1
|
Tsegaye A, Demissew A, Abossie A, Getachew H, Habtamu K, Degefa T, Wang X, Lee MC, Zhong D, Kazura JW, Yan G, Yewhalaw D. Genotype distribution and allele frequency of thioester-containing protein 1(Tep1) and its effect on development of Plasmodium oocyst in populations of Anopheles arabiensis in Ethiopia. PLoS One 2024; 19:e0311783. [PMID: 39383173 PMCID: PMC11463741 DOI: 10.1371/journal.pone.0311783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Thioester-containing protein 1 (TEP1) is a crucial component of mosquitoes' natural resistance to parasites. To effectively combat malaria, there is a need to better understand how TEP1 polymorphism affects phenotypic traits during infections. Therefore, the purpose of this study was to determine the Tep1 genotype frequency in malaria vector populations from south-western Ethiopia and investigate its effect on Plasmodium oocyst development in Anopheles arabiensis populations. METHODS Using standard dippers, Anopheles mosquito larvae were collected from aquatic habitats in Asendabo, Arjo Dedessa, and Gambella in 2019 and 2020. Collected larvae were reared to adults and identified morphologically. Female An. gambiae s.l. were allowed to feed on infected blood containing the same number of gametocytes obtained from P. falciparum and P. vivax gametocyte-positive individuals using indirect membrane feeding methods. Polymerase Chain Reaction (PCR) was used to identify An. gambiae s.l. sibling species. Three hundred thirty An. gambiae s.l. were genotyped using Restricted Fragment Length Polymorphism (RFLP) PCR and sub samples were sequenced to validate the TEP1 genotyping. RESULTS Among the 330 samples genotyped, two TEP1 alleles, TEP1*S1 (82% frequency) and TEP1*R1 (18% frequency), were identified. Three equivalent genotypes, TEP1*S1/S1, TEP1*R1/R1, and TEP1*S1/R1, had mean frequencies of 65.15%, 2.12%, and 32.73%, respectively. The nucleotide diversity was ranging from 0.36554 to 0. 46751 while haplotype diversity ranged from 0.48871 to 0.63161, across all loci. All sample sites had positive Tajima's D and Fu's Fs values. There was a significant difference in the TEP1 allele frequency and genotype frequency among mosquito populations (p < 0.05), except populations of Anopheles arabiensis from Asendabo and Gambella (p > 0.05). In addition, mosquitoes with the TEP1 *RR genotype were susceptible and produced fewer Plasmodium oocysts than mosquitoes with the TEP1 *SR and TEP1 *SS genotypes. CONCLUSION The alleles identified in populations of An. arabiensis were TEP1*R1 and TEP1*S1. There was no significant variation in TEP1*R1 allele frequency between the high and low transmission areas. Furthermore, An. arabiensis carrying the TEP1*R1 allele was susceptible to Plasmodium infection. Further studies on vector-parasite interactions, particularly on the TEP1 gene, are required for vector control techniques.
Collapse
Affiliation(s)
- Arega Tsegaye
- Department of Biology, College of Natural Science, Jimma University, Jimma, Ethiopia
- Faculty of Health Sciences, School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Assalif Demissew
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
- Aklilu Lemma Institute of Patho- Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ashenafi Abossie
- Faculty of Health Sciences, School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arbaminch University, Arbaminch, Ethiopia
| | - Hallelujah Getachew
- Faculty of Health Sciences, School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
- Department of Medical Laboratory Sciences, College of Health Sciences, Arbaminch, Ethiopia
| | - Kassahun Habtamu
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
- Department of Medical Laboratory Sciences, Menelik II College of Medicine and Health Science, Kotebe University of Education, Addis Ababa, Ethiopia
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Teshome Degefa
- Faculty of Health Sciences, School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Xiaoming Wang
- Program in Public Health, University of California at Irvine, Irvine, CA, United States of America
| | - Ming-Chieh Lee
- Program in Public Health, University of California at Irvine, Irvine, CA, United States of America
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, CA, United States of America
| | - James W. Kazura
- Center for Global Health & Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA, United States of America
| | - Delenasaw Yewhalaw
- Faculty of Health Sciences, School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| |
Collapse
|
2
|
Marques J, Seabra SG, Almeida I, Gomes J, Alves AC, Silveira H. Long-term blood-free rearing of Anopheles mosquitoes with no effect on fitness, Plasmodium infectivity nor microbiota composition. Sci Rep 2024; 14:19473. [PMID: 39174598 PMCID: PMC11341565 DOI: 10.1038/s41598-024-70090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Mosquito-borne diseases kill millions of people each year. Therefore, many innovative research and population control strategies are being implemented but, most of them require large-scale production of mosquitoes. Mosquito rearing depends on fresh blood from human donors, experimentation animals or slaughterhouses, which constitutes a strong drawback since high blood quantities are needed, raising ethical and financial constraints. To eliminate blood dependency and the use of experimentation animals, we previously developed BLOODless, a patented diet that represents an important advance towards sustainable mosquito breeding in captivity. BLOODless diet was used to maintain a colony of Anopheles stephensi for 40 generations. Bloodmeal appetite, fitness, Plasmodium berghei infectivity, whole genome sequencing and microbiota were evaluated over time. Here we show that BLOODless can be implemented in Anopheles insectaries since it allows long-term rearing of mosquitoes in captivity, without a detectable effect on their fitness, infectivity, nor on their midgut and salivary microbiota composition.
Collapse
Affiliation(s)
- Joana Marques
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, IHMT-NOVA, Rua da Junqueira 100, 1349-008, Lisboa, Portugal.
| | - Sofia G Seabra
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, IHMT-NOVA, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Inês Almeida
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, IHMT-NOVA, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Joana Gomes
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, IHMT-NOVA, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Ana Catarina Alves
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, IHMT-NOVA, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Henrique Silveira
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, IHMT-NOVA, Rua da Junqueira 100, 1349-008, Lisboa, Portugal.
| |
Collapse
|
3
|
Markwalter CF, Lapp Z, Abel L, Kimachas E, Omollo E, Freedman E, Chepkwony T, Amunga M, McCormick T, Bérubé S, Mangeni JN, Wesolowski A, Obala AA, Taylor SM, Prudhomme O'Meara W. Plasmodium falciparum infection in humans and mosquitoes influence natural Anopheline biting behavior and transmission. Nat Commun 2024; 15:4626. [PMID: 38816383 PMCID: PMC11139876 DOI: 10.1038/s41467-024-49080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
The human infectious reservoir of Plasmodium falciparum is governed by transmission efficiency during vector-human contact and mosquito biting preferences. Understanding biting bias in a natural setting can help target interventions to interrupt transmission. In a 15-month cohort in western Kenya, we detected P. falciparum in indoor-resting Anopheles and human blood samples by qPCR and matched mosquito bloodmeals to cohort participants using short-tandem repeat genotyping. Using risk factor analyses and discrete choice models, we assessed mosquito biting behavior with respect to parasite transmission. Biting was highly unequal; 20% of people received 86% of bites. Biting rates were higher on males (biting rate ratio (BRR): 1.68; CI: 1.28-2.19), children 5-15 years (BRR: 1.49; CI: 1.13-1.98), and P. falciparum-infected individuals (BRR: 1.25; CI: 1.01-1.55). In aggregate, P. falciparum-infected school-age (5-15 years) boys accounted for 50% of bites potentially leading to onward transmission and had an entomological inoculation rate 6.4x higher than any other group. Additionally, infectious mosquitoes were nearly 3x more likely than non-infectious mosquitoes to bite P. falciparum-infected individuals (relative risk ratio 2.76, 95% CI 1.65-4.61). Thus, persistent P. falciparum transmission was characterized by disproportionate onward transmission from school-age boys and by the preference of infected mosquitoes to feed upon infected people.
Collapse
Affiliation(s)
| | - Zena Lapp
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Lucy Abel
- Academic Model Providing Access to Healthcare, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Emmah Kimachas
- Academic Model Providing Access to Healthcare, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | | | - Elizabeth Freedman
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Tabitha Chepkwony
- Academic Model Providing Access to Healthcare, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Mark Amunga
- Academic Model Providing Access to Healthcare, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Tyler McCormick
- Departments of Statistics & Sociology, University of Washington, Seattle, WA, USA
| | - Sophie Bérubé
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Judith N Mangeni
- School of Public Health, College of Health Sciences, Moi University, Eldoret, Kenya
| | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew A Obala
- School of Medicine, College of Health Sciences, Moi University, Eldoret, Kenya
| | - Steve M Taylor
- Duke Global Health Institute, Duke University, Durham, NC, USA.
