1
|
Rajaprakash M, Palmore M, Bakulski KM, Howerton E, Lyall K, Schmidt RJ, Newschaffer C, Croen LA, Hertz-Picciotto I, Volk H, Ladd-Acosta C, Fallin MD. DNA methylation signatures of prenatal socioeconomic position associated with 36-month language outcomes. RESEARCH IN DEVELOPMENTAL DISABILITIES 2024; 154:104846. [PMID: 39357175 DOI: 10.1016/j.ridd.2024.104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/23/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Socioeconomic position (SEP), which reflects one's position in society and access to resources, is strongly tied to neurodevelopment and is associated with epigenetic changes. AIM This study examined whether DNA methylation signatures of prenatal SEP, measured in birth samples, are associated with child neurodevelopmental outcomes at 36 months of age. METHODS Prenatal SEP DNA methylation scores were derived using 97 placenta and 127 cord blood biospecimens in the Early Autism Risk Longitudinal Investigation cohort. Participants completed the Mullen Scales of Early Learning (MSEL) and Vineland Adaptive Behavior Scales (VABS) at 36 months of age. Generalized regression analyses, adjusting for maternal age and race, were performed to test the association between SEP methylation score, for each birth biospecimen type, and MSEL and VABS scores. RESULTS Significant associations were observed between placenta SEP methylation score and MSEL Expressive Language outcomes (beta = -2.7, p = 0.046, 95 % CI [- 5.43, -0.05]) and Receptive Language outcomes (beta = -2.5, p = 0.037, 95 % CI [-4.82, -0.16]). In cord blood, methylation-SEP scores were significantly associated with Receptive Language outcomes (beta = -2.0, p = 0.037, 95 % CI [-3.85, -0.12]). No significant associations were observed with VABS scores. CONCLUSION Our results confirm associations between prenatal SEP and early childhood language development using a novel empiric DNA methylation measure of exposure.
Collapse
Affiliation(s)
- Meghna Rajaprakash
- Department of Neurology & Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Meredith Palmore
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ellen Howerton
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA 19104, USA
| | - Rebecca J Schmidt
- Public Health Sciences and the MIND Institute, UC Davis School of Medicine, Davis, CA 95616, USA
| | | | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Irva Hertz-Picciotto
- Public Health Sciences and the MIND Institute, UC Davis School of Medicine, Davis, CA 95616, USA
| | - Heather Volk
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - M Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
2
|
Yao M, Daniels J, Grosvenor L, Morrill V, Feinberg JI, Bakulski KM, Piven J, Hazlett HC, Shen MD, Newschaffer C, Lyall K, Schmidt RJ, Hertz-Picciotto I, Croen LA, Fallin MD, Ladd-Acosta C, Volk H, Benke K. Commonly used genomic arrays may lose information due to imperfect coverage of discovered variants for autism spectrum disorder. J Neurodev Disord 2024; 16:54. [PMID: 39266988 PMCID: PMC11397030 DOI: 10.1186/s11689-024-09571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 08/29/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Common genetic variation has been shown to account for a large proportion of ASD heritability. Polygenic scores generated for autism spectrum disorder (ASD-PGS) using the most recent discovery data, however, explain less variance than expected, despite reporting significant associations with ASD and other ASD-related traits. Here, we investigate the extent to which information loss on the target study genome-wide microarray weakens the predictive power of the ASD-PGS. METHODS We studied genotype data from three cohorts of individuals with high familial liability for ASD: The Early Autism Risk Longitudinal Investigation (EARLI), Markers of Autism Risk in Babies-Learning Early Signs (MARBLES), and the Infant Brain Imaging Study (IBIS), and one population-based sample, Study to Explore Early Development Phase I (SEED I). Individuals were genotyped on different microarrays ranging from 1 to 5 million sites. Coverage of the top 88 genome-wide suggestive variants implicated in the discovery was evaluated in all four studies before quality control (QC), after QC, and after imputation. We then created a novel method to assess coverage on the resulting ASD-PGS by correlating a PGS informed by a comprehensive list of variants to a PGS informed with only the available variants. RESULTS Prior to imputations, None of the four cohorts directly or indirectly covered all 88 variants among the measured genotype data. After imputation, the two cohorts genotyped on 5-million arrays reached full coverage. Analysis of our novel metric showed generally high genome-wide coverage across all four studies, but a greater number of SNPs informing the ASD-PGS did not result in improved coverage according to our metric. LIMITATIONS The studies we analyzed contained modest sample sizes. Our analyses included microarrays with more than 1-million sites, so smaller arrays such as Global Diversity and the PsychArray were not included. Our PGS metric for ASD is only generalizable to samples of European ancestries, though the coverage metric can be computed for traits that have sufficiently large-sized discovery findings in other ancestries. CONCLUSIONS We show that commonly used genotyping microarrays have incomplete coverage for common ASD variants, and imputation cannot always recover lost information. Our novel metric provides an intuitive approach to reporting information loss in PGS and an alternative to reporting the total number of SNPs included in the PGS. While applied only to ASD here, this metric can easily be used with other traits.
Collapse
Affiliation(s)
- Michael Yao
- Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jason Daniels
- Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Luke Grosvenor
- Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Wendy Klag Center for Autism and Developmental Disabilities, JHSPH, Baltimore, MD, USA
| | - Valerie Morrill
- Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jason I Feinberg
- Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Wendy Klag Center for Autism and Developmental Disabilities, JHSPH, Baltimore, MD, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Joseph Piven
- Department of Psychiatry, University of North Carolina, North Carolina, Chapel Hill, 27599, USA
- Carolina Institute for Developmental Disabilities, Chapel Hill, NC, 27599, USA
| | - Heather C Hazlett
- Department of Psychiatry, University of North Carolina, North Carolina, Chapel Hill, 27599, USA
- Carolina Institute for Developmental Disabilities, Chapel Hill, NC, 27599, USA
| | - Mark D Shen
- Department of Psychiatry, University of North Carolina, North Carolina, Chapel Hill, 27599, USA
- Carolina Institute for Developmental Disabilities, Chapel Hill, NC, 27599, USA
| | - Craig Newschaffer
- 7AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA, 19104, USA
- College of Health and Human Development, Penn State, University Park, PA, 16802, USA
| | - Kristen Lyall
- 7AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA, 19104, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California, Davis, CA, 95616, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, 95817, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, CA, 95616, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, 95817, USA
| | - Lisa A Croen
- Autism Research Program, Kaiser Permanente Division of Research, 2000 Broadway, Oakland, CA, 94612, USA
| | - M Daniele Fallin
- Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Wendy Klag Center for Autism and Developmental Disabilities, JHSPH, Baltimore, MD, USA
- Rollins School of Public Health, Emory University, 1518 Clifton Rd, Suite 8011, Atlanta, GA, 30355, USA
| | - Christine Ladd-Acosta
- Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Wendy Klag Center for Autism and Developmental Disabilities, JHSPH, Baltimore, MD, USA
| | - Heather Volk
- Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Wendy Klag Center for Autism and Developmental Disabilities, JHSPH, Baltimore, MD, USA
| | - Kelly Benke
- Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Wendy Klag Center for Autism and Developmental Disabilities, JHSPH, Baltimore, MD, USA.
| |
Collapse
|
3
|
G Bragg M, Vesey O, Chavarro JE, Hart JE, Tabb LP, Weisskopf MG, Croen LA, Fallin D, Hertz-Picciotto I, Newschaffer C, Schmidt RJ, Volk H, Lyall K. Characterizing self-reported physical activity before and during a subsequent pregnancy among parents in a familial autism cohort. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2024:13623613241273034. [PMID: 39235189 DOI: 10.1177/13623613241273034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
LAY ABSTRACT Parents of autistic children may have limited time and resources to participate in physical activity, a key aspect of health. Previous studies have been small and included mostly mothers, rather than fathers. No studies have examined physical activity in these parents during another pregnancy, when physical activity is especially important for maternal and fetal health. We aimed to fill this gap by examining physical activity levels among mothers and fathers caring for an autistic child before and during a subsequent pregnancy. We used data from a study which followed pregnant individuals who already had a child with autism. We asked mothers and fathers to report their levels of moderate and vigorous physical activity. We found that mothers and fathers of autistic children reported lower physical activity levels than the national average and were unlikely to meet Physical Activity Guidelines for Americans. Pregnant mothers were the least likely to participate in physical activity, particularly if their autistic child scored highly on a measure of autistic traits. Given that parental physical activity has benefits for parents and children, family-based interventions may be needed to help support parents' physical activity levels.
Collapse
Affiliation(s)
| | | | | | - Jaime E Hart
- Harvard T.H. Chan School of Public Health, USA
- Harvard Medical School, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Lyall K, Westlake M, Musci RJ, Gachigi K, Barrett ES, Bastain TM, Bush NR, Buss C, Camargo CA, Croen LA, Dabelea D, Dunlop AL, Elliott AJ, Ferrara A, Ghassabian A, Gern JE, Hare ME, Hertz-Picciotto I, Hipwell AE, Hockett CW, Karagas MR, Lugo-Candelas C, O'Connor TG, Schmidt RJ, Stanford JB, Straughen JK, Shuster CL, Wright RO, Wright RJ, Zhao Q, Oken E. Association of maternal fish consumption and ω-3 supplement use during pregnancy with child autism-related outcomes: results from a cohort consortium analysis. Am J Clin Nutr 2024; 120:583-592. [PMID: 38960320 PMCID: PMC11393401 DOI: 10.1016/j.ajcnut.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/15/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Prenatal fish intake is a key source of omega-3 (ω-3) polyunsaturated fatty acids needed for brain development, yet intake is generally low, and studies addressing associations with autism spectrum disorder (ASD) and related traits are lacking. OBJECTIVE This study aimed to examine associations of prenatal fish intake and ω-3 supplement use with both autism diagnosis and broader autism-related traits. METHODS Participants were drawn from 32 cohorts in the Environmental influences on Child Health Outcomes Cohort Consortium. Children were born between 1999 and 2019 and part of ongoing follow-up with data available for analysis by August 2022. Exposures included self-reported maternal fish intake and ω-3/fish oil supplement use during pregnancy. Outcome measures included parent report of clinician-diagnosed ASD and parent-reported autism-related traits measured by the Social Responsiveness Scale (SRS)-second edition (n = 3939 and v3609 for fish intake analyses, respectively; n = 4537 and n = 3925 for supplement intake analyses, respectively). RESULTS In adjusted regression models, relative to no fish intake, fish intake during pregnancy was associated with reduced odds of autism diagnosis (odds ratio: 0.84; 95% confidence interval [CI]: 0.77, 0.92), and a modest reduction in raw total SRS scores (β: -1.69; 95% CI: -3.3, -0.08). Estimates were similar across categories of fish consumption from "any" or "less than once per week" to "more than twice per week." For ω-3 supplement use, relative to no use, no significant associations with autism diagnosis were identified, whereas a modest relation with SRS score was suggested (β: 1.98; 95% CI: 0.33, 3.64). CONCLUSIONS These results extend previous work by suggesting that prenatal fish intake, but not ω-3 supplement use, may be associated with lower likelihood of both autism diagnosis and related traits. Given the low-fish intake in the United States general population and the rising autism prevalence, these findings suggest the need for better public health messaging regarding guidelines on fish intake for pregnant individuals.
Collapse
Affiliation(s)
- Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, United States.
| | | | - Rashelle J Musci
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kennedy Gachigi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, United States
| | - Theresa M Bastain
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States
| | - Claudia Buss
- UC Irvine Medical Center, Orange, CA, United States
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Anne L Dunlop
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Amy J Elliott
- Avera Research Institute, Sioux Falls, SD, United States; Department of Pediatrics, University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| | - Assiamira Ferrara
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States
| | - Akhgar Ghassabian
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, United States
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Marion E Hare
- Department of Preventive Medicine, College of Medicine, University of Health Science Center, Memphis, TN, United States
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California Davis, Davis, CA, United States
| | - Alison E Hipwell
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christine W Hockett
- Avera Research Institute, Sioux Falls, SD, United States; Department of Pediatrics, University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Claudia Lugo-Candelas
- New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, United States
| | - Thomas G O'Connor
- Departments of Psychiatry, Psychology, Neuroscience, Obstetrics and Gynecology, University of Rochester, Rochester, NY, United States
| | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California Davis, Davis, CA, United States
| | - Joseph B Stanford
- Department of Family and Preventative Medicine, University of Utah, Salt Lake City, UT, United States
| | - Jennifer K Straughen
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI, United States
| | - Coral L Shuster
- Brown Center for the Study of Children at Risk, Women and Infants Hospital, Providence, RI, United States
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Health Science Center, Memphis, TN, United States
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States
| |
Collapse
|
5
|
Bragg MG, Gorski-Steiner I, Song A, Chavarro JE, Hart JE, Tabb LP, Weisskopf MG, Volk H, Lyall K. Prenatal air pollution and children's autism traits score: Examination of joint associations with maternal intake of vitamin D, methyl donors, and polyunsaturated fatty acids using mixture methods. Environ Epidemiol 2024; 8:e316. [PMID: 38919264 PMCID: PMC11196080 DOI: 10.1097/ee9.0000000000000316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Background Maternal nutrient intake may moderate associations between environmental exposures and children's neurodevelopmental outcomes, but few studies have assessed joint effects. We aimed to evaluate whether prenatal nutrient intake influences the association between air pollutants and autism-related trait scores. Methods We included 126 participants from the EARLI (Early Autism Risk Longitudinal Investigation, 2009-2012) cohort, which followed US pregnant mothers who previously had a child with autism. Bayesian kernel machine regression and traditional regression models were used to examine joint associations of prenatal nutrient intake (vitamins D, B12, and B6; folate, choline, and betaine; and total omega 3 and 6 polyunsaturated fatty acids, reported via food frequency questionnaire), air pollutant exposure (particulate matter <2.5 μm [PM2.5], nitrogen dioxide [NO2], and ozone [O3], estimated at the address level), and children's autism-related traits (measured by the Social Responsiveness Scale [SRS] at 36 months). Results Most participants had nutrient intakes and air pollutant exposures that met US standards. Bayesian kernel machine regression mixture models and traditional regression models provided little evidence of individual or joint associations of nutrients and air pollutants with SRS scores or of an association between the overall mixture and SRS scores. Conclusion In this cohort with a high familial likelihood of autism, we did not observe evidence of joint associations between air pollution exposures and nutrient intake with autism-related traits. Future work should examine the use of these methods in larger, more diverse samples, as our results may have been influenced by familial liability and/or relatively high nutrient intakes and low air pollutant exposures.
Collapse
Affiliation(s)
- Megan G. Bragg
- AJ Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania
| | - Irena Gorski-Steiner
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Ashley Song
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Jorge E. Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jaime E. Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Loni P. Tabb
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania
| | - Marc G. Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Heather Volk
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Dou JF, Schmidt RJ, Volk HE, Nitta MM, Feinberg JI, Newschaffer CJ, Croen LA, Hertz-Picciotto I, Fallin MD, Bakulski KM. Exposure to heavy metals in utero and autism spectrum disorder at age 3: a meta-analysis of two longitudinal cohorts of siblings of children with autism. Environ Health 2024; 23:62. [PMID: 38970053 PMCID: PMC11225197 DOI: 10.1186/s12940-024-01101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a prevalent and heterogeneous neurodevelopmental disorder. Risk is attributed to genetic and prenatal environmental factors, though the environmental agents are incompletely characterized. METHODS In Early Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk in Babies Learning Early Signs (MARBLES), two pregnancy cohorts of siblings of children with ASD, urinary metals concentrations during two pregnancy time periods (< 28 weeks and ≥ 28 weeks of gestation) were measured using inductively coupled plasma mass spectrometry. At age three, clinicians assessed ASD with DSM-5 criteria. In an exposure-wide association framework, using multivariable log binomial regression, we examined each metal for association with ASD status, adjusting for gestational age at urine sampling, child sex, age at pregnancy, race/ethnicity and education. We meta-analyzed across the two cohorts. RESULTS In EARLI (n = 170) 17% of children were diagnosed with ASD, and 44% were classified as having non-neurotypical development (Non-TD). In MARBLES (n = 231), 21% were diagnosed with ASD, and 14% classified as Non-TD. During the first and second trimester period (< 28 weeks), having cadmium concentration over the level of detection was associated with 1.69 (1.08, 2.64) times higher risk of ASD, and 1.29 (0.95, 1.75)times higher risk of Non-TD. A doubling of first and second trimester cesium concentration was marginally associated with 1.89 (0.94, 3.80) times higher risk of ASD, and a doubling of third trimester cesium with 1.69 (0.97, 2.95) times higher risk of ASD. CONCLUSION Exposure in utero to elevated levels of cadmium and cesium, as measured in urine collected during pregnancy, was associated with increased risk of developing ASD.
