1
|
Prasad K. Atherogenic Effect of Homocysteine, a Biomarker of Inflammation and Its Treatment. Int J Angiol 2024; 33:262-270. [PMID: 39502352 PMCID: PMC11534477 DOI: 10.1055/s-0044-1788280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Hyperhomocysteinemia (HHcy) is an independent risk factor for atherosclerosis. Ischemic stroke and heart disease, coronary heart disease, and cardiovascular disease are events resulting from long-lasting and silent atherosclerosis. This paper deals with the synthesis of homocysteine (Hcy), causes of HHcy, mechanism of HHcy-induced atherosclerosis, and treatment of HHcy. Synthesis and metabolism of Hcy involves demethylation, transmethylation, and transsulfuration, and these processes require vitamin B 6 and vitamin B 12 folic acid (vitamin B 9 ). Causes of HHcy include deficiency of vitamins B 6 , B 9 , and B 12 , genetic defects, use of smokeless tobacco, cigarette smoking, alcohol consumption, diabetes, rheumatoid arthritis, low thyroid hormone, consumption of caffeine, folic acid antagonist, cholesterol-lowering drugs (niacin), folic acid antagonist (phenytoin), prolonged use of proton pump inhibitors, metformin, and hypertension. HHcy-induced atherosclerosis may be mediated through oxidative stress, decreased availability of nitric oxide (NO), increased expression of monocyte chemoattractant protein-1, smooth muscle cell proliferation, increased thrombogenicity, and induction of arterial connective tissue. HHcy increases the generation of atherogenic biomolecules such as nuclear factor-kappa B, proinflammatory cytokines (IL-1β, IL-6, and IL-8), cell adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selection), growth factors (IGF-1 and TGF-β), and monocyte colony-stimulating factor which lead to the development of atherosclerosis. NO which is protective against the development of atherosclerosis is reduced by HHcy. Therapy with folic acid, vitamin B 6 , and vitamin B 12 lowers the levels of Hcy, with folic acid being the most effective. Dietary sources of folic acid, vitamin B 6 , vitamin B 12 , omega-3 fatty acid, and green coffee extract reduce Hcy. Abstaining from drinking coffee and alcohol, and smoking also reduces blood levels of Hcy. In conclusion, HHcy induces atherosclerosis by generating atherogenic biomolecules, and treatment of atherosclerosis-induced diseases may be by reducing the levels of Hcy.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Jiang Y, Chen X, Cai Z, Yao Y, Huang S. Trends and Motivations in Dietary Supplement Use Among People with Diabetes: A Population-Based Analysis Using National Health and Nutrition Examination Survey Data from the 2009-2020 Period. Nutrients 2024; 16:4021. [PMID: 39683416 DOI: 10.3390/nu16234021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
OBJECTIVES Dietary supplements have gained attention among people with diabetes as an alternative and complementary treatment, yet there is a limited understanding of supplement use and the motivations behind it. METHODS Data from the National Health and Nutrition Examination Survey (NHANES) from the 2009-2020 period were analyzed, including data on 5784 people with diabetes aged 20 years or older. Dietary supplement use was self-reported. Trends in supplement use were examined across three periods: 2009-2012, 2013-2016, and 2017-2020. Statistical analyses were conducted while considering NHANES's complex survey design to provide nationally representative estimates for the general noninstitutionalized population of the United States. RESULTS A total of 61.72% of individuals reported using dietary supplements with a notable increase over time. Supplement users were generally older, more likely to be female, better educated, and had superior blood glucose control with lower smoking rates compared to non-users. Common supplements included multivitamins, multimineral supplements, vitamin D, calcium, zinc, vitamin C, and fish oil. Only 44.58% of individuals used dietary supplements based on medical advice, with the rest opting for self-directed usage. The primary specific health reasons for supplement use were to improve bone health and heart health and enhance the immune system. CONCLUSIONS Dietary supplement use is prevalent among people with diabetes, and most diabetic supplement use is self-directed, which reflects a growing trend toward complementary therapies. Healthcare providers are encouraged to inquire about patients' use of supplements and offer appropriate guidance as an integral component of comprehensive diabetes management.
Collapse
Affiliation(s)
- Yan Jiang
- Nursing Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xuhui Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Zhen Cai
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ying Yao
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shuaiwen Huang
- Department of General Practice, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| |
Collapse
|
3
|
Mishra A, Kumar R, Mishra SN, Vijayaraghavalu S, Shukla GC, Kumar M. Impact of smokeless tobacco on psychological and oxidative stress in unemployed indian youth. Amino Acids 2024; 56:59. [PMID: 39395920 PMCID: PMC11470867 DOI: 10.1007/s00726-024-03416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 08/20/2024] [Indexed: 10/14/2024]
Abstract
In India, tobacco (nicotine) addiction among youth has increased, leading to substantial socioeconomic burdens, mortality, and morbidity. While minimal short-term nicotine consumption may have antioxidant effects, chronic exposure results in various adverse health outcomes. This study examines the impact of chronic nicotine consumption on cellular oxidative stress and psychological stress, and their correlation with Homocysteine (Hcy) levels in unemployed tobacco consumers. This case-control study included 156 healthy, educated, unemployed male volunteers aged 20-40 years, divided into nicotine-addicted (n = 80) and non-addicted (n = 76) groups. Psychological stress was assessed using perceived stress scales (PSS) and coping self-efficacy (CSE) scales. Oxidative stress markers, including Malondialdehyde (MDA), Superoxide Dismutase (SOD), and Catalase, were measured. Hcy levels were quantified using high-performance liquid chromatography (HPLC). Nicotine-addicted participants exhibited significantly higher perceived stress (p = 0.0001) and lower coping self-efficacy (p = 0.0001) compared to non-addicted individuals. MDA levels in erythrocytes were significantly increased (p = 0.0006), while SOD (p = 0.0001) and Catalase (p = 0.02) activities were significantly decreased in the addicted group. Nicotine intake influenced Hcy concentrations, with 55% of addicted individuals falling into moderate, 27.5% into intermediate, and 7.5% into severe Hcy categories. Chronic nicotine intake also reflected the hematological parameters (WBCs, RBCs, HGB, and Platelets). Chronic tobacco consumption induces oxidative stress and perceived psychological stress, leading to elevated Hcy levels in nicotine consumers. The study highlights the detrimental effects of nicotine addiction on cellular defensive mechanisms, emphasizing the need for targeted interventions to address this growing health issue among unemployed Indian youth.
Collapse
Affiliation(s)
- Anurag Mishra
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj, 211002, UP, India
| | - Rishabh Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj, 211002, UP, India
| | - Satya Narayan Mishra
- Maa Gayatri College of Pharmacy, Dr. A. P. J. Abdul Kalam Technical University, Prayagraj, 211008, UP, India
| | - Sivakumar Vijayaraghavalu
- Department of Life Sciences (Zoology), Manipur University (A Central University), Imphal, 795003, Manipur, India.
| | - Girish C Shukla
- Department of Biological, Geological and Environmental Sciences, 2121 Euclid Ave, Cleveland, OH, 44115, USA
- Center for Gene Regulation in Health and Disease, 2121 Euclid Ave, Cleveland, OH, 44115, USA
| | - Munish Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj, 211002, UP, India.
| |
Collapse
|
4
|
Bai B, Wan C, Xiao Z, Li D, Liu L, Zhang K, Zhang T, Zhang Q. High Homocysteine-Thiolactone Leads to Reduced MENIN Protein Expression and an Impaired DNA Damage Response: Implications for Neural Tube Defects. Mol Neurobiol 2024; 61:7369-7383. [PMID: 38386135 DOI: 10.1007/s12035-024-04033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/10/2024] [Indexed: 02/23/2024]
Abstract
DNA damage is associated with hyperhomocysteinemia (HHcy) and neural tube defects (NTDs). Additionally, HHcy is a risk factor for NTDs. Therefore, this study examined whether DNA damage is involved in HHcy-induced NTDs and investigated the underlying pathological mechanisms involved. Embryonic day 9 (E9) mouse neuroectoderm cells (NE4C) and homocysteine-thiolactone (HTL, active metabolite of Hcy)-induced NTD chicken embryos were studied by Western blotting, immunofluorescence. RNA interference or gene overexpression techniques were employed to investigate the impact of Menin expression changes on the DNA damage. Chromatin immunoprecipitation-quantitative polymerase chain reaction was used to investigate the epigenetic regulation of histone modifications. An increase in γH2AX (a DNA damage indicator) was detected in HTL-induced NTD chicken embryos and HTL-treated NE4C, accompanied by dysregulation of phospho-Atr-Chk1-nucleotide excision repair (NER) pathway. Further investigation, based on previous research, revealed that disruption of NER was subject to the epigenetic regulation of low-expressed Menin-H3K4me3. Overexpression of Menin or supplementation with folic acid in HTL-treated NE4C reversed the adverse effects caused by high HTL. Additionally, by overexpressing the Mars gene, we tentatively propose a mechanism whereby HTL regulates Menin expression through H3K79hcy, which subsequently influences H3K4me3 modifications, reflecting an interaction between histone modifications. Finally, in 10 human fetal NTDs with HHcy, we detected a decrease in the expression of Menin-H3K4me3 and disorder in the NER pathway, which to some extent validated our proposed mechanism. The present study demonstrated that the decreased expression of Menin in high HTL downregulated H3K4me3 modifications, further weakening the Atr-Chk1-NER pathway, resulting in the occurrence of NTDs.
Collapse
Affiliation(s)
- Baoling Bai
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Yabao Road 2, Beijing, 100020, China
| | - Chunlei Wan
- Department of Pediatrics, Tongzhou Maternal and Child Health Care Hospital, Beijing, 101101, China
| | - Zonghui Xiao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Yabao Road 2, Beijing, 100020, China
| | - Dan Li
- Department of Pediatrics, Tongzhou Maternal and Child Health Care Hospital, Beijing, 101101, China
| | - Lingyun Liu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Yabao Road 2, Beijing, 100020, China
| | - Kexin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Yabao Road 2, Beijing, 100020, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Yabao Road 2, Beijing, 100020, China.
| | - Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Yabao Road 2, Beijing, 100020, China.
| |
Collapse
|
5
|
Jung E, Kook HY, Ryu SJ, Ryu HH, Kim HG. The Association of Vitamin B-12 Plasma Concentration with Stroke Incidence According to Sex. J Nutr 2024; 154:3012-3018. [PMID: 39122089 DOI: 10.1016/j.tjnut.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Previous studies reported that vitamin B-12 deficiency is associated with an increased risk of stroke. However, studies examining the association between excessive vitamin B-12 and stroke risk are limited. Our study aimed to investigate the relationship between excessive vitamin B-12 concentrations and risk of stroke and explore whether this association varies according to sex. METHODS Utilizing the Korean Genome Epidemiology Study (KoGES) prospective cohort data, our primary exposure variables were vitamin B-12 plasma concentration and sex. The occurrence of stroke served as the main outcome of interest. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox regression analysis. An interaction analysis was conducted to assess the interaction effect of vitamin B-12 and sex on stroke incidence. RESULTS Cox proportional logistic regression analysis, adjusting for confounders, showed that excessive vitamin B-12 did not significantly alter stroke risk (HR: 1.22, 95% CI: 0.82, 1.71) and revealed no significant sex-based differences in stroke risk (HR: 0.90, 95% CI: 0.75, 1.04). However, interaction analysis indicated that excessive vitamin B-12 was linked to a significant increase in stroke risk in males (HR: 1.81, 95% CI: 1.10, 2.99) but not in females (HR: 1.04, 95% CI: 0.66, 1.60), with statistically significant interaction effect (P < 0.01). CONCLUSIONS Our study demonstrated that although excessive vitamin B-12 alone does not significantly increase stroke risk, it increases risk in males when considering the interaction with sex.
