1
|
López-Caballero F, Curtis M, Coffman BA, Salisbury DF. Is source-resolved magnetoencephalographic mismatch negativity a viable biomarker for early psychosis? Eur J Neurosci 2024; 59:1889-1906. [PMID: 37537883 PMCID: PMC10837325 DOI: 10.1111/ejn.16107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Mismatch negativity (MMN) is an auditory event-related response reflecting the pre-attentive detection of novel stimuli and is a biomarker of cortical dysfunction in schizophrenia (SZ). MMN to pitch (pMMN) and to duration (dMMN) deviant stimuli are impaired in chronic SZ, but it is less clear if MMN is reduced in first-episode SZ, with inconsistent findings in scalp-level EEG studies. Here, we investigated the neural generators of pMMN and dMMN with MEG recordings in 26 first-episode schizophrenia spectrum (FEsz) and 26 matched healthy controls (C). We projected MEG inverse solutions into precise functionally meaningful auditory cortex areas. MEG-derived MMN sources were in bilateral primary auditory cortex (A1) and belt areas. In A1, pMMN FEsz reduction showed a trend towards statistical significance (F(1,50) = 3.31; p = .07), and dMMN was reduced in FEsz (F(1,50) = 4.11; p = .04). Hypothesis-driven comparisons at each hemisphere revealed dMMN reduction in FEsz occurred in the left (t(56) = 2.23; p = .03; d = .61) but not right (t(56) = 1.02; p = .31; d = .28) hemisphere, with a moderate effect size. The added precision of MEG source solution with high-resolution MRI and parcellation of A1 may be requisite to detect the emerging pathophysiology and indicates a critical role for left hemisphere pathology at psychosis onset. However, the moderate effect size in left A1, albeit larger than reported in scalp MMN meta-analyses, casts doubt on the clinical utility of MMN for differential diagnosis, as a majority of patients will overlap with the healthy individual's distribution.
Collapse
Affiliation(s)
- Fran López-Caballero
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mark Curtis
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Dheerendra P, Grent-'t-Jong T, Gajwani R, Gross J, Gumley AI, Krishnadas R, Lawrie SM, Schwannauer M, Schultze-Lutter F, Uhlhaas PJ. Intact Mismatch Negativity Responses in Clinical High Risk for Psychosis and First-Episode Psychosis: Evidence From Source-Reconstructed Event-Related Fields and Time-Frequency Data. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:121-131. [PMID: 37778724 DOI: 10.1016/j.bpsc.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND This study examined whether mismatch negativity (MMN) responses are impaired in participants at clinical high risk for psychosis (CHR-P) and patients with first-episode psychosis (FEP) and whether MMN deficits predict clinical outcomes in CHR-Ps. METHODS Magnetoencephalography data were collected during a duration-deviant MMN paradigm for a group of 116 CHR-P participants, 33 FEP patients (15 antipsychotic-naïve), clinical high risk negative group (n = 38) with substance abuse and affective disorder, and 49 healthy control participants. Analysis of group differences of source-reconstructed event-related fields as well as time-frequency and intertrial phase coherence focused on the bilateral Heschl's gyri and bilateral superior temporal gyri. RESULTS Significant magnetic MMN responses were found across participants in the bilateral Heschl's gyri and bilateral superior temporal gyri. However, MMN amplitude as well as time-frequency and intertrial phase coherence responses were intact in CHR-P participants and FEP patients compared with healthy control participants. Furthermore, MMN deficits were not related to persistent attenuated psychotic symptoms or transitions to psychosis in CHR-P participants. CONCLUSIONS Our data suggest that magnetic MMN responses in magnetoencephalography data are not impaired in early-stage psychosis and may not predict clinical outcomes in CHR-P participants.
Collapse
Affiliation(s)
- Pradeep Dheerendra
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Tineke Grent-'t-Jong
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Ruchika Gajwani
- Mental Health and Wellbeing, Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Muenster, Germany
| | - Andrew I Gumley
- Mental Health and Wellbeing, Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Rajeev Krishnadas
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Stephen M Lawrie
- Department of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthias Schwannauer
- Department of Clinical Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; Department of Psychology, Faculty of Psychology, Airlangga University, Surabaya, Indonesia; University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Peter J Uhlhaas
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
3
|
Todd J, Salisbury D, Michie PT. Why mismatch negativity continues to hold potential in probing altered brain function in schizophrenia. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2023; 2:e144. [PMID: 38867817 PMCID: PMC11114358 DOI: 10.1002/pcn5.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 06/14/2024]
Abstract
The brain potential known as mismatch negativity (MMN) is one of the most studied indices of altered brain function in schizophrenia. This review looks at what has been learned about MMN in schizophrenia over the last three decades and why the level of interest and activity in this field of research remains strong. A diligent consideration of available evidence suggests that MMN can serve as a biomarker in schizophrenia, but perhaps not the kind of biomarker that early research supposed. This review concludes that MMN measurement is likely to be most useful as a monitoring and response biomarker enabling tracking of an underlying pathology and efficacy of interventions, respectively. The role of, and challenges presented by, pre-clinical models is discussed as well as the merits of different methodologies that can be brought to bear in pursuing a deeper understanding of pathophysiology that might explain smaller MMN in schizophrenia.
Collapse
Affiliation(s)
- Juanita Todd
- School of Psychological SciencesUniversity of NewcastleNewcastleNew South WalesAustralia
| | - Dean Salisbury
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Patricia T. Michie
- School of Psychological SciencesUniversity of NewcastleNewcastleNew South WalesAustralia
| |
Collapse
|
4
|
Mahmoud AMA, Eissa MAE, Kolkaila EA, Amer RAR, Kotait MA. Mismatch negativity as an early biomarker of cognitive impairment in schizophrenia. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2023. [DOI: 10.1186/s41983-023-00627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Abstract
Background
Due to its disturbance in schizophrenic patients, mismatch negativity (MMN) generation is believed to be a potential biomarker for recognizing primary impairments in auditory sensory processing during the course of the disease. However, great controversy exists regarding the type and onset of MMN-related impairments, with the deficits to frequency deviants is more debatable. This cross-sectional, case–control study was conducted to assess the cognitive functions among 33 eligible Egyptian schizophrenics (15 early and 18 chronic), and 30 matched healthy controls by assessing their psychometric tests and correlating them to the coexisting frequency deviant MMN responses (using both tone and speech stimuli).
Results
Deficits in frequency MMN and neuropsychological tests were evident among early and chronic schizophrenics compared to their matched control counterparts, and also between early versus chronic schizophrenia in favor of the later. MMN deficits to speech stimuli were more elicited than tone stimuli among schizophrenics. Moreover, significant correlations were identified between MMN parameters and the results of psychiatric cognitive scales.
Conclusions
We demonstrated that frequency-deviant MMN deficits are evident feature among the enrolled Egyptian schizophrenics. The cognitive functions as indexed by MMN seem affected early, with the striking decrease of MMN amplitude and delay of latency point towards the progression of the illness. The normal lateralization of MMN was absent in chronic schizophrenia. These findings could be helpful in using the MMN as an additional objective tool for confirming cognitive impairments among schizophrenics and to differentiate between early- and chronic-schizophrenic patients for medico-legal purposes and clinical implication for medications.
Collapse
|
5
|
Central auditory processing deficits in schizophrenia: Effects of auditory-based cognitive training. Schizophr Res 2021; 236:135-141. [PMID: 34500174 PMCID: PMC9259506 DOI: 10.1016/j.schres.2021.07.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/23/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Sensory processing abnormalities are common in schizophrenia (SZ) and impact everyday functions, such as speech perception in noisy environments. Auditory-based targeted cognitive training (TCT) is a "bottom up" cognitive remediation intervention designed to enhance the speed and accuracy of low-level auditory information processing. However, the effects of TCT on behavioral measures of central auditory processing (CAP) and the role of CAP function on verbal learning outcomes in SZ are unknown. METHODS SZ (n = 42) and healthy subjects (CTL; n = 18) underwent comprehensive clinical, neurocognitive, and auditory assessments, including tests of hearing sensitivity and speech recognition (Words-in-Noise (WIN), Quick Speech-in-Noise (SIN)). SZ patients were randomized to receive either treatment-as-usual (TAU); or 30-h of TCT + TAU using a stratified, parallel design. SZ patients repeated assessments ~10-12 weeks later. RESULTS Patients exhibited deficits in both WIN (p < 0.05, d = 0.50) and SIN (p < 0.01, d = 0.63). A treatment × time interaction on WIN (p < 0.05, d = 0.74), but not SIN discriminability, was seen in the TCT group relative to TAU. Specific enhancements in the 4-dB over background range drove gains in WIN performance. Moreover, SZ patients with greater CAP deficits experienced robust gains in verbal learning after 30-h of TCT relative to SZ patients without CAP impairment (p < 0.01, d = 1.28). CONCLUSION Findings demonstrate that intensive auditory training enhances the fidelity of auditory processing and perception, such that specific CAP deficits were 'normalized' and were predictive of gains in verbal learning after TCT. It is conceivable that patients with deficiencies in CAP measures may benefit most from TCT and other interventions targeting auditory dysfunction in SZ.
Collapse
|
6
|
Machine-learning-based diagnosis of drug-naive adult patients with attention-deficit hyperactivity disorder using mismatch negativity. Transl Psychiatry 2021; 11:484. [PMID: 34537812 PMCID: PMC8449778 DOI: 10.1038/s41398-021-01604-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
Relatively little is investigated regarding the neurophysiology of adult attention-deficit/hyperactivity disorder (ADHD). Mismatch negativity (MMN) is an event-related potential component representing pre-attentive auditory processing, which is closely associated with cognitive status. We investigated MMN features as biomarkers to classify drug-naive adult patients with ADHD and healthy controls (HCs). Sensor-level features (amplitude and latency) and source-level features (source activation) of MMN were investigated and compared between the electroencephalograms of 34 patients with ADHD and 45 HCs using a passive auditory oddball paradigm. Correlations between MMN features and ADHD symptoms were analyzed. Finally, we applied machine learning to differentiate the two groups using sensor- and source-level features of MMN. Adult patients with ADHD showed significantly lower MMN amplitudes at the frontocentral electrodes and reduced MMN source activation in the frontal, temporal, and limbic lobes, which were closely associated with MMN generators and ADHD pathophysiology. Source activities were significantly correlated with ADHD symptoms. The best classification performance for adult ADHD patients and HCs showed an 81.01% accuracy, 82.35% sensitivity, and 80.00% specificity based on MMN source activity features. Our results suggest that abnormal MMN reflects the adult ADHD patients' pathophysiological characteristics and might serve clinically as a neuromarker of adult ADHD.
Collapse
|
7
|
McMackin R, Dukic S, Costello E, Pinto-Grau M, McManus L, Broderick M, Chipika R, Iyer PM, Heverin M, Bede P, Muthuraman M, Pender N, Hardiman O, Nasseroleslami B. Cognitive network hyperactivation and motor cortex decline correlate with ALS prognosis. Neurobiol Aging 2021; 104:57-70. [PMID: 33964609 DOI: 10.1016/j.neurobiolaging.2021.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
We aimed to quantitatively characterize progressive brain network disruption in Amyotrophic Lateral Sclerosis (ALS) during cognition using the mismatch negativity (MMN), an electrophysiological index of attention switching. We measured the MMN using 128-channel EEG longitudinally (2-5 timepoints) in 60 ALS patients and cross-sectionally in 62 healthy controls. Using dipole fitting and linearly constrained minimum variance beamforming we investigated cortical source activity changes over time. In ALS, the inferior frontal gyri (IFG) show significantly lower baseline activity compared to controls. The right IFG and both superior temporal gyri (STG) become progressively hyperactive longitudinally. By contrast, the left motor and dorsolateral prefrontal cortices are initially hyperactive, declining progressively. Baseline motor hyperactivity correlates with cognitive disinhibition, and lower baseline IFG activities correlate with motor decline rate, while left dorsolateral prefrontal activity predicted cognitive and behavioural impairment. Shorter survival correlates with reduced baseline IFG and STG activity and later STG hyperactivation. Source-resolved EEG facilitates quantitative characterization of symptom-associated and symptom-preceding motor and cognitive-behavioral cortical network decline in ALS.