Collapse
Affiliation(s)
- John F Dou
- University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | | | - M Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
7
|
Carey ME, Kivumbi A, Rando J, Mesaros AC, Melnyk S, James SJ, Croen LA, Volk H, Lyall K. The association between prenatal oxidative stress levels measured by isoprostanes and offspring neurodevelopmental outcomes at 36 months. Brain Behav Immun Health 2024; 38:100775. [PMID: 38706573 PMCID: PMC11067487 DOI: 10.1016/j.bbih.2024.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Oxidative stress during pregnancy has been a mechanistic pathway implicated in autism development, yet few studies have examined this association directly. Here, we examined the association of prenatal levels of 8-iso-PGF2α, a widely used measure of oxidative stress, and several neurodevelopmental outcomes related to autism in children. Participants included 169 mother-child pairs from the Early Autism Risk Longitudinal Investigation (EARLI), which enrolled mothers who had an autistic child from a previous pregnancy and followed them through a subsequent pregnancy and until that child reached age 3 years. Maternal urine samples were collected during the second trimester of pregnancy and were later measured for levels of isoprostanes. Child neurodevelopmental assessments included the Mullen Scales of Early Learning (MSEL), the Social Responsiveness Scale (SRS), and the Vineland Adaptive Behavior Scale (VABS), and were conducted around 36 months of age. Primary analyses examined associations between interquartile range (IQR) increases in 8-iso-PGF2α levels, and total composite scores from each assessment using quantile regression. In adjusted analyses, we did not observe statistically significant associations, though estimates suggested modestly lower cognitive scores (β for MSEL = -3.68, 95% CI: -10.09, 2.70), and minor increases in autism-related trait scores (β for SRS T score = 1.68, 95% CI: -0.24, 3.60) with increasing 8-iso-PGF2α. These suggestive associations between decreased cognitive scores and increased autism-related traits with increasing prenatal oxidative stress point to the need for continued investigation in larger samples of the role of oxidative stress as a mechanistic pathway in autism and related neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Meghan E. Carey
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104, USA
| | - Apollo Kivumbi
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104, USA
| | - Juliette Rando
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104, USA
| | - A. Clementina Mesaros
- Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA, 17104, USA
| | - Stepan Melnyk
- Arkansas Children’s Hospital Research Institute, 13 Childrens Way, Little Rock, AR, 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, USA
| | - S. Jill James
- Department of Pediatrics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, USA
| | - Lisa A. Croen
- Division of Research Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, USA
| | - Heather Volk
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD, 21205, USA
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104, USA
| | - the Early Autism Risk Longitudinal Investigation (EARLI) team
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA, 17104, USA
- Arkansas Children’s Hospital Research Institute, 13 Childrens Way, Little Rock, AR, 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, USA
- Division of Research Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, USA
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD, 21205, USA
| |
Collapse
|
8
|
Zhong C, Rando J, Patti MA, Braun JM, Chen A, Xu Y, Lanphear BP, Yolton K, Croen LA, Fallin MD, Hertz-Picciotto I, Newschaffer CJ, Lyall K. Gestational thyroid hormones and autism-related traits in the EARLI and HOME studies. Autism Res 2024; 17:716-727. [PMID: 38436527 DOI: 10.1002/aur.3115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Thyroid hormones are essential for neurodevelopment. Few studies have considered associations with quantitatively measured autism spectrum disorder (ASD)-related traits, which may help elucidate associations for a broader population. Participants were drawn from two prospective pregnancy cohorts: the Early Autism Risk Longitudinal Investigation (EARLI), enrolling pregnant women who already had a child with ASD, and the Health Outcomes and Measures of the Environment (HOME) Study, following pregnant women from the greater Cincinnati, OH area. Gestational thyroid-stimulating hormone (TSH) and free thyroxine (FT4) were measured in mid-pregnancy 16 (±3) weeks gestation serum samples. ASD-related traits were measured using the Social Responsiveness Scale (SRS) at ages 3-8 years. The association was examined using quantile regression, adjusting for maternal and sociodemographic factors. 278 participants (132 from EARLI, 146 from HOME) were included. TSH distributions were similar across cohorts, while FT4 levels were higher in EARLI compared to HOME. In pooled analyses, particularly for those in the highest SRS quantile (95th percentile), higher FT4 levels were associated with increasing SRS scores (β = 5.21, 95% CI = 0.93, 9.48), and higher TSH levels were associated with decreasing SRS scores (β = -6.94, 95% CI = -11.04, -2.83). The association between TSH and SRS remained significant in HOME for the 95% percentile of SRS scores (β = -6.48, 95% CI = -12.16, -0.80), but not EARLI. Results for FT4 were attenuated when examined in the individual cohorts. Our results add to evidence that gestational thyroid hormones may be associated with ASD-related outcomes by suggesting that relationships may differ across the distribution of ASD-related traits and by familial likelihood of ASD.
Collapse
Affiliation(s)
- Caichen Zhong
- Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, Pennsylvania, USA
| | - Juliette Rando
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
| | - Marisa A Patti
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
| | - Joseph M Braun
- School of Public Health, Brown University, Providence, Rhode Island, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lisa A Croen
- Kaiser Permanente Northern California, Oakland, California, USA
| | - M Daniele Fallin
- Emory Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, UC Davis School of Medicine, Sacramento, California, USA
| | - Craig J Newschaffer
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
- College of Health and Human Development, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Schrott R, Feinberg JI, Newschaffer CJ, Hertz-Picciotto I, Croen LA, Fallin MD, Volk HE, Ladd-Acosta C, Feinberg AP. Exposure to air pollution is associated with DNA methylation changes in sperm. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae003. [PMID: 38559770 PMCID: PMC10980975 DOI: 10.1093/eep/dvae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 04/04/2024]
Abstract
Exposure to air pollutants has been associated with adverse health outcomes in adults and children who were prenatally exposed. In addition to reducing exposure to air pollutants, it is important to identify their biologic targets in order to mitigate the health consequences of exposure. One molecular change associated with prenatal exposure to air pollutants is DNA methylation (DNAm), which has been associated with changes in placenta and cord blood tissues at birth. However, little is known about how air pollution exposure impacts the sperm epigenome, which could provide important insights into the mechanism of transmission to offspring. In the present study, we explored whether exposure to particulate matter less than 2.5 microns in diameter, particulate matter less than 10 microns in diameter, nitrogen dioxide (NO2), or ozone (O3) was associated with DNAm in sperm contributed by participants in the Early Autism Risk Longitudinal Investigation prospective pregnancy cohort. Air pollution exposure measurements were calculated as the average exposure for each pollutant measured within 4 weeks prior to the date of sample collection. Using array-based genome-scale methylation analyses, we identified 80, 96, 35, and 67 differentially methylated regions (DMRs) significantly associated with particulate matter less than 2.5 microns in diameter, particulate matter less than 10 microns in diameter, NO2, and O3, respectively. While no DMRs were associated with exposure to all four pollutants, we found that genes overlapping exposure-related DMRs had a shared enrichment for gene ontology biological processes related to neurodevelopment. Together, these data provide compelling support for the hypothesis that paternal exposure to air pollution impacts DNAm in sperm, particularly in regions implicated in neurodevelopment.
Collapse
Affiliation(s)
- Rose Schrott
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Craig J Newschaffer
- Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, State College, PA 16802, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, University of California, Davis, CA 95616, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - M Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Heather E Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Christine Ladd-Acosta
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Andrew P Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Center for Epigenetics, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Yu EX, Dou JF, Volk HE, Bakulski KM, Benke K, Hertz-Picciotto I, Schmidt RJ, Newschaffer CJ, Feinberg JI, Daniels J, Fallin MD, Ladd-Acosta C, Hamra GB. Prenatal Metal Exposures and Child Social Responsiveness Scale Scores in 2 Prospective Studies. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302231225313. [PMID: 38317694 PMCID: PMC10840406 DOI: 10.1177/11786302231225313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024]
Abstract
Background Prenatal exposure to metals is hypothesized to be associated with child autism. We aim to investigate the joint and individual effects of prenatal exposure to urine metals including lead (Pb), mercury (Hg), manganese (Mn), and selenium (Se) on child Social Responsiveness Scale (SRS) scores. Methods We used data from 2 cohorts enriched for likelihood of autism spectrum disorder (ASD): Early Autism Risk Longitudinal Investigation (EARLI) and the Markers of Autism Risk in Babies-Learning Early Signs (MARBLES) studies. Metal concentrations were measured in urine collected during pregnancy. We used Bayesian Kernel Machine Regression and linear regression models to investigate both joint and independent associations of metals with SRS Z-scores in each cohort. We adjusted for maternal age at delivery, interpregnancy interval, maternal education, child race/ethnicity, child sex, and/or study site. Results The final analytic sample consisted of 251 mother-child pairs. When Pb, Hg, Se, and Mn were at their 75th percentiles, there was a 0.03 increase (95% credible interval [CI]: -0.11, 0.17) in EARLI and 0.07 decrease (95% CI: -0.29, 0.15) in MARBLES in childhood SRS Z-scores, compared to when all 4 metals were at their 50th percentiles. In both cohorts, increasing concentrations of Pb were associated with increasing values of SRS Z-scores, fixing the other metals to their 50th percentiles. However, all the 95% credible intervals contained the null. Conclusions There were no clear monotonic associations between the overall prenatal metal mixture in pregnancy and childhood SRS Z-scores at 36 months. There were also no clear associations between individual metals within this mixture and childhood SRS Z-scores at 36 months. The overall effects of the metal mixture and the individual effects of each metal within this mixture on offspring SRS Z-scores might be heterogeneous across child sex and cohort. Further studies with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Emma X Yu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John F Dou
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Heather E Volk
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Wendy Klag Center for Autism and Developmental Disabilities, Baltimore, MD, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Kelly Benke
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and the MIND Institute, University of California Davis School of Medicine, Davis, CA, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences and the MIND Institute, University of California Davis School of Medicine, Davis, CA, USA
| | - Craig J Newschaffer
- Department of Biobehavioral Health, College of Health and Human Development, The Pennsylvania State University, University Park, PA, USA
| | - Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Baltimore, MD, USA
| | - Jason Daniels
- Wendy Klag Center for Autism and Developmental Disabilities, Baltimore, MD, USA
| | | | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ghassan B Hamra
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
11
|
Yu EX, Braun JM, Lyall K, Hertz-Picciotto I, Fallin MD, Croen LA, Chen A, Xu Y, Yolton K, Newschaffer CJ, Hamra GB. A Mixture of Urinary Phthalate Metabolite Concentrations During Pregnancy and Offspring Social Responsiveness Scale Scores. Epidemiology 2024; 35:84-93. [PMID: 37820223 PMCID: PMC10842958 DOI: 10.1097/ede.0000000000001682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
BACKGROUND Phthalates are a group of chemicals with ubiquitous exposure worldwide. Exposures to phthalates during pregnancy may play a role in autism spectrum disorder (ASD) etiology by disrupting hormone levels or directly impacting fetal neurodevelopment. However, there is little research quantifying the aggregate effect of phthalates on child ASD-related behaviors. METHODS We used data from two prospective pregnancy and birth cohorts-the Health Outcomes and Measures of the Environment (HOME) and the Early Autism Risk Longitudinal Investigation (EARLI). HOME is a general population cohort while participants in EARLI were at higher familial risk for ASD. Using quantile g-computation and linear regression models, we assessed the joint and individual associations of a mixture of six phthalate metabolites during pregnancy with child ASD-related traits measured by Social Responsiveness Scale (SRS) scores at ages 3-8 years. RESULTS Our analyses included 271 participants from HOME and 166 participants from EARLI. There were imprecise associations between the phthalate mixture and SRS total raw scores in HOME (difference in SRS scores per decile increase in every phthalate = 1.3; 95% confidence interval [CI] = -0.2, 2.8) and EARLI (difference in SRS scores per decile increase in every phthalate = -0.9; 95% CI = -3.5, 1.7). CONCLUSIONS The cohort-specific effect sizes of the pthalates-SRS associations were small and CIs were imprecise. These results suggest that if there are associations between phthalate metabolites during pregnancy and child SRS scores, they may differ across populations with different familial liabilities. Further studies with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Emma X. Yu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and The MIND Institute, School of Medicine, University of California-Davis, Davis, CA, USA
| | | | - Lisa A. Croen
- Kaiser Permanente Division of Research, Oakland, CA, USA
| | - Aimin Chen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yingying Xu
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kimberly Yolton
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Craig J. Newschaffer
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Ghassan B. Hamra
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
12
|
Feinberg JI, Schrott R, Ladd-Acosta C, Newschaffer CJ, Hertz-Picciotto I, Croen LA, Daniele Fallin M, Feinberg AP, Volk HE. Epigenetic changes in sperm are associated with paternal and child quantitative autistic traits in an autism-enriched cohort. Mol Psychiatry 2024; 29:43-53. [PMID: 37100868 DOI: 10.1038/s41380-023-02046-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/28/2023]
Abstract
There is a need to consider paternal contributions to autism spectrum disorder (ASD) more strongly. Autism etiology is complex, and heritability is not explained by genetics alone. Understanding paternal gametic epigenetic contributions to autism could help fill this knowledge gap. In the present study, we explored whether paternal autistic traits, and the sperm epigenome, were associated with autistic traits in children at 36 months enrolled in the Early Autism Risk Longitudinal Investigation (EARLI) cohort. EARLI is a pregnancy cohort that recruited and enrolled pregnant women in the first half of pregnancy who already had a child with ASD. After maternal enrollment, EARLI fathers were approached and asked to provide a semen specimen. Participants were included in the present study if they had genotyping, sperm methylation data, and Social Responsiveness Scale (SRS) score data available. Using the CHARM array, we performed genome-scale methylation analyses on DNA from semen samples contributed by EARLI fathers. The SRS-a 65-item questionnaire measuring social communication deficits on a quantitative scale-was used to evaluate autistic traits in EARLI fathers (n = 45) and children (n = 31). We identified 94 significant child SRS-associated differentially methylated regions (DMRs), and 14 significant paternal SRS-associated DMRs (fwer p < 0.05). Many child SRS-associated DMRs were annotated to genes implicated in ASD and neurodevelopment. Six DMRs overlapped across the two outcomes (fwer p < 0.1), and, 16 DMRs overlapped with previous child autistic trait findings at 12 months of age (fwer p < 0.05). Child SRS-associated DMRs contained CpG sites independently found to be differentially methylated in postmortem brains of individuals with and without autism. These findings suggest paternal germline methylation is associated with autistic traits in 3-year-old offspring. These prospective results for autism-associated traits, in a cohort with a family history of ASD, highlight the potential importance of sperm epigenetic mechanisms in autism.
Collapse
Affiliation(s)
- Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rose Schrott
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Ladd-Acosta
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Craig J Newschaffer
- Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, State College, PA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, University of California, Davis, CA, USA
| | - Lisa A Croen
- Autism Research Program, Division of Research, Kaiser Permanente, Oakland, CA, USA
| | - M Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Andrew P Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Center for Epigenetics, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Heather E Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
13
|
Dou JF, Schmidt RJ, Volk HE, Nitta MM, Feinberg JI, Newschaffer CJ, Croen LA, Hertz-Picciotto I, Fallin MD, Bakulski KM. Exposure to heavy metals in utero and autism spectrum disorder at age 3: A meta-analysis of two longitudinal cohorts of siblings of children with autism. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.21.23298827. [PMID: 38045240 PMCID: PMC10690342 DOI: 10.1101/2023.11.21.23298827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background Autism spectrum disorder (ASD) is a prevalent and heterogeneous neurodevelopmental disorder. Risk is attributed to genetic and prenatal environmental factors, though the environmental agents are incompletely characterized. Methods In Early Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk in Babies Learning Early Signs (MARBLES), two pregnancy cohorts of siblings of children with ASD, maternal urinary metals concentrations at two time points during pregnancy were measured using inductively coupled plasma mass spectrometry. At age three, clinicians assessed ASD with DSM-5 criteria. Using multivariable log binomial regression, we examined each metal for association with ASD status, adjusting for gestational age at urine sampling, child sex, maternal age, and maternal education, and meta-analyzed across the two cohorts. Results In EARLI (n=170) 17.6% of children were diagnosed with ASD, and an additional 43.5% were classified as having other non-neurotypical development (Non-TD). In MARBLES (n=156), 22.7% were diagnosed with ASD, while an additional 11.5% had Non-TD. In earlier pregnancy metals measures, having cadmium concentration over the level of detection was associated with 1.78 (1.19, 2.67) times higher risk of ASD, and 1.43 (1.06, 1.92) times higher risk of Non-TD. A doubling of early pregnancy cesium concentration was marginally associated with 1.81 (0.95, 3.42) times higher risk of ASD, and 1.58 (0.95, 2.63) times higher risk of Non-TD. Conclusion Exposure in utero to elevated levels of cadmium and cesium, as measured in maternal urine collected during pregnancy, was associated with increased risk of developing ASD.