Collapse
Affiliation(s)
- Eujene Jung
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hyun Yi Kook
- Department of Nursing, Nambu University, Gwangju, Republic of Korea
| | - Seok Jin Ryu
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hyun Ho Ryu
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Ho Goon Kim
- Department of Gastroenterology, Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
6
|
Sun HJ, Lu QB, Zhu XX, Ni ZR, Su JB, Fu X, Chen G, Zheng GL, Nie XW, Bian JS. Pharmacology of Hydrogen Sulfide and Its Donors in Cardiometabolic Diseases. Pharmacol Rev 2024; 76:846-895. [PMID: 38866561 DOI: 10.1124/pharmrev.123.000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well known modification intricately associated with the pathogenesis of CMDs. This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies, including multiomics, intestinal microflora analysis, organoid, and single-cell sequencing techniques, are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assess the current literature to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. SIGNIFICANCE STATEMENT: This comprehensive review covers recent developments in H2S biology and pharmacology in cardiometabolic diseases CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Qing-Bo Lu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xue-Xue Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Zhang-Rong Ni
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jia-Bao Su
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guo Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guan-Li Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao-Wei Nie
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jin-Song Bian
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| |
Collapse
|
7
|
Robea MA, Ilie OD, Nicoara MN, Solcan G, Romila LE, Ureche D, Ciobica A. Vitamin B 12 Ameliorates Pesticide-Induced Sociability Impairment in Zebrafish ( Danio rerio): A Prospective Controlled Intervention Study. Animals (Basel) 2024; 14:405. [PMID: 38338046 PMCID: PMC10854844 DOI: 10.3390/ani14030405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Constant exposure to a variety of environmental factors has become increasingly problematic. A variety of illnesses are initiated or aided by the presence of certain perturbing factors. In the case of autism spectrum disorder, the environmental component plays an important part in determining the overall picture. Moreover, the lack of therapies to relieve existing symptoms complicates the fight against this condition. As a result, animal models have been used to make biomedical research easier and more suited for disease investigations. The current study used zebrafish as an animal model to mimic a real-life scenario: acute exposure to an increased dose of pesticides, followed by prospective intervention-based therapy with vitamin B12 (vit. B12). It is known that vit. B12 is involved in brain function nerve tissue, and red blood cell formation. Aside from this, the role of vit. B12 in the redox processes is recognized for its help against free radicals. To investigate the effect of vit. B12, fish were divided into four different groups and exposed to a pesticide mixture (600 μg L-1 fipronil + 600 μg L-1 pyriproxyfen) and 0.24 μg L-1 vit. B12 for 14 days. The impact of the compounds was assessed daily with EthoVision XT 11.5 software for behavioral observations, especially for sociability, quantified by the social interaction test. In addition, at the end of the study, the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA) were measured. The results showed significant improvements in locomotor activity parameters and a positive influence of the vitamin on sociability. Regarding the state of oxidative stress, high activity was found for SOD and GPx in the case of vit. B12, while fish exposed to the mixture of pesticides and vit. B12 had a lower level of MDA. In conclusion, the study provides new data about the effect of vit. B12 in zebrafish, highlighting the potential use of vitamin supplementation to maintain and support the function of the organism.
Collapse
Affiliation(s)
- Madalina Andreea Robea
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania;
| | - Ovidiu Dumitru Ilie
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania;
| | - Mircea Nicusor Nicoara
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania;
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
| | - Gheorghe Solcan
- Internal Medicine Clinic, Faculty of Veterinary Medicine, Ion Ionescu de la Brad Iasi University of Life Sciences, 700489 Iasi, Romania;
| | | | - Dorel Ureche
- Department of Biology, Ecology and Environmental Protection, Faculty of Sciences, University “Vasile Alecsandri“ of Bacau, Calea Marasesti Street, No. 157, 600115 Bacau, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania;
- Academy of Romanian Scientists, 54, Independence Street, Sector 5, 050094 Bucharest, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Teodor Codrescu 2, 700481 Iasi, Romania
| |
Collapse
|
8
|
Heidari H, Lawrence DA. Climate Stressors and Physiological Dysregulations: Mechanistic Connections to Pathologies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 21:28. [PMID: 38248493 PMCID: PMC10815632 DOI: 10.3390/ijerph21010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
This review delves into the complex relationship between environmental factors, their mechanistic cellular and molecular effects, and their significant impact on human health. Climate change is fueled by industrialization and the emission of greenhouse gases and leads to a range of effects, such as the redistribution of disease vectors, higher risks of disease transmission, and shifts in disease patterns. Rising temperatures pose risks to both food supplies and respiratory health. The hypothesis addressed is that environmental stressors including a spectrum of chemical and pathogen exposures as well as physical and psychological influences collectively impact genetics, metabolism, and cellular functions affecting physical and mental health. The objective is to report the mechanistic associations linking environment and health. As environmental stressors intensify, a surge in health conditions, spanning from allergies to neurodegenerative diseases, becomes evident; however, linkage to genetic-altered proteomics is more hidden. Investigations positing that environmental stressors cause mitochondrial dysfunction, metabolic syndrome, and oxidative stress, which affect missense variants and neuro- and immuno-disorders, are reported. These disruptions to homeostasis with dyslipidemia and misfolded and aggregated proteins increase susceptibility to cancers, infections, and autoimmune diseases. Proposed interventions, such as vitamin B supplements and antioxidants, target oxidative stress and may aid mitochondrial respiration and immune balance. The mechanistic interconnections of environmental stressors and disruptions in health need to be unraveled to develop strategies to protect public health.
Collapse
Affiliation(s)
- Hajar Heidari
- Department of Biomedical Sciences, University at Albany School of Public Health, Rensselaer, NY 12144, USA;
| | - David A. Lawrence
- Department of Biomedical Sciences, University at Albany School of Public Health, Rensselaer, NY 12144, USA;
- Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, NY 12144, USA
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| |
Collapse
|
9
|
Hayden MR. Overview and New Insights into the Metabolic Syndrome: Risk Factors and Emerging Variables in the Development of Type 2 Diabetes and Cerebrocardiovascular Disease. Medicina (B Aires) 2023; 59:medicina59030561. [PMID: 36984562 PMCID: PMC10059871 DOI: 10.3390/medicina59030561] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Metabolic syndrome (MetS) is considered a metabolic disorder that has been steadily increasing globally and seems to parallel the increasing prevalence of obesity. It consists of a cluster of risk factors which traditionally includes obesity and hyperlipidemia, hyperinsulinemia, hypertension, and hyperglycemia. These four core risk factors are associated with insulin resistance (IR) and, importantly, the MetS is known to increase the risk for developing cerebrocardiovascular disease and type 2 diabetes mellitus. The MetS had its early origins in IR and syndrome X. It has undergone numerous name changes, with additional risk factors and variables being added over the years; however, it has remained as the MetS worldwide for the past three decades. This overview continues to add novel insights to the MetS and suggests that leptin resistance with hyperleptinemia, aberrant mitochondrial stress and reactive oxygen species (ROS), impaired folate-mediated one-carbon metabolism with hyperhomocysteinemia, vascular stiffening, microalbuminuria, and visceral adipose tissues extracellular vesicle exosomes be added to the list of associated variables. Notably, the role of a dysfunctional and activated endothelium and deficient nitric oxide bioavailability along with a dysfunctional and attenuated endothelial glycocalyx, vascular inflammation, systemic metainflammation, and the important role of ROS and reactive species interactome are discussed. With new insights and knowledge regarding the MetS comes the possibility of new findings through further research.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|
10
|
Alizadeh F, Mirzaie Bavil F, Keyhanmanesh R, Lotfi H, Ghiasi F. Association of pro-inflammatory cytokines, inflammatory proteins with atherosclerosis index in obese male subjects. Horm Mol Biol Clin Investig 2023:hmbci-2022-0022. [PMID: 36592952 DOI: 10.1515/hmbci-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/19/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Investigation the association of pro-inflammatory markers interleukin (IL)-1β and IL- 10 expression, serum levels of C-reactive protein (CRP), cyclooxygenase-2 (COX2), High-density lipoprotein (HDL), Apolipoprotein A1 (ApoA1), and ATP Binding Cassette Subfamily A Member 1 (ABCA1) inflammatory proteins with atherosclerosis index (homocysteine) in normal-weight and obese male subjects. METHODS 59 males including 30 obese (Body mass index (BMI) of ≥30 kg/m2) and 29 normal-weight (BMI of 18.5-24.9 kg/m2) were joined to this study. Plasma levels of IL-1β and IL-10 (pg/mL), CRP (pg/mL), COX-2 (ng/mL), APOA1 (mg/dL), ABCA1 (ng/mL), HDL, Cholesterol, and Triglyceride (TG) (mg/dL), and homocysteine (µmol/L) was measured. Association of these biomarkers with homocysteine was determined. RESULTS Obese subjects had higher serum levels of IL10, IL1β, CRP, COX-2, TG, and cholesterol concentrations (all p<0.05 except IL-10 and cholesterol) and low levels of HDL, APOA1, and ABCA1 (non-significant differences) in comparison to normal-weight group. Homocysteine levels were high in obese men with no significant differences between the two groups. In obese subjects, homocysteine had a significant inverse correlation with APOA1, ABCA1, and HDL, and a strong and moderate positive correlation was found with CRP and TG levels, respectively. CONCLUSIONS High level of homocysteine and its correlation with inflammation proteins and markers in obese subjects appear to be contributed with atherosclerosis development.
Collapse
Affiliation(s)
- Farhad Alizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Mirzaie Bavil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.,Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fariba Ghiasi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Cunnane SC, Swerdlow RH, Inzitari M, Olaso-Gonzalez G, Viña J. Multimodal strategy to rescue the brain in mild cognitive impairment: Ketogenic oral nutrition supplementation with B vitamins and aerobic exercise. Eur J Clin Invest 2022; 52:e13806. [PMID: 35488743 PMCID: PMC9541319 DOI: 10.1111/eci.13806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Stephen C Cunnane
- Research Center on Aging and Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, KUMC Neurodegenerative Disorders Program, University of Kansas School of Medicine, Lawrence, Kansas, USA
| | - Marco Inzitari
- REFiT Barcelona Research Group, Parc Sanitari Pere Virgili and Vall d'Hebrón Institute of Research, Barcelona, Spain.,Department of Health Sciences, Universitat Oberta de Catalonia, Barcelona, Spain
| | - Gloria Olaso-Gonzalez
- Department of Physiology, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - José Viña
- Department of Physiology, Faculty of Medicine, Universitat de València, Valencia, Spain
| |
Collapse
|
12
|
Ge Y, Zadeh M, Mohamadzadeh M. Vitamin B12 Regulates the Transcriptional, Metabolic, and Epigenetic Programing in Human Ileal Epithelial Cells. Nutrients 2022; 14:nu14142825. [PMID: 35889782 PMCID: PMC9321803 DOI: 10.3390/nu14142825] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/22/2022] Open
Abstract
Vitamin B12 (VB12) is a micronutrient that is essential for DNA synthesis and cellular energy production. We recently demonstrated that VB12 oral supplementation coordinates ileal epithelial cells (iECs) and gut microbiota functions to resist pathogen colonization in mice, but it remains unclear whether VB12 directly modulates the cellular homeostasis of iECs derived from humans. Here, we integrated transcriptomic, metabolomic, and epigenomic analyses to identify VB12-dependent molecular and metabolic pathways in human iEC microtissue cultures. RNA sequencing (RNA-seq) revealed that VB12 notably activated genes involved in fatty acid metabolism and epithelial cell proliferation while suppressing inflammatory responses in human iECs. Untargeted metabolite profiling demonstrated that VB12 facilitated the biosynthesis of amino acids and methyl groups, particularly S-adenosylmethionine (SAM), and supported the function of the mitochondrial carnitine shuttle and TCA cycle. Further, genome-wide DNA methylation analysis illuminated a critical role of VB12 in sustaining cellular methylation programs, leading to differential CpG methylation of genes associated with intestinal barrier function and cell proliferation. Together, these findings suggest an essential involvement of VB12 in directing the fatty acid and mitochondrial metabolisms and reconfiguring the epigenome of human iECs to potentially support cellular oxygen utilization and cell proliferation.
Collapse
|
13
|
Ge Y, Zadeh M, Mohamadzadeh M. Vitamin B12 coordinates ileal epithelial cell and microbiota functions to resist Salmonella infection in mice. J Exp Med 2022; 219:e20220057. [PMID: 35674742 PMCID: PMC9184849 DOI: 10.1084/jem.20220057] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
Deprivation of vitamin B12 (VB12) is linked to various diseases, but the underlying mechanisms in disease progression are poorly understood. Using multiomic approaches, we elucidated the responses of ileal epithelial cells (iECs) and gut microbiome to VB12 dietary restriction. Here, VB12 deficiency impaired the transcriptional and metabolic programming of iECs and reduced epithelial mitochondrial respiration and carnitine shuttling during intestinal Salmonella Typhimurium (STm) infection. Fecal microbial and untargeted metabolomic profiling identified marked changes related to VB12 deficiency, including reductions of metabolites potentially activating mitochondrial β-oxidation in iECs and short-chain fatty acids (SCFAs). Depletion of SCFA-producing microbes by streptomycin treatment decreased the VB12-dependent STm protection. Moreover, compromised mitochondrial function of iECs correlated with declined cell capability to utilize oxygen, leading to uncontrolled oxygen-dependent STm expansion in VB12-deficient mice. Our findings uncovered previously unrecognized mechanisms through which VB12 coordinates ileal epithelial mitochondrial homeostasis and gut microbiota to regulate epithelial oxygenation, resulting in the control of aerobic STm infection.