Collapse
Affiliation(s)
- Roisin McMackin
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Stefan Dukic
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Emmet Costello
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Marta Pinto-Grau
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland; Department of Neurology, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands
| | - Lara McManus
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Michael Broderick
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Rangariroyashe Chipika
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland; Computational Neuroimaging Group, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Parameswaran M Iyer
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland; Beaumont Hospital Dublin, Department of Neurology, Dublin 9, Ireland
| | - Mark Heverin
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Peter Bede
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland; Computational Neuroimaging Group, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Muthuraman Muthuraman
- Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Johannes-Gutenberg-University Hospital, Mainz, Germany
| | - Niall Pender
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland; Department of Neurology, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands; Beaumont Hospital Dublin, Department of Neurology, Dublin 9, Ireland
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland; Beaumont Hospital Dublin, Department of Neurology, Dublin 9, Ireland.
| | - Bahman Nasseroleslami
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| |
Collapse
|
8
|
Del Re EC, Maekawa T, Mesholam-Gately RI, Wojcik J, Seidman LJ, McCarley RW, Niznikiewicz MA. Abnormal Frequency Mismatch Negativity in Early Psychosis Outpatient Subjects. Clin EEG Neurosci 2020; 51:207-214. [PMID: 31826666 DOI: 10.1177/1550059419886691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. Abnormalities of mismatch negativity (MMN), an event-related potential, indexing preattentive mechanisms, are consistently reported in schizophrenia (SZ). MMN abnormalities elicited to different deviant types have been recently shown to distinguish among patients according to length of their illness as well as inpatient versus outpatient status, and to be modulated by premorbid IQ. The objective of this study was to evaluate the MMN elicited by both frequency and duration deviant stimuli in patients with early schizophrenia (EP) recruited from an outpatient clinic in Boston, Massachusetts. Methods. Twenty-two healthy controls (HC) and 22 age-, handedness-, and gender-matched EP were tested using a frequency and duration MMN paradigm. Clinical data were also collected. Results. Frequency MMN amplitude but not duration MMN was significantly reduced in EP relative to HC subjects (P = .015). Conclusions. These results indicate that in this sample of early psychosis outpatient group, reductions in frequency MMN but not in duration MMN index clinical status. The relationship between age at first hospitalization and MMN frequency and duration amplitude and latency indicates that neurodevelopmental stage, auditory function, and clinical status are tightly linked.
Collapse
Affiliation(s)
- Elisabetta C Del Re
- VA Boston Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA
| | - Toshihiko Maekawa
- VA Boston Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Okinawa, Japan
| | - Raquelle I Mesholam-Gately
- Harvard Medical School, Boston, MA, USA.,Massachusetts Mental Health Center, Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joanne Wojcik
- Harvard Medical School, Boston, MA, USA.,Massachusetts Mental Health Center, Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Larry J Seidman
- Harvard Medical School, Boston, MA, USA.,Massachusetts Mental Health Center, Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Robert W McCarley
- VA Boston Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
9
|
Light GA, Joshi YB, Molina JL, Bhakta SG, Nungaray JA, Cardoso L, Kotz JE, Thomas ML, Swerdlow NR. Neurophysiological biomarkers for schizophrenia therapeutics. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
10
|
Francisco AA, Foxe JJ, Horsthuis DJ, DeMaio D, Molholm S. Assessing auditory processing endophenotypes associated with Schizophrenia in individuals with 22q11.2 deletion syndrome. Transl Psychiatry 2020; 10:85. [PMID: 32139692 PMCID: PMC7058163 DOI: 10.1038/s41398-020-0764-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
22q11.2 Deletion Syndrome (22q11.2DS) is the strongest known molecular risk factor for schizophrenia. Brain responses to auditory stimuli have been studied extensively in schizophrenia and described as potential biomarkers of vulnerability to psychosis. We sought to understand whether these responses might aid in differentiating individuals with 22q11.2DS as a function of psychotic symptoms, and ultimately serve as signals of risk for schizophrenia. A duration oddball paradigm and high-density electrophysiology were used to test auditory processing in 26 individuals with 22q11.2DS (13-35 years old, 17 females) with varying degrees of psychotic symptomatology and in 26 age- and sex-matched neurotypical controls (NT). Presentation rate varied across three levels, to examine the effect of increasing demands on memory and the integrity of sensory adaptation. We tested whether N1 and mismatch negativity (MMN), typically reduced in schizophrenia, related to clinical/cognitive measures, and how they were affected by presentation rate. N1 adaptation effects interacted with psychotic symptomatology: Compared to an NT group, individuals with 22q11.2DS but no psychotic symptomatology presented larger adaptation effects, whereas those with psychotic symptomatology presented smaller effects. In contrast, individuals with 22q11.2DS showed increased effects of presentation rate on MMN amplitude, regardless of the presence of symptoms. While IQ and working memory were lower in the 22q11.2DS group, these measures did not correlate with the electrophysiological data. These findings suggest the presence of two distinct mechanisms: One intrinsic to 22q11.2DS resulting in increased N1 and MMN responses; another related to psychosis leading to a decreased N1 response.
Collapse
Affiliation(s)
- Ana A Francisco
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA
- The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Douwe J Horsthuis
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Danielle DeMaio
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
11
|
Di Lorenzo G, Riccioni A, Ribolsi M, Siracusano M, Curatolo P, Mazzone L. Auditory Mismatch Negativity in Youth Affected by Autism Spectrum Disorder With and Without Attenuated Psychosis Syndrome. Front Psychiatry 2020; 11:555340. [PMID: 33329094 PMCID: PMC7732489 DOI: 10.3389/fpsyt.2020.555340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022] Open
Abstract
The present study investigates the differences in auditory mismatch negativity (MMN) parameters given in a sample of young subjects with autism spectrum disorder (ASD, n = 37) with or without co-occurrent attenuated psychosis syndrome (APS). Our results show that ASD individuals present an MMN decreased amplitude and prolonged latency, without being influenced by concurrent APS. Additionally, when correlating the MMN indexes to clinical features, in the ASD + APS group, we found a negative correlation between the severity of autistic symptoms and the MMN latency in both frequency (f-MMN r = -0.810; p < 0.0001) and duration (d-MMN r = -0.650; p = 0.006) deviants. Thus, our results may provide a more informative characterization of the ASD sub-phenotype when associated with APS, highlighting the need for further longitudinal investigations.
Collapse
Affiliation(s)
- Giorgio Di Lorenzo
- Laboratory of Psychophysiology and Cognitive Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Assia Riccioni
- Child Neurology and Psychiatry Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Michele Ribolsi
- Psychiatry Unit, Campus Bio-Medico University of Rome, Rome, Italy
| | - Martina Siracusano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luigi Mazzone
- Child Neurology and Psychiatry Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
12
|
Kim HK, Blumberger DM, Daskalakis ZJ. Neurophysiological Biomarkers in Schizophrenia-P50, Mismatch Negativity, and TMS-EMG and TMS-EEG. Front Psychiatry 2020; 11:795. [PMID: 32848953 PMCID: PMC7426515 DOI: 10.3389/fpsyt.2020.00795] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Impaired early auditory processing is a well characterized finding in schizophrenia that is theorized to contribute to clinical symptoms, cognitive impairment, and social dysfunction in patients. Two neurophysiological measures of early auditory processing, P50 gating ("P50") and mismatch negativity (MMN), which measure sensory gating and detection of change in auditory stimuli, respectively, are consistently shown to be impaired in patients with schizophrenia. Transcranial magnetic stimulation (TMS) may also be a potential method by which sensory processing can be assessed, since TMS paradigms can be used to measure GABAB-mediated cortical inhibition that is linked with sensory gating. In this review, we examine the potential of P50, MMN and two TMS paradigms, cortical silent period (CSP) and long-interval intracortical inhibition (LICI), as endophenotypes as well as their ability to be used as predictive markers for interventions targeted at cognitive and psychosocial functioning. Studies consistently support a link between MMN, P50, and cognitive dysfunction, with robust evidence for a link between MMN and psychosocial functioning in schizophrenia as well. Importantly, studies have demonstrated that MMN can be used to predict performance in social and cognitive training tasks. A growing body of studies also supports the potential of MMN to be used as an endophenotype, and future studies are needed to determine if MMN can be used as an endophenotype specifically in schizophrenia. P50, however, has weaker evidence supporting its use as an endophenotype. While CSP and LICI are not as extensively investigated, growing evidence is supporting their potential to be used as an endophenotype in schizophrenia. Future studies that assess the ability of P50, MMN, and TMS neurophysiological measures to predict performance in cognitive and social training programs may identify markers that inform clinical decisions in the treatment of neurocognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Helena K Kim
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Daniel M Blumberger
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Lavoie S, Polari AR, Goldstone S, Nelson B, McGorry PD. Staging model in psychiatry: Review of the evolution of electroencephalography abnormalities in major psychiatric disorders. Early Interv Psychiatry 2019; 13:1319-1328. [PMID: 30688016 DOI: 10.1111/eip.12792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/03/2018] [Accepted: 12/29/2018] [Indexed: 12/29/2022]
Abstract
AIM Clinical staging in psychiatry aims to classify patients according to the severity of their symptoms, from stage 0 (increased risk, asymptomatic) to stage 4 (severe illness), enabling adapted treatment at each stage of the illness. The staging model would gain specificity if one or more quantifiable biological markers could be identified. Several biomarkers reflecting possible causal mechanisms and/or consequences of the pathophysiology are candidates for integration into the clinical staging model of psychiatric illnesses. METHODS This review covers the evolution (from stage 0 to stage 4) of the most important brain functioning impairments as measured with electroencephalography (EEG), in psychosis spectrum and in severe mood disorders. RESULTS The present review of the literature demonstrates that it is currently not possible to draw any conclusion with regard to the state or trait character of any of the EEG impairments in both major depressive disorder and bipolar disorder. As for schizophrenia, the most promising markers of the stage of the illness are the pitch mismatch negativity as well as the p300 event-related potentials, as these components seem to deteriorate with increasing severity of the illness. CONCLUSIONS Given the complexity of major psychiatric disorders, and that not a single impairment can be observed in all patients, future research should most likely consider combinations of markers in the quest for a better identification of the stages of the psychiatric illnesses.
Collapse
Affiliation(s)
- Suzie Lavoie
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrea R Polari
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Orygen Youth Health, Melbourne Health, Melbourne, Victoria, Australia
| | - Sherilyn Goldstone
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Barnaby Nelson
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick D McGorry
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Kim S, Jeon H, Jang KI, Kim YW, Im CH, Lee SH. Mismatch Negativity and Cortical Thickness in Patients With Schizophrenia and Bipolar Disorder. Schizophr Bull 2019; 45:425-435. [PMID: 29684224 PMCID: PMC6403065 DOI: 10.1093/schbul/sby041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Mismatch negativity (MMN) is a measure of automatic neurophysiological brain processes for detecting unexpected sensory stimuli. This study investigated MMN reduction in patients with schizophrenia and bipolar disorder and examined whether cortical thickness is associated with MMN, for exploratory purposes. METHODS Electroencephalograms were recorded in 38 patients with schizophrenia, 37 patients with bipolar disorder, and 32 healthy controls (HCs) performing a passive auditory oddball paradigm. All participants underwent T1 structural magnetic resonance imaging scanning to investigate the cortical thickness of MMN-generating regions. Average MMN amplitudes from the frontocentral electrodes were analyzed. RESULTS Patients with schizophrenia and bipolar disorder exhibited significantly reduced MMN amplitude compared with HCs. In bipolar disorder, we found intermediate MMN amplitude among the groups. Average MMN and cortical thickness of the right superior temporal gyrus (STG) were significantly negatively correlated in patients with schizophrenia. In patients with bipolar disorder, average MMN was significantly correlated with cortical thickness of the left anterior cingulate cortex and the right STG. MMN showed negative correlations with social and occupational functioning in schizophrenia, and with the Korean auditory verbal learning test for delayed recall in bipolar disorder. CONCLUSIONS MMN reduction was associated with cortical thinning in frontal and temporal areas in patients, particularly with an auditory verbal hallucination-related region in schizophrenia and emotion-related regions in bipolar disorder. MMN was associated with functional outcomes in schizophrenia, whereas it was associated with neurocognition in bipolar disorder.
