1
|
Chun-peng ZHANG, Tian CAO, Xue YANG. Pharmacological mechanisms of Taohe Chengqi decoction in diabetic cardiovascular complications: A systematic review, network pharmacology and molecular docking. Heliyon 2024; 10:e33308. [PMID: 39044965 PMCID: PMC11263673 DOI: 10.1016/j.heliyon.2024.e33308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Background Diabetic cardiovascular complications are the leading cause of diabetes-related deaths. These complications place an enormous and growing burden on global health systems and economies. The objective of this study was to conduct a systematic review on the therapeutic mechanisms of Taohe Chengqi Decoction (THCQD) in the treatment of diabetic cardiovascular complications. To predict the potential mechanisms of action of THCQD on diabetic cardiovascular complications using network pharmacology, and to validate these predictions through molecular docking analysis. Methods To collect relevant animal experiments, we searched a total of 6 databases. Eligibility for the study was determined based on inclusion and exclusion criteria. Data extraction was then performed on the literature. Methodological quality of animal studies was assessed using SYRCLE criteria. Based on network pharmacology, intersecting genes for THCQD and diabetic cardiovascular complications were obtained using Venny, PPI analysis and topology analysis of intersecting genes were performed; GO and KEGG were used for enrichment analysis and prediction of new targets of action. Molecular docking techniques were employed to model the interactions between drug components and target genes, thereby validating the results of network pharmacology predictions. Results A total of 16 studies were finally identified that fit the direction of this review. Included 6 studies of the myocardium, 1 study of the aortic arch, 5 studies of the femoral artery, 4 studies of the thoracic aorta. THCQD exhibited anti-inflammatory, anti-fibrotic and anti-atherosclerotic effects on cardiovascular complications in diabetic rats. Network pharmacology results showed that C0363 (Resveratrol), C0041 (Emodin), and C1114 (Baicalein) were the key components in the treatment of diabetic cardiovascular complications by THCQD. PPI results showed that INS, AKT1, TNF, ALB, IL6, IL1B as the genes that interact with the top 6. KEGG enrichment analysis identified the AGE-RAGE signaling pathway in diabetic complications as the most prominent pathway enriched by THCQD for diabetic cardiovascular complications genes. The results of molecular docking showed that the key active components demonstrated favorable interactions with their corresponding target genes. Conclusion In conclusion, the results of both basic and web-based pharmacological studies support the beneficial effects of the natural herbal formulation THCQD on diabetic cardiovascular complications. This decoction has anti-inflammatory and antifibrotic properties and is effective in ameliorating diabetic cardiovascular disease. The network pharmacology results further support these ideas and identify the AGE-RAGE signaling pathway in diabetic complications as possibly the most relevant pathway for THCQD in the treatment of diabetic cardiovascular complications. The extent of the therapeutic potential of all-natural herbal components in the treatment of diabetic cardiovascular disease merits further investigation.
Collapse
Affiliation(s)
- ZHANG Chun-peng
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - CAO Tian
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - YANG Xue
- Department of Traditional Chinese Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| |
Collapse
|
2
|
Moreno-Salgado A, Coyotl-Santiago N, Moreno-Vazquez R, Lopez-Teyssier M, Garcia-Carrasco M, Moccia F, Berra-Romani R. Alterations of the Ca 2+ clearing mechanisms by type 2 diabetes in aortic smooth muscle cells of Zucker diabetic fatty rat. Front Physiol 2023; 14:1200115. [PMID: 37250131 PMCID: PMC10213752 DOI: 10.3389/fphys.2023.1200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is a rapidly rising disease with cardiovascular complications constituting the most common cause of death among diabetic patients. Chronic hyperglycemia can induce vascular dysfunction through damage of the components of the vascular wall, such as vascular smooth muscle cells (VSMCs), which regulate vascular tone and contribute to vascular repair and remodeling. These functions are dependent on intracellular Ca2+ changes. The mechanisms by which T2DM affects Ca2+ handling in VSMCs still remain poorly understood. Therefore, the objective of this study was to determine whether and how T2DM affects Ca2+ homeostasis in VSMCs. We evaluated intracellular Ca2+ signaling in VSMCs from Zucker Diabetic Fatty rats using Ca2+ imaging with Fura-2/AM. Our results indicate that T2DM decreases Ca2+ release from the sarcoplasmic reticulum (SR) and increases the activity of store-operated channels (SOCs). Moreover, we were able to identify an enhancement of the activity of the main Ca2+ extrusion mechanisms (SERCA, PMCA and NCX) during the early stage of the decay of the ATP-induced Ca2+ transient. In addition, we found an increase in Ca2+ entry through the reverse mode of NCX and a decrease in SERCA and PMCA activity during the late stage of the signal decay. These effects were appreciated as a shortening of ATP-induced Ca2+ transient during the early stage of the decay, as well as an increase in the amplitude of the following plateau. Enhanced cytosolic Ca2+ activity in VSMCs could contribute to vascular dysfunction associated with T2DM.
Collapse
Affiliation(s)
- Adriana Moreno-Salgado
- Department of Biomedicine, School of Medicine, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Nayeli Coyotl-Santiago
- Department of Biomedicine, School of Medicine, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Roberto Moreno-Vazquez
- Department of Biomedicine, School of Medicine, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Mayte Lopez-Teyssier
- Department of Biomedicine, School of Medicine, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Mario Garcia-Carrasco
- Department of Immunology, School of Medicine, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Francesco Moccia
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| |
Collapse
|
3
|
Increased eHSP70-to-iHSP70 ratio disrupts vascular responses to calcium and activates the TLR4-MD2 complex in type 1 diabetes. Life Sci 2022; 310:121079. [DOI: 10.1016/j.lfs.2022.121079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
|
4
|
Badin J, Rodenbeck S, McKenney-Drake ML, Sturek M. Multiphasic changes in smooth muscle Ca 2+ transporters during the progression of coronary atherosclerosis. CURRENT TOPICS IN MEMBRANES 2022; 90:95-121. [PMID: 36368876 DOI: 10.1016/bs.ctm.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ischemic heart disease due to macrovascular atherosclerosis and microvascular dysfunction is the major cause of death worldwide and the unabated increase in metabolic syndrome is a major reason why this will continue. Intracellular free Ca2+ ([Ca2+]i) regulates a variety of cellular functions including contraction, proliferation, migration, and transcription. It follows that studies of vascular Ca2+ regulation in reductionist models and translational animal models are vital to understanding vascular health and disease. Swine with metabolic syndrome (MetS) develop the full range of coronary atherosclerosis from mild to severe disease. Intravascular imaging enables quantitative measurement of atherosclerosis in vivo, so viable coronary smooth muscle (CSM) cells can be dispersed from the arteries to enable Ca2+ transport studies in native cells. Transition of CSM from the contractile phenotype in the healthy swine to the proliferative phenotype in mild atherosclerosis was associated with increases in SERCA activity, sarcoplasmic reticulum Ca2+, and voltage-gated Ca2+ channel function. In vitro organ culture confirmed that SERCA activation induces CSM proliferation. Transition from the proliferative to a more osteogenic phenotype was associated with decreases in all three Ca2+ transporters. Overall, there was a biphasic change in Ca2+ transporters over the progression of atherosclerosis in the swine model and this was confirmed in CSM from failing explanted hearts of humans. A major determinant of endolysosome content in human CSM is the severity of atherosclerosis. In swine CSM endolysosome Ca2+ release occurred through the TPC2 channel. We propose a multiphasic change in Ca2+ transporters over the progression of coronary atherosclerosis.
Collapse
Affiliation(s)
- Jill Badin
- ZOLL Medical Corporation, Chelmsford, MA, United States
| | - Stacey Rodenbeck
- Department of Biology, Harding University, Searcy, AR, United States
| | - Mikaela L McKenney-Drake
- Butler University, Health Sciences Department, Pharmacy and Health Sciences, Indianapolis, IN, United States
| | - Michael Sturek
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
5
|
Ai X, Yu P, Peng L, Luo L, Liu J, Li S, Lai X, Luan F, Meng X. Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front Pharmacol 2022; 12:762654. [PMID: 35370628 PMCID: PMC8964367 DOI: 10.3389/fphar.2021.762654] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional Chinese medicine plays a significant role in the treatment of various diseases and has attracted increasing attention for clinical applications. Vascular diseases affecting vasculature in the heart, cerebrovascular disease, atherosclerosis, and diabetic complications have compromised quality of life for affected individuals and increase the burden on health care services. Berberine, a naturally occurring isoquinoline alkaloid form Rhizoma coptidis, is widely used in China as a folk medicine for its antibacterial and anti-inflammatory properties. Promisingly, an increasing number of studies have identified several cellular and molecular targets for berberine, indicating its potential as an alternative therapeutic strategy for vascular diseases, as well as providing novel evidence that supports the therapeutic potential of berberine to combat vascular diseases. The purpose of this review is to comprehensively and systematically describe the evidence for berberine as a therapeutic agent in vascular diseases, including its pharmacological effects, molecular mechanisms, and pharmacokinetics. According to data published so far, berberine shows remarkable anti-inflammatory, antioxidant, antiapoptotic, and antiautophagic activity via the regulation of multiple signaling pathways, including AMP-activated protein kinase (AMPK), nuclear factor κB (NF-κB), mitogen-activated protein kinase silent information regulator 1 (SIRT-1), hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), janus kinase 2 (JAK-2), Ca2+ channels, and endoplasmic reticulum stress. Moreover, we discuss the existing limitations of berberine in the treatment of vascular diseases, and give corresponding measures. In addition, we propose some research perspectives and challenges, and provide a solid evidence base from which further studies can excavate novel effective drugs from Chinese medicine monomers.
Collapse
Affiliation(s)
- Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peiling Yu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lixia Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuling Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengqian Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xianrong Lai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Jankauskas SS, Kansakar U, Varzideh F, Wilson S, Mone P, Lombardi A, Gambardella J, Santulli G. Heart failure in diabetes. Metabolism 2021; 125:154910. [PMID: 34627874 PMCID: PMC8941799 DOI: 10.1016/j.metabol.2021.154910] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Heart failure and cardiovascular disorders represent the leading cause of death in diabetic patients. Here we present a systematic review of the main mechanisms underlying the development of diabetic cardiomyopathy. We also provide an excursus on the relative contribution of cardiomyocytes, fibroblasts, endothelial and smooth muscle cells to the pathophysiology of heart failure in diabetes. After having described the preclinical tools currently available to dissect the mechanisms of this complex disease, we conclude with a section on the most recent updates of the literature on clinical management.