Collapse
Affiliation(s)
- Yong Ge
- Division of Gastroenterology & Nutrition, Department of Medicine, University of Texas Health, San Antonio, TX
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, FL
| | - Mojgan Zadeh
- Division of Gastroenterology & Nutrition, Department of Medicine, University of Texas Health, San Antonio, TX
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, FL
| | - Mansour Mohamadzadeh
- Division of Gastroenterology & Nutrition, Department of Medicine, University of Texas Health, San Antonio, TX
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, FL
| |
Collapse
|
14
|
Piechota W, Krzesiński P, Piotrowicz K, Gielerak G, Kurpaska M, Rączka A, Woźniak-Kosek A. Urine 11-Dehydro-Thromboxane B2 in Aspirin-Naive Males with Metabolic Syndrome. J Clin Med 2022; 11:jcm11123471. [PMID: 35743540 PMCID: PMC9224828 DOI: 10.3390/jcm11123471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
Urine 11-dehydro-thromboxane B2 (11-dehydro-TXB2), an indirect measure of platelet activity, is elevated in cardiovascular diseases and diabetes. The purpose of our study was to determine whether urine 11-dehydro-TXB2 is elevated in aspirin-naive males with metabolic syndrome (MS) and to determine predictors of 11-dehydro-TXB2 levels. The secondary aim was to evaluate whether these MS patients could be potential candidates for the aspirin-mediated prevention of atherosclerotic cardiovascular diseases (ASCVDs). In 82 males with MS (76 hypertensive), anthropometric measures, urine 11-dehydro-TXB2, platelet count, creatinine, glucose, insulin, estimated insulin resistance, lipid parameters, high-sensitivity C-reactive protein (hs-CRP), adiponectin, homocysteine, and ten-year risk of fatal cardiovascular disease (SCORE) were assessed. Urine 11-dehydro-TXB2 levels were elevated (≥2500 pg/mg creatinine) in two-thirds of patients, including 11 high-risk patients (SCORE ≥ 5%). Homocysteine, adiponectin, hs-CRP, waist-to-hip ratio, and total cholesterol were found to be predictors of urine 11-dehydro-TXB2. In conclusion, there is a high incidence of elevated urine 11-dehydro-TXB2 in males with MS, including in some patients who are at a high or very high risk of ASCVDs. 11-dehydro-TXB2 levels are associated with hyperhomocysteinemia, inflammation, fat distribution, hypercholesterolemia, and adiponectin concentrations. Elevated 11-dehydro-TXB2 levels may support the use of personalised aspirin ASCVD prevention in high-risk males with MS. Giuseppe Patti.
Collapse
Affiliation(s)
- Wiesław Piechota
- Department of Laboratory Diagnostics, Military Institute of Medicine, Szaserów Street 128, 04-141 Warsaw, Poland; (W.P.); (A.R.); (A.W.-K.)
| | - Paweł Krzesiński
- Department of Cardiology and Internal Diseases, Military Institute of Medicine, Szaserów Street 128, 04-141 Warsaw, Poland; (K.P.); (G.G.); (M.K.)
- Correspondence: ; Tel.: +48-606-939-390; Fax: +48-228-108-089
| | - Katarzyna Piotrowicz
- Department of Cardiology and Internal Diseases, Military Institute of Medicine, Szaserów Street 128, 04-141 Warsaw, Poland; (K.P.); (G.G.); (M.K.)
| | - Grzegorz Gielerak
- Department of Cardiology and Internal Diseases, Military Institute of Medicine, Szaserów Street 128, 04-141 Warsaw, Poland; (K.P.); (G.G.); (M.K.)
| | - Małgorzata Kurpaska
- Department of Cardiology and Internal Diseases, Military Institute of Medicine, Szaserów Street 128, 04-141 Warsaw, Poland; (K.P.); (G.G.); (M.K.)
| | - Alicja Rączka
- Department of Laboratory Diagnostics, Military Institute of Medicine, Szaserów Street 128, 04-141 Warsaw, Poland; (W.P.); (A.R.); (A.W.-K.)
| | - Agnieszka Woźniak-Kosek
- Department of Laboratory Diagnostics, Military Institute of Medicine, Szaserów Street 128, 04-141 Warsaw, Poland; (W.P.); (A.R.); (A.W.-K.)
| |
Collapse
|
15
|
The Mighty Mitochondria Are Unifying Organelles and Metabolic Hubs in Multiple Organs of Obesity, Insulin Resistance, Metabolic Syndrome, and Type 2 Diabetes: An Observational Ultrastructure Study. Int J Mol Sci 2022; 23:ijms23094820. [PMID: 35563211 PMCID: PMC9101653 DOI: 10.3390/ijms23094820] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/25/2022] Open
Abstract
Mitochondria (Mt) are essential cellular organelles for the production of energy and thermogenesis. Mt also serve a host of functions in addition to energy production, which include cell signaling, metabolism, cell death, and aging. Due to the central role of Mt in metabolism as metabolic hubs, there has been renewed interest in how Mt impact metabolic pathways and multiple pathologies. This review shares multiple observational ultrastructural findings in multiple cells and organs to depict aberrant mitochondrial (aMt) remodeling in pre-clinical rodent models. Further, it is intended to show how remodeling of Mt are associated with obesity, insulin resistance, metabolic syndrome (MetS), and type 2 diabetes mellitus (T2DM). Specifically, Mt remodeling in hypertensive and insulin-resistant lean models (Ren2 rat models), lean mice with streptozotocin-induced diabetes, obesity models including diet-induced obesity, genetic leptin-deficient ob/ob, and leptin receptor-deficient db/db diabetic mice are examined. Indeed, aMt dysfunction and damage have been implicated in multiple pathogenic diseases. Manipulation of Mt such as the induction of Mt biogenesis coupled with improvement of mitophagy machinery may be helpful to remove leaky damaged aMt in order to prevent the complications associated with the generation of superoxide-derived reactive oxygen species and the subsequent reactive species interactome. A better understanding of Mt remodeling may help to unlock many of the mysteries in obesity, insulin resistance, MetS, T2DM, and the associated complications of diabetic end-organ disease.
Collapse
|
16
|
Hu F, Yu S, Li J, Zhou W, Wang T, Huang X, Bao H, Cheng X. Association Between Hyperhomocysteinemia Combined with Metabolic Syndrome and Higher Prevalence of Stroke in Chinese Adults Who Have Elevated Blood Pressure. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022; 28:e934100. [PMID: 35013090 PMCID: PMC8764874 DOI: 10.12659/msm.934100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Hyperhomocysteinemia (HHcy) and metabolic syndrome (MS) are established cardiovascular risk factors of stroke and are frequently associated with hypertension. However, studies on the association between HHcy combined with MS and stroke risk in hypertensive patients were absent. Material/Methods In 14 059 selected participants with elevated blood pressure, we assessed the prevalence of the MS and stroke. We defined HHcy as plasma total homocysteine >15 μmol/L. MS was defined according to the Chinese Diabetes Society (CDS) criterion. Multivariable analysis was used to examine the association of HHcy or (and) MS with stroke risk in different models. Results The prevalence rates of HHcy and MS were 49.96% and 42.21%, respectively. Patients with stroke had higher plasma total homocysteine levels and a higher prevalence of MS (P<0.001). Multivariable analyses indicated that HHcy and MS are independently associated with higher prevalence of stroke (adjusted-odds ratio (OR): 1.36, 95% CI 1.17 to 1.58, P<0.001; adjusted-OR: 1.68, 95% CI 1.44 to 1.96, P<0.001, respectively). Those with combined HHcy and MS had higher odds of stroke than those with isolated HHcy or MS (adjusted-OR: 1.78, 95% CI 1.47 to 2.15, P<0.001; adjusted-OR: 1.39, 95% CI 1.13 to 1.70, P=0.002, respectively). Conclusions HHcy combined with MS was associated with higher prevalence of stroke in Chinese adults with elevated blood pressure.
Collapse
Affiliation(s)
- Feng Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland).,Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China (mainland)
| | - Shichao Yu
- Department of General Practice Medicine, Tuo Chuan Town Health Center, Wuyuan, Jiangxi, China (mainland)
| | - Juan Li
- The College of Pharmacy, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Wei Zhou
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China (mainland).,Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Tao Wang
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China (mainland).,Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Xiao Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland).,Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China (mainland).,Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Huihui Bao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland).,Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China (mainland).,Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland).,Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China (mainland).,Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
17
|
Deng C, Wang S, Niu Z, Ye Y, Gao L. Newly established LC-MS/MS method for measurement of plasma BH4 as a predictive biomarker for kidney injury in diabetes. Free Radic Biol Med 2022; 178:1-6. [PMID: 34808334 DOI: 10.1016/j.freeradbiomed.2021.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The clinical research on BH4 is limited because of the difficulties on its measurement. In this study, we used our own established LC-MS/MS method to examine the plasma BH4 levels in diabetes to determine whether it could be used as a biomarker for the prediction of kidney injury in those patients. METHODS Hospitalized diabetes patients in Renmin Hospital of Wuhan University from Jan to Aug 2021 were recruited. To assess the association between plasma BH4 with ACR or eGFR in diabetes, a total of 142 patients with type 2 diabetes (T2DM) were enrolled. They were divided into three groups by albuminuria levels: normoalbuminuria (n = 68), microalbuminuria (n = 48), and macroalbuminuria (n = 26) according to ACR; or into two groups by eGFR: eGFR≥90 or eGFR<90 ml/min for correlation and logistic regression analysis. Plasma BH4 level was measured by LC-MS/MS along with other biochemical indices. RESULTS Plasma BH4 concentrations were decreased as ACR progressed. BH4 (r = -0.55, P < 0.001) and 2h C-Peptide (CP-2h) (r = -0.248, P = 0.003) levels were negatively correlated with ACR. Moreover, multivariable logistic regression analysis showed BH4 concentrations (B = -0.468, P < 0.001) and CP-2h (B = -0.257, P = 0.028) were independently associated with ACR progression. ROC curve showed that BH4 level has a predictive value on ACR (95%CI 0.686-0.841, sensitivity 69.1%, specificity 73%). Moreover, in diabetes patients with eGFR≥90 ml/min, plasma BH4 level (P = 0.008) is higher than those in diabetes with eGFR<90 ml/min and BH4 was remained independently associated with eGFR after multivariable logistic regression analysis (B = -0.193, P = 0.048). CONCLUSION Our established LC-MS/MS method could be used on human plasma BH4 measurements and our data suggested that BH4 level can be used as a biomarker for kidney injury in diabetes indicated by its association with ACR progression and early renal function decline.
Collapse
Affiliation(s)
- Chunxia Deng
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, China
| | - Shuo Wang
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, China
| | - Zhili Niu
- Department of Clinic Laboratory, Renmin Hospital of Wuhan University, China
| | - Yahong Ye
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, China
| | - Ling Gao
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, China.
| |
Collapse
|
18
|
Hayden MR, Tyagi SC. Impaired Folate-Mediated One-Carbon Metabolism in Type 2 Diabetes, Late-Onset Alzheimer's Disease and Long COVID. MEDICINA (KAUNAS, LITHUANIA) 2021; 58:16. [PMID: 35056324 PMCID: PMC8779539 DOI: 10.3390/medicina58010016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022]
Abstract
Impaired folate-mediated one-carbon metabolism (FOCM) is associated with many pathologies and developmental abnormalities. FOCM is a metabolic network of interdependent biosynthetic pathways that is known to be compartmentalized in the cytoplasm, mitochondria and nucleus. Currently, the biochemical mechanisms and causal metabolic pathways responsible for the initiation and/or progression of folate-associated pathologies have yet to be fully established. This review specifically examines the role of impaired FOCM in type 2 diabetes mellitus, Alzheimer's disease and the emerging Long COVID/post-acute sequelae of SARS-CoV-2 (PASC). Importantly, elevated homocysteine may be considered a biomarker for impaired FOCM, which is known to result in increased oxidative-redox stress. Therefore, the incorporation of hyperhomocysteinemia will be discussed in relation to impaired FOCM in each of the previously listed clinical diseases. This review is intended to fill gaps in knowledge associated with these clinical diseases and impaired FOCM. Additionally, some of the therapeutics will be discussed at this early time point in studying impaired FOCM in each of the above clinical disease states. It is hoped that this review will allow the reader to better understand the role of FOCM in the development and treatment of clinical disease states that may be associated with impaired FOCM and how to restore a more normal functional role for FOCM through improved nutrition and/or restoring the essential water-soluble B vitamins through oral supplementation.