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.
| | - Wendy Prudhomme O'Meara
- Duke Global Health Institute, Duke University, Durham, NC, USA.
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
4
|
Ouattara SB, Hien DFDS, Nao ET, Paré PSL, Guissou E, Cohuet A, Morlais I, Yerbanga RS, Dabiré KR, Ouédraogo JB, Mouline K, Lefèvre T. A simple, field-applicable method to increase the infectivity of wild isolates of Plasmodium falciparum to mosquito vectors. Malar J 2024; 23:135. [PMID: 38711028 DOI: 10.1186/s12936-024-04969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND The direct membrane feeding assay (DMFA), whereby gametocyte-infected blood is collected from human donors and from which mosquitoes feed through a membrane, is proving essential for assessing parameters influencing Plasmodium transmission potential in endemic countries. The success of DMFAs is closely tied to gametocyte density in the blood, with relatively high gametocytaemia ensuring optimal infection levels in mosquitoes. As transmission intensity declines with control efforts, the occurrence of asymptomatic individuals with low gametocyte densities, who can significantly contribute to the infectious reservoir, is increasing. This poses a limitation to studies relying on the experimental infection of large numbers of mosquitoes with natural isolates of Plasmodium. A simple, field-applicable method is presented for improving parasite infectivity by concentrating Plasmodium falciparum gametocytes. METHODS Anopheles gambiae received one of the following 5 blood treatments through DMFA: (i) whole blood (WB) samples from naturally-infected donors; (ii) donor blood whose plasma was replaced with the same volume of Plasmodium-naive AB + serum (1:1 control); (iii) plasma replaced with a volume of malaria-naïve AB + serum equivalent to half (1:1/2), or to a quarter (1:1/4), of the initial plasma volume; and (v) donor blood whose plasma was fully removed (RBC). The experiment was repeated 4 times using 4 distinct wild parasite isolates. Seven days post-infection, a total of 1,095 midguts were examined for oocyst presence. RESULTS Substituting plasma with reduced amounts (1:1/2 and 1:1/4) of Plasmodium-naive AB + serum led to a 31% and 17% increase of the mosquito infection rate and to a 85% and 308% increase in infection intensity compared to the 1:1 control, respectively. The full removal of plasma (RBC) reduced the infection rate by 58% and the intensity by 64% compared to the 1:1 control. Reducing serum volumes (1:1/2; 1:1/4 and RBC) had no impact on mosquito feeding rate and survival when compared to the 1:1 control. CONCLUSIONS Concentrating gametocytic blood by replacing natural plasma by lower amount of naive serum can enhance the success of mosquito infection. In an area with low gametocyte density, this simple and practical method of parasite concentration can facilitate studies on human-to-mosquito transmission such as the evaluation of transmission-blocking interventions.
Collapse
Affiliation(s)
- Seydou Bienvenu Ouattara
- Institut de Recherche en Sciences de La Santé, Direction Régionale de L'Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso.
- Institut Des Sciences Et Techniques (INSTech Bobo), Bobo-Dioulasso, Burkina Faso.
- Centre Hospitalier Régional de Gaoua (CHRG), Gaoua, Burkina Faso.
| | - Domonbabele F D S Hien
- Institut de Recherche en Sciences de La Santé, Direction Régionale de L'Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Ekôbié T Nao
- Université Nazi Boni (UNB), Bobo-Dioulasso, Burkina Faso
| | - Prisca S L Paré
- Institut de Recherche en Sciences de La Santé, Direction Régionale de L'Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Edwige Guissou
- Institut de Recherche en Sciences de La Santé, Direction Régionale de L'Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
- Ecole Normale Supérieure, BP 376, Koudougou, Burkina Faso
| | - Anna Cohuet
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Isabelle Morlais
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Rakiswendé S Yerbanga
- Institut de Recherche en Sciences de La Santé, Direction Régionale de L'Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
- Institut Des Sciences Et Techniques (INSTech Bobo), Bobo-Dioulasso, Burkina Faso
| | - Kounbobr R Dabiré
- Institut de Recherche en Sciences de La Santé, Direction Régionale de L'Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
| | - Jean Bosco Ouédraogo
- Institut de Recherche en Sciences de La Santé, Direction Régionale de L'Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
- Institut Des Sciences Et Techniques (INSTech Bobo), Bobo-Dioulasso, Burkina Faso
| | - Karine Mouline
- Institut de Recherche en Sciences de La Santé, Direction Régionale de L'Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Thierry Lefèvre
- Institut de Recherche en Sciences de La Santé, Direction Régionale de L'Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso.
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France.
| |
Collapse
|
5
|
Abate A, Kedir S, Bose M, Hassen J, Dembele L, Golassa L. Infectivity of Symptomatic Patients and Their Contribution for Infectiousness of Mosquitoes following a Membrane Feeding Assay in Ethiopia. Microbiol Spectr 2022; 10:e0062822. [PMID: 36066239 PMCID: PMC9602676 DOI: 10.1128/spectrum.00628-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/05/2022] [Indexed: 12/30/2022] Open
Abstract
The membrane feeding assay is widely used to evaluate the efficacy of transmission-blocking interventions (TBIs) and identify the reservoir of malaria. This study aimed to determine the infectivity of blood meals from symptomatic Plasmodium-infected patients to an Anopheles arabiensis colony in Ethiopia. A membrane feeding assay was conducted on a total of 63 Plasmodium falciparum- and/or Plasmodium vivax-infected clinical patients in East Shoa Zone, Ethiopia. Detection of P. falciparum and P. vivax in blood samples was done using microscopy. Mosquito infection rates were determined by dissection of mosquitoes' midguts, while mosquito infectiousness was observed by dissection of their salivary glands. The proportion of infectious symptomatic patients was 68.3% (43/63). Using the chi-square or Fisher's exact test, the oocyst infection levels were higher among patients infected with P. vivax, females, and rural residents. Nearly 57% (56.7%, 17/30) of assays produced sporozoites in the salivary glands of mosquitoes. Both oocyst and sporozoite infection rates had positive correlations with parasitemia and gametocytemia. High infectiousness of symptomatic patients was observed, with a greater proportion of infectious mosquitoes per assay. Demonstrating oocyst infection in the mosquitoes might confirm estimates of the infectiousness of mosquitoes, although some of the oocyst-infected mosquitoes failed to produce sporozoites. IMPORTANCE Malaria remains one of the most devastating infectious diseases globally, and transmission-blocking activities are needed. Plasmodium transmission from human to mosquitoes is poorly studied, particularly in endemic countries, and the membrane feeding assay allows it to be determined. In this study, we demonstrated human infectious reservoirs of malaria. Moreover, the effect of Plasmodium-infected patients on the infectiousness of mosquitoes was also observed. These findings are therefore important for designing future evaluation of transmission-blocking interventions that will support the malaria elimination program.
Collapse
Affiliation(s)
- Andargie Abate
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Soriya Kedir
- Adama Regional Laboratory, Oromia Region Health Bureau, Adama, Ethiopia
| | - Mitiku Bose
- Adama Regional Laboratory, Oromia Region Health Bureau, Adama, Ethiopia
| | - Jifar Hassen
- Adama Science and Technology University, Adama, Ethiopia
| | - Laurent Dembele
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Center (MRTC), Bamako, Mali
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Moreno M, Torres K, Tong C, García Castillo SS, Carrasco-Escobar G, Guedez G, Torres L, Herrera-Varela M, Guerra L, Guzman-Guzman M, Wong D, Ramirez R, Llanos-Cuentas A, Conn JE, Gamboa D, Vinetz JM. Insights into Plasmodium vivax Asymptomatic Malaria Infections and Direct Skin-Feeding Assays to Assess Onward Malaria Transmission in the Amazon. Am J Trop Med Hyg 2022; 107:154-161. [PMID: 35895359 PMCID: PMC9294676 DOI: 10.4269/ajtmh.21-1217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/24/2022] [Indexed: 11/07/2022] Open
Abstract
Understanding the reservoir and infectivity of Plasmodium gametocytes to vector mosquitoes is crucial to align strategies aimed at malaria transmission elimination. Yet, experimental information is scarce regarding the infectivity of Plasmodium vivax for mosquitoes in diverse epidemiological settings where the proportion of asymptomatically infected individuals varies at a microgeographic scale. We measured the transmissibility of clinical and subclinical P. vivax malaria parasite carriers to the major mosquito vector in the Amazon Basin, Nyssorhynchus darlingi (formerly Anopheles). A total of 105 participants with natural P. vivax malaria infection were recruited from a cohort study in Loreto Department, Peruvian Amazon. Four of 18 asymptomatic individuals with P. vivax positivity by blood smear infected colony-grown Ny. darlingi (22%), with 2.6% (19 of 728) mosquitoes infected. In contrast, 77% (44/57) of symptomatic participants were infectious to mosquitoes with 51% (890 of 1,753) mosquitoes infected. Infection intensity was greater in symptomatic infections (mean, 17.8 oocysts/mosquito) compared with asymptomatic infections (mean, 0.28 oocysts/mosquito), attributed to parasitemia/gametocytemia level. Paired experiments (N = 27) using direct skin-feeding assays and direct membrane mosquito-feeding assays showed that infectivity to mosquitoes was similar for both methods. Longitudinal studies with longer follow-up of symptomatic and asymptomatic parasite infections are needed to determine the natural variations of disease transmissibility.
