was shown that HM upregulated the IL-1β mRNA in the THP-1 cells and induced the secretion of IL-1β in the monocytes and THP-1 cells, in a dose-dependent manner, compared to the untreated cells. HM increased the protein expression of IL-1β, TLR2, the main receptor for IL-1β production, and activated p38 mitogen-activated protein kinase (MAPK), a key mediator for stress-induced IL-1β gene expression. The blockade of the p38 MAPK pathway, with the pharmacological inhibitor SB202190, and TLR2 receptor with a neutralization antibody, resulted in the decrease of HM-induced IL-1β production in THP-1 cells. The TLR4 receptor blockade also decreased HM-induced IL-1β production, but to a lesser extent than TLR2 blockade. In conclusion, the present study demonstrated that HM stimulates IL-1β production in monocytes and THP-1 cells, in a TLR2/p38 MAPK pathway-dependent manner, suggesting promising immunoregulatory potentials of HM against inflammatory-associated diseases.
Collapse
Affiliation(s)
- Adila El-Obeid
- Biobank, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia.,School of Pharmacy, Ahfad University for Women, Omdurman, Khartoum 11111, Sudan.,Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University Hospital, 752 37 Uppsala, Sweden
| | - Wesam Bin Yahya
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia.,Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs; King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Bader Almuzzaini
- Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs; King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Abeer Al Tuwaijri
- Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs; King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Maria Najdi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia.,Postgraduate Program, King Saud University, Riyadh 12372, Saudi Arabia
| | - Adil Hassib
- Department of Physics, Faculty of Science, University of Khartoum, Khartoum 11111, Sudan
| | - Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia.,Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs; King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| |
Collapse
|
12
|
Too LK, Hunt N, Simunovic MP. The Role of Inflammation and Infection in Age-Related Neurodegenerative Diseases: Lessons From Bacterial Meningitis Applied to Alzheimer Disease and Age-Related Macular Degeneration. Front Cell Neurosci 2021; 15:635486. [PMID: 33867940 PMCID: PMC8044768 DOI: 10.3389/fncel.2021.635486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
Age-related neurodegenerative diseases, such as Alzheimer disease (AD) and age-related macular degeneration (AMD), are multifactorial and have diverse genetic and environmental risk factors. Despite the complex nature of the diseases, there is long-standing, and growing, evidence linking microbial infection to the development of AD dementia, which we summarize in this article. Also, we highlight emerging research findings that support a role for parainfection in the pathophysiology of AMD, a disease of the neurosensory retina that has been shown to share risk factors and pathological features with AD. Acute neurological infections, such as Bacterial Meningitis (BM), trigger inflammatory events that permanently change how the brain functions, leading to lasting cognitive impairment. Neuroinflammation likewise is a known pathological event that occurs in the early stages of chronic age-related neurodegenerative diseases AD and AMD and might be triggered as a parainfectious event. To date, at least 16 microbial pathogens have been linked to the development of AD; on the other hand, investigation of a microbe-AMD relationship is in its infancy. This mini-review article provides a synthesis of existing evidence indicating a contribution of parainfection in the aetiology of AD and of emerging findings that support a similar process in AMD. Subsequently, it describes the major immunopathological mechanisms that are common to BM and AD/AMD. Together, this evidence leads to our proposal that both AD and AMD may have an infectious aetiology that operates through a dysregulated inflammatory response, leading to deleterious outcomes. Last, it draws fresh insights from the existing literature about potential therapeutic options for BM that might alleviate neurological disruption associated with infections, and which could, by extension, be explored in the context of AD and AMD.
Collapse
Affiliation(s)
- Lay Khoon Too
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas Hunt
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Matthew P. Simunovic
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
- Sydney Eye Hospital, Sydney, NSW, Australia
| |
Collapse
|
13
|
Ramchandar N, Coufal NG, Warden AS, Briggs B, Schwarz T, Stinnett R, Xie H, Schlaberg R, Foley J, Clarke C, Waldeman B, Enriquez C, Osborne S, Arrieta A, Salyakina D, Janvier M, Sendi P, Totapally BR, Dimmock D, Farnaes L. Metagenomic Next-Generation Sequencing for Pathogen Detection and Transcriptomic Analysis in Pediatric Central Nervous System Infections. Open Forum Infect Dis 2021; 8:ofab104. [PMID: 34104666 PMCID: PMC8180245 DOI: 10.1093/ofid/ofab104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/02/2021] [Indexed: 01/08/2023] Open
Abstract
Background Pediatric central nervous system (CNS) infections are potentially life-threatening and may incur significant morbidity. Identifying a pathogen is important, both in terms of guiding therapeutic management and in characterizing prognosis. Usual care testing by culture and polymerase chain reaction is often unable to identify a pathogen. We examined the systematic application of metagenomic next-generation sequencing (mNGS) for detecting organisms and transcriptomic analysis of cerebrospinal fluid (CSF) in children with central nervous system (CNS) infections. Methods We conducted a prospective multisite study that aimed to enroll all children with a CSF pleocytosis and suspected CNS infection admitted to 1 of 3 tertiary pediatric hospitals during the study timeframe. After usual care testing had been performed, the remaining CSF was sent for mNGS and transcriptomic analysis. Results We screened 221 and enrolled 70 subjects over a 12-month recruitment period. A putative organism was isolated from CSF in 25 (35.7%) subjects by any diagnostic modality. Metagenomic next-generation sequencing of the CSF samples identified a pathogen in 20 (28.6%) subjects, which were also all identified by usual care testing. The median time to result was 38 hours. Conclusions Metagenomic sequencing of CSF has the potential to rapidly identify pathogens in children with CNS infections.
Collapse
Affiliation(s)
- Nanda Ramchandar
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA.,Department of Pediatrics, University of California, San Diego, California, USA
| | - Nicole G Coufal
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA.,Department of Pediatrics, University of California, San Diego, California, USA.,Rady Children's Hospital San Diego, San Diego, California, USA
| | - Anna S Warden
- Department of Cellular and Molecular Medicine, University of California, San Diego, California, USA
| | | | | | | | - Heng Xie
- IDbyDNA, Salt Lake City, Utah, USA
| | | | - Jennifer Foley
- Rady Children's Hospital San Diego, San Diego, California, USA
| | - Christina Clarke
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Bryce Waldeman
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | | | | | - Antonio Arrieta
- Children's Hospital of Orange County, Orange, California, USA
| | | | | | | | | | - David Dimmock
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Lauge Farnaes
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA.,IDbyDNA, Salt Lake City, Utah, USA
| |
Collapse
|
14
|
Serum cytokine profile of pediatric patients with laboratory confirmed pneumococcal meningitis. J Infect Public Health 2021; 14:514-520. [PMID: 33743374 DOI: 10.1016/j.jiph.2021.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae infection is a leading cause of bacterial meningitis in children with severe sequelae. Cytokines are important molecules in regulating of host inflammatory and anti-inflammatory responses. So far, the cytokine profile of bacterial meningitis caused by single pathogen has been rarely reported. The aim of this study was to explore serum cytokine profile in pediatric patients with pneumococcal meningitis (PM) and its clinical relevance which could be considered as a valuable tool for differential diagnosis of PM. METHODS During 2015-2018, 95 children with laboratory-confirmed PM were included. Of them, 63 had serum samples at admission. Ten cytokines including TNF-α, IL-12p40, IL-17A, IL-1β, IFN-γ, GM-CSF, IL-10, CXCL-1, IL-8 and IL-13 were measured by multiplex immunoassay in sera of 63 PM patients and 55 age-matched healthy controls (HCs). Level of serum cytokines was compared with different clinical features of patients. RESULTS Significantly higher level of IL-10 was observed in patients than HCs (median, 2.19 vs. 1.92 pg/mL, p = 0.017). Significantly lower levels of serum IL-12p40, IL-17A and IL-1β were observed in patients than HCs (median, 0.68 vs. 10.12 pg/mL, p < 0.0001; 1.14 vs. 1.14 pg/mL, p = 0.004; 1.00 vs. 5.09 pg/mL, p < 0.0001, respectively). No difference was found in levels of other cytokines between patients and controls. A negative correlation was noticed between percentages of blood neutrophils and concentrations of IL-10 (p = 0.048, r = -0.25). Significantly lower levels of IL-12p40 and CXCL-1 were observed in PM patients with sepsis than those without (median 0.68 vs. 1.64 pg/mL, p = 0.026; 7.25 vs. 12.84 pg/mL, p = 0.043, respectively). CONCLUSIONS Our results suggested that there might be significant changes in serum pro-inflammatory and anti-inflammatory cytokines in PM children and that the determination of these cytokines may have limited value for evaluation of clinical outcome of pediatric PM.