Collapse
Affiliation(s)
- John F. Dou
- University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | - Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | | | | | | |
Collapse
|
14
|
Song AY, Bulka CM, Niemiec SS, Kechris K, Boyle KE, Marsit CJ, O’Shea TM, Fry RC, Lyall K, Fallin MD, Volk HE, Ladd-Acosta C. Accelerated epigenetic age at birth and child emotional and behavioura development in early childhood: a meta-analysis of four prospective cohort studies in ECHO. Epigenetics 2023; 18:2254971. [PMID: 37691382 PMCID: PMC10496525 DOI: 10.1080/15592294.2023.2254971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
Background: 'Epigenetic clocks' have been developed to accurately predict chronologic gestational age and have been associated with child health outcomes in prior work.Methods: We meta-analysed results from four prospective U.S cohorts investigating the association between epigenetic age acceleration estimated using blood DNA methylation collected at birth and preschool age Childhood Behavior Checklist (CBCL) scores.Results: Epigenetic ageing was not significantly associated with CBCL total problem scores (β = 0.33, 95% CI: -0.95, 0.28) and DSM-oriented pervasive development problem scores (β = -0.23, 95% CI: -0.61, 0.15). No associations were observed for other DSM-oriented subscales.Conclusions: The meta-analysis results suggest that epigenetic gestational age acceleration is not associated with child emotional and behavioural functioning for preschool age group. These findings may relate to our study population, which includes two cohorts enriched for ASD and one preterm birth cohort.; future work should address the role of epigenetic age in child health in other study populations.Abbreviations: DNAm: DNA methylation; CBCL: Child Behavioral Checklist; ECHO: Environmental Influences on Child Health Outcomes; EARLI: Early Autism Risk Longitudinal Investigation; MARBLES: Markers of Autism Risk in Babies - Learning Early Signs; ELGAN: Extremely Low Gestational Age Newborns; ASD: autism spectrum disorder; BMI: body mass index; DSM: Diagnostic and Statistical Manual of Mental Disorders.
Collapse
Affiliation(s)
- Ashley Y. Song
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Sierra S. Niemiec
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristen E. Boyle
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - T. Michael O’Shea
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
| | | | - Heather E. Volk
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Ladd-Acosta
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
15
|
Lyall K, Rando J, Wang S, Hamra GB, Chavarro J, Weisskopf MG, Croen LA, Fallin MD, Hertz-Picciotto I, Volk HE, Schmidt RJ, Newschaffer CJ. Examining Prenatal Dietary Factors in Association with Child Autism-Related Traits Using a Bayesian Mixture Approach: Results from 2 United States Cohorts. Curr Dev Nutr 2023; 7:101978. [PMID: 37600935 PMCID: PMC10432916 DOI: 10.1016/j.cdnut.2023.101978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Background Prior work has suggested relationships between prenatal intake of certain nutrients and autism. Objectives We examined a broad set of prenatal nutrients and foods using a Bayesian modeling approach. Methods Participants were drawn from the Early Autism Risks Longitudinal Investigation (n = 127), a cohort following women with a child with autism through a subsequent pregnancy. Participants were also drawn from the Nurses' Health Study II (NHSII, n = 713), a cohort of United States female nurses, for comparison analyses. In both studies, information on prospectively reported prenatal diet was drawn from food frequency questionnaires, and child autism-related traits were measured by the Social Responsiveness Scale (SRS). Bayesian kernel machine regression was used to examine the combined effects of several nutrients with neurodevelopmental relevance, including polyunsaturated fatty acids (PUFAs), iron, zinc, vitamin D, folate, and other methyl donors, and separately, key food sources of these, in association with child SRS scores in crude and adjusted models. Results In adjusted analyses, the overall mixture effects of nutrients in Early Autism Risks Longitudinal Investigation and foods in both cohorts on SRS scores were not observed, though there was some suggestion of decreasing SRS scores with increasing overall nutrient mixture in NHSII. No associations were observed with folate within the context of this mixture, but holding other nutrients fixed, n-6 PUFAs were associated with lower SRS scores in NHSII. In both cohorts, lower SRS scores were observed with higher intake of some groupings of vegetables, though for differing types of vegetables across cohorts, and some vegetable groups were associated with higher SRS scores in NHSII. Conclusions Our work extends prior research and suggests the need to further consider prenatal dietary factors from a combined effects perspective. In addition, findings here point to potential differences in nutrient associations based on a family history of autism, which suggests the need to consider gene interactions in future work.
Collapse
Affiliation(s)
- Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, United States
| | - Juliette Rando
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, United States
| | - Siwen Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Ghassan B. Hamra
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jorge Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Marc G. Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States
| | - M Daniele Fallin
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, Davis, CA, United States
| | - Heather E. Volk
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California, Davis, Davis, CA, United States
| | - Craig J. Newschaffer
- College of Health and Human Development, Penn State University, State College, PA, United States
| |
Collapse
|
16
|
Carey ME, Rando J, Melnyk S, James SJ, Snyder N, Salafia C, Croen LA, Fallin MD, Hertz-Picciotto I, Volk H, Newschaffer C, Lyall K. Examining associations between prenatal biomarkers of oxidative stress and ASD-related outcomes using quantile regression. J Autism Dev Disord 2023; 53:2975-2985. [PMID: 35678944 PMCID: PMC9732143 DOI: 10.1007/s10803-022-05625-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
We examined associations between prenatal oxidative stress (OS) and child autism-related outcomes. Women with an autistic child were followed through a subsequent pregnancy and that younger sibling's childhood. Associations between glutathione (GSH), glutathione disulfide (GSSG), 8-oxo-deoxyguanine (8-OHdG), and nitrotyrosine and younger sibling Social Responsiveness Scale (SRS) scores were examined using quantile regression. Increasing GSH:GSSG (suggesting decreasing OS) was associated with minor increases in SRS scores (50th percentile β: 1.78, 95% CI: 0.67, 3.06); no other associations were observed. Results from this cohort with increased risk for autism do not support a strong relationship between OS in late pregnancy and autism-related outcomes. Results may be specific to those with enriched autism risk; future work should consider other timepoints and biomarkers.
Collapse
Affiliation(s)
- Meghan E Carey
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104, United States.
| | - Juliette Rando
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104, United States
| | - Stepan Melnyk
- Arkansas Children's Hospital Research Institute, 13 Childrens Way, Little Rock, AR, 72202, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, United States
| | - S Jill James
- Department of Pediatrics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, United States
| | - Nathaniel Snyder
- Lewis Katz School of Medicine, Temple University, 3500 N Broad St, Philadelphia, PA, 19140, United States
| | - Carolyn Salafia
- Department of Pathology, New York Methodist Hospital, 506 6th St, Brooklyn, NY, 11215, United States
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, United States
| | - M Daniele Fallin
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104, United States
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, 1 Shields Ave, Davis, CA, 95616, United States
| | - Heather Volk
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD, 21205, United States
| | - Craig Newschaffer
- College of Health and Human Development, The Pennsylvania State University, 325 Health and Human Development Building, University Park, State College, PA, 16802, United States
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104, United States
| |
Collapse
|
17
|
Song AY, Kauffman EM, Hamra GB, Dickerson AS, Croen LA, Hertz-Picciotto I, Schmidt RJ, Newschaffer CJ, Fallin MD, Lyall K, Volk HE. Associations of prenatal exposure to a mixture of persistent organic pollutants with social traits and cognitive and adaptive function in early childhood: Findings from the EARLI study. ENVIRONMENTAL RESEARCH 2023; 229:115978. [PMID: 37116678 PMCID: PMC10314748 DOI: 10.1016/j.envres.2023.115978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 04/03/2023] [Accepted: 04/22/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Literature suggests that maternal exposure to persistent organic pollutants (POPs) may influence child neurodevelopment. Evidence linking prenatal POPs and autism spectrum disorder has been inconclusive and few studies have examined the mixture effect of the POPs on autism-related traits. OBJECTIVE To evaluate the associations between prenatal exposure to a mixture of POPs and autism-related traits in children from the Early Autism Risk Longitudinal Investigation study. METHODS Maternal serum concentrations of 17 POPs (11 polychlorinated biphenyls [PCBs], 4 polybrominated diphenyls [PBDEs], and 2 persistent pesticides) in 154 samples collected during pregnancy were included in this analysis. We examined the independent associations of the natural log-transformed POPs with social, cognitive, and behavioral traits at 36 months of age, including Social Responsiveness Scale (SRS), Mullen Scales of Early Learning-Early Learning Composite (MSEL-ELC), and Vineland Adaptive Behavior Scales (VABS) scores, using linear regression models. We applied Bayesian kernel machine regression and quantile g-computation to examine the joint effect and interactions of the POPs. RESULTS Higher ln-PBDE47 was associated with greater deficits in social reciprocity (higher SRS score) (β = 6.39, 95% CI: 1.12, 11.65) whereas higher ln-p,p'-DDE was associated with lower social deficits (β = -8.34, 95% CI: -15.32, -1.37). Positive associations were observed between PCB180 and PCB187 and cognitive (MSEL-ELC) scores (β = 5.68, 95% CI: 0.18, 11.17; β = 4.65, 95% CI: 0.14, 9.17, respectively). Adaptive functioning (VABS) scores were positively associated with PCB170, PCB180, PCB187, PCB196/203, and p,p'-DDE. In the mixture analyses, we did not observe an overall mixture effect of POPs on the quantitative traits. Potential interactions between PBDE99 and other PBDEs were identified in association with MSEL-ELC scores. CONCLUSIONS We observed independent effects of PCB180, PCB187, PBDE47, and p,p' DDE with ASD-related quantitative traits and potential interactions between PBDEs. Our findings highlight the importance of assessing the effect of POPs as a mixture.
Collapse
Affiliation(s)
- Ashley Y Song
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Wendy Klag Center for Autism & Developmental Disabilities, Baltimore, MD, USA.
| | | | - Ghassan B Hamra
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Aisha S Dickerson
- Wendy Klag Center for Autism & Developmental Disabilities, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, UC Davis, Davis CA and the UC Davis MIND Institute, Sacramento, CA, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, UC Davis, Davis CA and the UC Davis MIND Institute, Sacramento, CA, USA
| | - Craig J Newschaffer
- College of Health and Human Development, Pennsylvania State University, State College, PA, USA
| | - M Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
| | - Heather E Volk
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Wendy Klag Center for Autism & Developmental Disabilities, Baltimore, MD, USA
| |
Collapse
|
18
|
LaSalle JM. Epigenomic signatures reveal mechanistic clues and predictive markers for autism spectrum disorder. Mol Psychiatry 2023; 28:1890-1901. [PMID: 36650278 PMCID: PMC10560404 DOI: 10.1038/s41380-022-01917-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023]
Abstract
Autism spectrum disorder (ASD) comprises a heterogeneous group of neurodevelopmental outcomes in children with a commonality in deficits in social communication and language combined with repetitive behaviors and interests. The etiology of ASD is heterogeneous, as several hundred genes have been implicated as well as multiple in utero environmental exposures. Over the past two decades, epigenetic investigations, including DNA methylation, have emerged as a novel way to capture the complex interface of multivariate ASD etiologies. More recently, epigenome-wide association studies using human brain and surrogate accessible tissues have revealed some convergent genes that are epigenetically altered in ASD, many of which overlap with known genetic risk factors. Unlike transcriptomes, epigenomic signatures defined by DNA methylation from surrogate tissues such as placenta and cord blood can reflect past differences in fetal brain gene transcription, transcription factor binding, and chromatin. For example, the discovery of NHIP (neuronal hypoxia inducible, placenta associated) through an epigenome-wide association in placenta, identified a common genetic risk for ASD that was modified by prenatal vitamin use. While epigenomic signatures are distinct between different genetic syndromic causes of ASD, bivalent chromatin and some convergent gene pathways are consistently epigenetically altered in both syndromic and idiopathic ASD, as well as some environmental exposures. Together, these epigenomic signatures hold promising clues towards improved early prediction and prevention of ASD as well genes and gene pathways to target for pharmacological interventions. Future advancements in single cell and multi-omic technologies, machine learning, as well as non-invasive screening of epigenomic signatures during pregnancy or newborn periods are expected to continue to impact the translatability of the recent discoveries in epigenomics to precision public health.
Collapse
Affiliation(s)
- Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
19
|
Mouat JS, Li X, Neier K, Zhu Y, Mordaunt CE, La Merrill MA, Lehmler HJ, Jones MP, Lein PJ, Schmidt RJ, LaSalle JM. Networks of placental DNA methylation correlate with maternal serum PCB concentrations and child neurodevelopment. ENVIRONMENTAL RESEARCH 2023; 220:115227. [PMID: 36608759 PMCID: PMC10518186 DOI: 10.1016/j.envres.2023.115227] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Gestational exposure to polychlorinated biphenyls (PCBs) has been associated with elevated risk for neurodevelopmental disorders. Placental epigenetics may serve as a potential mechanism of risk or marker of altered placental function. Prior studies have associated differential placental DNA methylation with maternal PCB exposure or with increased risk of autism spectrum disorder (ASD). However, sequencing-based placental methylomes have not previously been tested for simultaneous associations with maternal PCB levels and child neurodevelopmental outcomes. OBJECTIVES We aimed to identify placental DNA methylation patterns associated with maternal PCB levels and child neurodevelopmental outcomes in the high-risk ASD MARBLES cohort. METHODS We measured 209 PCB congeners in 104 maternal serum samples collected at delivery. We identified networks of DNA methylation from 147 placenta samples using the Comethyl R package, which performs weighted gene correlation network analysis for whole genome bisulfite sequencing data. We tested placental DNA methylation modules for association with maternal serum PCB levels, child neurodevelopment, and other participant traits. RESULTS PCBs 153 + 168, 170, 180 + 193, and 187 were detected in over 50% of maternal serum samples and were highly correlated with one another. Consistent with previous findings, maternal age was the strongest predictor of serum PCB levels, alongside year of sample collection, pre-pregnancy BMI, and polyunsaturated fatty acid levels. Twenty seven modules of placental DNA methylation were identified, including five which significantly correlated with one or more PCBs, and four which correlated with child neurodevelopment. Two modules associated with maternal PCB levels as well as child neurodevelopment, and mapped to CSMD1 and AUTS2, genes previously implicated in ASD and identified as differentially methylated regions in mouse brain and placenta following gestational PCB exposure. CONCLUSIONS Placental DNA co-methylation modules were associated with maternal PCBs and child neurodevelopment. Methylation of CSMD1 and AUTS2 could be markers of altered placental function and/or ASD risk following maternal PCB exposure.