Collapse
Affiliation(s)
- Stanislovas S Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Fahimeh Varzideh
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Scott Wilson
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy
| | - Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy.
| |
Collapse
|
7
|
Nieves-Cintrón M, Flores-Tamez VA, Le T, Baudel MMA, Navedo MF. Cellular and molecular effects of hyperglycemia on ion channels in vascular smooth muscle. Cell Mol Life Sci 2021; 78:31-61. [PMID: 32594191 PMCID: PMC7765743 DOI: 10.1007/s00018-020-03582-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Diabetes affects millions of people worldwide. This devastating disease dramatically increases the risk of developing cardiovascular disorders. A hallmark metabolic abnormality in diabetes is hyperglycemia, which contributes to the pathogenesis of cardiovascular complications. These cardiovascular complications are, at least in part, related to hyperglycemia-induced molecular and cellular changes in the cells making up blood vessels. Whereas the mechanisms mediating endothelial dysfunction during hyperglycemia have been extensively examined, much less is known about how hyperglycemia impacts vascular smooth muscle function. Vascular smooth muscle function is exquisitely regulated by many ion channels, including several members of the potassium (K+) channel superfamily and voltage-gated L-type Ca2+ channels. Modulation of vascular smooth muscle ion channels function by hyperglycemia is emerging as a key contributor to vascular dysfunction in diabetes. In this review, we summarize the current understanding of how diabetic hyperglycemia modulates the activity of these ion channels in vascular smooth muscle. We examine underlying mechanisms, general properties, and physiological relevance in the context of myogenic tone and vascular reactivity.
Collapse
Affiliation(s)
- Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Víctor A Flores-Tamez
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Thanhmai Le
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
8
|
Lee Y, Chakraborty S, Muthuchamy M. Roles of sarcoplasmic reticulum Ca 2+ ATPase pump in the impairments of lymphatic contractile activity in a metabolic syndrome rat model. Sci Rep 2020; 10:12320. [PMID: 32704072 PMCID: PMC7378550 DOI: 10.1038/s41598-020-69196-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
The intrinsic lymphatic contractile activity is necessary for proper lymph transport. Mesenteric lymphatic vessels from high-fructose diet-induced metabolic syndrome (MetSyn) rats exhibited impairments in its intrinsic phasic contractile activity; however, the molecular mechanisms responsible for the weaker lymphatic pumping activity in MetSyn conditions are unknown. Several metabolic disease models have shown that dysregulation of sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump is one of the key determinants of the phenotypes seen in various muscle tissues. Hence, we hypothesized that a decrease in SERCA pump expression and/or activity in lymphatic muscle influences the diminished lymphatic vessel contractions in MetSyn animals. Results demonstrated that SERCA inhibitor, thapsigargin, significantly reduced lymphatic phasic contractile frequency and amplitude in control vessels, whereas, the reduced MetSyn lymphatic contractile activity was not further diminished by thapsigargin. While SERCA2a expression was significantly decreased in MetSyn lymphatic vessels, myosin light chain 20, MLC20 phosphorylation was increased in these vessels. Additionally, insulin resistant lymphatic muscle cells exhibited elevated intracellular calcium and decreased SERCA2a expression and activity. The SERCA activator, CDN 1163 partially restored lymphatic contractile activity in MetSyn lymphatic vessel by increasing phasic contractile frequency. Thus, our data provide the first evidence that SERCA2a modulates the lymphatic pumping activity by regulating phasic contractile amplitude and frequency, but not the lymphatic tone. Diminished lymphatic contractile activity in the vessels from the MetSyn animal is associated with the decreased SERCA2a expression and impaired SERCA2 activity in lymphatic muscle.
Collapse
Affiliation(s)
- Yang Lee
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA
| | - Mariappan Muthuchamy
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA.
| |
Collapse
|
9
|
Schach C, Wester M, Leibl F, Redel A, Gruber M, Maier LS, Endemann D, Wagner S. Reduced store-operated Ca 2+ entry impairs mesenteric artery function in response to high external glucose in type 2 diabetic ZDF rats. Clin Exp Pharmacol Physiol 2020; 47:1145-1157. [PMID: 32147830 DOI: 10.1111/1440-1681.13300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/15/2020] [Accepted: 03/05/2020] [Indexed: 11/28/2022]
Abstract
Diabetes is a major risk factor for cardiovascular disease, affecting both endothelial and smooth muscle cells. Store-operated Ca2+ channels (SOCCs) have been implicated in many diabetic complications. Vascular dysfunction is common in patients with diabetes, but the role of SOCCs in diabetic vasculopathy is still unclear. Our research aimed to investigate the effects of high glucose (HG) on store-operated Ca2+ entry (SOCE) in small arteries. Small mesenteric arteries from type 2 diabetic Zucker fatty rats (ZDF) versus their non-diabetic controls (Zucker lean, ZL) were examined in a pressurized myograph. Vascular smooth muscle cells (VSMC) were isolated and intracellular Ca2+ was measured (Fura 2-AM). A specific protocol to deplete intracellular Ca2+ stores and thereby open SOCCs, as well as pharmacological SOCE inhibitors (SKF-96365, BTP-2), were used to artificially activate and inhibit SOCE, respectively. High glucose (40 mmol/L) relaxed arteries in a SKF-sensitive manner. Diabetic arteries exhibited reduced HG-induced relaxation, as well as reduced contraction after Ca2+ replenishment. Further, the rise in intracellular Ca2+ on account of SOCE is diminished in diabetic versus non-diabetic VSMCs and was insensitive to HG in diabetic VSMCs. The expression of SOCC proteins was measured, detecting a downregulation of Orai1 in diabetes. In conclusion, diabetes leads to a reduction of SOCE and SOCE-induced contraction, which is unresponsive to HG-mediated inhibition. The reduced expression of Orai1 in diabetic arteries could account for the observed reduction in SOCE.
Collapse
Affiliation(s)
- Christian Schach
- Abteilung für Kardiologie, Klinik und Poliklinik für Innere Medizin II, Universitäres Herzzentrum Regensburg, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Michael Wester
- Abteilung für Kardiologie, Klinik und Poliklinik für Innere Medizin II, Universitäres Herzzentrum Regensburg, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Florian Leibl
- Abteilung für Kardiologie, Klinik und Poliklinik für Innere Medizin II, Universitäres Herzzentrum Regensburg, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Andreas Redel
- Klinik für Anästhesiologie, Universitäres Herzzentrum Regensburg, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Michael Gruber
- Klinik für Anästhesiologie, Universitäres Herzzentrum Regensburg, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Lars S Maier
- Abteilung für Kardiologie, Klinik und Poliklinik für Innere Medizin II, Universitäres Herzzentrum Regensburg, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Dierk Endemann
- Abteilung für Kardiologie, Klinik und Poliklinik für Innere Medizin II, Universitäres Herzzentrum Regensburg, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Stefan Wagner
- Abteilung für Kardiologie, Klinik und Poliklinik für Innere Medizin II, Universitäres Herzzentrum Regensburg, Universitätsklinikum Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Yang H, Chen XY, Kuang SJ, Zhou MY, Zhang L, Zeng Z, Liu L, Wu FL, Zhang MZ, Mai LP, Yang M, Xue YM, Rao F, Deng CY. Abnormal Ca 2+ handling contributes to the impairment of aortic smooth muscle contractility in Zucker diabetic fatty rats. J Mol Cell Cardiol 2020; 141:82-92. [PMID: 32222458 DOI: 10.1016/j.yjmcc.2020.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
Vascular dysfunction is a common pathological basis for complications in individuals affected by diabetes. Previous studies have established that endothelial dysfunction is the primary contributor to vascular complications in type 2 diabetes (T2DM). However, the role of vascular smooth muscle cells (VSMCs) in vascular complications associated with T2DM is still not completely understood. The aim of this study is to explore the potential mechanisms associated with Ca2+ handling dysfunction and how this dysfunction contributes to diabetic vascular smooth muscle impairment. The results indicated that endothelium-dependent vasodilation was impaired in diabetic aortae, but endothelium-independent vasodilation was not altered. Various vasoconstrictors such as phenylephrine, U46619 and 5-HT could induce vasoconstriction in a concentration-dependent manner, such that the dose-response curve was parallel shifted to the right in diabetic aortae, compared to the control. Vasoconstrictions mediated by L-type calcium (Cav1.2) channels were attenuated in diabetic aortae, but effects mediated by store-operated calcium (SOC) channels were enhanced. Intracellular Ca2+ concentration ([Ca2+]i) in VSMCs was detected by Fluo-4 calcium fluorescent probes, and demonstrated that SOC-mediated Ca2+ entry was increased in diabetic VSMCs. VSMC-specific knockout of STIM1 genes decreased SOC-mediated and phenylephrine-induced vasoconstrictive response in mice aortae. Additionally, Orai1 expression was up-regulated, Cav1.2 expression was downregulated, and the phenotypic transformation of diabetic VSMCs was determined in diabetic aortae. The overexpression of Orai1 markedly promoted the OPN expression of VSMCs, whereas SKF96365 (SOC channel blocker) reversed the phenotypic transformation of diabetic VSMCs. Our results demonstrated that the vasoconstriction response of aortic smooth muscle was weakened in type 2 diabetic rats, which was related to the downregulation of the Cav1.2 channel and the up-regulation of the SOC channel signaling pathway.