Collapse
|
15
|
Wall EC, Brownridge P, Laing G, Terra VS, Mlozowa V, Denis B, Nyirenda M, Allain T, Ramos-Sevillano E, Carrol E, Collins A, Gordon SB, Lalloo DG, Wren B, Beynon R, Heyderman RS, Brown JS. CSF Levels of Elongation Factor Tu Is Associated With Increased Mortality in Malawian Adults With Streptococcus pneumoniae Meningitis. Front Cell Infect Microbiol 2020; 10:603623. [PMID: 33363056 PMCID: PMC7759504 DOI: 10.3389/fcimb.2020.603623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/10/2020] [Indexed: 12/03/2022] Open
Abstract
Background Mortality from bacterial meningitis, predominately caused by Streptococcus pneumoniae, exceeds 50% in sub-Saharan African countries with high HIV prevalence. Underlying causes of high mortality are poorly understood. We examined the host and pathogen proteome in the CSF of adults with proven pneumococcal meningitis (PM), testing if there was an association between differentially expressed proteins and outcome. Materials/Methods CSF proteomes were analyzed by quantitative Mass-Spectrometry. Spectra were identified using the Swissprot human and TIGR4 pneumococcal protein libraries. Proteins were quantitated and analyzed against mortality. Unique proteins in PM were identified against published normal CSF proteome. Random-Forest models were used to test for protein signatures discriminating outcome. Proteins of interest were tested for their effects on growth and neutrophil opsonophagocytic killing of S. pneumoniae. Results CSF proteomes were available for 57 Adults with PM (median age 32 years, 60% male, 70% HIV-1 co-infected, mortality 63%). Three hundred sixty individual human and 23 pneumococcal proteins were identified. Of the human protein hits, 30% were not expressed in normal CSF, and these were strongly associated with inflammation and primarily related to neutrophil activity. No human protein signature predicted outcome. However, expression of the essential S. pneumoniae protein Elongation Factor Tu (EF-Tu) was significantly increased in CSF of non-survivors [False Discovery Rate (q) <0.001]. Expression of EF-Tu was negatively co-correlated against expression of Neutrophil defensin (r 0.4 p p < 0.002), but not against complement proteins C3 or Factor H. In vitro, addition of EF-Tu protein impaired S. pneumoniae neutrophil killing in CSF. Conclusions Excessive S. pneumoniae EF-Tu protein in CSF was associated with reduced survival in meningitis in a high HIV prevalence population. We show EF-Tu may inhibit neutrophil mediated killing of S. pneumoniae in CSF. Further mechanistic work is required to better understand how S. pneumoniae avoids essential innate immune responses during PM through production of excess EF-Tu.
Collapse
Affiliation(s)
- Emma C. Wall
- The Francis Crick Institute, London, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Philip Brownridge
- Centre for Proteomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Gavin Laing
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Vanessa S. Terra
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Veronica Mlozowa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Brigitte Denis
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Mulinda Nyirenda
- Adult Emergency Trauma Centre, Queen Elizabeth Central Hospital, Ministry of Health, Blantyre, Malawi
- College of Medicine, University of Malawi, Blantyre, Malawi
| | - Theresa Allain
- College of Medicine, University of Malawi, Blantyre, Malawi
| | - Elisa Ramos-Sevillano
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Enitan Carrol
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Andrea Collins
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospital Foundation Trust, Liverpool, United Kingdom
| | - Stephen B. Gordon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - David G. Lalloo
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Brendan Wren
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Robert Beynon
- Centre for Proteomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Robert S. Heyderman
- Division of Infection and Immunity, University College London, London, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Jeremy S. Brown
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
16
|
Pan SD, Grandgirard D, Leib SL. Adjuvant Cannabinoid Receptor Type 2 Agonist Modulates the Polarization of Microglia Towards a Non-Inflammatory Phenotype in Experimental Pneumococcal Meningitis. Front Cell Infect Microbiol 2020; 10:588195. [PMID: 33251159 PMCID: PMC7674855 DOI: 10.3389/fcimb.2020.588195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
Background Microglia initiates and sustains the inflammatory reaction that drives the pathogenesis of pneumococcal meningitis. The expression of the G-protein cannabinoid receptor type 2 (CB2) in the brain is low, but is upregulated in glial cells during infection. Its activation down-regulates pro-inflammatory processes, driving microglia towards an anti-inflammatory phenotype. CB2 agonists are therefore therapeutic candidates in inflammatory conditions like pneumococcal meningitis. We evaluated the effects of JWH-133, a specific CB2 agonist on microglial cells, inflammation, and damage driven by S. pneumoniae in vitro and in experimental pneumococcal meningitis. Materials/methods Primary mixed glial cultures were stimulated with live or heat-inactivated S. pneumoniae, or lipopolysaccharide and treated with JWH-133 or vehicle. Nitric oxide and cytokines levels were measured in the supernatant. In vivo, pneumococcal meningitis was induced by intracisternal injection of live S. pneumoniae in 11 days old Wistar rats. Animals were treated with antibiotics (Ceftriaxone, 100 mg/kg, s.c. bid) and JWH-133 (1 mg/kg, i.p. daily) or vehicle (10% Ethanol in saline, 100 µl/25g body weight) at 18 h after infection. Brains were harvested at 24 and 42 h post infection (hpi) for histological assessment of hippocampal apoptosis and cortical damage and determination of cyto/chemokines in tissue homogenates. Microglia were characterized using Iba-1 immunostaining. Inflammation in brain homogenates was determined using membrane-based antibody arrays. Results In vitro, nitric oxide and cytokines levels were significantly lowered by JWH-133 treatment. In vivo, clinical parameters were not affected by the treatment. JWH-133 significantly lowered microglia activation assessed by quantification of cell process length and endpoints per microglia. Animals treated with JWH-133 demonstrated significantly lower parenchymal levels of chemokines (CINC-1, CINC-2α/β, and MIP-3α), TIMP-1, and IL-6 at 24 hpi, and CINC-1, MIP-1α, and IL-1α at 42 hpi. Quantitative analysis of brain damage did not reveal an effect of JWH-133. Conclusions JWH-133 attenuates microglial activation and downregulates the concentrations of pro-inflammatory mediators in pneumococcal infection in vitro and in vivo. However, we didn't observe a reduction in cortical or hippocampal injury. This data provides evidence that inhibition of microglia by adjuvant CB2 agonists therapy effectively downmodulates neuroinflammation but does not reduce brain damage in experimental pneumococcal meningitis.
Collapse
Affiliation(s)
- Steven D Pan
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Suzuki Y, Kawakami S, Yamada M, Sohmiya M, Shibuya K, Maeda N. Clinical effects of polymyxin B-immobilized fiber column direct hemoperfusion for severe bacterial meningitis: A series of 10 cases. Clin Case Rep 2020; 8:823-832. [PMID: 32477526 PMCID: PMC7250985 DOI: 10.1002/ccr3.2756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022] Open
Abstract
Our results suggest a possible role for Polymyxin B-immobilized fiber column direct hemoperfusion in combination with standard therapy in the rapid improvement of impaired consciousness in patients with severe bacterial meningitis.
Collapse
Affiliation(s)
- Yoko Suzuki
- Department of NeurologyOmori Red Cross HospitalTokyoJapan
| | | | - Minako Yamada
- Department of NeurologyOmori Red Cross HospitalTokyoJapan
| | - Makoto Sohmiya
- Graduate School of Health SciencesGunma Paz UniversityTakasakiJapan
| | - Ken Shibuya
- Department of NephrologyOmori Red Cross HospitalTokyoJapan
| | - Nobuya Maeda
- Department of NeurologyOmori Red Cross HospitalTokyoJapan
| |
Collapse
|
18
|
Jafari M, Mohammadzadeh Jahani P, Choopanizadeh M, Jamalidoost M, Pourabbas B, Pouladfar G, Kalani M. Investigating the role of T helper related cytokines in cerebrospinal fluid for the differential diagnosis of bacterial meningitis in pre-treated paediatric patients. Biomarkers 2020; 25:171-178. [DOI: 10.1080/1354750x.2020.1714737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Maedeh Jafari
- Department of Pediatrics, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Maral Choopanizadeh
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Jamalidoost
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Pourabbas
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Pouladfar
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Kalani
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Lepennetier G, Hracsko Z, Unger M, Van Griensven M, Grummel V, Krumbholz M, Berthele A, Hemmer B, Kowarik MC. Cytokine and immune cell profiling in the cerebrospinal fluid of patients with neuro-inflammatory diseases. J Neuroinflammation 2019; 16:219. [PMID: 31727097 PMCID: PMC6857241 DOI: 10.1186/s12974-019-1601-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 09/25/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cytokines play multiple roles during neuro-inflammatory processes and several cytokines have been studied in the context of specific diseases. This study provides a comprehensive picture of cerebrospinal fluid (CSF) changes during neuro-inflammation by analyzing multiple cytokines in combination with immune cell subsets and standard CSF parameters. METHODS Using multiplex assays, we simultaneously measured 36 cytokines (CCL1-3, CCL7, CCL8, CCL11, CCL13, CCL19, CCL20, CCL22-27, CXCL1, CXCL2, CXCL5, CXCL6, CXCL8, CXCL9, CXCL11-13, CXCL16, CX3CL1, IL2, IL4, IL6, IL10, IL16, GM-CSF, IFNγ, MIF, TNFα, and MIB1β) in the CSF and serum of 75 subjects. Diagnoses included clinically isolated syndrome and relapsing-remitting multiple sclerosis (MS, n = 18), secondary progressive MS (n = 8), neuro-syphilis (n = 6), Lyme neuro-borreliosis (n = 13), bacterial and viral meningitis (n = 20), and patients with non-inflammatory neurological diseases (NIND, n = 10). Cytokine concentrations were correlated with CSF standard parameters and CSF immune cell subsets (CD4 and CD8 T cells, B cells, plasmablasts, monocytes, and NK cells) quantified by flow cytometry. RESULTS We observed increased levels of multiple cytokines (26/36) in patients with neuro-inflammatory diseases when compared to NIND that consistently correlated with CSF cell count and QAlbumin. Most CSF cytokine concentrations correlated with each other, but correlations between CSF and serum values were scarce (3/36). Within the CSF compartment, CXCL13 showed a strong association with B cells when analyzing all patients, as well as patients with an intact blood-brain barrier (BBB). NK cells positively correlated with CSF concentrations of multiple cytokines (22/36) when analyzing all patients. These correlations were maintained when looking at patients with a disrupted BBB but not detectable in patients with an intact BBB. CONCLUSIONS Under conditions of neuro-inflammation, multiple CSF cytokines are regulated in parallel and most likely produced locally. A combined increase of CSF CXCL13 levels and B cells occurs under conditions of an intact BBB. Under conditions of a disrupted BBB, CSF NK cells show significantly increased values and seem to have a major contribution to overall inflammatory processes, reflected by a strong correlation with multiple cytokines. Future studies are necessary to address the exact kinetics of these cytokines during neuro-inflammation and their relation to specific diseases phenotypes.