Collapse
Affiliation(s)
- Julia S Mouat
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Kari Neier
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Yihui Zhu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Charles E Mordaunt
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Michele A La Merrill
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Michael P Jones
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Pamela J Lein
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Rebecca J Schmidt
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA; Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
20
|
Song AY, Bakulski K, Feinberg JI, Newschaffer C, Croen LA, Hertz-Picciotto I, Schmidt RJ, Farzadegan H, Lyall K, Fallin MD, Volk HE, Ladd-Acosta C. Associations between accelerated parental biologic age, autism spectrum disorder, social traits, and developmental and cognitive outcomes in their children. Autism Res 2022; 15:2359-2370. [PMID: 36189953 PMCID: PMC9722613 DOI: 10.1002/aur.2822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023]
Abstract
Parental age is a known risk factor for autism spectrum disorder (ASD), however, studies to identify the biologic changes underpinning this association are limited. In recent years, "epigenetic clock" algorithms have been developed to estimate biologic age and to evaluate how the epigenetic aging impacts health and disease. In this study, we examined the relationship between parental epigenetic aging and their child's prospective risk of ASD and autism related quantitative traits in the Early Autism Risk Longitudinal Investigation study. Estimates of epigenetic age were computed using three robust clock algorithms and DNA methylation measures from the Infinium HumanMethylation450k platform for maternal blood and paternal blood specimens collected during pregnancy. Epigenetic age acceleration was defined as the residual of regressing chronological age on epigenetic age while accounting for cell type proportions. Multinomial logistic regression and linear regression models were completed adjusting for potential confounders for both maternal epigenetic age acceleration (n = 163) and paternal epigenetic age acceleration (n = 80). We found accelerated epigenetic aging in mothers estimated by Hannum's clock was significantly associated with lower cognitive ability and function in offspring at 12 months, as measured by Mullen Scales of Early Learning scores (β = -1.66, 95% CI: -3.28, -0.04 for a one-unit increase). We also observed a marginal association between accelerated maternal epigenetic aging by Horvath's clock and increased odds of ASD in offspring at 36 months of age (aOR = 1.12, 95% CI: 0.99, 1.26). By contrast, fathers accelerated aging was marginally associated with decreased ASD risk in their offspring (aOR = 0.83, 95% CI: 0.68, 1.01). Our findings suggest epigenetic aging could play a role in parental age risks on child brain development.
Collapse
Affiliation(s)
- Ashley Y. Song
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
- Wendy Klag Center for Autism and Developmental
Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Kelly Bakulski
- Department of Epidemiology, University of Michigan, Ann
Arbor, MI
| | - Jason I. Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
- Wendy Klag Center for Autism and Developmental
Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Craig Newschaffer
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
- College of Health and Human Development, Pennsylvania State
University, State College, PA
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente, Oakland, CA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and The MIND
Institute, School of Medicine, University of California-Davis, Davis, CA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences and The MIND
Institute, School of Medicine, University of California-Davis, Davis, CA
| | - Homayoon Farzadegan
- Department of Epidemiology, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University,
Philadelphia, PA
| | - M. Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta,
Georgia, USA
| | - Heather E. Volk
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
- Wendy Klag Center for Autism and Developmental
Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Christine Ladd-Acosta
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
- Wendy Klag Center for Autism and Developmental
Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
| |
Collapse
|
21
|
Fernandez-Jimenez N, Fore R, Cilleros-Portet A, Lepeule J, Perron P, Kvist T, Tian FY, Lesseur C, Binder AM, Lozano M, Martorell-Marugán J, Loke YJ, Bakulski KM, Zhu Y, Forhan A, Sammallahti S, Everson TM, Chen J, Michels KB, Belmonte T, Carmona-Sáez P, Halliday J, Daniele Fallin M, LaSalle JM, Tost J, Czamara D, Fernández MF, Gómez-Martín A, Craig JM, Gonzalez-Alzaga B, Schmidt RJ, Dou JF, Muggli E, Lacasaña M, Vrijheid M, Marsit CJ, Karagas MR, Räikkönen K, Bouchard L, Heude B, Santa-Marina L, Bustamante M, Hivert MF, Bilbao JR. A meta-analysis of pre-pregnancy maternal body mass index and placental DNA methylation identifies 27 CpG sites with implications for mother-child health. Commun Biol 2022; 5:1313. [PMID: 36446949 PMCID: PMC9709064 DOI: 10.1038/s42003-022-04267-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Higher maternal pre-pregnancy body mass index (ppBMI) is associated with increased neonatal morbidity, as well as with pregnancy complications and metabolic outcomes in offspring later in life. The placenta is a key organ in fetal development and has been proposed to act as a mediator between the mother and different health outcomes in children. The overall aim of the present work is to investigate the association of ppBMI with epigenome-wide placental DNA methylation (DNAm) in 10 studies from the PACE consortium, amounting to 2631 mother-child pairs. We identify 27 CpG sites at which we observe placental DNAm variations of up to 2.0% per 10 ppBMI-unit. The CpGs that are differentially methylated in placenta do not overlap with CpGs identified in previous studies in cord blood DNAm related to ppBMI. Many of the identified CpGs are located in open sea regions, are often close to obesity-related genes such as GPX1 and LGR4 and altogether, are enriched in cancer and oxidative stress pathways. Our findings suggest that placental DNAm could be one of the mechanisms by which maternal obesity is associated with metabolic health outcomes in newborns and children, although further studies will be needed in order to corroborate these findings.
Collapse
Affiliation(s)
- Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, Spain
| | - Ruby Fore
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Ariadna Cilleros-Portet
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, Spain
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, Grenoble, France
| | - Patrice Perron
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Tuomas Kvist
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Fu-Ying Tian
- Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA, USA
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra M Binder
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
- Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain
| | - Jordi Martorell-Marugán
- Department of Statistics and Operations Research, University of Granada, Granada, Spain
- Bioinformatics Unit. GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Yuk J Loke
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yihui Zhu
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA, USA
| | - Anne Forhan
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Sara Sammallahti
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
| | - Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA, USA
- Department of Epidemiology, Rollins School of Public health at Emory University, Atlanta, GA, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Thalia Belmonte
- Health Research Institute of Asturias, ISPA and Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Pedro Carmona-Sáez
- Department of Statistics and Operations Research, University of Granada, Granada, Spain
- Bioinformatics Unit. GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Jane Halliday
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - M Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA, USA
| | - Jorg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Darina Czamara
- Max-Planck-Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Mariana F Fernández
- University of Granada, Center for Biomedical Research (CIBM), Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Antonio Gómez-Martín
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Andalusian School of Public Health (EASP), Granada, Spain
| | - Jeffrey M Craig
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Beatriz Gonzalez-Alzaga
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Andalusian School of Public Health (EASP), Granada, Spain
| | - Rebecca J Schmidt
- Department of Public Health Sciences and the MIND Institute, University of California Davis School of Medicine, Davis, CA, USA
| | - John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Evelyne Muggli
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Marina Lacasaña
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Andalusian School of Public Health (EASP), Granada, Spain
| | - Martine Vrijheid
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA, USA
- Department of Epidemiology, Rollins School of Public health at Emory University, Atlanta, GA, USA
| | - Margaret R Karagas
- Department of Biochemistry and Functional Genomics, Universite de Sherbrooke, Sherbrooke, QC, Canada
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Universite de Sherbrooke, Sherbrooke, QC, Canada
- Department of Laboratory Medicine, CIUSSS du Saguenay-Lac-St-Jean - Hôpital Universitaire de Chicoutimi, Chicoutimi, QC, Canada
| | - Barbara Heude
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Loreto Santa-Marina
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Biodonostia, Epidemiology and Public Health Area, Environmental Epidemiology and Child Development Group, 20014, San Sebastian, Basque Country, Spain
- Health Department of Basque Government, Sub-directorate of Public Health of Gipuzkoa, San Sebastian, Basque Country, Spain
| | - Mariona Bustamante
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Jose Ramon Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, Spain.
- CIBER of diabetes and associated metabolic disorders (CIBERDEM), Madrid, Spain.
| |
Collapse
|
22
|
An Overview of Pediatric Approaches to Child with Developmental Delay Especially if There is Suspicion of ASD in First Few Years of Life. PRILOZI (MAKEDONSKA AKADEMIJA NA NAUKITE I UMETNOSTITE. ODDELENIE ZA MEDICINSKI NAUKI) 2022; 43:43-53. [PMID: 36473037 DOI: 10.2478/prilozi-2022-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To be a pediatrician means that one encounters many serious childhood health problems and one finds many ways to help families cope with these problems. Symptoms in children can be discrete, and the responsibility of the pediatrician to distinguish normal development from pathological. We are facing a new era in the developmental assessment of children. A cluster of neurodevelopmental disorders includes ASD (autism spectrum disorder) and ADHD (attention deficit hyperactivity disorder). Parents often do not recognize the problem on time. Generally, their first concern is speech delay, leading to the suspicion of hearing problems. Therefore, it is very important to obtain objective anamnestic information and for the child to undergo a careful physical examination, a neurophysiological assessment, and metabolic and genetic testing. The etiology usually is multifactorial: genetic, epigenetic, and non-genetic factors act in combination through various paths. Most children seem to have typical neurodevelopment during first their year. It was found that approximately one-third of children with ASD lose some skills during the preschool period, usually speech related, but sometimes also non-verbal communication, social or play skills. In conclusion we must say that it is very important to recognize the early signs of ASD and any kind of other developmental delay and to start with early intervention. Clinical pediatricians tend to correlate clinical manifestations and biological underpinnings related to neurodevelopmental disorder, especially ASD. Therefore, better treatment possibilities are needed.
Collapse
|
23
|
Mathew L, Snyder NW, Lyall K, Lee BK, McClure LA, Elliott AJ, Newschaffer CJ. The associations between prenatal phthalate exposure measured in child meconium and cognitive functioning of 12-month-old children in two cohorts at elevated risk for adverse neurodevelopment. ENVIRONMENTAL RESEARCH 2022; 214:113928. [PMID: 35870502 PMCID: PMC9890962 DOI: 10.1016/j.envres.2022.113928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND Phthalate metabolites in gestational-maternal urine represents short-term maternal exposure, but meconium, the newborn's first stool may better capture cumulative fetal exposure. We quantified phthalate metabolites in meconium from two cohorts of children at higher risk of adverse neurodevelopment and evaluated associations with their cognitive function at 12 months. METHODS Meconium phthalate metabolites were quantified in the Safe Passage Study (SPS), N = 720, a pregnancy cohort with high community-levels of prenatal alcohol use, and the Early Autism Risk Longitudinal Investigation (EARLI), N = 236, a high familial autism risk pregnancy cohort. EARLI also had second and third trimester (T2/T3) maternal urine for exposure assessment. Molar sum of di (2-ethylhexyl) (∑DEHP) metabolites and an anti-androgenic score (AAS) using mono-isobutyl, mono-n-butyl, monobenzyl (MBZP), and DEHP metabolites were computed. Cognitive function was assessed at 12 months using the Mullen Scales of Early Learning-Composite (ELC). Multivariable linear regression assessed associations between loge-transformed metabolites and ELC. Quadratic terms explored nonlinearity and interaction terms of metabolite by child's sex examined effect modification. RESULTS In SPS, MBzP (βLinear = -6.73; 95% CI: 12.04, -1.42; βquadratic = 1.95; 0.27, 3.62) and mono (2-ethyl-5-carboxypentyl), (βLinear = -3.81; -7.53, -0.27; βquadratic = 0.93; 0.09, 1.77) had U-shaped associations with ELC. In EARLI, T2 urine mono-carboxyisononyl was associated with linear decrease in ELC, indicating lower cognitive function. Interaction with sex was suggested (P < 0.2) for several urine metabolites, mostly indicating negative association between phthalates and ELC among girls but reversed among boys. Only mono-isononyl phthalate and ∑DEHP had consistent main effect associations across matrixes and cohorts, but similar interaction with sex was observed for meconium-measured ∑DEHP, AAS, MBzP, and mono (2-ethylhexyl) in both cohorts. CONCLUSIONS Few phthalate metabolites were consistently associated with children's cognitive function, but a similar set of meconium metabolites from both cohorts displayed sex-specific associations. Gestational phthalate exposure may have sexually-dimorphic associations with early cognitive function in children at higher risk for adverse neurodevelopment.
Collapse
Affiliation(s)
- Leny Mathew
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA, 19104, USA; Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, 3215 Market Street, Philadelphia, PA, 19104, USA.
| | - Nathaniel W Snyder
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA, 19104, USA
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA, 19104, USA
| | - Brian K Lee
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, 3215 Market Street, Philadelphia, PA, 19104, USA
| | - Leslie A McClure
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, 3215 Market Street, Philadelphia, PA, 19104, USA
| | | | - Craig J Newschaffer
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA, 19104, USA; College of Health and Human Development, Pennsylvania State University, 325 HHD Building, University Park, PA, 16802, USA
| |
Collapse
|
24
|
Parenti M, Schmidt RJ, Ozonoff S, Shin HM, Tancredi DJ, Krakowiak P, Hertz-Picciotto I, Walker CK, Slupsky CM. Maternal Serum and Placental Metabolomes in Association with Prenatal Phthalate Exposure and Neurodevelopmental Outcomes in the MARBLES Cohort. Metabolites 2022; 12:829. [PMID: 36144233 PMCID: PMC9500898 DOI: 10.3390/metabo12090829] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 01/16/2023] Open
Abstract
Prenatal exposure to phthalates, a family of endocrine-disrupting plasticizers, is associated with disruption of maternal metabolism and impaired neurodevelopment. We investigated associations between prenatal phthalate exposure and alterations of both the maternal third trimester serum metabolome and the placental metabolome at birth, and associations of these with child neurodevelopmental outcomes using data and samples from the Markers of Autism Risk in Babies Learning Early Signs (MARBLES) cohort. The third trimester serum (n = 106) and placental (n = 132) metabolomes were investigated using 1H nuclear magnetic resonance spectroscopy. Children were assessed clinically for autism spectrum disorder (ASD) and cognitive development. Although none of the urinary phthalate metabolite concentrations were associated with maternal serum metabolites after adjustment for covariates, mixture analysis using quantile g-computation revealed alterations in placental metabolites with increasing concentrations of phthalate metabolites that included reduced concentrations of 2-hydoxybutyrate, carnitine, O-acetylcarnitine, glucitol, and N-acetylneuraminate. Child neurodevelopmental outcome was not associated with the third trimester serum metabolome, but it was correlated with the placental metabolome in male children only. Maternal phthalate exposure during pregnancy is associated with differences in the placental metabolome at delivery, and the placental metabolome is associated with neurodevelopmental outcomes in males in a cohort with high familial ASD risk.
Collapse
Affiliation(s)
- Mariana Parenti
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, CA 95616, USA
| | - Sally Ozonoff
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, CA 95616, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA 95616, USA
| | - Hyeong-Moo Shin
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Daniel J. Tancredi
- Department of Pediatrics, School of Medicine, University of California, Davis, CA 95616, USA
| | - Paula Krakowiak
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, CA 95616, USA
| | - Cheryl K. Walker
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, CA 95616, USA
- Department of Obstetrics & Gynecology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Carolyn M. Slupsky
- Department of Nutrition, University of California, Davis, CA 95616, USA
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| |
Collapse
|
25
|
Dou JF, Middleton LYM, Zhu Y, Benke KS, Feinberg JI, Croen LA, Hertz-Picciotto I, Newschaffer CJ, LaSalle JM, Fallin D, Schmidt RJ, Bakulski KM. Prenatal vitamin intake in first month of pregnancy and DNA methylation in cord blood and placenta in two prospective cohorts. Epigenetics Chromatin 2022; 15:28. [PMID: 35918756 PMCID: PMC9344645 DOI: 10.1186/s13072-022-00460-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Prenatal vitamin use is recommended before and during pregnancies for normal fetal development. Prenatal vitamins do not have a standard formulation, but many contain calcium, folic acid, iodine, iron, omega-3 fatty acids, zinc, and vitamins A, B6, B12, and D, and usually they contain higher concentrations of folic acid and iron than regular multivitamins in the US Nutrient levels can impact epigenetic factors such as DNA methylation, but relationships between maternal prenatal vitamin use and DNA methylation have been relatively understudied. We examined use of prenatal vitamins in the first month of pregnancy in relation to cord blood and placenta DNA methylation in two prospective pregnancy cohorts: the Early Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk Learning Early Signs (MARBLES) studies. RESULTS In placenta, prenatal vitamin intake was marginally associated with -0.52% (95% CI -1.04, 0.01) lower mean array-wide DNA methylation in EARLI, and associated with -0.60% (-1.08, -0.13) lower mean array-wide DNA methylation in MARBLES. There was little consistency in the associations between prenatal vitamin intake and single DNA methylation site effect estimates across cohorts and tissues, with only a few overlapping sites with correlated effect estimates. However, the single DNA methylation sites with p-value < 0.01 (EARLI cord nCpGs = 4068, EARLI placenta nCpGs = 3647, MARBLES cord nCpGs = 4068, MARBLES placenta nCpGs = 9563) were consistently enriched in neuronal developmental pathways. CONCLUSIONS Together, our findings suggest that prenatal vitamin intake in the first month of pregnancy may be related to lower placental global DNA methylation and related to DNA methylation in brain-related pathways in both placenta and cord blood.