Collapse
Affiliation(s)
- Sungkean Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea,Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyeonjin Jeon
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea
| | - Kuk-In Jang
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea,Department of Biomedicine & Health Sciences, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Yong-Wook Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea,Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea,Department of Psychiatry, Inje University, Ilsan-Paik Hospital, Goyang, Republic of Korea,To whom correspondence should be addressed; Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Juhwa-ro 170, Ilsanseo-Gu, Goyang 411-706, Republic of Korea; tel: +82-31-910-7260, fax: +82-31-910-7268, e-mail:
| |
Collapse
|
15
|
McMackin R, Dukic S, Broderick M, Iyer PM, Pinto-Grau M, Mohr K, Chipika R, Coffey A, Buxo T, Schuster C, Gavin B, Heverin M, Bede P, Pender N, Lalor EC, Muthuraman M, Hardiman O, Nasseroleslami B. Dysfunction of attention switching networks in amyotrophic lateral sclerosis. Neuroimage Clin 2019; 22:101707. [PMID: 30735860 PMCID: PMC6365983 DOI: 10.1016/j.nicl.2019.101707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To localise and characterise changes in cognitive networks in Amyotrophic Lateral Sclerosis (ALS) using source analysis of mismatch negativity (MMN) waveforms. RATIONALE The MMN waveform has an increased average delay in ALS. MMN has been attributed to change detection and involuntary attention switching. This therefore indicates pathological impairment of the neural network components which generate these functions. Source localisation can mitigate the poor spatial resolution of sensor-level EEG analysis by associating the sensor-level signals to the contributing brain sources. The functional activity in each generating source can therefore be individually measured and investigated as a quantitative biomarker of impairment in ALS or its sub-phenotypes. METHODS MMN responses from 128-channel electroencephalography (EEG) recordings in 58 ALS patients and 39 healthy controls were localised to source by three separate localisation methods, including beamforming, dipole fitting and exact low resolution brain electromagnetic tomography. RESULTS Compared with controls, ALS patients showed significant increase in power of the left posterior parietal, central and dorsolateral prefrontal cortices (false discovery rate = 0.1). This change correlated with impaired cognitive flexibility (rho = 0.45, 0.45, 0.47, p = .042, .055, .031 respectively). ALS patients also exhibited a decrease in the power of dipoles representing activity in the inferior frontal (left: p = 5.16 × 10-6, right: p = 1.07 × 10-5) and left superior temporal gyri (p = 9.30 × 10-6). These patterns were detected across three source localisation methods. Decrease in right inferior frontal gyrus activity was a good discriminator of ALS patients from controls (AUROC = 0.77) and an excellent discriminator of C9ORF72 expansion-positive patients from controls (AUROC = 0.95). INTERPRETATION Source localization of evoked potentials can reliably discriminate patterns of functional network impairment in ALS and ALS subgroups during involuntary attention switching. The discriminative ability of the detected cognitive changes in specific brain regions are comparable to those of functional magnetic resonance imaging (fMRI). Source analysis of high-density EEG patterns has excellent potential to provide non-invasive, data-driven quantitative biomarkers of network disruption that could be harnessed as novel neurophysiology-based outcome measures in clinical trials.
Collapse
Affiliation(s)
- Roisin McMackin
- Academic Unit of Neurology, Trinity College Dublin, The University of Dublin, Ireland.
| | - Stefan Dukic
- Academic Unit of Neurology, Trinity College Dublin, The University of Dublin, Ireland.
| | - Michael Broderick
- Academic Unit of Neurology, Trinity College Dublin, The University of Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, The University of Dublin, Ireland.
| | - Parameswaran M Iyer
- Academic Unit of Neurology, Trinity College Dublin, The University of Dublin, Ireland; Beaumont Hospital Dublin, Department of Neurology, Dublin, Ireland.
| | - Marta Pinto-Grau
- Academic Unit of Neurology, Trinity College Dublin, The University of Dublin, Ireland; Beaumont Hospital Dublin, Department of Psychology, Dublin, Ireland.
| | - Kieran Mohr
- Academic Unit of Neurology, Trinity College Dublin, The University of Dublin, Ireland.
| | - Rangariroyashe Chipika
- Academic Unit of Neurology, Trinity College Dublin, The University of Dublin, Ireland; Computational Neuroimaging Group, Trinity College Dublin, The University of Dublin, Ireland..
| | - Amina Coffey
- Academic Unit of Neurology, Trinity College Dublin, The University of Dublin, Ireland; Beaumont Hospital Dublin, Department of Neurology, Dublin, Ireland.
| | - Teresa Buxo
- Academic Unit of Neurology, Trinity College Dublin, The University of Dublin, Ireland.
| | - Christina Schuster
- Academic Unit of Neurology, Trinity College Dublin, The University of Dublin, Ireland; Computational Neuroimaging Group, Trinity College Dublin, The University of Dublin, Ireland..
| | - Brighid Gavin
- Academic Unit of Neurology, Trinity College Dublin, The University of Dublin, Ireland
| | - Mark Heverin
- Academic Unit of Neurology, Trinity College Dublin, The University of Dublin, Ireland.
| | - Peter Bede
- Academic Unit of Neurology, Trinity College Dublin, The University of Dublin, Ireland; Computational Neuroimaging Group, Trinity College Dublin, The University of Dublin, Ireland..
| | - Niall Pender
- Academic Unit of Neurology, Trinity College Dublin, The University of Dublin, Ireland; Beaumont Hospital Dublin, Department of Neurology, Dublin, Ireland
| | - Edmund C Lalor
- Academic Unit of Neurology, Trinity College Dublin, The University of Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, The University of Dublin, Ireland.; Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA..
| | - Muthuraman Muthuraman
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Johannes-Gutenberg-University Hospital, Mainz, Germany.
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity College Dublin, The University of Dublin, Ireland; Beaumont Hospital Dublin, Department of Neurology, Dublin, Ireland; Computational Neuroimaging Group, Trinity College Dublin, The University of Dublin, Ireland..
| | - Bahman Nasseroleslami
- Academic Unit of Neurology, Trinity College Dublin, The University of Dublin, Ireland.
| |
Collapse
|
16
|
Dissociable auditory mismatch response and connectivity patterns in adolescents with schizophrenia and adolescents with bipolar disorder with psychosis: A magnetoencephalography study. Schizophr Res 2018; 193:313-318. [PMID: 28760539 DOI: 10.1016/j.schres.2017.07.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND There is overlap between schizophrenia and bipolar disorder regarding genetic risk as well as neuropsychological and structural brain deficits. Finding common and distinct event-response potential (ERP) responses and connectivity patterns may offer potential biomarkers to distinguish the disorders. OBJECTIVE To examine the neuronal auditory response elicited by a roving mismatch negativity (MMN) paradigm using magnetoencephalography (MEG). PARTICIPANTS 15 Adolescents with schizophrenia (ASZ), 16 adolescents with bipolar disorder with psychosis (ABP), and 14 typically developing individuals (TD) METHODS: The data were analysed using time-series techniques and dynamic causal modelling (DCM). OUTCOME MEASURES MEG difference wave (deviant - standard) at primary auditory (~90ms), MMN (~180ms) and long latency (~300ms). RESULTS The amplitude of difference wave showed specific patterns at all latencies. Most notably, it was significantly reduced ABP compared to both controls and ASZ at early latencies. In contrast, the amplitude was significantly reduced in ASZ compared to both controls and ABP. The DCM analysis showed differential connectivity patterns in all three groups. Most notably, inter-hemispheric connections were strongly dominated by the right side in ASZ only. CONCLUSIONS Dissociable patterns of the primary auditory response and MMN response indicate possible developmentally sensitive, but separate biomarkers for schizophrenia and bipolar disorder.
Collapse
|
17
|
Joshi YB, Light GA. Using EEG-Guided Basket and Umbrella Trials in Psychiatry: A Precision Medicine Approach for Cognitive Impairment in Schizophrenia. Front Psychiatry 2018; 9:554. [PMID: 30510520 PMCID: PMC6252381 DOI: 10.3389/fpsyt.2018.00554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/15/2018] [Indexed: 12/21/2022] Open
Abstract
Due to advances over the last several decades, many fields of medicine are moving toward a precision medicine approach where treatments are tailored to nuanced patient factors. While in some disciplines these innovations are commonplace leading to unique biomarker-guided experimental medicine trials, there are no such analogs in psychiatry. In this brief review, we will overview two unique biomarker-guided trial designs for future use in psychiatry: basket and umbrella trials. We will illustrate how such trials could be useful in psychiatry using schizophrenia as a candidate illness, the EEG measure mismatch negativity as the candidate biomarker, and cognitive impairment as the target disease dimension.
Collapse
Affiliation(s)
- Yash B Joshi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States.,VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Health Care System, San Diego, CA, United States
| |
Collapse
|
18
|
Lavoie S, Jack BN, Griffiths O, Ando A, Amminger P, Couroupis A, Jago A, Markulev C, McGorry PD, Nelson B, Polari A, Yuen HP, Whitford TJ. Impaired mismatch negativity to frequency deviants in individuals at ultra-high risk for psychosis, and preliminary evidence for further impairment with transition to psychosis. Schizophr Res 2018; 191:95-100. [PMID: 29132815 DOI: 10.1016/j.schres.2017.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND There is evidence to suggest that people with established psychotic disorders show impairments in the mismatch negativity induced by a frequency-deviant sound (fMMN), and that these impairments worsen with the deterioration of psychotic symptoms. This study aimed to test whether individuals at ultra-high risk (UHR) for psychosis show pre-morbid impairments in fMMN, and if so, whether fMMN continues to deteriorate with transition to psychosis. METHOD fMMN was recorded in a cohort of UHR individuals (n=42) and compared to healthy controls (n=29). Of the 27 UHR participants who returned for a second EEG session, six participants had transitioned to psychosis by 12-month follow-up (UHR-T) and were compared to the 21 participants who did not transition (UHR-NT). RESULTS fMMN amplitude was significantly reduced, relative to healthy controls, in the UHR cohort. Furthermore, UHR-T individuals showed a significant decrease in fMMN amplitude over the period from baseline to post-transition; this reduction was not observed in UHR-NT. CONCLUSIONS These results suggest that fMMN is abnormal in UHR individuals, as has repeatedly been found previously in people with established psychotic disorders. The finding that fMMN impairment worsens with transition to psychosis is consistent with the staging model of psychosis; however, caution must be taken in interpreting these findings, given the extremely small sample size of the UHR-T group.
Collapse
Affiliation(s)
- Suzie Lavoie
- Orygen, the National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, VIC 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar road, Parkville, VIC 3052, Australia.
| | - Bradley N Jack
- School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia
| | - Oren Griffiths
- School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ayaka Ando
- Orygen, the National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, VIC 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar road, Parkville, VIC 3052, Australia
| | - Paul Amminger
- Orygen, the National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, VIC 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar road, Parkville, VIC 3052, Australia
| | - Anthony Couroupis
- Orygen, the National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, VIC 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar road, Parkville, VIC 3052, Australia
| | - Aidan Jago
- Orygen, the National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, VIC 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar road, Parkville, VIC 3052, Australia
| | - Connie Markulev
- Orygen, the National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, VIC 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar road, Parkville, VIC 3052, Australia
| | - Patrick D McGorry
- Orygen, the National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, VIC 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar road, Parkville, VIC 3052, Australia
| | - Barnaby Nelson
- Orygen, the National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, VIC 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar road, Parkville, VIC 3052, Australia
| | - Andrea Polari
- Orygen Youth Health, Melbourne Health, 35 Poplar Road, Parkville, VIC 3052, Australia
| | - Hok Pan Yuen
- Orygen, the National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, VIC 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar road, Parkville, VIC 3052, Australia
| | - Thomas J Whitford
- School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
19
|
Avissar M, Xie S, Vail B, Lopez-Calderon J, Wang Y, Javitt DC. Meta-analysis of mismatch negativity to simple versus complex deviants in schizophrenia. Schizophr Res 2018; 191:25-34. [PMID: 28709770 PMCID: PMC5745291 DOI: 10.1016/j.schres.2017.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 12/23/2022]
Abstract
Mismatch negativity (MMN) deficits in schizophrenia (SCZ) have been studied extensively since the early 1990s, with the vast majority of studies using simple auditory oddball task deviants that vary in a single acoustic dimension such as pitch or duration. There has been a growing interest in using more complex deviants that violate more abstract rules to probe higher order cognitive deficits. It is still unclear how sensory processing deficits compare to and contribute to higher order cognitive dysfunction, which can be investigated with later attention-dependent auditory event-related potential (ERP) components such as a subcomponent of P300, P3b. In this meta-analysis, we compared MMN deficits in SCZ using simple deviants to more complex deviants. We also pooled studies that measured MMN and P3b in the same study sample and examined the relationship between MMN and P3b deficits within study samples. Our analysis reveals that, to date, studies using simple deviants demonstrate larger deficits than those using complex deviants, with effect sizes in the range of moderate to large. The difference in effect sizes between deviant types was reduced significantly when accounting for magnitude of MMN measured in healthy controls. P3b deficits, while large, were only modestly greater than MMN deficits (d=0.21). Taken together, our findings suggest that MMN to simple deviants may still be optimal as a biomarker for SCZ and that sensory processing dysfunction contributes significantly to MMN deficit and disease pathophysiology.