Collapse
Affiliation(s)
- Melvin R. Hayden
- Departments of Internal Medicine, Endocrinology Diabetes and Metabolism Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Suresh C. Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| |
Collapse
|
19
|
The outcomes of acute myocardial infarction patients comorbidity with hypertension and hyperhomocysteinemia. Sci Rep 2021; 11:22936. [PMID: 34824345 PMCID: PMC8617252 DOI: 10.1038/s41598-021-02340-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022] Open
Abstract
This study investigated the outcomes and major adverse cardiovascular events (MACEs) incurred by acute myocardial infarction (AMI) patients comorbiding with hypertension and hyperhomocysteinemia (HHcy) during hospitalization and 1-year follow-up. 648 consecutive AMI patients were divided into four categories: (1) hypertension with Hcy ≥ 15 µmol/L; (2) hypertension with Hcy < 15 µmol/L; (3) no-hypertension with Hcy ≥ 15 µmol/L; (4) no-hypertension with Hcy < 15 µmol/L. Information taken from these case files included gender, past medical history, vital signs, laboratory examination, electrocardiogram, coronary angiography, cardiac ultrasound, and medicine treatment. The primary endpoints were duration of coronary care units (CCU) stay, duration of in-hospital stay, and MACEs during follow-up. Our data show that hypertension and HHcy have a synergistic effect in AMI patients, AMI comorbiding with hypertension and HHcy patients had more severe multi-coronary artery disease and more frequent non-culprit coronary lesions complete clogging, had a higher prevalence of pro-brain natriuretic peptide, and significant decreases in the left ventricular ejection fraction. These patients had significant increases in the duration of CCU stay and in-hospital stay, had significant increase in the rate of MACEs, had significant decreases in the survival rate during follow-up.
Collapse
|
20
|
Nieraad H, Pannwitz N, de Bruin N, Geisslinger G, Till U. Hyperhomocysteinemia: Metabolic Role and Animal Studies with a Focus on Cognitive Performance and Decline-A Review. Biomolecules 2021; 11:1546. [PMID: 34680179 PMCID: PMC8533891 DOI: 10.3390/biom11101546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022] Open
Abstract
Disturbances in the one-carbon metabolism are often indicated by altered levels of the endogenous amino acid homocysteine (HCys), which is additionally discussed to causally contribute to diverse pathologies. In the first part of the present review, we profoundly and critically discuss the metabolic role and pathomechanisms of HCys, as well as its potential impact on different human disorders. The use of adequate animal models can aid in unravelling the complex pathological processes underlying the role of hyperhomocysteinemia (HHCys). Therefore, in the second part, we systematically searched PubMed/Medline for animal studies regarding HHCys and focused on the potential impact on cognitive performance and decline. The majority of reviewed studies reported a significant effect of HHCys on the investigated behavioral outcomes. Despite of persistent controversial discussions about equivocal findings, especially in clinical studies, the present evaluation of preclinical evidence indicates a causal link between HHCys and cognition-related- especially dementia-like disorders, and points out the further urge for large-scale, well-designed clinical studies in order to elucidate the normalization of HCys levels as a potential preventative or therapeutic approach in human pathologies.
Collapse
Affiliation(s)
- Hendrik Nieraad
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.P.); (N.d.B.); (G.G.)
| | - Nina Pannwitz
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.P.); (N.d.B.); (G.G.)
| | - Natasja de Bruin
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.P.); (N.d.B.); (G.G.)
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.P.); (N.d.B.); (G.G.)
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Uwe Till
- Former Institute of Pathobiochemistry, Friedrich-Schiller-University Jena, Nonnenplan 2, 07743 Jena, Germany;
| |
Collapse
|
21
|
Koca SB, Akdogan M, Koca S. Evaluation of early retinal vascular changes by optical coherence tomography angiography in children with type 1 diabetes mellitus without diabetic retinopathy. Int Ophthalmol 2021; 42:423-433. [PMID: 34625889 DOI: 10.1007/s10792-021-02059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To evaluate macular and peripapillary vascular changes by optical coherence tomography angiography (OCTA) in children with type 1 diabetes mellitus (T1DM) without diabetic retinopathy (DR). METHODS This study included 46 patients with T1DM and 46 age-sex matched healthy subjects. All participants were evaluated in terms of macular and optic disk parameters by using AngioVue. Foveal avascular zone (FAZ) area, macular and optic disk vessel density (VD) were analyzed. The correlation of these parameters with metabolic factors such as disease duration, mean hemoglobin A1c (HbA1c), insulin-like growth factor 1 (IGF-1) standard deviation score (SDS), homocysteine (Hcy) level, body mass index (BMI) SDS and daily insulin dose was also investigated in T1DM group. RESULTS No significant difference was found in FAZ area and optic disk radial peripapillary capillary (RPC) VD comparing diabetic and control groups. In all macular regions, VD was significantly lower in T1DM versus control group both in superficial capillary plexus (SCP) and deep capillary plexus (DCP). None of the metabolic parameters was correlated with FAZ area and optic disk RPC-VD. Vascular density in SCP was negatively correlated with mean HbA1c and positively correlated with IGF-1 SDS. Homocysteine level was negatively correlated with DCP-VD in all areas. CONCLUSION In children with T1DM without clinically apparent DR, VD in SCP and DCP was decreased and OCTA is a valuable imaging technique for detecting early vascular changes. The metabolic parameters such as mean HbA1c, IGF-1 SDS and Hcy affect the macular VD in diabetic children. TRIAL REGISTRATION NUMBER 2011-KAEK-2, 2021/4, Trial registration date: 02.04.2021.
Collapse
Affiliation(s)
- Serkan Bilge Koca
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Muberra Akdogan
- Faculty of Medicine, Department of Ophthalmology, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Semra Koca
- Faculty of Medicine, Department of Ophthalmology, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey. .,, 1444. Sokak Kandilli Konakları D Blok 2/8, Afyonkarahisar, Türkiye.
| |
Collapse
|
22
|
Rukavishnikov GV, Kasyanov ED, Zhilyaeva TV, Mazo GE. [Schizophrenia and cardiometabolic disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:132-138. [PMID: 34283543 DOI: 10.17116/jnevro2021121061132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this review is to analyze the basic biological mechanisms of comorbidity of schizophrenia and metabolic, cardiovascular diseases, which are not directly associated with external risk factors. The study of the general pathophysiological mechanisms of schizophrenia and metabolic disorders can provide a significant basis not only for the fundamentally novel therapeutic, preventive and diagnostic measures, but also for a better understanding of the etiopathogenesis of these diseases. It seems likely that schizophrenia represents a heterogeneous group with a varying genetic basis for both mental symptoms and neuroendocrine, inflammatory processes that form concomitant somatic disorders. Thus, the new integrated approaches to the study of this problem with the latest methods of genetic and molecular research are relevant.
Collapse
Affiliation(s)
- G V Rukavishnikov
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - E D Kasyanov
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - T V Zhilyaeva
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - G E Mazo
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| |
Collapse
|
23
|
Tawfik A, Elsherbiny NM, Zaidi Y, Rajpurohit P. Homocysteine and Age-Related Central Nervous System Diseases: Role of Inflammation. Int J Mol Sci 2021; 22:ijms22126259. [PMID: 34200792 PMCID: PMC8230490 DOI: 10.3390/ijms22126259] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is remarkably common among the aging population. The relation between HHcy and the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and eye diseases, and age-related macular degeneration (AMD) and diabetic retinopathy (DR) in elderly people, has been established. Disruption of the blood barrier function of the brain and retina is one of the most important underlying mechanisms associated with HHcy-induced neurodegenerative and retinal disorders. Impairment of the barrier function triggers inflammatory events that worsen disease pathology. Studies have shown that AD patients also suffer from visual impairments. As an extension of the central nervous system, the retina has been suggested as a prominent site of AD pathology. This review highlights inflammation as a possible underlying mechanism of HHcy-induced barrier dysfunction and neurovascular injury in aging diseases accompanied by HHcy, focusing on AD.
Collapse
Affiliation(s)
- Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia (MCG), Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, MCG, Augusta University, Augusta, GA 30912, USA
- Eye Research Institue, Oakland University, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-706-721-2582; Fax: +1-706-721-9415
| | - Nehal M. Elsherbiny
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yusra Zaidi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
| | - Pragya Rajpurohit
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
24
|
Effects of Folic Acid Supplementation on Oxidative Stress Markers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Antioxidants (Basel) 2021; 10:antiox10060871. [PMID: 34071500 PMCID: PMC8230016 DOI: 10.3390/antiox10060871] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: This systematic review and meta-analysis aimed to assess the effects of folic acid supplementation on oxidative stress markers. (2) Methods: Online database including PubMed, Scopus, Web of Science, and Cochrane were searched up to January 2021, to retrieve randomized controlled trials (RCTs) which examined the effect of folic acid supplementation on markers of oxidative stress. Meta-analyses were carried out using a random-effects model. I2 index was used to evaluate the heterogeneity of RCTs. (3) Results: Among the initial 2322 studies that were identified from electronic databases search, 13 studies involving 1013 participants were eligible. Pooled effect size from 13 studies indicated that folic acid supplementation elicits a significant rise in serum concentrations of glutathione (GSH) (WMD: 219.01 umol/L, 95% CI 59.30 to 378.71, p = 0.007) and total antioxidant capacity (TAC) (WMD: 91.70 umol/L, 95% CI 40.52 to 142.88, p < 0.001) but has no effect on serum concentrations of nitric oxide (NO) (WMD: 2.61 umol/L, 95% CI −3.48 to 8.72, p = 0.400). In addition, folic acid supplementation significantly reduced serum concentrations of malondialdehyde (MDA) (WMD: −0.13 umol/L, 95% CI −0.24 to −0.02, p = 0.020). (4) Conclusions: This meta-analysis study suggests that folic acid supplementation may significantly improve markers within the antioxidative defense system by increasing serum concentrations of GSH and TAC and decreasing serum concentrations of MDA.
Collapse
|
25
|
Moaddel R, Ubaida‐Mohien C, Tanaka T, Lyashkov A, Basisty N, Schilling B, Semba RD, Franceschi C, Gorospe M, Ferrucci L. Proteomics in aging research: A roadmap to clinical, translational research. Aging Cell 2021; 20:e13325. [PMID: 33730416 PMCID: PMC8045948 DOI: 10.1111/acel.13325] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/31/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
The identification of plasma proteins that systematically change with age and, independent of chronological age, predict accelerated decline of health is an expanding area of research. Circulating proteins are ideal translational "omics" since they are final effectors of physiological pathways and because physicians are accustomed to use information of plasma proteins as biomarkers for diagnosis, prognosis, and tracking the effectiveness of treatments. Recent technological advancements, including mass spectrometry (MS)-based proteomics, multiplexed proteomic assay using modified aptamers (SOMAscan), and Proximity Extension Assay (PEA, O-Link), have allowed for the assessment of thousands of proteins in plasma or other biological matrices, which are potentially translatable into new clinical biomarkers and provide new clues about the mechanisms by which aging is associated with health deterioration and functional decline. We carried out a detailed literature search for proteomic studies performed in different matrices (plasma, serum, urine, saliva, tissues) and species using multiple platforms. Herein, we identified 232 proteins that were age-associated across studies. Enrichment analysis of the 232 age-associated proteins revealed metabolic pathways previously connected with biological aging both in animal models and in humans, most remarkably insulin-like growth factor (IGF) signaling, mitogen-activated protein kinases (MAPK), hypoxia-inducible factor 1 (HIF1), cytokine signaling, Forkhead Box O (FOXO) metabolic pathways, folate metabolism, advance glycation end products (AGE), and receptor AGE (RAGE) metabolic pathway. Information on these age-relevant proteins, likely expanded and validated in longitudinal studies and examined in mechanistic studies, will be essential for patient stratification and the development of new treatments aimed at improving health expectancy.