Collapse
Affiliation(s)
- Gildas Lepennetier
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Zsuzsanna Hracsko
- Department of Internal Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marina Unger
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martijn Van Griensven
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Verena Grummel
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Markus Krumbholz
- Department of Neurology and Hertie Institute for Clinical Brain Research, Eberhard Karl University, Tübingen, Germany
| | - Achim Berthele
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus C Kowarik
- Department of Neurology and Hertie Institute for Clinical Brain Research, Eberhard Karl University, Tübingen, Germany.
| |
Collapse
|
20
|
Virulence Factors of Meningitis-Causing Bacteria: Enabling Brain Entry across the Blood-Brain Barrier. Int J Mol Sci 2019; 20:ijms20215393. [PMID: 31671896 PMCID: PMC6862235 DOI: 10.3390/ijms20215393] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
Infections of the central nervous system (CNS) are still a major cause of morbidity and mortality worldwide. Traversal of the barriers protecting the brain by pathogens is a prerequisite for the development of meningitis. Bacteria have developed a variety of different strategies to cross these barriers and reach the CNS. To this end, they use a variety of different virulence factors that enable them to attach to and traverse these barriers. These virulence factors mediate adhesion to and invasion into host cells, intracellular survival, induction of host cell signaling and inflammatory response, and affect barrier function. While some of these mechanisms differ, others are shared by multiple pathogens. Further understanding of these processes, with special emphasis on the difference between the blood-brain barrier and the blood-cerebrospinal fluid barrier, as well as virulence factors used by the pathogens, is still needed.
Collapse
|
21
|
Bartholomeus E, De Neuter N, Lemay A, Pattyn L, Tuerlinckx D, Weynants D, Van Lede K, van Berlaer G, Bulckaert D, Boiy T, Vander Auwera A, Raes M, Van der Linden D, Verhelst H, Van Steijn S, Jonckheer T, Dehoorne J, Joos R, Jansens H, Suls A, Van Damme P, Laukens K, Mortier G, Meysman P, Ogunjimi B. Diagnosing enterovirus meningitis via blood transcriptomics: an alternative for lumbar puncture? J Transl Med 2019; 17:282. [PMID: 31443725 PMCID: PMC6708255 DOI: 10.1186/s12967-019-2037-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/18/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Meningitis can be caused by several viruses and bacteria. Identifying the causative pathogen as quickly as possible is crucial to initiate the most optimal therapy, as acute bacterial meningitis is associated with a significant morbidity and mortality. Bacterial meningitis requires antibiotics, as opposed to enteroviral meningitis, which only requires supportive therapy. Clinical presentation is usually not sufficient to differentiate between viral and bacterial meningitis, thereby necessitating cerebrospinal fluid (CSF) analysis by PCR and/or time-consuming bacterial cultures. However, collecting CSF in children is not always feasible and a rather invasive procedure. METHODS In 12 Belgian hospitals, we obtained acute blood samples from children with signs of meningitis (49 viral and 7 bacterial cases) (aged between 3 months and 16 years). After pathogen confirmation on CSF, the patient was asked to give a convalescent sample after recovery. 3' mRNA sequencing was performed to determine differentially expressed genes (DEGs) to create a host transcriptomic profile. RESULTS Enteroviral meningitis cases displayed the largest upregulated fold change enrichment in type I interferon production, response and signaling pathways. Patients with bacterial meningitis showed a significant upregulation of genes related to macrophage and neutrophil activation. We found several significantly DEGs between enteroviral and bacterial meningitis. Random forest classification showed that we were able to differentiate enteroviral from bacterial meningitis with an AUC of 0.982 on held-out samples. CONCLUSIONS Enteroviral meningitis has an innate immunity signature with type 1 interferons as key players. Our classifier, based on blood host transcriptomic profiles of different meningitis cases, is a possible strong alternative for diagnosing enteroviral meningitis.
Collapse
Affiliation(s)
- Esther Bartholomeus
- Center of Medical Genetics, University of Antwerp/Antwerp University Hospital, Edegem, Belgium.,AUDACIS, Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp, Antwerp, Belgium
| | - Nicolas De Neuter
- AUDACIS, Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp, Antwerp, Belgium.,Adrem Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium.,Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
| | - Annelies Lemay
- Department of Paediatrics, AZ Turnhout, Turnhout, Belgium
| | - Luc Pattyn
- Department of Paediatrics, AZ Turnhout, Turnhout, Belgium
| | - David Tuerlinckx
- Université Catholique de Louvain/CHU UCL Namur, Site Dinant, Service de Pédiatrie, Dinant, Belgium
| | - David Weynants
- Department of Paediatrics, CHU ULC Namur Ste Elisabeth, Namur, Belgium
| | - Koen Van Lede
- Department of Paediatrics, AZ Nikolaas, Sint-Niklaas, Belgium
| | - Gerlant van Berlaer
- Department of Emergency Medicine/Pediatric Care, University Hospital Brussels, Jette, Belgium
| | - Dominique Bulckaert
- Department of Emergency Medicine/Pediatric Care, University Hospital Brussels, Jette, Belgium
| | - Tine Boiy
- Department of Paediatrics, Antwerp University Hospital, Edegem, Belgium
| | | | - Marc Raes
- Department of Paediatrics, Jessa Hospital, Hasselt, Belgium
| | - Dimitri Van der Linden
- Paediatric Infectious Diseases, Department of Paediatrics, CHU ULC Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Helene Verhelst
- Department of Paediatric Rheumatology, University Hospital, Ghent, Belgium
| | | | - Tijl Jonckheer
- Department of Paediatrics, GZA Sint-Vincentius, Antwerp, Belgium
| | - Joke Dehoorne
- Department of Paediatric Rheumatology, University Hospital, Ghent, Belgium
| | - Rik Joos
- Department of Paediatric Rheumatology, University Hospital, Ghent, Belgium.,Antwerp Center for Paediatric Rheumatology and AutoInflammatory Diseases, Antwerp, Belgium
| | - Hilde Jansens
- Department of Laboratory Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Arvid Suls
- Center of Medical Genetics, University of Antwerp/Antwerp University Hospital, Edegem, Belgium.,AUDACIS, Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp, Antwerp, Belgium
| | - Pierre Van Damme
- Centre for the Evaluation of Vaccination (CEV), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- AUDACIS, Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp, Antwerp, Belgium.,Adrem Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium.,Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
| | - Geert Mortier
- Center of Medical Genetics, University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| | - Pieter Meysman
- AUDACIS, Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp, Antwerp, Belgium.,Adrem Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium.,Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
| | - Benson Ogunjimi
- AUDACIS, Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp, Antwerp, Belgium. .,Department of Paediatrics, Antwerp University Hospital, Edegem, Belgium. .,Antwerp Center for Paediatric Rheumatology and AutoInflammatory Diseases, Antwerp, Belgium. .,Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium. .,Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, 00323/8213251, Antwerp, Belgium. .,Department of Pediatrics, University Hospital Brussels, Jette, Belgium.
| |
Collapse
|
22
|
Liba Z, Nohejlova H, Capek V, Krsek P, Sediva A, Kayserova J. Utility of chemokines CCL2, CXCL8, 10 and 13 and interleukin 6 in the pediatric cohort for the recognition of neuroinflammation and in the context of traditional cerebrospinal fluid neuroinflammatory biomarkers. PLoS One 2019; 14:e0219987. [PMID: 31356620 PMCID: PMC6663008 DOI: 10.1371/journal.pone.0219987] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The recognition of active inflammation in the central nervous system (CNS) in the absence of infectious agents is challenging. The present study aimed to determine the diagnostic relevance of five selected chemo/cytokines in the recognition of CNS inflammation and in the context of traditional cerebrospinal fluid (CSF) biomarkers (white blood cell [WBC] counts, oligoclonal bands, protein levels, CSF/serum albumin ratios) and clinical diagnoses. METHODS C-C and C-X-C motif ligands (CCL2, CXCL8, 10 and 13) and interleukin (IL) 6 levels in the CSF and serum from 37 control and 87 symptomatic children with ten different (mostly noninfectious) inflammatory CNS disorders (16 of which had follow-up samples after recovery) were determined using Luminex multiple bead technology and software. Nonparametric tests were used; p < 0.05 was considered statistically significant. Receiver operating characteristic curves were constructed to analyze controls and 1) all symptomatic samples or 2) symptomatic samples without CSF pleocytosis. RESULTS Compared with the control CSF samples, levels of all investigated chemo/cytokines were increased in symptomatic CSF samples, and only IL-6 remained elevated in recovery samples (p ≤ 0.001). CSF CXCL-13 levels (> 10.9 pg/mL) were the best individual discriminatory criterion to differentiate neuroinflammation (specificity/sensitivity: 97/72% and 97/61% for samples without pleocytosis), followed by CSF WBC counts (specificity/sensitivity: 97/62%). The clinical utility of the remaining CSF chemo/cytokine levels was determined in descending order of sensitivities corresponding to thresholds that ensured 97% specificity for neuroinflammation in samples without pleocytosis (pg/mL; sensitivity %): IL-6 (3.8; 34), CXCL8 (32; 26), CXCL10 (317; 24) and CCL2 (387; 10). Different diagnosis-related patterns of CSF chemo/cytokines were observed. CONCLUSIONS The increased CSF level of CXCL13 was the marker with the greatest predictive utility for the general recognition of neuroinflammation among all of the individually investigated biomarkers. The potential clinical utility of chemo/cytokines in the differential diagnosis of neuroinflammatory diseases was identified.