Collapse
Affiliation(s)
- Hui Yang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiao-Yan Chen
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Su-Juan Kuang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Meng-Yuan Zhou
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; School of biological science and engineering, South China University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; School of biological science and engineering, South China University of Technology, Guangzhou 510006, China
| | - Zheng Zeng
- Department of Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Fei-Long Wu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Meng-Zhen Zhang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Li-Ping Mai
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Min Yang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yu-Mei Xue
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Fang Rao
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Chun-Yu Deng
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| |
Collapse
|
11
|
Sánchez A, Contreras C, Climent B, Gutiérrez A, Muñoz M, García-Sacristán A, López M, Rivera L, Prieto D. Impaired Ca 2+ handling in resistance arteries from genetically obese Zucker rats: Role of the PI3K, ERK1/2 and PKC signaling pathways. Biochem Pharmacol 2018; 152:114-128. [PMID: 29574066 DOI: 10.1016/j.bcp.2018.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/20/2018] [Indexed: 01/12/2023]
Abstract
The impact of obesity on vascular smooth muscle (VSM) Ca2+ handling and vasoconstriction, and its regulation by the phosphatidylinositol 3-kinase (PI3K), mitogen activated protein kinase (MAPK) and protein kinase C (PKC) were assessed in mesenteric arteries (MA) from obese Zucker rats (OZR). Simultaneous measurements of intracellular Ca2+ ([Ca2+]i) and tension were performed in MA from OZR and compared to lean Zucker rats (LZR), and the effects of selective inhibitors of PI3K, ERK-MAPK kinase and PKC were assessed on the functional responses of VSM voltage-dependent L-type Ca2+ channels (CaV1.2). Increases in [Ca2+]i induced by α1-adrenoceptor activation and high K+ depolarization were not different in arteries from LZR and OZR although vasoconstriction was enhanced in OZR. Blockade of the ryanodine receptor (RyR) and of Ca2+ release from the sarcoplasmic reticulum (SR) markedly reduced depolarization-induced Ca2+ responses in arteries from lean but not obese rats, suggesting impaired Ca2+-induced Ca2+ release (CICR) from SR in arteries from OZR. Enhanced Ca2+ influx after treatment with ryanodine was abolished by nifedipine and coupled to up-regulation of CaV1.2 channels in arteries from OZR. Increased activation of ERK-MAPK and up-regulation of PI3Kδ, PKCβ and δ isoforms were associated to larger inhibitory effects of PI3K, MAPK and PKC blockers on VSM L-type channel Ca2+ entry in OZR. Changes in arterial Ca2+ handling in obesity involve SR Ca2+ store dysfunction and enhanced VSM Ca2+ entry through L-type channels, linked to a compensatory up-regulation of CaV1.2 proteins and increased activity of the ERK-MAPK, PI3Kδ and PKCβ and δ, signaling pathways.
Collapse
Affiliation(s)
- Ana Sánchez
- Department of Physiology, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Cristina Contreras
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Belén Climent
- Department of Physiology, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alejandro Gutiérrez
- Department of Physiology, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mercedes Muñoz
- Department of Physiology, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Albino García-Sacristán
- Department of Physiology, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Luis Rivera
- Department of Physiology, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Dolores Prieto
- Department of Physiology, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
12
|
Mahavadi S, Sriwai W, Manion O, Grider JR, Murthy KS. Diabetes-induced oxidative stress mediates upregulation of RhoA/Rho kinase pathway and hypercontractility of gastric smooth muscle. PLoS One 2017; 12:e0178574. [PMID: 28678840 PMCID: PMC5497948 DOI: 10.1371/journal.pone.0178574] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/15/2017] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis of diabetes-associated motility disorders are multifactorial and attributed to abnormalities in extrinsic and intrinsic innervation, and a decrease in the number of interstitial cells of Cajal, and nNOS expression and activity. Here we studied the effect of hyperglycemia on smooth muscle function. Using smooth muscles from the fundus of ob/ob mice and of wild type (WT) mice treated with 30 mM glucose (HG), we identified the molecular mechanism by which hyperglycemia upregulates RhoA/Rho kinase pathway and muscle contraction. RhoA expression, Rho kinase activity and muscle contraction were increased, while miR-133a expression was decreased in smooth muscle of ob/ob mice and in smooth muscle treated with HG. Intraperitoneal injections of pre-miR-133a decreased RhoA expression in WT mice and reversed the increase in RhoA expression in ob/ob mice. Intraperitoneal injections of antagomiR-133a increased RhoA expression in WT mice and augmented the increase in RhoA expression in ob/ob mice. The effect of pre-miR-133a or antagomiR-133a in vitro in smooth muscle treated with HG was similar to that obtained in vivo, suggesting that the expression of RhoA is negatively regulated by miR-133a and a decrease in miR-133a expression in diabetes causes an increase in RhoA expression. Oxidative stress (levels of reactive oxygen species and hydrogen peroxide, and expression of superoxide dismutase 1 and NADPH oxidase 4) was increased in smooth muscle of ob/ob mice and in HG-treated smooth muscle. Treatment of ob/ob mice with N-acetylcysteine (NAC) in vivo or addition of NAC in vitro to HG-treated smooth muscle reversed the effect of glucose on the expression of miR-133a and RhoA, Rho kinase activity and muscle contraction. NAC treatment also reversed the decrease in gastric emptying in ob/ob mice. We conclude that oxidative stress in diabetes causes a decrease in miR-133a expression leading to an increase in RhoA/Rho kinase pathway and muscle contraction.
Collapse
Affiliation(s)
- Sunila Mahavadi
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Wimolpak Sriwai
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Olivia Manion
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - John R. Grider
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Karnam S. Murthy
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
13
|
Importance of Altered Levels of SERCA, IP 3R, and RyR in Vascular Smooth Muscle Cell. Biophys J 2017; 112:265-287. [PMID: 28122214 DOI: 10.1016/j.bpj.2016.11.3206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/26/2016] [Accepted: 11/21/2016] [Indexed: 11/23/2022] Open
Abstract
Calcium cycling between the sarcoplasmic reticulum (SR) and the cytosol via the sarco-/endoplasmic reticulum Ca-ATPase (SERCA) pump, inositol-1,4,5-triphosphate receptor (IP3R), and Ryanodine receptor (RyR), plays a major role in agonist-induced intracellular calcium ([Ca2+]cyt) dynamics in vascular smooth muscle cells (VSMC). Levels of these calcium handling proteins in SR get altered under disease conditions. We have developed a mathematical model to understand the significance of altered levels of SERCA, IP3R, and RyR on the intracellular calcium dynamics of VSMC and to understand how variation in protein levels that arise due to diabetes contribute to different VSMC behavior and thus vascular disease. SR is modeled as a single continuous entity with homogeneous intra-SR calcium. Model results show that agonist-induced intracellular calcium dynamics can be modified by changing the levels of SERCA, IP3R, and/or RyR. Lowering SERCA level will enable intracellular calcium oscillations at low agonist concentrations whereas lowered levels of IP3R and RyR need higher agonist concentration for intracellular calcium oscillations. This research suggests that reduced SERCA level is the main factor responsible for the reduced intracellular calcium transients and contractility in VSMCs.
Collapse
|
14
|
Effects of Hyperglycemia on Vascular Smooth Muscle Ca 2+ Signaling. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3691349. [PMID: 28713824 PMCID: PMC5497615 DOI: 10.1155/2017/3691349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 05/24/2017] [Indexed: 12/25/2022]
Abstract
Diabetes is a complex disease that is characterized with hyperglycemia, dyslipidemia, and insulin resistance. These pathologies are associated with significant cardiovascular implications that affect both the macro- and microvasculature. It is therefore important to understand the effects of various pathologies associated with diabetes on the vasculature. Here we directly test the effects of hyperglycemia on vascular smooth muscle (VSM) Ca2+ signaling in an isolated in vitro system using the A7r5 rat aortic cell line as a model. We find that prolonged exposure of A7r5 cells to hyperglycemia (weeks) is associated with changes to Ca2+ signaling, including most prominently an inhibition of the passive ER Ca2+ leak and the sarcoplasmic reticulum Ca2+-ATPase (SERCA). To translate these findings to the in vivo condition, we used primary VSM cells from normal and diabetic subjects and find that only the inhibition of the ER Ca2+ leaks replicates in cells from diabetic donors. These results show that prolonged hyperglycemia in isolation alters the Ca2+ signaling machinery in VSM cells. However, these alterations are not readily translatable to the whole organism situation where alterations to the Ca2+ signaling machinery are different.
Collapse
|
15
|
Stojanović M, Prostran M, Janković R, Radenković M. Clarification of serotonin-induced effects in peripheral artery disease observed through the femoral artery response in models of diabetes and vascular occlusion: The role of calcium ions. Clin Exp Pharmacol Physiol 2017; 44:749-759. [PMID: 28429868 DOI: 10.1111/1440-1681.12770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/31/2017] [Accepted: 04/13/2017] [Indexed: 11/28/2022]
Abstract
Recent findings have demonstrated that serotonin is an important participant in the development and progression of peripheral artery diseases. Taking this into consideration, the goals of this study were to investigate the effects of serotonin on isolated Wistar rat femoral arteries in both healthy and diabetic animals, with and without artery occlusion, with a particular focus on determining the role of calcium in this process. Contraction experiments with serotonin on intact and denuded femoral artery rings, in the presence or absence of nifedipine and ouabain (both separately, or in combination), as well as Ca2+ -free Krebs-Ringer bicarbonate solution were performed. The serotonin-induced results were concentration dependent, but only in healthy animals. The endothelium-dependent contraction of the femoral artery was assessed. In healthy animals, the endothelium-reliant part of contraction was dependent on the extracellular calcium, while the smooth muscle-related part was instead dependent on the intracellular calcium. In diabetic animals, both nifedipine and ouabain influenced serotonin-induced vascular effects by blocking intracellular calcium pathways. However, this was diminished after the simultaneous administration of both blockers.
Collapse
Affiliation(s)
- Marko Stojanović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Prostran
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Radmila Janković
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Miroslav Radenković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
17
|
Increased Muscular 5α-Dihydrotestosterone in Response to Resistance Training Relates to Skeletal Muscle Mass and Glucose Metabolism in Type 2 Diabetic Rats. PLoS One 2016; 11:e0165689. [PMID: 27832095 PMCID: PMC5104401 DOI: 10.1371/journal.pone.0165689] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/17/2016] [Indexed: 11/24/2022] Open
Abstract
Regular resistance exercise induces skeletal muscle hypertrophy and improvement of glycemic control in type 2 diabetes patients. Administration of dehydroepiandrosterone (DHEA), a sex steroid hormone precursor, increases 5α-dihydrotestosterone (DHT) synthesis and is associated with improvements in fasting blood glucose level and skeletal muscle hypertrophy. Therefore, the aim of this study was to investigate whether increase in muscle DHT levels, induced by chronic resistance exercise, can contribute to skeletal muscle hypertrophy and concomitant improvement of muscular glucose metabolism in type 2 diabetic rats. Male 20-week-old type 2 diabetic rats (OLETF) were randomly divided into 3 groups: sedentary control, resistance training (3 times a week on alternate days for 8 weeks), or resistance training with continuous infusion of a 5α-reductase inhibitor (n = 8 each group). Age-matched, healthy nondiabetic Long-Evans Tokushima Otsuka (LETO) rats (n = 8) were used as controls. The results indicated that OLETF rats showed significant decrease in muscular DHEA, free testosterone, DHT levels, and protein expression of steroidogenic enzymes, with loss of skeletal muscle mass and hyperglycemia, compared to that of LETO rats. However, 8-week resistance training in OLETF rats significantly increased the levels of muscle sex steroid hormones and protein expression of steroidogenic enzymes with a concomitant increase in skeletal muscle mass, improved fasting glucose level, and insulin sensitivity index. Moreover, resistance training accelerated glucose transporter-4 (GLUT-4) translocation and protein kinase B and C-ζ/λ phosphorylation. Administering the 5α-reductase inhibitor in resistance-trained OLETF rats resulted in suppression of the exercise-induced effects on skeletal muscle mass, fasting glucose level, insulin sensitivity index, and GLUT-4 signaling, with a decline in muscular DHT levels. These findings suggest that resistance training-induced elevation of muscular DHT levels may contribute to improvement of hyperglycemia and skeletal muscle hypertrophy in type 2 diabetic rats.