Collapse
Affiliation(s)
- Ruin Moaddel
- Biomedical Research Centre National Institute on Aging, NIH Baltimore MD USA
| | | | - Toshiko Tanaka
- Biomedical Research Centre National Institute on Aging, NIH Baltimore MD USA
| | - Alexey Lyashkov
- Biomedical Research Centre National Institute on Aging, NIH Baltimore MD USA
| | | | | | - Richard D Semba
- Wilmer Eye Institute Johns Hopkins University School of Medicine Baltimore MD USA
| | - Claudio Franceschi
- University of Bologna and IRCCS Institute of Neurological Sciences Bologna Italy
| | - Myriam Gorospe
- Biomedical Research Centre National Institute on Aging, NIH Baltimore MD USA
| | - Luigi Ferrucci
- Biomedical Research Centre National Institute on Aging, NIH Baltimore MD USA
| |
Collapse
|
26
|
Kanasaki K, Kumagai A. The impact of micronutrient deficiency on pregnancy complications and development origin of health and disease. J Obstet Gynaecol Res 2021; 47:1965-1972. [PMID: 33783077 DOI: 10.1111/jog.14770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 01/22/2023]
Abstract
Due to the spread of the western style diet, which is characterized by high intake of processed food, micronutrients (vitamins and minerals) deficiency is increasing in the Japanese population of all ages and genders. During pregnancy, the elevated demand for micronutrients put pregnant women at even higher risk of micronutrients deficiency. Some micronutrients are relatively famous such that women with reproductive age are recommended to take folic acid supplementation for the prevention of neural tube defect. However, it is not generally known that folate is also important for fetal growth throughout the pregnancy course and for prevention of pregnancy complications, and that pregnant women should continue to take supplementation during pregnancy and lactation. The types of micronutrients and the duration of supplementation are both important factors to maintain normal pregnancies. This review focused on four micronutrients that are commonly deficient in Japanese pregnant women, folate, vitamin B12, vitamin D, calcium, and magnesium. The detrimental effects of homocysteine accumulation associated with the above micronutrient defects and its link to catechol-o-methyltransferase insufficiency are described. We also discussed possible molecular mechanisms of pregnancy complications and the development origin of health and disease (DOHaD) regarding micronutrient deficiencies from the point of view of one carbon metabolism.
Collapse
Affiliation(s)
- Keizo Kanasaki
- Department of Internal Medicine, Shimane University Faculty of Medicine, Izumo, Shimane, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Asako Kumagai
- Department of Internal Medicine, Shimane University Faculty of Medicine, Izumo, Shimane, Japan.,Department of Obstetrics and Gynecology, Graduate school of Juntendo University, Tokyo, Japan
| |
Collapse
|
27
|
Semennov IV, Pyatoikina AS, Zagryazhskaya YS, Rukavishnikov GV, Kas’yanov ED, Zhilyaeva TV, Blagonravova AS, Mazo GE. Biochemical Markers of Folate Metabolism Disorders in Schizophrenia in the Russian Population. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Jeremic JN, Jakovljevic VL, Zivkovic VI, Srejovic IM, Bradic JV, Milosavljevic IM, Mitrovic SL, Jovicic NU, Bolevich SB, Svistunov AA, Tyagi SC, Jeremic NS. Garlic Derived Diallyl Trisulfide in Experimental Metabolic Syndrome: Metabolic Effects and Cardioprotective Role. Int J Mol Sci 2020; 21:ijms21239100. [PMID: 33265949 PMCID: PMC7730157 DOI: 10.3390/ijms21239100] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 01/03/2023] Open
Abstract
This study aimed to examine the effects of diallyl trisulfide (DATS), the most potent polysulfide derived from garlic, on metabolic syndrome and myocardial function in rats with metabolic syndrome (MetS). For that purpose, we used 36 male Wistar albino rats divided into control rats, rats with MetS and MetS rats treated with 40 mg/kg of DATS every second day for 3 weeks. In the first part, we studied the impact of DATS on MetS control and found that DATS significantly raised H2S, decreased homocysteine and glucose levels and enhanced lipid and antioxidative, while reducing prooxidative parameters. Additionally, this polysulfide improved cardiac function. In the second part, we investigated the impact of DATS on ex vivo induced ischemia/reperfusion (I/R) heart injury and found that DATS consumption significantly improved cardiodynamic parameters and prevented oxidative and histo-architectural variation in the heart. In addition, DATS significantly increased relative gene expression of eNOS, SOD-1 and -2, Bcl-2 and decreased relative gene expression of NF-κB, IL-17A, Bax, and caspases-3 and -9. Taken together, the data show that DATS can effectively mitigate MetS and have protective effects against ex vivo induced myocardial I/R injury in MetS rat.
Collapse
Affiliation(s)
- Jovana N. Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (J.N.J.); (J.V.B.); (I.M.M.)
| | - Vladimir Lj. Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (V.L.J.); (V.I.Z.); (I.M.S.)
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8, 119991 Moscow, Russia;
| | - Vladimir I. Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (V.L.J.); (V.I.Z.); (I.M.S.)
| | - Ivan M. Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (V.L.J.); (V.I.Z.); (I.M.S.)
| | - Jovana V. Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (J.N.J.); (J.V.B.); (I.M.M.)
| | - Isidora M. Milosavljevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (J.N.J.); (J.V.B.); (I.M.M.)
| | - Slobodanka Lj. Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia;
| | - Nemanja U. Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia;
| | - Sergey B. Bolevich
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8, 119991 Moscow, Russia;
| | - Andrey A. Svistunov
- Research Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8-2, 119991 Moscow, Russia;
| | - Suresh C. Tyagi
- Department of Physiology, School of Medicine, University of Louisville, 500 S Preston Street, Louisville, KY 40202, USA;
| | - Nevena S. Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (J.N.J.); (J.V.B.); (I.M.M.)
- Department of Physiology, School of Medicine, University of Louisville, 500 S Preston Street, Louisville, KY 40202, USA;
- Correspondence: ; Tel.: +381-64-7019794
| |
Collapse
|
29
|
De Vincentis A, Mancina RM, Pihlajamäki J, Männistö V, Petta S, Dongiovanni P, Fracanzani AL, Valenti L, Tavaglione F, Romeo S, Vespasiani-Gentilucci U. Genetic variants in the MTHFR are not associated with fatty liver disease. Liver Int 2020; 40:1934-1940. [PMID: 32460399 DOI: 10.1111/liv.14543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
The common missense sequence variants of methylenetetrahydrofolate reductase (MTHFR), rs1801131 (c.A1298C) and rs1801133 (c.C677T), favour the development of hyperhomocysteinemia and diminished DNA methylation. Previous studies, carried out in small series and with suboptimal characterization of the hepatic phenotype, tested the association of these genetic variants with fatty liver disease (FLD), with conflicting results. Here, we assessed the association of rs1801131 and rs1801133 with hepatic phenotype in the Liver Biopsy Cross-Sectional Cohort, a large cohort (n=1375 from Italy and 411 from Finland) of European individuals with suspect FLD associated with dysmetabolism. A total of 1786 subjects were analysed by ordinal regression analyses. The rs1801131 and the rs1801133 variants were not associated with steatosis, inflammation, ballooning or fibrosis. The present study suggests that changes in folate and methionine metabolism resulting from these 2 variants are not associated with a clinically significant impact on FLD in Europeans.
Collapse
Affiliation(s)
- Antonio De Vincentis
- Department of Internal Medicine and Geriatrics, University Campus Bio-Medico of Rome, Rome, Italy
| | | | - Jussi Pihlajamäki
- Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland.,Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Salvatore Petta
- Department of Gastroenterology, Università di Palermo, Palermo, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Policlinico Milano, Milan, Italy
| | - Anna Ludovica Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Policlinico Milano, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,Translational Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Tavaglione
- Department of Internal Medicine and Geriatrics, University Campus Bio-Medico of Rome, Rome, Italy.,Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.,Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy.,Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | |
Collapse
|
30
|
Jones P, Lucock M, Martin C, Thota R, Garg M, Yates Z, Scarlett CJ, Veysey M, Beckett E. Independent and Interactive Influences of Environmental UVR, Vitamin D Levels, and Folate Variant MTHFD1-rs2236225 on Homocysteine Levels. Nutrients 2020; 12:E1455. [PMID: 32443475 PMCID: PMC7284830 DOI: 10.3390/nu12051455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Elevated homocysteine (Hcy) levels are a risk factor for vascular diseases. Recently, increases in ultraviolet radiation (UVR) have been linked to decreased Hcy levels. This relationship may be mediated by the status of UVR-responsive vitamins, vitamin D and folate, and/or genetic variants influencing their levels; however, this has yet to be examined. Therefore, the independent and interactive influences of environmental UVR, vitamin D and folate levels and related genetic variants on Hcy levels were examined in an elderly Australian cohort (n = 619). Red blood cell folate, 25-hydroxyvitamin D (25(OH)D), and plasma Hcy levels were determined, and genotyping for 21 folate and vitamin D-related variants was performed. Erythemal dose rate accumulated over six-weeks (6W-EDR) and four-months (4M-EDR) prior to clinics were calculated as a measure of environmental UVR. Multivariate analyses found interactions between 6W-EDR and 25(OH)D levels (pinteraction = 0.002), and 4M-EDR and MTHFD1-rs2236225 (pinteraction = 0.006) in predicting Hcy levels. The association between 6W-EDR and Hcy levels was found only in subjects within lower 25(OH)D quartiles (<33.26 ng/mL), with the association between 4M-EDR and Hcy occurring only in subjects carrying the MTHFD1-rs2236225 variant. 4M-EDR, 6W-EDR, and MTHFD1-rs2236225 were also independent predictors of Hcy. Findings highlight nutrient-environment and gene-environment interactions that could influence the risk of Hcy-related outcomes.
Collapse
Affiliation(s)
- Patrice Jones
- School of Environmental & Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia; (M.L.); (C.M.); (C.J.S.); (E.B.)
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Mark Lucock
- School of Environmental & Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia; (M.L.); (C.M.); (C.J.S.); (E.B.)
| | - Charlotte Martin
- School of Environmental & Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia; (M.L.); (C.M.); (C.J.S.); (E.B.)
| | - Rohith Thota
- Nutraceuticals Research Group, University of Newcastle, Callaghan, NSW 2308, Australia; (R.T.); (M.G.)
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Manohar Garg
- Nutraceuticals Research Group, University of Newcastle, Callaghan, NSW 2308, Australia; (R.T.); (M.G.)
| | - Zoe Yates
- Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Christopher J. Scarlett
- School of Environmental & Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia; (M.L.); (C.M.); (C.J.S.); (E.B.)
| | - Martin Veysey
- Hull-York Medical School, University of Hull, Hull YO10 5DD, UK;
| | - Emma Beckett
- School of Environmental & Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia; (M.L.); (C.M.); (C.J.S.); (E.B.)
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
31
|
Serum homocysteine levels and their association with clinical characteristics of inflammatory arthritis. Clin Rheumatol 2020; 39:3295-3302. [PMID: 32377996 DOI: 10.1007/s10067-020-05093-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/18/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The aim of our study was to explore the serum levels of homocysteine (Hcy) and its association with clinical characteristics in patients with different types of inflammatory arthritis. METHODS A total of 242 patients diagnosed with inflammatory arthritis (which included rheumatoid arthritis (RA), ankylosing spondylitis (AS), and gout), 49 with osteoarthritis (OA), and 36 with hyperuricaemia (HUA) and 81 healthy controls (HCs) were enrolled for comparisons. RESULTS The serum Hcy levels of patients with RA, AS, and OA were comparable with those of the HC group (P > 0.05). However, the serum level of Hcy was significantly higher in patients with gout than in HCs (18.75 ± 9.98 vs. 14.20 ± 6.22 μmol/L, P = 0.007). In addition, we found that the serum Hcy level was much higher in RA patients who received methotrexate (MTX) therapy without folic acid supplementation than in those who received MTX with folic acid supplementation (13.39 ± 4.80 vs. 9.41 ± 2.04 μmol/L, P = 0.001). Furthermore, there was a positive correlation between uric acid and Hcy in patients without uric acid-lowering treatment (r = 0.537, P = 0.002), but the correlation was eliminated after adjusting uric acid-lowering treatment (r = 0.139, P = 0.393). Finally, consistent with the above findings, hyperhomocysteinaemia (HHcy) was more common in gout patients (P < 0.05). CONCLUSION Screening for HHcy in patients with gout and RA, especially RA patients treated with MTX, might be necessary, and patients with HHcy might benefit from earlier supplementation with folic acid. Key Points • Serum homocysteine (Hcy) was elevated and the rate of hyperhomocysteinaemia (HHcy) was significantly higher in gout. • Rheumatoid arthritis (RA) patients who received methotrexate (MTX) treatment without folic acid supplementation showed higher serum Hcy than those who received MTX treatment with folic acid supplementation. • The serum Hcy level was positively correlated with age in only RA patients. • Serum Hcy was correlated with uric acid in gout patients, but the correlation was eliminated after adjusting uric acid-lowering treatment.