Collapse
Affiliation(s)
- Zuzana Liba
- Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- * E-mail:
| | - Hana Nohejlova
- Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Vaclav Capek
- Bioinformatics Centre, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Pavel Krsek
- Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jana Kayserova
- Department of Immunology, 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
23
|
Myeloid-Related Protein 8/14 Participates in the Progression of Experimental Pneumococcal Meningitis by Augmentation of Inflammation. J Mol Neurosci 2019; 68:631-639. [PMID: 31049785 DOI: 10.1007/s12031-019-01314-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/25/2019] [Indexed: 10/26/2022]
Abstract
It has been reported that myeloid-related protein 8/14 (MRP8/14) participates in the progression of inflammation after release from neutrophils and monocytes. This study aimed to clarify the mechanism(s) of the MRP8/14-augmented inflammatory response in mice with pneumococcal meningitis. Streptococcus pneumoniae (SP) meningitis was established by intracerebral injection of SP suspension. Balb/c mice were randomly divided into four groups and received the following injections: phosphate-buffer saline (PBS), MRP8/14 alone, SP alone, and SP plus MRP8/14. At 6 h, 24 h and 48 h postinfection, the clinical disease status was measured by the modified neurological severity score test, body weight loss and degree of cerebral edema; mice were anaesthetized, blood samples and brain samples were collected and brain inflammation was detected by haematoxylin and eosin (HE) staining; tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), C-reactive protein (CRP) and monocyte chemoattractant protein-1 (MCP-1) levels in serum and brain homogenates were assessed by an enzyme-linked immunosorbent assay (ELISA), and the mRNA levels of the above cytokines in brain homogenates were measured by polymerase chain reaction (PCR); and the expression of nuclear factor-kappa B (NF-κB) p65 in brain tissues was determined by immunohistochemical assay. In this study, we identified that MRP8/14 substantially augmented the SP-stimulated inflammatory response, aggravated clinical disease status and exacerbated SP-induced brain edema in a murine model of pneumococcal meningitis. Exogenous administration of MRP8/14 significantly enhanced mRNA and protein expression of the proinflammatory cytokines and chemokines TNF-α, CRP, IL-6 and MCP-1 in brain homogenates and serum from mice with pneumococcal meningitis, which may be related to the NF-κB signalling pathway. We further found that MRP8/14 strongly augmented SP-induced phosphorylation of NF-κB p65 in brain tissue slices from the same model. In conclusion, our results indicated that MRP8/14 augmented the inflammatory response in mice with pneumococcal meningitis and contributed to the development of disease, which was probably through NF-κB signalling pathway activation.
Collapse
|
24
|
Mihret W, Sletbakk Brusletto B, Øvstebø R, Siebke Troseid AM, Norheim G, Merid Y, Kassu A, Abebe W, Ayele S, Silamsaw Asres M, Yamuah L, Aseffa A, Petros B, Caugant DA, Brandtzaeg P. Molecular studies of meningococcal and pneumococcal meningitis patients in Ethiopia. Innate Immun 2019; 25:158-167. [PMID: 30894090 PMCID: PMC6830936 DOI: 10.1177/1753425918806363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 02/05/2023] Open
Abstract
Neisseria meningitidis infections in sub-Saharan Africa usually present with distinct symptoms of meningitis but very rarely as fulminant septicemia when reaching hospitals. In Europe, development of persistent meningococcal shock and multiple organ failure occurs in up to 30% of patients and is associated with a bacterial load of >106/ml plasma or serum. We have prospectively studied 27 Ethiopian patients with meningococcal infection as diagnosed and quantified with real-time PCR in the cerebrospinal fluid (CSF) and serum. All presented with symptoms of meningitis and none with fulminant septicemia. The median N. meningitidis copy number (NmDNA) in serum was < 3.5 × 103/ml, never exceeded 1.8 × 105/ml, and was always 10-1000 times higher in CSF than in serum. The levels of LPS in CSF as determined by the limulus amebocyte lysate assay were positively correlated to NmDNA copy number ( r = 0.45, P = 0.030), levels of IL-1 receptor antagonist, ( r = 0.46, P = 0.017), and matrix metallopeptidase-9 (MMP-9; r = 0.009). We also compared the inflammatory profiles of 19 mediators in CSF of the 26 meningococcal patients (2 died and 2 had immediate severe sequelae) with 16 patients with Streptococcus pneumoniae meningitis (3 died and 3 with immediate severe sequelae). Of 19 inflammatory mediators tested, 9 were significantly higher in patients with pneumococcal meningitis and possibly linked to worse outcome.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Child
- Child, Preschool
- Cytokines/genetics
- Cytokines/metabolism
- DNA, Bacterial/blood
- DNA, Bacterial/cerebrospinal fluid
- Epidemics
- Ethiopia/epidemiology
- Female
- Humans
- Infant
- Inflammation Mediators/metabolism
- Male
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Meningitis, Meningococcal/epidemiology
- Meningitis, Meningococcal/immunology
- Meningitis, Meningococcal/mortality
- Meningitis, Pneumococcal/epidemiology
- Meningitis, Pneumococcal/immunology
- Meningitis, Pneumococcal/mortality
- Middle Aged
- Neisseria meningitidis/physiology
- Pathology, Molecular
- Prospective Studies
- Sepsis
- Streptococcus pneumoniae/physiology
- Survival Analysis
- Young Adult
Collapse
Affiliation(s)
- Wude Mihret
- Department of Microbial and Cellular Molecular Biology, Addis
Ababa University, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Reidun Øvstebø
- Department of Clinical Chemistry, Oslo University Hospital,
Norway
| | | | | | | | | | | | - Samuel Ayele
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Dominique A. Caugant
- Institute of Public Health, Oslo, Norway
- Institute of Public Health and Society, University of Oslo,
Norway
| | - Petter Brandtzaeg
- Department of Clinical Chemistry, Oslo University Hospital,
Norway
- Department of Pediatrics, Oslo University Hospital, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University
of Oslo, Norway
| |
Collapse
|
25
|
Thorsdottir S, Henriques-Normark B, Iovino F. The Role of Microglia in Bacterial Meningitis: Inflammatory Response, Experimental Models and New Neuroprotective Therapeutic Strategies. Front Microbiol 2019; 10:576. [PMID: 30967852 PMCID: PMC6442515 DOI: 10.3389/fmicb.2019.00576] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
Microglia have a pivotal role in the pathophysiology of bacterial meningitis. The goal of this review is to provide an overview on how microglia respond to bacterial pathogens targeting the brain, how the interplay between microglia and bacteria can be studied experimentally, and possible ways to use gained knowledge to identify novel preventive and therapeutic strategies. We discuss the dual role of microglia in disease development, the beneficial functions crucial for bacterial clearing, and the destructive properties through triggering neuroinflammation, characterized by cytokine and chemokine release which leads to leukocyte trafficking through the brain vascular endothelium and breakdown of the blood-brain barrier integrity. Due to intrinsic complexity of microglia and up until recently lack of specific markers, the study of microglial response to bacterial pathogens is challenging. New experimental models and techniques open up possibilities to accelerate progress in the field. We review existing models and discuss possibilities and limitations. Finally, we summarize recent findings where bacterial virulence factors are identified to be important for the microglial response, and how manipulation of evoked responses could be used for therapeutic or preventive purposes. Among promising approaches are: modulations of microglia phenotype switching toward anti-inflammatory and phagocytic functions, the use of non-bacterolytic antimicrobials, preventing release of bacterial components into the neural milieu and consequential amplification of immune activation, and protection of the blood-brain barrier integrity.
Collapse
Affiliation(s)
- Sigrun Thorsdottir
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Singapore Centre for Environmental Life Sciences Engineering (SCELSE) and Lee Kong Chian School of Medicine (LKC), Nanyang Technological University (NTU), Singapore, Singapore
| | - Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
26
|
Basic Concept of Microglia Biology and Neuroinflammation in Relation to Psychiatry. Curr Top Behav Neurosci 2019; 44:9-34. [PMID: 30739307 DOI: 10.1007/7854_2018_83] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hypothesis that the neuroimmune system plays a role in the pathogenesis of different psychiatric disorders, including schizophrenia, depression, and bipolar disease, has attained increasing interest over the past years. Previously thought to have the sole purpose of protecting the central nervous system (CNS) from harmful stimuli, it is now known that the central immune system is critically involved in regulating physiological processes including neurodevelopment, synaptic plasticity, and circuit maintenance. Hence, alterations in microglia - the main immune cell of the CNS - and/or inflammatory factors do not unequivocally connote ongoing neuroinflammation or neuroinflammatory processes per se but rather might signify changes in brain homoeostasis. Despite this, psychiatric research tends to equate functional changes in microglia or alterations in other immune mediators with neuroinflammation. It is the main impetus of this chapter to overcome some of the current misconceptions and possible oversimplifications with respect to neuroinflammation and microglia activity in psychiatry. In order to do so, we will first provide an overview of the basic concepts of neuroinflammation and neuroinflammatory processes. We will then focus on microglia with respect to their ontogeny and immunological and non-immunological functions presenting novel insights on how microglia communicate with other cell types of the central nervous system to ensure proper brain functioning. And lastly, we will delineate the non-immunological functions of inflammatory cytokines in order to address the possible misconception of equating alterations in central cytokine levels with ongoing central inflammation. We hereby hope to help unravel the functional relevance of neuroimmune dysfunctions in psychiatric illnesses and provide future research directions in the field of psychoneuroimmunology.
Collapse
|
27
|
Blood‒Brain Barrier Pathology and CNS Outcomes in Streptococcus pneumoniae Meningitis. Int J Mol Sci 2018; 19:ijms19113555. [PMID: 30423890 PMCID: PMC6275034 DOI: 10.3390/ijms19113555] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae is a major meningitis-causing pathogen globally, bringing about significant morbidity and mortality, as well as long-term neurological sequelae in almost half of the survivors. Subsequent to nasopharyngeal colonisation and systemic invasion, translocation across the blood‒brain barrier (BBB) by S. pneumoniae is a crucial early step in the pathogenesis of meningitis. The BBB, which normally protects the central nervous system (CNS) from deleterious molecules within the circulation, becomes dysfunctional in S. pneumoniae invasion due to the effects of pneumococcal toxins and a heightened host inflammatory environment of cytokines, chemokines and reactive oxygen species intracranially. The bacteria‒host interplay within the CNS likely determines not only the degree of BBB pathological changes, but also host survival and the extent of neurological damage. This review explores the relationship between S. pneumoniae bacteria and the host inflammatory response, with an emphasis on the BBB and its roles in CNS protection, as well as both the acute and long-term pathogenesis of meningitis.