Collapse
Affiliation(s)
- John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA
| | - Lauren Y M Middleton
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA
| | - Yihui Zhu
- Department of Public Health Sciences and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA, USA
| | - Kelly S Benke
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jason I Feinberg
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Lisa A Croen
- Kaiser Permanente Northern California, Oakland, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA, USA
| | - Craig J Newschaffer
- College of Health and Human Development, Penn State University, State College, PA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA, USA
| | - Daniele Fallin
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Lyall K, Ning X, Aschner JL, Avalos LA, Bennett DH, Bilder DA, Bush NR, Carroll KN, Chu SH, Croen LA, Dabelea D, Daniels JL, Duarte C, Elliott AJ, Fallin MD, Ferrara A, Hertz-Picciotto I, Hipwell AE, Jensen ET, Johnson SL, Joseph RM, Karagas M, Kelly RS, Lester BM, Margolis A, McEvoy CT, Messinger D, Neiderhiser JM, O’Connor TG, Oken E, Sathyanarayana S, Schmidt RJ, Sheinkopf SJ, Talge NM, Turi KN, Wright RJ, Zhao Q, Newschaffer C, Volk HE, Ladd-Acosta C, Environmental Influences on Child Health Outcomes OBOPCF. Cardiometabolic Pregnancy Complications in Association With Autism-Related Traits as Measured by the Social Responsiveness Scale in ECHO. Am J Epidemiol 2022; 191:1407-1419. [PMID: 35362025 PMCID: PMC9614927 DOI: 10.1093/aje/kwac061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/07/2022] [Accepted: 03/25/2022] [Indexed: 01/28/2023] Open
Abstract
Prior work has examined associations between cardiometabolic pregnancy complications and autism spectrum disorder (ASD) but not how these complications may relate to social communication traits more broadly. We addressed this question within the Environmental Influences on Child Health Outcomes program, with 6,778 participants from 40 cohorts conducted from 1998-2021 with information on ASD-related traits via the Social Responsiveness Scale. Four metabolic pregnancy complications were examined individually, and combined, in association with Social Responsiveness Scale scores, using crude and adjusted linear regression as well as quantile regression analyses. We also examined associations stratified by ASD diagnosis, and potential mediation by preterm birth and low birth weight, and modification by child sex and enriched risk of ASD. Increases in ASD-related traits were associated with obesity (β = 4.64, 95% confidence interval: 3.27, 6.01) and gestational diabetes (β = 5.21, 95% confidence interval: 2.41, 8.02), specifically, but not with hypertension or preeclampsia. Results among children without ASD were similar to main analyses, but weaker among ASD cases. There was not strong evidence for mediation or modification. Results suggest that common cardiometabolic pregnancy complications may influence child ASD-related traits, not only above a diagnostic threshold relevant to ASD but also across the population.
Collapse
Affiliation(s)
- Kristen Lyall
- Correspondence to Dr. Kristen Lyall, 3020 Market Street, Suite 560, Philadelphia, PA 19104 (e-mail: )
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Vecchione R, Wang S, Rando J, Chavarro JE, Croen LA, Fallin MD, Hertz-Picciotto I, Newschaffer CJ, Schmidt RJ, Lyall K. Maternal Dietary Patterns during Pregnancy and Child Autism-Related Traits: Results from Two US Cohorts. Nutrients 2022; 14:2729. [PMID: 35807909 PMCID: PMC9268965 DOI: 10.3390/nu14132729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
We examined the relationship between maternal intake of established dietary patterns and child autism-related outcomes in two prospective cohorts in the United States. Participants were drawn from the Early Autism Risk Longitudinal Investigation (EARLI, n = 154) and the Nurses' Health Study II (NHSII, n = 727). Dietary information was collected via food frequency questionnaires (FFQs) and used to calculate the empirical dietary inflammatory pattern (EDIP), Alternative Healthy Eating Index (AHEI), Western and Prudent dietary patterns, and the alternative Mediterranean Diet (aMED) score. Primary analyses examined associations with continuous autism-related traits as measured by the Social Responsiveness Scale (SRS), and secondary analyses with autism spectrum disorder (ASD) diagnosis. We used crude and multivariable quantile regression fixed at the 50th percentile to examine associations between quartiles of dietary patterns and SRS scores, and logistic regression to examine associations with ASD diagnosis. There was suggestion of a positive association with the Western diet (Q4 vs. Q1, ß = 11.19, 95% CI: 3.30, 19.90) in EARLI, though the association was attenuated with adjustment for total energy intake, and no clear associations were observed with other dietary patterns and ASD diagnosis or SRS scores. Further work is needed to better understand the role of maternal dietary patterns in ASD and related outcomes.
Collapse
Affiliation(s)
- Rachel Vecchione
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104, USA;
| | - Siwen Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02215, USA; (S.W.); (J.E.C.)
| | - Juliette Rando
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA 19104, USA;
| | - Jorge E. Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02215, USA; (S.W.); (J.E.C.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02215, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente Norther California, Oakland, CA 94612, USA;
| | - M. Daniele Fallin
- Department of Mental Health, Johns Hopkins, Baltimore, MD 21205, USA;
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California Davis, Davis, CA 95616, USA; (I.H.-P.); (R.J.S.)
| | - Craig J. Newschaffer
- College of Health and Human Development, Pennsylvania State University, State College, PA 16801, USA;
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California Davis, Davis, CA 95616, USA; (I.H.-P.); (R.J.S.)
| | - Kristen Lyall
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104, USA;
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA 19104, USA;
| |
Collapse
|
28
|
Song AY, Feinberg JI, Bakulski KM, Croen LA, Fallin MD, Newschaffer CJ, Hertz-Picciotto I, Schmidt RJ, Ladd-Acosta C, Volk HE. Prenatal Exposure to Ambient Air Pollution and Epigenetic Aging at Birth in Newborns. Front Genet 2022; 13:929416. [PMID: 35836579 PMCID: PMC9274082 DOI: 10.3389/fgene.2022.929416] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
In utero air pollution exposure has been associated with adverse birth outcomes, yet effects of air pollutants on regulatory mechanisms in fetal growth and critical windows of vulnerability during pregnancy are not well understood. There is evidence that epigenetic alterations may contribute to these effects. DNA methylation (DNAm) based age estimators have been developed and studied extensively with health outcomes in recent years. Growing literature suggests environmental factors, such as air pollution and smoking, can influence epigenetic aging. However, little is known about the effect of prenatal air pollution exposure on epigenetic aging. In this study, we leveraged existing data on prenatal air pollution exposure and cord blood DNAm from 332 mother-child pairs in the Early Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk in Babies-Learning Early Signs (MARBLES), two pregnancy cohorts enrolling women who had a previous child diagnosed with autism spectrum disorder, to assess the relationship of prenatal exposure to air pollution and epigenetic aging at birth. DNAm age was computed using existing epigenetic clock algorithms for cord blood tissue-Knight and Bohlin. Epigenetic age acceleration was defined as the residual of regressing chronological gestational age on DNAm age, accounting for cell type proportions. Multivariable linear regression models and distributed lag models (DLMs), adjusting for child sex, maternal race/ethnicity, study sites, year of birth, maternal education, were completed. In the single-pollutant analysis, we observed exposure to PM2.5, PM10, and O3 during preconception period and pregnancy period were associated with decelerated epigenetic aging at birth. For example, pregnancy average PM10 exposure (per 10 unit increase) was associated with epigenetic age deceleration at birth (weeks) for both Knight and Bohlin clocks (β = -0.62, 95% CI: -1.17, -0.06; β = -0.32, 95% CI: -0.63, -0.01, respectively). Weekly DLMs revealed that increasing PM2.5 during the first trimester and second trimester were associated with decelerated epigenetic aging and that increasing PM10 during the preconception period was associated with decelerated epigenetic aging, using the Bohlin clock estimate. Prenatal ambient air pollution exposure, particularly in early and mid-pregnancy, was associated with decelerated epigenetic aging at birth.
Collapse
Affiliation(s)
- Ashley Y. Song
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jason I. Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente, Oakland, CA, United States
| | - M. Daniele Fallin
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Craig J. Newschaffer
- College of Health and Human Development, Pennsylvania State University, State College, PA, United States
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, UC Davis, Davis CA and the UC Davis MIND Institute, Sacramento, CA, United States
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, UC Davis, Davis CA and the UC Davis MIND Institute, Sacramento, CA, United States
| | - Christine Ladd-Acosta
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Heather E. Volk
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
29
|
Zhong C, Shah R, Rando J, Park B, Girardi T, Walker CK, Croen LA, Fallin MD, Hertz-Picciotto I, Lee BK, Schmidt RJ, Volk HE, Newschaffer CJ, Salafia CM, Lyall K. Placental morphology in association with autism-related traits in the EARLI study. BMC Pregnancy Childbirth 2022; 22:525. [PMID: 35764940 PMCID: PMC9241175 DOI: 10.1186/s12884-022-04851-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/09/2022] [Indexed: 01/24/2023] Open
Abstract
Background In prior work we observed differences in morphology features in placentas from an autism-enriched cohort as compared to those from a general population sample. Here we sought to examine whether these differences associate with ASD-related outcomes in the child. Methods Participants (n = 101) were drawn from the Early Autism Risk Longitudinal Investigation (EARLI), a cohort following younger siblings of children with autism spectrum disorder (ASD). ASD-related outcomes, including the Social Responsiveness Scale (SRS), Mullen Scales of Early Learning (MSEL) Early Learning Composite, and ASD diagnosis, were assessed at age 3. Crude and adjusted linear regression was used to examine associations between placental morphological features (parametrized continuously and in quartiles) and SRS and MSEL scores; comparisons by ASD case status were explored as secondary analyses due to the small number of cases (n = 20). Results In adjusted analyses, we observed a modest positive association between umbilical cord eccentricity, defined as the ratio of the maximum:minimum radius from the cord insertion point, and SRS scores (Beta = 1.68, 95%CI = 0.45, 2.9). Positive associations were also suggested between placental maximum thickness and cord centrality and SRS scores, though these were estimated with little precision. Associations between other placental morphological features and outcomes were not observed. Conclusions Our analyses suggested a potential association between umbilical cord features and ASD-related traits, of interest as non-central cord insertion may reflect reduced placenta efficiency. Future studies with larger sample sizes are needed to further examine these and other placental features in association with ASD-related outcomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-022-04851-4.
Collapse
Affiliation(s)
- Caichen Zhong
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, 19104, USA.
| | | | - Juliette Rando
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
| | - Bo Park
- Department of Public Health, California State University Fullerton, Fullerton, CA, USA
| | | | - Cheryl K Walker
- Department of Obstetrics and Gynecology, University of California Davis Health, Sacramento, CA, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - M Daniele Fallin
- Department of Mental Health, Johns Hopkins University, Baltimore, MD, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and the MIND Institute, School of Medicine, University of California Davis, Davis, CA, USA
| | - Brian K Lee
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, 19104, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences and the MIND Institute, School of Medicine, University of California Davis, Davis, CA, USA
| | - Heather E Volk
- Department of Mental Health, Johns Hopkins University, Baltimore, MD, USA
| | - Craig J Newschaffer
- Department of Health and Human Development, Pennsylvania State University, University Park, PA, USA
| | | | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
30
|
Joyce EE, Chavarro JE, Rando J, Song AY, Croen LA, Fallin MD, Hertz‐Picciotto I, Schmidt RJ, Volk H, Newschaffer CJ, Lyall K. Prenatal exposure to pesticide residues in the diet in association with child autism-related traits: Results from the EARLI study. Autism Res 2022; 15:957-970. [PMID: 35261202 PMCID: PMC9090949 DOI: 10.1002/aur.2698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/31/2022]
Abstract
Prior work has suggested associations between prenatal exposure to several classes of pesticides and child autism spectrum disorder (ASD). We examined a previously developed pesticide residue burden score (PRBS) and intake of high pesticide residue foods in association with ASD-related traits. Participants were drawn from the Early Autism Risk Longitudinal Investigation (EARLI) (n = 256), a cohort following mothers who previously had a child with ASD through a subsequent pregnancy and that child's development. ASD-related traits were captured according to total Social Responsiveness Scale (SRS) scores at age 3 (mean raw total SRS score = 35.8). Dietary intake was assessed through a food frequency questionnaire collected during pregnancy. We also incorporated organic intake and fatty foods in modified versions of the PRBS. Associations between high-residue fruit and vegetable intake, the overall PRBS and modified versions of it, and SRS scores were assessed using multivariable linear regression. Overall, we did not observe associations between pesticide residues in foods and ASD-related outcomes, and modified versions of the PRBS yielded similar findings. However, reductions in ASD-related traits were observed with higher overall fruit and vegetable intake (adjusted estimates for Q4 vs. Q1: β -12.76, 95%CI -27.8, 2.3). Thus, findings from this high familial probability cohort did not suggest relationships between pesticide residues in the diet according to the PRBS and ASD-related traits. Beneficial effects of fruit and vegetable intake may influence these relationships. Future work should consider fruit and vegetable intake in association with ASD-related outcomes. LAY SUMMARY: Diet is the main source of exposure to most pesticides in use today. In this study, we examined the relationship between pesticide exposure from residues in the diet during pregnancy and child autism-related traits. We found that these pesticide residues from the diet were not related to child autism-related outcomes at age three. However, higher prenatal fruit and vegetable intake was associated with reductions in child autism-related traits.
Collapse
Affiliation(s)
- Emily E. Joyce
- Dornsife School of Public Health, Department of Epidemiology and BiostatisticsDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | - Jorge E. Chavarro
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Juliette Rando
- A.J. Drexel Autism InstituteDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | - Ashley Y. Song
- Department of Mental HealthJohns HopkinsBaltimoreMarylandUSA
| | - Lisa A. Croen
- Division of ResearchKaiser Permanente Northern CaliforniaOaklandCaliforniaUSA
| | | | - Irva Hertz‐Picciotto
- Department of Public Health SciencesUniversity of CaliforniaDavisCaliforniaUSA
- MIND InstituteSacramentoCAUSA
| | - Rebecca J. Schmidt
- Department of Public Health SciencesUniversity of CaliforniaDavisCaliforniaUSA
- MIND InstituteSacramentoCAUSA
| | - Heather Volk
- Department of Mental HealthJohns HopkinsBaltimoreMarylandUSA
| | - Craig J. Newschaffer
- College of Health and Human DevelopmentPenn State, University Park, State CollegePennsylvaniaUSA
| | - Kristen Lyall
- Dornsife School of Public Health, Department of Epidemiology and BiostatisticsDrexel UniversityPhiladelphiaPennsylvaniaUSA
- A.J. Drexel Autism InstituteDrexel UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
31
|
Zhu Y, Gomez JA, Laufer BI, Mordaunt CE, Mouat JS, Soto DC, Dennis MY, Benke KS, Bakulski KM, Dou J, Marathe R, Jianu JM, Williams LA, Gutierrez Fugón OJ, Walker CK, Ozonoff S, Daniels J, Grosvenor LP, Volk HE, Feinberg JI, Fallin MD, Hertz-Picciotto I, Schmidt RJ, Yasui DH, LaSalle JM. Placental methylome reveals a 22q13.33 brain regulatory gene locus associated with autism. Genome Biol 2022; 23:46. [PMID: 35168652 PMCID: PMC8848662 DOI: 10.1186/s13059-022-02613-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/16/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) involves complex genetics interacting with the perinatal environment, complicating the discovery of common genetic risk. The epigenetic layer of DNA methylation shows dynamic developmental changes and molecular memory of in utero experiences, particularly in placenta, a fetal tissue discarded at birth. However, current array-based methods to identify novel ASD risk genes lack coverage of the most structurally and epigenetically variable regions of the human genome. RESULTS We use whole genome bisulfite sequencing in placenta samples from prospective ASD studies to discover a previously uncharacterized ASD risk gene, LOC105373085, renamed NHIP. Out of 134 differentially methylated regions associated with ASD in placental samples, a cluster at 22q13.33 corresponds to a 118-kb hypomethylated block that replicates in two additional cohorts. Within this locus, NHIP is functionally characterized as a nuclear peptide-encoding transcript with high expression in brain, and increased expression following neuronal differentiation or hypoxia, but decreased expression in ASD placenta and brain. NHIP overexpression increases cellular proliferation and alters expression of genes regulating synapses and neurogenesis, overlapping significantly with known ASD risk genes and NHIP-associated genes in ASD brain. A common structural variant disrupting the proximity of NHIP to a fetal brain enhancer is associated with NHIP expression and methylation levels and ASD risk, demonstrating a common genetic influence. CONCLUSIONS Together, these results identify and initially characterize a novel environmentally responsive ASD risk gene relevant to brain development in a hitherto under-characterized region of the human genome.