Collapse
Affiliation(s)
- Michael Avissar
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States.
| | - Shanghong Xie
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Blair Vail
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States
| | - Javier Lopez-Calderon
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States
| | - Yuanjia Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Daniel C Javitt
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States; Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute, Orangeburg, NY, United States
| |
Collapse
|
20
|
Biagianti B, Roach BJ, Fisher M, Loewy R, Ford JM, Vinogradov S, Mathalon DH. Trait aspects of auditory mismatch negativity predict response to auditory training in individuals with early illness schizophrenia. NEUROPSYCHIATRIC ELECTROPHYSIOLOGY 2017; 3:2. [PMID: 28845238 PMCID: PMC5568850 DOI: 10.1186/s40810-017-0024-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/05/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Individuals with schizophrenia have heterogeneous impairments of the auditory processing system that likely mediate differences in the cognitive gains induced by auditory training (AT). Mismatch negativity (MMN) is an event-related potential component reflecting auditory echoic memory, and its amplitude reduction in schizophrenia has been linked to cognitive deficits. Therefore, MMN may predict response to AT and identify individuals with schizophrenia who have the most to gain from AT. Furthermore, to the extent that AT strengthens auditory deviance processing, MMN may also serve as a readout of the underlying changes in the auditory system induced by AT. METHODS Fifty-six individuals early in the course of a schizophrenia-spectrum illness (ESZ) were randomly assigned to 40 h of AT or Computer Games (CG). Cognitive assessments and EEG recordings during a multi-deviant MMN paradigm were obtained before and after AT and CG. Changes in these measures were compared between the treatment groups. Baseline and trait-like MMN data were evaluated as predictors of treatment response. MMN data collected with the same paradigm from a sample of Healthy Controls (HC; n = 105) were compared to baseline MMN data from the ESZ group. RESULTS Compared to HC, ESZ individuals showed significant MMN reductions at baseline (p = .003). Reduced Double-Deviant MMN was associated with greater general cognitive impairment in ESZ individuals (p = .020). Neither ESZ intervention group showed significant change in MMN. We found high correlations in all MMN deviant types (rs = .59-.68, all ps < .001) between baseline and post-intervention amplitudes irrespective of treatment group, suggesting trait-like stability of the MMN signal. Greater deficits in trait-like Double-Deviant MMN predicted greater cognitive improvements in the AT group (p = .02), but not in the CG group. CONCLUSIONS In this sample of ESZ individuals, AT had no effect on auditory deviance processing as assessed by MMN. In ESZ individuals, baseline MMN was significantly reduced relative to HCs, and associated with global cognitive impairment. MMN did not show changes after AT and exhibited trait-like stability. Greater deficits in the trait aspects of Double-Deviant MMN predicted greater gains in global cognition in response to AT, suggesting that MMN may identify individuals who stand to gain the most from AT. TRIAL REGISTRATION NCT00694889. Registered 1 August 2007.
Collapse
Affiliation(s)
- Bruno Biagianti
- Department of Psychiatry, University of California at San Francisco, San Francisco, CA, USA
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Brian J. Roach
- Department of Mental Health, San Francisco VA Medical Center, San Francisco, CA, USA
| | - Melissa Fisher
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Rachel Loewy
- Department of Psychiatry, University of California at San Francisco, San Francisco, CA, USA
| | - Judith M. Ford
- Department of Psychiatry, University of California at San Francisco, San Francisco, CA, USA
- Department of Mental Health, San Francisco VA Medical Center, San Francisco, CA, USA
| | - Sophia Vinogradov
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Daniel H. Mathalon
- Department of Psychiatry, University of California at San Francisco, San Francisco, CA, USA
- Department of Mental Health, San Francisco VA Medical Center, San Francisco, CA, USA
| |
Collapse
|
21
|
Salisbury DF, Polizzotto NR, Nestor PG, Haigh SM, Koehler J, McCarley RW. Pitch and Duration Mismatch Negativity and Premorbid Intellect in the First Hospitalized Schizophrenia Spectrum. Schizophr Bull 2017; 43:407-416. [PMID: 27231308 PMCID: PMC5605266 DOI: 10.1093/schbul/sbw074] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Mismatch negativity (MMN) is a robustly abnormal brainwave in chronically ill schizophrenia that has generated interest as a disease presence biomarker. Reports of MMN reduction in first-episode schizophrenia have been equivocal, raising uncertainty about its reduction at first psychotic break. Here we tested 29 schizophrenia-spectrum participants under 1 year from their first hospitalization for psychosis and 40 age-, gender-, parental socioeconomic status-, and Wechsler Adult Intelligence Scales III Information-matched healthy controls on both pitch and duration MMN. Participants performed a visual checkerboard tracking task while standard (1kHz, 50ms, 80%), pitch-deviant (1.2kHz, 50ms, 10%) and duration-deviant (1kHz, 100ms, 10%) tones were presented over headphones (75 dB) and EEG was recorded. Independent component analysis was used to remove eye movements and visual stimulus processing activity. Groups did not differ in pitch MMN or duration MMN amplitudes. Smaller pitch and duration MMN amplitudes were associated with lower estimates of premorbid intellect in all participants and independently with greater positive symptoms in first hospitalized schizophrenia. Overall MMN reduction was not present in these relatively high functioning individuals at the first episode of schizophrenia, and therefore is not a good disease presence biomarker for this sample. Future research is warranted to determine the degree of MMN reduction at the first episode of psychosis across a greater range of cognitive impairment, the utility of MMN as an indicator of risk or diagnosis, and its role for understanding pathophysiological mechanisms in emerging psychosis.
Collapse
Affiliation(s)
- Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicola R Polizzotto
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul G Nestor
- Department of Psychology, University of Massachusetts, Boston, MA, USA
| | - Sarah M Haigh
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Justine Koehler
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert W McCarley
- Department of Psychiatry, Harvard Medical School, VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| |
Collapse
|
22
|
Rydkjær J, Møllegaard Jepsen JR, Pagsberg AK, Fagerlund B, Glenthøj BY, Oranje B. Mismatch negativity and P3a amplitude in young adolescents with first-episode psychosis: a comparison with ADHD. Psychol Med 2017; 47:377-388. [PMID: 27776572 DOI: 10.1017/s0033291716002518] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Deficient mismatch negativity (MMN) has been proposed as a candidate biomarker in schizophrenia and may therefore be potentially useful in early identification and intervention in early onset psychosis. In this study we explored whether deficits in the automatic orienting and reorienting responses, measured as MMN and P3a amplitude, are present in young adolescents with first-episode psychosis (FEP) and whether findings are specific to psychosis compared to young adolescents with attention deficit hyperactivity disorder (ADHD). METHOD MMN and P3a amplitude were assessed in young adolescents (age 12-17 years) with either FEP (N = 27) or ADHD (N = 28) and age- and gender-matched healthy controls (N = 43). The MMN paradigm consisted of a four-tone auditory oddball task with deviant stimuli based on frequency, duration and their combination. RESULTS Significantly less MMN was found in patients with psychosis compared to healthy controls in response to frequency and duration deviants. MMN amplitudes in the group of patients with ADHD were not significantly different from patients with psychosis or healthy controls. No significant group differences were found on P3a amplitude. CONCLUSION Young adolescents with FEP showed impaired MMN compared to healthy controls while intermediate and overlapping levels of MMN were observed in adolescents with ADHD. The findings suggest that young FEP patients already exhibit pre-attentive deficits that are characteristic of schizophrenia albeit expressed on a continuum shared with other neuropsychiatric disorders.
Collapse
Affiliation(s)
- J Rydkjær
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR),Mental Health Centre Glostrup,University of Copenhagen,Denmark
| | - J R Møllegaard Jepsen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR),Mental Health Centre Glostrup,University of Copenhagen,Denmark
| | - A K Pagsberg
- Child and Adolescent Mental Health Center,Mental Health Services,Capital Region of Denmark,Copenhagen,Denmark
| | - B Fagerlund
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR),Mental Health Centre Glostrup,University of Copenhagen,Denmark
| | - B Y Glenthøj
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR),Mental Health Centre Glostrup,University of Copenhagen,Denmark
| | - B Oranje
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR),Mental Health Centre Glostrup,University of Copenhagen,Denmark
| |
Collapse
|
23
|
Haigh SM, Coffman BA, Salisbury DF. Mismatch Negativity in First-Episode Schizophrenia: A Meta-Analysis. Clin EEG Neurosci 2017; 48:3-10. [PMID: 27170669 PMCID: PMC5768309 DOI: 10.1177/1550059416645980] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 01/15/2023]
Abstract
Mismatch negativity (MMN) to deviant stimuli is robustly smaller in individuals with chronic schizophrenia compared with healthy controls (Cohen's d > 1.0 or more), leading to the possibility of MMN being used as a biomarker for schizophrenia. However, there is some debate in the literature as to whether MMN is reliably reduced in first-episode schizophrenia patients. For the biomarker to be used as a predictive marker for schizophrenia, it should be reduced in the majority of cases known to have the disease, particularly at disease onset. We conducted a meta-analysis on the fourteen studies that measured MMN to pitch or duration deviants in healthy controls and patients within 12 months of their first episode of schizophrenia. The overall effect size showed no MMN reduction in first-episode patients to pitch-deviants (Cohen's d < 0.04), and a small-to-medium reduction to duration-deviants (Cohen's d = 0.47). Together, this indicates that pitch-deviant MMN is not a candidate biomarker for schizophrenia prediction, while duration-deviant MMN may hold some promise, albeit nearly a third as large an effect as in chronic schizophrenia. Potential causes for discrepancies between studies are discussed.
Collapse
Affiliation(s)
- Sarah M Haigh
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian A Coffman
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dean F Salisbury
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Ciullo V, Spalletta G, Caltagirone C, Jorge RE, Piras F. Explicit Time Deficit in Schizophrenia: Systematic Review and Meta-Analysis Indicate It Is Primary and Not Domain Specific. Schizophr Bull 2016; 42:505-18. [PMID: 26253596 PMCID: PMC4753592 DOI: 10.1093/schbul/sbv104] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although timing deficits are a robust finding in schizophrenia (SZ), the notion of a genuine time perception disorder in SZ is still being debated because distortions in timing might depend on neuropsychological deficits that are characteristics of the illness. Here we used meta-analytic methods to summarize the evidence of timing deficits in SZ and moderator analyses to determine whether defective timing in SZ arises from nontemporal sources or from defective time perception. PubMed Services, PsycNET, and Scopus were searched through March 2015, and all references in articles were investigated to find other relevant studies. Studies were selected if they included subjects with a primary diagnosis of SZ compared to a healthy control (HC) group and if they reported behavioral measures of duration estimation (perceptual and motor explicit timing). Data from 24 studies published from 1956 to 2015, which comprised 747 SZ individuals and 808 HC, were included. Results indicate that SZ individuals are less accurate than HC in estimating time duration across a wide range of tasks. Subgroup analyses showed that the fundamental timing deficit in SZ is independent from the length of the to-be-timed duration (automatic and cognitively controlled timing) and from methods of stimuli estimation (perceptual and motor timing). Thus, time perception per se is disturbed in SZ (not just task-specific timing processes) and this perturbation is independent from more generalized cognitive impairments. Behavioral evidence of disturbed automatic timing should be more thoroughly investigated with the aim of defining it as a cognitive phenotype for more homogeneous diagnostic subgrouping.