Collapse
|
28
|
Fortuna D, Hooper DC, Roberts AL, Harshyne LA, Nagurney M, Curtis MT. Potential role of CSF cytokine profiles in discriminating infectious from non-infectious CNS disorders. PLoS One 2018; 13:e0205501. [PMID: 30379898 PMCID: PMC6209186 DOI: 10.1371/journal.pone.0205501] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
Current laboratory testing of cerebrospinal fluid (CSF) does not consistently discriminate between different central nervous system (CNS) disease states. Rapidly distinguishing CNS infections from other brain and spinal cord disorders that share a similar clinical presentation is critical. New approaches focusing on aspects of disease biology, such as immune response profiles that can have stimulus-specific attributes, may be helpful. We undertook this preliminary proof-of-concept study using multiplex ELISA to measure CSF cytokine levels in various CNS disorders (infections, autoimmune/demyelinating diseases, lymphomas, and gliomas) to determine the potential utility of cytokine patterns in differentiating CNS infections from other CNS diseases. Both agglomerative hierarchical clustering and mixture discriminant analyses revealed grouping of CNS disease types based on cytokine expression. To further investigate the ability of CSF cytokine levels to distinguish various CNS disease states, non-parametric statistical analysis was performed. Mann-Whitney test analysis demonstrated that CNS infections are characterized by significantly higher CSF lP-10/CXCL10 levels than the pooled non-infectious CNS disorders (p = 0.0001). Within the infection group, elevated levels of MDC/CCL22 distinguished non-viral from viral infections (p = 0.0048). Each disease group of the non-infectious CNS disorders independently showed IP-10/CXCL10 levels that are significantly lower than the infection group [(autoimmune /demyelinating disorders (p = 0.0005), lymphomas (p = 0.0487), gliomas (p = 0.0294), and controls (p = 0.0001)]. Additionally, of the non-infectious diseases, gliomas can be distinguished from lymphomas by higher levels of GRO/CXCL1 (p = 0.0476), IL-7 (p = 0.0119), and IL-8 (p = 0.0460). Gliomas can also be distinguished from autoimmune/demyelinating disorders by higher levels of GRO/CXCL1 (p = 0.0044), IL-7 (p = 0.0035) and IL-8 (p = 0.0176). Elevated CSF levels of PDGF-AA distinguish lymphomas from autoimmune/demyelinating cases (p = 0.0130). Interrogation of the above comparisons using receiver operator characteristic analysis demonstrated area under the curve (AUC) values (ranging from 0.8636–1.0) that signify good to excellent utility as potential diagnostic discriminators. In conclusion, our work indicates that upon formal validation, measurement of CSF cytokine levels may have clinical utility in both identifying a CNS disorder as infectious in etiology and, furthermore, in distinguishing viral from non-viral CNS infections.
Collapse
Affiliation(s)
- Danielle Fortuna
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - D. Craig Hooper
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
- Department of Cancer Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Amity L. Roberts
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Larry A. Harshyne
- Department of Cancer Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Michelle Nagurney
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Mark T. Curtis
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
29
|
Aust V, Kress E, Abraham S, Schröder N, Kipp M, Stope MB, Pufe T, Tauber SC, Brandenburg LO. Lack of chemokine (C-C motif) ligand 3 leads to decreased survival and reduced immune response after bacterial meningitis. Cytokine 2018; 111:246-254. [PMID: 30199766 DOI: 10.1016/j.cyto.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022]
Abstract
Pneumococcal meningitis, caused by Streptococcus pneumoniae, is the most common type of bacterial meningitis. The clinical management of this disease has been challenged by the emergence of multidrug-resistant Streptococcus pneumoniae, requiring the urgent development of new therapeutic alternatives. Over the course of bacterial meningitis, pathogen invasion is accompanied by a massive recruitment of peripheral immune cells, especially neutrophil granulocytes, which are recruited under the coordination of several cytokines and chemokines. Here, we used chemokine (C-C motif) ligand 3 (Ccl3)-deficient mice to investigate the functional role of CCL3 in a mouse model of pneumococcal meningitis. Following intrathecal infection with Streptococcus pneumoniae Ccl3-deficient mice presented a significantly shorter survival and higher bacterial load than wildtype mice, paralleled by an ameliorated infiltration of neutrophil granulocytes into the CNS. Blood sample analysis revealed that infected Ccl3-deficient mice showed a significant decrease in erythrocytes, hemoglobin and hematocrit as well as in the number of banded neutrophils. Moreover, infected Ccl3-deficient mice showed an altered cytokine expression profile. Glial cell activation remained unchanged in both genotypes. In summary, this study demonstrates that CCL3 is beneficial in Streptococcus pneumoniae-induced meningitis. Pharmacological modulation of the CCL3 pathways might, therefore, represent a future therapeutic option to manage Streptococcus pneumoniae meningitis.
Collapse
Affiliation(s)
- Vanessa Aust
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Eugenia Kress
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Stephanie Abraham
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Nicole Schröder
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Markus Kipp
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany; Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057 Rostock, Germany
| | - Matthias B Stope
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Simone C Tauber
- Department of Neurology, RWTH University Hospital Aachen, Germany
| | - Lars-Ove Brandenburg
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
30
|
Leucine-rich alpha-2 glycoprotein in the cerebrospinal fluid is a potential inflammatory biomarker for meningitis. J Neurol Sci 2018; 392:51-55. [PMID: 30097155 DOI: 10.1016/j.jns.2018.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/19/2018] [Accepted: 07/08/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Leucine-rich alpha-2 glycoprotein (LRG) is a novel biomarker for inflammatory diseases. We evaluated the levels of LRG, interleukin (IL)-6, and tumor necrosis factor (TNF)-α in the cerebrospinal fluid (CSF) of children with meningitis. METHODS CSF samples from 10 patients with bacterial meningitis (BM) and 10 with aseptic meningitis (AM) were evaluated. Samples from 10 patients with febrile status (FS) were used as controls. LRG levels were measured using a two-site enzyme immunoassay. IL-6 and TNF-α levels were measured using a multiplex bead-based assay. CSF examination of patients with BM at the convalescent stage was also conducted. RESULTS LRG and TNF-α levels in patients with BM, and IL-6 levels in patients with BM and AM showed significant increase compared with those in FS. Patients with BM at the convalescent stage showed significantly diminished LRG and IL-6 levels. LRG and IL-6 levels in CSF were indicated to be effective predictors for BM (LRG, AUC = 0.91; IL-6, AUC = 0.85). Only LRG levels showed a significant difference between patients with BM and AM (AUC = 0.78, P = 0.034). CONCLUSIONS LRG level could be a sensitive inflammatory biomarker for inflammatory diseases of the central nervous system, comparable with IL-6 level.
Collapse
|
31
|
Pranzatelli MR. Advances in Biomarker-Guided Therapy for Pediatric- and Adult-Onset Neuroinflammatory Disorders: Targeting Chemokines/Cytokines. Front Immunol 2018; 9:557. [PMID: 29670611 PMCID: PMC5893838 DOI: 10.3389/fimmu.2018.00557] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/05/2018] [Indexed: 12/26/2022] Open
Abstract
The concept and recognized components of “neuroinflammation” are expanding at the intersection of neurobiology and immunobiology. Chemokines (CKs), no longer merely necessary for immune cell trafficking and positioning, have multiple physiologic, developmental, and modulatory functionalities in the central nervous system (CNS) through neuron–glia interactions and other mechanisms affecting neurotransmission. They issue the “help me” cry of neurons and astrocytes in response to CNS injury, engaging invading lymphoid cells (T cells and B cells) and myeloid cells (dendritic cells, monocytes, and neutrophils) (adaptive immunity), as well as microglia and macrophages (innate immunity), in a cascade of events, some beneficial (reparative), others destructive (excitotoxic). Human cerebrospinal fluid (CSF) studies have been instrumental in revealing soluble immunobiomarkers involved in immune dysregulation, their dichotomous effects, and the cells—often subtype specific—that produce them. CKs/cytokines continue to be attractive targets for the pharmaceutical industry with varying therapeutic success. This review summarizes the developing armamentarium, complexities of not compromising surveillance/physiologic functions, and insights on applicable strategies for neuroinflammatory disorders. The main approach has been using a designer monoclonal antibody to bind directly to the chemo/cytokine. Another approach is soluble receptors to bind the chemo/cytokine molecule (receptor ligand). Recombinant fusion proteins combine a key component of the receptor with IgG1. An additional approach is small molecule antagonists (protein therapeutics, binding proteins, and protein antagonists). CK neutralizing molecules (“neutraligands”) that are not receptor antagonists, high-affinity neuroligands (“decoy molecules”), as well as neutralizing “nanobodies” (single-domain camelid antibody fragment) are being developed. Simultaneous, more precise targeting of more than one cytokine is possible using bispecific agents (fusion antibodies). It is also possible to inhibit part of a signaling cascade to spare protective cytokine effects. “Fusokines” (fusion of two cytokines or a cytokine and CK) allow greater synergistic bioactivity than individual cytokines. Another promising approach is experimental targeting of the NLRP3 inflammasome, amply expressed in the CNS and a key contributor to neuroinflammation. Serendipitous discovery is not to be discounted. Filling in knowledge gaps between pediatric- and adult-onset neuroinflammation by systematic collection of CSF data on CKs/cytokines in temporal and clinical contexts and incorporating immunobiomarkers in clinical trials is a challenge hereby set forth for clinicians and researchers.