Collapse
|
32
|
Mohammad G, Kowluru RA. Homocysteine Disrupts Balance between MMP-9 and Its Tissue Inhibitor in Diabetic Retinopathy: The Role of DNA Methylation. Int J Mol Sci 2020; 21:E1771. [PMID: 32150828 PMCID: PMC7084335 DOI: 10.3390/ijms21051771] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
High homocysteine is routinely observed in diabetic patients, and this non-protein amino acid is considered as an independent risk factor for diabetic retinopathy. Homocysteine biosynthesis from methionine forms S-adenosyl methionine (SAM), which is a major methyl donor critical in DNA methylation. Hyperhomocysteinemia is implicated in increased oxidative stress and activation of MMP-9, and in diabetic retinopathy, the activation of MMP-9 facilitates capillary cell apoptosis. Our aim was to investigate the mechanism by which homocysteine activates MMP-9 in diabetic retinopathy. Human retinal endothelial cells, incubated with/without 100 μM homocysteine, were analyzed for MMP-9 and its tissue inhibitor Timp1 expressions and interactions, and ROS levels. Timp1 and MMP-9 promoters were analyzed for methylated and hydroxymethylated cytosine levels (5mC and 5hmC respectively) by the DNA capture method, and DNA- methylating (Dnmt1) and hydroxymethylating enzymes (Tet2) binding by chromatin immunoprecipitation. The results were confirmed in retinal microvessels from diabetic rats receiving homocysteine. Homocysteine supplementation exacerbated hyperglycaemia-induced MMP-9 and ROS levels and decreased Timp1 and its interactions with MMP-9. Homocysteine also aggravated Dnmts and Tets activation, increased 5mC at Timp1 promoter and 5hmC at MMP-9 promoter, and suppressed Timp1 transcription and activated MMP-9 transcription. Similar results were obtained from retinal microvessels from diabetic rats receiving homocysteine. Thus, hyperhomocysteinemia in diabetes activates MMP-9 functionally by reducing Timp1-MMP-9 interactions and transcriptionally by altering DNA methylation-hydroxymethylation of its promoter. The regulation of homocysteine could prevent/slow down the development of retinopathy and prevent their vision loss in diabetic patients.
Collapse
Affiliation(s)
| | - Renu A. Kowluru
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48202, USA;
| |
Collapse
|
33
|
Environmental UVR Levels and Skin Pigmentation Gene Variants Associated with Folate and Homocysteine Levels in an Elderly Cohort. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051545. [PMID: 32121219 PMCID: PMC7084217 DOI: 10.3390/ijerph17051545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022]
Abstract
Ultraviolet radiation (UVR) is a ubiquitous exposure which may contribute to decreased folate levels. Skin pigmentation mediates the biological effect of UVR exposure, but its relationship to folate levels is unexamined. Interactions may exist between UVR and pigmentation genes in determining folate status, which may, in turn, impact homocysteine levels, a potential risk factor for multiple chronic diseases. Therefore, independent and interactive influences of environmental UVR and genetic variants related to skin pigmentation (MC1R-rs1805007, IRF4-rs12203592 and HERC2-rs12913832) on folate (red blood cell (RBC) and serum) and homocysteine levels were examined in an elderly Australian cohort (n = 599). Genotypes were assessed by RT/RFLP-PCR, and UVR exposures were assessed as the accumulated erythemal dose rate accumulated over 4 months (4M-EDR). Multivariate analysis found significant negative associations between 4M-EDR and RBC folate (p < 0.001, β = −0.19), serum folate (p = 0.045, β = −0.08) and homocysteine levels (p < 0.001, β = −0.28). Significant associations between MC1R-rs1805007 and serum folate levels (p = 0.020), and IRF4-rs12203592 and homocysteine levels (p = 0.026) occurred but did not remain significant following corrections with confounders. No interactions between 4M-EDR and pigmentation variants in predicting folate/homocysteine levels were found. UVR levels and skin pigmentation-related variants are potential determinants of folate and homocysteine status, although, associations are mixed and complex, with further studies warranted.
Collapse
|
34
|
Ebaid H, Bashandy SAE, Abdel-Mageed AM, Al-Tamimi J, Hassan I, Alhazza IM. Folic acid and melatonin mitigate diabetic nephropathy in rats via inhibition of oxidative stress. Nutr Metab (Lond) 2020; 17:6. [PMID: 31956332 PMCID: PMC6961249 DOI: 10.1186/s12986-019-0419-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/20/2019] [Indexed: 12/30/2022] Open
Abstract
Background Diabetes mellitus is a global epidemic leads to multiple serious health complications, including nephropathy. Diabetic nephropathy is a serious kidney-related complication of type 1 or 2 diabetes that is prevalent in almost 40% of the people with diabetes. We examined whether folic acid and melatonin can reduce progression of nephropathy in rats of type 1 diabetes mellitus by controlling the level of oxidative stress, glucose, lipids, and cytokines. Methods Forty-two male albino rats were distributed into six groups, (n = 7 per group). Five of the groups were induced with diabetes by a single intraperitoneal injection of freshly prepared streptozotocin at a dose of 50 mg/kg body weight. After the induction of diabetes, the rats were treated with folic acid (100 mg/kg) and melatonin (10 mg/kg) separately and in combination daily for 6 weeks, whereas, the other diabetic group was treated with glibenclamide (5 mg/kg). One of the diabetic groups served as a positive control. One-way ANOVA was used to compare those five subfields ability followed by LSD multiple comparisons. Results The data indicated that diabetes significantly altered the body weight, lipids and kidney function. Diabetic rats exhibited a significant increase in plasma levels of urea, uric acid, creatinine, sodium, tumor necrosis factor alpha (TNF-α), interleukin-6(IL-6), cholesterol, triglycerides, and low-density lipoprotein (LDL). In contrast, plasma total protein, potassium, high-density lipoprotein (HDL) and interleukin-10 (IL-10) decreased significantly in diabetic rats compared to the control rats. Moreover, levels of renal malondialdehyde (MDA) and nitric oxide (NO) were significantly increased while the levels of renal glutathione(GSH), superoxide dismutase(SOD), and catalase (CAT) were significantly decreased in diabetic rats comparison to those in the control rats. Hence, diabetic rats treated with folic acid and melatonin alone as well as in combination showed improvements with respect to the indices in addition to a significant recovery observed via histopathology when compared to the diabetic group. Conclusions These results revealed that treatment with folic acid in combination with melatonin in diabetic rats was more effective than treatment with either of folic acid or melatonin alone to alleviate the symptoms of diabetic nephropathy.
Collapse
Affiliation(s)
- Hossam Ebaid
- 1Department of Zoology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Samir A E Bashandy
- 2Department of Pharmacology, Medical Division, National Research Centre, 33 EL Bohouth St., Dokki, Cairo, 12622 Egypt
| | | | - Jameel Al-Tamimi
- 1Department of Zoology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Iftekhar Hassan
- 1Department of Zoology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Ibrahim M Alhazza
- 1Department of Zoology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
35
|
Wang D, Zhao R, Qu YY, Mei XY, Zhang X, Zhou Q, Li Y, Yang SB, Zuo ZG, Chen YM, Lin Y, Xu W, Chen C, Zhao SM, Zhao JY. Colonic Lysine Homocysteinylation Induced by High-Fat Diet Suppresses DNA Damage Repair. Cell Rep 2019; 25:398-412.e6. [PMID: 30304680 DOI: 10.1016/j.celrep.2018.09.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/15/2018] [Accepted: 09/07/2018] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) onset is profoundly affected by Western diet. Here, we report that high-fat (HF) diet-induced, organ-specific colonic lysine homocysteinylation (K-Hcy) increase might promote CRC onset by impeding DNA damage repair. HF chow induced elevated methionyl-tRNA synthetase (MARS) expression and K-Hcy levels and DNA damage accumulation in the mouse and rat colon, resulting in a phenotype identical to that of CRC tissues. Moreover, the increased copy number of MARS, whose protein product promotes K-Hcy, correlated with increased CRC risk in humans. Mechanistically, MARS preferentially bound to and modified ataxia-telangiectasia and Rad3-related protein (ATR), inhibited ATR and its downstream effectors checkpoint kinase-1 and p53, and relieved cell-cycle arrest and decreased DNA damage-induced apoptosis by disrupting the binding of ATR-interacting protein to ATR. Inhibiting K-Hcy by targeting MARS reversed these effects and suppressed oncogenic CRC cell growth. Our study reveals a mechanism of Western-diet-associated CRC and highlights an intervention approach for reversing diet-induced oncogenic effects.
Collapse
Affiliation(s)
- Dan Wang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, China; Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development and Children's Hospital of Fudan University, Shanghai 200438, China; Department of Neonatology and Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Rui Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200438, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200438, China
| | - Xin-Yu Mei
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, China
| | - Xuan Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, China
| | - Qian Zhou
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, China
| | - Yang Li
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, China
| | - Shao-Bo Yang
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development and Children's Hospital of Fudan University, Shanghai 200438, China
| | - Zhi-Gui Zuo
- Department of Neonatology and Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yi-Ming Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yan Lin
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, China; Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development and Children's Hospital of Fudan University, Shanghai 200438, China
| | - Wei Xu
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, China; Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development and Children's Hospital of Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chao Chen
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development and Children's Hospital of Fudan University, Shanghai 200438, China
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, China; Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development and Children's Hospital of Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jian-Yuan Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, China; Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development and Children's Hospital of Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
36
|
Mutual Influences between Nitric Oxide and Paraoxonase 1. Antioxidants (Basel) 2019; 8:antiox8120619. [PMID: 31817387 PMCID: PMC6943684 DOI: 10.3390/antiox8120619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
One of the best consolidated paradigms in vascular pharmacology is that an uncontrolled excess of oxidizing chemical species causes tissue damage and loss of function in the endothelial and subendothelial layers. The fact that high-density lipoproteins play an important role in preventing such an imbalance is integrated into that concept, for which the expression and activity of paraoxonases is certainly crucial. The term paraoxonase (aryldialkyl phosphatase, EC 3.1.8.1) encompasses at least three distinct isoforms, with a wide variation in substrate affinity, cell and fluid localization, and biased expression of polymorphism. The purpose of this review is to determine the interactions that paraoxonase 1 has with nitric oxide synthase, its reaction product, nitric oxide (nitrogen monoxide, NO), and its derived reactive species generated in an oxidative medium, with a special focus on its pathological implications.
Collapse
|
37
|
Effect of single nucleotide polymorphisms in SEPS1 and SEPP1 on expression in the protein level in metabolic syndrome in subjects with cardiovascular disease. Mol Biol Rep 2019; 46:5685-5693. [DOI: 10.1007/s11033-019-05000-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 07/24/2019] [Indexed: 01/21/2023]
|
38
|
Mutavdzin S, Gopcevic K, Stankovic S, Jakovljevic Uzelac J, Labudovic Borovic M, Djuric D. The effect of folic acid administration on cardiac tissue matrix metalloproteinase activity and hepatorenal biomarkers in diabetic rats 1. Can J Physiol Pharmacol 2019; 97:893-901. [PMID: 31295411 DOI: 10.1139/cjpp-2019-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disorder that causes severe complications. Thus, the aims of this study were to investigate the influence of DM and folic acid treatment on liver and renal biomarkers, and heart remodeling through evaluation of cardiac matrix metalloproteinase (MMP) activity. There were 4 groups: control (physiological saline 1 mL/kg, i.p., 28 days), DM (streptozotocin [STZ] 100 mg/kg in physiological saline, i.p., 1 day), folic acid (FA; 5 mg/kg, i.p., 28 days), and DM+FA (STZ 100 mg/kg, i.p., 1 day and folic acid 5 mg/kg, i.p., 28 days). Our results demonstrated increased aminotransferase and alkaline phosphatase activity, urea and creatinine concentration, and decreased albumin and fibrinogen concentration in the DM group. MMP-2 relative activity was elevated in the DM and FA groups; MMP-9 was decreased in the DM and increased in the FA group. The folic acid treatment of diabetic rats did not change aminotransferase activity; it alleviated the increase in alkaline phosphatase and the decrease in albumin and fibrinogen concentration, and reduced MMP-2 activity; however, it increased urea and creatinine concentration. In conclusion, folic acid treatment of diabetic rats has cardio- and hepato-protective effects. However, its dosing should be carefully considered because of possible renal damage.
