1
|
Assoratgoon I, Nowwarote N, Phothichailert S, Dissanayaka WL, Samaranayake LP, Osathanon T. Unravelling the role of interleukin-6 in regulating dental stem cell behaviour: a scoping review. BMC Oral Health 2025; 25:732. [PMID: 40375224 PMCID: PMC12082909 DOI: 10.1186/s12903-025-06097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Interleukin-6 (IL-6) functions as a pro-inflammatory and anti-inflammatory cytokine. IL-6 plays a pivotal role in a multitude of biological processes. This scoping review aimed to explore the impact of IL-6 on the biological responses of dental tissue-derived mesenchymal stem cells. METHODS The literature databases (PubMed and Scopus) were searched utilising specific design keywords. The criteria for inclusion encompassed (1) original research investigations that examined the effect of IL-6 on dental stem cells through the introduction of exogenous IL-6, overexpression, or knockdown expression, and (2) publications authored in the English language. The articles that conformed to these criteria were subsequently compiled for comprehensive full-text analysis and data extraction. RESULTS The literature search identified 323 articles, including 99 and 224 pertinent publications from the PubMed and Scopus databases, respectively. After screening, 14 publications satisfied the inclusion criteria and were subsequently selected for data extraction. The findings demonstrated that IL-6 regulates stemness maintenance, cellular proliferation, and differentiation towards osteogenic, adipogenic, chondrogenic, and neurogenic lineages in dental tissue-derived mesenchymal stem cells. CONCLUSION IL-6 modulates the biological activities of mesenchymal stem cells, particularly those derived from dental tissues. Nevertheless, the inconsistencies observed across various studies may be attributable to a range of factors, including the heterogeneity inherent in stem cell sources, the stages of differentiation, the conditions of culture, and the particularities of experimental design.
Collapse
Affiliation(s)
- Itt Assoratgoon
- Office of Academic Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Nunthawan Nowwarote
- Department of Oral Biology, Faculty of Dentistry and Reference Center for Skeletal Dysplasia, INSERM UMR1163, Institut Imagine, Necker Hospital, Université Paris Cité, Paris, France
| | - Suphalak Phothichailert
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Wang-Mai, Pathumwan, Bangkok, 10330, Thailand
| | - Waruna L Dissanayaka
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Lakshman P Samaranayake
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Special Administrative Region, China
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Office of Academic Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Wang-Mai, Pathumwan, Bangkok, 10330, Thailand.
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
2
|
Hiti L, Markovič T, Lainscak M, Farkaš Lainščak J, Pal E, Mlinarič-Raščan I. The immunopathogenesis of a cytokine storm: The key mechanisms underlying severe COVID-19. Cytokine Growth Factor Rev 2025; 82:1-17. [PMID: 39884914 DOI: 10.1016/j.cytogfr.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 02/01/2025]
Abstract
A cytokine storm is marked by excessive pro-inflammatory cytokine release, and has emerged as a key factor in severe COVID-19 cases - making it a critical therapeutic target. However, its pathophysiology was poorly understood, which hindered effective treatment. SARS-CoV-2 initially disrupts angiotensin signalling, promoting inflammation through ACE-2 downregulation. Some patients' immune systems then fail to shift from innate to adaptive immunity, suppressing interferon responses and leading to excessive pyroptosis and neutrophil activation. This amplifies tissue damage and inflammation, creating a pro-inflammatory loop. The result is the disruption of Th1/Th2 and Th17/Treg balances, lymphocyte exhaustion, and extensive blood clotting. Cytokine storm treatments include glucocorticoids to suppress the immune system, monoclonal antibodies to neutralize specific cytokines, and JAK inhibitors to block cytokine receptor signalling. However, the most effective treatment options for mitigating SARS-CoV-2 infection remain vaccines as a preventive measure and antiviral drugs for the early stages of infection. This article synthesizes insights into immune dysregulation in COVID-19, offering a framework to better understand cytokine storms and to improve monitoring, biomarker discovery, and treatment strategies for COVID-19 and other conditions involving cytokine storms.
Collapse
Affiliation(s)
- Luka Hiti
- Faculty of Pharmacy, University of Ljubljana, Slovenia
| | | | - Mitja Lainscak
- General Hospital Murska Sobota, Slovenia; Faculty of Medicine, University of Ljubljana, Slovenia
| | | | - Emil Pal
- General Hospital Murska Sobota, Slovenia
| | | |
Collapse
|
3
|
Metwally H. STAT Signature Dish: Serving Immunity with a Side of Dietary Control. Biomolecules 2025; 15:487. [PMID: 40305224 PMCID: PMC12024614 DOI: 10.3390/biom15040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Immunity is a fundamental aspect of animal biology, defined as the host's ability to detect and defend against harmful pathogens and toxic substances to preserve homeostasis. However, immune defenses are metabolically demanding, requiring the efficient allocation of limited resources to balance immune function with other physiological and developmental needs. To achieve this balance, organisms have evolved sophisticated signaling networks that enable precise, context-specific responses to internal and external cues. These networks are essential for survival and adaptation in multicellular systems. Central to this regulatory architecture is the STAT (signal transducer and activator of Transcription) family, a group of versatile signaling molecules that govern a wide array of biological processes across eukaryotes. STAT signaling demonstrates remarkable plasticity, from orchestrating host defense mechanisms to regulating dietary metabolism. Despite its critical role, the cell-specific and context-dependent nuances of STAT signaling remain incompletely understood, highlighting a significant gap in our understanding. This review delves into emerging perspectives on immunity, presenting dynamic frameworks to explore the complexity and adaptability of STAT signaling and the underlying logic driving cellular decision-making. It emphasizes how STAT pathways integrate diverse physiological processes, from immune responses to dietary regulation, ultimately supporting organismal balance and homeostasis.
Collapse
Affiliation(s)
- Hozaifa Metwally
- Laboratory of Immune Regulation, The World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Witzel DD, Bhat AC, Graham-Engeland JE, Almeida DM. Age and Inflammation: Insights on "Age Three Ways" from Midlife in the United States Study. Brain Behav Immun 2025; 127:72-80. [PMID: 40068792 DOI: 10.1016/j.bbi.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/01/2025] [Accepted: 03/08/2025] [Indexed: 03/15/2025] Open
Abstract
INTRODUCTION Chronological age is a particularly well-known indicator of variability in systemic inflammation. Other pertinent aspects of age (or "age proxies") - subjective or epigenetic age - may offer nuanced information about age and inflammation associations. Using the Midlife in the United States Study, we explored how chronological, subjective, and epigenetic age were associated with inflammation. Further, we tested whether chronological age remained a unique predictor of inflammation after accounting for the variance of subjective and epigenetic age. Using an intersectionality framework, we also tested whether associations differed by race and gender. METHOD 1,307 (85.39% White, 52.99% men) participants reported on their chronological and subjective age and provided blood from which epigenetic DNA and inflammatory biomarkers (IL-6, IL-8, fibrinogen, TNF-α, and E-selectin) were determined. RESULTS Linear regressions showed that being chronologically older was related to higher levels of inflammation. Being biologically older (higher epigenetic age or pace of aging) was also related to higher levels of all but IL-8. Subjective age was related to inflammatory biomarkers but only for people who identified their racial identity as White. Gender differences emerged, primarily with biological and chronological age. With all age indicators in one model, chronological age remained a unique indicator of inflammation in the sample, as similar to or a better predictor than biological age. CONCLUSION The current study provides a better scientific understanding of the relative association of chronological age versus subjective and epigenetic age on inflammation with evidence suggesting that chronological age provides novel information above and beyond other proxies of age.
