1
|
Georgakopoulou VE, Sklapani P, Trakas N, Reiter RJ, Spandidos DA. Exploring the association between melatonin and nicotine dependence (Review). Int J Mol Med 2024; 54:82. [PMID: 39092582 PMCID: PMC11315657 DOI: 10.3892/ijmm.2024.5406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
Due to the addictive qualities of tobacco products and the compulsive craving and dependence associated with their use, nicotine dependence continues to be a serious public health concern on a global scale. Despite awareness of the associated health risks, nicotine addiction contributes to numerous acute and chronic medical conditions, including cardiovascular disease, respiratory disorders and cancer. The nocturnal secretion of pineal melatonin, known as the 'hormone of darkness', influences circadian rhythms and is implicated in addiction‑related behaviors. Melatonin receptors are found throughout the brain, influencing dopaminergic neurotransmission and potentially attenuating nicotine‑seeking behavior. Additionally, the antioxidant properties of melatonin may mitigate oxidative stress from chronic nicotine exposure, reducing cellular damage and lowering the risk of nicotine‑related health issues. In addition to its effects on circadian rhythmicity, melatonin acting via specific neural receptors influences sleep and mood, and provides neuroprotection. Disruptions in melatonin signaling may contribute to sleep disturbances and mood disorders, highlighting the potential therapeutic role of melatonin in addiction and psychiatric conditions. Melatonin may influence neurotransmitter systems involved in addiction, such as the dopaminergic, glutamatergic, serotonergic and endogenous opioid systems. Preclinical studies suggest the potential of melatonin in modulating reward processing, attenuating drug‑induced hyperactivity and reducing opioid withdrawal symptoms. Chronotherapeutic approaches targeting circadian rhythms and melatonin signaling show promise in smoking cessation interventions. Melatonin supplementation during periods of heightened nicotine cravings may alleviate withdrawal symptoms and reduce the reinforcing effects of nicotine. Further research is required however, to examine the molecular mechanisms underlying the melatonin‑nicotine association and the optimization of therapeutic interventions. Challenges include variability in individual responses to melatonin, optimal dosing regimens and identifying biomarkers of treatment response. Understanding these complexities could lead to personalized treatment strategies and improve smoking cessation outcomes.
Collapse
Affiliation(s)
| | - Pagona Sklapani
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health Science Center, San Antonio, TX 78229, USA
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
2
|
Pathak NK, Sahoo P, Tripathy U. Nonlinear study of indolamines: A hidden property that might have possible implications in neurodegeneration. Talanta 2024; 272:125808. [PMID: 38373364 DOI: 10.1016/j.talanta.2024.125808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Indolamines (e.g., serotonin and melatonin) are tryptophan-derived class of neurotransmitters and neuromodulators that play crucial roles in mood regulation, sleep-wake cycles, and gastrointestinal functions. These biogenic amines exert their effects by binding to specific receptors in the central nervous system, influencing neuronal activity and signalling cascades. Indolamines are vital in maintaining homeostasis, and imbalances in their levels have been implicated in various neurological and psychiatric disorders. Hence, in the present study, we have investigated the nonlinear properties of indolamines under a continuous wave (CW) and pulsed laser excitation using the closed-aperture (CA) Z-scan technique. The CA Z-scan is a cost-effective and sensitive analytical tool for investigating nonlinear properties. It is observed that indolamines show negative refractive and positive absorptive nonlinearity under in vitro physiological conditions. The origin of nonlinearity is ascribed to the thermo-optical effect governed by the saturated atomic absorption and molecular orientation mechanisms under CW and pulsed laser excitation, respectively. The strength of nonlinearity is found to vary linearly with the concentration of indolamines. Overall, serotonin possesses stronger nonlinearity than melatonin. The maximum nonlinearity (refractive index (n2) & absorption coefficient (β)) for melatonin under CW and pulsed laser excitations are (-1.266 × 10-12 m2W-1 and -1.883 × 10-17 m2W-1) & (8.046 × 10-8 mW-1 and 1.516 × 10-13 mW-1), respectively. Meanwhile, the maximum n2 and β under pulsed laser excitation for serotonin are obtained as -3.195 × 10-17 m2W-1 and 6.149 × 10-12 mW-1, respectively. The outcome of the results may be utilized in understanding processes mediated by indolamines and designing therapeutic interventions.
Collapse
Affiliation(s)
- Nitesh Kumar Pathak
- Department of Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad, 826004, Jharkhand, India
| | - Priyadarshi Sahoo
- Department of Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad, 826004, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad, 826004, Jharkhand, India.
| |
Collapse
|
3
|
Hosseinzadeh A, Alinaghian N, Sheibani M, Seirafianpour F, Naeini AJ, Mehrzadi S. Melatonin: Current evidence on protective and therapeutic roles in gynecological diseases. Life Sci 2024; 344:122557. [PMID: 38479596 DOI: 10.1016/j.lfs.2024.122557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Melatonin, a potent antioxidant and free radical scavenger, has been demonstrated to be effective in gynecological conditions and female reproductive cancers. This review consolidates the accumulating evidence on melatonin's multifaceted protective effects in different pathological contexts. In gynecological conditions such as endometriosis, polycystic ovary syndrome (PCOS), and uterine leiomyoma, melatonin has shown promising effects in reducing oxidative stress, inflammation, and hormonal imbalances. It inhibits adhesion molecules' production, and potentially mitigates leukocyte adherence and inflammatory responses. Melatonin's regulatory effects on hormone production and insulin sensitivity in PCOS individuals make it a promising candidate for improving oocyte quality and menstrual irregularities. Moreover, melatonin exhibits significant antitumor effects by modulating various signaling pathways, promoting apoptosis, and suppressing metastasis in breast cancers and gynecological cancers, including ovarian, endometrial, and cervical cancers. Furthermore, melatonin's protective effects are suggested to be mediated by interactions with its receptors, estrogen receptors and other nuclear receptors. The regulation of clock-related genes and circadian clock systems may also contribute to its inhibitory effects on cancer cell growth. However, more comprehensive research is warranted to fully elucidate the underlying molecular mechanisms and establish melatonin as a potential therapeutic agent for these conditions.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nazila Alinaghian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Choudhary RC, Kuschner CE, Kazmi J, Mcdevitt L, Espin BB, Essaihi M, Nishikimi M, Becker LB, Kim J. The Role of Phospholipid Alterations in Mitochondrial and Brain Dysfunction after Cardiac Arrest. Int J Mol Sci 2024; 25:4645. [PMID: 38731864 PMCID: PMC11083216 DOI: 10.3390/ijms25094645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The human brain possesses three predominate phospholipids, phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS), which account for approximately 35-40%, 35-40%, and 20% of the brain's phospholipids, respectively. Mitochondrial membranes are relatively diverse, containing the aforementioned PC, PE, and PS, as well as phosphatidylinositol (PI) and phosphatidic acid (PA); however, cardiolipin (CL) and phosphatidylglycerol (PG) are exclusively present in mitochondrial membranes. These phospholipid interactions play an essential role in mitochondrial fusion and fission dynamics, leading to the maintenance of mitochondrial structural and signaling pathways. The essential nature of these phospholipids is demonstrated through the inability of mitochondria to tolerate alteration in these specific phospholipids, with changes leading to mitochondrial damage resulting in neural degeneration. This review will emphasize how the structure of phospholipids relates to their physiologic function, how their metabolism facilitates signaling, and the role of organ- and mitochondria-specific phospholipid compositions. Finally, we will discuss the effects of global ischemia and reperfusion on organ- and mitochondria-specific phospholipids alongside the novel therapeutics that may protect against injury.
Collapse
Affiliation(s)
- Rishabh C. Choudhary
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
| | - Cyrus E. Kuschner
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Jacob Kazmi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Liam Mcdevitt
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Blanca B. Espin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
| | - Mohammed Essaihi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
| | - Mitsuaki Nishikimi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
| | - Lance B. Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Junhwan Kim
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
5
|
Mergenthaler P, Balami JS, Neuhaus AA, Mottahedin A, Albers GW, Rothwell PM, Saver JL, Young ME, Buchan AM. Stroke in the Time of Circadian Medicine. Circ Res 2024; 134:770-790. [PMID: 38484031 DOI: 10.1161/circresaha.124.323508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 03/19/2024]
Abstract
Time-of-day significantly influences the severity and incidence of stroke. Evidence has emerged not only for circadian governance over stroke risk factors, but also for important determinants of clinical outcome. In this review, we provide a comprehensive overview of the interplay between chronobiology and cerebrovascular disease. We discuss circadian regulation of pathophysiological mechanisms underlying stroke onset or tolerance as well as in vascular dementia. This includes cell death mechanisms, metabolism, mitochondrial function, and inflammation/immunity. Furthermore, we present clinical evidence supporting the link between disrupted circadian rhythms and increased susceptibility to stroke and dementia. We propose that circadian regulation of biochemical and physiological pathways in the brain increase susceptibility to damage after stroke in sleep and attenuate treatment effectiveness during the active phase. This review underscores the importance of considering circadian biology for understanding the pathology and treatment choice for stroke and vascular dementia and speculates that considering a patient's chronotype may be an important factor in developing precision treatment following stroke.
Collapse
Affiliation(s)
- Philipp Mergenthaler
- Center for Stroke Research Berlin (P.M., A.M.B.), Charité - Universitätsmedizin Berlin, Germany
- Department of Neurology with Experimental Neurology (P.M.), Charité - Universitätsmedizin Berlin, Germany
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Joyce S Balami
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Ain A Neuhaus
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, United Kingdom (A.A.N.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Amin Mottahedin
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences (A.M., P.M.R.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Gregory W Albers
- Department of Neurology, Stanford Hospital, Palo Alto, CA (G.W.A.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Peter M Rothwell
- Nuffield Department of Clinical Neurosciences (A.M., P.M.R.), University of Oxford, United Kingdom
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences (P.M.R.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Jeffrey L Saver
- Department of Neurology and Comprehensive Stroke Center, Geffen School of Medicine, University of Los Angeles, CA (J.L.S.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham (M.E.Y.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Alastair M Buchan
- Center for Stroke Research Berlin (P.M., A.M.B.), Charité - Universitätsmedizin Berlin, Germany
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| |
Collapse
|
6
|
Steinbach MJ, Denburg NL. Melatonin in Alzheimer's Disease: Literature Review and Therapeutic Trials. J Alzheimers Dis 2024; 101:S193-S204. [PMID: 39422936 DOI: 10.3233/jad-230760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
There are currently no effective treatments to prevent, halt, or reverse Alzheimer's disease (AD), the most common cause of dementia in older adults. Melatonin, a relatively harmless over-the-counter supplement, may offer some benefits to patients with AD. Melatonin is known for its sleep-enhancing properties, but research shows that it may provide other advantages as well, such as antioxidant and anti-amyloidogenic properties. Clinical trials for melatonin use in AD have mixed results but, overall, show modest benefits. However, it is difficult to interpret clinical research in this area as there is little standardization to guide the administration and study of melatonin. This review covers basic biology and clinical research on melatonin in AD focusing on prominent hypotheses of pathophysiology of neurodegeneration and cognitive decline in AD (i.e., amyloid and tau hypotheses, antioxidant and anti-inflammation, insulin resistance and glucose homeostasis, the cholinergic hypothesis, sleep regulation, and the hypothalamic-pituitary-adrenal axis and cortisol). This is followed by a discussion on pending clinical trials, considerations for future research protocols, and open questions in the field.