Collapse
Affiliation(s)
- Marta Moreno
- Department of Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Katherine Torres
- Instituto de Medicina Tropical “Alexander von Humboldt,” Universidad Peruana Cayetano Heredia, Lima, Peru
- Address correspondence to Katherine Torres, Malaria Laboratory, Laboratorios de Investigación y Desarrollo, Faculty of Science and Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, 15102, Lima, Perú. E-mail:
| | - Carlos Tong
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Stefano S. García Castillo
- Laboratorio de Malaria, Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Gerson Guedez
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Lutecio Torres
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Manuela Herrera-Varela
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Layné Guerra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mitchel Guzman-Guzman
- Instituto de Medicina Tropical “Alexander von Humboldt,” Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Daniel Wong
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Roberson Ramirez
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Jan E. Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany–State University of New York, Albany, New York
- Wadsworth Center, New York State Department of Health, Albany, New York
| | - Dionicia Gamboa
- Instituto de Medicina Tropical “Alexander von Humboldt,” Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Malaria, Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Instituto de Medicina Tropical “Alexander von Humboldt,” Universidad Peruana Cayetano Heredia, Lima, Peru
- S Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
7
|
Mwaiswelo RO, Ngasala B, Msolo D, Kweka E, Mmbando BP, Mårtensson A. A single low dose of primaquine is safe and sufficient to reduce transmission of Plasmodium falciparum gametocytes regardless of cytochrome P450 2D6 enzyme activity in Bagamoyo district, Tanzania. Malar J 2022; 21:84. [PMID: 35279143 PMCID: PMC8917764 DOI: 10.1186/s12936-022-04100-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Primaquine is a pro-drug and its active metabolite is potent against mature Plasmodium falciparum gametocytes. Primaquine is metabolized by a highly polymorphic cytochrome P450 2D6 (CYP2D6) enzyme. Mutations in the gene encoding this enzyme may lead to impaired primaquine activity. This study assessed if 0.25 mg/kg single-dose primaquine is safe and sufficient to reduce transmission of gametocytes in individuals with no, reduced, or increased CYP2D6 enzyme activity. METHODS Between June 2019 and January 2020 children aged 1-10 years, attending at Yombo dispensary, Bagamoyo district, with confirmed microcopy-determined uncomplicated P. falciparum malaria were enrolled in the study. The enrolled patients were treated with a standard artemether-lumefantrine regimen plus 0.25 mg/kg single-dose primaquine and followed up for 28 days for clinical and laboratory assessment. Primaquine was administered with the first dose of artemether-lumefantrine. Safety assessment involved direct questioning and recording of the nature and incidence of clinical signs and symptoms, and measurement of haemoglobin (Hb) concentration. Blood samples collected from 100 patients were used for assessment of post-treatment infectiousness on day 7 using mosquito membrane feeding assays. Molecular methods were used to determine CYP2D6 and glucose-6-phosphate dehydrogenase (G6PD) status. The primary outcome was the safety of 0.25 mg/kg single-dose primaquine based on CYP2D6 status. RESULTS In total, 157 children [median age 6.4 (Interquartile range 4.0-8.2) years] were recruited, of whom 21.0% (33/157) and 12.7% (20/157) had reduced CYP2D6 and deficient G6PD activity, respectively. Day 3 mean absolute Hb concentration reduction was 1.50 g/dL [95% confidence interval (CI) 1.10-1.90] and 1.51 g/dL (95% CI 1.31-1.71) in reduced and normal CYP2D6 patients, respectively (t = 0.012, p = 0.990). The day 3 mean absolute Hb concentration reduction in G6PD deficient, G6PD normal and heterozygous female was 1.82 g/dL (95% CI 1.32-2.32), 1.48 g/dL (95% CI 1.30-1.67) and 1.47 g/dL (95% CI 0.76-2.18), respectively (F = 0.838, p = 0.435). Sixteen percent (16/98) of the patients each infected at least one mosquito on day 7, and of these, 10.0% (2/20) and 17.9% (14/78) had reduced and normal CYP2D6 enzyme activity, respectively (x2 = 0.736, p = 0.513). CONCLUSION Single-dose 0.25 mg/kg primaquine was safe and sufficient for reducing transmission of P. falciparum gametocytes regardless of CYP2D6 or G6PD status. Trial registration Study registration number: NCT03352843.
Collapse
Affiliation(s)
- Richard Owden Mwaiswelo
- Department of Research and Training, Tropical Pesticides Research Institute, Arusha, Tanzania.
- Department of Microbiology, Immunology and Parasitology, Hubert Kairuki Memorial University, Dar es Salaam, Tanzania.
- Department of Medical Parasitology and Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | - Billy Ngasala
- Department of Medical Parasitology and Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Dominick Msolo
- College of Natural and Applied Sciences, University of Dar Es Salaam, Dar es Salaam, Tanzania
| | - Eliningaya Kweka
- Department of Research and Training, Tropical Pesticides Research Institute, Arusha, Tanzania
| | - Bruno P Mmbando
- Tanga Research Centre, National Institute for Medical Research, Tanga, Tanzania
| | - Andreas Mårtensson
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Timinao L, Vinit R, Katusele M, Koleala T, Nate E, Czeher C, Burkot TR, Schofield L, Felger I, Mueller I, Laman M, Robinson LJ, Karl S. Infectivity of Symptomatic Malaria Patients to Anopheles farauti Colony Mosquitoes in Papua New Guinea. Front Cell Infect Microbiol 2021; 11:771233. [PMID: 35004348 PMCID: PMC8729879 DOI: 10.3389/fcimb.2021.771233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/29/2021] [Indexed: 11/23/2022] Open
Abstract
Plasmodium transmission from humans to mosquitoes is an understudied bottleneck in the transmission of malaria. Direct membrane feeding assays (DMFA) allow detailed malaria transmission studies from humans to mosquitoes. Especially for Plasmodium vivax, which cannot be cultured long-term under laboratory conditions, implementation of DMFAs requires proximity to P. vivax endemic areas. In this study, we investigated the infectivity of symptomatic Plasmodium infections to Anopheles farauti colony mosquitoes in Papua New Guinea (PNG). A total of 182 DMFAs were performed with venous blood collected from rapid diagnostic test (RDT) positive symptomatic malaria patients and subsequently analysed by light microscopy and quantitative real time polymerase chain reaction (qPCR). DMFAs resulted in mosquito infections in 20.9% (38/182) of cases. By light microscopy and qPCR, 10 - 11% of P. falciparum and 32 - 44% of P. vivax positive individuals infected An. farauti. Fifty-eight percent of P. vivax and 15% of P. falciparum gametocytaemic infections infected An farauti.