Collapse
Affiliation(s)
- Dakota D Witzel
- College of Education, Counseling, and Human Development, South Dakota State University, United States; Center for Healthy Aging, Penn State University, United States.
| | - Aarti C Bhat
- Center for Healthy Aging, Penn State University, United States; Human Development and Family Studies, Penn State University, United States; Population Research Institute, Penn State University, United States
| | - Jennifer E Graham-Engeland
- Center for Healthy Aging, Penn State University, United States; Biobehavioral Health, Penn State University, United States
| | - David M Almeida
- Center for Healthy Aging, Penn State University, United States; Human Development and Family Studies, Penn State University, United States; Population Research Institute, Penn State University, United States
| |
Collapse
|
5
|
Batuo H, van der Linden E, Galenkamp H, Moll van Charante E, Born BJVD, Chilunga FP. Effects of antihypertensives with and without IL-6 lowering properties on long-term blood pressure control: The prospective HELIUS cohort. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2025; 24:200358. [PMID: 39760129 PMCID: PMC11699610 DOI: 10.1016/j.ijcrp.2024.200358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/23/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025]
Abstract
Background Chronic inflammation is a well-recognized contributor to hypertension pathogenesis. However, the role of targeting inflammation in hypertension treatment, particularly through modulation of inflammatory markers like interleukin-6 (IL-6), remains less understood. We investigated the effects of antihypertensive medications with and without IL-6-lowering properties on long-term blood pressure (BP) control in a multi-ethnic cohort in the Netherlands. Methods Participants from HELIUS cohort receiving hypertension treatment were followed over six years. BP control at follow-up was determined using WHO criteria. Due to unavailability of IL-6 data, a literature review was conducted to classify antihypertensives based on their IL-6-lowering properties - a proxy approach. Logistic regression models were used to assess associations between the IL-6-lowering potential of antihypertensives and BP control, both within and between antihypertensive classes. Effect modification by ethnicity was explored. Results A total of 1510 participants were included (mean age 57 years, 62 % women). Within the calcium channel blocker (CCB) class, medications with IL-6-lowering properties (amlodipine and barnidipine) were associated with superior BP control (aOR 1.41, 95 % confidence interval 1.05-1.90) compared to other CCBs (lercanidipine, nifedipine, verapamil, clevidipine, diltiazem). No significant associations were observed within angiotensin receptor blockers (ARBs) or angiotensin-converting enzyme inhibitors (ACEIs), between different antihypertensive drug classes, nor across ethnic groups. Conclusion Amlodipine and barnidipine were associated with better BP control compared to other CCBs. Our findings provide an important starting point for understanding the role of IL-6 in hypertension management. Further studies are warranted to confirm these observations by directly measuring IL-6 levels and investigating underlying mechanisms.
Collapse
Affiliation(s)
- Hillman Batuo
- Department of Public and Occupational Health, Amsterdam Public health Research Institute, Amsterdam university Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Eva van der Linden
- Department of Public and Occupational Health, Amsterdam Public health Research Institute, Amsterdam university Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Henrike Galenkamp
- Department of Public and Occupational Health, Amsterdam Public health Research Institute, Amsterdam university Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Eric Moll van Charante
- Department of Public and Occupational Health, Amsterdam Public health Research Institute, Amsterdam university Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Bert-Jan van der Born
- Department of Public and Occupational Health, Amsterdam Public health Research Institute, Amsterdam university Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Felix P. Chilunga
- Department of Public and Occupational Health, Amsterdam Public health Research Institute, Amsterdam university Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Hamidah H, Rauf S, Arifuddin S, Takdir Musba AM, Prihantono P, Pelupessy NU, Idris I, Bukhari A, Qanitha A, Mappeware NA, Hatta M, Permatasari TAE, Rohman R, Fatimah F, Hidayati E. Comparison of Pain, Cortisol, and IL6 Levels Pre and Post SEFT in Stage III B Cervical Cancer Patients. Asian Pac J Cancer Prev 2025; 26:625-630. [PMID: 40022710 PMCID: PMC12118014 DOI: 10.31557/apjcp.2025.26.2.625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/16/2025] [Indexed: 03/03/2025] Open
Abstract
OBJECTIVE The objective of the study is to assess the impact of Spiritual Emotional Freedom Technique (SEFT) intervention on pain severity, cortisol, and IL6 levels in stage III B cervical cancer patients undergoing chemoradiation. METHODS A quasi-experimental study with a one-group pre-test post-test design was conducted at Gatot Soebroto Hospital, Jakarta, Indonesia, focusing on stage III B cervical cancer patients who received chemoradiation. Pain severity was quantified using the Numeric Rating Scale (NRS), while cortisol and IL6 levels were determined via serum specimen collection and ELISA analysis. Statistical analysis revealed significant disparities in pain severity, cortisol levels, and IL6 levels pre- and post-intervention. A significant correlation emerged between pain severity, cortisol, and IL6 levels (p<0.001). RESULT The average pre-intervention pain severity was 4.5 and the average post-intervention pain severity was 1.6. The average pre-intervention cortisol level was 632.9 and the average post-intervention cortisol level was 305.3 (p-value <0.001). The average pre-intervention IL6 level was 260.1 and the average post-intervention IL6 level was 106.7. CONCLUSION The SEFT proves highly effective in alleviating pain among cervical cancer patients undergoing chemoradiation.
Collapse
Affiliation(s)
- Hamidah Hamidah
- Department of Midwifery, Faculty of Medicine and Health, Universitas Muhammadiyah Jakarta, Jakarta, Indonesia.
| | - Syahrul Rauf
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia.
| | - Sharvianty Arifuddin
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia.
| | | | - Prihantono Prihantono
- Department of Surgical Sciences, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia.
| | - Nugraha Utama Pelupessy
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia.
| | - Irfan Idris
- Department of Physiology, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia.
| | - Agussalim Bukhari
- Department of Clinical Nutrition, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia.
| | - Andriany Qanitha
- Department of Physiology, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia.
| | - Nasruddin Andi Mappeware
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Muslim Indonesia, Makassar, Indonesia.
| | - Mochammad Hatta
- Department of Microbiology, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia.
| | | | - Rohman Rohman
- Department of Nursing Science, Faculty of Nursing, Universitas Muhammadiyah Jakarta, Central Jakarta, Indonesia.
| | - Fatimah Fatimah
- Department of Midwifery, Faculty of Medicine and Health, Universitas Muhammadiyah Jakarta, Jakarta, Indonesia.
| | - Elli Hidayati
- Department of Midwifery, Faculty of Medicine and Health, Universitas Muhammadiyah Jakarta, Jakarta, Indonesia.
| |
Collapse
|
7
|
Tashiro H, Kuwahara Y, Kurihara Y, Takahashi K. Molecular mechanisms and clinical impact of biologic therapies in severe asthma. Respir Investig 2025; 63:50-60. [PMID: 39642687 DOI: 10.1016/j.resinv.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Severe asthma is a critical condition for patients with asthma, characterized by frequent exacerbations, decreased pulmonary function, and unstable symptoms related to asthma. Consequently, the administration of systemic corticosteroids, which cause secondary damage because of their adverse effects, is considered. Recently, several types of molecular-targeted biological therapies have become available for patients with severe asthma, and they have a capacity to improve the pathophysiology of severe asthma. However, several clinical reports indicate that the effects differ depending on the biological targets of asthma in individual patients. In this review, the molecular mechanisms and clinical impact of biologic therapies in severe asthma are described. In addition, molecules targeted by possible future biologics are also addressed. Better understanding of the mechanistic basis for the role of biologics in severe asthma could lead to new therapeutic options for these patients.