Collapse
|
18
|
Ghosh D, Syed AU, Prada MP, Nystoriak MA, Santana LF, Nieves-Cintrón M, Navedo MF. Calcium Channels in Vascular Smooth Muscle. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:49-87. [PMID: 28212803 DOI: 10.1016/bs.apha.2016.08.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcium (Ca2+) plays a central role in excitation, contraction, transcription, and proliferation of vascular smooth muscle cells (VSMs). Precise regulation of intracellular Ca2+ concentration ([Ca2+]i) is crucial for proper physiological VSM function. Studies over the last several decades have revealed that VSMs express a variety of Ca2+-permeable channels that orchestrate a dynamic, yet finely tuned regulation of [Ca2+]i. In this review, we discuss the major Ca2+-permeable channels expressed in VSM and their contribution to vascular physiology and pathology.
Collapse
Affiliation(s)
- D Ghosh
- University of California, Davis, CA, United States
| | - A U Syed
- University of California, Davis, CA, United States
| | - M P Prada
- University of California, Davis, CA, United States
| | - M A Nystoriak
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - L F Santana
- University of California, Davis, CA, United States
| | | | - M F Navedo
- University of California, Davis, CA, United States.
| |
Collapse
|
19
|
Jensen VFH, Mølck AM, Mårtensson M, Strid MA, Chapman M, Lykkesfeldt J, Bøgh IB. Assessment of implantable infusion pumps for continuous infusion of human insulin in rats: potential for group housing. Lab Anim 2016; 51:273-283. [PMID: 27465034 DOI: 10.1177/0023677216660740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Group housing is considered to be important for rats, which are highly sociable animals. Single housing may impact behaviour and levels of circulating stress hormones. Rats are typically used in the toxicological evaluation of insulin analogues. Human insulin (HI) is frequently used as a reference compound in these studies, and a comparator model of persistent exposure by HI infusion from external pumps has recently been developed to support toxicological evaluation of long-acting insulin analogues. However, this model requires single housing of the animals. Developing an insulin-infusion model which allows group housing would therefore greatly improve animal welfare. The aim of the present study was to investigate the suitability of implantable infusion pumps for HI infusion in group-housed rats. Group housing of rats implanted with a battery-driven pump proved to be possible. Intravenous infusion of HI lowered blood glucose levels persistently for two weeks, providing a comparator model for use in two-week repeated-dose toxicity studies with new long-acting insulin analogues, which allows group housing, and thereby increasing animal welfare compared with an external infusion model.
Collapse
Affiliation(s)
- Vivi Flou Hjorth Jensen
- 1 Department of Veterinary Disease Biology, Experimental Pharmacology and Toxicology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,2 Department of Toxicology & Safety Pharmacology, Novo Nordisk A/S, Måøv, Denmark
| | - Anne-Marie Mølck
- 2 Department of Toxicology & Safety Pharmacology, Novo Nordisk A/S, Måøv, Denmark
| | - Martin Mårtensson
- 3 Department of Diabetes Analytical Development, Novo Nordisk A/S, Måøv, Denmark
| | | | | | - Jens Lykkesfeldt
- 1 Department of Veterinary Disease Biology, Experimental Pharmacology and Toxicology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ingrid Brück Bøgh
- 2 Department of Toxicology & Safety Pharmacology, Novo Nordisk A/S, Måøv, Denmark
| |
Collapse
|
20
|
Emilova R, Dimitrova DZ, Mladenov M, Hadzi-Petrushev N, Daneva T, Padeshki P, Schubert R, Chichova M, Lubomirov L, Simeonovska-Nikolova D, Gagov H. Diabetes converts arterial regulation by perivascular adipose tissue from relaxation into H(2)O(2)-mediated contraction. Physiol Res 2016; 65:799-807. [PMID: 27429118 DOI: 10.33549/physiolres.933037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This study aims to reveal the reason for the increased force of 5-hydroxytryptamine-induced contraction of endothelium-denuded skeletal muscle arteries of diabetic rats in the presence of perivascular adipose tissue (PVAT). Our data on rat gracilis arteries show that i) PVAT of skeletal muscle arteries of healthy and diabetic rats releases hydrogen peroxide (H(2)O(2)), ii) higher concentrations of 5-hydroxytryptamine increase the production of H(2)O(2) in PVAT; iii) an enhanced PVAT production of H(2)O(2) is the main, if not the only, reason for the sensitization of arterial contraction to 5-hydroxytriptamine-induced contraction in diabetes and iv) endothelium antagonizes the effect of PVAT-derived H(2)O(2).
Collapse
Affiliation(s)
- R Emilova
- Cytogenetics Laboratory, University Paediatric Hospital, Medical University, Sofia, Bulgaria; Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia, Bulgaria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ma YG, Zhang YB, Bai YG, Dai ZJ, Liang L, Liu M, Xie MJ, Guan HT. Berberine alleviates the cerebrovascular contractility in streptozotocin-induced diabetic rats through modulation of intracellular Ca²⁺ handling in smooth muscle cells. Cardiovasc Diabetol 2016; 15:63. [PMID: 27067643 PMCID: PMC4828787 DOI: 10.1186/s12933-016-0382-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/01/2016] [Indexed: 11/24/2022] Open
Abstract
Background Vascular dysfunction is a distinctive phenotype in diabetes mellitus. Current treatments mostly focus on the tight glycemic control and few of these treatments have been designed to directly recover the vascular dysfunction in diabetes. As a classical natural medicine, berberine has been explored as a possible therapy for DM. In addition, it is reported that berberine has an extra-protective effect in diabetic vascular dysfunction. However, little is known whether the berberine treatment could ameliorate the smooth muscle contractility independent of a functional endothelium under hyperglycemia. Furthermore, it remains unknown whether berberine affects the arterial contractility by regulating the intracellular Ca2+ handling in vascular smooth cells (VSMCs) under hyperglycemia. Methods Sprague–Dawley rats were used to establish the diabetic model with a high-fat diet plus injections of streptozotocin (STZ). Berberine (50, 100, and 200 mg/kg/day) were intragastrically administered to control and diabetic rats for 8 weeks since the injection of STZ. The intracellular Ca2+ handling of isolated cerebral VSMCs was investigated by recording the whole-cell L-type Ca2+ channel (CaL) currents, assessing the protein expressions of CaL channel, and measuring the intracellular Ca2+ in response to caffeine. Our results showed that chronic administration of 100 mg/kg/day berberine not only reduced glucose levels, but also inhibited the augmented contractile function of cerebral artery to KCl and 5-hydroxytryptamine (5-HT) in diabetic rats. Furthermore, chronic administration of 100 mg/kg/day berberine significantly inhibited the CaL channel current densities, reduced the α1C-subunit expressions of CaL channel, decreased the resting intracellular Ca2+ ([Ca2+]i) level, and suppressed the Ca2+ releases from RyRs in cerebral VSMCs isolated from diabetic rats. Correspondingly, acute application of 10 μM berberine could directly inhibit the hyperglycemia-induced CaL currents and suppress the hyperglycemia-induced Ca2+ releases from RyRs in cerebral VSMCs isolated from normal control rats. Conclusions Our study indicated that berberine alleviated the cerebral arterial contractility in the rat model of streptozotocin-induced diabetes via regulating the intracellular Ca2+ handling of smooth muscle cells.
Collapse
Affiliation(s)
- Yu-Guang Ma
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yin-Bin Zhang
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yun-Gang Bai
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhi-Jun Dai
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Liang Liang
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Mei Liu
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Man-Jiang Xie
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Hai-Tao Guan
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
22
|
Gordienko D, Povstyan O, Sukhanova K, Raphaël M, Harhun M, Dyskina Y, Lehen'kyi V, Jama A, Lu ZL, Skryma R, Prevarskaya N. Impaired P2X signalling pathways in renal microvascular myocytes in genetic hypertension. Cardiovasc Res 2014; 105:131-42. [PMID: 25514930 DOI: 10.1093/cvr/cvu249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIMS P2X receptors (P2XRs) mediate sympathetic control and autoregulation of renal circulation triggering preglomerular vasoconstriction, which protects glomeruli from elevated pressures. Although previous studies established a casual link between glomerular susceptibility to hypertensive injury and decreased preglomerular vascular reactivity to P2XR activation, the mechanisms of attenuation of the P2XR signalling in hypertension remained unknown. We aimed to analyse molecular mechanisms of the impairment of P2XR signalling in renal vascular smooth muscle cells (RVSMCs) in genetic hypertension. METHODS AND RESULTS We compared the expression of pertinent genes and P2XR-linked Ca(2+) entry and Ca(2+) release mechanisms in RVSMCs of spontaneously hypertensive rats (SHRs) and their normotensive controls, Wistar Kyoto (WKY) rats. We found that, in SHR RVSMCs, P2XR-linked Ca(2+) entry and Ca(2+) release from the sarcoplasmic reticulum (SR) are both significantly reduced. The former is due to down-regulation of the P2X1 subunit. The latter is caused by a decrease of the SR Ca(2+) load. The SR Ca(2+) load reduction is caused by attenuated Ca(2+) uptake via down-regulated sarco-/endoplasmic reticulum Ca(2+)-ATPase 2b and elevated Ca(2+) leak from the SR via ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors. Spontaneous activity of these Ca(2+)-release channels is augmented due to up-regulation of RyR type 2 and elevated IP3 production by up-regulated phospholipase C-β1. CONCLUSIONS Our study unravels the cellular and molecular mechanisms of attenuation of P2XR-mediated preglomerular vasoconstriction that elevates glomerular susceptibility to harmful hypertensive pressures. This provides an important impetus towards understanding of the pathology of hypertensive renal injury.