Collapse
Affiliation(s)
- Lincoln Timinao
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, Australia
| | - Rebecca Vinit
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Michelle Katusele
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Tamarah Koleala
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Elma Nate
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Cyrille Czeher
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Thomas R. Burkot
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, Australia
| | - Louis Schofield
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, Australia
| | - Ingrid Felger
- Molecular Diagnostics Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- Department Biozentrum, University of Basel, Basel, Switzerland
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Malaria Parasites and Hosts Unit, Department of Parasites & Insect Vectors, Institut Pasteur, Paris, France
| | - Moses Laman
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Leanne J. Robinson
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Vector-Borne Diseases and Tropical Public Health Division, Burnet Institute, Melbourne, VIC, Australia
| | - Stephan Karl
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, Australia
| |
Collapse
|
9
|
Timinao L, Vinit R, Katusele M, Schofield L, Burkot TR, Karl S. Optimization of the feeding rate of Anopheles farauti s.s. colony mosquitoes in direct membrane feeding assays. Parasit Vectors 2021; 14:356. [PMID: 34233734 PMCID: PMC8261992 DOI: 10.1186/s13071-021-04842-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/11/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Direct membrane feeding assays (DMFA) are an important tool to study parasite transmission to mosquitoes. Mosquito feeding rates in these artificial systems require optimization, as there are a number of factors that potentially influence the feeding rates and there are no standardized methods that apply to all anopheline species. METHODS A range of parameters prior to and during direct membrane feeding (DMF) were evaluated for their impact on Anopheles farauti sensu stricto feeding rates, including the starving conditions and duration of starving prior to feeding, membrane type, DMF exposure time, mosquito age, feeding in the light versus the dark, blood volume, mosquito density and temperature of water bath. RESULTS The average successful DMFA feeding rate for An. farauti s.s. colony mosquitoes increased from 50 to 85% when assay parameters were varied. Overnight starvation and Baudruche membrane yielded the highest feeding rates but rates were also affected by blood volume in the feeder and the mosquito density in the feeding cups. Availability of water during the pre-feed starvation period did not significantly impact feeding rates, nor did the exposure duration to blood in membrane feeders, the age of mosquitoes (3, 5 and 7 days post-emergence), feeding in the light versus the dark, or the temperature (34 °C, 38 °C, 42 °C and 46 °C) of the water bath. CONCLUSION Optimal feeding conditions in An. farauti s.s. DMFA were to offer 50 female mosquitoes in a cup (with a total surface area of ~ 340 cm2 with 1 mosquito/6.8 cm2) that were starved overnight 350-500 µL of blood (collected in heparin-coated Vacutainer tubes) per feeder in feeders with a surface area ~ 5 cm2 (with a maximum capacity of 1.5 mL of blood) via a Baudruche membrane, for at least 10-20 min.
Collapse
Affiliation(s)
- Lincoln Timinao
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4870 Australia
| | - Rebecca Vinit
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Michelle Katusele
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Louis Schofield
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4870 Australia
| | - Thomas R. Burkot
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4870 Australia
| | - Stephan Karl
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4870 Australia
| |
Collapse
|
10
|
Duffy PE. Transmission-Blocking Vaccines: Harnessing Herd Immunity for Malaria Elimination. Expert Rev Vaccines 2021; 20:185-198. [PMID: 33478283 PMCID: PMC11127254 DOI: 10.1080/14760584.2021.1878028] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Transmission-blocking vaccines (TBV) prevent community spread of malaria by targeting mosquito sexual stage parasites, a life-cycle bottleneck, and will be used in elimination programs. TBV rely on herd immunity to reduce mosquito infections and thereby new infections in both vaccine recipients and non-recipients, but do not provide protection once an individual receives an infectious mosquito bite which complicates clinical development. AREAS COVERED Here, we describe the concept and biology behind TBV, and we provide an update on clinical development of the leading vaccine candidate antigens. Search terms 'malaria vaccine,' 'sexual stages,' 'transmission blocking vaccine,' 'VIMT' and 'SSM-VIMT' were used for PubMed queries to identify relevant literature. EXPERT OPINION Candidates targeting P. falciparum zygote surface antigen Pfs25, and its P. vivax orthologue Pvs25, induced functional activity in humans that reduced mosquito infection in surrogate assays, but require increased durability to be useful in the field. Candidates targeting gamete surface antigens Pfs230 and Pfs48/45, respectively, are in or nearing clinical trials. Nanoparticle platforms and adjuvants are being explored to enhance immunogenicity. Efficacy trials require special considerations, such as cluster-randomized designs to measure herd immunity that reduces human and mosquito infection rates, while addressing human and mosquito movements as confounding factors.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Harrington LC, Foy BD, Bangs MJ. Considerations for Human Blood-Feeding and Arthropod Exposure in Vector Biology Research: An Essential Tool for Investigations and Disease Control. Vector Borne Zoonotic Dis 2020; 20:807-816. [PMID: 32905735 DOI: 10.1089/vbz.2020.2620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Eventually there may be a broadly acceptable, even perfected, substitute for the human host requirement for direct feeding experiments by arthropods, most notably mosquitoes. However, for now, direct and indirect feeding on human volunteers is an important, if not essential, tool in vector biology research (VBR). This article builds on the foundational publication by Achee et al. (2015) covering considerations for the use of human participants in VBR pursuits. The authors introduced methods involving human participation in VBR, while detailing human-landing collections (catches) as a prime example. Benedict et al. (2018) continued this theme with an overview of human participation and considerations for research that involves release of mosquito vectors into the environment. In this study, we discuss another important aspect of human use in VBR activities: considerations addressing studies that require an arthropod to feed on a live human host. Using mosquito studies as our principal example, in this study, we discuss the tremendous importance and value of this approach to support and allow study of a wide variety of factors and interactions related to our understanding of vector-borne diseases and their control. This includes establishment of laboratory colonies for test populations, characterization of essential nutrients that contribute to mosquito fitness, characterization of blood-feeding (biting) behavior and pathogen transmission, parameterization for modeling transmission dynamics, evaluation of human host attraction and/or agents that repel, and the effectiveness of antivector or parasite therapeutic drug studies.
Collapse
Affiliation(s)
| | - Brian D Foy
- Department of Microbiology, Immunology & Pathology, Arthropod-Borne and Infectious Diseases Laboratory Fort Collins, Colorado State University, Fort Collins, Colorado, USA
| | - Michael J Bangs
- Public Health & Malaria Control, PT Freeport Indonesia/International SOS, Kuala Kencana, Indonesia.,Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
12
|
Talman AM, Ouologuem DTD, Love K, Howick VM, Mulamba C, Haidara A, Dara N, Sylla D, Sacko A, Coulibaly MM, Dao F, Sangare CPO, Djimde A, Lawniczak MKN. Uptake of Plasmodium falciparum Gametocytes During Mosquito Bloodmeal by Direct and Membrane Feeding. Front Microbiol 2020; 11:246. [PMID: 32194521 PMCID: PMC7062676 DOI: 10.3389/fmicb.2020.00246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/03/2020] [Indexed: 11/25/2022] Open
Abstract
Plasmodium falciparum remains one of the leading causes of child mortality, and nearly half of the world's population is at risk of contracting malaria. While pathogenesis results from replication of asexual forms in human red blood cells, it is the sexually differentiated forms, gametocytes, which are responsible for the spread of the disease. For transmission to succeed, both mature male and female gametocytes must be taken up by a female Anopheles mosquito during its blood meal for subsequent differentiation into gametes and mating inside the mosquito gut. Observed circulating numbers of gametocytes in the human host are often surprisingly low. A pre-fertilization behavior, such as skin sequestration, has been hypothesized to explain the efficiency of human-to-mosquito transmission but has not been sufficiently tested due to a lack of appropriate tools. In this study, we describe the optimization of a qPCR tool that enables the relative quantification of gametocytes within very small input samples. Such a tool allows for the quantification of gametocytes in different compartments of the host and the vector that could potentially unravel mechanisms that enable highly efficient malaria transmission. We demonstrate the use of our gametocyte quantification method in mosquito blood meals from both direct skin feeding on Plasmodium gametocyte carriers and standard membrane feeding assay. Relative gametocyte abundance was not different between mosquitoes fed through a membrane or directly on the skin suggesting that there is no systematic enrichment of gametocytes picked up in the skin.