Collapse
Affiliation(s)
- Hiroki Tashiro
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Saga Prefecture, 849-8501, Japan
| | - Yuki Kuwahara
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Saga Prefecture, 849-8501, Japan
| | - Yuki Kurihara
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Saga Prefecture, 849-8501, Japan
| | - Koichiro Takahashi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Saga Prefecture, 849-8501, Japan.
| |
Collapse
|
8
|
Razon AH, Alauddin M, Farzana N, Mazumdar S, Amin MR, Tusher MMH, Asrafuzzaman M, Hasan N, Rahman M, Saiedullah M, Rokeya B, Faruque MO. The Intricate Mechanisms of Functional Foods Oyster Mushroom and Fenugreek on Type 2 Diabetic Animal Model. J Diabetes Res 2024; 2024:6209785. [PMID: 39885962 PMCID: PMC11779994 DOI: 10.1155/jdr/6209785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/19/2024] [Indexed: 02/01/2025] Open
Abstract
Mushrooms and fenugreek are widely used to reduce hyperglycemia, and fenugreek is also used as a culinary ingredient to enhance flavor and aroma. This study is aimed at investigating the underlying mechanisms of the hypoglycemic effects of mushrooms and fenugreek in a Type 2 diabetic rat model. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) functions to reduce hyperglycemia through insulin-independent pathways and protects beta-cells. Diabetic model rats were administered standard diets supplemented with 5% oyster mushroom powder (mushroom-treated (MT) group) and 5% fenugreek seed powder (fenugreek-treated (FT) group) for 8 weeks. The results showed improvements in both glycemic and lipid profiles, with both oyster mushroom and fenugreek enhancing the phosphorylation of AMPK in muscle tissue. However, no effect on insulin secretion was observed. These findings suggest that both substances reduce hyperglycemia through an insulin-independent pathway. In silico analysis of both mushroom and fenugreek seed extracts revealed bioactive compounds having a strong binding affinity to α-glucosidase, which suggests mushroom and fenugreek supplements might control postprandial blood glucose levels.
Collapse
Affiliation(s)
- Arafat Hassan Razon
- School of Science and Technology, Bangladesh Open University, Gazipur, Bangladesh
| | - Md. Alauddin
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Nisat Farzana
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Sanaullah Mazumdar
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Ruhul Amin
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | | | - Md. Asrafuzzaman
- Department of Pharmacology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Nahid Hasan
- Department of Biochemistry and Molecular Biology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Mahfuzur Rahman
- Department of Biochemistry and Molecular Biology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Muhammad Saiedullah
- Department of Biochemistry and Molecular Biology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Begum Rokeya
- Department of Pharmacology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Md. Omar Faruque
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
9
|
Yang CF, Pu Y, Li L, Guo MG, Feng ZW. Inflammatory cytokines and carpal tunnel syndrome: A causal relationship revealed. Cytokine 2024; 184:156777. [PMID: 39395310 DOI: 10.1016/j.cyto.2024.156777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/24/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVES Carpal tunnel syndrome (CTS) and certain inflammatory cytokines have been linked in observational studies; however, the exact causative linkages remain unknown. The purpose of this study is to investigate any possible link between the onset of CTS and 91 inflammatory cytokines. METHODS A two-sample bidirectional Mendelian randomization (MR) approach was used in this investigation. 91 circulating inflammatory cytokines' genetic variants were retrieved from the European ancestry genome-wide association study (GWAS) database. From germline GWAS, summary data for 24,766 CTS patients and 360,538 controls were gathered. The instrumental variables were single nucleotide polymorphisms (SNPs) that were highly correlated with the 91 inflammatory cytokines. The random-effects inverse-variance weighted (IVW) approach was employed in the primary analysis, and multiple comparisons were subjected to the Bonferroni correction. Sensitivity analysis was performed to evaluate the validity of the causal relationship. RESULTS Our findings showed a negative correlation between CCL19, FGF-19, IL-5, TGF-alpha, TRAIL, and the risk of CTS. Specifically, CCL19 (odds ratio [OR]: 0.944, 95 % confidence interval [CI]: 0.894-0.996, p = 0.0349), FGF-19 (OR: 0.940, 95 % CI: 0.894-0.987, p = 0.0133), IL-5 (OR: 0.936, 95 % CI: 0.885-0.990, p = 0.0212), TGF-alpha (OR: 0.902, 95 % CI: 0.838-0.970, p = 0.0057), and TRAIL (OR: 0.926, 95 % CI: 0.881-0.974, p = 0.0026) were inversely related to CTS risk. Conversely, CCL20, IL-2RB, and IL-6 were positively associated with an increased risk of CTS. Specifically, CCL20 (OR: 1.072, 95 % CI: 1.005-1.142, p = 0.0334), IL-2RB (OR: 1.067, 95 % CI: 1.001-1.137, p = 0.0463), and IL-6 (OR: 1.088, 95 % CI: 1.005-1.177, p = 0.0365) were positively correlated with CTS risk. Reverse Mendelian randomization analyses indicated no evidence of a reverse causal relationship between CTS and inflammatory cytokines. CONCLUSION According to this study, there is a causal link between CTS and certain inflammatory cytokines, which suggests that these cytokines may be important in the pathophysiology of CTS. To confirm these results and investigate the specific function of these cytokines in the beginning and development of CTS, more investigation is necessary.
Collapse
Affiliation(s)
- Chen-Fei Yang
- School of Nursing, North Sichuan Medical College, Nanchong, China
| | - Ying Pu
- School of Nursing, North Sichuan Medical College, Nanchong, China
| | - Li Li
- School of Nursing, North Sichuan Medical College, Nanchong, China
| | - Ming-Gang Guo
- Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, China.
| | - Zhi-Wei Feng
- Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
10
|
Younes OA, Elsherbiny DM, Hanna DMF, Gad AM, Azab SS. Tocilizumab unfolds colo-protective and immunomodulatory effect in experimentally induced ulcerative colitis via mitigating autophagy and ER stress signaling. Inflammopharmacology 2024; 32:3881-3898. [PMID: 39134818 PMCID: PMC11550239 DOI: 10.1007/s10787-024-01527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/05/2024] [Indexed: 11/10/2024]
Abstract
Ulcerative colitis (UC) is an idiopathic, chronic, relapsing inflammatory bowel disease (IBD), characterized by chronic inflammation of the gastrointestinal tract. The pathophysiology of UC is complicated and involves several factors including immune, genetic, and environmental factors. Recently, a huge amount of research has concentrated on the role of interleukins including interleukin-6 (IL-6) in its pathophysiology. Thus, this study aims to examine the colo-protective and immunomodulatory effect of Tocilizumab (TCZ) in an experimental model of dextran sulfate sodium (DSS) induced UC. In the current study, we analyzed the inflammatory, immunomodulatory, apoptotic, autophagy, and endoplasmic reticulum (ER) stress markers and other clinical features including stool consistency, rectal bleeding, and edema markers in rats. Our results showed that induction of colitis caused bloody diarrhea and increased IL-6 levels. Treatment with TCZ significantly ameliorated DSS-induced injury via decreasing inflammatory markers of colon injury (IL-6), signal transducer and activator of transcription-3 (STAT-3), and C-reactive protein (CRP). Furthermore, TCZ attenuated the apoptotic marker (caspase-3), and down-regulated endoplasmic reticulum stress sensor proteins (inositol- requiring transmembrane kinase endonuclease-1 (IRE-1) and activated transcription factor-6 (ATF-6)) and autophagy proteins (autophagy-related 16-like protein 1 (ATG16L1) and nucleotide-binding oligomerization domain-containing protein-2 (NOD2)), as compared to DSS group. Altogether, the current data suggest TCZ to be a promising protective therapy against UC.