Collapse
Affiliation(s)
- Marilyn J Steinbach
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Department of Neurology, Division of Cognitive Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Natalie L Denburg
- Department of Neurology, Division of Cognitive Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
7
|
Lim HS, Lee SH, Seo H, Park G. Changes in RBM47 expression based on the timing of melatonin administration and its effects on Nrf2 activity in the hippocampus. Free Radic Biol Med 2023; 208:794-806. [PMID: 37751802 DOI: 10.1016/j.freeradbiomed.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/18/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
Melatonin is an endogenous indoleamine that plays a significant role in various physiological processes, including the sleep-wake cycle, anxiety, immunity, and circadian rhythms. However, it is important to clarify that melatonin does not directly control circadian rhythms. Circadian rhythms are primarily synchronized by light, which acts on the suprachiasmatic nucleus (SCN) and subsequently regulates melatonin production. This light-mediated synchronization of circadian rhythms is essential for maintaining the alignment of the body with the light-dark cycle. In this study, we investigated the efficacy of melatonin administration during different times of the day or night and explored its neuroprotective effects. Furthermore, we aimed to apply these findings to rodent models of dementia, aging, and neuro-inflammation for potential therapeutic applications. Our study uncovered novel evidence suggesting the involvement of RNA-binding motif protein (RBM)-47 and Nrf2 in the signaling pathways associated with melatonin administration during both day and night. We examined the role of RBM47 in Nrf2 activity through siRNA or CRISPR-mediated knockdown experiments using hippocampal neuronal cells and lentivirus injections in mice. In 5xFAD/aging/neuroinflammatory mouse models, antioxidant effects were enhanced when melatonin was administered during the day compared to nighttime administration. Furthermore, mRNA analysis and molecular biology experiments revealed the differential expression of RBM47 depending on the timing of melatonin administration. These findings suggest that a decrease in RBM47 expression may improve the antioxidant defense system in the hippocampus. Consequently, administering melatonin during the day rather than at night may present a plausible therapeutic strategy as an antioxidant.
Collapse
Affiliation(s)
- Hye-Sun Lim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea.
| | - Seung Hoon Lee
- Department of Biochemistry, Research Institute for Medical Science, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
| | - Huiyun Seo
- Center for Genome Engineering, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Gunhyuk Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea; University of Science & Technology (UST), Korean Convergence Medicine Major, Campus of Korea Institute of Oriental Medicine, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
8
|
Cattani D, Pierozan P, Zamoner A, Brittebo E, Karlsson O. Long-Term Effects of Perinatal Exposure to a Glyphosate-Based Herbicide on Melatonin Levels and Oxidative Brain Damage in Adult Male Rats. Antioxidants (Basel) 2023; 12:1825. [PMID: 37891904 PMCID: PMC10604376 DOI: 10.3390/antiox12101825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Concerns have been raised regarding the potential adverse health effects of the ubiquitous herbicide glyphosate. Here, we investigated long-term effects of developmental exposure to a glyphosate-based herbicide (GBH) by analyzing serum melatonin levels and cellular changes in the striatum of adult male rats (90 days old). Pregnant and lactating rats were exposed to 3% GBH (0.36% glyphosate) through drinking water from gestational day 5 to postnatal day 15. The offspring showed reduced serum melatonin levels (43%) at the adult age compared with the control group. The perinatal exposure to GBH also induced long-term oxidative stress-related changes in the striatum demonstrated by increased lipid peroxidation (45%) and DNA/RNA oxidation (39%) together with increased protein levels of the antioxidant enzymes, superoxide dismutase (SOD1, 24%), glutamate-cysteine ligase (GCLC, 58%), and glutathione peroxidase 1 (GPx1, 31%). Moreover, perinatal GBH exposure significantly increased the total number of neurons (20%) and tyrosine hydroxylase (TH)-positive neurons (38%) in the adult striatum. Mechanistic in vitro studies with primary rat pinealocytes exposed to 50 µM glyphosate demonstrated a decreased melatonin secretion partially through activation of metabotropic glutamate receptor 3 (mGluR3), while higher glyphosate levels (100 or 500 µM) also reduced the pinealocyte viability. Since decreased levels of the important antioxidant and neuroprotector melatonin have been associated with an increased risk of developing neurodegenerative disorders, this demonstrates the need to consider the melatonin hormone system as a central endocrine-related target of glyphosate and other environmental contaminants.
Collapse
Affiliation(s)
- Daiane Cattani
- Science for Life Laboratory, Department of Environmental Sciences, Stockholm University, 114 18 Stockholm, Sweden; (D.C.); (P.P.)
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 751 24 Uppsala, Sweden;
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis 88040-970, Brazil;
| | - Paula Pierozan
- Science for Life Laboratory, Department of Environmental Sciences, Stockholm University, 114 18 Stockholm, Sweden; (D.C.); (P.P.)
| | - Ariane Zamoner
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis 88040-970, Brazil;
| | - Eva Brittebo
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 751 24 Uppsala, Sweden;
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Sciences, Stockholm University, 114 18 Stockholm, Sweden; (D.C.); (P.P.)
| |
Collapse
|
9
|
Tozihi M, Shademan B, Yousefi H, Avci CB, Nourazarian A, Dehghan G. Melatonin: a promising neuroprotective agent for cerebral ischemia-reperfusion injury. Front Aging Neurosci 2023; 15:1227513. [PMID: 37600520 PMCID: PMC10436333 DOI: 10.3389/fnagi.2023.1227513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Cerebral ischemia-reperfusion (CIR) injury is initiated by the generation of reactive oxygen species (ROS), which leads to the oxidation of cellular proteins, DNA, and lipids as an initial event. The reperfusion process impairs critical cascades that support cell survival, including mitochondrial biogenesis and antioxidant enzyme activity. Failure to activate prosurvival signals may result in increased neuronal cell death and exacerbation of CIR damage. Melatonin, a hormone produced naturally in the body, has high concentrations in both the cerebrospinal fluid and the brain. However, melatonin production declines significantly with age, which may contribute to the development of age-related neurological disorders due to reduced levels. By activating various signaling pathways, melatonin can affect multiple aspects of human health due to its diverse range of activities. Therefore, understanding the underlying intracellular and molecular mechanisms is crucial before investigating the neuroprotective effects of melatonin in cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Majid Tozihi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Türkiye
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
10
|
Samizadeh MA, Fallah H, Toomarisahzabi M, Rezaei F, Rahimi-Danesh M, Akhondzadeh S, Vaseghi S. Parkinson's Disease: A Narrative Review on Potential Molecular Mechanisms of Sleep Disturbances, REM Behavior Disorder, and Melatonin. Brain Sci 2023; 13:914. [PMID: 37371392 DOI: 10.3390/brainsci13060914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. There is a wide range of sleep disturbances in patients with PD, such as insomnia and rapid eye movement (REM) sleep behavior disorder (or REM behavior disorder (RBD)). RBD is a sleep disorder in which a patient acts out his/her dreams and includes abnormal behaviors during the REM phase of sleep. On the other hand, melatonin is the principal hormone that is secreted by the pineal gland and significantly modulates the circadian clock and mood state. Furthermore, melatonin has a wide range of regulatory effects and is a safe treatment for sleep disturbances such as RBD in PD. However, the molecular mechanisms of melatonin involved in the treatment or control of RBD are unknown. In this study, we reviewed the pathophysiology of PD and sleep disturbances, including RBD. We also discussed the potential molecular mechanisms of melatonin involved in its therapeutic effect. It was concluded that disruption of crucial neurotransmitter systems that mediate sleep, including norepinephrine, serotonin, dopamine, and GABA, and important neurotransmitter systems that mediate the REM phase, including acetylcholine, serotonin, and norepinephrine, are significantly involved in the induction of sleep disturbances, including RBD in PD. It was also concluded that accumulation of α-synuclein in sleep-related brain regions can disrupt sleep processes and the circadian rhythm. We suggested that new treatment strategies for sleep disturbances in PD may focus on the modulation of α-synuclein aggregation or expression.
Collapse
Affiliation(s)
- Mohammad-Ali Samizadeh
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| | - Hamed Fallah
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417935840, Iran
| | - Mohadeseh Toomarisahzabi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| | - Fereshteh Rezaei
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| | - Mehrsa Rahimi-Danesh
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran 13337159140, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| |
Collapse
|
11
|
Andrade MK, Souza LC, Azevedo EM, Bail EL, Zanata SM, Andreatini R, Vital MABF. Melatonin reduces β-amyloid accumulation and improves short-term memory in streptozotocin-induced sporadic Alzheimer's disease model. IBRO Neurosci Rep 2023; 14:264-272. [PMID: 36926592 PMCID: PMC10011440 DOI: 10.1016/j.ibneur.2023.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Melatonin is a hormone secreted by the pineal gland, it can be associated with circadian rhythms, aging and neuroprotection. Melatonin levels are decreased in sporadic Alzheimer's disease (sAD) patients, which suggests a relationship between the melatonergic system and sAD. Melatonin may reduce inflammation, oxidative stress, TAU protein hyperphosphorylation, and the formation of β-amyloid (Aβ) aggregates. Therefore, the objective of this work was to investigate the impact of treatment with 10 mg/kg of melatonin (i.p) in the animal model of sAD induced by the intracerebroventricular (ICV) infusion of 3 mg/kg of streptozotocin (STZ). ICV-STZ causes changes in the brain of rats similar to those found in patients with sAD. These changes include; progressive memory decline, the formation of neurofibrillary tangles, senile plaques, disturbances in glucose metabolism, insulin resistance and even reactive astrogliosis characterized by the upregulation of glucose levels and glial fibrillary acidic protein (GFAP). The results show that ICV-STZ caused short-term spatial memory impairment in rats after 30 days of STZ infusion without locomotor impairment which was evaluated on day 27 post-injury. Furthermore, we observed that a prolonged 30-day treatment with melatonin can improve the cognitive impairment of animals in the Y-maze test, but not in the object location test. Finally, we demonstrated that animals receiving ICV-STZ have high levels of Aβ and GFAP in the hippocampus and that treatment with melatonin reduces Aβ levels but does not reduce GFAP levels, concluding that melatonin may be useful to control the progression of amyloid pathology in the brain.