Collapse
Affiliation(s)
- Arthur M. Talman
- Wellcome Sanger Institute, Hinxton, United Kingdom
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Dinkorma T. D. Ouologuem
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Katie Love
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | | | | | - Aboubecrin Haidara
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Niawanlou Dara
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Daman Sylla
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Adama Sacko
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mamadou M. Coulibaly
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Francois Dao
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Cheick P. O. Sangare
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye Djimde
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | |
Collapse
|
13
|
Yusuf Y, Yoshii T, Iyori M, Yoshida K, Mizukami H, Fukumoto S, Yamamoto DS, Alam A, Emran TB, Amelia F, Islam A, Otsuka H, Takashima E, Tsuboi T, Yoshida S. Adeno-Associated Virus as an Effective Malaria Booster Vaccine Following Adenovirus Priming. Front Immunol 2019; 10:730. [PMID: 31024558 PMCID: PMC6460511 DOI: 10.3389/fimmu.2019.00730] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
An ideal malaria vaccine platform should potently induce protective immune responses and block parasite transmission from mosquito to human, and it should maintain these effects for an extended period. Here, we have focused on vaccine development based on adeno-associated virus serotype 1 (AAV1), a viral vector widely studied in the field of clinical gene therapy that is able to induce long-term transgene expression without causing toxicity in vivo. Our results show the potential utility of AAV1 vectors as an extremely potent booster vaccine to induce durable immunity when combined with an adenovirus-priming vaccine in a rodent malaria model. We generated a series of recombinant AAV1s and human adenovirus type 5 (AdHu5) expressing either Plasmodium falciparum circumsporozoite protein (PfCSP) or P25 (Pfs25) protein. Heterologous two-dose immunization with an AdHu5-prime and AAV1-boost (AdHu5-AAV1) elicited robust and durable PfCSP- or Pfs25-specific functional antibodies over 280 days. Regarding protective efficacy, AdHu5-AAV1 PfCSP achieved high sterile protection (up to 80% protection rate) against challenge with transgenic Plasmodium berghei sporozoites expressing PfCSP. When examining transmission-blocking (TB) efficacy, we found that immunization with AdHu5-AAV1 Pfs25 maintained TB activity in vivo against transgenic P. berghei expressing Pfs25 for 287 days (99% reduction in oocyst intensity, 85% reduction in oocyst prevalence). Our data indicate that AAV1-based malaria vaccines can confer potent and durable protection as well as TB efficacy when administered following an AdHu5 priming vaccine, supporting the further evaluation of this regimen in clinical trials as a next-generation malaria vaccine platform.
Collapse
Affiliation(s)
- Yenni Yusuf
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
- Department of Parasitology, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - Tatsuya Yoshii
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Mitsuhiro Iyori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Kunitaka Yoshida
- Kanazawa University Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Mizukami
- Division of Gene therapy, Jichi Medical University, Shimotsuke, Japan
| | - Shinya Fukumoto
- National Research Centre for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Daisuke S. Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Japan
| | - Asrar Alam
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Talha Bin Emran
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Fitri Amelia
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Ashekul Islam
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Hiromu Otsuka
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
14
|
Morrison AC, Schwarz J, Long KC, Cordova J, Rios JE, Quiroz WL, Vizcarra SA, Hontz RD, Scott TW, Lambrechts L, Paz Soldan VA. Acceptability of Aedes aegypti blood feeding on dengue virus-infected human volunteers for vector competence studies in Iquitos, Peru. PLoS Negl Trop Dis 2019; 13:e0007090. [PMID: 30742621 PMCID: PMC6386403 DOI: 10.1371/journal.pntd.0007090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/22/2019] [Accepted: 12/18/2018] [Indexed: 12/03/2022] Open
Abstract
As part of a study to investigate drivers of dengue virus (DENV) transmission dynamics, this qualitative study explored whether DENV-infected residents of Iquitos, Peru, considered it acceptable (1) to participate in direct mosquito feeding experiments (lab-reared Aedes aegypti mosquitoes fed directly on human volunteers) and (2) to provide blood meals indirectly (Ae. aegypti fed on blood drawn from participants by venipuncture). Twelve focus group discussions (FGDs; 94 participants: 82 females and 12 males) were conducted in January 2014 to explore six themes: (1) concerns and preferences regarding direct mosquito feeds and blood draws, (2) comprehension of and misconceptions about study procedures, (3) motivating factors for participation, (4) acceptability of children's participation, (5) willingness to provide multiple samples over several days, and (6) preference for direct feedings in homes versus the study laboratory. Results of FGDs, including one with 5 of 53 past direct mosquito feed participants, indicated that mosquito feeding procedures are acceptable to Iquitos residents when they are provided with information and a few key messages are properly reinforced. FGD participants' concerns focused primarily on safety issues rather than discomfort associated with mosquito bites. A video explaining the study dramatically increased comprehension of the study procedures. The majority of participants expressed a preference for mosquito feeding over venipuncture. Adults supported child participation if the children themselves assented. For most participants, home feedings were preferred over those in a laboratory. A major impetus for participation was the idea that results would contribute to an improved understanding of DENV transmission in Iquitos. Findings from our study will support future large-scale studies that employ direct mosquito feeding, a low-risk, non-invasive procedure that is experimentally superior to artificial mosquito feeding methods.
Collapse
Affiliation(s)
- Amy C. Morrison
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Julia Schwarz
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kanya C. Long
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
| | - Jhonny Cordova
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
| | - Jennifer E. Rios
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - W. Lorena Quiroz
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - S. Alfonso Vizcarra
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
| | - Robert D. Hontz
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
| | - Valerie A. Paz Soldan
- Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
15
|
Coulibaly MB, Gabriel EE, Sinaba Y, Sylla D, Sacko A, Sylla L, Coulibaly B, Hume JCC, Baber I, Assadou MH, Sagara I, Wu Y, Healy SA, Doumbo O, Traore SF, Duffy PE. Optimizing Direct Membrane and Direct Skin Feeding Assays for Plasmodium falciparum Transmission-Blocking Vaccine Trials in Bancoumana, Mali. Am J Trop Med Hyg 2017; 97:719-725. [PMID: 28722588 PMCID: PMC5590592 DOI: 10.4269/ajtmh.16-1000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/17/2017] [Indexed: 11/07/2022] Open
Abstract
Malaria transmission-blocking vaccines (TBV) have been evaluated in field trials in Mali since 2013. However, the assays currently used to measure serum antibody TB activity (TBA) after vaccination are highly variable, in part due to the lack of optimization and standardization for field assays in which mosquitoes feed on gametocytemic blood. Herein, we report a study conducted in Bancoumana village, Mali, where we identify and optimize the parameters that contribute to successful mosquito feeding outcomes in both direct skin feeds (DSFs) and direct membrane feeding assays (DMFA). These parameters include: 1) mosquito age, 2) duration of mosquito starvation prior to feeding, 3) membrane selection for DMFA, 4) anatomical location of DSF feeding (arm, calf, and ankle), and 5) time of day for DSF (dawn or dusk). We found that younger mosquitoes were significantly associated with higher feeding, survival, and infection rates. Longer starvation times were positively, but not significantly, associated with higher infection rates, but were negatively associated with feeding and survival. Membrane type and body location did not affect infection outcome significantly. Although dusk was found to be associated with higher infection rates, this may be confounded by the time from positive blood smear. Based on these findings, we make specific recommendations for optimal feeding parameters in the different assay types to maximize the chance of detecting parasite transmission in a standardized manner.
Collapse
Affiliation(s)
| | - Erin E. Gabriel
- Biostatistics Research Branch, NIAID/NIH, Bethesda, Maryland
| | - Youssouf Sinaba
- Malaria Research and Training Center, ICER-MALI-USTTB-NIAID/NIH, Bamako, Mali
| | - Daman Sylla
- Malaria Research and Training Center, ICER-MALI-USTTB-NIAID/NIH, Bamako, Mali
| | - Adama Sacko
- Malaria Research and Training Center, ICER-MALI-USTTB-NIAID/NIH, Bamako, Mali
| | - Lakamy Sylla
- Malaria Research and Training Center, ICER-MALI-USTTB-NIAID/NIH, Bamako, Mali
| | - Boubacar Coulibaly
- Malaria Research and Training Center, ICER-MALI-USTTB-NIAID/NIH, Bamako, Mali
| | - Jen C. C. Hume
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, Maryland
| | - Ibrahima Baber
- Malaria Research and Training Center, ICER-MALI-USTTB-NIAID/NIH, Bamako, Mali
- Abt Associates Inc., Monrovia, Liberia
| | | | - Issaka Sagara
- Malaria Research and Training Center, ICER-MALI-USTTB-NIAID/NIH, Bamako, Mali
| | - Yimin Wu
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, Maryland
- PATH-Malaria Vaccine Initiative, Washington, District of Columbia
| | - Sara A. Healy
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, Maryland
| | - Ogobara Doumbo
- Malaria Research and Training Center, ICER-MALI-USTTB-NIAID/NIH, Bamako, Mali
| | - Sekou F. Traore
- Malaria Research and Training Center, ICER-MALI-USTTB-NIAID/NIH, Bamako, Mali
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, Maryland
| |
Collapse
|
16
|
Griffin P, Pasay C, Elliott S, Sekuloski S, Sikulu M, Hugo L, Khoury D, Cromer D, Davenport M, Sattabongkot J, Ivinson K, Ockenhouse C, McCarthy J. Safety and Reproducibility of a Clinical Trial System Using Induced Blood Stage Plasmodium vivax Infection and Its Potential as a Model to Evaluate Malaria Transmission. PLoS Negl Trop Dis 2016; 10:e0005139. [PMID: 27930652 PMCID: PMC5145139 DOI: 10.1371/journal.pntd.0005139] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Interventions to interrupt transmission of malaria from humans to mosquitoes represent an appealing approach to assist malaria elimination. A limitation has been the lack of systems to test the efficacy of such interventions before proceeding to efficacy trials in the field. We have previously demonstrated the feasibility of induced blood stage malaria (IBSM) infection with Plasmodium vivax. In this study, we report further validation of the IBSM model, and its evaluation for assessment of transmission of P. vivax to Anopheles stephensi mosquitoes. METHODS Six healthy subjects (three cohorts, n = 2 per cohort) were infected with P. vivax by inoculation with parasitized erythrocytes. Parasite growth was monitored by quantitative PCR, and gametocytemia by quantitative reverse transcriptase PCR (qRT-PCR) for the mRNA pvs25. Parasite multiplication rate (PMR) and size of inoculum were calculated by linear regression. Mosquito transmission studies were undertaken by direct and membrane feeding assays over 3 days prior to commencement of antimalarial treatment, and midguts of blood fed mosquitoes dissected and checked for presence of oocysts after 7-9 days. RESULTS The clinical course and parasitemia were consistent across cohorts, with all subjects developing mild to moderate symptoms of malaria. No serious adverse events were reported. Asymptomatic elevated liver function tests were detected in four of six subjects; these resolved without treatment. Direct feeding of mosquitoes was well tolerated. The estimated PMR was 9.9 fold per cycle. Low prevalence of mosquito infection was observed (1.8%; n = 32/1801) from both direct (4.5%; n = 20/411) and membrane (0.9%; n = 12/1360) feeds. CONCLUSION The P. vivax IBSM model proved safe and reliable. The clinical course and PMR were reproducible when compared with the previous study using this model. The IBSM model presented in this report shows promise as a system to test transmission-blocking interventions. Further work is required to validate transmission and increase its prevalence. TRIAL REGISTRATION Anzctr.org.au ACTRN12613001008718.