Collapse
Affiliation(s)
- Michael R Pranzatelli
- National Pediatric Neuroinflammation Organization, Inc., Orlando, FL, United States.,College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
32
|
|
33
|
|
34
|
The Severity of Infection Determines the Localization of Damage and Extent of Sensorineural Hearing Loss in Experimental Pneumococcal Meningitis. J Neurosci 2017; 36:7740-9. [PMID: 27445150 DOI: 10.1523/jneurosci.0554-16.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Hearing loss is an important sequela of pneumococcal meningitis (PM), occurring in up to 30% of survivors. The role of the severity of infection on hearing function and pathomorphological consequences in the cochlea secondary to PM have not been investigated to date. Using a well-established model of PM, we systematically investigated the functional hearing outcome and the long-term fate of neurosensory cells in the cochlea, i.e., hair cells and spiral ganglion neurons (SGNs), with a focus on their tonotopic distribution. Intracisternal infection of infant rats with increasing inocula of Streptococcus pneumoniae resulted in a dose-dependent increase in CSF levels of interleukin-1β, interleukin-6, tumor necrosis factor α, interleukin-10, and interferon-γ in acute disease. The severity of long-term hearing loss at 3 weeks after infection, measured by auditory brainstem response recordings, correlated to the initial inoculum dose and to the levels of proinflammatory cytokines determined in the acute phase of PM. Quantitative cochlear histomorphology revealed a significant loss of SGNs and outer hair cells that strongly correlated to the level of infection, with the most severe damage occurring in the basal part of the cochlea. Inner hair cells (IHCs) were not significantly affected throughout the entire cochlea. However, surviving IHCs lost synaptic connectivity to remaining SGNs in all cochlear regions. These findings provide evidence that the inoculum concentration, i.e., severity of infection, is the major determinant of long-term morphological cell pathologies in the cochlea and functional hearing loss. SIGNIFICANCE STATEMENT Hearing loss is a neurofunctional deficit occurring in up to 30% of patients surviving pneumococcal meningitis (PM). Here, we analyze the correlation between the severity of infection and the inflammatory response in the CSF, the tonotopic distribution of neurosensory pathologies in the cochlea, and the long-term hearing function in a rat model of pneumococcal meningitis. Our study identifies the severity of infection as the key determinant of long-term hearing loss, underlining the importance of the prompt institution of antibiotic therapy in patients suffering from PM. Furthermore, our findings reveal in detail the spatial loss of cochlear neurosensory cells, providing new insights into the pathogenesis of meningitis-associated hearing loss that reveal new starting points for the development of otoprotective therapies.
Collapse
|
35
|
Johswich K. Innate immune recognition and inflammation in Neisseria meningitidis infection. Pathog Dis 2017; 75:3059204. [PMID: 28334203 DOI: 10.1093/femspd/ftx022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/23/2017] [Indexed: 01/01/2023] Open
Abstract
Neisseria meningitidis (Nme) can cause meningitis and sepsis, diseases which are characterised by an overwhelming inflammatory response. Inflammation is triggered by host pattern recognition receptors (PRRs) which are activated by pathogen-associated molecular patterns (PAMPs). Nme contains multiple PAMPs including lipooligosaccharide, peptidoglycan, proteins and metabolites. Various classes of PRRs including Toll-like receptors, NOD-like receptors, C-type lectins, scavenger receptors, pentraxins and others are expressed by the host to respond to any given microbe. While Toll-like receptors and NOD-like receptors are pivotal in triggering inflammation, other PRRs act as modulators of inflammation or aid in functional antimicrobial responses such as phagocytosis or complement activation. This review aims to give an overview of the various Nme PAMPs reported to date, the PRRs they activate and their implications during the inflammatory response to infection.
Collapse
|
36
|
Perny M, Solyga M, Grandgirard D, Roccio M, Leib SL, Senn P. Streptococcus pneumoniae-induced ototoxicity in organ of Corti explant cultures. Hear Res 2017; 350:100-109. [PMID: 28460251 DOI: 10.1016/j.heares.2017.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/11/2017] [Accepted: 04/23/2017] [Indexed: 12/20/2022]
Abstract
Hearing loss remains the most common long-term complication of pneumococcal meningitis (PM) reported in up to 30% of survivors. Streptococcus pneumoniae have been shown to possess different ototoxic properties. Here we present a novel ex vivo experimental setup to examine in detail the pattern of hair cell loss upon exposure to different S. pneumoniae strains, therefore recapitulating pathogen derived aspects of PM-induced hearing loss. Our results show a higher susceptibility towards S. pneumoniae-induced cochlear damage for outer hair cells (OHC) compared to inner hair cells (IHC), which is consistent with in vivo data. S. pneumoniae-induced hair cell loss was both time and dose-dependent. Moreover, we have found significant differences in the level of cell damage between tissue from the basal and the apical turns. This shows that the higher vulnerability of hair cells located at high frequency regions observed in vivo cannot be explained solely by the spatial organisation and bacterial infiltration from the basal portion of the cochlea. Using a wild type D39 strain and a mutant defective for the pneumolysin (PLY) gene, we also have shown that the toxin PLY is an important factor involved in ototoxic damages. The obtained results indicate that PLY can cause both IHC and OHC loss. Finally, we are reporting here for the first time a higher vulnerability of HC located at the basal and middle cochlear region to pneumolysin-induced damage. The detailed description of the susceptibility of hair cells to Streptococcus pneumoniae provided in this report can in the future determine the choice and the development of novel otoprotective therapies during pneumococcal meningitis.
Collapse
Affiliation(s)
- Michael Perny
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Switzerland; Inner Ear Research Laboratory, Department of Otorhinolaryngology, Head& Neck Surgery, Inselspital Bern and Department of Clinical Research, University of Bern, Switzerland; Cluster for Regenerative Neuroscience, Department of Clinical Research, University of Bern, Switzerland
| | - Magdalena Solyga
- Inner Ear Research Laboratory, Department of Otorhinolaryngology, Head& Neck Surgery, Inselspital Bern and Department of Clinical Research, University of Bern, Switzerland; Cluster for Regenerative Neuroscience, Department of Clinical Research, University of Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Switzerland; Cluster for Regenerative Neuroscience, Department of Clinical Research, University of Bern, Switzerland
| | - Marta Roccio
- Inner Ear Research Laboratory, Department of Otorhinolaryngology, Head& Neck Surgery, Inselspital Bern and Department of Clinical Research, University of Bern, Switzerland; Cluster for Regenerative Neuroscience, Department of Clinical Research, University of Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Switzerland; Cluster for Regenerative Neuroscience, Department of Clinical Research, University of Bern, Switzerland.
| | - Pascal Senn
- Inner Ear Research Laboratory, Department of Otorhinolaryngology, Head& Neck Surgery, Inselspital Bern and Department of Clinical Research, University of Bern, Switzerland; Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Geneva (HUG), Genève, Switzerland; Cluster for Regenerative Neuroscience, Department of Clinical Research, University of Bern, Switzerland.
| |
Collapse
|
37
|
TIGR4 strain causes more severe disease than WU2 strain in a mouse model of Streptococcus pneumoniae meningitis: a common pathogenic role for interferon-γ. Microbes Infect 2017; 19:413-421. [PMID: 28438705 DOI: 10.1016/j.micinf.2017.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 01/08/2023]
Abstract
Streptococcus pneumoniae (S. pneumoniae) meningitis causes debilitating neurological symptoms and acute fatalities in patients, and long-term neurological sequelae in some survivors. Current vaccines do not protect against all 94 known S. pneumoniae capsular serotypes, many of which are capable of causing pneumococcal meningitis (PM). We here compare the pathogenic outcomes of two clinically virulent isolates of S. pneumoniae, serotype 3 strain WU2 and serotype 4 strain TIGR4, in a murine model of PM. At an identical infectious dosage of 103 CFU administered via the intracerebroventricular route, significantly greater mortality, interleukin (IL)1β and IL6 production, and blood-brain barrier dysfunction occurred in TIGR4-induced PM compared to PM caused by WU2. Higher bacterial counts in the cerebrospinal fluid and nitrite/nitrate in serum were observed 40 h post inoculation with TIGR4 compared to mice infected with WU2. Similar to our previous findings in WU2 PM, interferon-γ was an essential driver of the pathogenesis of TIGR4 PM, suggesting that this cytokine may be a common pathogenic agent across a range of pneumococcal meningitides and, thus, a potential therapeutic target for intervention.
Collapse
|
38
|
Ribes S, Nessler S, Heide EC, Malzahn D, Perske C, Brück W, Nau R. The Early Adaptive Immune Response in the Pathophysiological Process of Pneumococcal Meningitis. J Infect Dis 2016; 215:150-158. [PMID: 27803171 DOI: 10.1093/infdis/jiw517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/20/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The adaptive immune system has been considered to play a minimal role in the early host response during bacterial meningitis. METHODS We investigated the progression and outcome of pneumococcal meningitis in Rag1-/- mice lacking functional B and T cells by assessing overall and symptom-free survival, bacteriological and histological studies, as well as flow cytometry and measurements of proinflammatory mediators. RESULTS The intracerebral injection of S. pneumoniae D39 induced the recruitment of B and T cells (CD4+, γδ and natural killer) into the brain of wild-type mice. Mice with no functional B and T cells developed clinical symptoms and succumbed to the infection earlier than the wild-type group. In the CNS, Rag1-/- mice showed lower levels of interleukin 1β, reduced microglial proliferation, and impaired granulocyte recruitment with an earlier spread of pneumococci into the bloodstream, compared with wild-type mice. Lack of B and T cells resulted in a severe impairment of bacterial clearance in blood, spleen, and liver and an exaggerated systemic inflammatory response. CONCLUSIONS B and T cells are important effector cells delaying the spread of pneumococci from the brain to the systemic circulation and shaping the immune response, thereby prolonging the survival of the host in the absence of antibiotic treatment.