Collapse
Affiliation(s)
- Dmitri Gordienko
- INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille, Batiment SN3, Villeneuve d'Ascq 59655, France Laboratory of Molecular Pharmacology and Biophysics of Cell Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Oleksandr Povstyan
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine Division of Basic Medical Sciences, St. George's, University of London, London, UK
| | - Khrystyna Sukhanova
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Maylis Raphaël
- INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille, Batiment SN3, Villeneuve d'Ascq 59655, France
| | - Maksym Harhun
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine Division of Basic Medical Sciences, St. George's, University of London, London, UK
| | - Yulia Dyskina
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - V'yacheslav Lehen'kyi
- INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille, Batiment SN3, Villeneuve d'Ascq 59655, France
| | - Abdirahman Jama
- MRC, Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Zhi-Liang Lu
- MRC, Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Roman Skryma
- INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille, Batiment SN3, Villeneuve d'Ascq 59655, France
| | - Natalia Prevarskaya
- INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille, Batiment SN3, Villeneuve d'Ascq 59655, France
| |
Collapse
|
23
|
Crystal structure of phospholipase PA2-Vb, a protease-activated receptor agonist from theTrimeresurus stejnegerisnake venom. FEBS Lett 2014; 588:4604-12. [DOI: 10.1016/j.febslet.2014.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 11/20/2022]
|
24
|
Regulation of SERCA pumps expression in diabetes. Cell Calcium 2014; 56:302-10. [DOI: 10.1016/j.ceca.2014.09.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 11/22/2022]
|
25
|
Youm JB, Park KS, Jang YJ, Leem CH. Effects of streptozotocin and unilateral nephrectomy on L-type Ca2+ channels and membrane capacitance in arteriolar smooth muscle cells. Pflugers Arch 2014; 467:1689-97. [DOI: 10.1007/s00424-014-1604-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
|
26
|
Fernández-Velasco M, Ruiz-Hurtado G, Gómez AM, Rueda A. Ca(2+) handling alterations and vascular dysfunction in diabetes. Cell Calcium 2014; 56:397-407. [PMID: 25218935 DOI: 10.1016/j.ceca.2014.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/30/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022]
Abstract
More than 65% of patients with diabetes mellitus die from cardiovascular disease or stroke. Hyperglycemia, due to either reduced insulin secretion or reduced insulin sensitivity, is the hallmark feature of diabetes mellitus. Vascular dysfunction is a distinctive phenotype found in both types of diabetes and could be responsible for the high incidence of stroke, heart attack, and organ damage in diabetic patients. In addition to well-documented endothelial dysfunction, Ca(2+) handling alterations in vascular smooth muscle cells (VSMCs) play a key role in the development and progression of vascular complications in diabetes. VSMCs provide not only structural integrity to the vessels but also control myogenic arterial tone and systemic blood pressure through global and local Ca(2+) signaling. The Ca(2+) signalosome of VSMCs is integrated by an extensive number of Ca(2+) handling proteins (i.e. channels, pumps, exchangers) and related signal transduction components, whose function is modulated by endothelial effectors. This review summarizes recent findings concerning alterations in endothelium and VSMC Ca(2+) signaling proteins that may contribute to the vascular dysfunction found in the diabetic condition.
Collapse
Affiliation(s)
| | - Gema Ruiz-Hurtado
- Unidad de Hipertensión, Instituto de Investigación imas12, Hospital 12 de Octubre, Madrid, Spain; Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Ana M Gómez
- Inserm, UMR S769, Faculté de Pharmacie, Université Paris Sud, Labex LERMIT, DHU TORINO, Châtenay-Malabry, France
| | - Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico.
| |
Collapse
|
27
|
Hawi R, Bazi L, Farkouh ME, Aneja A. Imaging in diabetic cardiomyopathy. Expert Rev Cardiovasc Ther 2014. [DOI: 10.1586/14779072.2014.899903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Husi H, Van Agtmael T, Mullen W, Bahlmann FH, Schanstra JP, Vlahou A, Delles C, Perco P, Mischak H. Proteome-based systems biology analysis of the diabetic mouse aorta reveals major changes in fatty acid biosynthesis as potential hallmark in diabetes mellitus-associated vascular disease. ACTA ACUST UNITED AC 2014; 7:161-70. [PMID: 24573165 DOI: 10.1161/circgenetics.113.000196] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Macrovascular complications of diabetes mellitus are a major risk factor for cardiovascular morbidity and mortality. Currently, studies only partially described the molecular pathophysiology of diabetes mellitus-associated effects on vasculature. However, better understanding of systemic effects is essential in unraveling key molecular events in the vascular tissue responsible for disease onset and progression. METHODS AND RESULTS Our overall aim was to get an all-encompassing view of diabetes mellitus-induced key molecular changes in the vasculature. An integrative proteomic and bioinformatics analysis of data from aortic vessels in the low-dose streptozotocin-induced diabetic mouse model (10 animals) was performed. We observed pronounced dysregulation of molecules involved in myogenesis, vascularization, hypertension, hypertrophy (associated with thickening of the aortic wall), and a substantial reduction of fatty acid storage. A novel finding is the pronounced downregulation of glycogen synthase kinase-3β (Gsk3β) and upregulation of molecules linked to the tricarboxylic acid cycle (eg, aspartate aminotransferase [Got2] and hydroxyacid-oxoacid transhydrogenase [Adhfe1]). In addition, pathways involving primary alcohols and amino acid breakdown are altered, potentially leading to ketone-body production. A number of these findings were validated immunohistochemically. Collectively, the data support the hypothesis that in this diabetic model, there is an overproduction of ketone-bodies within the vessels using an alternative tricarboxylic acid cycle-associated pathway, ultimately leading to the development of atherosclerosis. CONCLUSIONS Streptozotocin-induced diabetes mellitus in animals leads to a reduction of fatty acid biosynthesis and an upregulation of an alternative ketone-body formation pathway. This working hypothesis could form the basis for the development of novel therapeutic intervention and disease management approaches.
Collapse
Affiliation(s)
- Holger Husi
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, Glasgow, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yi F, Wang H, Chai Q, Wang X, Shen WK, Willis MS, Lee HC, Lu T. Regulation of large conductance Ca2+-activated K+ (BK) channel β1 subunit expression by muscle RING finger protein 1 in diabetic vessels. J Biol Chem 2014; 289:10853-10864. [PMID: 24570002 DOI: 10.1074/jbc.m113.520940] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The large conductance Ca(2+)-activated K(+) (BK) channel, expressed abundantly in vascular smooth muscle cells (SMCs), is a key determinant of vascular tone. BK channel activity is tightly regulated by its accessory β1 subunit (BK-β1). However, BK channel function is impaired in diabetic vessels by increased ubiquitin/proteasome-dependent BK-β1 protein degradation. Muscle RING finger protein 1 (MuRF1), a muscle-specific ubiquitin ligase, is implicated in many cardiac and skeletal muscle diseases. However, the role of MuRF1 in the regulation of vascular BK channel and coronary function has not been examined. In this study, we hypothesized that MuRF1 participated in BK-β1 proteolysis, leading to the down-regulation of BK channel activation and impaired coronary function in diabetes. Combining patch clamp and molecular biological approaches, we found that MuRF1 expression was enhanced, accompanied by reduced BK-β1 expression, in high glucose-cultured human coronary SMCs and in diabetic vessels. Knockdown of MuRF1 by siRNA in cultured human SMCs attenuated BK-β1 ubiquitination and increased BK-β1 expression, whereas adenoviral expression of MuRF1 in mouse coronary arteries reduced BK-β1 expression and diminished BK channel-mediated vasodilation. Physical interaction between the N terminus of BK-β1 and the coiled-coil domain of MuRF1 was demonstrated by pulldown assay. Moreover, MuRF1 expression was regulated by NF-κB. Most importantly, pharmacological inhibition of proteasome and NF-κB activities preserved BK-β1 expression and BK-channel-mediated coronary vasodilation in diabetic mice. Hence, our results provide the first evidence that the up-regulation of NF-κB-dependent MuRF1 expression is a novel mechanism that leads to BK channelopathy and vasculopathy in diabetes.
Collapse
Affiliation(s)
- Fu Yi
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xian 710032, China
| | - Huan Wang
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Qiang Chai
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Xiaoli Wang
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Win-Kuang Shen
- Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona 85259
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Hon-Chi Lee
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Tong Lu
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905.
| |
Collapse
|
30
|
Boucher J, Simard E, Froehlich U, Grandbois M. Amplification of AngII-dependent cell contraction by glyoxal: implication of cell mechanical properties and actomyosin activity. Integr Biol (Camb) 2014; 6:411-21. [PMID: 24503653 DOI: 10.1039/c3ib40243f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glyoxal (GO), a highly reactive metabolite of glucose, is associated with diabetic vascular complications via the formation of advanced glycation end-products. Considering its ability to react with proteins' amino acids and its crosslinking potential, we suggest that GO affects cellular mechanical functions such as contractility. Therefore, we tested the effects of GO on cellular contractile response following AngII stimulation of human embryonic kidney cells over-expressing the AT1 receptor (HEK 293 AT1aR). Prior to cell stimulation with AngII, cells exposed to GO exhibited carboxymethyllysine-adduct formation and an increase in cellular stiffness, which could be prevented by pre-treatment with aminoguanidine. The time-dependent cellular contractile response to AngII was measured by monitoring cell membrane displacement by atomic force atomic force microscopy (AFM) and by quantifying myosin light chain phosphorylation (p-MLC) via immunoblotting. Interestingly, short-term GO exposure increased by 2.6 times the amplitude of cell contraction induced by AngII and this was also associated with a sustained rise in p-MLC. This increased response to AngII induced by GO appears to be linked to its glycation potential, as aminoguanidine pre-treatment prevented this increased cellular mechanical response. Our results also suggest that GO could have an impact on ROCK activity, as ROCK inhibition with Y-27632 blocked the enhanced contractile response (p = 0.011) measured under GO conditions. Together, these results indicate that GO enhances the cellular response to AngII and modifies cellular mechanical properties via a mechanism that relies on its glycation potential and on the activation of the ROCK-dependent pathway.