Collapse
Affiliation(s)
- Paul Griffin
- Clinical Tropical Medicine Laboratory, QIMR Berghofer, Brisbane, Australia
- Q-Pharm Pty Ltd, Brisbane, Australia
- Department of Medicine and Infectious Diseases, Mater Hospital and Mater Medical Research Institute, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Cielo Pasay
- Clinical Tropical Medicine Laboratory, QIMR Berghofer, Brisbane, Australia
| | | | - Silvana Sekuloski
- Clinical Tropical Medicine Laboratory, QIMR Berghofer, Brisbane, Australia
| | - Maggy Sikulu
- Clinical Tropical Medicine Laboratory, QIMR Berghofer, Brisbane, Australia
| | - Leon Hugo
- Clinical Tropical Medicine Laboratory, QIMR Berghofer, Brisbane, Australia
| | - David Khoury
- University of New South Wales, Sydney, Australia
| | | | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Karen Ivinson
- PATH, Malaria Vaccine Initiative, Washington, DC, United States
| | | | - James McCarthy
- Clinical Tropical Medicine Laboratory, QIMR Berghofer, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| |
Collapse
|
17
|
Utilizing direct skin feeding assays for development of vaccines that interrupt malaria transmission: A systematic review of methods and case study. Vaccine 2016; 34:5863-5870. [PMID: 27789147 DOI: 10.1016/j.vaccine.2016.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/23/2016] [Accepted: 10/11/2016] [Indexed: 01/29/2023]
Abstract
Shifting the malaria priorities from a paradigm of control and elimination to a goal of global eradication calls for renewed attention to the interruption of malaria transmission. Sustained progress toward eradication will require both improved understanding of infectious reservoirs and efficient development of novel transmission-blocking interventions, such as rapidly acting and highly efficacious therapeutics and vaccines. Here, we review the direct skin feeding assay (DSF), which has been proposed as a valuable tool for measuring the in natura transmission of malaria parasites from human hosts to mosquito vectors across heterogeneous populations. To capture the methodological breadth of this assay's use, we first systematically review and qualitatively synthesize previously published investigations using DSFs to study malaria transmission in humans. Then, using a recent Phase 1 trial in Mali of the Pfs25H-EPA/Alhydrogel® vaccine candidate (NCT01867463) designed to interrupt Plasmodium falciparum transmission as a case study, we describe the potential opportunities and current limitations of utilizing the endpoints measured by DSF in making early clinical decisions for individually randomized transmission-interrupting intervention candidates. Using simulations based on the data collected in the clinical trial, we demonstrate that the capacity of the DSF to serve as an evaluative tool is limited by the statistical power constraints of the "effective sample size" (i.e. the number of subjects that are capable of transmitting at the time of feeding). Altogether, our findings suggest DSFs have great potential utility for assessing the public health impacts of emerging antimalarial tools, but additional research is needed to address issues of scalability and to establish correlation with community-wide clinical endpoints as well as complementary in vitro measures, such as standard membrane feeding assays.
Collapse
|
18
|
Tan CH, Wong PSJ, Li MZI, Yang HT, Chong CS, Lee LK, Yuan S, Leo YS, Ng LC, Lye DC. Membrane feeding of dengue patient's blood as a substitute for direct skin feeding in studying Aedes-dengue virus interaction. Parasit Vectors 2016; 9:211. [PMID: 27083158 PMCID: PMC4833953 DOI: 10.1186/s13071-016-1469-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 03/23/2016] [Indexed: 12/02/2022] Open
Abstract
Background Understanding the interaction between Aedes vectors and dengue viruses (DENV) has significant implications in determining the transmission dynamics of dengue. The absence of an animal model and ethical concerns regarding direct feeding of mosquitoes on patients has resulted in most infection studies using blood meals spiked with laboratory-cultured DENV. Data obtained from such studies may not reflect the natural human-mosquito transmission scenario. This study explored the potential of using membrane feeding of dengue patient’s blood as a substitute for direct skin feeding. Methods Four to six-day old female Ae. aegypti were provided the opportunity to feed via direct exposure to a patient’s forearm for 15 min or via exposure to EDTA-treated blood from the same patient through an artificial membrane for 30 min. Mosquitoes from both feeding methods were incubated inside environmental chambers. Mosquitoes were sampled at day 13 post-feeding. Midgut and salivary glands of each mosquito were dissected to determine DENV infection by RT-qPCR and viral titration, respectively. Results Feeding rates: Direct skin feeding assay (DSFA) consistently showed higher mosquito feeding rates (93.3–100 %) when compared with the membrane feeding assay (MFA) (48–98.2 %). Midgut infection: Pair-wise comparison between methods showed no significant difference in midgut infection rates between mosquitoes exposed via each method and a strong correlation was observed in midgut infection rates for both feeding methods (r = 0.89, P < 0.0001). Overall midgut viral titers (n = 20) obtained by both methods were comparable (P ≥ 0.06). Salivary gland infection: Pair-wise comparison between both methods revealed no significant difference in salivary gland infection rate. Strong correlation in salivary gland infection was observed between DSFA and MFA (r = 0.81, P < 0.0001). In general, mosquitoes fed directly on dengue patients and those on patients’ blood (n = 11) had comparable virus titer (P ≥ 0.09). Conclusion DENV midgut and salivary gland infection rates showed good concordance between DSFA and MFA blood meal exposure methods. Freshly-obtained venous blood in EDTA from dengue patients for MFA can be used as a substitute to DSFA, especially in circumstances where bioethics approval or patient recruitment is difficult to obtain for vector competence studies. Nevertheless, mosquito numbers will need to be increased to compensate for lower feeding rate in MFA. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1469-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheong-Huat Tan
- Environmental Health Institute, National Environment Agency, Singapore, Singapore. .,Faculty of Science, Monash University, Melbourne, Australia.
| | - Pei-Sze Jeslyn Wong
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Mei-Zhi Irene Li
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Hui-Ting Yang
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Chee-Seng Chong
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Linda K Lee
- Communicable Disease Center, Tan Tock Seng Hospital, Singapore, Singapore
| | - Shi Yuan
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Yee-Sin Leo
- Communicable Disease Center, Tan Tock Seng Hospital, Singapore, Singapore
| | - Lee-Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore, Singapore.,School of Biological Sciences (SBS), Nanyang Technological University, Singapore, Singapore
| | - David C Lye
- Communicable Disease Center, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
19
|
Gaye A, Bousema T, Libasse G, Ndiath MO, Konaté L, Jawara M, Faye O, Sokhna C. Infectiousness of the human population to Anopheles arabiensis by direct skin feeding in an area hypoendemic for malaria in Senegal. Am J Trop Med Hyg 2015; 92:648-52. [PMID: 25624409 DOI: 10.4269/ajtmh.14-0402] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Direct skin feeding experiments are sensitive assays to determine human infectiousness to mosquitoes but are rarely used in malaria epidemiological surveys. We determined the infectiousness of inhabitants of a malaria hypoendemic area in Senegal. Gametocyte prevalence by microscopy was 13.5% (26 of 192). Of all individuals who were gametocyte positive, 44.4% (11 of 25) infected ≥ 1 Anopheles arabiensis mosquito and 10.8% (54 of 500) of mosquitoes became infected. Of all individuals who were gametocyte negative by microscopy, 4.3% (7 of 162) infected ≥ 1 mosquito and 0.4% (12 of 3240) of mosquitoes became infected. The 18.2% (12 of 66) of all mosquito infections was a result of submicroscopic gametocyte carriage and two individuals without asexual parasites or gametocytes by microscopy were infectious to mosquitoes. When infectivity and local demography was taken into account, children 5-14 years of age contributed 50.8% of the human infectious reservoir for malaria. Adults and submicroscopic gametocyte carriers may contribute considerably to onward malaria transmission in our setting.