Collapse
Affiliation(s)
- Sandra Ribes
- Institute of Neuropathology, University Medical Center Göttingen, Georg-August University
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, Georg-August University
| | - Ev-Christin Heide
- Institute of Neuropathology, University Medical Center Göttingen, Georg-August University
| | - Dörthe Malzahn
- Department of Genetic Epidemiology, University Medical Center Göttingen, Georg-August University
| | - Christina Perske
- Institute of Pathology, University Medical Center Göttingen, Georg-August University
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen, Georg-August University
| | - Roland Nau
- Institute of Neuropathology, University Medical Center Göttingen, Georg-August University.,Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Germany
| |
Collapse
|
39
|
Free Sialic Acid Acts as a Signal That Promotes Streptococcus pneumoniae Invasion of Nasal Tissue and Nonhematogenous Invasion of the Central Nervous System. Infect Immun 2016; 84:2607-15. [PMID: 27354445 DOI: 10.1128/iai.01514-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/18/2016] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a leading cause of bacterial meningitis and neurological sequelae in children worldwide. Acute bacterial meningitis is widely considered to result from bacteremia that leads to blood-brain barrier breakdown and bacterial dissemination throughout the central nervous system (CNS). Previously, we showed that pneumococci can gain access to the CNS through a nonhematogenous route without peripheral blood infection. This access is thought to occur when the pneumococci in the upper sinus follow the olfactory nerves and enter the CNS through the olfactory bulbs. In this study, we determined whether the addition of exogenous sialic acid postcolonization promotes nonhematogenous invasion of the CNS. Previously, others showed that treatment with exogenous sialic acid post-pneumococcal infection increased the numbers of CFU recovered from an intranasal mouse model of infection. Using a pneumococcal colonization model, an in vivo imaging system, and a multiplex assay for cytokine expression, we demonstrated that sialic acid can increase the number of pneumococci recovered from the olfactory bulbs and brains of infected animals. We also show that pneumococci primarily localize to the olfactory bulb, leading to increased expression levels of proinflammatory cytokines and chemokines. These findings provide evidence that sialic acid can enhance the ability of pneumococci to disseminate into the CNS and provide details about the environment needed to establish nonhematogenous pneumococcal meningitis.
Collapse
|
40
|
Ribes S, Abdullah MR, Saleh M, Hanisch UK, Nau R, Hammerschmidt S. Thioredoxins and Methionine Sulfoxide Reductases in the Pathophysiology of Pneumococcal Meningitis. J Infect Dis 2016; 214:953-61. [DOI: 10.1093/infdis/jiw268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/23/2016] [Indexed: 11/13/2022] Open
|
41
|
Barichello T, Simões LR, Generoso JS, Sharin VS, Souza LB, Jornada LK, Dominguini D, Valvassori SS, Teixeira AL, Quevedo J. Depression-Like Adult Behaviors may be a Long-Term Result of Experimental Pneumococcal Meningitis in Wistar Rats Infants. Neurochem Res 2016; 41:2771-2778. [PMID: 27364961 DOI: 10.1007/s11064-016-1992-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 01/17/2023]
Abstract
Pneumococcal meningitis is a life-threatening infection of the central nervous system (CNS) with a high mortality rate. In addition to causing severe neurological sequelae infectious diseases of the CNS can play a significant role in the pathogenesis of neuropsychiatric disorders. In this study infant Wistar rats, postnatal day 11, received intracerebroventricular (i.c.v.) either artificial cerebrospinal fluid (CSF) or a Streptococcus pneumoniae suspension to a concentration of 1 × 106 colony-forming units (CFU). 18 h later animals received antibiotic treatment as usual during 7 days. On postnatal day 46, the animals received imipramine intraperitoneal (i.p.) or sterile NaCl during 14 days (postnatal days 46-60). Then, on postnatal days 59-60 we evaluated the consumption of sweet food (an index of anhedonia). On postnatal day 60 the animals were submitted to the forced swimming task. 60 min after this task the animals were decapitated and the blood was collected to evaluate adrenocorticotropic hormone (ACTH) and corticosterone. Immediately after blood collection the hippocampus was removed to evaluate brain-derived neurotropic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). The meningitis group exhibited depressive-like behavior as evidenced by decreased sucrose intake and increased immobility time in the forced swimming task, and BDNF and GDNF decrease in the hippocampus. ACTH levels were increased in the blood. Imipramine treatment reversed depressive-like behaviors, re-established hippocampal BDNF and GDNF expression, and normalized ACTH levels in the blood. Here we demonstrate that meningitis during early life period can trigger depressive-like behavior in adult life of rats.
Collapse
Affiliation(s)
- Tatiana Barichello
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil. .,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA. .,Department of Psychiatry and Behavioral Sciences, Center of Excellence on Mood Disorders, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Suite 3140, Houston, TX, 77054, USA. .,Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.
| | - Lutiana R Simões
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jaqueline S Generoso
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Vladislav S Sharin
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Lucas B Souza
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Luciano K Jornada
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Diogo Dominguini
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Samira S Valvassori
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Antônio Lucio Teixeira
- Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Department of Psychiatry and Behavioral Sciences, Center of Excellence on Mood Disorders, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Suite 3140, Houston, TX, 77054, USA.,Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
42
|
Doran KS, Fulde M, Gratz N, Kim BJ, Nau R, Prasadarao N, Schubert-Unkmeir A, Tuomanen EI, Valentin-Weigand P. Host-pathogen interactions in bacterial meningitis. Acta Neuropathol 2016; 131:185-209. [PMID: 26744349 PMCID: PMC4713723 DOI: 10.1007/s00401-015-1531-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 12/26/2022]
Abstract
Bacterial meningitis is a devastating disease occurring worldwide with up to half of the survivors left with permanent neurological sequelae. Due to intrinsic properties of the meningeal pathogens and the host responses they induce, infection can cause relatively specific lesions and clinical syndromes that result from interference with the function of the affected nervous system tissue. Pathogenesis is based on complex host–pathogen interactions, some of which are specific for certain bacteria, whereas others are shared among different pathogens. In this review, we summarize the recent progress made in understanding the molecular and cellular events involved in these interactions. We focus on selected major pathogens, Streptococcus pneumonia, S. agalactiae (Group B Streptococcus), Neisseria meningitidis, and Escherichia coli K1, and also include a neglected zoonotic pathogen, Streptococcus suis. These neuroinvasive pathogens represent common themes of host–pathogen interactions, such as colonization and invasion of mucosal barriers, survival in the blood stream, entry into the central nervous system by translocation of the blood–brain and blood–cerebrospinal fluid barrier, and induction of meningeal inflammation, affecting pia mater, the arachnoid and subarachnoid spaces.
Collapse
|
43
|
Perdomo-Celis F, Torres MA, Ostos H, Gutierrez-Achury J, Molano V, Durán LF, González G, Narváez CF. Patterns of Local and Systemic Cytokines in Bacterial Meningitis and its Relation with Severity and Long-Term Sequelae. Biomark Insights 2015; 10:125-31. [PMID: 26715831 PMCID: PMC4687976 DOI: 10.4137/bmi.s35005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 12/20/2022] Open
Abstract
Bacterial meningitis (BM) is a pyogenic infection present in the subarachnoid space, potentially fatal and frequently associated with neurological sequelae. During BM, cytokines (CTs) are locally produced. We sought to determine the CTs' clinical role as disease severity predictors in adults, which is not completely clear. Using a bead-based flow cytometric assay, levels of six CTs were determined in cerebrospinal fluid (CSF) and plasma from 18 adult BM patients and 19 uninfected controls. Long-term neurological sequelae were evaluated using the Glasgow Outcome Scale (GOS). All evaluated CTs were higher in CSF than in plasma, and the levels of CSF interleukin (IL)-6, IL-8, IL-10, IL-1β, and tumor necrosis factor-α and plasma IL-10 and IL-12p70 were significantly higher in patients with severe sepsis than with sepsis, suggesting an association with clinical severity. There was a strong negative correlation between CSF IL-6 and plasma IL-12p70 with GOS score, supporting the possible role of these CTs in the development of neurological long-term sequelae. These findings could be helpful to identify candidates to receive neuroprotective treatments and early physiotherapy schemes.
Collapse
Affiliation(s)
| | - Miguel A. Torres
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia
- Departamento de Medicina Interna, Hospital Universitario de Neiva, Colombia
| | - Henry Ostos
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia
| | | | - Víctor Molano
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia
- Departamento de Medicina Interna, Hospital Universitario de Neiva, Colombia
| | - Luis F. Durán
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia
- Departamento de Medicina Interna, Hospital Universitario de Neiva, Colombia
| | - Guillermo González
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia
- Departamento de Medicina Interna, Hospital Universitario de Neiva, Colombia
| | - Carlos F. Narváez
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia
| |
Collapse
|
44
|
Pettini E, Fiorino F, Cuppone AM, Iannelli F, Medaglini D, Pozzi G. Interferon-γ from Brain Leukocytes Enhances Meningitis by Type 4 Streptococcus pneumoniae. Front Microbiol 2015; 6:1340. [PMID: 26648922 PMCID: PMC4664635 DOI: 10.3389/fmicb.2015.01340] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/16/2015] [Indexed: 11/29/2022] Open
Abstract
Streptococcus pneumoniae is the leading cause of bacterial meningitis. Pneumococcal meningitis is a life-threatening disease with high rates of mortality and neurological sequelae. Immune targeting of S. pneumoniae is essential for clearance of infection; however, within the brain, the induced inflammatory response contributes to pathogenesis. In this study we investigate the local inflammatory response and the role of IFN-γ in a murine model of pneumococcal meningitis induced by intracranial injection of type 4 S. pneumoniae. Lymphoid and myeloid cell populations involved in meningitis, as well as cytokine gene expression, were investigated after infection. Animals were treated with a monoclonal antibody specific for murine IFN-γ to evaluate its role in animal survival. Intracranial inoculation of 3 × 104 colony-forming units of type 4 strain TIGR4 caused 75% of mice to develop meningitis within 4 days. The amount of lymphocytes, NK cells, neutrophils, monocytes and macrophages in the brain increased 48 h post infection. IFN-γ mRNA levels were about 240-fold higher in brains of infected mice compared to controls. Pro-inflammatory cytokines such as IL-1β and TNF-α, and TLR2 were also upregulated. In vivo treatment with anti-IFN-γ antibody increased survival of infected mice. This study shows that IFN-γ produced during meningitis by type 4 S. pneumoniae enhances bacterial pathogenesis exerting a negative effect on the disease outcome.