Collapse
Affiliation(s)
- Omnia A Younes
- Biologicals Unit at General Administration of Clinical Studies, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Doaa M Elsherbiny
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Diana M F Hanna
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amany M Gad
- Department of Pharmacology, Egyptian Drug Authority (EDA), Formerly NODCAR, Giza, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University Kantara Branch, Ismailia, Egypt
| | - Samar S Azab
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
11
|
Tobe-Nishimoto A, Morita Y, Nishimura J, Kitahira Y, Takayama S, Kishimoto S, Matsumiya-Matsumoto Y, Matsunaga K, Imai T, Uzawa N. Tumor microenvironment dynamics in oral cancer: unveiling the role of inflammatory cytokines in a syngeneic mouse model. Clin Exp Metastasis 2024; 41:891-908. [PMID: 39126553 PMCID: PMC11607012 DOI: 10.1007/s10585-024-10306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
The process of cervical lymph node metastasis is dependent on the phenotype of the tumor cells and their interaction with the host microenvironment and immune system; conventional research methods that focus exclusively on tumor cells are limited in their ability to elucidate the metastatic mechanism. In cancer tissues, a specialized environment called the tumor microenvironment (TME) is established around tumor cells, and inflammation in the TME has been reported to be closely associated with the development and progression of many types of cancer and with the response to anticancer therapy. In this study, to elucidate the mechanism of metastasis establishment, including the TME, in the cervical lymph node metastasis of oral cancer, we established a mouse-derived oral squamous cell carcinoma cervical lymph node highly metastatic cell line and generated a syngeneic orthotopic transplantation mouse model. In the established highly metastatic cells, epithelial-mesenchymal transition (EMT) induction was enhanced compared to that in parental cells. In the syngeneic mouse model, lymph node metastasis was observed more frequently in tumors of highly metastatic cells than in parental cells, and Cyclooxygenase-2 (COX-2) expression and lymphatic vessels in primary tumor tissues were increased, suggesting that this model is highly useful. Moreover, in the established highly metastatic cells, EMT induction was enhanced compared to that in the parent cell line, and CCL5 and IL-6 secreted during inflammation further enhanced EMT induction in cancer cells. This suggests the possibility of a synergistic effect between EMT induction and inflammation. This model, which allows for the use of two types of cells with different metastatic and tumor growth potentials, is very useful for oral cancer research involving the interaction between cancer cells and the TME in tumor tissues and for further searching for new therapeutic agents.
Collapse
Affiliation(s)
- Ayano Tobe-Nishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yoshihiro Morita
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
| | - Junya Nishimura
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yukiko Kitahira
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Shun Takayama
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Satoko Kishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yuka Matsumiya-Matsumoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Kazuhide Matsunaga
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Tomoaki Imai
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Narikazu Uzawa
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| |
Collapse
|
12
|
Eggers B, Seher L, Marciniak J, Pauck T, Deschner J, Eick S, Stope MB, Kramer FJ, Küchler EC, Kirschneck C, Nokhbehsaim M, Beisel-Memmert S. Beneficial effects of non-invasive physical plasma on human periodontal ligament cells in vitro. Front Med (Lausanne) 2024; 11:1443368. [PMID: 39629237 PMCID: PMC11611554 DOI: 10.3389/fmed.2024.1443368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Periodontitis is a chronic inflammatory disease of the periodontium that can lead to the loss of affected teeth if left untreated. It is induced by a multifactorial process centered on microbial pathogens such as Fusobacterium nucleatum (F.n.). Non-invasive physical plasma (NIPP), a highly reactive gas, has become a focus of research, not only for its hemostatic, proliferation-enhancing and apoptotic properties, but also for its antimicrobial potential. The objective of this study was to examine the impact of NIPP on human periodontal ligament (PDL) cells that had been induced into a state of periodontal infection in vitro. Methods Initially, the solitary effect of NIPP was evaluated by measuring temperature and pH and analyzing reactive oxygen species (ROS). Additionally, DAPI and phalloidin staining were employed to investigate possible cytotoxic effects. The cells were pre-incubated with F.n. and treated with NIPP after 24 hours. Interleukin (IL)-6 and IL-8 were analyzed at mRNA and protein levels, respectively, by real-time PCR and ELISA. Results NIPP alone had no significant effect on PDL cells. However, the F.n.-induced upregulation of IL-6 and IL-8 was counteracted by NIPP. Discussion Thus, the utilization of NIPP may be regarded as a promising therapeutic strategy for the treatment of periodontal diseases.
Collapse
Affiliation(s)
- Benedikt Eggers
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Bonn, Germany
| | - Lennard Seher
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Bonn, Germany
- Department of Orthodontics, University Hospital Bonn, Bonn, Germany
| | - Jana Marciniak
- Department of Orthodontics, University Hospital Bonn, Bonn, Germany
| | - Tristan Pauck
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Bonn, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Matthias Bernhard Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Bonn, Germany
| | - Franz-Josef Kramer
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Bonn, Germany
| | | | | | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
13
|
Lee YH, Song GG. Association between IL and 6 gene polymorphisms and circulating IL-6 levels in Behcet's disease: A meta-analysis. Int Immunopharmacol 2024; 141:113003. [PMID: 39186833 DOI: 10.1016/j.intimp.2024.113003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
OBJECTIVES This study aimed to investigate the association between circulating interleukin-6 (IL-6) levels and Behçet's disease (BD), and associations between polymorphisms in IL-6 gene and BD susceptibility. METHOD A search of relevant articles was conducted in the Medline, Embase, and Web of Sciences databases. Subsequently, a meta-analysis was performed to assess circulating IL-6 levels in both the BD and control groups. Additionally, we investigated the association between the functional IL-6 promoter -174 G/C polymorphism and the risk of developing BD. RESULTS Nineteen studies involving 923 patients with BD and 910 controls were included in this meta-analysis. The results demonstrated a significant elevation in circulating IL-6 levels in the BD group than in the control group (standardized mean difference [SMD] = 1.600, 95 % confidence interval [CI] = 0.732-2.496, P<0.001). Furthermore, IL-6 levels were significantly higher in the active disease group than in the inactive disease group (SMD=1.292, 95 % CI=0.059-2.525, P<0.001). Intriguingly, the meta-analysis revealed an association between BD and the IL-6 CC+CG genotype in Arabs (odds ratio [OR] = 0.588, 95 % CI=0.393-0.881, P=0.010), whereas no such association was observed in European or Asian populations. CONCLUSIONS Our meta-analysis revealed significantly higher circulating IL-6 levels in patients with BD and found evidence of association between IL and 6 promoter -174 G/C and BD susceptibility.
Collapse
Affiliation(s)
- Young Ho Lee
- Department of Rheumatology, Korea University College of Medicine, Seoul, Korea.
| | - Gwan Gyu Song
- Department of Rheumatology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Amoddeo A. In silico assessment of CAR macrophages activity against SARS-CoV-2 infection. Heliyon 2024; 10:e39689. [PMID: 39524874 PMCID: PMC11550025 DOI: 10.1016/j.heliyon.2024.e39689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Macrophage engineering with chimeric antigen receptor is a promising technique first applied to the treatment of tumours and recently suggested as a possible immunotherapeutic route against the COVID-19 disease. Four immunotherapies based on engineered macrophages have been tested in vitro revealing promising, with one of them acting without increasing the cytokines level. We present a mathematical model aimed at the evaluation of both the SARS-CoV-2 virions dynamics and the cytokines production induced, while such newly developed constructs interact with the immune system once administered. The importance of the study lies both in monitoring the dynamics of the infection and in evaluating the cytokine production, since clinical studies show that in critical COVID-19 patients an abnormal cytokines production occurs, a concern to be accounted for in designing appropriate therapeutic strategies. The mathematical model was built in the context of the continuum approach of the mass conservation, while the numerical simulations have been performed introducing parameters deduced from the experiments, using the finite element method. The model simulations allow to analyse and to compare the immune mechanisms underlying the virus dynamics, deepening the investigation for two selected immunotherapies, suggesting that a synergistic work of involved cytokines with phagocytic activity of macrophages occurs. The best SARS-CoV-2 clearance relies not only on the phagocytic capacity of the engineered macrophages, but also on the production of T-lymphocytes, pro- and anti-inflammatory cytokines which in the two cases examined in depth can decrease by 99.7 %, 99.6 % and 69 % respectively, passing from the most effective immunotherapy to the least effective one. This study is the first mathematical model that analyses the dynamics of macrophages engineered to fight the COVID-19, and paves the way for their possible exploitation against such a challenging disease, going beyond existing models involving other immune cells.