Collapse
Affiliation(s)
- Yihui Zhu
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - J Antonio Gomez
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Benjamin I Laufer
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Charles E Mordaunt
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Julia S Mouat
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Daniela C Soto
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Megan Y Dennis
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Kelly S Benke
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ria Marathe
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Julia M Jianu
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Logan A Williams
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Orangel J Gutierrez Fugón
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Cheryl K Walker
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Obstetrics and Gynecology, University of California, Davis, CA, USA
| | - Sally Ozonoff
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, Davis, CA, USA
| | - Jason Daniels
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Luke P Grosvenor
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Heather E Volk
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - M Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Irva Hertz-Picciotto
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Rebecca J Schmidt
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA.
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA.
- Genome Center, University of California, Davis, CA, USA.
- MIND Institute, School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
32
|
Gardella B, Dominoni M, Scatigno AL, Cesari S, Fiandrino G, Orcesi S, Spinillo A. What is known about neuroplacentology in fetal growth restriction and in preterm infants: A narrative review of literature. Front Endocrinol (Lausanne) 2022; 13:936171. [PMID: 36060976 PMCID: PMC9437342 DOI: 10.3389/fendo.2022.936171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The placenta plays a fundamental role during pregnancy for fetal growth and development. A suboptimal placental function may result in severe consequences during the infant's first years of life. In recent years, a new field known as neuroplacentology has emerged and it focuses on the role of the placenta in fetal and neonatal brain development. Because of the limited data, our aim was to provide a narrative review of the most recent knowledge about the relation between placental lesions and fetal and newborn neurological development. Papers published online from 2000 until February 2022 were taken into consideration and particular attention was given to articles in which placental lesions were related to neonatal morbidity and short-term and long-term neurological outcome. Most research regarding the role of placental lesions in neurodevelopment has been conducted on fetal growth restriction and preterm infants. Principal neurological outcomes investigated were periventricular leukomalacia, intraventricular hemorrhages, neonatal encephalopathy and autism spectrum disorder. No consequences in motor development were found. All the considered studies agree about the crucial role played by placenta in fetal and neonatal neurological development and outcome. However, the causal mechanisms remain largely unknown. Knowledge on the pathophysiological mechanisms and on placenta-related risks for neurological problems may provide clues for early interventions aiming to improve neurological outcomes, especially among pediatricians and child psychiatrists.
Collapse
Affiliation(s)
- Barbara Gardella
- Department of Obstetrics and Gynecology, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
- Department of Obstetrics and Gynecology, University of Pavia, Pavia, Italy
- *Correspondence: Barbara Gardella,
| | - Mattia Dominoni
- Department of Obstetrics and Gynecology, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
- Department of Obstetrics and Gynecology, University of Pavia, Pavia, Italy
| | - Annachiara Licia Scatigno
- Department of Obstetrics and Gynecology, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
- Department of Obstetrics and Gynecology, University of Pavia, Pavia, Italy
| | - Stefania Cesari
- Department of Pathology, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Giacomo Fiandrino
- Department of Pathology, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Simona Orcesi
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
| | - Arsenio Spinillo
- Department of Obstetrics and Gynecology, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
- Department of Obstetrics and Gynecology, University of Pavia, Pavia, Italy
| |
Collapse
|
33
|
Bakulski KM, Dou JF, Feinberg JI, Aung MT, Ladd-Acosta C, Volk HE, Newschaffer CJ, Croen LA, Hertz-Picciotto I, Levy SE, Landa R, Feinberg AP, Fallin MD. Autism-Associated DNA Methylation at Birth From Multiple Tissues Is Enriched for Autism Genes in the Early Autism Risk Longitudinal Investigation. Front Mol Neurosci 2021; 14:775390. [PMID: 34899183 PMCID: PMC8655859 DOI: 10.3389/fnmol.2021.775390] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Pregnancy measures of DNA methylation, an epigenetic mark, may be associated with autism spectrum disorder (ASD) development in children. Few ASD studies have considered prospective designs with DNA methylation measured in multiple tissues and tested overlap with ASD genetic risk loci. Objectives: To estimate associations between DNA methylation in maternal blood, cord blood, and placenta and later diagnosis of ASD, and to evaluate enrichment of ASD-associated DNA methylation for known ASD-associated genes. Methods: In the Early Autism Risk Longitudinal Investigation (EARLI), an ASD-enriched risk birth cohort, genome-scale maternal blood (early n = 140 and late n = 75 pregnancy), infant cord blood (n = 133), and placenta (maternal n = 106 and fetal n = 107 compartments) DNA methylation was assessed on the Illumina 450k HumanMethylation array and compared to ASD diagnosis at 36 months of age. Differences in site-specific and global methylation were tested with ASD, as well as enrichment of single site associations for ASD risk genes (n = 881) from the Simons Foundation Autism Research Initiative (SFARI) database. Results: No individual DNA methylation site was associated with ASD at genome-wide significance, however, individual DNA methylation sites nominally associated with ASD (P < 0.05) in each tissue were highly enriched for SFARI genes (cord blood P = 7.9 × 10-29, maternal blood early pregnancy P = 6.1 × 10-27, maternal blood late pregnancy P = 2.8 × 10-16, maternal placenta P = 5.6 × 10-15, fetal placenta P = 1.3 × 10-20). DNA methylation sites nominally associated with ASD across all five tissues overlapped at 144 (29.5%) SFARI genes. Conclusion: DNA methylation sites nominally associated with later ASD diagnosis in multiple tissues were enriched for ASD risk genes. Our multi-tissue study demonstrates the utility of examining DNA methylation prior to ASD diagnosis.
Collapse
Affiliation(s)
- Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Jason I Feinberg
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States.,Wendy Klag Center for Autism and Developmental Disabilities, Baltimore, MD, United States.,Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Max T Aung
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Christine Ladd-Acosta
- Wendy Klag Center for Autism and Developmental Disabilities, Baltimore, MD, United States.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Heather E Volk
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States.,Wendy Klag Center for Autism and Developmental Disabilities, Baltimore, MD, United States
| | - Craig J Newschaffer
- College of Health and Human Development, Penn State University, State College, PA, United States
| | - Lisa A Croen
- Kaiser Permanente Division of Research, Oakland, CA, United States
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California, Davis, Davis, CA, United States
| | - Susan E Levy
- Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Rebecca Landa
- Kennedy Krieger Institute Center for Autism and Related Disorders, Baltimore, MD, United States
| | - Andrew P Feinberg
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Margaret D Fallin
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States.,Wendy Klag Center for Autism and Developmental Disabilities, Baltimore, MD, United States.,Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
34
|
Mathew L, Snyder NW, Lyall K, Lee BK, McClure LA, Elliott AJ, Newschaffer CJ. Prenatal phthalate exposure measurement: A comparison of metabolites quantified in prenatal maternal urine and newborn's meconium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148898. [PMID: 34280640 PMCID: PMC8440376 DOI: 10.1016/j.scitotenv.2021.148898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 05/29/2023]
Abstract
Phthalates are chemicals suspected to adversely affect fetal neurodevelopment, but quantifying the fetal exposure is challenging. While prenatal phthalate exposure is commonly quantified in maternal urine, the newborn's meconium may better capture cumulative prenatal exposure. Currently, data on phthalates measured in meconium is sparse. We measured phthalate metabolites in 183 maternal second and 140 third trimester (T2, T3) urine, and in 190 meconium samples collected in an autism enriched-risk pregnancy cohort of 236 mothers. Eleven and eight metabolites were detected in over 90% of urine and meconium samples, respectively. Hydrophilic and hydrophobic metabolites were detected in both biosamples. Most urine phthalate metabolite distributions were similar between T2 and T3. Among metabolites detected in both biosamples, those of di(2-ethylhexyl) phthalate displayed a similar pattern in magnitude across metabolite type. Specifically, T2 creatinine adjusted distribution [median (25%, 75%)] of urine measured mono(2-ethylhexyl-carboxypentyl) (MECPP), mono(2-ethyl-5-hydroxyhexyl) (MEHHP), and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) were 18.8(11.9, 31.4), 11.8(7.2, 19.1), and 8.9(6.2, 14.2) ng/mg. In meconium these were 16.6(10.9, 23.7), 2.5(1.5, 3.8), and 1.3(0.8, 2.3) ng/g, respectively. Metabolite-to-metabolite correlations were lower in meconium than urine, but patterns were similar. For example, correlation (95% CI) between mono(2-ethylhexyl) phthalate and MECPP was 0.73 (0.66, 0.78), and between MEOHP and MEHHP was 0.96 (0.95, 0.97) in urine as compared to 0.10 (-0.04, 0.24) and 0.31 (0.18, 0.43) respectively in meconium. Correlations between same metabolites measured in urine and meconium were low and differed by metabolite and trimester. Correlation between MEHHP in urine and meconium, for example, was 0.20 (0.008, 0.37) at T3, but 0.05 (-0.12, 0.21) at T2. Our study provides evidence of general population-level prenatal phthalate exposure in a population at high risk for neurodevelopmental disorders and supports the utility of meconium to measure prenatal phthalate exposure but provides little evidence of correlation with exposure measured in prenatal maternal urine.
Collapse
Affiliation(s)
- Leny Mathew
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA 19104, USA; Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, 3215 Market Street, Philadelphia, PA 19104, USA.
| | - Nathaniel W Snyder
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA 19104, USA; Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, 3500 N Broad St. Room 455, Philadelphia, PA 19140, USA
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA 19104, USA
| | - Brian K Lee
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, 3215 Market Street, Philadelphia, PA 19104, USA
| | - Leslie A McClure
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, 3215 Market Street, Philadelphia, PA 19104, USA
| | | | - Craig J Newschaffer
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA 19104, USA; College of Health and Human Development, Pennsylvania State University, 325 HHD Building, University Park, PA 16802, USA
| |
Collapse
|
35
|
Srivastava A, Dada O, Qian J, Al-Chalabi N, Fatemi AB, Gerretsen P, Graff A, De Luca V. Epigenetics of Schizophrenia. Psychiatry Res 2021; 305:114218. [PMID: 34638051 DOI: 10.1016/j.psychres.2021.114218] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/07/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022]
Abstract
Schizophrenia (SCZ) is a chronic psychotic disorder that contributes significantly to disability, affecting behavior, thought, and cognition. It has long been known that there is a heritable component to schizophrenia; studies in both the pre-genomic and post-genomic era, however, have failed to elucidate fully the genetic basis for this complex disease. Epigenetic processes - broadly, those which contribute to changes in gene expression without altering the genetic code itself - may help to understand better the mechanisms leading to development of SCZ. The objective of this review is to synthesize current knowledge of the epigenetic mechanisms involved in schizophrenia. Specifically, DNA methylation studies in both peripheral and post-mortem brain samples in SCZ are reviewed, as are epigenetic mechanisms including histone modification. The promising role of non-coding RNA including micro-RNA (miRNA) and its role as a potential diagnostic and therapeutic biomarker is outlined, as are epigenetic age acceleration and telomere shortening. Finally, we discuss limitations in current knowledge and propose future research directions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ariel Graff
- Department of Psychiatry, University of Toronto
| | | |
Collapse
|
36
|
The Association of Prenatal Vitamins and Folic Acid Supplement Intake with Odds of Autism Spectrum Disorder in a High-Risk Sibling Cohort, the Early Autism Risk Longitudinal Investigation (EARLI). J Autism Dev Disord 2021; 52:2801-2811. [PMID: 34110557 DOI: 10.1007/s10803-021-05110-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 01/06/2023]
Abstract
We examined maternal prenatal vitamin use or supplemental folic acid intake during month one of pregnancy for association with autism spectrum disorder (ASD) in the Early Autism Risk Longitudinal Investigation, an enriched-risk pregnancy cohort. Total folic acid intake was calculated from monthly prenatal vitamins, multivitamins, and other supplement reports. Clinical assessments through age 3 years classified children as ASD (n = 38) or non-ASD (n = 153). In pregnancy month one, prenatal vitamin use (59.7%) was not significantly associated with odds of ASD (OR = 0.70, 95%CI 0.32, 1.53). Sample size was limited and residual confounding was possible. Given the estimated effect sizes in this and previous work, prenatal vitamin intake during early pregnancy could be a clinically useful preventative measure for ASD.
Collapse
|
37
|
Vecchione R, Vigna C, Whitman C, Kauffman EM, Braun JM, Chen A, Xu Y, Hamra GB, Lanphear BP, Yolton K, Croen LA, Fallin MD, Irva Hertz-Picciotto, Newschaffer CJ, Lyall K. The Association Between Maternal Prenatal Fish Intake and Child Autism-Related Traits in the EARLI and HOME Studies. J Autism Dev Disord 2021; 51:487-500. [PMID: 32519188 PMCID: PMC7725860 DOI: 10.1007/s10803-020-04546-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We examined the association between prenatal fish intake and child autism-related traits according to Social Responsiveness Scale (SRS) and cognitive development scores in two US prospective pregnancy cohorts. In adjusted linear regression analyses, higher maternal fish intake in the second half of pregnancy was associated with increased child autism traits (higher raw SRS scores; ß = 5.60, 95%CI 1.76, 12.97). Differences by fish type were suggested; shellfish and large fish species were associated with increases, and salmon with decreases, in child SRS scores. Clear patterns with cognitive scores in the two cohorts were not observed. Future work should further evaluate potential critical windows of prenatal fish intake, and the role of different fish types in association with child autism-related outcomes.
Collapse
Affiliation(s)
- Rachel Vecchione
- Dornsife School of Public Health, Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA, USA
| | - Chelsea Vigna
- Dornsife School of Public Health, Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA, USA
| | - Casey Whitman
- Dornsife School of Public Health, Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA, USA
| | - Elizabeth M Kauffman
- AJ Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104-3734, USA
| | - Joseph M Braun
- School of Public Health, Department of Epidemiology, Brown University, Providence, RI, USA
| | - Aimin Chen
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yingying Xu
- Department of Pediatrics, Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ghassan B Hamra
- Department of Epidemiology, Johns Hopkins, Baltimore, MD, USA
| | - Bruce P Lanphear
- Child and Family Research Institute, BC Children's Hospital, British Columbia, Canada.,Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Kimberly Yolton
- Department of Pediatrics, Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | | | | | - Craig J Newschaffer
- AJ Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104-3734, USA.,College of Health and Human Development, Pennsylvania State University, University Park, PA, USA
| | - Kristen Lyall
- Dornsife School of Public Health, Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA, USA. .,AJ Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104-3734, USA.
| |
Collapse
|
38
|
Patti MA, Newschaffer C, Eliot M, Hamra GB, Chen A, Croen LA, Fallin MD, Hertz-Picciotto I, Kalloo G, Khoury JC, Lanphear BP, Lyall K, Yolton K, Braun JM. Gestational Exposure to Phthalates and Social Responsiveness Scores in Children Using Quantile Regression: The EARLI and HOME Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1254. [PMID: 33573264 PMCID: PMC7908417 DOI: 10.3390/ijerph18031254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/24/2022]
Abstract
Linear regression is often used to estimate associations between chemical exposures and neurodevelopment at the mean of the outcome. However, the potential effect of chemicals may be greater among individuals at the 'tails' of outcome distributions. Here, we investigated distributional effects on the associations between gestational phthalate exposure and child Autism Spectrum Disorder (ASD)-related behaviors using quantile regression. We harmonized data from the Early Autism Risk Longitudinal Investigation (EARLI) (n = 140) Study, an enriched-risk cohort of mothers who had a child with ASD, and the Health Outcomes and Measures of the Environment (HOME) Study (n = 276), a general population cohort. We measured concentrations of 9 phthalate metabolites in urine samples collected twice during pregnancy. Caregivers reported children's ASD-related behaviors using the Social Responsiveness Scale (SRS) at age 3-8 years; higher scores indicate more ASD-related behaviors. In EARLI, associations between phthalate concentrations and SRS scores were predominately inverse or null across SRS score quantiles. In HOME, positive associations of mono-n-butyl phthalate, monobenzyl phthalate, mono-isobutyl phthalate, and di-2-ethylhexyl phthalate concentrations with SRS scores increased in strength from the median to 95th percentile of SRS scores. These results suggest associations between phthalate concentrations and SRS scores may be stronger in individuals with higher SRS scores.