Collapse
Affiliation(s)
- Elena Pettini
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Siena, Italy
| | - Fabio Fiorino
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Siena, Italy
| | - Anna Maria Cuppone
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Siena, Italy
| | - Francesco Iannelli
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Siena, Italy
| | - Donata Medaglini
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Siena, Italy
| | - Gianni Pozzi
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Siena, Italy
| |
Collapse
|
45
|
Raised Proinflammatory Cytokine Production Within Cerebrospinal Fluid Precedes Fever Onset in Patients With Neurosurgery-Associated Bacterial Meningitis*. Crit Care Med 2015. [DOI: 10.1097/ccm.0000000000001188] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
46
|
Yau B, Mitchell AJ, Too LK, Ball HJ, Hunt NH. Interferon-γ-Induced Nitric Oxide Synthase-2 Contributes to Blood/Brain Barrier Dysfunction and Acute Mortality in Experimental Streptococcus pneumoniae Meningitis. J Interferon Cytokine Res 2015; 36:86-99. [PMID: 26418460 DOI: 10.1089/jir.2015.0078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The proinflammatory cytokine interferon-gamma (IFNγ) recently was shown to play a crucial role in experimental pneumococcal meningitis (PM) pathogenesis, and we aimed in this study to investigate IFNγ-driven nitric oxide synthase-2 (NOS2)-mediated pathogenesis of murine PM. We demonstrate that costimulation of toll-like receptors and IFNγ receptors was synergistic for NOS2 expression in cultured murine microglia. Using an experimental PM model, wild-type mice treated with anti-IFNγ antibody, as well as IFNγ and NOS2 gene knockout (GKO) mice, were inoculated intracerebroventricularly with 10(3) colony-forming units of Streptococcus pneumoniae (WU2 strain). Mice were monitored daily during a 200-h disease course to assess survival rate and blood-brain barrier (BBB) permeability measured at 48 h. IFNγ deficiency was protective in PM, with an approximate 3-fold increase in survival rates in both antibody-treated and IFNγ GKO mice compared to controls (P < 0.01). At 48 h postinoculation, brain NOS2 mRNA expression was significantly increased in an IFNγ-dependent manner. Mortality was significantly delayed in NOS2 GKO mice compared to controls (P < 0.01), and BBB dysfunction was reduced by 54% in IFNγ GKO mice and abolished in NOS2 GKO. These data suggest that IFNγ-dependent expression of NOS2 in the brain contributes to BBB breakdown and early mortality in murine PM.
Collapse
Affiliation(s)
- Belinda Yau
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| | - Andrew J Mitchell
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia .,2 Centenary Institute for Cancer Medicine and Cell Biology , Newtown, New South Wales, Australia
| | - Lay Khoon Too
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| | - Helen J Ball
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| | - Nicholas H Hunt
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| |
Collapse
|
47
|
Fontes FL, de Araújo LF, Coutinho LG, Leib SL, Agnez-Lima LF. Genetic polymorphisms associated with the inflammatory response in bacterial meningitis. BMC MEDICAL GENETICS 2015; 16:70. [PMID: 26316174 PMCID: PMC4593216 DOI: 10.1186/s12881-015-0218-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/18/2015] [Indexed: 11/28/2022]
Abstract
Background Bacterial meningitis (BM) is an infectious disease that results in high mortality and morbidity. Despite efficacious antibiotic therapy, neurological sequelae are often observed in patients after disease. Currently, the main challenge in BM treatment is to develop adjuvant therapies that reduce the occurrence of sequelae. In recent papers published by our group, we described the associations between the single nucleotide polymorphisms (SNPs) AADAT +401C > T, APEX1 Asn148Glu, OGG1 Ser326Cys and PARP1 Val762Ala and BM. In this study, we analyzed the associations between the SNPs TNF -308G > A, TNF -857C > T, IL-8 -251A > T and BM and investigated gene-gene interactions, including the SNPs that we published previously. Methods The study was conducted with 54 BM patients and 110 healthy volunteers (as the control group). The genotypes were investigated via primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) or polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analysis. Allelic and genotypic frequencies were also associated with cytokine and chemokine levels, as measured with the x-MAP method, and cell counts. We analyzed gene-gene interactions among SNPs using the generalized multifactor dimensionality reduction (GMDR) method. Results We did not find significant association between the SNPs TNF -857C > T and IL-8 -251A > T and the disease. However, a higher frequency of the variant allele TNF -308A was observed in the control group, associated with changes in cytokine levels compared to individuals with wild type genotypes, suggesting a possible protective role. In addition, combined inter-gene interaction analysis indicated a significant association between certain genotypes and BM, mainly involving the alleles APEX1 148Glu, IL8 -251 T and AADAT +401 T. These genotypic combinations were shown to affect cyto/chemokine levels and cell counts in CSF samples from BM patients. Conclusions In conclusion, this study revealed a significant association between genetic variability and altered inflammatory responses, involving important pathways that are activated during BM. This knowledge may be useful for a better understanding of BM pathogenesis and the development of new therapeutic approaches. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0218-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabrícia Lima Fontes
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil.
| | - Luíza Ferreira de Araújo
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil.
| | - Leonam Gomes Coutinho
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil.
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Friedbuehlstrasse 51, CH-3010, Bern, Switzerland.
| | - Lucymara Fassarella Agnez-Lima
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil. .,Departamento de Biologia Celular e Genética, Centro de Biociências - UFRN, Campus Universitário, Lagoa Nova, Natal, RN, 59078-970, Brazil.
| |
Collapse
|
48
|
Role of Microglial Activation in the Pathophysiology of Bacterial Meningitis. Mol Neurobiol 2015; 53:1770-1781. [DOI: 10.1007/s12035-015-9107-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/20/2015] [Indexed: 12/18/2022]
|
49
|
Rossi S, Motta C, Studer V, Macchiarulo G, Germani G, Finardi A, Furlan R, Martino G, Centonze D. Subclinical central inflammation is risk for RIS and CIS conversion to MS. Mult Scler 2015; 21:1443-52. [DOI: 10.1177/1352458514564482] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 11/23/2014] [Indexed: 11/16/2022]
Abstract
Background: Subtle diffuse intrathecal inflammation is undetectable by conventional neuroimaging, and could influence multiple sclerosis (MS) disease course. Objective: To explore the role of subclinical persisting intrathecal inflammation in radiologically isolated syndrome (RIS) or clinically isolated syndrome (CIS) conversion to MS, and in early MS disease reactivation. Methods: One-hundred ninety-three subjects with RIS, CIS, relapsing–remitting (RR), or primary progressive (PP) MS were included, along with 76 matched controls. Cerebrospinal fluid (CSF) levels of interleukin-8 (IL-8), a major proinflammatory cytokine, were measured as a biomarker of intrathecal inflammation. Patients were followed up for 2 years. Clinical and imaging measures of disease progression were recorded. Results: High central contents of IL-8 were associated to clinical progression in subjects with RIS, and to the risk of conversion to MS in subjects with CIS. Asymptomatic intrathecal inflammation placed subjects at risk for MS conversion, even regardless lesion load. CSF IL-8 levels were higher in RR MS with high disease activity. Higher number of relapses in the first two years since diagnosis and shorter first inter-attack intervals were observed in patients with high levels of IL-8. Conclusion: IL-8 might provide utility in determining the presence of active intrathecal inflammation, and could be important in diagnostically undefined cases.
Collapse
Affiliation(s)
- S Rossi
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy/IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - C Motta
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy/IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - V Studer
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy/Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC),Rome, Italy
| | - G Macchiarulo
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy/Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC),Rome, Italy
| | - G Germani
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy/Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC),Rome, Italy
| | - A Finardi
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - R Furlan
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - G Martino
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - D Centonze
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy/Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC),Rome, Italy
| |
Collapse
|
50
|
Akaishi T, Narikawa K, Suzuki Y, Mitsuzawa S, Tsukita K, Kuroda H, Nakashima I, Fujihara K, Aoki M. Importance of the quotient of albumin, quotient of immunoglobulin G and Reibergram in inflammatory neurological disorders with disease‐specific patterns of blood–brain barrier permeability. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/ncn3.158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Tetsuya Akaishi
- Department of Neurology National Hospital Organization Sendai Medical CenterSendai Japan
- Department of Neurology Tohoku University School of MedicineSendai Japan
| | - Koichi Narikawa
- Department of Neurology National Hospital Organization Sendai Medical CenterSendai Japan
| | - Yasushi Suzuki
- Department of Neurology National Hospital Organization Sendai Medical CenterSendai Japan
| | - Shio Mitsuzawa
- Department of Neurology National Hospital Organization Sendai Medical CenterSendai Japan
| | - Kenichi Tsukita
- Department of Neurology National Hospital Organization Sendai Medical CenterSendai Japan
| | - Hiroshi Kuroda
- Department of Neurology Tohoku University School of MedicineSendai Japan
| | - Ichiro Nakashima
- Department of Neurology Tohoku University School of MedicineSendai Japan
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics Tohoku University Graduate School of Medicine Sendai Japan
| | - Masashi Aoki
- Department of Neurology Tohoku University School of MedicineSendai Japan
| |
Collapse
|