Collapse
Affiliation(s)
- Antonino Amoddeo
- Department of Civil, Energy, Environment and Materials Engineering, Università’Mediterranea’ di Reggio Calabria, Via R. Zehender 1, Feo di Vito, I-89122, Reggio Calabria, Italy
| |
Collapse
|
15
|
Tan S, Qi C, Zeng H, Wei Q, Huang Q, Pu X, Li W, Li Y, Tian P. Steroid-Refractory Myocarditis Induced by Immune Checkpoint Inhibitor Responded to Infliximab: Report of Two Cases and Literature Review. Cardiovasc Toxicol 2024; 24:1174-1191. [PMID: 39256296 PMCID: PMC11445312 DOI: 10.1007/s12012-024-09918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Immune checkpoint inhibitors (ICIs), including anti-programmed cell death protein 1 and its ligand (PD-1/PD-L1) as well as anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4), have been widely used for treating solid tumors. Myocarditis is a potentially lethal immune-related adverse events (irAEs) caused by ICIs therapy. The treatment of steroid-refractory myocarditis is challenging. We reported two non-small-cell lung cancer patients with steroid-refractory myocarditis induced by ICI. The symptoms were not resolved after pulse corticosteroid therapy and subsequent treatment including intravenous immunoglobulin and mycophenolate mofetil. Considering the level of serum interleukin (IL)-6 decreased by > 50% and level of serum tumor necrosis factor-α (TNF-α) increased during the course of the disease, infliximab was used. Myocarditis gradually alleviated after infliximab treatment. The cases revealed that specific cytokine inhibitors have promising roles in the treatment of steroid-refractory myocarditis. Infliximab could be considered for patients with low level of IL-6 and elevated level of TNF-α.
Collapse
Affiliation(s)
- Sihan Tan
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Chang Qi
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Hao Zeng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Qi Wei
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Qin Huang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Xin Pu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yalun Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China.
| | - Panwen Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
16
|
Zheng Y, Ye N, Yang Y, He M, Shi S, Zhang Y, Kesse S, Wei X, Xu Y, Nie P, Peng J. Targeted counteracting of overactive macrophages by melittin stable-loaded solid lipid nanoparticles alleviates cytokine storm and acute inflammatory injury. Biomed Pharmacother 2024; 179:117371. [PMID: 39216447 DOI: 10.1016/j.biopha.2024.117371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The continuous activation of macrophages play a critical role in the pathogenesis of cytokine storm (CS). Considering that CS results from the participation of multiple cytokines, the therapeutic effect of a single cytokine or its receptor-targeted blockade therapy remains uncertain. Melittin, which can systematically suppress the overexpression of proinflammatory mediators via inhibiting the mitogen-activated protein kinase and nuclear factor kappa-B pathways in activated macrophages, shows great potential in alleviating CS and acute inflammatory injury (AII). However, its clinical application is limited by its hemolytic activity, non-specific cytotoxicity and lack of targeting. In this study, a folic acid-modified and melittin stable-loaded solid lipid nanoparticle (Fa-MpG@LNP) with a core-shell structure was developed for CS control via targeted inhibition of the overproduction of proinflammatory mediators in activated macrophages with specific expression of folate receptor-β. The resultant Fa-MpG@LNP showed ideal physicochemical properties and stability, low hemolytic activity and non-specific cytotoxicity, and it can specifically bind to lipopolysaccharide (LPS)-stimulated macrophages and effectively reduce the elevated levels of proinflammatory mediators. After intravenous administration, the Fa-MpG@LNP accumulated at inflamed tissue and significantly downregulate the overproduction of proinflammatory cytokines in tissue-infiltrated macrophages, resulting in a significant decrease of cytokine concentration in inflamed tissue and serum in LPS-induced acute pneumonia mice, and finally alleviate AII with undetectable toxic side effects. These results indicate the clinical application potential of Fa-MpG@LNP in alleviating CS and its related symptoms.
Collapse
Affiliation(s)
- Yuan Zheng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ningshuang Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yang Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Miao He
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; School of Pharmacy, DaLi University, Dali City 671000, PR China
| | - Sanyuan Shi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yunxuan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Samuel Kesse
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiaohui Wei
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuhong Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; School of Pharmacy, DaLi University, Dali City 671000, PR China
| | - Ping Nie
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, PR China.
| | - Jinliang Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; School of Pharmacy, DaLi University, Dali City 671000, PR China.
| |
Collapse
|
17
|
Setiawan E, Putra A, Nabih DI, Ovaditya SZ, Rizaldy R. Mesenchymal stem cells suppress inflammation by downregulating interleukin-6 expression in intestinal perforation animal model. Ann Med Surg (Lond) 2024; 86:5776-5783. [PMID: 39359817 PMCID: PMC11444626 DOI: 10.1097/ms9.0000000000002395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Intestinal perforation has significant fatality due to sepsis contamination and prolonged inflammation. Studies showed that mesenchymal stem cells (MSCs) secreted cytokines and growth factors to reduce inflammation. This study aims to reveal the role of MSCs in controlling inflammation in intestinal perforation wound healing by measuring interleukin-6 (IL-6) and leukocytes in injured tissue. Materials and methods A total of 48 rat models with a 10-mm longitudinal incision at the small intestine were divided into four groups: sham, control, Treatment group 1 (T1) injected with MSC doses of 1.5×106 cells and Treatment group 2 (T2) with 3×106 cells. IL-6 expressions were determined using western blot analysis, whereas the leukocyte infiltrations were assessed using the histopathological examination. All variables were evaluated on day 3 and 7. Results Leukocyte infiltration is significantly lower in T1 and T2 compared to control group in day 3 and 7 (P<0.05), while there were no differences between the two treatment groups. The expression of IL-6 was found to be significantly lower in the T1 and T2 groups compared to the control group on days 3 and 7 (P<0.05), with no significant differences observed between the two treatment groups. Conclusion MSCs administration in rats with intestinal perforation reduced inflammation by controlling leukocyte infiltration and IL-6 expression.