Collapse
Affiliation(s)
- Abdoulaye Gaye
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR 198, Campus UCAD - IRD, BP 1386, Dakar, Sénégal; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom; Programme Nationale de Lutte Contre le Paludisme, Dakar-Fann Sénégal; Institut Pasteur de Bangui, République Centrafricaine; Universite Cheikh Anta Diop de Dakar, Departement de Biologie Animale, Dakar - Sénégal; Medical Research Council Unit, Banjul; Atlantic Boulevard Fajara, Fajara, The Gambia
| | - Teun Bousema
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR 198, Campus UCAD - IRD, BP 1386, Dakar, Sénégal; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom; Programme Nationale de Lutte Contre le Paludisme, Dakar-Fann Sénégal; Institut Pasteur de Bangui, République Centrafricaine; Universite Cheikh Anta Diop de Dakar, Departement de Biologie Animale, Dakar - Sénégal; Medical Research Council Unit, Banjul; Atlantic Boulevard Fajara, Fajara, The Gambia
| | - Gadiaga Libasse
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR 198, Campus UCAD - IRD, BP 1386, Dakar, Sénégal; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom; Programme Nationale de Lutte Contre le Paludisme, Dakar-Fann Sénégal; Institut Pasteur de Bangui, République Centrafricaine; Universite Cheikh Anta Diop de Dakar, Departement de Biologie Animale, Dakar - Sénégal; Medical Research Council Unit, Banjul; Atlantic Boulevard Fajara, Fajara, The Gambia
| | - Mamadou O Ndiath
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR 198, Campus UCAD - IRD, BP 1386, Dakar, Sénégal; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom; Programme Nationale de Lutte Contre le Paludisme, Dakar-Fann Sénégal; Institut Pasteur de Bangui, République Centrafricaine; Universite Cheikh Anta Diop de Dakar, Departement de Biologie Animale, Dakar - Sénégal; Medical Research Council Unit, Banjul; Atlantic Boulevard Fajara, Fajara, The Gambia
| | - Lassana Konaté
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR 198, Campus UCAD - IRD, BP 1386, Dakar, Sénégal; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom; Programme Nationale de Lutte Contre le Paludisme, Dakar-Fann Sénégal; Institut Pasteur de Bangui, République Centrafricaine; Universite Cheikh Anta Diop de Dakar, Departement de Biologie Animale, Dakar - Sénégal; Medical Research Council Unit, Banjul; Atlantic Boulevard Fajara, Fajara, The Gambia
| | - Musa Jawara
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR 198, Campus UCAD - IRD, BP 1386, Dakar, Sénégal; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom; Programme Nationale de Lutte Contre le Paludisme, Dakar-Fann Sénégal; Institut Pasteur de Bangui, République Centrafricaine; Universite Cheikh Anta Diop de Dakar, Departement de Biologie Animale, Dakar - Sénégal; Medical Research Council Unit, Banjul; Atlantic Boulevard Fajara, Fajara, The Gambia
| | - Ousmane Faye
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR 198, Campus UCAD - IRD, BP 1386, Dakar, Sénégal; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom; Programme Nationale de Lutte Contre le Paludisme, Dakar-Fann Sénégal; Institut Pasteur de Bangui, République Centrafricaine; Universite Cheikh Anta Diop de Dakar, Departement de Biologie Animale, Dakar - Sénégal; Medical Research Council Unit, Banjul; Atlantic Boulevard Fajara, Fajara, The Gambia
| | - Cheikh Sokhna
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR 198, Campus UCAD - IRD, BP 1386, Dakar, Sénégal; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom; Programme Nationale de Lutte Contre le Paludisme, Dakar-Fann Sénégal; Institut Pasteur de Bangui, République Centrafricaine; Universite Cheikh Anta Diop de Dakar, Departement de Biologie Animale, Dakar - Sénégal; Medical Research Council Unit, Banjul; Atlantic Boulevard Fajara, Fajara, The Gambia
| |
Collapse
|
20
|
Gouagna LC, Yao F, Yameogo B, Dabiré RK, Ouédraogo JB. Comparison of field-based xenodiagnosis and direct membrane feeding assays for evaluating host infectiousness to malaria vector Anopheles gambiae. Acta Trop 2014; 130:131-9. [PMID: 24262642 DOI: 10.1016/j.actatropica.2013.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/15/2013] [Accepted: 10/19/2013] [Indexed: 12/01/2022]
Abstract
Several techniques are currently being used to study host infectiousness to mosquitoes, including the experimental possibility of laboratory reared mosquitoes acquiring infections through membrane feeders or directly on host skin. Here, the relative performance of the laboratory-based membrane feeding method (DMFA) and the field-based xenodiagnosis (XD) of malaria infectious hosts using wild Anopheles mosquitoes were compared. A cross-sectional survey involving a sample of 70 children (aged 3-12 years) living in a malaria endemic area in Western Burkina Faso, was carried out to measure their infectiousness to Anopheles mosquitoes using two approaches. The first approach used the xenodiagnostic procedure in which children were exposed to mosquito bites overnight, being sleeping individually in different sentinel huts from 6 pm to 6 am (4 nights per child). Anopheles sp that had acquired blood-meal on each child were subsequently collected early in the morning, and examined for Plasmodium falciparum oocyst infection on day 7 post-feeding. In the second approach, the infectiousness of the same children was estimated by whole-blood membrane feeding procedure using F0 An. gambiae s.l. that emerged from field-collected larvae cohorts. In the DMFA, 41.4% of the children successfully infected at least one mosquito with the mean oocyst prevalence of only 4.6±1.1% in the 2171 mosquitoes that were examined (mean oocyst intensity: 2.0±(std error of mean) 0.3 oocysts per infected midgut). Comparatively 78.6% of children yielded oocysts infection in mosquitoes during the XD approach (Chi square=20.11, df=1; p<0.001), with a mean rate of 19.6±2.0 in the 3752 wild caught mosquitoes (mean intensity: 3.93±0.2 oocysts per infected mosquito). The DMFA failed to reveal a portion (n=26) of infectious individuals that were sharply evidenced by the XD, particularly at low gametocyte densities or at levels that could not be detected by the classical microscopic examination of blood smears. As opposed to the resource consuming DMFA, which is often mined by technical constraints, using the XD method could be an advantage in experimental investigations of host infectiousness in areas where anopheline species cannot be conveniently reared for the experimental studies. Ethical aspects of this approach, mainly related to exposure of the human subjects to potentially infectious mosquito bites are discussed.
Collapse
Affiliation(s)
- Louis Clément Gouagna
- Centre de Recherche et de Veille sur les maladies Emergentes dans l'Océan Indien (CRVOI), Saint Clotilde, Reunion.
| | - Frank Yao
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de Bobo-Dioulasso, Burkina Faso.
| | - Bienvenue Yameogo
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de Bobo-Dioulasso, Burkina Faso.
| | - Roch K Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de Bobo-Dioulasso, Burkina Faso; Centre Muraz, 01 BP 390 Bobo-Dioulasso 01, Burkina Faso.
| | - Jean-Bosco Ouédraogo
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de Bobo-Dioulasso, Burkina Faso; Centre Muraz, 01 BP 390 Bobo-Dioulasso 01, Burkina Faso.
| |
Collapse
|
21
|
Lambrechts L, Failloux AB. Vector biology prospects in dengue research. Mem Inst Oswaldo Cruz 2013; 107:1080-2. [PMID: 23295765 DOI: 10.1590/s0074-02762012000800022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 11/21/2022] Open
Abstract
We argue that using more natural blood feeding methods to study mosquito vector competence for dengue viruses and exploring the effect of viral infection on other mosquito life-history traits that influence vectorial capacity will significantly advance our understanding of dengue epidemiology.