Collapse
Affiliation(s)
- Slavica Mutavdzin
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Kristina Gopcevic
- Institute of Chemistry in Medicine "Prof. Dr. Petar Matavulj", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Stankovic
- Centre of Medical Biochemistry, Clinical Centre of Serbia, Belgrade, Serbia
| | - Jovana Jakovljevic Uzelac
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Labudovic Borovic
- Institute of Histology and Embryology "Aleksandar Dj. Kostic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragan Djuric
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
39
|
Sun L, Yu M, Zhou T, Zhang S, He G, Wang G, Gang X. Current advances in the study of diabetic cardiomyopathy: From clinicopathological features to molecular therapeutics (Review). Mol Med Rep 2019; 20:2051-2062. [PMID: 31322242 DOI: 10.3892/mmr.2019.10473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/29/2019] [Indexed: 11/06/2022] Open
Abstract
The incidence of diabetes mellitus has become a major public health concern due to lifestyle alterations. Moreover, the complications associated with diabetes mellitus deeply influence the quality of life of patients. Diabetic cardiomyopathy (DC) is a type of diabetes mellitus complication characterized by functional and structural damage in the myocardium but not accompanied by coronary arterial disease. Currently, diagnosing and preventing DC is still a challenge for physicians due to its atypical symptoms. For this reason, it is necessary to summarize the current knowledge on DC, especially in regards to the underlying molecular mechanisms toward the goal of developing useful diagnostic approaches and effective drugs based on these mechanisms. There exist several review articles which have focused on these points, but there still remains a lot to learn from published studies. In this review, the features, diagnosis and molecular mechanisms of DC are reviewed. Furthermore, potential therapeutic and prophylactic drugs are discussed.
Collapse
Affiliation(s)
- Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ming Yu
- Department of Cardiology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Siwen Zhang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guangyu He
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
40
|
Mutavdzin S, Gopcevic K, Stankovic S, Jakovljevic Uzelac J, Labudovic Borovic M, Djuric D. The Effects of Folic Acid Administration on Cardiac Oxidative Stress and Cardiovascular Biomarkers in Diabetic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1342549. [PMID: 31308875 PMCID: PMC6594301 DOI: 10.1155/2019/1342549] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/22/2019] [Accepted: 05/15/2019] [Indexed: 01/10/2023]
Abstract
The aim of this study was to examine the effects of folic acid administration on the antioxidant enzyme (superoxide dismutase (SOD) and catalase (CAT)) activities, lactate and malate dehydrogenase (LDH and MDH) activities, and certain LDH and MDH isoform distribution in the cardiac tissue of diabetic Wistar male rats. Diabetes mellitus (DM) was induced by streptozotocin (STZ). There were five groups: C1-control (physiological saline 1 ml/kg, i.p. one day), C2-control with daily physiological saline treatment (1 ml/kg, i.p. 28 days), DM-diabetes mellitus (STZ 100 mg/kg in physiological saline, i.p. one day), FA-folic acid (5 mg/kg in physiological saline, i.p. 28 days), and DM+FA-diabetes mellitus and folic acid group (STZ 100 mg/kg in physiological saline, i.p. one day, and folic acid 5 mg/kg in physiological saline, i.p. 28 days). After four weeks, animal hearts were isolated for measurement of enzyme activities, as well as for histomorphometry analyses. An elevated glucose level and a decreased insulin level were obtained in the DM group. SOD, CAT, and MDH activities were elevated in the DM group, while there was no difference in LDH activity among the groups. In all tested groups, four LDH and three MDH isoforms were detected in the heart tissue, but with differences in their relative activities among the groups. Left ventricular cardiomyocyte transversal diameters were significantly smaller in both diabetic groups. Folic acid treatment of diabetic rats induced a reduced glucose level and reduced CAT, SOD, and MDH activities and alleviated the decrease in cardiomyocyte diameters. In conclusion, increased activities of antioxidant enzymes and MDH may be the consequence of oxidative stress caused by DM. Administration of the folic acid has a protective effect since it leads to reduction in glycemia and activities of the certain examined enzymes in the rats with experimentally induced DM.
Collapse
Affiliation(s)
- Slavica Mutavdzin
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Kristina Gopcevic
- Institute of Chemistry in Medicine “Prof. Dr. Petar Matavulj”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Stankovic
- Centre of Medical Biochemistry, Clinical Centre of Serbia, Belgrade, Serbia
| | - Jovana Jakovljevic Uzelac
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Labudovic Borovic
- Institute of Histology and Embryology “Aleksandar Dj. Kostic”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragan Djuric
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
41
|
Kar S, Shahshahan HR, Kambis TN, Yadav SK, Li Z, Lefer DJ, Mishra PK. Hydrogen Sulfide Ameliorates Homocysteine-Induced Cardiac Remodeling and Dysfunction. Front Physiol 2019; 10:598. [PMID: 31178749 PMCID: PMC6544124 DOI: 10.3389/fphys.2019.00598] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Patients with diabetes, a methionine-rich meat diet, or certain genetic polymorphisms show elevated levels of homocysteine (Hcy), which is strongly associated with the development of cardiovascular disease including diabetic cardiomyopathy. However, reducing Hcy levels with folate shows no beneficial cardiac effects. We have previously shown that a hydrogen sulfide (H2S), a by-product of Hcy through transsulfuration by cystathionine beta synthase (CBS), donor mitigates Hcy-induced hypertrophy in cardiomyocytes. However, the in vivo cardiac effects of H2S in the context of hyperhomocysteinemia (HHcy) have not been studied. We tested the hypothesis that HHcy causes cardiac remodeling and dysfunction in vivo, which is ameliorated by H2S. Twelve-week-old male CBS+/− (a model of HHcy) and sibling CBS+/+ (WT) mice were treated with SG1002 (a slow release H2S donor) diet for 4 months. The left ventricle of CBS+/− mice showed increased expression of early remodeling signals c-Jun and c-Fos, increased interstitial collagen deposition, and increased cellular hypertrophy. Notably, SG1002 treatment slightly reduced c-Jun and c-Fos expression, decreased interstitial fibrosis, and reduced cellular hypertrophy. Pressure volume loop analyses in CBS+/− mice revealed increased end systolic pressure with no change in stroke volume (SV) suggesting increased afterload, which was abolished by SG1002 treatment. Additionally, SG1002 treatment increased end-diastolic volume and SV in CBS+/− mice, suggesting increased ventricular filling. These results demonstrate SG1002 treatment alleviates cardiac remodeling and afterload in HHcy mice. H2S may be cardioprotective in conditions where H2S is reduced and Hcy is elevated.
Collapse
Affiliation(s)
- Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hamid R Shahshahan
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Santosh K Yadav
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Zhen Li
- Department of Pharmacology and Experimental Therapeutics, Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - David J Lefer
- Department of Pharmacology and Experimental Therapeutics, Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
42
|
Piazzolla G, Candigliota M, Fanelli M, Castrovilli A, Berardi E, Antonica G, Battaglia S, Solfrizzi V, Sabbà C, Tortorella C. Hyperhomocysteinemia is an independent risk factor of atherosclerosis in patients with metabolic syndrome. Diabetol Metab Syndr 2019; 11:87. [PMID: 31673296 PMCID: PMC6815401 DOI: 10.1186/s13098-019-0484-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a clinical condition potentially promoting the development of atherosclerotic disease. To date, the clinical impact of elevated serum homocysteine (Hcy) levels in MetS is still under discussion. The aim of this cross sectional study was to evaluate the relationship between MetS and hyperhomocysteinemia and the potential role of Hcy in the pathogenesis of atherosclerotic complications of MetS. METHODS We recruited 300 outpatients with MetS. All patients underwent a medical history collection, physical examination, blood sampling and carotid ultrasound echo-color Doppler. According to Hcy levels, MetS patients were divided into two groups: "normal" (< 10.7 μmol/l; n = 140, group 1) and "high" Hcy (≥ 10.7 μmol/l; n = 160, group 2). Comparisons between groups were made by Student's t-test or Chi-square test. The effects of potential covariates on group differences were evaluated by general linear models. The relationships between continuous variables were assessed by simple or multiple correlation and by linear regression. Multiple regression models were built to evaluate the effects of Hcy, together with other potential risk factors, on carotid atherosclerosis. RESULTS Patients with high Hcy were predominantly male and slightly older than group 1 patients. Smokers and non-smokers exhibited similar Hcy levels, nor was a statistical relationship between pack-years and Hcy observed. Group 2 showed lower levels of folic acid, vitamin D, high density lipoprotein (HDL)-cholesterol and glomerular filtration rate (e-GFR) than group 1, but higher levels of C-peptide, uric acid and triglycerides. In all patients, Hcy was positively correlated with C-peptide and uric acid and negatively with folic acid and e-GFR. Intima-media thickness (IMT) and carotid stenosis degree were significantly higher in patients with high Hcy and a positive relationship between Hcy and both IMT and carotid stenosis was detected in all patients. Finally, Hcy atherogenic effects were independent of other well-known atherosclerosis risk factors. CONCLUSIONS Our results highlight a link between MetS and hyperhomocysteinemia and a direct effect of Hcy on atherogenic process during MetS. Early correction of folic acid levels may contribute to prevent cardiovascular complications in MetS patients.
Collapse
Affiliation(s)
- Giuseppina Piazzolla
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Mafalda Candigliota
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Margherita Fanelli
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Anna Castrovilli
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Elsa Berardi
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Gianfranco Antonica
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Stefano Battaglia
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Vincenzo Solfrizzi
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Cosimo Tortorella
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare 11, 70124 Bari, Italy
| |
Collapse
|
43
|
Majumder A, Singh M, George AK, Tyagi SC. Restoration of skeletal muscle homeostasis by hydrogen sulfide during hyperhomocysteinemia-mediated oxidative/ER stress condition 1. Can J Physiol Pharmacol 2018; 97:441-456. [PMID: 30422673 DOI: 10.1139/cjpp-2018-0501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Elevated homocysteine (Hcy), i.e., hyperhomocysteinemia (HHcy), causes skeletal muscle myopathy. Among many cellular and metabolic alterations caused by HHcy, oxidative and endoplasmic reticulum (ER) stress are considered the major ones; however, the precise molecular mechanism(s) in this process is unclear. Nevertheless, there is no treatment option available to treat HHcy-mediated muscle injury. Hydrogen sulfide (H2S) is increasingly recognized as a potent anti-oxidant, anti-apoptotic/necrotic/pyroptotic, and anti-inflammatory compound and also has been shown to improve angiogenesis during ischemic injury. Patients with CBS mutation produce less H2S, making them vulnerable to Hcy-mediated cellular damage. Many studies have reported bidirectional regulation of ER stress in apoptosis through JNK activation and concomitant attenuation of cell proliferation and protein synthesis via PI3K/AKT axis. Whether H2S mitigates these detrimental effects of HHcy on muscle remains unexplored. In this review, we discuss molecular mechanisms of HHcy-mediated oxidative/ER stress responses, apoptosis, angiogenesis, and atrophic changes in skeletal muscle and how H2S can restore skeletal muscle homeostasis during HHcy condition. This review also highlights the molecular mechanisms on how H2S could be developed as a clinically relevant therapeutic option for chronic conditions that are aggravated by HHcy.