Collapse
Affiliation(s)
- Eko Setiawan
- Department of Surgery, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang
| | - Agung Putra
- Stem Cell and Cancer Research (SCCR) Laboratory, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang
- Department of Pathological Anatomy, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang
- Department of Postgraduate Biomedical Science, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang
| | - Dimas Irfan Nabih
- Faculty of Medicine, Universitas Islam Sultan Agung, Semarang, Indonesia
| | | | - Rheza Rizaldy
- Faculty of Medicine, Universitas Islam Sultan Agung, Semarang, Indonesia
| |
Collapse
|
18
|
Mazurek-Mochol M, Bonsmann T, Malinowski D, Serwin K, Czerewaty M, Safranow K, Pawlik A. Interleukin-6 Receptor Gene rs1800795 Polymorphism and Expression of Interleukin-6 in Gingival Tissue in Patients with Periodontitis. Microorganisms 2024; 12:1954. [PMID: 39458264 PMCID: PMC11509941 DOI: 10.3390/microorganisms12101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Periodontitis is a multifactorial inflammatory disease. This chronic periodontal disease is caused by a bacterial infection in the gums, which triggers a host inflammatory response. To eliminate the bacterial infection, immune response mechanisms are activated, leading to inflammation and damage to the periodontal tissues. This process involves many cytokines, including IL-6, a cytokine with antibacterial properties. An ongoing bacterial infection in the periodontal tissues leads to its excessive production, which increases inflammation. In this study, we examined IL-6 receptor gene rs1800795 polymorphism in patients with periodontitis in comparison with healthy subjects, as well as the correlation between rs1800795 genotypes and clinical parameters. Additionally we examined the expression of IL-6 in gingival tissue in patients with periodontitis and control subjects, as well as the correlation between gingival expression of IL-6 and clinical parameters. This study included 200 patients with periodontitis and 158 healthy subjects as the control group. Biopsy specimens of gingival tissue in which IL-6 expression was detected were taken from 14 patients with periodontitis and 8 controls who had undergone minor surgery. There were no statistically significant differences in the distribution of IL-6 rs1800795 genotypes and alleles between patients with periodontitis and control subjects. There were also no statistically significant correlations between IL-6 rs1800795 genotypes and clinical parameters in patients with periodontitis. There were no differences in IL-6 expression in the gingival tissue between patients with periodontitis and controls. There was also no correlation between IL-6 expression in the gingival tissue of patients with periodontitis and clinical parameters. In the control group, IL-6 expression in gingival tissue correlated negatively with the approximal plaque index, which reflects the size of bacterial plaques. The results of our study suggest a protective role for IL-6 against bacterial growth in the periodontal tissue. However, it should be noted that several parameters directly or indirectly affect the accumulation of bacterial plaque.
Collapse
Affiliation(s)
- Małgorzata Mazurek-Mochol
- Department of Periodontology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (M.M.-M.); (T.B.)
| | - Tobias Bonsmann
- Department of Periodontology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (M.M.-M.); (T.B.)
| | - Damian Malinowski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Karol Serwin
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Michał Czerewaty
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| |
Collapse
|
19
|
Hasterok S, Jankovskaja S, Miletic Dahlström R, Prgomet Z, Ohlsson L, Björklund S, Gustafsson A. Exploring the Surface: Sampling of Potential Skin Cancer Biomarkers Kynurenine and Tryptophan, Studied on 3D Melanocyte and Melanoma Models. Biomolecules 2024; 14:815. [PMID: 39062529 PMCID: PMC11274760 DOI: 10.3390/biom14070815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Early detection of cancer via biomarkers is vital for improving patient survival rates. In the case of skin cancers, low-molecular-weight biomarkers can penetrate the skin barrier, enabling non-invasive sampling at an early stage. This study focuses on detecting tryptophan (Trp) and kynurenine (Kyn) on the surface of reconstructed 3D melanoma and melanocyte models. This is examined in connection with IDO-1 and IL-6 expression in response to IFN-γ or UVB stimulation, both crucial factors of the melanoma tumor microenvironment (TME). Using a polystyrene scaffold, full-thickness human skin equivalents containing fibroblasts, keratinocytes, and melanocytes or melanoma cells were developed. The samples were stimulated with IFN-γ or UVB, and Trp and Kyn secretion was measured using HPLC-PDA and HPLC-MS. The expression of IDO-1 and IL-6 was measured using RT-qPCR. Increased Trp catabolism to Kyn was observed in IFN-γ-stimulated melanoma and melanocyte models, along with higher IDO-1 expression. UVB exposure led to significant changes in Kyn levels but only in the melanoma model. This study demonstrates the potential of skin surface Trp and Kyn monitoring to capture TME metabolic changes. It also lays the groundwork for future in vivo studies, aiding in understanding and monitoring skin cancer progression.
Collapse
Affiliation(s)
- Sylwia Hasterok
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden; (S.J.); (R.M.D.); (Z.P.); (L.O.); (S.B.)
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06 Malmo, Sweden
| | - Skaidre Jankovskaja
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden; (S.J.); (R.M.D.); (Z.P.); (L.O.); (S.B.)
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06 Malmo, Sweden
| | - Ruzica Miletic Dahlström
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden; (S.J.); (R.M.D.); (Z.P.); (L.O.); (S.B.)
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06 Malmo, Sweden
| | - Zdenka Prgomet
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden; (S.J.); (R.M.D.); (Z.P.); (L.O.); (S.B.)
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06 Malmo, Sweden
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, 214 21 Malmo, Sweden
| | - Lars Ohlsson
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden; (S.J.); (R.M.D.); (Z.P.); (L.O.); (S.B.)
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06 Malmo, Sweden
| | - Sebastian Björklund
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden; (S.J.); (R.M.D.); (Z.P.); (L.O.); (S.B.)
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06 Malmo, Sweden
| | - Anna Gustafsson
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden; (S.J.); (R.M.D.); (Z.P.); (L.O.); (S.B.)
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06 Malmo, Sweden
| |
Collapse
|
20
|
Stockland EL, Smith MS, Pickett AT, Cooke RF, Poole RK. Influence of differing levels of concentrate on circulating cytokine concentrations in beef heifers. Transl Anim Sci 2024; 8:txae089. [PMID: 38873027 PMCID: PMC11170485 DOI: 10.1093/tas/txae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
Components of the immune system (e.g., cytokines and chemokines) can influence reproductive efficiency. Characterizing the influence nutrition has on shifts in circulating cytokine concentrations will allow for a better understanding of reproductive efficiency in beef cattle. This study aimed to determine the effect of diet composition on circulating cytokine concentrations of beef heifers. Using a 3 × 3 Latin square design, pubertal Bos taurus-influenced rumen-cannulated heifers (n = 15) were fed a diet based on different concentrate percentages. The treatment period consisted of 28-d feeding periods with a washout interval of 21 d. Treatment groups were fed 100% grass hay (high forage; HF), 60% grass hay with 40% corn-based concentrate (intermediate; INT), and 25% grass hay with 75% corn-based concentrate (high grain; HG). Heifers were offered 2% of their body weight in feed daily. Blood was collected on days 0 and 28 of the treatment period for cytokine analysis. Plasma cytokine concentrations were quantified using RayBiotech Quantibody Bovine Cytokine Array Q1 kit according to manufacturer instructions. Concentrations of interferon gamma-induced protein 10 (IP10) linearly decreased with an increased concentrate diet (P = 0.037). Concentrations of IP10 differed for heifers consuming HF diet vs. HG diet (3,069.52 vs. 1,001.84 ± 669.01 pg/mL, respectively) and heifers consuming INT diet vs. HG diet (2,886.77 vs. 1,001.84 ± 669.01 pg/mL, respectively); however, there were no significant differences in IP10 concentrations between HF and INT heifers. There was a tendency for interleukin-1 family member 5 (IL1F5) concentrations to be lower for heifers consuming the HG diet compared to INT diet (P = 0.08). Results suggest that heifers consuming a high-concentrate diet have lower concentrations of IP10 and IL1F5. Additional research is necessary to better understand the dietary influence on the immune system in developing heifers.