Collapse
Key Words
- AD, Alzheimer Disease
- APP, Amyloid precursor protein
- Alzheimer's disease
- Aβ, β-amyloid
- GFAP
- GFAP, Glial fibrillary acidic protein
- ICV-STZ, Intracerebroventricular injection of streptozotocin
- MEL, Melatonin
- MT1, Melatonin Receptor 1
- MT2, Melatonin Receptor 2
- Melatonin
- OLT, Object location test
- STZ, Streptozotocin
- Short-term memory
- Streptozotocin
- TNF-α, Tumor Necrosis factor alpha
- Y maze
- sAD, Sporadic Alzheimer disease
- β-amyloid
Collapse
Affiliation(s)
- Marcos K Andrade
- Department of Pharmacology, Federal University of Paraná, PR, Brazil
| | - Leonardo C Souza
- Department of Pharmacology, Federal University of Paraná, PR, Brazil
| | - Evellyn M Azevedo
- Department of Physiology, Federal University of Paraná, PR, Brazil.,Department of Basic Pathology, Federal University of Paraná, PR, Brazil
| | - Ellen L Bail
- Department of Physiology, Federal University of Paraná, PR, Brazil.,Department of Basic Pathology, Federal University of Paraná, PR, Brazil
| | - Silvio M Zanata
- Department of Basic Pathology, Federal University of Paraná, PR, Brazil
| | | | - Maria A B F Vital
- Department of Pharmacology, Federal University of Paraná, PR, Brazil
| |
Collapse
|
12
|
Ahmad F, Sachdeva P, Sarkar J, Izhaar R. Circadian dysfunction and Alzheimer's disease - An updated review. Aging Med (Milton) 2023; 6:71-81. [PMID: 36911088 PMCID: PMC10000289 DOI: 10.1002/agm2.12221] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease (AD) is considered to be the most typical form of dementia that provokes irreversible cognitive impairment. Along with cognitive impairment, circadian rhythm dysfunction is a fundamental factor in aggravating AD. A link among circadian rhythms, sleep, and AD has been well-documented. The etiopathogenesis of circadian system disruptions and AD serves some general characteristics that also open up the possibility of viewing them as a mutually reliant path. In this review, we have focused on different factors that are related to circadian rhythm dysfunction. The various pathogenic factors, such as amyloid-beta, neurofibrillary tangles, oxidative stress, neuroinflammation, and circadian rhythm dysfunction may all contribute to AD. In this review, we also tried to focus on melatonin which is produced from the pineal gland and can be used to treat circadian dysfunction in AD. Aside from amyloid beta, tau pathology may have a notable influence on sleep. Conclusively, the center of this review is primarily based on the principal mechanistic complexities associated with circadian rhythm disruption, sleep deprivation, and AD, and it also emphasizes the potential therapeutic strategies to treat and prevent the progression of AD.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Medical Elementology and ToxicologyJamia Hamdard UniversityDelhiIndia
| | - Punya Sachdeva
- Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaUttar PradeshIndia
| | - Jasmine Sarkar
- Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaUttar PradeshIndia
| | | |
Collapse
|
13
|
Hu X, Li J, Wang X, Liu H, Wang T, Lin Z, Xiong N. Neuroprotective Effect of Melatonin on Sleep Disorders Associated with Parkinson's Disease. Antioxidants (Basel) 2023; 12:396. [PMID: 36829955 PMCID: PMC9952101 DOI: 10.3390/antiox12020396] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Parkinson's disease (PD) is a complex, multisystem disorder with both neurologic and systemic manifestations, which is usually associated with non-motor symptoms, including sleep disorders. Such associated sleep disorders are commonly observed as REM sleep behavior disorder, insomnia, sleep-related breathing disorders, excessive daytime sleepiness, restless legs syndrome and periodic limb movements. Melatonin has a wide range of regulatory effects, such as synchronizing circadian rhythm, and is expected to be a potential new circadian treatment of sleep disorders in PD patients. In fact, ongoing clinical trials with melatonin in PD highlight melatonin's therapeutic effects in this disease. Mechanistically, melatonin plays its antioxidant, anti-inflammatory, anti-excitotoxity, anti-synaptic dysfunction and anti-apoptotic activities. In addition, melatonin attenuates the effects of genetic variation in the clock genes of Baml1 and Per1 to restore the circadian rhythm. Together, melatonin exerts various therapeutic effects in PD but their specific mechanisms require further investigations.
Collapse
Affiliation(s)
- Xinyu Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinyi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hanshu Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
14
|
Holter KM, Pierce BE, Gould RW. Metabotropic glutamate receptor function and regulation of sleep-wake cycles. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:93-175. [PMID: 36868636 PMCID: PMC10973983 DOI: 10.1016/bs.irn.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metabotropic glutamate (mGlu) receptors are the most abundant family of G-protein coupled receptors and are widely expressed throughout the central nervous system (CNS). Alterations in glutamate homeostasis, including dysregulations in mGlu receptor function, have been indicated as key contributors to multiple CNS disorders. Fluctuations in mGlu receptor expression and function also occur across diurnal sleep-wake cycles. Sleep disturbances including insomnia are frequently comorbid with neuropsychiatric, neurodevelopmental, and neurodegenerative conditions. These often precede behavioral symptoms and/or correlate with symptom severity and relapse. Chronic sleep disturbances may also be a consequence of primary symptom progression and can exacerbate neurodegeneration in disorders including Alzheimer's disease (AD). Thus, there is a bidirectional relationship between sleep disturbances and CNS disorders; disrupted sleep may serve as both a cause and a consequence of the disorder. Importantly, comorbid sleep disturbances are rarely a direct target of primary pharmacological treatments for neuropsychiatric disorders even though improving sleep can positively impact other symptom clusters. This chapter details known roles of mGlu receptor subtypes in both sleep-wake regulation and CNS disorders focusing on schizophrenia, major depressive disorder, post-traumatic stress disorder, AD, and substance use disorder (cocaine and opioid). In this chapter, preclinical electrophysiological, genetic, and pharmacological studies are described, and, when possible, human genetic, imaging, and post-mortem studies are also discussed. In addition to reviewing the important relationships between sleep, mGlu receptors, and CNS disorders, this chapter highlights the development of selective mGlu receptor ligands that hold promise for improving both primary symptoms and sleep disturbances.
Collapse
Affiliation(s)
- Kimberly M Holter
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Bethany E Pierce
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Robert W Gould
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
15
|
Tabibzadeh S. Resolving Geroplasticity to the Balance of Rejuvenins and Geriatrins. Aging Dis 2022; 13:1664-1714. [PMID: 36465174 PMCID: PMC9662275 DOI: 10.14336/ad.2022.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 09/29/2024] Open
Abstract
According to the cell centric hypotheses, the deficits that drive aging occur within cells by age dependent progressive damage to organelles, telomeres, biologic signaling pathways, bioinformational molecules, and by exhaustion of stem cells. Here, we amend these hypotheses and propose an eco-centric model for geroplasticity (aging plasticity including aging reversal). According to this model, youth and aging are plastic and require constant maintenance, and, respectively, engage a host of endogenous rejuvenating (rejuvenins) and gero-inducing [geriatrin] factors. Aging in this model is akin to atrophy that occurs as a result of damage or withdrawal of trophic factors. Rejuvenins maintain and geriatrins adversely impact cellular homeostasis, cell fitness, and proliferation, stem cell pools, damage response and repair. Rejuvenins reduce and geriatrins increase the age-related disorders, inflammatory signaling, and senescence and adjust the epigenetic clock. When viewed through this perspective, aging can be successfully reversed by supplementation with rejuvenins and by reducing the levels of geriatrins.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA 92618, USA
| |
Collapse
|
16
|
Hardeland R. Redox Biology of Melatonin: Discriminating Between Circadian and Noncircadian Functions. Antioxid Redox Signal 2022; 37:704-725. [PMID: 35018802 PMCID: PMC9587799 DOI: 10.1089/ars.2021.0275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022]
Abstract
Melatonin has not only to be seen as a regulator of circadian clocks. In addition to its chronobiotic functions, it displays other actions, especially in cell protection. This includes antioxidant, anti-inflammatory, and mitochondria-protecting effects. Although protection is also modulated by the circadian system, the respective actions of melatonin can be distinguished and differ with regard to dose requirements in therapeutic settings. It is the aim of this article to outline these differences in terms of function, signaling, and dosage. Focus has been placed on both the nexus and the dissecting properties between circadian and noncircadian mechanisms. This has to consider details beyond the classic view of melatonin's role, such as widespread synthesis in extrapineal tissues, formation in mitochondria, effects on the mitochondrial permeability transition pore, and secondary signaling, for example, via upregulation of sirtuins and by regulating noncoding RNAs, especially microRNAs. The relevance of these findings, the differences and connections between circadian and noncircadian functions of melatonin shed light on the regulation of inflammation, including macrophage/microglia polarization, damage-associated molecular patterns, avoidance of cytokine storms, and mitochondrial functions, with numerous consequences to antioxidative protection, that is, aspects of high actuality with regard to deadly viral and bacterial diseases. Antioxid. Redox Signal. 37, 704-725.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Goettingen, Germany
| |
Collapse
|
17
|
Sundram S, Malviya R, Awasthi R. Genetic Causes of Alzheimer's Disease and the Neuroprotective Role of Melatonin in its Management. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-126085. [PMID: 36056839 DOI: 10.2174/1871527321666220901125730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Dementia is a global health concern owing to its complexity, which also poses a great challenge to pharmaceutical scientists and neuroscientists. The global dementia prevalence is approximately 47 million, which may increase by three times by 2050. Alzheimer's disease (AD) is the most common cause of dementia. AD is a severe age-related neurodegenerative disorder characterized by short-term memory loss, aphasia, mood imbalance, and executive function. The etiology of AD is still unknown, and the exact origin of the disease is still under investigation. Aggregation of Amyloid β (Aβ) plaques or neurotoxic Aβo oligomers outside the neuron is the most common cause of AD development. Amyloid precursor protein (APP) processing by β secretase and γ secretase produces abnormal Aβ monomers. This aggregation of Aβ and NFT is promoted by various genes like BACE1, ADAM10, PIN1, GSK-3, APOE, PPARα, etc. Identification of these genes can discover several therapeutic targets that can be useful in studying pathogenesis and underlying treatments. Melatonin modulates the activities of these genes, thereby reducing Aβ production and increasing its clearance. Melatonin also reduces the expression of APP by attenuating cAMP, thereby enhancing the non-amyloidogenic process. Present communication explored and discussed the neuroprotective role of melatonin against Aβ-dependent AD pathogenesis. The manuscript also discussed potential molecular and genetic mechanisms of melatonin in the production and clearance of Aβ that could ameliorate neurotoxicity.