Collapse
Affiliation(s)
- Avisek Majumder
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.,b Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mahavir Singh
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.,c Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Akash K George
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.,c Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Suresh C Tyagi
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
44
|
Majumder A, Singh M, George AK, Homme RP, Laha A, Tyagi SC. Remote ischemic conditioning as a cytoprotective strategy in vasculopathies during hyperhomocysteinemia: An emerging research perspective. J Cell Biochem 2018; 120:77-92. [PMID: 30272816 DOI: 10.1002/jcb.27603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/07/2018] [Indexed: 12/29/2022]
Abstract
Higher levels of nonprotein amino acid homocysteine (Hcy), that is, hyperhomocysteinemia (HHcy) (~5% of general population) has been associated with severe vasculopathies in different organs; however, precise molecular mechanism(s) as to how HHcy plays havoc with body's vascular networks are largely unknown. Interventional modalities have not proven beneficial to counter multifactorial HHcy's effects on the vascular system. An ancient Indian form of exercise called 'yoga' causes transient ischemia as a result of various body postures however the cellular mechanisms are not clear. We discuss a novel perspective wherein we argue that application of remote ischemic conditioning (RIC) could, in fact, deliver anticipated results to patients who are suffering from chronic vascular dysfunction due to HHcy. RIC is the mechanistic phenomenon whereby brief episodes of ischemia-reperfusion events are applied to distant tissues/organs; that could potentially offer a powerful tool in mitigating chronic lethal ischemia in target organs during HHcy condition via simultaneous reduction of inflammation, oxidative and endoplasmic reticulum stress, extracellular matrix remodeling, fibrosis, and angiogenesis. We opine that during ischemic conditioning our organs cross talk by releasing cellular messengers in the form of exosomes containing messenger RNAs, circular RNAs, anti-pyroptotic factors, protective cytokines like musclin, transcription factors, small molecules, anti-inflammatory, antiapoptotic factors, antioxidants, and vasoactive gases. All these could help mobilize the bone marrow-derived stem cells (having tissue healing properties) to target organs. In that context, we argue that RIC could certainly play a savior's role in an unfortunate ischemic or adverse event in people who have higher levels of the circulating Hcy in their systems.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Mahavir Singh
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Eye and Vision Science Laboratory, University of Louisville, Louisville, Kentucky
| | - Akash K George
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Eye and Vision Science Laboratory, University of Louisville, Louisville, Kentucky
| | - Rubens Petit Homme
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Eye and Vision Science Laboratory, University of Louisville, Louisville, Kentucky
| | - Anwesha Laha
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
45
|
Kumar M, Sandhir R. Neuroprotective Effect of Hydrogen Sulfide in Hyperhomocysteinemia Is Mediated Through Antioxidant Action Involving Nrf2. Neuromolecular Med 2018; 20:475-490. [PMID: 30105650 DOI: 10.1007/s12017-018-8505-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/06/2018] [Indexed: 12/23/2022]
Abstract
Homocysteine (Hcy) is a sulfur-containing amino acid derived from methionine metabolism. Elevated plasma Hcy levels (> 15 µM) result in a condition called hyperhomocysteinemia (HHcy), which is an independent risk factor in the development of various neurodegenerative disorders. Reactive oxygen species (ROS) produced by auto-oxidation of Hcy have been implicated in HHcy-associated neurological conditions. Hydrogen sulfide (H2S) is emerging as a potent neuroprotective and neuromodulator molecule. The present study was aimed to evaluate the ability of NaHS (a source of H2S) to attenuate Hcy-induced oxidative stress and altered antioxidant status in animals subjected to HHcy. Impaired cognitive functions assessed by Y-maze and elevated plus maze in Hcy-treated animals were reversed on NaHS administration. Increased levels of ROS, lipid peroxidation, protein carbonyls, and 4-hydroxynonenal (4-HNE)-modified proteins were observed in the cortex and hippocampus of Hcy-treated animals suggesting accentuated oxidative stress. This increase in Hcy-induced oxidative stress was reversed following NaHS supplementation. GSH/GSSG ratio, activity of antioxidant enzymes viz; superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase were decreased in Hcy-treated animals. NaHS supplementation, on the otherhand, restored redox ratio and activity of antioxidant enzymes in the brains of animals with HHcy. Further, NaHS administration normalized nuclear factor erythroid 2-related factor 2 expression and acetylcholinesterase (AChE) activity in the brain of Hcy-treated animals. Histopathological studies using cresyl violet indicated higher number of pyknotic neurons in the cortex and hippocampus of HHcy animals, which were reversed by NaHS administration. The results clearly demonstrate that NaHS treatment significantly ameliorates Hcy-induced cognitive impairment by attenuating oxidative stress, improving antioxidant status, and modulating AChE activity thereby suggesting potential of H2S as a therapeutic molecule.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Biochemistry, Basic Medical Science Block-II, Sector-25, Panjab University, Chandigarh, 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block-II, Sector-25, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
46
|
Wang J, Xu L, Xia H, Li Y, Tang S. Association of MTHFR C677T gene polymorphism with metabolic syndrome in a Chinese population: a case-control study. J Int Med Res 2018; 46:2658-2669. [PMID: 29658358 PMCID: PMC6124264 DOI: 10.1177/0300060518768969] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective To investigate the association of the MTHFR C677T gene polymorphism with metabolic syndrome (MetS) in people in Hubei Province, China. Methods A case–control study was conducted with 651 subjects with MetS (MetS group) and 727 healthy controls (control group) at Renmin Hospital of Wuhan University between January and December 2016. The MTHFR C677T genotype was detected by the gene chip technique and clinical data were collected. Results Body mass index, waist circumference, the waist-hip-ratio, systolic and diastolic blood pressure, fasting blood glucose, fasting insulin, triglyceride, total cholesterol, low-density lipoprotein-cholesterol, and homocysteine levels, and the homeostasis model assessment of insulin resistance were higher in the MetS group than in controls. The risk of MetS was higher for the TT genotype and T allele carriers than for the CC genotype and C allele carriers. With MetS, the TT genotype increased the risk of elevated blood pressure, fasting glucose levels, and triglyceride levels. Patients with MetS and the TT genotype showed more severe abdominal obesity, dyslipidaemia, insulin resistance, elevated blood pressure, elevated fasting glucose levels, and hyperhomocysteinaemia compared with those with the CC genotype. Conclusions In this population, MTHFR C677T gene polymorphism may be a risk factor for MetS.
Collapse
Affiliation(s)
- Jin Wang
- Physical Examination Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lijuan Xu
- Physical Examination Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hongmiao Xia
- Physical Examination Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ying Li
- Physical Examination Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shiqi Tang
- Physical Examination Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
47
|
The Influence of Metabolic Syndrome and Sex on the DNA Methylome in Schizophrenia. Int J Genomics 2018; 2018:8076397. [PMID: 29850476 PMCID: PMC5903198 DOI: 10.1155/2018/8076397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/25/2018] [Indexed: 02/06/2023] Open
Abstract
Introduction The mechanism by which metabolic syndrome occurs in schizophrenia is not completely known; however, previous work suggests that changes in DNA methylation may be involved which is further influenced by sex. Within this study, the DNA methylome was profiled to identify altered methylation associated with metabolic syndrome in a schizophrenia population on atypical antipsychotics. Methods Peripheral blood from schizophrenia subjects was utilized for DNA methylation analyses. Discovery analyses (n = 96) were performed using an epigenome-wide analysis on the Illumina HumanMethylation450K BeadChip based on metabolic syndrome diagnosis. A secondary discovery analysis was conducted based on sex. The top hits from the discovery analyses were assessed in an additional validation set (n = 166) using site-specific methylation pyrosequencing. Results A significant increase in CDH22 gene methylation in subjects with metabolic syndrome was identified in the overall sample. Additionally, differential methylation was found within the MAP3K13 gene in females and the CCDC8 gene within males. Significant differences in methylation were again observed for the CDH22 and MAP3K13 genes, but not CCDC8, in the validation sample set. Conclusions This study provides preliminary evidence that DNA methylation may be associated with metabolic syndrome and sex in schizophrenia.
Collapse
|
48
|
Altered Redox Homeostasis in Branched-Chain Amino Acid Disorders, Organic Acidurias, and Homocystinuria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1246069. [PMID: 29743968 PMCID: PMC5884027 DOI: 10.1155/2018/1246069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/26/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Inborn errors of metabolism (IEMs) are a group of monogenic disorders characterized by dysregulation of the metabolic networks that underlie development and homeostasis. Emerging evidence points to oxidative stress and mitochondrial dysfunction as major contributors to the multiorgan alterations observed in several IEMs. The accumulation of toxic metabolites in organic acidurias, respiratory chain, and fatty acid oxidation disorders inhibits mitochondrial enzymes and processes resulting in elevated levels of reactive oxygen species (ROS). In other IEMs, as in homocystinuria, different sources of ROS have been proposed. In patients' samples, as well as in cellular and animal models, several studies have identified significant increases in ROS levels along with decreases in antioxidant defences, correlating with oxidative damage to proteins, lipids, and DNA. Elevated ROS disturb redox-signaling pathways regulating biological processes such as cell growth, differentiation, or cell death; however, there are few studies investigating these processes in IEMs. In this review, we describe the published data on mitochondrial dysfunction, oxidative stress, and impaired redox signaling in branched-chain amino acid disorders, other organic acidurias, and homocystinuria, along with recent studies exploring the efficiency of antioxidants and mitochondria-targeted therapies as therapeutic compounds in these diseases.
Collapse
|
49
|
Huo Y, Wu X, Ding J, Geng Y, Qiao W, Ge A, Guo C, Lv J, Bao H, Fan W. Vascular Remodeling, Oxidative Stress, and Disrupted PPAR γ Expression in Rats of Long-Term Hyperhomocysteinemia with Metabolic Disturbance. PPAR Res 2018; 2018:6738703. [PMID: 29552030 PMCID: PMC5820553 DOI: 10.1155/2018/6738703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/10/2017] [Indexed: 11/17/2022] Open
Abstract
Hyperhomocysteinemia, a risk factor for vascular disease, is associated with metabolic syndrome. Our study was aimed at exploring the effect of long-term hyperhomocysteinemia with metabolic disturbances on vascular remodeling. We also studied oxidative stress and expression of PPARγ in the coronary arteriole as a possible mechanism underlying vascular remodeling. Rats were treated with standard rodent chow (Control) or diet enriched in methionine (Met) for 48 weeks. Plasma homocysteine, blood glucose, serum lipids, malondialdehyde (MDA), superoxide dismutase (SOD), and nitric oxide (NO) levels were measured. Coronary arteriolar and carotid arterial remodeling was assessed by histomorphometric techniques and the expression of PPARγ in vessel wall was investigated. In Met group, an increase in the level of fasting blood glucose, serum triglyceride, total cholesterol, MDA, and NO, a decline in the serum SOD level, and increased collagen deposition in coronary and carotid arteries were found. Moreover, we detected decreased expression of PPARγ in the coronary arterioles in Met group. In summary, our study revealed metabolic disturbances in this model of long-term hyperhomocysteinemia together with vascular remodeling and suggested that impaired oxidative stress, endothelium dysfunction, and decreased PPARγ expression in the vessel wall could be underlying mechanisms.
Collapse
Affiliation(s)
- Yajing Huo
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xuqing Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yang Geng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weiwei Qiao
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
| | - Anyan Ge
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cen Guo
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jianing Lv
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Haifeng Bao
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Fan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
50
|
Wu G, Xian J, Yang X, Li J, Liu J, Dong W, Su S, Li J, Tu Y, Peng J, Xu D, Zeng Q. Association between homocysteine levels and calcific aortic valve disease: a systematic review and meta-analysis. Oncotarget 2018; 9:8665-8674. [PMID: 29492225 PMCID: PMC5823577 DOI: 10.18632/oncotarget.23938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/08/2017] [Indexed: 12/05/2022] Open
Abstract
Previous studies have reported inconsistent results regarding the association between homocysteine (Hcy) levels and calcific aortic valve disease (CAVD). We investigate the association between Hcy levels in patients with CAVD and controls by conducting a systematic review and meta-analysis. We conducted a systematic search of studies published prior to the end of March 2017 in the PubMed, Embase, Web of Science, Cochrane Central Register of Controlled Trials and the Chinese Biomedical Literature databases. Eligible studies evaluating plasma Hcy levels in CAVD patients and controls were identified by two independent investigators. Standardized mean difference (SMD) and the corresponding 95% confidence intervals (95% CIs) were estimated using the random-effects model. Ten studies involving 6349 participants were included. Pooled analysis demonstrated that Hcy levels were significantly elevated in patients with CAVD compared with controls (pooled SMD: 0.57, 95% CI: 0.36–0.79). This elevation was more obvious in American and Asian populations than in Turkish populations. Furthermore, Hcy levels were significantly elevated in patients with mild-to-moderate CAVD and severe CAVD. Our results demonstrate that CAVD is associated with elevated Hcy levels.
Collapse
Affiliation(s)
- Guandi Wu
- Department of Cardiology, First Clinical Medical College, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiayi Xian
- Department of Cardiology, First Clinical Medical College, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xi Yang
- Department of Cardiology, First Clinical Medical College, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| | - Jiaying Li
- Department of Cardiology, First Clinical Medical College, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| | - Jichen Liu
- Department of Cardiology, First Clinical Medical College, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenhui Dong
- Department of Cardiology, First Clinical Medical College, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuwen Su
- Department of Cardiology, First Clinical Medical College, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Li
- Department of Cardiology, First Clinical Medical College, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Tu
- Department of Cardiology, First Clinical Medical College, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Peng
- Department of Cardiology, First Clinical Medical College, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dingli Xu
- Department of Cardiology, First Clinical Medical College, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| | - Qingchun Zeng
- Department of Cardiology, First Clinical Medical College, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China
| |
Collapse
|