Collapse
Affiliation(s)
- Erin L Stockland
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Molly S Smith
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Autumn T Pickett
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Reinaldo F Cooke
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Rebecca K Poole
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
21
|
Yu J, Chu Q, Zhou J, Zhang L. The novel fish miRNA, Soc-miR-118, functions as a negative regulator in NF-κB-mediated inflammation by targeting IL-6 in teleost fish. Int J Biol Macromol 2024; 269:132100. [PMID: 38710252 DOI: 10.1016/j.ijbiomac.2024.132100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/24/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Inflammation is initiated as a protective response of the organism to remove invading bacterial and initiate the healing process. Prolonged inflammation and excessive production of inflammatory cytokines lead to inflammatory disorders or autoimmune diseases. Thus, different layers of negative regulators are needed to achieve balances between protective immunity and inflammatory pathology. Accumulating evidences show that miRNAs act as significant and multifunctional regulators involved in regulating networks of host-pathogen interactions. However, the functions and mechanisms of miRNAs in directly targeting and regulating inflammatory cytokines remains largely unknown in lower vertebrates. In this study, we report a novel miRNA, Soc-miR-118, identified from Sciaenops ocellatus, which plays a negative role in antibacterial immunity by regulating Interleukin-6 (IL-6). Specifically, we found that Soc-miR-118 directly targets IL-6 and suppresses the production of inflammatory cytokines through the NF-κB signaling pathway, thereby avoiding excessive inflammatory response. Particularly, the mechanism by which Soc-miR-118 regulates IL-6 expression also exist in other fish, suggesting that the miRNA in fish has evolutionarily conserved regulatory systems. The collective results that Soc-miR-118 acts as a negative regulator involved in host antibacterial immunity through directly regulating inflammatory cytokines, will greatly enrich the intricate networks of host-pathogen interaction in lower vertebrates.
Collapse
Affiliation(s)
- Jingyao Yu
- School of Agriculture, Ludong University, Yantai, China
| | - Qing Chu
- School of Agriculture, Ludong University, Yantai, China.
| | - Jiale Zhou
- School of Agriculture, Ludong University, Yantai, China
| | - Lin Zhang
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
22
|
Miao X, Jiang P, Zhang X, Li X, Wu Z, Jiang Y, Liu H, Xie W, Li X, Shi B, Cai J, Gong W. Lactobacillus rhamnosus HN001 facilitates the efficacy of dual PI3K/mTOR inhibition prolonging cardiac transplant survival and enhancing antitumor effect. Microbiol Spectr 2024; 12:e0183923. [PMID: 38564670 PMCID: PMC11064485 DOI: 10.1128/spectrum.01839-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/24/2023] [Indexed: 04/04/2024] Open
Abstract
UNLABELLED Solid organ transplantation is a crucial treatment for patients who have reached the end stage of heart, lung, kidney, or liver failure. However, the likelihood of developing cancer post-transplantation increases. Additionally, primary malignant tumors remain a major obstacle to the long-term survival of transplanted organs. Therefore, it is essential to investigate effective therapies that can boost the immune system's ability to combat cancer and prevent allograft rejection. We established a mouse orthotopic liver tumor model and conducted allogeneic heterotopic heart transplantation. Various treatments were administered, and survival curves were generated using the Kaplan-Meier method. We also collected graft samples and measured inflammatory cytokine levels in the serum using an inflammatory array. The specificity of the histochemical techniques was tested by staining sections. We administered a combination therapy of phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) dual inhibitor BEZ235 and Lactobacillus rhamnosus HN001 to primary liver cancer model mice with cardiac allografts. Consistent with our prior findings, L. rhamnosus HN001 alleviated the intestinal flora imbalance caused by BEZ235. Our previous research confirmed that the combination of BEZ235 and L. rhamnosus HN001 significantly prolonged cardiac transplant survival. IMPORTANCE We observed that the combination of phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) dual inhibitor BEZ235 and Lactobacillus rhamnosus HN001 notably prolonged cardiac transplant survival while also inhibiting the progression of primary liver cancer. The combination therapy was efficacious in treating antitumor immunity and allograft rejection, as demonstrated by the efficacy results. We also found that this phenomenon was accompanied by the regulation of inflammatory IL-6 expression. Our study presents a novel and effective therapeutic approach to address antitumor immunity and prevent allograft rejection.
Collapse
Affiliation(s)
- Xiaolong Miao
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Jiang
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaotong Zhang
- Medical department, Qingdao Eighth People’s Hospital, Qingdao, China
| | - Xinqiang Li
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zelai Wu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuancong Jiang
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Han Liu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Weixun Xie
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinwei Li
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bingfeng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinzhen Cai
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weihua Gong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
23
|
Ishibashi T, Inagaki T, Okazawa M, Yamagishi A, Ohta-Ogo K, Asano R, Masaki T, Kotani Y, Ding X, Chikaishi-Kirino T, Maedera N, Shirai M, Hatakeyama K, Kubota Y, Kishimoto T, Nakaoka Y. IL-6/gp130 signaling in CD4 + T cells drives the pathogenesis of pulmonary hypertension. Proc Natl Acad Sci U S A 2024; 121:e2315123121. [PMID: 38602915 PMCID: PMC11032454 DOI: 10.1073/pnas.2315123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/07/2024] [Indexed: 04/13/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by stenosis and occlusions of small pulmonary arteries, leading to elevated pulmonary arterial pressure and right heart failure. Although accumulating evidence shows the importance of interleukin (IL)-6 in the pathogenesis of PAH, the target cells of IL-6 are poorly understood. Using mice harboring the floxed allele of gp130, a subunit of the IL-6 receptor, we found substantial Cre recombination in all hematopoietic cell lineages from the primitive hematopoietic stem cell level in SM22α-Cre mice. We also revealed that a CD4+ cell-specific gp130 deletion ameliorated the phenotype of hypoxia-induced pulmonary hypertension in mice. Disruption of IL-6 signaling via deletion of gp130 in CD4+ T cells inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) and suppressed the hypoxia-induced increase in T helper 17 cells. To further examine the role of IL-6/gp130 signaling in more severe PH models, we developed Il6 knockout (KO) rats using the CRISPR/Cas9 system and showed that IL-6 deficiency could improve the pathophysiology in hypoxia-, monocrotaline-, and Sugen5416/hypoxia (SuHx)-induced rat PH models. Phosphorylation of STAT3 in CD4+ cells was also observed around the vascular lesions in the lungs of the SuHx rat model, but not in Il6 KO rats. Blockade of IL-6 signaling had an additive effect on conventional PAH therapeutics, such as endothelin receptor antagonist (macitentan) and soluble guanylyl cyclase stimulator (BAY41-2272). These findings suggest that IL-6/gp130 signaling in CD4+ cells plays a critical role in the pathogenesis of PAH.
Collapse
Affiliation(s)
- Tomohiko Ishibashi
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Tadakatsu Inagaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Makoto Okazawa
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Akiko Yamagishi
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Keiko Ohta-Ogo
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
| | - Ryotaro Asano
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
| | - Takeshi Masaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Yui Kotani
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Xin Ding
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Tomomi Chikaishi-Kirino
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Noriko Maedera
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Manabu Shirai
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Tadamitsu Kishimoto
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka565-0871, Japan
| | - Yoshikazu Nakaoka
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka565-0871, Japan
- Department of Molecular Imaging in Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka565-0871, Japan
| |
Collapse
|
24
|
Baek J, Shin H, Suk K, Lee W. LINC01686 affects LPS-induced cytokine expression via the miR-18a-5p/A20/STAT1 axis in THP-1 cells. Immun Inflamm Dis 2024; 12:e1234. [PMID: 38578001 PMCID: PMC10996380 DOI: 10.1002/iid3.1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/20/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Long noncoding RNAs (lncRNAs) are crucial in regulating various physiological and pathological processes, including immune responses. LINC01686 is a lncRNA with previously uncharacterized functions in immune regulation. This study aims to investigate the function of LINC01686 in lipopolysaccharide (LPS)-induced inflammatory responses in the human monocytic leukemia cell line THP-1 and its potential regulatory mechanisms involving miR-18a-5p and the anti-inflammatory protein A20. METHOD THP-1 cells were stimulated with LPS to induce inflammatory responses, followed by analysis of LINC01686 expression levels. The role of LINC01686 in regulating the expression of interleukin (IL)-6, IL-8, A20, and signal transducer and activator of transcription 1 (STAT1) was examined using small interfering RNA-mediated knockdown. Additionally, the involvement of miR-18a-5p in LINC01686-mediated regulatory pathways was assessed by transfection with decoy RNAs mimicking the miR-18a-5p binding sites of LINC01686 or A20 messenger RNA. RESULTS LINC01686 expression was upregulated in THP-1 cells following LPS stimulation. Suppression of LINC01686 enhanced LPS-induced expression of IL-6 and IL-8, mediated through increased production of reactive oxygen species. Moreover, LINC01686 knockdown upregulated the expression and activation of IκB-ζ, STAT1, and downregulated A20 expression. Transfection with decoy RNAs reversed the effects of LINC01686 suppression on A20, STAT1, IL-6, and IL-8 expression, highlighting the role of LINC01686 in sponging miR-18a-5p and regulating A20 expression. CONCLUSION This study provides the first evidence that LINC01686 plays a critical role in modulating LPS-induced inflammatory responses in THP-1 cells by sponging miR-18a-5p, thereby regulating the expression and activation of A20 and STAT1. These findings shed light on the complex regulatory mechanisms involving lncRNAs in immune responses and offer potential therapeutic targets for inflammatory diseases.