Collapse
Affiliation(s)
- Julie Boucher
- Department of Pharmacology, Faculty of Medicine & Health Sciences, Université de Sherbrooke, 3001 12e avenue, Sherbrooke, J1H 5N4, QC, Canada.
| | | | | | | |
Collapse
|
31
|
Amin SN, Younan SM, Youssef MF, Rashed LA, Mohamady I. A histological and functional study on hippocampal formation of normal and diabetic rats. F1000Res 2013; 2:151. [PMID: 24555069 PMCID: PMC3901513 DOI: 10.12688/f1000research.2-151.v1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/30/2013] [Indexed: 12/31/2022] Open
Abstract
Background: The hippocampus is a key brain area for many forms of learning and memory and is particularly sensitive to changes in glucose homeostasis. Aim of the work: To investigate in experimentally induced type 1 and 2 diabetes mellitus in rat model the effect of diabetes mellitus on cognitive functions and related markers of hippocampal synaptic plasticity, and the possible impact of blocking N-methyl-D-aspartic acid (NMDA) receptors by memantine. Materials and methods: Seven rat groups were included: non-diabetic control and non-diabetic receiving memantine; type-1 diabetic groups - untreated, treated with insulin alone and treated with insulin and memantine; and type 2 diabetic groups - untreated and memantine treated. Cognitive functions were assessed by the Morris Water Maze and passive avoidance test. Biochemical analysis was done for serum glucose, serum insulin and insulin resistance. Routine histological examination was done, together with immunohistochemistry for detection of the hippocampal learning and memory plasticity marker, namely activity regulated cytoskeletal-associated protein (Arc), and the astrocytes reactivity marker, namely glial fibrillary acidic protein (GFAP). Results: Both type 1 and 2 untreated diabetic groups showed significantly impaired cognitive performance compared to the non-diabetic group. Treating the type 1 diabetic group with insulin alone significantly improved cognitive performance, but significantly decreased GFAP and Arc compared to the untreated type 1 group. In addition, the type 2 diabetic groups showed a significant decrease in hippocampus GFAP and Arc compared to the non-diabetic groups. Blocking NMDA receptors by memantine significantly increased cognitive performance, GFAP and Arc in the type 1 insulin-memantine group compared to the type 1-insulin group and significantly increased Arc in the type 2-memantine group compared to the untreated type 2 diabetic group. The non-diabetic group receiving memantine was, however, significantly adversely affected. Conclusion: Cognitive functions are impaired in both types of diabetes mellitus and can be improved by blockage of NMDA receptors which may spark a future therapeutic role for these receptors in diabetes-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Shaimaa N Amin
- Department of Physiology, Kasr El Aini Faculty of Medicine, Cairo University, Cairo, 11451, Egypt
| | - Sandra M Younan
- Department of Physiology, Kasr El Aini Faculty of Medicine, Cairo University, Cairo, 11451, Egypt
| | - Mira F Youssef
- Department of Histology, Kasr El Aini Faculty of Medicine, Cairo University, Cairo, 11451, Egypt
| | - Laila A Rashed
- Department of Biochemistry, Kasr El Aini Faculty of Medicine, Cairo University, Cairo, 11451, Egypt
| | - Ibrahim Mohamady
- Department of Physiology, Kasr El Aini Faculty of Medicine, Cairo University, Cairo, 11451, Egypt
| |
Collapse
|
32
|
Oxysterols modulate calcium signalling in the A7r5 aortic smooth muscle cell-line. Biochimie 2013; 95:568-77. [DOI: 10.1016/j.biochi.2012.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/03/2012] [Indexed: 11/23/2022]
|
33
|
Stehno-Bittel L. Organ-based response to exercise in type 1 diabetes. ISRN ENDOCRINOLOGY 2012; 2012:318194. [PMID: 23251813 PMCID: PMC3518066 DOI: 10.5402/2012/318194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/14/2012] [Indexed: 12/16/2022]
Abstract
While significant research has clearly identified sedentary behavior as a risk factor for type 2 diabetes and its subsequent complications, the concept that inactivity could be linked to the complications associated with type 1 diabetes (T1D) remains underappreciated. This paper summarizes the known effects of exercise on T1D at the tissue level and focuses on the pancreas, bone, the cardiovascular system, the kidneys, skeletal muscle, and nerves. When possible, the molecular mechanisms underlying the benefits of exercise for T1D are elucidated. The general benefits of increased activity on health and the barriers to increased exercise specific to people with T1D are discussed.
Collapse
Affiliation(s)
- Lisa Stehno-Bittel
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
34
|
Fredersdorf S, Thumann C, Zimmermann WH, Vetter R, Graf T, Luchner A, Riegger GAJ, Schunkert H, Eschenhagen T, Weil J. Increased myocardial SERCA expression in early type 2 diabetes mellitus is insulin dependent: In vivo and in vitro data. Cardiovasc Diabetol 2012; 11:57. [PMID: 22621761 PMCID: PMC3447673 DOI: 10.1186/1475-2840-11-57] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/02/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Calcium (Ca2+) handling proteins are known to play a pivotal role in the pathophysiology of cardiomyopathy. However little is known about early changes in the diabetic heart and the impact of insulin treatment (Ins). METHODS Zucker Diabetic Fatty rats treated with or without insulin (ZDF ± Ins, n = 13) and lean littermates (controls, n = 7) were sacrificed at the age of 19 weeks. ZDF + Ins (n = 6) were treated with insulin for the last 6 weeks of life. Gene expression of Ca2+ ATPase in the cardiac sarcoplasmatic reticulum (SERCA2a, further abbreviated as SERCA) and phospholamban (PLB) were determined by northern blotting. Ca2+ transport of the sarcoplasmatic reticulum (SR) was assessed by oxalate-facilitated 45Ca-uptake in left ventricular homogenates. In addition, isolated neonatal cardiomyocytes were stimulated in cell culture with insulin, glucose or triiodthyronine (T3, positive control). mRNA expression of SERCA and PLB were measured by Taqman PCR. Furthermore, effects of insulin treatment on force of contraction and relaxation were evaluated by cardiomyocytes grown in a three-dimensional collagen matrix (engineered heart tissue, EHT) stimulated for 5 days by insulin. By western blot phosphorylations status of Akt was determed and the influence of wortmannin. RESULTS SERCA levels increased in both ZDF and ZDF + Ins compared to control (control 100 ± 6.2 vs. ZDF 152 ± 26.6* vs. ZDF + Ins 212 ± 18.5*# % of control, *p < 0.05 vs. control, #p < 0.05 vs. ZDF) whereas PLB was significantly decreased in ZDF and ZDF + Ins (control 100 ± 2.8 vs. ZDF 76.3 ± 13.5* vs. ZDF + Ins 79.4 ± 12.9* % of control, *p < 0.05 vs control). The increase in the SERCA/PLB ratio in ZDF and ZDF ± Ins was accompanied by enhanced Ca2+ uptake to the SR (control 1.58 ± 0.1 vs. ZDF 1.85 ± 0.06* vs. ZDF + Ins 2.03 ± 0.1* μg/mg/min, *p < 0.05 vs. control). Interestingly, there was a significant correlation between Ca2+ uptake and SERCA2a expression. As shown by in-vitro experiments, the effect of insulin on SERCA2a mRNA expression seemed to have a direct effect on cardiomyocytes. Furthermore, long-term treatment of engineered heart tissue with insulin increased the SERCA/PLB ratio and accelerated relaxation time. Akt was significantly phosphorylated by insulin. This effect could be abolished by wortmannin. CONCLUSION The current data demonstrate that early type 2 diabetes is associated with an increase in the SERCA/PLB ratio and that insulin directly stimulates SERCA expression and relaxation velocity. These results underline the important role of insulin and calcium handling proteins in the cardiac adaptation process of type 2 diabetes mellitus contributing to cardiac remodeling and show the important role of PI3-kinase-Akt-SERCA2a signaling cascade.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Northern
- Blotting, Western
- Calcium/metabolism
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cells, Cultured
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/physiopathology
- Disease Models, Animal
- Gene Expression Regulation, Enzymologic/drug effects
- Hypoglycemic Agents/pharmacology
- Insulin/pharmacology
- Male
- Myocardial Contraction/drug effects
- Myocardium/enzymology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Phosphorylation
- Polymerase Chain Reaction
- Proto-Oncogene Proteins c-akt
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Rats, Zucker
- Sarcoplasmic Reticulum/enzymology
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Time Factors
- Up-Regulation
Collapse
Affiliation(s)
- Sabine Fredersdorf
- Klinik und Poliklinik für Innere Medizin II, Universität Regensburg, Regensburg, Germany
- Klinik und Poliklinik für Innere Medizin II des Universitätsklinikums Regensburg, 93042, Regensburg, Germany
| | - Christian Thumann
- Klinik und Poliklinik für Innere Medizin II, Universität Regensburg, Regensburg, Germany
| | - Wolfram H Zimmermann
- Institut für Pharmakologie, Universitätsmedizin, Georg-August Universität Göttingen, Göttingen, Germany
| | - Roland Vetter
- Institut für Klinische Pharmakologie und Toxikologie, Universitätsmedizin - Berlin, Berlin, Germany
| | - Tobias Graf
- Medizinische Klinik II, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Andreas Luchner
- Klinik und Poliklinik für Innere Medizin II, Universität Regensburg, Regensburg, Germany
| | - Günter AJ Riegger
- Klinik und Poliklinik für Innere Medizin II, Universität Regensburg, Regensburg, Germany
| | - Heribert Schunkert
- Medizinische Klinik II, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Thomas Eschenhagen
- Institut für Klinische und Experimentelle Pharmakologie und Toxikologie, Universität Hamburg, Hamburg, Germany
| | - Joachim Weil
- Medizinische Klinik II, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| |
Collapse
|
35
|
Diabetes alters intracellular calcium transients in cardiac endothelial cells. PLoS One 2012; 7:e36840. [PMID: 22590623 PMCID: PMC3348895 DOI: 10.1371/journal.pone.0036840] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 04/13/2012] [Indexed: 12/11/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a diabetic complication, which results in myocardial dysfunction independent of other etiological factors. Abnormal intracellular calcium ([Ca2+]i) homeostasis has been implicated in DCM and may precede clinical manifestation. Studies in cardiomyocytes have shown that diabetes results in impaired [Ca2+]i homeostasis due to altered sarcoplasmic reticulum Ca2+ ATPase (SERCA) and sodium-calcium exchanger (NCX) activity. Importantly, altered calcium homeostasis may also be involved in diabetes-associated endothelial dysfunction, including impaired endothelium-dependent relaxation and a diminished capacity to generate nitric oxide (NO), elevated cell adhesion molecules, and decreased angiogenic growth factors. However, the effect of diabetes on Ca2+ regulatory mechanisms in cardiac endothelial cells (CECs) remains unknown. The objective of this study was to determine the effect of diabetes on [Ca2+]i homeostasis in CECs in the rat model (streptozotocin-induced) of DCM. DCM-associated cardiac fibrosis was confirmed using picrosirius red staining of the myocardium. CECs isolated from the myocardium of diabetic and wild-type rats were loaded with Fura-2, and UTP-evoked [Ca2+]i transients were compared under various combinations of SERCA, sarcoplasmic reticulum Ca2+ ATPase (PMCA) and NCX inhibitors. Diabetes resulted in significant alterations in SERCA and NCX activities in CECs during [Ca2+]i sequestration and efflux, respectively, while no difference in PMCA activity between diabetic and wild-type cells was observed. These results improve our understanding of how diabetes affects calcium regulation in CECs, and may contribute to the development of new therapies for DCM treatment.