Collapse
Affiliation(s)
- Sonali Sundram
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Science and Technology, University of Petroleum and Energy Studies (UPES), Energy Acres, Bidholi, Via-Prem Nagar, Dehradun - 248 007, Uttarakhand, India
| |
Collapse
|
18
|
Hosseini A, Samadi M, Baeeri M, Rahimifard M, Haghi-Aminjan H. The neuroprotective effects of melatonin against diabetic neuropathy: A systematic review of non-clinical studies. Front Pharmacol 2022; 13:984499. [PMID: 36120309 PMCID: PMC9470957 DOI: 10.3389/fphar.2022.984499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Backgrounds: Diabetes can cause diabetic neuropathy (DN), a nerve injury. High blood sugar (glucose) levels can harm nerves all over your body. The nerves in your legs and feet are the most commonly affected by DN. The purpose of this study was to conduct a review of melatonin’s potential neuroprotective properties against DN. Method: A full systematic search was conducted in several electronic databases (Scopus, PubMed, and Web of Science) up to March 2022 under the PRISMA guidelines. Forty-seven studies were screened using predefined inclusion and exclusion criteria. Finally, the current systematic review included nine publications that met the inclusion criteria. Result: According to in vivo findings, melatonin treatment reduces DN via inhibition of oxidative stress and inflammatory pathways. However, compared to the diabetes groups alone, melatonin treatment exhibited an anti-oxidant trend. According to other research, DN also significantly produces biochemical alterations in neuron cells/tissues. Additionally, histological alterations in neuron tissue following DN were detected. Conclusion: Nonetheless, in the majority of cases, these diabetes-induced biochemical and histological alterations were reversed when melatonin was administered. It is worth noting that the administration of melatonin ameliorates the neuropathy caused by diabetes. Melatonin exerts these neuroprotective effects via various anti-oxidant, anti-inflammatory, and other mechanisms.
Collapse
Affiliation(s)
- Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahedeh Samadi
- Neuroscience Research Center, Iran University of Medical Science, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- *Correspondence: Mahban Rahimifard, ; Hamed Haghi-Aminjan,
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- *Correspondence: Mahban Rahimifard, ; Hamed Haghi-Aminjan,
| |
Collapse
|
19
|
Melatonin in ventricular and subarachnoid cerebrospinal fluid: Its function in the neural glymphatic network and biological significance for neurocognitive health. Biochem Biophys Res Commun 2022; 605:70-81. [DOI: 10.1016/j.bbrc.2022.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022]
|
20
|
Leelaviwat N, Mekraksakit P, Cross KM, Landis DM, McLain M, Sehgal L, Payne JD. Melatonin: Translation of Ongoing Studies Into Possible Therapeutic Applications Outside Sleep Disorders. Clin Ther 2022; 44:783-812. [DOI: 10.1016/j.clinthera.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
|
21
|
Protective Role of Melatonin and Its Metabolites in Skin Aging. Int J Mol Sci 2022; 23:ijms23031238. [PMID: 35163162 PMCID: PMC8835651 DOI: 10.3390/ijms23031238] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The skin, being the largest organ in the human body, is exposed to the environment and suffers from both intrinsic and extrinsic aging factors. The skin aging process is characterized by several clinical features such as wrinkling, loss of elasticity, and rough-textured appearance. This complex process is accompanied with phenotypic and functional changes in cutaneous and immune cells, as well as structural and functional disturbances in extracellular matrix components such as collagens and elastin. Because skin health is considered one of the principal factors representing overall “well-being” and the perception of “health” in humans, several anti-aging strategies have recently been developed. Thus, while the fundamental mechanisms regarding skin aging are known, new substances should be considered for introduction into dermatological treatments. Herein, we describe melatonin and its metabolites as potential “aging neutralizers”. Melatonin, an evolutionarily ancient derivative of serotonin with hormonal properties, is the main neuroendocrine secretory product of the pineal gland. It regulates circadian rhythmicity and also exerts anti-oxidative, anti-inflammatory, immunomodulatory, and anti-tumor capacities. The intention of this review is to summarize changes within skin aging, research advances on the molecular mechanisms leading to these changes, and the impact of the melatoninergic anti-oxidative system controlled by melatonin and its metabolites, targeting the prevention or reversal of skin aging.
Collapse
|
22
|
Mitochondrial Oxidative Stress-A Causative Factor and Therapeutic Target in Many Diseases. Int J Mol Sci 2021; 22:ijms222413384. [PMID: 34948180 PMCID: PMC8707347 DOI: 10.3390/ijms222413384] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
The excessive formation of reactive oxygen species (ROS) and impairment of defensive antioxidant systems leads to a condition known as oxidative stress. The main source of free radicals responsible for oxidative stress is mitochondrial respiration. The deleterious effects of ROS on cellular biomolecules, including DNA, is a well-known phenomenon that can disrupt mitochondrial function and contribute to cellular damage and death, and the subsequent development of various disease processes. In this review, we summarize the most important findings that implicated mitochondrial oxidative stress in a wide variety of pathologies from Alzheimer disease (AD) to autoimmune type 1 diabetes. This review also discusses attempts to affect oxidative stress as a therapeutic avenue.
Collapse
|
23
|
Baranov SV, Jauhari A, Carlisle DL, Friedlander RM. Two hit mitochondrial-driven model of synapse loss in neurodegeneration. Neurobiol Dis 2021; 158:105451. [PMID: 34298088 DOI: 10.1016/j.nbd.2021.105451] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/21/2021] [Accepted: 07/18/2021] [Indexed: 01/11/2023] Open
Abstract
In healthy neurons, a mitochondrial membrane potential gradient exists whereby membrane potential is highest in the soma and decreases with distance from the nucleus. Correspondingly, distal mitochondria have more oxidative damage and slower protein import than somal mitochondria. Due to these differences, distal mitochondria have an intrinsic first stressor that somal mitochondria do not have, resulting in synaptic mitochondrial vulnerability. A second stressor may result from mutant protein expression, situational stress, or aging, exacerbating vulnerable mitochondria activating stress responses. Under these conditions, distal mitochondria release cytochrome c and mitochondrial DNA, leading to compartmentalized sub-lethal caspase-3 activation and cytokine production. In this two-hit mitochondrial-driven synaptic loss model, synapse vulnerability during neurodegeneration is explained as a superposition of pre-existing lower synaptic mitochondrial membrane potential (hit one) with additional mitochondrial stress (hit two). This two-hit mechanism occurs in synaptic mitochondria, activating signaling pathways leading to synaptic degeneration, as a potential preamble to neuronal death.
Collapse
Affiliation(s)
- Sergei V Baranov
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Abhishek Jauhari
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Diane L Carlisle
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Robert M Friedlander
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| |
Collapse
|
24
|
Juszczyk G, Mikulska J, Kasperek K, Pietrzak D, Mrozek W, Herbet M. Chronic Stress and Oxidative Stress as Common Factors of the Pathogenesis of Depression and Alzheimer's Disease: The Role of Antioxidants in Prevention and Treatment. Antioxidants (Basel) 2021; 10:antiox10091439. [PMID: 34573069 PMCID: PMC8470444 DOI: 10.3390/antiox10091439] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
There is a growing body of scientific research showing the link between depression and dementia in Alzheimer’s disease (AD). The chronic stress contributes to the formation of oxidative stress in the parts of the brain involved in the development of depression and AD. The scientific literature reports the significant role of antioxidants, which are highly effective in treating these diseases. In this review, we have summarized the relationship between chronic stress, oxidative stress, and the changes in the brain they cause occurring in the brain. Among all the compounds showing antioxidant properties, the most promising results in AD treatment were observed for Vitamin E, coenzyme Q10 (CoQ10), melatonin, polyphenols, curcumin, and selenium. In case of depression treatment, the greatest potential was observed in curcumin, zinc, selenium, vitamin E, and saffron.
Collapse
|
25
|
Melatonin, Its Metabolites and Their Interference with Reactive Nitrogen Compounds. Molecules 2021; 26:molecules26134105. [PMID: 34279445 PMCID: PMC8271479 DOI: 10.3390/molecules26134105] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Melatonin and several of its metabolites are interfering with reactive nitrogen. With the notion of prevailing melatonin formation in tissues that exceeds by far the quantities in blood, metabolites come into focus that are poorly found in the circulation. Apart from their antioxidant actions, both melatonin and N1-acetyl-5-methoxykynuramine (AMK) downregulate inducible and inhibit neuronal NO synthases, and additionally scavenge NO. However, the NO adduct of melatonin redonates NO, whereas AMK forms with NO a stable product. Many other melatonin metabolites formed in oxidative processes also contain nitrosylatable sites. Moreover, AMK readily scavenges products of the CO2-adduct of peroxynitrite such as carbonate radicals and NO2. Protein AMKylation seems to be involved in protective actions.