Collapse
Affiliation(s)
- Louis Lambrechts
- Department of Infection and Epidemiology, Insects and Infectious Diseases Unit, Associated Research Unit, National Center for Scientific Research, Paris, France.
| | | |
Collapse
|
22
|
Bousema T, Dinglasan RR, Morlais I, Gouagna LC, van Warmerdam T, Awono-Ambene PH, Bonnet S, Diallo M, Coulibaly M, Tchuinkam T, Mulder B, Targett G, Drakeley C, Sutherland C, Robert V, Doumbo O, Touré Y, Graves PM, Roeffen W, Sauerwein R, Birkett A, Locke E, Morin M, Wu Y, Churcher TS. Mosquito feeding assays to determine the infectiousness of naturally infected Plasmodium falciparum gametocyte carriers. PLoS One 2012; 7:e42821. [PMID: 22936993 PMCID: PMC3425579 DOI: 10.1371/journal.pone.0042821] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/11/2012] [Indexed: 12/27/2022] Open
Abstract
Introduction In the era of malaria elimination and eradication, drug-based and vaccine-based approaches to reduce malaria transmission are receiving greater attention. Such interventions require assays that reliably measure the transmission of Plasmodium from humans to Anopheles mosquitoes. Methods We compared two commonly used mosquito feeding assay procedures: direct skin feeding assays and membrane feeding assays. Three conditions under which membrane feeding assays are performed were examined: assays with i) whole blood, ii) blood pellets resuspended with autologous plasma of the gametocyte carrier, and iii) blood pellets resuspended with heterologous control serum. Results 930 transmission experiments from Cameroon, The Gambia, Mali and Senegal were included in the analyses. Direct skin feeding assays resulted in higher mosquito infection rates compared to membrane feeding assays (odds ratio 2.39, 95% confidence interval 1.94–2.95) with evident heterogeneity between studies. Mosquito infection rates in membrane feeding assays and direct skin feeding assays were strongly correlated (p<0.0001). Replacing the plasma of the gametocyte donor with malaria naïve control serum resulted in higher mosquito infection rates compared to own plasma (OR 1.92, 95% CI 1.68–2.19) while the infectiousness of gametocytes may be reduced during the replacement procedure (OR 0.60, 95% CI 0.52–0.70). Conclusions Despite a higher efficiency of direct skin feeding assays, membrane feeding assays appear suitable tools to compare the infectiousness between individuals and to evaluate transmission-reducing interventions. Several aspects of membrane feeding procedures currently lack standardization; this variability makes comparisons between laboratories challenging and should be addressed to facilitate future testing of transmission-reducing interventions.
Collapse
Affiliation(s)
- Teun Bousema
- Department of Immunity and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Goodman AL, Blagborough AM, Biswas S, Wu Y, Hill AV, Sinden RE, Draper SJ. A viral vectored prime-boost immunization regime targeting the malaria Pfs25 antigen induces transmission-blocking activity. PLoS One 2011; 6:e29428. [PMID: 22216279 PMCID: PMC3247263 DOI: 10.1371/journal.pone.0029428] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 11/29/2011] [Indexed: 11/18/2022] Open
Abstract
The ookinete surface protein Pfs25 is a macrogamete-to-ookinete/ookinete stage antigen of Plasmodium falciparum, capable of exerting high-level anti-malarial transmission-blocking activity following immunization with recombinant protein-in-adjuvant formulations. Here, this antigen was expressed in recombinant chimpanzee adenovirus 63 (ChAd63), human adenovirus serotype 5 (AdHu5) and modified vaccinia virus Ankara (MVA) viral vectored vaccines. Two immunizations were administered to mice in a heterologous prime-boost regime. Immunization of mice with AdHu5 Pfs25 at week 0 and MVA Pfs25 at week 10 (Ad-MVA Pfs25) resulted in high anti-Pfs25 IgG titers, consisting of predominantly isotypes IgG1 and IgG2a. A single priming immunization with ChAd63 Pfs25 was as effective as AdHu5 Pfs25 with respect to ELISA titers at 8 weeks post-immunization. Sera from Ad-MVA Pfs25 immunized mice inhibited the transmission of P. falciparum to the mosquito both ex vivo and in vivo. In a standard membrane-feeding assay using NF54 strain P. falciparum, oocyst intensity in Anopheles stephensi mosquitoes was significantly reduced in an IgG concentration-dependent manner when compared to control feeds (96% reduction of intensity, 78% reduction in prevalence at a 1 in 5 dilution of sera). In addition, an in vivo transmission-blocking effect was also demonstrated by direct feeding of immunized mice infected with Pfs25DR3, a chimeric P. berghei line expressing Pfs25 in place of endogenous Pbs25. In this assay the density of Pfs25DR3 oocysts was significantly reduced when mosquitoes were fed on vaccinated as compared to control mice (67% reduction of intensity, 28% reduction in prevalence) and specific IgG titer correlated with efficacy. These data confirm the utility of the adenovirus-MVA vaccine platform for the induction of antibodies with transmission-blocking activity, and support the continued development of this alternative approach to transmission-blocking malaria subunit vaccines.
Collapse
Affiliation(s)
- Anna L Goodman
- The Jenner Institute, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
24
|
Valencia SH, Rodríguez DC, Acero DL, Ocampo V, Arévalo-Herrera M. Platform for Plasmodium vivax vaccine discovery and development. Mem Inst Oswaldo Cruz 2011; 106 Suppl 1:179-92. [PMID: 21881773 PMCID: PMC4832982 DOI: 10.1590/s0074-02762011000900023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 06/15/2011] [Indexed: 01/17/2023] Open
Abstract
Plasmodium vivax is the most prevalent malaria parasite on the American continent. It generates a global burden of 80-100 million cases annually and represents a tremendous public health problem, particularly in the American and Asian continents. A malaria vaccine would be considered the most cost-effective measure against this vector-borne disease and it would contribute to a reduction in malaria cases and to eventual eradication. Although significant progress has been achieved in the search for Plasmodium falciparum antigens that could be used in a vaccine, limited progress has been made in the search for P. vivax components that might be eligible for vaccine development. This is primarily due to the lack of in vitro cultures to serve as an antigen source and to inadequate funding. While the most advanced P. falciparum vaccine candidate is currently being tested in Phase III trials in Africa, the most advanced P. vivax candidates have only advanced to Phase I trials. Herein, we describe the overall strategy and progress in P. vivax vaccine research, from antigen discovery to preclinical and clinical development and we discuss the regional potential of Latin America to develop a comprehensive platform for vaccine development.
Collapse
|
25
|
Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev 2011; 24:377-410. [PMID: 21482730 PMCID: PMC3122489 DOI: 10.1128/cmr.00051-10] [Citation(s) in RCA: 508] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Malaria remains a major cause of morbidity and mortality in the tropics, with Plasmodium falciparum responsible for the majority of the disease burden and P. vivax being the geographically most widely distributed cause of malaria. Gametocytes are the sexual-stage parasites that infect Anopheles mosquitoes and mediate the onward transmission of the disease. Gametocytes are poorly studied despite this crucial role, but with a recent resurgence of interest in malaria elimination, the study of gametocytes is in vogue. This review highlights the current state of knowledge with regard to the development and longevity of P. falciparum and P. vivax gametocytes in the human host and the factors influencing their distribution within endemic populations. The evidence for immune responses, antimalarial drugs, and drug resistance influencing infectiousness to mosquitoes is reviewed. We discuss how the application of molecular techniques has led to the identification of submicroscopic gametocyte carriage and to a reassessment of the human infectious reservoir. These components are drawn together to show how control measures that aim to reduce malaria transmission, such as mass drug administration and a transmission-blocking vaccine, might better be deployed.
Collapse
Affiliation(s)
- Teun Bousema
- Department of Immunology & Infection, London School of Hygiene and Tropical Medicine, London W1CE 7HT, United Kingdom
| | - Chris Drakeley
- Department of Immunology & Infection, London School of Hygiene and Tropical Medicine, London W1CE 7HT, United Kingdom
| |
Collapse
|