Collapse
|
36
|
Narayanan D, Adebiyi A, Jaggar JH. Inositol trisphosphate receptors in smooth muscle cells. Am J Physiol Heart Circ Physiol 2012; 302:H2190-210. [PMID: 22447942 DOI: 10.1152/ajpheart.01146.2011] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are a family of tetrameric intracellular calcium (Ca(2+)) release channels that are located on the sarcoplasmic reticulum (SR) membrane of virtually all mammalian cell types, including smooth muscle cells (SMC). Here, we have reviewed literature investigating IP(3)R expression, cellular localization, tissue distribution, activity regulation, communication with ion channels and organelles, generation of Ca(2+) signals, modulation of physiological functions, and alterations in pathologies in SMCs. Three IP(3)R isoforms have been identified, with relative expression and cellular localization of each contributing to signaling differences in diverse SMC types. Several endogenous ligands, kinases, proteins, and other modulators control SMC IP(3)R channel activity. SMC IP(3)Rs communicate with nearby ryanodine-sensitive Ca(2+) channels and mitochondria to influence SR Ca(2+) release and reactive oxygen species generation. IP(3)R-mediated Ca(2+) release can stimulate plasma membrane-localized channels, including transient receptor potential (TRP) channels and store-operated Ca(2+) channels. SMC IP(3)Rs also signal to other proteins via SR Ca(2+) release-independent mechanisms through physical coupling to TRP channels and local communication with large-conductance Ca(2+)-activated potassium channels. IP(3)R-mediated Ca(2+) release generates a wide variety of intracellular Ca(2+) signals, which vary with respect to frequency, amplitude, spatial, and temporal properties. IP(3)R signaling controls multiple SMC functions, including contraction, gene expression, migration, and proliferation. IP(3)R expression and cellular signaling are altered in several SMC diseases, notably asthma, atherosclerosis, diabetes, and hypertension. In summary, IP(3)R-mediated pathways control diverse SMC physiological functions, with pathological alterations in IP(3)R signaling contributing to disease.
Collapse
Affiliation(s)
- Damodaran Narayanan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, 38163, USA
| | | | | |
Collapse
|
37
|
Liang K, Du W, Zhu W, Liu S, Cui Y, Sun H, Luo B, Xue Y, Yang L, Chen L, Li F. Contribution of different mechanisms to pancreatic beta-cell hyper-secretion in non-obese diabetic (NOD) mice during pre-diabetes. J Biol Chem 2011; 286:39537-45. [PMID: 21914804 DOI: 10.1074/jbc.m111.295931] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The development of insulin-dependent diabetes mellitus (IDDM) results from the selective destruction of pancreatic beta-cells. Both humans and spontaneous models of IDDM, such as NOD mice, have an extended pre-diabetic stage. Dynamic changes in beta-cell mass and function during pre-diabetes, such as insulin hyper-secretion, remain largely unknown. In this paper, we evaluated pre-diabetic female NOD mice at different ages (6, 10, and 14 weeks old) to illustrate alterations in beta-cell mass and function as disease progressed. We found an increase in beta-cell mass in 6-week-old NOD mice that may account for improved glucose tolerance in these mice. As NOD mice aged, beta-cell mass progressively reduced with increasing insulitis. In parallel, secretory ability of individual beta-cells was enhanced due to an increase in the size of slowly releasable pool (SRP) of vesicles. Moreover, expression of both SERCA2 and SERCA3 genes were progressively down-regulated, which facilitated depolarization-evoked secretion by prolonging Ca(2+) elevation upon glucose stimulation. In summary, we propose that different mechanisms contribute to the insulin hyper-secretion at different ages of pre-diabetic NOD mice, which may provide some new ideas concerning the progression and management of type I diabetes.
Collapse
Affiliation(s)
- Kuo Liang
- Department of General Surgery, XuanWu Hospital, Capital Medical University, Beijing, 100053, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ku PM, Chen LJ, Liang JR, Cheng KC, Li YX, Cheng JT. Molecular role of GATA binding protein 4 (GATA-4) in hyperglycemia-induced reduction of cardiac contractility. Cardiovasc Diabetol 2011; 10:57. [PMID: 21702924 PMCID: PMC3141394 DOI: 10.1186/1475-2840-10-57] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 06/24/2011] [Indexed: 01/10/2023] Open
Abstract
Background Diabetic cardiomyopathy, a diabetes-specific complication, refers to a disorder that eventually leads to left ventricular hypertrophy in addition to diastolic and systolic dysfunction. In recent studies, hyperglycemia-induced reactive oxygen species (ROS) in cardiomyocytes have been linked to diabetic cardiomyopathy. GATA binding protein 4 (GATA-4) regulates the expression of many cardio-structural genes including cardiac troponin-I (cTnI). Methods Streptozotocin-induced diabetic rats and H9c2 embryonic rat cardiomyocytes treated with a high concentration of glucose (a D-glucose concentration of 30 mM was used and cells were cultured for 24 hr) were used to examine the effect of hyperglycemia on GATA-4 accumulation in the nucleus. cTnI expression was found to be linked to cardiac tonic dysfunction, and we evaluated the expression levels of cTnI and GATA-4 by Western blot analysis. Results Cardiac output was lowered in STZ-induced diabetic rats. In addition, higher expressions of cardiac troponin I (cTnI) and phosphorylated GATA-4 were identified in these rats by Western blotting. The changes were reversed by treatment with insulin or phlorizin after correction of the blood sugar level. In H9c2 cells, ROS production owing to the high glucose concentration increased the expression of cTnI and GATA-4 phosphorylation. However, hyperglycemia failed to increase the expression of cTnI when GATA-4 was silenced by small interfering RNA (siRNA) in H9c2 cells. Otherwise, activation of ERK is known to be a signal for phosphorylation of serine105 in GATA-4 to increase the DNA binding ability of this transcription factor. Moreover, GSK3β could directly interact with GATA-4 to cause GATA-4 to be exported from the nucleus. GATA-4 nuclear translocation and GSK3β ser9 phosphorylation were both elevated by a high glucose concentration in H9c2 cells. These changes were reversed by tiron (ROS scavenger), PD98059 (MEK/ERK inhibitor), or siRNA of GATA-4. Cell contractility measurement also indicated that the high glucose concentration decreased the contractility of H9c2 cells, and this was reduced by siRNA of GATA-4. Conclusions Hyperglycemia can cause systolic dysfunction and a higher expression of cTnI in cardiomyocytes through ROS, enhancing MEK/ERK-induced GATA-4 phosphorylation and accumulation in the cell nucleus.
Collapse
Affiliation(s)
- Po-Ming Ku
- Department of Medical Research, Chi-Mei Medical Center, No, 901 Chon-Hwa Road, Yong Kang, Tainan City, Taiwan
| | | | | | | | | | | |
Collapse
|
39
|
Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L. Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol 2011; 3:a004317. [PMID: 21441595 PMCID: PMC3098671 DOI: 10.1101/cshperspect.a004317] [Citation(s) in RCA: 329] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) as an intracellular Ca(2+) store not only sets up cytosolic Ca(2+) signals, but, among other functions, also assembles and folds newly synthesized proteins. Alterations in ER homeostasis, including severe Ca(2+) depletion, are an upstream event in the pathophysiology of many diseases. On the one hand, insufficient release of activator Ca(2+) may no longer sustain essential cell functions. On the other hand, loss of luminal Ca(2+) causes ER stress and activates an unfolded protein response, which, depending on the duration and severity of the stress, can reestablish normal ER function or lead to cell death. We will review these various diseases by mainly focusing on the mechanisms that cause ER Ca(2+) depletion.
Collapse
Affiliation(s)
- Djalila Mekahli
- Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, KU Leuven Campus Gasthuisberg O&N I, Belgium
| | | | | | | | | |
Collapse
|
40
|
Bkaily G, Avedanian L, Al-Khoury J, Provost C, Nader M, D'Orléans-Juste P, Jacques D. Nuclear membrane receptors for ET-1 in cardiovascular function. Am J Physiol Regul Integr Comp Physiol 2011; 300:R251-63. [DOI: 10.1152/ajpregu.00736.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasma membrane endothelin type A (ETA) receptors are internalized and recycled to the plasma membrane, whereas endothelin type B (ETB) receptors undergo degradation and subsequent nuclear translocation. Recent studies show that G protein-coupled receptors (GPCRs) and ion transporters are also present and functional at the nuclear membranes of many cell types. Similarly to other GPCRs, ETA and ETB are present at both the plasma and nuclear membranes of several cardiovascular cell types, including human cardiac, vascular smooth muscle, endocardial endothelial, and vascular endothelial cells. The distribution and density of ETARs in the cytosol (including the cell membrane) and the nucleus (including the nuclear membranes) differ between these cell types. However, the localization and density of ET-1 and ETB receptors are similar in these cell types. The extracellular ET-1-induced increase in cytosolic ([Ca]c) and nuclear ([Ca]n) free Ca2+ is associated with an increase of cytosolic and nuclear reactive oxygen species. The extracellular ET-1-induced increase of [Ca]c and [Ca]n as well as intracellular ET-1-induced increase of [Ca]n are cell-type dependent. The type of ET-1 receptor mediating the extracellular ET-1-induced increase of [Ca]c and [Ca]n depends on the cell type. However, the cytosolic ET-1-induced increase of [Ca]n does not depend on cell type. In conclusion, nuclear membranes' ET-1 receptors may play an important role in overall ET-1 action. These nuclear membrane ET-1 receptors could be targets for a new generation of antagonists.