Collapse
|
26
|
Reyes-Corral M, Sola-Idígora N, de la Puerta R, Montaner J, Ybot-González P. Nutraceuticals in the Prevention of Neonatal Hypoxia-Ischemia: A Comprehensive Review of their Neuroprotective Properties, Mechanisms of Action and Future Directions. Int J Mol Sci 2021; 22:2524. [PMID: 33802413 PMCID: PMC7959318 DOI: 10.3390/ijms22052524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) is a brain injury caused by oxygen deprivation to the brain due to birth asphyxia or reduced cerebral blood perfusion, and it often leads to lifelong limiting sequelae such as cerebral palsy, seizures, or mental retardation. HI remains one of the leading causes of neonatal mortality and morbidity worldwide, and current therapies are limited. Hypothermia has been successful in reducing mortality and some disabilities, but it is only applied to a subset of newborns that meet strict inclusion criteria. Given the unpredictable nature of the obstetric complications that contribute to neonatal HI, prophylactic treatments that prevent, rather than rescue, HI brain injury are emerging as a therapeutic alternative. Nutraceuticals are natural compounds present in the diet or used as dietary supplements that have antioxidant, anti-inflammatory, or antiapoptotic properties. This review summarizes the preclinical in vivo studies, mostly conducted on rodent models, that have investigated the neuroprotective properties of nutraceuticals in preventing and reducing HI-induced brain damage and cognitive impairments. The natural products reviewed include polyphenols, omega-3 fatty acids, vitamins, plant-derived compounds (tanshinones, sulforaphane, and capsaicin), and endogenous compounds (melatonin, carnitine, creatine, and lactate). These nutraceuticals were administered before the damage occurred, either to the mothers as a dietary supplement during pregnancy and/or lactation or to the pups prior to HI induction. To date, very few of these nutritional interventions have been investigated in humans, but we refer to those that have been successful in reducing ischemic stroke in adults. Overall, there is a robust body of preclinical evidence that supports the neuroprotective properties of nutraceuticals, and these may represent a safe and inexpensive nutritional strategy for the prevention of neonatal HI encephalopathy.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Noelia Sola-Idígora
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Rocío de la Puerta
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Joan Montaner
- Neurovascular Research Lab, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| | - Patricia Ybot-González
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| |
Collapse
|
27
|
Lin CH, Chiu CC, Lane HY. Trough Melatonin Levels Differ between Early and Late Phases of Alzheimer Disease. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:135-144. [PMID: 33508797 PMCID: PMC7851471 DOI: 10.9758/cpn.2021.19.1.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022]
Abstract
Objective Melatonin has been considered to have an essential role in the pathophysiology of Alzheimer’s disease (AD) for its regulatory function on circadian rhythm and interaction with glutamate for the modulation of learning and memory. Previous studies revealed that melatonin levels decreased in patients with AD. However, melatonin supplement didn’t show promising efficacy for AD. This study compared trough melatonin levels among elderly people with different severities of cognitive deficits. Methods We enrolled 270 elder individuals (consisting four groups healthy elderly, amnestic mild cognitive impairment [MCI], mild AD, and moderate-severe AD) in the learning cohort. Trough melatonin levels in plasma were measured using ELISA. Cognitive function was evaluated by Clinical Dementia Rating Scale (CDR) and Mini-Mental State Examination (MMSE). An independent testing cohort, also consisting of four groups, was enrolled for ascertainment. Results In the learning cohort, trough melatonin levels decreased in the MCI group but elevated in the mild and moderate to severe AD groups. Trough melatonin levels were associated with CDR and MMSE in MCI or AD patients significantly. In the testing cohort, the results were similar to those in the learning cohort. Conclusion This study demonstrated that trough melatonin levels in the peripheral blood were decreased in MCI but increased with the severity of AD. The finding supports the trials indicating that melatonin showed efficacy only in MCI but not in AD. Whether trough melatonin level has potential to be a treatment response biomarker for AD, especially its early phase needs further studies.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taipei, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Chiang Chiu
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei, Taiwan.,Department of Psychiatry, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taipei, Taiwan.,Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| |
Collapse
|
28
|
Nous A, Engelborghs S, Smolders I. Melatonin levels in the Alzheimer's disease continuum: a systematic review. ALZHEIMERS RESEARCH & THERAPY 2021; 13:52. [PMID: 33622399 PMCID: PMC7903801 DOI: 10.1186/s13195-021-00788-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
Background The search for new Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and blood biomarkers with potential pathophysiological and clinical relevance continues, as new biomarkers might lead to improved early and differential diagnosis, monitoring of disease progression and might even identify new druggable targets. Melatonin might be an interesting biomarker as an inverse correlation between CSF melatonin levels, and severity of the neuropathology as measured by Braak stages has been described. Melatonin can be measured in different body fluids, such as CSF, blood, saliva and urine. Objectives The aim of this systematic review was to review all available studies regarding melatonin levels in different body fluids in the AD continuum and give an extensive overview of reported outcomes. Methods We included papers comparing melatonin levels between healthy controls and human patients belonging to the AD continuum. A systematic search of PubMed and Web of Science led to inclusion of 20 full-length English papers following exclusion of duplicates. Results This systematic literature search showed that disruptions in melatonin levels occur with age, but also in AD when compared to age-matched controls. Night-time melatonin levels were found to be lower in CSF and blood of AD patients as compared to controls. Literature was not conclusive regarding alterations in blood daytime melatonin levels or regarding saliva melatonin in AD patients. Decreased total and night-time melatonin production has been described in urine of AD patients. Conclusion Our systematic review shows evidence for disruptions in (night-time) melatonin levels in AD as compared to age-matched controls. Although more studies are needed to understand the contribution of disruption of the melatonergic system to the pathophysiology of AD, the potential anti-AD effects that have been attributed to melatonin, renders research on this topic relevant for the discovery of potential future treatment effects of melatonin for AD. The use of melatonin as potential blood biomarker for disease progression should also be further investigated.
Collapse
Affiliation(s)
- Amber Nous
- Research group Experimental Pharmacology (EFAR), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.,Department of Neurology, UZ Brussel, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium.,Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Department of Neurology, UZ Brussel, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium. .,Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | - Ilse Smolders
- Research group Experimental Pharmacology (EFAR), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| |
Collapse
|
29
|
Pan X, Liu X, Zhuang X, Liu Y, Li S. Co-delivery of dexamethasone and melatonin by drugs laden PLGA nanoparticles for the treatment of glaucoma. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
30
|
Li Y, Lv Y, Bian C, You X, Shi Q. Molecular evolution of melatonin receptor genes (mtnr) in vertebrates and its shedding light on mtnr1c. Gene 2020; 769:145256. [PMID: 33164759 DOI: 10.1016/j.gene.2020.145256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Melatonin receptors (MTNRs) play important roles in regulation of circadian rhythms and seasonal reproduction. However, their origin and evolution in vertebrates have not been investigated. Here, we performed a comprehensive examination by comparative genome mining of MTNRs in vertebrates. We successfully extracted 164 putative encoding sequences for MTNRs (including 57 mtnr1a, 59 mtnr1b and 48 mtnr1c) from 45 high-quality representative genomes. Interestingly, the putative expansions of mtnr1a and mtnr1b in zebrafish were also identified in other Cyprinifomes, but not in other orders of teleost. Using phylogenetic interference, we observed this expansion to be clustered into a primitive position of the Actinopterygii, which may be resulted from teleost-specific genome duplication. The C-terminal extension of MTNR1C, predicted to be proteoglycan 4 (PRG4), originated after the speciation of Monotremata or Marsupialia. Our present genomics survey provides novel insights into the evolution of MTNRs in vertebrates and updates our understanding of these proteins.
Collapse
Affiliation(s)
- Yanping Li
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Yunyun Lv
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| |
Collapse
|
31
|
Khan S, Khurana M, Vyas P, Vohora D. The role of melatonin and its analogues in epilepsy. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2019-0088/revneuro-2019-0088.xml. [PMID: 32950966 DOI: 10.1515/revneuro-2019-0088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/01/2020] [Indexed: 12/31/2022]
Abstract
Extensive research has gone into proposing a promising link between melatonin administration and attenuation of epileptic activity, the majority of which suggest its propensity as an antiseizure with antioxidant and neuroprotective properties. In the past few years, a number of studies highlighting the association of the melatonergic ligands with epilepsy have also emerged. In this context, our review is based on discussing the recent studies and various mechanisms of action that the said category of drugs exhibit in the context of being therapeutically viable antiseizure drugs. Our search revealed several articles on the four major drugs i.e. melatonin, agomelatine, ramelteon and piromelatine along with other melatonergic agonists like tasimelteon and TIK-301. Our review is suggestive of antiseizure effects of both melatonin and its analogues; however, extensive research work is still required to study their implications in the treatment of persons with epilepsy. Further evaluation of melatonergic signaling pathways and mechanisms may prove to be helpful in the near future and might prove to be a significant advance in the field of epileptology.
Collapse
Affiliation(s)
- Sumaira Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mallika Khurana
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Preeti Vyas
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
32
|
Miranda-Díaz AG, García-Sánchez A, Cardona-Muñoz EG. Foods with Potential Prooxidant and Antioxidant Effects Involved in Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6281454. [PMID: 32832004 PMCID: PMC7424374 DOI: 10.1155/2020/6281454] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/02/2020] [Accepted: 07/18/2020] [Indexed: 12/20/2022]
Abstract
Oxidative stress plays a fundamental role in the pathogenesis of Parkinson's disease (PD). Oxidative stress appears to be responsible for the gradual dysfunction that manifests via numerous cellular pathways throughout PD progression. This review will describe the prooxidant effect of excessive consumption of processed food. Processed meat can affect health due to its high sodium content, advanced lipid oxidation end-products, cholesterol, and free fatty acids. During cooking, lipids can react with proteins to form advanced end-products of lipid oxidation. Excessive consumption of different types of carbohydrates is a risk factor for PD. The antioxidant effects of some foods in the regular diet provide an inconclusive interpretation of the environment's mechanisms with the modulation of oxidation stress-induced PD. Some antioxidant molecules are known whose primary mechanism is the neuroprotective effect. The melatonin mechanism consists of neutralizing reactive oxygen species (ROS) and inducing antioxidant enzyme's expression and activity. N-acetylcysteine protects against the development of PD by restoring levels of brain glutathione. The balanced administration of vitamin B3, ascorbic acid, vitamin D and the intake of caffeine every day seem beneficial for brain health in PD. Excessive chocolate intake could have adverse effects in PD patients. The findings reported to date do not provide clear benefits for a possible efficient therapeutic intervention by consuming the nutrients that are consumed regularly.
Collapse
Affiliation(s)
| | - Andrés García-Sánchez
- Department of Physiology, University Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ernesto Germán Cardona-Muñoz
- Department of Physiology, University Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
33
|
Tobore TO. On the Etiopathogenesis and Pathophysiology of Alzheimer's Disease: A Comprehensive Theoretical Review. J Alzheimers Dis 2020; 68:417-437. [PMID: 30775973 DOI: 10.3233/jad-181052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimers' disease (AD) is the most common cause of dementia, with an estimated 5 million new cases occurring annually. Among the elderly, AD shortens life expectancy, results in disability, decreases quality of life, and ultimately, leads to institutionalization. Despite extensive research in the last few decades, its heterogeneous pathophysiology and etiopathogenesis have made it difficult to develop an effective treatment and prevention strategy. Aging is the biggest risk factor for AD and evidence suggest that the total number of older people in the population is going to increase astronomically in the next decades. Also, there is evidence that air pollution and increasing income inequality may result in higher incidence and prevalence of AD. This makes the need for a comprehensive understanding of the etiopathogenesis and pathophysiology of the disease extremely critical. In this paper, a quintuple framework of thyroid dysfunction, vitamin D deficiency, sex hormones, and mitochondria dysfunction and oxidative stress are used to provide a comprehensive description of AD etiopathogenesis and pathophysiology. The individual role of each factor, their synergistic and genetic interactions, as well as the limitations of the framework are discussed.