Collapse
Affiliation(s)
- Marisa A. Patti
- Department of Epidemiology, Brown University, Providence, RI 02903, USA; (M.E.); (J.M.B.)
| | - Craig Newschaffer
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA 19104, USA; (C.N.); (K.L.)
- College of Health & Human Development, Pennsylvania State University, State College, PA 16801, USA
| | - Melissa Eliot
- Department of Epidemiology, Brown University, Providence, RI 02903, USA; (M.E.); (J.M.B.)
| | - Ghassan B. Hamra
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Aimin Chen
- Department of Biostatistics Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA;
| | - M. Daniele Fallin
- Department of Mental Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA;
| | | | - Jane C. Khoury
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45267, USA;
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada;
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA 19104, USA; (C.N.); (K.L.)
| | - Kimberly Yolton
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45267, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, RI 02903, USA; (M.E.); (J.M.B.)
| |
Collapse
|
39
|
Patti MA, Li N, Eliot M, Newschaffer C, Yolton K, Khoury J, Chen A, Lanphear BP, Lyall K, Hertz-Picciotto I, Fallin MD, Croen LA, Braun JM. Association between self-reported caffeine intake during pregnancy and social responsiveness scores in childhood: The EARLI and HOME studies. PLoS One 2021; 16:e0245079. [PMID: 33449933 PMCID: PMC7810310 DOI: 10.1371/journal.pone.0245079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/21/2020] [Indexed: 01/08/2023] Open
Abstract
Maternal nutrition during gestation has been investigated for its role in child neurodevelopment. However, little is known about the potential impact of gestational caffeine exposure on child autistic behaviors. Here, we assess the relation between maternal caffeine intake during pregnancy and children's behavioral traits related to Autism Spectrum Disorder (ASD). We harmonized data from two pregnancy cohorts, Early Autism Risk Longitudinal Investigation (EARLI) (n = 120), an enriched-risk cohort of mothers who previously had a child with ASD, from Pennsylvania, Maryland, and Northern California (2009-2012), and the Health Outcomes and Measures of the Environment (HOME) Study (n = 269), a general population cohort from Cincinnati, Ohio (2003-2006). Mothers self-reported caffeine intake twice during pregnancy. Caregivers reported child behavioral traits related to ASD using the Social Responsiveness Scale (SRS) when children were aged 3-8 years. Higher scores indicate more ASD-related behaviors. We estimated covariate-adjusted differences in continuous SRS T-scores per interquartile range increase in caffeine intake. Self-reported caffeine intake during pregnancy was positively associated with SRS T-scores among children in EARLI (β: 2.0; 95% CI -0.1, 4.0), but to a lesser extent in HOME (β: 0.6; 95% CI -0.5, 1.6). In HOME, pre-pregnancy body mass index (BMI) modified the association between caffeine intake and SRS T-scores, where more positive associations were observed among women with higher BMIs. Our findings suggest gestational caffeine intake may represent a marker of vulnerability to childhood ASD-related behaviors. Additional studies are warranted to extend these findings.
Collapse
Affiliation(s)
- Marisa A. Patti
- Department of Epidemiology, Brown University, Providence, Rhode Island, United States of America
| | - Nan Li
- Department of Epidemiology, Brown University, Providence, Rhode Island, United States of America
| | - Melissa Eliot
- Department of Epidemiology, Brown University, Providence, Rhode Island, United States of America
| | - Craig Newschaffer
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, United States of America
- College of Health & Human Development, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jane Khoury
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Aimin Chen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Bruce P. Lanphear
- Department of Health Sciences, Simon Fraser University, British Columbia, Vancouver, Canada
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, California, United States of America
| | - Margaret Daniele Fallin
- Department of Mental Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
40
|
Bakulski KM, Dou JF, Feinberg JI, Brieger KK, Croen LA, Hertz-Picciotto I, Newschaffer CJ, Schmidt RJ, Fallin MD. Prenatal Multivitamin Use and MTHFR Genotype Are Associated with Newborn Cord Blood DNA Methylation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249190. [PMID: 33317014 PMCID: PMC7764679 DOI: 10.3390/ijerph17249190] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 12/20/2022]
Abstract
Background: Fetal development involves cellular differentiation and epigenetic changes—complex processes that are sensitive to environmental factors. Maternal nutrient levels during pregnancy affect development, and methylene tetrahydrofolate reductase (MTHFR) is important for processing the nutrient folate. Hypothesis: We hypothesize that supplement intake before pregnancy and maternal genotype are associated with DNA methylation in newborns. Methods: In the pregnancy cohort, Early Autism Risk Longitudinal Investigation (EARLI), health history, and genotype information was obtained (n = 249 families). Cord blood DNA methylation (n = 130) was measured using the Illumina HumanMethylation450k array and global DNA methylation levels were computed over 455,698 sites. Supplement use preconception and during pregnancy were surveyed at visits during pregnancy. We evaluated associations between maternal preconception supplement intake and global DNA methylation or DNA methylation density distributions of newborn cord blood, stratified by the presence of a variant maternal MTHFR C677T allele. Results: Maternal preconceptional multivitamin intake was associated with cord blood methylation, dependent on maternal MTHFR genotype (interaction term p = 0.013). For mothers without the MTHFR variant allele, multivitamin intake was associated with 0.96% (95% CI: 0.09, 1.83) higher global cord blood methylation (p = 0.04) and was also associated with the cumulative density distribution of methylation (p = 0.03). For mothers with at least one variant allele, multivitamin intake had a null −0.06% (95% CI: −0.45, 0.33) association with global cord blood DNA methylation, and was not associated with the cumulative density distribution (p = 0.37). Conclusions: We observed that cord blood DNA methylation was associated with maternal supplement exposure preconception and maternal genotype. Genetic context should be considered when assessing DNA methylation effects of modifiable risk factors around the time of pregnancy.
Collapse
Affiliation(s)
- Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (K.M.B.); (J.F.D.); (K.K.B.)
| | - John F. Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (K.M.B.); (J.F.D.); (K.K.B.)
| | - Jason I. Feinberg
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Katharine K. Brieger
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (K.M.B.); (J.F.D.); (K.K.B.)
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente, Oakland, CA 94612, USA;
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA 95616, USA; (I.H.-P.); (R.J.S.)
| | - Craig J. Newschaffer
- College of Health and Human Development, Penn State University, State College, PA 16802, USA;
| | - Rebecca J. Schmidt
- Department of Public Health Sciences and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA 95616, USA; (I.H.-P.); (R.J.S.)
| | - M. Daniele Fallin
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
- Correspondence: ; Tel.: +1-(410)-955-3463
| |
Collapse
|
41
|
Terloyeva D, Frey AJ, Park BY, Kauffman EM, Mathew L, Bostwick A, Varner EL, Lee BK, Croen LA, Fallin MD, Hertz-Picciotto I, Newschaffer CJ, Lyall K, Snyder NW. Meconium androgens are correlated with ASD-related phenotypic traits in early childhood in a familial enriched risk cohort. Mol Autism 2020; 11:93. [PMID: 33228808 PMCID: PMC7686740 DOI: 10.1186/s13229-020-00395-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Prenatal exposure to increased androgens has been suggested as a risk factor for autism spectrum disorder (ASD). This hypothesis has been examined by measurement of steroids in amniotic fluid, cord blood, saliva, and blood with mixed results. METHODS To provide an orthogonal measure of fetal exposure, this study used meconium, the first stool of a newborn, to measure prenatal androgen exposure from infants in the Early Autism Risk Longitudinal Investigation (EARLI). EARLI is a familial-enriched risk cohort that enrolled pregnant mothers who already had a child with an ASD diagnosis. In the younger child, we investigated the association between meconium unconjugated (u) and total (t) concentrations of major androgens testosterone (T), dehydroepiandrosterone (DHEA), and androstenedione (A4), and ASD-related traits at 12 and 36 months of age. Traits were measured at 12 months with Autism Observation Scale for Infants (AOSI) and at 36 months with total score on the Social Responsiveness Scale (SRS). One hundred and seventy children had meconium and AOSI, 140 had meconium and SRS, and 137 had meconium and both AOSI and SRS. RESULTS Separate robust linear regressions between each of the log-transformed androgens and log-transformed SRS scores revealed three-way interaction between sex of the child, sex of the proband, and testosterone concentration. In the adjusted analyses, t-T, u-A4, and u-DHEA (P ≤ 0.01) were positively associated with AOSI scores, while u-T (P = 0.004) and u-DHEA (P = 0.007) were positively associated with SRS total score among females with female probands (n = 10). Additionally, higher concentrations of u-T (P = 0.01) and t-T (P = 0.01) predicted higher SRS total score in males with male probands (n = 63). Limitations Since we explored three-way interactions, this resulted in a limited sample size for some analyses. This study was from an enriched-risk cohort which may limit generalizability, and this study used ASD-assessment scales as outcomes instead of diagnostic categories. Additionally, the novel use of meconium in this study limits the ability to compare the results in this cohort to others due to the paucity of research on meconium. CONCLUSIONS This study supports the utility of meconium for studies of endogenous fetal metabolism and suggests the sex of older siblings with autism should be considered as a biological variable in relevant studies.
Collapse
Affiliation(s)
- Dina Terloyeva
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA, 19104, USA
- Department of Epidemiology and Biostatistics, Drexel University School of Public Health, 3215 Market Street, Philadelphia, PA, 19104, USA
| | - Alexander J Frey
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA, 19104, USA
| | - Bo Y Park
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA, 19104, USA
- Department of Public Health, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| | - Elizabeth M Kauffman
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA, 19104, USA
| | - Leny Mathew
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA, 19104, USA
- Department of Epidemiology and Biostatistics, Drexel University School of Public Health, 3215 Market Street, Philadelphia, PA, 19104, USA
| | - Anna Bostwick
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA, 19104, USA
| | - Erika L Varner
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA, 19104, USA
- Department of Microbiology and Immunology, Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Brian K Lee
- Department of Epidemiology and Biostatistics, Drexel University School of Public Health, 3215 Market Street, Philadelphia, PA, 19104, USA
| | - Lisa A Croen
- Autism Research Program, Kaiser Permanente Division of Research, 2000 Broadway, Oakland, CA, 94612, USA
| | - Margaret D Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, HH 850, Baltimore, MD, 21205, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, School of Medicine, University of California, Davis, Davis, USA
| | - Craig J Newschaffer
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA, 19104, USA
- College of Health and Human Development, Penn State, University Park, PA, 16802, USA
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA, 19104, USA
| | - Nathaniel W Snyder
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA, 19104, USA.
- Department of Microbiology and Immunology, Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
42
|
Mordaunt CE, Jianu JM, Laufer BI, Zhu Y, Hwang H, Dunaway KW, Bakulski KM, Feinberg JI, Volk HE, Lyall K, Croen LA, Newschaffer CJ, Ozonoff S, Hertz-Picciotto I, Fallin MD, Schmidt RJ, LaSalle JM. Cord blood DNA methylome in newborns later diagnosed with autism spectrum disorder reflects early dysregulation of neurodevelopmental and X-linked genes. Genome Med 2020; 12:88. [PMID: 33054850 PMCID: PMC7559201 DOI: 10.1186/s13073-020-00785-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/25/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex heritability and higher prevalence in males. The neonatal epigenome has the potential to reflect past interactions between genetic and environmental factors during early development and influence future health outcomes. METHODS We performed whole-genome bisulfite sequencing of 152 umbilical cord blood samples from the MARBLES and EARLI high-familial risk prospective cohorts to identify an epigenomic signature of ASD at birth. Samples were split into discovery and replication sets and stratified by sex, and their DNA methylation profiles were tested for differentially methylated regions (DMRs) between ASD and typically developing control cord blood samples. DMRs were mapped to genes and assessed for enrichment in gene function, tissue expression, chromosome location, and overlap with prior ASD studies. DMR coordinates were tested for enrichment in chromatin states and transcription factor binding motifs. Results were compared between discovery and replication sets and between males and females. RESULTS We identified DMRs stratified by sex that discriminated ASD from control cord blood samples in discovery and replication sets. At a region level, 7 DMRs in males and 31 DMRs in females replicated across two independent groups of subjects, while 537 DMR genes in males and 1762 DMR genes in females replicated by gene association. These DMR genes were significantly enriched for brain and embryonic expression, X chromosome location, and identification in prior epigenetic studies of ASD in post-mortem brain. In males and females, autosomal ASD DMRs were significantly enriched for promoter and bivalent chromatin states across most cell types, while sex differences were observed for X-linked ASD DMRs. Lastly, these DMRs identified in cord blood were significantly enriched for binding sites of methyl-sensitive transcription factors relevant to fetal brain development. CONCLUSIONS At birth, prior to the diagnosis of ASD, a distinct DNA methylation signature was detected in cord blood over regulatory regions and genes relevant to early fetal neurodevelopment. Differential cord methylation in ASD supports the developmental and sex-biased etiology of ASD and provides novel insights for early diagnosis and therapy.
Collapse
Affiliation(s)
- Charles E. Mordaunt
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Julia M. Jianu
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Benjamin I. Laufer
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Yihui Zhu
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Hyeyeon Hwang
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Keith W. Dunaway
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI USA
| | - Jason I. Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Heather E. Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Kristen Lyall
- A. J. Drexel Autism Institute, Drexel University, Philadelphia, PA USA
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA USA
| | - Craig J. Newschaffer
- Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, University Park, PA USA
| | - Sally Ozonoff
- Psychiatry and Behavioral Sciences and MIND Institute, University of California, Davis, CA USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and MIND Institute, University of California, Davis, CA USA
| | - M. Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences and MIND Institute, University of California, Davis, CA USA
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| |
Collapse
|
43
|
Schantz SL, Eskenazi B, Buckley JP, Braun JM, Sprowles JN, Bennett DH, Cordero J, Frazier JA, Lewis J, Hertz-Picciotto I, Lyall K, Nozadi SS, Sagiv S, Stroustrup A, Volk HE, Watkins DJ. A framework for assessing the impact of chemical exposures on neurodevelopment in ECHO: Opportunities and challenges. ENVIRONMENTAL RESEARCH 2020; 188:109709. [PMID: 32526495 PMCID: PMC7483364 DOI: 10.1016/j.envres.2020.109709] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/22/2020] [Accepted: 05/19/2020] [Indexed: 05/30/2023]
Abstract
The Environmental influences on Child Health Outcomes (ECHO) Program is a research initiative funded by the National Institutes of Health that capitalizes on existing cohort studies to investigate the impact of early life environmental factors on child health and development from infancy through adolescence. In the initial stage of the program, extant data from 70 existing cohort studies are being uploaded to a database that will be publicly available to researchers. This new database will represent an unprecedented opportunity for researchers to combine data across existing cohorts to address associations between prenatal chemical exposures and child neurodevelopment. Data elements collected by ECHO cohorts were determined via a series of surveys administered by the ECHO Data Analysis Center. The most common chemical classes quantified in multiple cohorts include organophosphate pesticides, polychlorinated biphenyls, polybrominated diphenyl ethers, environmental phenols (including bisphenol A), phthalates, and metals. For each of these chemicals, at least four ECHO cohorts also collected behavioral data during infancy/early childhood using the Child Behavior Checklist. For these chemicals and this neurodevelopmental assessment (as an example), existing data from multiple ECHO cohorts could be pooled to address research questions requiring larger sample sizes than previously available. In addition to summarizing the data that will be available, the article also describes some of the challenges inherent in combining existing data across cohorts, as well as the gaps that could be filled by the additional data collection in the ECHO Program going forward.