Collapse
Affiliation(s)
- Ghassan Bkaily
- Faculty of Medicine, Departments of 1Anatomy and Cell Biology and
| | - Levon Avedanian
- Faculty of Medicine, Departments of 1Anatomy and Cell Biology and
| | - Johny Al-Khoury
- Faculty of Medicine, Departments of 1Anatomy and Cell Biology and
| | - Chantale Provost
- Faculty of Medicine, Departments of 1Anatomy and Cell Biology and
| | - Moni Nader
- Faculty of Medicine, Departments of 1Anatomy and Cell Biology and
| | | | - Danielle Jacques
- Faculty of Medicine, Departments of 1Anatomy and Cell Biology and
| |
Collapse
|
41
|
Mumtaz S, Burdyga G, Borisova L, Wray S, Burdyga T. The mechanism of agonist induced Ca2+ signalling in intact endothelial cells studied confocally in in situ arteries. Cell Calcium 2010; 49:66-77. [PMID: 21176847 PMCID: PMC3098389 DOI: 10.1016/j.ceca.2010.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/24/2010] [Accepted: 11/25/2010] [Indexed: 11/25/2022]
Abstract
In endothelial cells there remain uncertainties in the details of how Ca2+ signals are generated and maintained, especially in intact preparations. In particular the role of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), in contributing to the components of agonist-induced signals is unclear. The aim of this work was to increase understanding of the detailed mechanism of Ca2+ signalling in endothelial cells using real time confocal imaging of Fluo-4 loaded intact rat tail arteries in response to muscarinic stimulation. In particular we have focused on the role of SERCA, and its interplay with capacitative Ca2+ entry (CCE) and ER Ca2+ release and uptake. We have determined its contribution to the Ca2+ signal and how it varies with different physiological stimuli, including single and repeated carbachol applications and brief and prolonged exposures. In agreement with previous work, carbachol stimulated a rise in intracellular Ca2+ in the endothelial cells, consisting of a rapid initial phase, then a plateau upon which oscillations of Ca2+ were superimposed, followed by a decline to basal Ca2+ levels upon carbachol removal. Our data support the following conclusions: (i) the size (amplitude and duration) of the Ca2+ spike and early oscillations are limited by SERCA activity, thus both are increased if SERCA is inhibited. (ii) SERCA activity is such that brief applications of carbachol do not trigger CCE, presumably because the fall in luminal Ca2+ is not sufficient to trigger it. However, longer applications sufficient to deplete the ER or even partial SERCA inhibition stimulate CCE. (iii) Ca2+ entry occurs via STIM-mediated CCE and SERCA contributes to the cessation of CCE. In conclusion our data show how SERCA function is crucial to shaping endothelial cell Ca signals and its dynamic interplay with both CCE and ER Ca releases.
Collapse
Affiliation(s)
- S Mumtaz
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, UK
| | | | | | | | | |
Collapse
|
42
|
Li J, Jin C, Cleveland JC, Ao L, Xu D, Fullerton DA, Meng X. Enhanced inflammatory responses to toll-like receptor 2/4 stimulation in type 1 diabetic coronary artery endothelial cells: the effect of insulin. Cardiovasc Diabetol 2010; 9:90. [PMID: 21162749 PMCID: PMC3018430 DOI: 10.1186/1475-2840-9-90] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 12/16/2010] [Indexed: 02/07/2023] Open
Abstract
Background Endothelial inflammatory responses mediated by Toll-like receptors (TLRs), particularly TLR2 and TLR4, play an important role in atherogenesis. While Type 1 diabetes (T1D) promotes the development and progression of atherosclerosis, the effect of T1D on TLR2/4-mediated inflammatory responses in coronary artery endothelial cells (CAECs) remains unclear. Methods We tested the hypothesis that diabetic CAECs have enhanced inflammatory responses to TLR2/4 stimulation. Non-diabetic and diabetic CAECs were treated with TLR2 agonist peptidoglycan and TLR4 agonist lipopolysaccharide. The expression of ICAM-1, IL-6 and IL-8 were analyzed by real-time PCR, immunoblotting and ELISA, and NF-κB activation by immunoblotting and immunostaining. In additional experiments, insulin was added before TLR stimulation to determine whether insulin deficiency alone is responsible for the alteration of TLR2/4-mediated inflammatory responses. Results Stimulation of TLR2 or TLR4 induced NF-κB activation, and the expression of ICAM-1, IL-6 and IL-8. Interestingly, the expression of inflammatory mediators was significantly enhanced in diabetic cells. The enhanced inflammatory responses correlated with augmented NF-κB activation in the absence of a change in TLR2 or TLR4 protein levels. Further, pretreatment of diabetic cells with insulin failed to suppress the enhanced inflammatory responses. Conclusions Diabetic CAECs have enhanced inflammatory responses to stimulation of TLR2 or TLR4, and insulin alone is insufficient to correct the hyper-inflammatory responses. The mechanism underlying the enhanced inflammatory responses appears to be augmentation of pro-inflammatory signaling, rather than up-regulation of levels of TLR2 and TLR4. These findings suggest that diabetic CAECs adopt a hyper-inflammatory phenotype and that this endothelial phenotypic change may predispose coronary artery to atherogenesis.
Collapse
Affiliation(s)
- Jilin Li
- Department of Surgery, University of Colorado Denver, Aurora, Colorado, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Rebolledo A, Rebolledo OR, Marra CA, García ME, Roldán Palomo AR, Rimorini L, Gagliardino JJ. Early alterations in vascular contractility associated to changes in fatty acid composition and oxidative stress markers in perivascular adipose tissue. Cardiovasc Diabetol 2010; 9:65. [PMID: 20964827 PMCID: PMC2974659 DOI: 10.1186/1475-2840-9-65] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/21/2010] [Indexed: 12/31/2022] Open
Abstract
Aim To test the early effect of fructose-induced changes in fatty acid composition and oxidative stress markers in perivascular adipose tissue (PVAT) upon vascular contractility. Methods Adult male Wistar rats were fed a commercial diet without (CD) or with 10% fructose (FRD) in the drinking water for 3 weeks. We measured plasma metabolic parameters, lipid composition and oxidative stress markers in aortic PVAT. Vascular contractility was measured in aortic rings sequentially, stimulated with serotonin (5-HT) and high K+-induced depolarization using intact and thereafter PVAT-deprived rings. Results Comparable body weights were recorded in both groups. FRD rats had increased plasma triglyceride and fructosamine levels. Their PVAT had an increased saturated to mono- or poly-unsaturated fatty acid ratio, a significant decrease in total superoxide dismutase and glutathione peroxidase activities and in the total content of glutathione. Conversely, lipid peroxidation (TBARS), nitric oxide content, and gluthathione reductase activity were significantly higher, indicating an increase in oxidative stress. In aortic rings, removal of PVAT increased serotonin-induced contractions, but the effect was significantly lower in rings from FRD rats. This effect was no longer observed when the two contractions were performed in PVAT-deprived rings. PVAT did not affect the contractions triggered by high K+-induced depolarization either in CD or FRD rats. Conclusions FRD induces multiple metabolic and endocrine systemic alterations which also alter PVAT and the vascular relaxant properties of this tissue. The changes in PVAT would affect its paracrine modulation of vascular function.
Collapse
Affiliation(s)
- Alejandro Rebolledo
- GINFIV - Grupo de Investigación en Fisiología Vascular, Grupo Vinculado a CENEXA (UNLP - CONICET LA PLATA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | | | | | | | | | | | | |
Collapse
|
44
|
Ojaimi C, Kinugawa S, Recchia FA, Hintze TH. Oxidant-NO dependent gene regulation in dogs with type I diabetes: impact on cardiac function and metabolism. Cardiovasc Diabetol 2010; 9:43. [PMID: 20735837 PMCID: PMC2936363 DOI: 10.1186/1475-2840-9-43] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/24/2010] [Indexed: 11/17/2022] Open
Abstract
Background The mechanisms responsible for the cardiovascular mortality in type I diabetes (DM) have not been defined completely. We have shown in conscious dogs with DM that: 1) baseline coronary blood flow (CBF) was significantly decreased, 2) endothelium-dependent (ACh) coronary vasodilation was impaired, and 3) reflex cholinergic NO-dependent coronary vasodilation was selectively depressed. The most likely mechanism responsible for the depressed reflex cholinergic NO-dependent coronary vasodilation was the decreased bioactivity of NO from the vascular endothelium. The goal of this study was to investigate changes in cardiac gene expression in a canine model of alloxan-induced type 1 diabetes. Methods Mongrel dogs were chronically instrumented and the dogs were divided into two groups: one normal and the other diabetic. In the diabetic group, the dogs were injected with alloxan monohydrate (40-60 mg/kg iv) over 1 min. The global changes in cardiac gene expression in dogs with alloxan-induced diabetes were studied using Affymetrix Canine Array. Cardiac RNA was extracted from the control and DM (n = 4). Results The array data revealed that 797 genes were differentially expressed (P < 0.01; fold change of at least ±2). 150 genes were expressed at significantly greater levels in diabetic dogs and 647 were significantly reduced. There was no change in eNOS mRNA. There was up regulation of some components of the NADPH oxidase subunits (gp91 by 2.2 fold, P < 0.03), and down-regulation of SOD1 (3 fold, P < 0.001) and decrease (4 - 40 fold) in a large number of genes encoding mitochondrial enzymes. In addition, there was down-regulation of Ca2+ cycling genes (ryanodine receptor; SERCA2 Calcium ATPase), structural proteins (actin alpha). Of particular interests are genes involved in glutathione metabolism (glutathione peroxidase 1, glutathione reductase and glutathione S-transferase), which were markedly down regulated. Conclusion our findings suggest that type I diabetes might have a direct effect on the heart by impairing NO bioavailability through oxidative stress and perhaps lipid peroxidases.
Collapse
Affiliation(s)
- Caroline Ojaimi
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | |
Collapse
|