Collapse
|
34
|
Mihardja M, Roy J, Wong KY, Aquili L, Heng BC, Chan YS, Fung ML, Lim LW. Therapeutic potential of neurogenesis and melatonin regulation in Alzheimer's disease. Ann N Y Acad Sci 2020; 1478:43-62. [PMID: 32700392 DOI: 10.1111/nyas.14436] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by the hallmark pathologies of amyloid-beta plaques and neurofibrillary tangles. Symptoms of this devastating disease include behavioral changes and deterioration of higher cognitive functions. Impairment of neurogenesis has also been shown to occur in AD, which adversely impacts new neuronal cell growth, differentiation, and survival. This impairment possibly results from the cumulative effects of the various pathologies of AD. Preclinical studies have suggested that the administration of melatonin-the pineal hormone primarily responsible for the regulation of the circadian rhythm-targets the effects of AD pathologies and improves cognitive impairment. It is postulated that by mitigating the effect of these pathologies, melatonin can also rescue neurogenesis impairment. This review aims to explore the effect of AD pathologies on neurogenesis, as well as the mechanisms by which melatonin is able to ameliorate AD pathologies to potentially promote neurogenesis.
Collapse
Affiliation(s)
- Mazel Mihardja
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jaydeep Roy
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kan Yin Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Luca Aquili
- Division of Psychology, College of Health and Human Sciences, Charles Darwin University, Darwin, Australia
| | - Boon Chin Heng
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia.,Peking University School of Stomatology, Beijing, China
| | - Ying-Shing Chan
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Man Lung Fung
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia
| |
Collapse
|
35
|
Sinha AK, Romano N, Shrivastava J, Monico J, Bishop WM. Oxidative stress, histopathological alterations and anti-oxidant capacity in different tissues of largemouth bass (Micropterus salmoides) exposed to a newly developed sodium carbonate peroxyhydrate granular algaecide formulated with hydrogen peroxide. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105348. [PMID: 31812647 DOI: 10.1016/j.aquatox.2019.105348] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/26/2019] [Accepted: 10/26/2019] [Indexed: 05/28/2023]
Abstract
Various strategies exist to control noxious cyanobacterial populations, although the application of a newly developed granular compound (sodium carbonate peroxyhydrate 'SCP', trade name 'PAK® 27' algaecide) containing hydrogen peroxide (H2O2) as the active ingredient, has been recently proven as an effective and ecofriendly treatment. However, in aquaculture settings the application of SCP to treat cynobacterial blooms may affect non-targeted biota, such as fish due to H2O2 being known to elicit toxic oxidative stress. Consequently, a better understanding of the side effects as a function of dosing concentrations would help to improve treatment efficacy and fish welfare. Thus, the aim of the current study is to assess the potential risks of SCP to largemouth bass (Micropterus salmoides), a high priced fish in the U.S. To this end, fish were exposed to two recommended doses of SCP corresponding to either 2.5 or 4.0 mg/L H2O2 for 6 days, with a control group in parallel. After 6 days, the effect of SCP exposure on oxidative stress, histopathological changes and anti-oxidant potential in the brain, liver, gills and muscle were investigated. Results show that exposure to 4.0 mg/L H2O2 -SCP incited oxidative damage, evidenced by an over-accumulation of H2O2 and malondialdehyde (MDA) in the brain and liver, which were accompanied by an increment in xanthine oxidase activity. Unlike 4.0 mg/L H2O2, these oxidative stress biomarkers in the brain and liver tissue of 2.5 mg/L H2O2-SCP exposed fish were restrained within control levels and concomitant with an increase in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione-s-transferase (GST) activity. In contrast, many of these anti-oxidants sentinels in the 4.0 mg/L H2O2 exposed fish were either unaffected or significantly inhibited, which resulted in over-accumulation of H2O2 and MDA. In addition, a series of histopathological alterations were observed, and the most severe brain injuries and liver inflammation were recorded in 4.0 mg/L H2O2-SCP exposed fish. Based on oxidative parameters, both SCP doses resulted in a relatively mild oxidative stress in gills but no effect in muscle, probably explaining the modest anti-oxidative responses in the former and almost complete lack of anti-oxidative responses in the latter. Overall, our findings suggests that the application of SCP at 4.0 mg/L H2O2 to control cyanobacterial blooms in aquaculture settings can possess potential risks to the farmed fish.
Collapse
Affiliation(s)
- Amit Kumar Sinha
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601 AR, USA
| | - Nicholas Romano
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601 AR, USA.
| | - Jyotsna Shrivastava
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020, Antwerp, Belgium
| | - Jesus Monico
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - West M Bishop
- SePRO Research and Technology Campus, 16013 Watson Seed Farm Rd., Whitakers, NC 27891, USA
| |
Collapse
|
36
|
Adverse Events Associated with Melatonin for the Treatment of Primary or Secondary Sleep Disorders: A Systematic Review. CNS Drugs 2019; 33:1167-1186. [PMID: 31722088 DOI: 10.1007/s40263-019-00680-w] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Melatonin is widely available either on prescription for the treatment of sleep disorders or as an over-the-counter dietary supplement. Melatonin has also recently been licensed in the UK for the short-term treatment of jetlag. Little is known about the potential for adverse events (AEs), in particular AEs resulting from long-term use. Concern has been raised over the possible risks of exposure in certain populations including pre-adolescent children and patients with epilepsy or asthma. OBJECTIVES The aim of this systematic review was to assess the evidence for AEs associated with short-term and longer-term melatonin treatment for sleep disorders. METHODS A literature search of the PubMed/Medline database and Google Scholar was conducted to identify randomised, placebo-controlled trials (RCTs) of exogenous melatonin administered for primary or secondary sleep disorders. Studies were included if they reported on both the types and frequencies of AEs. Studies of pre-term infants, studies of < 1 week in duration or involving single doses of melatonin and studies in languages other than English were excluded. Findings from open-label studies that raised concerns relating to AE reports in patients were also examined. Studies were assessed for quality of reporting against the Consolidated Standards of Reporting Trials (CONSORT) checklist and for risk of bias against the Cochrane Collaboration risk-of-bias criteria. RESULTS 37 RCTs met criteria for inclusion. Daily melatonin doses ranged from 0.15 mg to 12 mg. Subjects were monitored for up to 29 weeks, but most studies were of much shorter duration (4 weeks or less). The most frequently reported AEs were daytime sleepiness (1.66%), headache (0.74%), other sleep-related AEs (0.74%), dizziness (0.74%) and hypothermia (0.62%). Very few AEs considered to be serious or of clinical significance were reported. These included agitation, fatigue, mood swings, nightmares, skin irritation and palpitations. Most AEs either resolved spontaneously within a few days with no adjustment in melatonin, or immediately upon withdrawal of treatment. Melatonin was generally regarded as safe and well tolerated. Many studies predated publication of the CONSORT checklist and consequently did not conform closely to the guidelines. Similarly, only eight studies were judged 'good' overall with respect to the Cochrane risk-of-bias criteria. Of the remaining papers, 16 were considered 'fair' and 13 'poor' but publication of almost half of the papers preceded that of the earliest version of the guidelines. CONCLUSION Few, generally mild to moderate, AEs were associated with exogenous melatonin. No AEs that were life threatening or of major clinical significance were identified. The scarcity of evidence from long-term RCTs, however, limits the conclusions regarding the safety of continuous melatonin therapy over extended periods. There are insufficient robust data to allow a meaningful appraisal of concerns that melatonin may result in more clinically significant adverse effects in potentially at-risk populations. Future studies should be designed to comply with appropriate quality standards for RCTs, which most past studies have not.
Collapse
|
37
|
Menegardo CS, Friggi FA, Scardini JB, Rossi TS, Vieira TDS, Tieppo A, Morelato RL. Sundown syndrome in patients with Alzheimer's disease dementia. Dement Neuropsychol 2019; 13:469-474. [PMID: 31844502 PMCID: PMC6907707 DOI: 10.1590/1980-57642018dn13-040015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The sundown syndrome is a complex neurobehavioral disorder in patients with
dementia associated with high financial cost and significant caregiver burden.
It is a multifactorial phenomenon with unclear pathophysiology, characterized by
the presence of neuropsychiatric symptoms in the evening period.
Collapse
Affiliation(s)
- Cristiani Sartorio Menegardo
- Pós-graduanda em Geriatria pelo Hospital Santa Casa de Misericórdia de Vitória, Escola Superior de Ciências da Santa Casa de Misericórida de Vitória, ES, Brasil
| | - Fernanda Alencar Friggi
- Pós-graduanda em Geriatria pelo Hospital Santa Casa de Misericórdia de Vitória, Escola Superior de Ciências da Santa Casa de Misericórida de Vitória, ES, Brasil
| | - Julia Baldon Scardini
- Estudante de Medicina de Iniciação Científica - PIVIC (Programa de Iniciação Científica Voluntária) pelo Hospital Santa Casa de Misericórdia de Vitória, Escola Superior de Ciências da Santa Casa de Misericórida de Vitória, ES, Brasil
| | - Tais Souza Rossi
- Estudante de Medicina de Iniciação Científica - PIVIC (Programa de Iniciação Científica Voluntária) pelo Hospital Santa Casa de Misericórdia de Vitória, Escola Superior de Ciências da Santa Casa de Misericórida de Vitória, ES, Brasil
| | - Thais Dos Santos Vieira
- Estudante de Medicina de Iniciação Científica - PIVIC (Programa de Iniciação Científica Voluntária) pelo Hospital Santa Casa de Misericórdia de Vitória, Escola Superior de Ciências da Santa Casa de Misericórida de Vitória, ES, Brasil
| | - Alessandra Tieppo
- Mestre em Políticas Públicas e Desenvolvimento Local, Professora Assistente de Geriatria pelo Hospital Santa Casa de Misericórdia de Vitória, Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória, ES, Brasil
| | - Renato Lirio Morelato
- Doutor em Ciências Fisiológicas, Professor Adjunto e Supervisor do programa de Geriatria do Hospital Santa Casa de Misericórdia de Vitória, Escola Superior de Ciências da Santa Casa de Misericórida de Vitória, ES, Brasil
| |
Collapse
|
38
|
Ullah R, Khan M, Shah SA, Saeed K, Kim MO. Natural Antioxidant Anthocyanins-A Hidden Therapeutic Candidate in Metabolic Disorders with Major Focus in Neurodegeneration. Nutrients 2019; 11:E1195. [PMID: 31141884 PMCID: PMC6628002 DOI: 10.3390/nu11061195] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
All over the world, metabolic syndrome constitutes severe health problems. Multiple factors have been reported in the pathogenesis of metabolic syndrome. Metabolic disorders result in reactive oxygen species (ROS) induced oxidative stress, playing a vital role in the development and pathogenesis of major health issues, including neurological disorders Alzheimer's disease (AD) Parkinson's disease (PD). Considerable increasing evidence indicates the substantial contribution of ROS-induced oxidative stress in neurodegenerative diseases. An imbalanced metabolism results in a defective antioxidant defense system, free radicals causing inflammation, cellular apoptosis, and tissue damage. Due to the annual increase in financial and social burdens, in addition to the adverse effects associated with available synthetic agents, treatment diversion from synthetic to natural approaches has occurred. Antioxidants are now being considered as convincing therapeutic agents against various neurodegenerative disorders. Therefore, medicinal herbs and fruits currently receive substantially more attention as commercial sources of antioxidants. In this review, we argue that ROS-targeted therapeutic interventions with naturally occurring antioxidant flavonoid, anthocyanin, and anthocyanin-loaded nanoparticles might be the ultimate treatment against devastating illnesses. Furthermore, we elucidate the hidden potential of the neuroprotective role of anthocyanins and anthocyanin-loaded nanoparticles in AD and PD neuropathies, which lack sufficient attention compared with other polyphenols, despite their strong antioxidant potential. Moreover, we address the need for future research studies of native anthocyanins and nano-based-anthocyanins, which will be helpful in developing anthocyanin treatments as therapeutic mitochondrial antioxidant drug-like regimens to delay or prevent the progression of neurodegenerative diseases, such as AD and PD.