Collapse
Affiliation(s)
- Susan L Schantz
- Department of Comparative Biosciences, College of Veterinary Medicine, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health, School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA.
| | - Jenna N Sprowles
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis, CA, USA.
| | - Jose Cordero
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, USA.
| | - Jean A Frazier
- Eunice Kennedy Shriver Center, Division of Child and Adolescent Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Johnnye Lewis
- Community Environmental Health Program and Center for Native Environmental Health Equity Research, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | | | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA, USA.
| | - Sara S Nozadi
- Community Environmental Health Program and Center for Native Environmental Health Equity Research, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Sharon Sagiv
- Center for Environmental Research and Children's Health, School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| | - AnneMarie Stroustrup
- Division of Newborn Medicine, Department of Pediatrics, Department of Environmental Medicine and Public Health, and Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Heather E Volk
- Departments of Mental Health and Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
44
|
Braithwaite EK, Gui A, Jones EJH. Social attention: What is it, how can we measure it, and what can it tell us about autism and ADHD? PROGRESS IN BRAIN RESEARCH 2020; 254:271-303. [PMID: 32859292 DOI: 10.1016/bs.pbr.2020.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neurodevelopmental disorders like autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) affect 2-10% of children worldwide but are still poorly understood. Prospective studies of infants with an elevated familial likelihood of ASD or ADHD can provide insight into early mechanisms that canalize development down a typical or atypical course. Such work holds potential for earlier identification and intervention to support optimal outcomes in individuals with neurodevelopmental disorders. Disrupted attention may be involved in developmental trajectories to ASD and ADHD. Specifically, altered attention to social stimuli has been suggested as a possible endophenotype of ASD, lying between genetic factors impacting brain development and later symptoms. Similarly, changes in domain-general aspects of attention are commonly seen in ADHD and emerging evidence suggests these may begin in infancy. Could these patterns point to a common risk factor for both disorders? Or does social attention reflect the activity of a particular network of brain systems that is distinct to those underpinning general attention skills? One challenge to addressing such questions is our lack of understanding of the relation between social and general attention. In this chapter we review evidence from infants with later ASD and ADHD that illuminates this question.
Collapse
Affiliation(s)
- Eleanor K Braithwaite
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| | - Anna Gui
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| | - Emily J H Jones
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom.
| |
Collapse
|
45
|
Tartaglia N, Howell S, Davis S, Kowal K, Tanda T, Brown M, Boada C, Alston A, Crawford L, Thompson T, van Rijn S, Wilson R, Janusz J, Ross J. Early neurodevelopmental and medical profile in children with sex chromosome trisomies: Background for the prospective eXtraordinarY babies study to identify early risk factors and targets for intervention. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:428-443. [PMID: 32506668 DOI: 10.1002/ajmg.c.31807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 01/03/2023]
Abstract
Sex chromosome trisomies (SCT), including Klinefelter syndrome/XXY, Trisomy X, and XYY syndrome, occur in 1 of every 500 births. The past decades of research have resulted in a broadening of known associated medical comorbidities as well as advances in psychological research. This review summarizes what is known about early neurodevelopmental, behavioral, and medical manifestations in young children with SCT. We focus on recent research and unanswered questions related to the risk for neurodevelopmental disorders that commonly present in the first years of life and discuss the medical and endocrine manifestations of SCT at this young age. The increasing rate of prenatal SCT diagnoses provides the opportunity to address gaps in the existing literature in a new birth cohort, leading to development of the eXtraordinarY Babies Study. This study aims to better describe and compare the natural history of SCT conditions, identify predictors of positive and negative outcomes in SCT, evaluate developmental and autism screening measures commonly used in primary care practices for the SCT population, and build a rich data set linked to a bank of biological samples for future study. Results from this study and ongoing international research efforts will inform evidence-based care and improve health and neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Nicole Tartaglia
- eXtraordinarY Kids Clinic, Children's Hospital Colorado, Aurora, Colorado, USA.,Developmental Pediatrics, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA
| | - Susan Howell
- eXtraordinarY Kids Clinic, Children's Hospital Colorado, Aurora, Colorado, USA.,Developmental Pediatrics, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA
| | - Shanlee Davis
- eXtraordinarY Kids Clinic, Children's Hospital Colorado, Aurora, Colorado, USA.,Pediatric Endocrinology, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA
| | - Karen Kowal
- Department of Pediatric Endocrinology, Nemours-Dupont Hospital for Children, Wilmington, Delaware, USA.,Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Tanea Tanda
- Developmental Pediatrics, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA
| | - Mariah Brown
- Developmental Pediatrics, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA.,Pediatric Endocrinology, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA
| | - Cristina Boada
- Developmental Pediatrics, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA
| | - Amanda Alston
- Department of Pediatric Endocrinology, Nemours-Dupont Hospital for Children, Wilmington, Delaware, USA.,Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Leah Crawford
- Developmental Pediatrics, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA
| | - Talia Thompson
- Developmental Pediatrics, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA
| | - Sophie van Rijn
- Clinical Neurodevelopment Sciences, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Rebecca Wilson
- eXtraordinarY Kids Clinic, Children's Hospital Colorado, Aurora, Colorado, USA.,Developmental Pediatrics, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA
| | - Jennifer Janusz
- eXtraordinarY Kids Clinic, Children's Hospital Colorado, Aurora, Colorado, USA.,Neurology and Neuropsychology, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA
| | - Judith Ross
- Pediatric Endocrinology, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA.,Department of Pediatric Endocrinology, Nemours-Dupont Hospital for Children, Wilmington, Delaware, USA
| |
Collapse
|
46
|
Lyall K, Song L, Botteron K, Croen LA, Dager SR, Fallin MD, Hazlett HC, Kauffman E, Landa R, Ladd-Acosta C, Messinger DS, Ozonoff S, Pandey J, Piven J, Schmidt RJ, Schultz RT, Stone WL, Newschaffer CJ, Volk HE. The Association Between Parental Age and Autism-Related Outcomes in Children at High Familial Risk for Autism. Autism Res 2020; 13:998-1010. [PMID: 32314879 PMCID: PMC7396152 DOI: 10.1002/aur.2303] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022]
Abstract
Advanced parental age is a well-replicated risk factor for autism spectrum disorder (ASD), a neurodevelopmental condition with a complex and not well-defined etiology. We sought to determine parental age associations with ASD-related outcomes in subjects at high familial risk for ASD. A total of 397 younger siblings of a child with ASD, drawn from existing prospective high familial risk cohorts, were included in these analyses. Overall, we did not observe significant associations of advanced parental age with clinical ASD diagnosis, Social Responsiveness Scale, or Vineland Adaptive Behavior Scales scores. Instead, increased odds of ASD were found with paternal age < 30 years (adjusted odds ratio [AOR] = 2.83 and 95% confidence intervals [CI] = 1.14-7.02). Likewise, younger age (<30 years) for both parents was associated with decreases in Mullen Scales of Early Learning early learning composite (MSEL-ELC) scores (adjusted β = -9.62, 95% CI = -17.1 to -2.15). We also found significant increases in cognitive functioning based on MSEL-ELC scores with increasing paternal age (adjusted β associated with a 10-year increase in paternal age = 5.51, 95% CI = 0.70-10.3). Results suggest the potential for a different relationship between parental age and ASD-related outcomes in families with elevated ASD risk than has been observed in general population samples. Autism Res 2020, 13: 998-1010. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Previous work suggests that older parents have a greater likelihood of having a child with autism. We investigated this relationship in the younger siblings of families who already had a child with autism. In this setting, we found a higher likelihood of autism, as well as poorer cognitive scores, in the siblings with younger fathers, and higher cognitive scores in the siblings with older parents. These results suggest that parental age associations may differ based on children's familial risk for autism.
Collapse
Affiliation(s)
- Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
| | - Lanxin Song
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kelly Botteron
- Department of Psychiatry, Washington University, St Louis, Missouri, USA
| | - Lisa A Croen
- Kaiser Permanente Division of Research, Oakland, California, USA
| | - Stephen R Dager
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - M Daniele Fallin
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Heather C Hazlett
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Elizabeth Kauffman
- AJ Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
| | - Rebecca Landa
- Department of Psychiatry and Behavioral Sciences, Center for Autism and Related Disorders, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Sally Ozonoff
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, California, USA
| | - Juhi Pandey
- Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joseph Piven
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Rebecca J Schmidt
- Department of Public Health, University of California Davis, Davis, California, USA
- MIND Institute, University of California Davis, Sacramento, California, USA
| | - Robert T Schultz
- Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Wendy L Stone
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Craig J Newschaffer
- College of Health and Human Development, Pennsylvania State University, State College, Pennsylvania, USA
| | - Heather E Volk
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
47
|
Song L, Luo X, Jiang Q, Chen Z, Zhou L, Wang D, Chen A. Vitamin D Supplementation is Beneficial for Children with Autism Spectrum Disorder: A Meta-analysis. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:203-213. [PMID: 32329301 PMCID: PMC7242097 DOI: 10.9758/cpn.2020.18.2.203] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/03/2019] [Accepted: 12/02/2019] [Indexed: 01/03/2023]
Abstract
Objective We conducted a meta-analysis of randomized controlled trials to explore whether vitamin D supplementation is beneficial for symptom improvement in children with autism spectrum disorder. Methods We systematically searched the PubMed database, EMBASE, Cochrane Library, Web of Science, Sino-Med, Wanfang Data, and China National Knowledge Infrastructure mainly up to September 2019. Using a fixed effects model, we calculated the standard mean difference with 95% confidence interval. Furthermore, we analyzed baseline serum 25-hydroxyvitamin D levels and outcome scores including the Social Responsiveness Scale and Child Autism Rating Scale scores after vitamin D supplementation. Results There was no significant difference in baseline serum 25-hydroxyvitamin D levels among 203 children included from three studies in the meta-analysis. After vitamin D supplementation, the outcome scores in the experimental group were dramatically elevated compared with those in the control group (p = 0.03). Conclusion Vitamin D supplementation improves the typical symptoms of autism spectrum disorder, as indicated by reduced Social Responsiveness Scale and Child Autism Rating Scale scores; thus, it is beneficial for children with autism spectrum disorder.
Collapse
Affiliation(s)
- Liyao Song
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaomei Luo
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qing Jiang
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhi Chen
- Nursing Department, The Affiliated Hospital of Southwest Medical University, Luzhou
| | - Lifang Zhou
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dan Wang
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ai Chen
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Pediatric, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan Province, China
| |
Collapse
|
48
|
Braun JM, Buckley JP, Cecil KM, Chen A, Kalkwarf HJ, Lanphear BP, Xu Y, Woeste A, Yolton K. Adolescent follow-up in the Health Outcomes and Measures of the Environment (HOME) Study: cohort profile. BMJ Open 2020; 10:e034838. [PMID: 32385062 PMCID: PMC7228515 DOI: 10.1136/bmjopen-2019-034838] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/11/2020] [Accepted: 04/20/2020] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Environmental chemical exposures may adversely affect an array of adolescent health outcomes. Thus, we used the Health Outcomes and Measures of the Environment (HOME) study, a prospective cohort that recruited pregnant women and conducted longitudinal follow-up on children over the first 12 years of life, to determine if and when chemical exposures affect adolescent health. PARTICIPANTS We recruited 468 pregnant women (age range: 18-45 years) from the Cincinnati, Ohio region to participate in a cohort study between March 2003 and January 2006. Follow-up included two clinic and one home visits during pregnancy, a delivery hospital visit, and four home and six clinic visits when children were aged 4 weeks and 1, 2, 3, 4, 5 and 8 years. Of 441 children available for follow-up, 396 (90%) completed at least one follow-up and 256 (58%) completed the most recent follow-up at 12 years of age (range: 11-14). FINDINGS TO DATE Our new measures include maternal/child report of internalising symptoms, neuroimaging, dual-energy X-ray absorptiometry-derived estimates of lean/adipose tissue and bone mineral density, and cardiometabolic risk biomarkers. We assessed adolescent exposure to perfluoroalkyl substances, phenols, phthalates and flame retardants. Participants completing follow-up at 12 years of age were similar to the original cohort in terms of baseline factors. Most children had typical and expected values for this age on measures of internalising symptoms, body composition, bone density and cardiometabolic risk markers. Notably, 36% and 11% of children had scores indicative of potential anxiety and depressive disorders, respectively. Approximately 35% of children were overweight or obese, with higher prevalence among girls. Thirty-three per cent of children had borderline or high triglyceride concentrations (>90 mg/dL). FUTURE PLANS We will examine associations of early life environmental chemical exposures with adolescent health measures while considering potential periods of heightened susceptibility and mixture effects. TRIAL REGISTRATION NUMBER NCT00129324.
Collapse
Affiliation(s)
- Joseph M Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island, USA
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kim M Cecil
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Heidi J Kalkwarf
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Anastasia Woeste
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
49
|
Mordaunt CE, Park BY, Bakulski KM, Feinberg JI, Croen LA, Ladd-Acosta C, Newschaffer CJ, Volk HE, Ozonoff S, Hertz-Picciotto I, LaSalle JM, Schmidt RJ, Fallin MD. A meta-analysis of two high-risk prospective cohort studies reveals autism-specific transcriptional changes to chromatin, autoimmune, and environmental response genes in umbilical cord blood. Mol Autism 2019; 10:36. [PMID: 31673306 PMCID: PMC6814108 DOI: 10.1186/s13229-019-0287-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/08/2019] [Indexed: 12/17/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects more than 1% of children in the USA. ASD risk is thought to arise from both genetic and environmental factors, with the perinatal period as a critical window. Understanding early transcriptional changes in ASD would assist in clarifying disease pathogenesis and identifying biomarkers. However, little is known about umbilical cord blood gene expression profiles in babies later diagnosed with ASD compared to non-typically developing and non-ASD (Non-TD) or typically developing (TD) children. Methods Genome-wide transcript levels were measured by Affymetrix Human Gene 2.0 array in RNA from cord blood samples from both the Markers of Autism Risk in Babies-Learning Early Signs (MARBLES) and the Early Autism Risk Longitudinal Investigation (EARLI) high-risk pregnancy cohorts that enroll younger siblings of a child previously diagnosed with ASD. Younger siblings were diagnosed based on assessments at 36 months, and 59 ASD, 92 Non-TD, and 120 TD subjects were included. Using both differential expression analysis and weighted gene correlation network analysis, gene expression between ASD and TD, and between Non-TD and TD, was compared within each study and via meta-analysis. Results While cord blood gene expression differences comparing either ASD or Non-TD to TD did not reach genome-wide significance, 172 genes were nominally differentially expressed between ASD and TD cord blood (log2(fold change) > 0.1, p < 0.01). These genes were significantly enriched for functions in xenobiotic metabolism, chromatin regulation, and systemic lupus erythematosus (FDR q < 0.05). In contrast, 66 genes were nominally differentially expressed between Non-TD and TD, including 8 genes that were also differentially expressed in ASD. Gene coexpression modules were significantly correlated with demographic factors and cell type proportions. Limitations ASD-associated gene expression differences identified in this study are subtle, as cord blood is not the main affected tissue, it is composed of many cell types, and ASD is a heterogeneous disorder. Conclusions This is the first study to identify gene expression differences in cord blood specific to ASD through a meta-analysis across two prospective pregnancy cohorts. The enriched gene pathways support involvement of environmental, immune, and epigenetic mechanisms in ASD etiology.
Collapse
Affiliation(s)
- Charles E Mordaunt
- 1Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Bo Y Park
- 2Department of Public Health, California State University, Fullerton, CA USA
| | - Kelly M Bakulski
- 3Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI USA
| | - Jason I Feinberg
- 4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Lisa A Croen
- 5Division of Research and Autism Research Program, Kaiser Permanente Northern California, Oakland, CA USA
| | | | - Craig J Newschaffer
- 6Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, University Park, PA USA
| | - Heather E Volk
- 4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Sally Ozonoff
- 7Psychiatry and Behavioral Sciences and MIND Institute, University of California, Davis, CA USA
| | - Irva Hertz-Picciotto
- 8Department of Public Health Sciences and MIND Institute, University of California, Davis, CA USA
| | - Janine M LaSalle
- 1Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Rebecca J Schmidt
- 8Department of Public Health Sciences and MIND Institute, University of California, Davis, CA USA
| | - M Daniele Fallin
- 4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
50
|
Exposure to General Anesthesia May Contribute to the Association between Cesarean Delivery and Autism Spectrum Disorder. J Autism Dev Disord 2019; 49:3127-3135. [DOI: 10.1007/s10803-019-04034-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|