Collapse
Affiliation(s)
- Valentina Ciullo
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX;
| | - Carlo Caltagirone
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ricardo E Jorge
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX
| | - Federica Piras
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
25
|
Saarikivi K, Putkinen V, Tervaniemi M, Huotilainen M. Cognitive flexibility modulates maturation and music-training-related changes in neural sound discrimination. Eur J Neurosci 2016; 44:1815-25. [PMID: 26797826 DOI: 10.1111/ejn.13176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/08/2016] [Accepted: 01/13/2016] [Indexed: 12/31/2022]
Abstract
Previous research has demonstrated that musicians show superior neural sound discrimination when compared to non-musicians, and that these changes emerge with accumulation of training. Our aim was to investigate whether individual differences in executive functions predict training-related changes in neural sound discrimination. We measured event-related potentials induced by sound changes coupled with tests for executive functions in musically trained and non-trained children aged 9-11 years and 13-15 years. High performance in a set-shifting task, indexing cognitive flexibility, was linked to enhanced maturation of neural sound discrimination in both musically trained and non-trained children. Specifically, well-performing musically trained children already showed large mismatch negativity (MMN) responses at a young age as well as at an older age, indicating accurate sound discrimination. In contrast, the musically trained low-performing children still showed an increase in MMN amplitude with age, suggesting that they were behind their high-performing peers in the development of sound discrimination. In the non-trained group, in turn, only the high-performing children showed evidence of an age-related increase in MMN amplitude, and the low-performing children showed a small MMN with no age-related change. These latter results suggest an advantage in MMN development also for high-performing non-trained individuals. For the P3a amplitude, there was an age-related increase only in the children who performed well in the set-shifting task, irrespective of music training, indicating enhanced attention-related processes in these children. Thus, the current study provides the first evidence that, in children, cognitive flexibility may influence age-related and training-related plasticity of neural sound discrimination.
Collapse
Affiliation(s)
- Katri Saarikivi
- Cognitive Brain Research Unit, Cognitive Science, Institute of Behavioural Sciences, University of Helsinki, PO Box 9, FI-00014, Helsinki, Finland
| | - Vesa Putkinen
- Cognitive Brain Research Unit, Cognitive Science, Institute of Behavioural Sciences, University of Helsinki, PO Box 9, FI-00014, Helsinki, Finland.,Department of Music, University of Jyväskylä, Jyväskylä, Finland
| | - Mari Tervaniemi
- Cognitive Brain Research Unit, Cognitive Science, Institute of Behavioural Sciences, University of Helsinki, PO Box 9, FI-00014, Helsinki, Finland.,CICERO Learning, University of Helsinki, Helsinki, Finland
| | - Minna Huotilainen
- Cognitive Brain Research Unit, Cognitive Science, Institute of Behavioural Sciences, University of Helsinki, PO Box 9, FI-00014, Helsinki, Finland
| |
Collapse
|
26
|
Neurophysiology for Detection of High Risk for Psychosis. SCHIZOPHRENIA RESEARCH AND TREATMENT 2016; 2016:2697971. [PMID: 27579180 PMCID: PMC4992535 DOI: 10.1155/2016/2697971] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/15/2016] [Accepted: 07/10/2016] [Indexed: 11/18/2022]
Abstract
Schizophrenia is a complex and often disabling disorder that is characterized by a wide range of social, emotional, and cognitive deficits. Increasing research suggests that the greatest social and cognitive therapeutic impact comes from early identification. The present study applied a well-established neurophysiological paradigm in the schizophrenia literature, mismatch negativity (MMN), to college students identified as high risk (HR) for psychosis to investigate MMN as a potential biomarker for the onset of psychosis. The hypothesis was that HR would exhibit attenuated MMN amplitudes compared to controls, as has been established in individuals with chronic schizophrenia. Participants (N = 121) were separated into Group 1 (controls) (n 1 = 72) and Group 2 (HR) (n 2 = 49) based on the established cutoff score of the 16-item Prodromal Questionnaire. Participants then completed a time based MMN paradigm during which brain activity was recorded with EEG. For all electrode locations, controls demonstrated significantly more negative amplitudes than HR (Cz: F(1,119) = 8.09, p = .005; Fz: F(1, 119) = 5.74, p = .018; Pz: F(1,119) = 5.88, p = .017). Results suggested that MMN may assist in identifying those who appear high-functioning but may be at risk for later development of psychosis or cognitive and psychological difficulties associated with psychosis.
Collapse
|
27
|
Resnick B, Galik E. Impact of care settings on residents' functional and psychosocial status, physical activity and adverse events. Int J Older People Nurs 2015; 10:273-83. [PMID: 26011088 DOI: 10.1111/opn.12086] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 01/28/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Internationally, as the number of older adults increases, different types of care settings are evolving to address the care needs of this growing group of individuals. AIMS AND OBJECTIVES The purpose of this study was to describe and compare clinical outcomes of residents with moderate to severe cognitive impairment living in residential care facilities (RCFs) and nursing homes (NHs). DESIGN This was a secondary data analysis that included data from two studies testing a Function-Focused Care for Cognitively Impaired (FFC-CI) Intervention. METHODS A total of 96 participants were from RCFs and 103 were from NHs. Change scores over a 6-month period in RCF and NH residents were evaluated using a multivariate analysis of variance. RESULTS Residential care facilities residents had more agitation, better function and engaged in approximately twice as much physical activity as those in NH settings at baseline. Controlling for treatment status and baseline differences, over 6 months, RCF residents showed a decrease of -22.77 ± 41.47 kilocalories used in 24 hours while those in NHs increased to a mean of 10.49 ± 33.65 kilocalories used. With regard to function, residents in RCFs declined 10.97 ± 18.35 points on the Barthel Index, while those in NHs increased 10.18 ± 19.56 points. CONCLUSIONS In this sample, NH residents were more likely to be African American, had more comorbidities, less cognitive impairment, engaged in less physical activity, were more impaired functionally and had less agitation than those in RCFs. Controlling for treatment group status and baseline differences in comorbidities, cognitive status and race, residents in RCFs declined more in terms of functional and physical activity over a 6-month period. IMPLICATIONS FOR PRACTICE Ongoing research and clinical work is needed to understand the impact of care settings on clinical outcomes.
Collapse
|
28
|
Light GA, Swerdlow NR. Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia. Ann N Y Acad Sci 2015. [PMID: 25752648 DOI: 10.llll/nyas.12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in psychiatric neuroscience have transformed our understanding of impaired and spared brain functions in psychotic illnesses. Despite substantial progress, few (if any) laboratory tests have graduated to clinics to inform diagnoses, guide treatments, and monitor treatment response. Providers must rely on careful behavioral observation and interview techniques to make inferences about patients' inner experiences and then secondary deductions about impacted neural systems. Development of more effective treatments has also been hindered by a lack of translational quantitative biomarkers that can span the brain-behavior treatment knowledge gap. Here, we describe an example of a simple, low-cost, and translatable electroencephalography (EEG) measure that offers promise for improving our understanding and treatment of psychotic illnesses: mismatch negativity (MMN). MMN is sensitive to and/or predicts response to some pharmacologic and nonpharmacologic interventions and accounts for substantial portions of variance in clinical, cognitive, and psychosocial functioning in schizophrenia (SZ). This measure has recently been validated for use in large-scale multisite clinical studies of SZ. Finally, MMN greatly improves our ability to forecast which individuals at high clinical risk actually develop a psychotic illness. These attributes suggest that MMN can contribute to personalized biomarker-guided treatment strategies aimed at ameliorating or even preventing the onset of psychosis.
Collapse
Affiliation(s)
- Gregory A Light
- VISN 22 Mental Illness, Research, Education, and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, California; Department of Psychiatry, University of California San Diego, La Jolla, California
| | | |
Collapse
|
29
|
Light GA, Swerdlow NR, Thomas ML, Calkins ME, Green MF, Greenwood TA, Gur RE, Gur RC, Lazzeroni LC, Nuechterlein KH, Pela M, Radant AD, Seidman LJ, Sharp RF, Siever LJ, Silverman JM, Sprock J, Stone WS, Sugar CA, Tsuang DW, Tsuang MT, Braff DL, Turetsky BI. Validation of mismatch negativity and P3a for use in multi-site studies of schizophrenia: characterization of demographic, clinical, cognitive, and functional correlates in COGS-2. Schizophr Res 2015; 163:63-72. [PMID: 25449710 PMCID: PMC4382452 DOI: 10.1016/j.schres.2014.09.042] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 12/30/2022]
Abstract
Mismatch negativity (MMN) and P3a are auditory event-related potential (ERP) components that show robust deficits in schizophrenia (SZ) patients and exhibit qualities of endophenotypes, including substantial heritability, test-retest reliability, and trait-like stability. These measures also fulfill criteria for use as cognition and function-linked biomarkers in outcome studies, but have not yet been validated for use in large-scale multi-site clinical studies. This study tested the feasibility of adding MMN and P3a to the ongoing Consortium on the Genetics of Schizophrenia (COGS) study. The extent to which demographic, clinical, cognitive, and functional characteristics contribute to variability in MMN and P3a amplitudes was also examined. Participants (HCS n=824, SZ n=966) underwent testing at 5 geographically distributed COGS laboratories. Valid ERP recordings were obtained from 91% of HCS and 91% of SZ patients. Highly significant MMN (d=0.96) and P3a (d=0.93) amplitude reductions were observed in SZ patients, comparable in magnitude to those observed in single-lab studies with no appreciable differences across laboratories. Demographic characteristics accounted for 26% and 18% of the variance in MMN and P3a amplitudes, respectively. Significant relationships were observed among demographically-adjusted MMN and P3a measures and medication status as well as several clinical, cognitive, and functional characteristics of the SZ patients. This study demonstrates that MMN and P3a ERP biomarkers can be feasibly used in multi-site clinical studies. As with many clinical tests of brain function, demographic factors contribute to MMN and P3a amplitudes and should be carefully considered in future biomarker-informed clinical studies.
Collapse
Affiliation(s)
- Gregory A. Light
- Department of Psychiatry, University of California San Diego, La Jolla, CA,VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System
| | - Neal R. Swerdlow
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Michael L. Thomas
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Monica E. Calkins
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Michael F. Green
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA,VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | | | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Laura C. Lazzeroni
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Keith H. Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA
| | - Marlena Pela
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Allen D. Radant
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA,VA Puget Sound Health Care System, Seattle, WA
| | - Larry J. Seidman
- Department of Psychiatry, Harvard Medical School, Boston, MA,Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA
| | - Richard F. Sharp
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Larry J. Siever
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY,James J. Peters VA Medical Center, New York, NY
| | - Jeremy M. Silverman
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY,James J. Peters VA Medical Center, New York, NY
| | - Joyce Sprock
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - William S. Stone
- Department of Psychiatry, Harvard Medical School, Boston, MA,Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA
| | - Catherine A. Sugar
- Department of Biostatistics, University of California Los Angeles School of Public Health, Los Angeles, CA
| | - Debby W. Tsuang
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA,VA Puget Sound Health Care System, Seattle, WA
| | - Ming T. Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA,Center for Behavioral Genomics, and Institute for Genomic Medicine, University of California San Diego, La Jolla, CA,Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, MA
| | - David L. Braff
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Bruce I. Turetsky
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
30
|
Griffiths O, Langdon R, Le Pelley ME, Coltheart M. Delusions and prediction error: re-examining the behavioural evidence for disrupted error signalling in delusion formation. Cogn Neuropsychiatry 2015; 19:439-67. [PMID: 24702287 DOI: 10.1080/13546805.2014.897601] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
INTRODUCTION There is now significant evidence that prediction error signalling is mediated by dopamine in the midbrain, and that dopamine dysfunction is implicated in people experiencing psychotic symptoms, including delusions. There has also been significant theorizing and experimentation concerning the remaining link in this triad, namely that deviant prediction error signalling produces or maintains psychotic symptoms. METHODS The research supporting the link between prediction error signalling and delusional symptoms was reviewed. Numerous studies indirectly support this link, but only one set of studies claim to directly test this hypothesis by combining three crucial elements: a patient sample, a manipulation of prediction error and neuroimaging. This particular set of studies were examined in detail. RESULTS Important methodological limitations in these studies were observed, and a reinterpretation of their data was offered. CONCLUSIONS Methodological inconsistencies significantly weaken the claims made by these studies, but their data are consistent with current theorizing and they are instructive for future lines of inquiry in this field.