Collapse
Affiliation(s)
- Rahat Ullah
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Mehtab Khan
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Shahid Ali Shah
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
- Department of Chemistry, Sarhad University of Science & Information Technology (SUIT), Peshawar Khyber Pakhtunkhwa 25000, Pakistan.
| | - Kamran Saeed
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
39
|
Tobore TO. On the central role of mitochondria dysfunction and oxidative stress in Alzheimer's disease. Neurol Sci 2019; 40:1527-1540. [PMID: 30982132 DOI: 10.1007/s10072-019-03863-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/20/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the commonest cause of dementia, with approximately 5 million new cases occurring annually. Despite decades of research, its complex pathophysiology and etiopathogenesis presents a major hindrance to the development of an effective treatment and prevention strategy. Aging is the biggest risk factor for the development of AD, and the total number of older people in the population is going to significantly increase in the next decades, suggesting that AD incidence and prevalence is likely to increase in the future. This makes the need for a better understanding of the disease to be extremely urgent. METHODS A search was done by accessing PubMed/Medline, EBSCO, and PsycINFO databases. The search string used was "(dementia* OR Alzheimer's) AND (pathophysiology* OR pathogenesis)". New key terms were identified (new term included "vitamin D, thyroid hormone, mitochondria dysfunction, oxidative stress, testosterone, estrogen, melatonin, progesterone, luteinizing hormone, amyloid-β (Aβ), and hyperphosphorylated tau"). The electronic databases were searched for titles or abstracts containing these terms in all published articles between January 1, 1965, and January 31, 2019. The search was limited to studies published in English and other languages involving both animal and human subjects. RESULTS Mitochondria dysfunction and oxidative stress play a critical role in AD etiopathogenesis and pathophysiology. CONCLUSION AD treatment and prevention strategies must be geared towards improving mitochondrial function and attenuating oxidative stress.
Collapse
|
40
|
Herzog–Krzywoszanska R, Krzywoszanski L. Sleep Disorders in Huntington's Disease. Front Psychiatry 2019; 10:221. [PMID: 31031659 PMCID: PMC6474183 DOI: 10.3389/fpsyt.2019.00221] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
Huntington's chorea (Huntington's disease, HD) is a genetic disorder caused by autosomal dominant mutation, leading to progressive neurodegenerative changes in the central nervous system. Involuntary movements such as chorea occur typically in HD patients, accompanied by progressive cognitive and psychiatric disturbances. Other common symptoms of HD are circadian and sleep abnormalities, which are observed from the earliest stages of the disease or even before the occurrence of clinical symptoms. The most common sleep problems reported by HD patients include insomnia, difficulties in falling asleep, frequent nocturnal awakenings, and excessive daytime sleepiness. Also, specific changes in sleep architecture have been identified in HD. In this paper, we review studies on sleep and circadian rhythm disorders in HD. We outline findings concerning sleep patterns and disturbances of circadian rhythms in HD patients, as well as the role of psychiatric disorders and motor disorders in HD patients' sleep problems. We also discuss problems related to the different methods of diagnosing sleep disorders in HD. Furthermore, the adverse effects of medication used for the treatment of core HD symptoms as one of the sources of sleep disturbances in HD are emphasized. In conclusion, the diversity and complexity of the determinants of sleep and circadian rhythm disorders in HD are highlighted. Finally, the relevance of effective treatment to improve patients' functioning and quality of life as well as the potential relief of their cognitive and emotional symptoms is addressed.
Collapse
Affiliation(s)
| | - Lukasz Krzywoszanski
- Neurocognitive Psychology Unit, Chair of Psychology, Faculty of Pedagogy, Pedagogical University of Krakow, Krakow, Poland
| |
Collapse
|
41
|
Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci 2019; 20:ijms20051223. [PMID: 30862067 PMCID: PMC6429360 DOI: 10.3390/ijms20051223] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Aging and various age-related diseases are associated with reductions in melatonin secretion, proinflammatory changes in the immune system, a deteriorating circadian system, and reductions in sirtuin-1 (SIRT1) activity. In non-tumor cells, several effects of melatonin are abolished by inhibiting SIRT1, indicating mediation by SIRT1. Melatonin is, in addition to its circadian and antioxidant roles, an immune stimulatory agent. However, it can act as either a pro- or anti-inflammatory regulator in a context-dependent way. Melatonin can stimulate the release of proinflammatory cytokines and other mediators, but also, under different conditions, it can suppress inflammation-promoting processes such as NO release, activation of cyclooxygenase-2, inflammasome NLRP3, gasdermin D, toll-like receptor-4 and mTOR signaling, and cytokine release by SASP (senescence-associated secretory phenotype), and amyloid-β toxicity. It also activates processes in an anti-inflammatory network, in which SIRT1 activation, upregulation of Nrf2 and downregulation of NF-κB, and release of the anti-inflammatory cytokines IL-4 and IL-10 are involved. A perhaps crucial action may be the promotion of macrophage or microglia polarization in favor of the anti-inflammatory phenotype M2. In addition, many factors of the pro- and anti-inflammatory networks are subject to regulation by microRNAs that either target mRNAs of the respective factors or upregulate them by targeting mRNAs of their inhibitor proteins.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
42
|
Shukla M, Chinchalongporn V, Govitrapong P, Reiter RJ. The role of melatonin in targeting cell signaling pathways in neurodegeneration. Ann N Y Acad Sci 2019; 1443:75-96. [PMID: 30756405 DOI: 10.1111/nyas.14005] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are typified by neuronal loss associated with progressive dysfunction and clinical presentation. Neurodegenerative diseases are characterized by the intra- and extracellular conglomeration of misfolded proteins that occur because of abnormal protein dynamics and genetic manipulations; these trigger processes of cell death in these disorders. The disrupted signaling mechanisms involved are oxidative stress-mediated mitochondrial and calcium signaling deregulation, alterations in immune and inflammatory signaling, disruption of autophagic integrity, proteostasis dysfunction, and anomalies in the insulin, Notch, and Wnt/β-catenin signaling pathways. Herein, we accentuate some of the contemporary translational approaches made in characterizing the underlying mechanisms of neurodegeneration. Melatonin-induced cognitive enhancement and inhibition of oxidative signaling substantiates the efficacy of melatonin in combating neurodegenerative processes. Our review considers in detail the possible roles of melatonin in understanding the synergistic pathogenic mechanisms between aggregated proteins and in regulating, modulating, and preventing the altered signaling mechanisms discovered in cellular and animal models along with clinical evaluations pertaining to neurodegeneration. Furthermore, this review showcases the therapeutic potential of melatonin in preventing and treating neurodegenerative diseases with optimum prognosis.
Collapse
Affiliation(s)
- Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Vorapin Chinchalongporn
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center San Antonio, San Antonio, Texas
| |
Collapse
|
43
|
Melatonin Levels in Patients With Primary Open-angle Glaucoma With High or Low Intraocular Pressure. J Glaucoma 2019; 28:154-160. [DOI: 10.1097/ijg.0000000000001130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Hardeland R. Melatonin and inflammation-Story of a double-edged blade. J Pineal Res 2018; 65:e12525. [PMID: 30242884 DOI: 10.1111/jpi.12525] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Melatonin is an immune modulator that displays both pro- and anti-inflammatory properties. Proinflammatory actions, which are well documented by many studies in isolated cells or leukocyte-derived cell lines, can be assumed to enhance the resistance against pathogens. However, they can be detrimental in autoimmune diseases. Anti-inflammatory actions are of particular medicinal interest, because they are observed in high-grade inflammation such as sepsis, ischemia/reperfusion, and brain injury, and also in low-grade inflammation during aging and in neurodegenerative diseases. The mechanisms contributing to anti-inflammatory effects are manifold and comprise various pathways of secondary signaling. These include numerous antioxidant effects, downregulation of inducible and inhibition of neuronal NO synthases, downregulation of cyclooxygenase-2, inhibition of high-mobility group box-1 signaling and toll-like receptor-4 activation, prevention of inflammasome NLRP3 activation, inhibition of NF-κB activation and upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2). These effects are also reflected by downregulation of proinflammatory and upregulation of anti-inflammatory cytokines. Proinflammatory actions of amyloid-β peptides are reduced by enhancing α-secretase and inhibition of β- and γ-secretases. A particular role in melatonin's actions seems to be associated with the upregulation of sirtuin-1 (SIRT1), which shares various effects known from melatonin and additionally interferes with the signaling by the mechanistic target of rapamycin (mTOR) and Notch, and reduces the expression of the proinflammatory lncRNA-CCL2. The conclusion on a partial mediation by SIRT1 is supported by repeatedly observed inhibitions of melatonin effects by sirtuin inhibitors or knockdown.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
45
|
Yang M, Tao J, Wu H, Zhang L, Yao Y, Liu L, Zhu T, Fan H, Cui X, Dou H, Liu G. Responses of Transgenic Melatonin-Enriched Goats on LPS Stimulation and the Proteogenomic Profiles of Their PBMCs. Int J Mol Sci 2018; 19:ijms19082406. [PMID: 30111707 PMCID: PMC6121286 DOI: 10.3390/ijms19082406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/04/2018] [Accepted: 08/10/2018] [Indexed: 01/13/2023] Open
Abstract
The anti-inflammatory activity of melatonin (MT) has been well documented; however, little is known regarding endogenously occurring MT in this respect, especially for large animals. In the current study, we created a MT-enriched animal model (goats) overexpressing the MT synthetase gene Aanat. The responses of these animals to lipopolysaccharide (LPS) stimulation were systematically studied. It was found that LPS treatment exacerbated the inflammatory response in wild-type (WT) goats and increased their temperature to 40 °C. In addition, their granulocyte counts were also significantly elevated. In contrast, these symptoms were not observed in transgenic goats with LPS treatment. The rescue study with MT injection into WT goats who were treated with LPS confirmed that the protective effects in transgenic goats against LPS were attributed to a high level of endogenously produced MT. The proteomic analysis in the peripheral blood mononuclear cells (PBMCs) isolated from the transgenic animals uncovered several potential mechanisms. MT suppressed the lysosome formation as well as its function by downregulation of the lysosome-associated genes Lysosome-associated membrane protein 2 (LAMP2), Insulin-like growth factor 2 receptor (IGF2R), and Arylsulfatase B (ARSB). A high level of MT enhanced the antioxidant capacity of these cells to reduce the cell apoptosis induced by the LPS. In addition, the results also uncovered previously unknown information that showed that MT may have protective effects on some human diseases, including tuberculosis, bladder cancer, and rheumatoid arthritis, by downregulation of these disease-associated genes. All these observations warranted further investigations.