Collapse
Affiliation(s)
- Oren Griffiths
- a School of Psychology , University of NSW , Anzac Pde, Kensigton, Sydney , NSW 2052 , Australia
| | | | | | | |
Collapse
|
31
|
Light GA, Swerdlow NR. Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia. Ann N Y Acad Sci 2015; 1344:105-19. [PMID: 25752648 DOI: 10.1111/nyas.12730] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Advances in psychiatric neuroscience have transformed our understanding of impaired and spared brain functions in psychotic illnesses. Despite substantial progress, few (if any) laboratory tests have graduated to clinics to inform diagnoses, guide treatments, and monitor treatment response. Providers must rely on careful behavioral observation and interview techniques to make inferences about patients' inner experiences and then secondary deductions about impacted neural systems. Development of more effective treatments has also been hindered by a lack of translational quantitative biomarkers that can span the brain-behavior treatment knowledge gap. Here, we describe an example of a simple, low-cost, and translatable electroencephalography (EEG) measure that offers promise for improving our understanding and treatment of psychotic illnesses: mismatch negativity (MMN). MMN is sensitive to and/or predicts response to some pharmacologic and nonpharmacologic interventions and accounts for substantial portions of variance in clinical, cognitive, and psychosocial functioning in schizophrenia (SZ). This measure has recently been validated for use in large-scale multisite clinical studies of SZ. Finally, MMN greatly improves our ability to forecast which individuals at high clinical risk actually develop a psychotic illness. These attributes suggest that MMN can contribute to personalized biomarker-guided treatment strategies aimed at ameliorating or even preventing the onset of psychosis.
Collapse
Affiliation(s)
- Gregory A Light
- VISN 22 Mental Illness, Research, Education, and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, California; Department of Psychiatry, University of California San Diego, La Jolla, California
| | | |
Collapse
|
32
|
Hay RA, Roach BJ, Srihari VH, Woods SW, Ford JM, Mathalon DH. Equivalent mismatch negativity deficits across deviant types in early illness schizophrenia-spectrum patients. Biol Psychol 2015; 105:130-7. [PMID: 25603283 DOI: 10.1016/j.biopsycho.2015.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 11/17/2022]
Abstract
Neurophysiological abnormalities in auditory deviance processing, as reflected by the mismatch negativity (MMN), have been observed across the course of schizophrenia. Studies in early schizophrenia patients have typically shown varying degrees of MMN amplitude reduction for different deviant types, suggesting that different auditory deviants are uniquely processed and may be differentially affected by duration of illness. To explore this further, we examined the MMN response to 4 auditory deviants (duration, frequency, duration+frequency "double deviant", and intensity) in 24 schizophrenia-spectrum patients early in the illness (ESZ) and 21 healthy controls. ESZ showed significantly reduced MMN relative to healthy controls for all deviant types (p<0.05), with no significant interaction with deviant type. No correlations with clinical symptoms were present (all ps>0.05). These findings support the conclusion that neurophysiological mechanisms underlying processing of auditory deviants are compromised early in illness, and these deficiencies are not specific to the type of deviant presented.
Collapse
Affiliation(s)
- Rachel A Hay
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Brian J Roach
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Vinod H Srihari
- Yale University School of Medicine, New Haven, CT, United States
| | - Scott W Woods
- Yale University School of Medicine, New Haven, CT, United States
| | - Judith M Ford
- University of California, San Francisco, CA, United States; San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Daniel H Mathalon
- University of California, San Francisco, CA, United States; San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States.
| |
Collapse
|
33
|
Rissling AJ, Miyakoshi M, Sugar CA, Braff DL, Makeig S, Light GA. Cortical substrates and functional correlates of auditory deviance processing deficits in schizophrenia. NEUROIMAGE-CLINICAL 2014; 6:424-37. [PMID: 25379456 PMCID: PMC4218942 DOI: 10.1016/j.nicl.2014.09.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/18/2014] [Accepted: 09/11/2014] [Indexed: 12/21/2022]
Abstract
Although sensory processing abnormalities contribute to widespread cognitive and psychosocial impairments in schizophrenia (SZ) patients, scalp-channel measures of averaged event-related potentials (ERPs) mix contributions from distinct cortical source-area generators, diluting the functional relevance of channel-based ERP measures. SZ patients (n = 42) and non-psychiatric comparison subjects (n = 47) participated in a passive auditory duration oddball paradigm, eliciting a triphasic (Deviant−Standard) tone ERP difference complex, here termed the auditory deviance response (ADR), comprised of a mid-frontal mismatch negativity (MMN), P3a positivity, and re-orienting negativity (RON) peak sequence. To identify its cortical sources and to assess possible relationships between their response contributions and clinical SZ measures, we applied independent component analysis to the continuous 68-channel EEG data and clustered the resulting independent components (ICs) across subjects on spectral, ERP, and topographic similarities. Six IC clusters centered in right superior temporal, right inferior frontal, ventral mid-cingulate, anterior cingulate, medial orbitofrontal, and dorsal mid-cingulate cortex each made triphasic response contributions. Although correlations between measures of SZ clinical, cognitive, and psychosocial functioning and standard (Fz) scalp-channel ADR peak measures were weak or absent, for at least four IC clusters one or more significant correlations emerged. In particular, differences in MMN peak amplitude in the right superior temporal IC cluster accounted for 48% of the variance in SZ-subject performance on tasks necessary for real-world functioning and medial orbitofrontal cluster P3a amplitude accounted for 40%/54% of SZ-subject variance in positive/negative symptoms. Thus, source-resolved auditory deviance response measures including MMN may be highly sensitive to SZ clinical, cognitive, and functional characteristics. Six source clusters contributing to the triphasic auditory deviance response were identified. Source resolved responses are sensitive to SZ clinical, cognitive, and function characteristics. Source resolved responses accounted for up to half the variance in cognitive and symptom scales.
Collapse
Affiliation(s)
- Anthony J Rissling
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Makoto Miyakoshi
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA ; Japan Society for the Promotion of Science, Japan
| | - Catherine A Sugar
- Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, USA ; Department of Biostatistics, University of California Los Angeles, Los Angeles, CA, USA ; VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), Greater Los Angeles VA Healthcare System, Los Angeles, CA, USA
| | - David L Braff
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, Los Angeles, CA, USA ; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Scott Makeig
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - Gregory A Light
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, Los Angeles, CA, USA ; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
34
|
McGorry P, Keshavan M, Goldstone S, Amminger P, Allott K, Berk M, Lavoie S, Pantelis C, Yung A, Wood S, Hickie I. Biomarkers and clinical staging in psychiatry. World Psychiatry 2014; 13:211-23. [PMID: 25273285 PMCID: PMC4219053 DOI: 10.1002/wps.20144] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Personalized medicine is rapidly becoming a reality in today's physical medicine. However, as yet this is largely an aspirational goal in psychiatry, despite significant advances in our understanding of the biochemical, genetic and neurobiological processes underlying major mental disorders. Preventive medicine relies on the availability of predictive tools; in psychiatry we still largely lack these. Furthermore, our current diagnostic systems, with their focus on well-established, largely chronic illness, do not support a pre-emptive, let alone a preventive, approach, since it is during the early stages of a disorder that interventions have the potential to offer the greatest benefit. Here, we present a clinical staging model for severe mental disorders and discuss examples of biological markers that have already undergone some systematic evaluation and that could be integrated into such a framework. The advantage of this model is that it explicitly considers the evolution of psychopathology during the development of a mental illness and emphasizes that progression of illness is by no means inevitable, but can be altered by providing appropriate interventions that target individual modifiable risk and protective factors. The specific goals of therapeutic intervention are therefore broadened to include the prevention of illness onset or progression, and to minimize the risk of harm associated with more complex treatment regimens. The staging model also facilitates the integration of new data on the biological, social and environmental factors that influence mental illness into our clinical and diagnostic infrastructure, which will provide a major step forward in the development of a truly pre-emptive psychiatry.
Collapse
Affiliation(s)
- Patrick McGorry
- Orygen Youth Health Research Centre, Centre for Youth Mental Health, Department of Psychiatry, University of Melbourne, MelbourneAustralia
| | - Matcheri Keshavan
- Beth Israel Deaconess Medical Centre, Harvard Medical SchoolBoston, MA, USA
| | - Sherilyn Goldstone
- Orygen Youth Health Research Centre, Centre for Youth Mental Health, Department of Psychiatry, University of Melbourne, MelbourneAustralia
| | - Paul Amminger
- Orygen Youth Health Research Centre, Centre for Youth Mental Health, Department of Psychiatry, University of Melbourne, MelbourneAustralia
| | - Kelly Allott
- Orygen Youth Health Research Centre, Centre for Youth Mental Health, Department of Psychiatry, University of Melbourne, MelbourneAustralia
| | - Michael Berk
- Orygen Youth Health Research Centre, Centre for Youth Mental Health, Department of Psychiatry, University of Melbourne, MelbourneAustralia,School of Medicine, Deakin UniversityGeelong, Australia
| | - Suzie Lavoie
- Orygen Youth Health Research Centre, Centre for Youth Mental Health, Department of Psychiatry, University of Melbourne, MelbourneAustralia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, MelbourneAustralia
| | - Alison Yung
- Institute of Brain, Behaviour and Mental Health, University of Manchester, ManchesterUK
| | - Stephen Wood
- School of Psychology, University of Birmingham, BirminghamUK
| | - Ian Hickie
- Brain and Mind Research Institute, University of Sydney, SydneyAustralia
| |
Collapse
|
35
|
Perez VB, Swerdlow NR, Braff DL, Näätänen R, Light GA. Using biomarkers to inform diagnosis, guide treatments and track response to interventions in psychotic illnesses. Biomark Med 2014; 8:9-14. [PMID: 24325220 DOI: 10.2217/bmm.13.133] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Veronica B Perez
- VISN-22 Mental Illness Research, Education & Clinical Center (MIRECC), VA San Diego Healthcare System, CA 92161, USA and Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
36
|
Fulham WR, Michie PT, Ward PB, Rasser PE, Todd J, Johnston PJ, Thompson PM, Schall U. Mismatch negativity in recent-onset and chronic schizophrenia: a current source density analysis. PLoS One 2014; 9:e100221. [PMID: 24949859 PMCID: PMC4064992 DOI: 10.1371/journal.pone.0100221] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 05/23/2014] [Indexed: 01/09/2023] Open
Abstract
Mismatch negativity (MMN) is a component of the event-related potential elicited by deviant auditory stimuli. It is presumed to index pre-attentive monitoring of changes in the auditory environment. MMN amplitude is smaller in groups of individuals with schizophrenia compared to healthy controls. We compared duration-deviant MMN in 16 recent-onset and 19 chronic schizophrenia patients versus age- and sex-matched controls. Reduced frontal MMN was found in both patient groups, involved reduced hemispheric asymmetry, and was correlated with Global Assessment of Functioning (GAF) and negative symptom ratings. A cortically-constrained LORETA analysis, incorporating anatomical data from each individual's MRI, was performed to generate a current source density model of the MMN response over time. This model suggested MMN generation within a temporal, parietal and frontal network, which was right hemisphere dominant only in controls. An exploratory analysis revealed reduced CSD in patients in superior and middle temporal cortex, inferior and superior parietal cortex, precuneus, anterior cingulate, and superior and middle frontal cortex. A region of interest (ROI) analysis was performed. For the early phase of the MMN, patients had reduced bilateral temporal and parietal response and no lateralisation in frontal ROIs. For late MMN, patients had reduced bilateral parietal response and no lateralisation in temporal ROIs. In patients, correlations revealed a link between GAF and the MMN response in parietal cortex. In controls, the frontal response onset was 17 ms later than the temporal and parietal response. In patients, onset latency of the MMN response was delayed in secondary, but not primary, auditory cortex. However amplitude reductions were observed in both primary and secondary auditory cortex. These latency delays may indicate relatively intact information processing upstream of the primary auditory cortex, but impaired primary auditory cortex or cortico-cortical or thalamo-cortical communication with higher auditory cortices as a core deficit in schizophrenia.