Collapse
Affiliation(s)
- Minghui Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100000, China.
| | - Jingli Tao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100000, China.
| | - Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100000, China.
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100000, China.
| | - Yujun Yao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100000, China.
| | - Lixi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100000, China.
| | - Tianqi Zhu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100000, China.
| | - Hao Fan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100000, China.
| | - Xudai Cui
- Qingdao Sanuels Industrial & Commercial Co., Ltd., Qingdao 266000, China.
| | - Haoran Dou
- Qingdao Sanuels Industrial & Commercial Co., Ltd., Qingdao 266000, China.
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100000, China.
| |
Collapse
|
46
|
Pierozan P, Andersson M, Brandt I, Karlsson O. The environmental neurotoxin β-N-methylamino-L-alanine inhibits melatonin synthesis in primary pinealocytes and a rat model. J Pineal Res 2018. [PMID: 29528516 DOI: 10.1111/jpi.12488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The environmental neurotoxin β-N-methylamino-L-alanine (BMAA) is a glutamate receptor agonist that can induce oxidative stress and has been implicated as a possible risk factor for neurodegenerative disease. Detection of BMAA in mussels, crustaceans, and fish illustrates that the sources of human exposure to this toxin are more abundant than previously anticipated. The aim of this study was to determine uptake of BMAA in the pineal gland and subsequent effects on melatonin production in primary pinealocyte cultures and a rat model. Autoradiographic imaging of 10-day-old male rats revealed a high and selective uptake in the pineal gland at 30 minutes to 24 hours after 14 C-L-BMAA administration (0.68 mg/kg). Primary pinealocyte cultures exposed to 0.05-3 mmol/L BMAA showed a 57%-93% decrease in melatonin synthesis in vitro. Both the metabotropic glutamate receptor 3 (mGluR3) antagonist Ly341495 and the protein kinase C (PKC) activator phorbol-12-myristate-13-acetate prevented the decrease in melatonin secretion, suggesting that BMAA inhibits melatonin synthesis by mGluR3 activation and PKC inhibition. Serum analysis revealed a 45% decrease in melatonin concentration in neonatal rats assessed 2 weeks after BMAA administration (460 mg/kg) and confirmed an inhibition of melatonin synthesis in vivo. Given that melatonin is a most important neuroprotective molecule in the brain, the etiology of BMAA-induced neurodegeneration may include mechanisms beyond direct excitotoxicity and oxidative stress.
Collapse
Affiliation(s)
- Paula Pierozan
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Marie Andersson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Ingvar Brandt
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Oskar Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
47
|
Savoca A, Mistraletti G, Manca D. A physiologically-based diffusion-compartment model for transdermal administration – The melatonin case study. Comput Chem Eng 2018. [DOI: 10.1016/j.compchemeng.2018.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
48
|
Brown GM, McIntyre RS, Rosenblat J, Hardeland R. Depressive disorders: Processes leading to neurogeneration and potential novel treatments. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:189-204. [PMID: 28433459 DOI: 10.1016/j.pnpbp.2017.04.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/01/2017] [Indexed: 12/18/2022]
Abstract
Mood disorders are wide spread with estimates that one in seven of the population are affected at some time in their life (Kessler et al., 2012). Many of those affected with severe depressive disorders have cognitive deficits which may progress to frank neurodegeneration. There are several peripheral markers shown by patients who have cognitive deficits that could represent causative factors and could potentially serve as guides to the prevention or even treatment of neurodegeneration. Circadian rhythm misalignment, immune dysfunction and oxidative stress are key pathologic processes implicated in neurodegeneration and cognitive dysfunction in depressive disorders. Novel treatments targeting these pathways may therefore potentially improve patient outcomes whereby the primary mechanism of action is outside of the monoaminergic system. Moreover, targeting immune dysfunction, oxidative stress and circadian rhythm misalignment (rather than primarily the monoaminergic system) may hold promise for truly disease modifying treatments that may prevent neurodegeneration rather than simply alleviating symptoms with no curative intent. Further research is required to more comprehensively understand the contributions of these pathways to the pathophysiology of depressive disorders to allow for disease modifying treatments to be discovered.
Collapse
Affiliation(s)
- Gregory M Brown
- Department of Psychiatry, University of Toronto, Centre for Addiction and Mental Health, 250 College St. Toronto, ON M5T 1R8, Canada.
| | - Roger S McIntyre
- Psychiatry and Pharmacology, University of Toronto, Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325, Toronto, ON M5T 2S8, Canada.
| | - Joshua Rosenblat
- Resident of Psychiatry, Clinician Scientist Stream, University of Toronto, Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325, Toronto, ON M5T 2S8, Canada
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institut für Zoologie und Anthropologie, Universität Göttingen, Buergerstrasse 50, D-37073 Göttingen, Germany.
| |
Collapse
|
49
|
Sinha B, Wu Q, Li W, Tu Y, Sirianni AC, Chen Y, Jiang J, Zhang X, Chen W, Zhou S, Reiter RJ, Manning SM, Patel NJ, Aziz-Sultan AM, Inder TE, Friedlander RM, Fu J, Wang X. Protection of melatonin in experimental models of newborn hypoxic-ischemic brain injury through MT1 receptor. J Pineal Res 2018; 64. [PMID: 28796402 DOI: 10.1111/jpi.12443] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
Abstract
The function of melatonin as a protective agent against newborn hypoxic-ischemic (H-I) brain injury is not yet well studied, and the mechanisms by which melatonin causes neuroprotection in neurological diseases are still evolving. This study was designed to investigate whether expression of MT1 receptors is reduced in newborn H-I brain injury and whether the protective action of melatonin is by alterations of the MT1 receptors. We demonstrated that there was significant reduction in MT1 receptors in ischemic brain of mouse pups in vivo following H-I brain injury and that melatonin offers neuroprotection through upregulation of MT1 receptors. The role of MT1 receptors was further supported by observation of increased mortality in MT1 knockout mice following H-I brain injury and the reversal of the inhibitory role of melatonin on mitochondrial cell death pathways by the melatonin receptor antagonist, luzindole. These data demonstrate that melatonin mediates its neuroprotective effect in mouse models of newborn H-I brain injury, at least in part, by the restoration of MT1 receptors, the inhibition of mitochondrial cell death pathways and the suppression of astrocytic and microglial activation.
Collapse
MESH Headings
- Animals
- Astrocytes/cytology
- Blotting, Western
- Cells, Cultured
- Female
- Genotype
- Hippocampus/cytology
- Hypoxia-Ischemia, Brain/drug therapy
- Hypoxia-Ischemia, Brain/metabolism
- Immunohistochemistry
- Male
- Melatonin/therapeutic use
- Membrane Potentials/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Theoretical
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
Collapse
Affiliation(s)
- Bharati Sinha
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Division of Neonatology, Boston University School of Medicine, Boston, MA, USA
| | - Qiaofeng Wu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Li
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yanyang Tu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana C Sirianni
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yanchun Chen
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Jiying Jiang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Xinmu Zhang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wu Chen
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Clinical Laboratory, Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University Texas Health Science Center, San Antonio, TX, USA
| | - Simon M Manning
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nirav J Patel
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali M Aziz-Sultan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert M Friedlander
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jianfang Fu
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- The Joslin Beth Israel Deaconess Foot Center, Harvard Medical School, Boston, MA, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
50
|
Comprehensive analysis of phospholipids in the brain, heart, kidney, and liver: brain phospholipids are least enriched with polyunsaturated fatty acids. Mol Cell Biochem 2017; 442:187-201. [PMID: 28993959 DOI: 10.1007/s11010-017-3203-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
Abstract
It is commonly accepted that brain phospholipids are highly enriched with long-chain polyunsaturated fatty acids (PUFAs). However, the evidence for this remains unclear. We used HPLC-MS to analyze the content and composition of phospholipids in rat brain and compared it to the heart, kidney, and liver. Phospholipids typically contain one PUFA, such as 18:2, 20:4, or 22:6, and one saturated fatty acid, such as 16:0 or 18:0. However, we found that brain phospholipids containing monounsaturated fatty acids in the place of PUFAs are highly elevated compared to phospholipids in the heart, kidney, and liver. The relative content of phospholipid containing PUFAs is ~ 60% in the brain, whereas it is over 90% in other tissues. The most abundant species of phosphatidylcholine (PC) is PC(16:0/18:1) in the brain, whereas PC(18:0/20:4) and PC(16:0/20:4) are predominated in other tissues. Moreover, several major species of plasmanyl and plasmenyl phosphatidylethanolamine are found to contain monounsaturated fatty acid in the brain only. Overall, our data clearly show that brain phospholipids are the least enriched with PUFAs of the four major organs, challenging the common belief that the brain is highly enriched with PUFAs.
Collapse
|