Collapse
Affiliation(s)
- W. Ross Fulham
- Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Patricia T. Michie
- Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- School of Psychology, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Philip B. Ward
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Schizophrenia Research Unit, South Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Paul E. Rasser
- Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Juanita Todd
- Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- School of Psychology, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Patrick J. Johnston
- Department of Psychology and York Neuroimaging Centre, University of York, Heslington, United Kingdom
| | - Paul M. Thompson
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Departments of Neurology, Psychiatry, Radiology, Engineering, Pediatrics, and Ophthalmology, University of Southern California, Los Angeles, California, United States of America
| | - Ulrich Schall
- Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| |
Collapse
|
37
|
Light GA, Swerdlow NR. Neurophysiological biomarkers informing the clinical neuroscience of schizophrenia: mismatch negativity and prepulse inhibition of startle. Curr Top Behav Neurosci 2014; 21:293-314. [PMID: 24850080 PMCID: PMC5951188 DOI: 10.1007/7854_2014_316] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
With the growing recognition of the heterogeneity of major brain disorders, and particularly the schizophrenias (SZ), biomarkers are being sought that parse patient groups in ways that can be used to predict treatment response, prognosis, and pathophysiology. A primary focus to date has been to identify biomarkers that predict damage or dysfunction within brain systems in SZ patients, that could then serve as targets for interventions designed to "undo" the causative pathology. After almost 50 years as the predominant strategy for developing SZ therapeutics, evidence supporting the value of this "find what's broke and fix it" approach is lacking. Here, we suggest an alternative strategy of using biomarkers to identify evidence of spared neural and cognitive function in SZ patients, and matching these residual neural assets with therapies toward which they can be applied. We describe ways to extract and interpret evidence of "spared function," using neurocognitive, and neurophysiological measures, and, suggest that further evidence of available neuroplasticity might be gleaned from studies in which the response to drug challenges and "practice effects" are measured. Finally, we discuss examples in which "better" (more normal) performance in specific neurophysiological measures predict a positive response to a neurocognitive task or therapeutic intervention. We believe that our field stands to gain tremendous therapeutic leverage by focusing less on what is "wrong" with our patients, and instead, focusing more on what is "right".
Collapse
Affiliation(s)
- Gregory A Light
- Department of Psychiatry, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0804, USA
| | | |
Collapse
|
38
|
Näätänen R, Sussman ES, Salisbury D, Shafer VL. Mismatch negativity (MMN) as an index of cognitive dysfunction. Brain Topogr 2014; 27:451-66. [PMID: 24838819 DOI: 10.1007/s10548-014-0374-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 04/29/2014] [Indexed: 01/08/2023]
Abstract
Cognition is often affected in a variety of neuropsychiatric, neurological, and neurodevelopmental disorders. The neural discriminative response, reflected in mismatch negativity (MMN) and its magnetoencephalographic equivalent (MMNm), has been used as a tool to study a variety of disorders involving auditory cognition. MMN/MMNm is an involuntary brain response to auditory change or, more generally, to pattern regularity violation. For a number of disorders, MMN/MMNm amplitude to sound deviance has been shown to be attenuated or the peak-latency of the component prolonged compared to controls. This general finding suggests that while not serving as a specific marker to any particular disorder, MMN may be useful for understanding factors of cognition in various disorders, and has potential to serve as an indicator of risk. This review presents a brief history of the MMN, followed by a description of how MMN has been used to index auditory processing capability in a range of neuropsychiatric, neurological, and neurodevelopmental disorders. Finally, we suggest future directions for research to further enhance our understanding of the neural substrate of deviance detection that could lead to improvements in the use of MMN as a clinical tool.
Collapse
Affiliation(s)
- Risto Näätänen
- Department of Psychology, University of Tartu, Tartu, Estonia
| | | | | | | |
Collapse
|
39
|
Kärgel C, Sartory G, Kariofillis D, Wiltfang J, Müller BW. Mismatch negativity latency and cognitive function in schizophrenia. PLoS One 2014; 9:e84536. [PMID: 24740391 PMCID: PMC3989165 DOI: 10.1371/journal.pone.0084536] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 02/08/2014] [Indexed: 11/18/2022] Open
Abstract
Background The Mismatch Negativity (MMN) is an event-related potential (ERP) sensitive to early auditory deviance detection and has been shown to be reduced in schizophrenia patients. Moreover, MMN amplitude reduction to duration deviant tones was found to be related to functional outcomes particularly, to neuropsychological (working memory and verbal domains) and psychosocial measures. While MMN amplitude is thought to be correlated with deficits of early sensory processing, the functional significance of MMN latency remains unclear so far. The present study focused on the investigation of MMN in relation to neuropsychological function in schizophrenia. Method Forty schizophrenia patients and 16 healthy controls underwent a passive oddball paradigm (2400 binaural tones; 88% standards [1 kHz, 80 db, 80 ms], 11% frequency deviants [1.2 kHz], 11% duration deviants [40 ms]) and a neuropsychological test-battery. Patients were assessed with regard to clinical symptoms. Results Compared to healthy controls schizophrenia patients showed diminished MMN amplitude and shorter MMN latency to both deviants as well as an impaired neuropsychological test performance. Severity of positive symptoms was related to decreased MMN amplitude to duration deviants. Furthermore, enhanced verbal memory performance was associated with prolonged MMN latency to frequency deviants in patients. Conclusion The present study corroborates previous results of a diminished MMN amplitude and its association with positive symptoms in schizophrenia patients. Both, the findings of a shorter latency to duration and frequency deviants and the relationship of the latter with verbal memory in patients, emphasize the relevance of the temporal aspect of early auditory discrimination processing in schizophrenia.
Collapse
Affiliation(s)
- Christian Kärgel
- Clinic for Psychiatry and Psychotherapy, University of Duisburg-Essen, Essen, Germany
- Institute of Forensic Psychiatry, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Gudrun Sartory
- Department of Psychology, University of Wuppertal, Wuppertal, Germany
| | | | - Jens Wiltfang
- Clinic for Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany
| | - Bernhard W. Müller
- Clinic for Psychiatry and Psychotherapy, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
40
|
Perez VB, Woods SW, Roach BJ, Ford JM, McGlashan TH, Srihari VH, Mathalon DH. Automatic auditory processing deficits in schizophrenia and clinical high-risk patients: forecasting psychosis risk with mismatch negativity. Biol Psychiatry 2014; 75:459-69. [PMID: 24050720 PMCID: PMC4028131 DOI: 10.1016/j.biopsych.2013.07.038] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 07/02/2013] [Accepted: 07/29/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Only about one third of patients at high risk for psychosis based on current clinical criteria convert to a psychotic disorder within a 2.5-year follow-up period. Targeting clinical high-risk (CHR) individuals for preventive interventions could expose many to unnecessary treatments, underscoring the need to enhance predictive accuracy with nonclinical measures. Candidate measures include event-related potential components with established sensitivity to schizophrenia. Here, we examined the mismatch negativity (MMN) component of the event-related potential elicited automatically by auditory deviance in CHR and early illness schizophrenia (ESZ) patients. We also examined whether MMN predicted subsequent conversion to psychosis in CHR patients. METHODS Mismatch negativity to auditory deviants (duration, frequency, and duration + frequency double deviant) was assessed in 44 healthy control subjects, 19 ESZ, and 38 CHR patients. Within CHR patients, 15 converters to psychosis were compared with 16 nonconverters with at least 12 months of clinical follow-up. Hierarchical Cox regression examined the ability of MMN to predict time to psychosis onset in CHR patients. RESULTS Irrespective of deviant type, MMN was significantly reduced in ESZ and CHR patients relative to healthy control subjects and in CHR converters relative to nonconverters. Mismatch negativity did not significantly differentiate ESZ and CHR patients. The duration + frequency double deviant MMN, but not the single deviant MMNs, significantly predicted the time to psychosis onset in CHR patients. CONCLUSIONS Neurophysiological mechanisms underlying automatic processing of auditory deviance, as reflected by the duration + frequency double deviant MMN, are compromised before psychosis onset and can enhance the prediction of psychosis risk among CHR patients.
Collapse
Affiliation(s)
- Veronica B. Perez
- University of California, San Francisco,San Francisco Veterans Administration Medical Center
| | | | - Brian J. Roach
- University of California, San Francisco,San Francisco Veterans Administration Medical Center
| | - Judith M. Ford
- University of California, San Francisco,San Francisco Veterans Administration Medical Center
| | | | | | - Daniel H. Mathalon
- University of California, San Francisco,San Francisco Veterans Administration Medical Center
| |
Collapse
|
41
|
Iliadou V(V, Apalla K, Kaprinis S, Nimatoudis I, Kaprinis G, Iacovides A. Is Central Auditory Processing Disorder Present in Psychosis? Am J Audiol 2013; 22:201-208. [DOI: 10.1044/1059-0889(2013/12-0073)] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Purpose
The scope of this study was to trace central auditory processing issues in patients with first-episode psychosis using a psychoacoustic test battery approach.
Method
Patients (
n
= 17) and volunteer control subjects (
n
= 17) with no personal or family history of schizophrenia were included in the study on the basis of normal hearing sensitivity. The authors implemented a central auditory processing battery consisting of monaural and binaural tests with verbal and nonverbal stimuli.
Results
Perceptual deficits in both nonverbal and verbal auditory stimuli are reported in this study, with temporal central auditory processing deficits and a mean left-ear advantage documented in the patient group.
Conclusion
This study points to the possibility of the existence of central auditory processing deficits in first-episode psychosis leading to schizophrenia. Audiologists should be aware of the psychiatric research pointing to enhanced verbal memory as a result of auditory training, linking bottom-up remediation with top-down improvement.
Collapse
|
42
|
Nagai T, Tada M, Kirihara K, Araki T, Jinde S, Kasai K. Mismatch negativity as a "translatable" brain marker toward early intervention for psychosis: a review. Front Psychiatry 2013; 4:115. [PMID: 24069006 PMCID: PMC3779867 DOI: 10.3389/fpsyt.2013.00115] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/09/2013] [Indexed: 01/30/2023] Open
Abstract
Recent reviews and meta-analyses suggest that reducing the duration of untreated psychosis leads to better symptomatic and functional outcome in patients with psychotic disorder. Early intervention attenuates the symptoms of individuals at clinical high-risk (HR) for psychosis and may delay or prevent their transition to psychosis. Identifying biological markers in the early stages of psychotic disorder is an important step toward elucidating the pathophysiology, improving prediction of the transition to psychosis, and introducing targeted early intervention for help-seeking individuals aiming for better outcome. Mismatch negativity (MMN) is a component of event-related potentials that reflects preattentive auditory sensory memory and is a promising biomarker candidate for schizophrenia. Reduced MMN amplitude is a robust finding in patients with chronic schizophrenia. Recent reports have shown that people in the early stages of psychotic disorder exhibit attenuation of MMN amplitude. MMN in response to duration deviants and in response to frequency deviants reveals different patterns of deficits. These findings suggest that MMN may be useful for identifying clinical stages of psychosis and for predicting the risk of development. MMN may also be a "translatable" biomarker since it reflects N-methyl-d-aspartte receptor function, which plays a fundamental role in schizophrenia pathophysiology. Furthermore, MMN-like responses can be recorded in animals such as mice and rats. This article reviews MMN studies conducted on individuals with HR for psychosis, first-episode psychosis, recent-onset psychosis, and on animals. Based on the findings, the authors discuss the potential of MMN as a clinical biomarker for early intervention for help-seeking individuals in the early stages of psychotic disorder, and as a translatable neurophysiological marker for the preclinical assessment of pharmacological agents used in animal models that mimic early stages of the disorder.
Collapse
Affiliation(s)
- Tatsuya Nagai
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo , Tokyo , Japan
| | | | | | | | | | | |
Collapse
|
43
|
Kaur M, Lagopoulos J, Ward PB, Watson TL, Naismith SL, Hickie IB, Hermens DF. Mismatch negativity/P3a complex in young people with psychiatric disorders: a cluster analysis. PLoS One 2012; 7:e51871. [PMID: 23251645 PMCID: PMC3522589 DOI: 10.1371/journal.pone.0051871] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 11/12/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We have recently shown that the event-related potential biomarkers, mismatch negativity (MMN) and P3a, are similarly impaired in young patients with schizophrenia- and affective-spectrum psychoses as well as those with bipolar disorder. A data driven approach may help to further elucidate novel patterns of MMN/P3a amplitudes that characterise distinct subgroups in patients with emerging psychiatric disorders. METHODS Eighty seven outpatients (16 to 30 years) were assessed: 19 diagnosed with a depressive disorder; 26 with a bipolar disorder; and 42 with a psychotic disorder. The MMN/P3a complex was elicited using a two-tone passive auditory oddball paradigm with duration deviant tones. Hierarchical cluster analysis utilising frontal, central and temporal neurophysiological variables was conducted. RESULTS Three clusters were determined: the 'globally impaired' cluster (n = 53) displayed reduced frontal and temporal MMN as well as reduced central P3a amplitudes; the 'largest frontal MMN' cluster (n = 17) were distinguished by increased frontal MMN amplitudes and the 'largest temporal MMN' cluster (n = 17) was characterised by increases in temporal MMN only. Notably, 55% of those in the globally impaired cluster were diagnosed with schizophrenia-spectrum disorder, whereas the three patient subgroups were equally represented in the remaining two clusters. The three cluster-groups did not differ in their current symptomatology; however, the globally impaired cluster was the most neuropsychologically impaired, compared with controls. CONCLUSIONS These findings suggest that in emerging psychiatric disorders there are distinct MMN/P3a profiles of patient subgroups independent of current symptomatology. Schizophrenia-spectrum patients tended to show the most global impairments in this neurophysiological complex. Two other subgroups of patients were found to have neurophysiological profiles suggestive of quite different neurobiological (and hence, treatment) implications.
Collapse
Affiliation(s)
- Manreena Kaur
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|
44
|
Naismith SL, Mowszowski L, Ward PB, Diamond K, Paradise M, Kaur M, Lewis SJG, Hickie IB, Hermens DF. Reduced temporal mismatch negativity in late-life depression: an event-related potential index of cognitive deficit and functional disability? J Affect Disord 2012; 138:71-8. [PMID: 22301116 DOI: 10.1016/j.jad.2011.12.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND Depression in older people has been consistently linked with a variety of neurobiological brain changes. One measure of preattentive auditory processing, the mismatch negativity (MMN), has not been previously examined in late-life depression. This study examined MMN elicited by duration deviant stimuli in older people with lifetime depression, and explored its relationship with neuropsychological functioning and disability. METHODS Twenty-two older health-seeking patients (mean age=65.2 years) with lifetime major depressive disorder and twelve age and sex-matched control participants (mean age=64.6 years) completed detailed clinical and neuropsychological assessments and the WHO-DAS as a measure of disability. MMN amplitudes were elicited using a two-tone passive auditory oddball paradigm and measured at frontal (Fz), central (Cz) and temporal (left and right mastoid: M1 and M2, respectively) sites. RESULTS Patients with depression demonstrated reduced mean MMN amplitude at temporal (M1, t=3.1, p<0.01; M2, t=3.8, p<0.01), but not fronto-central sites. Reduced temporal MMN amplitudes did not relate to depressive symptom severity, but were associated with reduced semantic fluency and greater self-rated functional disability. LIMITATIONS The contribution of depressive symptom 'state' and medications on MMN need to be considered. CONCLUSIONS Reduced mean amplitudes of mastoid MMN in older patients with lifetime depression may reflect underlying brain changes. This preattentive marker relates to neuropsychological probes of frontotemporal circuits, and importantly, is associated with disability. Longitudinal analysis of MMN in this group will determine its predictive utility as a biomarker for ongoing cognitive decline and illness chronicity.
Collapse
Affiliation(s)
- Sharon L Naismith
- Clinical Research Unit, Brain & Mind Research Institute, University of Sydney, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Duration mismatch negativity and P3a in first-episode psychosis and individuals at ultra-high risk of psychosis. Biol Psychiatry 2012; 71:98-104. [PMID: 22000060 DOI: 10.1016/j.biopsych.2011.08.023] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 08/25/2011] [Accepted: 08/27/2011] [Indexed: 11/23/2022]
Abstract
BACKGROUND Reduction in a pre-attentive measure of auditory change detection, mismatch negativity (MMN), is one of the most consistent findings in schizophrenia. Recently, our group showed a reduction in MMN to changes in the duration and intensity of background sounds in those within 5 years of illness onset, whereas reduced MMNs to changes in sound frequency were only seen in patients with longer illness duration. In this report, we examine whether reduced MMN, as well as P3a, another index of auditory deviance detection, to duration changes is evident even earlier in the illness, that is, in individuals in the first episode of a psychosis (FEP) and individuals identified as being at ultra-high risk of developing schizophrenia (UHR). METHODS Mismatch negativity and P3a were measured in 30 UHR individuals, 10 FEP individuals, and 20 healthy control subjects to both long (100 msec) and short (50 msec) duration deviant sounds. RESULTS Mismatch negativity was reduced to both duration deviants not only in the FEP group but also in the UHR group. P3a amplitude was also reduced in the UHR group but at trend level only in FEP. However, MMN and P3a reductions were unrelated in both UHR and FEP groups, suggesting that they reflect distinct deficits. CONCLUSIONS These results suggest that MMN, as well as P3a, to duration deviants are reduced in very early stages of a psychotic illness including those in an at-risk mental state. Both should be considered as potential markers of the prodrome.
Collapse
|
46
|
Jahshan C, Cadenhead KS, Rissling AJ, Kirihara K, Braff DL, Light GA. Automatic sensory information processing abnormalities across the illness course of schizophrenia. Psychol Med 2012; 42:85-97. [PMID: 21740622 PMCID: PMC3193558 DOI: 10.1017/s0033291711001061] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Deficits in automatic sensory discrimination, as indexed by a reduction in the mismatch negativity (MMN) and P3a event-related potential amplitudes, are well documented in chronic schizophrenia. However, MMN and P3a have not been sufficiently studied early in the course of psychotic illness. The present study aimed to investigate MMN, P3a and reorienting negativity (RON) across the course of schizophrenia. METHOD MMN, P3a, and RON were assessed in 118 subjects across four groups: (1) individuals at risk for psychosis (n=26); (2) recent-onset patients (n=31); (3) chronic patients (n=33); and (4) normal controls (n=28) using a duration-deviant auditory oddball paradigm. RESULTS Frontocentral deficits in MMN and P3a were present in all patient groups. The at-risk group's MMN and P3a amplitudes were intermediate to those of the control and recent-onset groups. The recent-onset and chronic patients, but not the at-risk subjects, showed significant RON amplitude reductions, relative to the control group. Associations between MMN, P3a, RON and psychosocial functioning were present in the chronic patients. In the at-risk subjects, P3a and RON deficits were significantly associated with higher levels of negative symptoms. CONCLUSIONS Abnormalities in the automatic processes of sensory discrimination, orienting and reorienting of attention are evident in the early phases of schizophrenia and raise the possibility of progressive worsening across stages of the illness. The finding that MMN and P3a, but not RON, were reduced before psychosis onset supports the continued examination of these components as potential early biomarkers of schizophrenia.
Collapse
Affiliation(s)
- Carol Jahshan
- Mental Illness Research, Education and Clinical Center, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| | - Kristin S. Cadenhead
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Anthony J. Rissling
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Kenji Kirihara
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - David L. Braff
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Gregory A. Light
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| |
Collapse
|
47
|
The mismatch negativity (MMN)--a unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin Neurophysiol 2011; 123:424-58. [PMID: 22169062 DOI: 10.1016/j.clinph.2011.09.020] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 12/14/2022]
Abstract
In this article, we review clinical research using the mismatch negativity (MMN), a change-detection response of the brain elicited even in the absence of attention or behavioural task. In these studies, the MMN was usually elicited by employing occasional frequency, duration or speech-sound changes in repetitive background stimulation while the patient was reading or watching videos. It was found that in a large number of different neuropsychiatric, neurological and neurodevelopmental disorders, as well as in normal ageing, the MMN amplitude was attenuated and peak latency prolonged. Besides indexing decreased discrimination accuracy, these effects may also reflect, depending on the specific stimulus paradigm used, decreased sensory-memory duration, abnormal perception or attention control or, most importantly, cognitive decline. In fact, MMN deficiency appears to index cognitive decline irrespective of the specific symptomatologies and aetiologies of the different disorders involved.
Collapse
|
48
|
MMN/P3a deficits in first episode psychosis: comparing schizophrenia-spectrum and affective-spectrum subgroups. Schizophr Res 2011; 130:203-9. [PMID: 21550211 DOI: 10.1016/j.schres.2011.03.025] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/25/2011] [Accepted: 03/27/2011] [Indexed: 01/10/2023]
Abstract
BACKGROUND Reduced mismatch negativity (MMN) and P3a amplitudes are neurophysiological biomarkers for schizophrenia that index deviance detection and the orienting response, respectively. First-episode psychosis (FEP) patients show reduced amplitudes of the 'MMN/P3a complex', but it is unclear whether this occurs across the FEP spectrum. METHODS Fifty-three young people (17-36 years) were assessed: 17 FEP affective-spectrum (bipolar disorder with psychotic features and major depressive disorder with psychotic features), 18 FEP schizophrenia-spectrum (schizophrenia, schizoaffective disorder, and schizophreniform disorder), and 18 healthy controls. MMN/P3a was acquired during a two-tone, auditory paradigm with 8% duration deviants. Clinical, psychosocial and neuropsychological assessments were also undertaken. RESULTS FEP schizophrenia- and FEP affective-spectrum showed significantly reduced fronto-central MMN and central P3a amplitudes compared to controls. FEP subgroups also showed significantly poorer cognitive and psychosocial functioning. The combined FEP sample showed significant correlations between fronto-central MMN amplitudes and cognitive measures. DISCUSSION FEP schizophrenia-spectrum and FEP affective-spectrum were similarly impaired in two biomarkers for schizophrenia. FEP subgroups showed impairments in fronto-central MMN consistent with chronic patients. Similarly, both subgroups showed reductions in P3a; although the affective subgroup showed an 'intermediate' frontal response. These findings suggest that FEP patients with both affective and schizophrenia spectrum diagnoses share common neurobiological disturbances in deviance detection/orienting processes in the early phase of illness.
Collapse
|
49
|
Oneiric activity in schizophrenia: Textual analysis of dream reports. Conscious Cogn 2011; 20:337-48. [DOI: 10.1016/j.concog.2010.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 03/08/2010] [Accepted: 04/16/2010] [Indexed: 11/23/2022]
|
50
|
Takei Y, Kumano S, Maki Y, Hattori S, Kawakubo Y, Kasai K, Fukuda M, Mikuni M. Preattentive dysfunction in bipolar disorder: a MEG study using auditory mismatch negativity. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:903-12. [PMID: 20417242 DOI: 10.1016/j.pnpbp.2010.04.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/26/2010] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Neuropsychological studies have demonstrated that cognitive dysfunction represents pathophysiological mechanisms underlying bipolar disorder. However, information processing deficits in bipolar disorder have not often been examined electrophysiologically. Here, we examined preattentive processing and sensory information processing using mismatch field (MMNm) and P1m components, respectively, using magnetoencephalography. METHODS Ten patients with bipolar disorder and 20 healthy volunteers participated in the study. The participants were presented with auditory stimuli sequences comprising standard and deviant stimuli. MMNm was elicited in response to changes in duration and frequency of pure-tone stimuli and a vowel across-category change. RESULTS The magnetic global field power of MMNm in the right hemisphere under the pure-tone condition was significantly delayed in patients with bipolar disorder compared to healthy volunteers, and that of P1m did not differ between the two groups. The MMNm dipole in the left hemisphere was located inferior in patients with bipolar disorder than in healthy volunteers. This finding did not correlate with clinical symptoms. CONCLUSIONS Information processing at the preattentive level is impaired in patients with bipolar disorder irrespective of clinical symptoms, and this dysfunction is not due to sensory level dysfunction. The quality of preattentive information processing impairment is different between patients with bipolar disorder and patients with major depressive disorder, as shown by the MMNm latency and power differences.
Collapse
Affiliation(s)
- Yuichi Takei
- Department of Psychiatry and Human Behavior, Gunma University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|