Collapse
Affiliation(s)
- Jongwon Baek
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch GroupKyungpook National UniversityDaeguSouth Korea
| | - Hyeung‐Seob Shin
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch GroupKyungpook National UniversityDaeguSouth Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 FOUR KNU Biomedical Convergence ProgramKyungpook National University School of MedicineDaeguSouth Korea
| | - Won‐Ha Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch GroupKyungpook National UniversityDaeguSouth Korea
| |
Collapse
|
25
|
Peta KT, Durandt C, van Heerden MB, Joubert AM, Pepper MS, Ambele MA. Effect of 2-methoxyestradiol on mammary tumor initiation and progression. Cancer Rep (Hoboken) 2024; 7:e2068. [PMID: 38600057 PMCID: PMC11006714 DOI: 10.1002/cnr2.2068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND The anti-cancer agent 2-methoxyestradiol (2-ME) has been shown to have anti-proliferative and anti-angiogenic properties. Previously, the effect of 2-ME on early- and late-stage breast cancer (BC) was investigated in vivo using a transgenic mouse model (FVB/N-Tg(MMTV-PyVT)) of spontaneous mammary carcinoma. Anti-tumor effects were observed in late-stage BC with no effect on early-stage BC. Given the contrasting results obtained from the different BC stages, we have now investigated the effect of 2-ME when administered before the appearance of palpable tumors. METHODS Each mouse received 100 mg/kg 2-ME on day 30 after birth, twice per week for 28 days, while control mice received vehicle only. Animals were terminated on day 59. Lung and mammary tissue were obtained for immunohistochemical analysis of CD163 and CD3 expression, and histological examination was performed to analyze tumor necrosis. Additionally, blood samples were collected to measure plasma cytokine levels. RESULTS 2-ME increased tumor mass when compared to the untreated animals (p = .0139). The pro-tumorigenic activity of 2-ME was accompanied by lower CD3+ T-cell numbers in the tumor microenvironment (TME) and high levels of the pro-inflammatory cytokine interleukin (IL)-1β. Conversely, 2-ME-treatment resulted in fewer CD163+ cells detectable in the TME, increased levels of tumor necrosis, increased IL-10 plasma levels, and low IL-6 and IL-27 plasma levels. CONCLUSION Taken together, these findings suggest that 2-ME promotes early-stage BC development.
Collapse
Affiliation(s)
- Kimberly T. Peta
- Department of Immunology, Institute for Cellular and Molecular Medicine, South African Medical Research Council, Extramural Unit for Stem Cell Research and Therapy, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Chrisna Durandt
- Department of Immunology, Institute for Cellular and Molecular Medicine, South African Medical Research Council, Extramural Unit for Stem Cell Research and Therapy, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Marlene B. van Heerden
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Anna M. Joubert
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Michael S. Pepper
- Department of Immunology, Institute for Cellular and Molecular Medicine, South African Medical Research Council, Extramural Unit for Stem Cell Research and Therapy, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Melvin A. Ambele
- Department of Immunology, Institute for Cellular and Molecular Medicine, South African Medical Research Council, Extramural Unit for Stem Cell Research and Therapy, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
26
|
Kalita S, Kalita MJ, Talukdar AJ, Das PP, Dutta K, Hazarika G, Dutta S, Das P, Idris G, Kaur H, Medhi S. Altered TLR7 Expression-Mediated Immune Modulation Is Supportive of Persistent Replication and Intrauterine Transmission of HBV. Viral Immunol 2024; 37:149-158. [PMID: 38573237 DOI: 10.1089/vim.2023.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Hepatitis B Virus (HBV) is posing as a serious public health threat mainly due to its asymptomatic nature of infection in pregnancy and vertical transmission. Viral sensing toll-like receptors (TLR) and Interleukins (IL) are important molecules in providing an antiviral state. The study aimed to assess the role of TLR7-mediated immune modulation, which might have an impact in the intrauterine transmission of HBV leading to mother to child transmission of the virus. We investigated the expression pattern of TLR7, IL-3, and IL-6 by RT-PCR in the placentas of HBV-infected pregnant women to see their role in the intrauterine transmission of HBV. We further validated the expression of TLR7 in placentas using Immunohistochemistry. Expression analysis by RT-PCR of TLR7 revealed significant downregulation among the Cord blood (CB) HBV DNA positive and negative cases with mean ± standard deviation (SD) of 0.43 ± 0.22 (28) and 1.14 ± 0.57 (44) with p = 0.001. IL-3 and IL-6 expression revealed significant upregulation in the CB HBV DNA-positive cases with p = 0.001. Multinomial logistic regression analysis revealed that TLR7 and IL-3 fold change and mother HBeAg status are important predictors for HBV mother to child transmission. Immunohistochemistry revealed the decreased expression of TLR7 in CB HBV DNA-positive cases. This study reveals that the downregulation of TLR7 in the placenta along with CB HBV DNA-positive status may lead to intrauterine transmission of HBV, which may lead to vertical transmission of HBV.
Collapse
Affiliation(s)
- Simanta Kalita
- Department of Bioengineering & Technology, Gauhati University, Guwahati India
| | - Manash Jyoti Kalita
- Department of Bioengineering & Technology, Gauhati University, Guwahati India
| | | | - Partha Pratim Das
- Department of Bioengineering & Technology, Gauhati University, Guwahati India
- Multidisciplinary Research Unit, Fakhruddin Ali Ahmed Medical College and Hospital, Barpeta, India
| | - Kalpajit Dutta
- Department of Bioengineering & Technology, Gauhati University, Guwahati India
| | - Gautam Hazarika
- Department of Bioengineering & Technology, Gauhati University, Guwahati India
| | - Sangit Dutta
- Department of Medicine, Gauhati Medical College and Hospital, Guwahati, India
| | - Panchanan Das
- Department of Obstetrics and Gynaecology, Gauhati Medical College and Hospital, Guwahati, India
| | - Ghaznavi Idris
- Department of Bioengineering & Technology, Gauhati University, Guwahati India
| | - Harpreet Kaur
- Epidemiology and Communicable Diseases Division, Indian Council of Medical Research, New Delhi, India
| | - Subhash Medhi
- Department of Bioengineering & Technology, Gauhati University, Guwahati India
| |
Collapse
|
27
|
Lacinski RA, Dziadowicz SA, Stewart A, Chaharbakhshi E, Akhter H, Pisquiy JJ, Victory JH, Hardham JB, Chew C, Prorock A, Bao Y, Sol-Church K, Hobbs GR, Klein E, Nalesnik MA, Hu G, de Oliveira A, Santiago SP, Lindsey BA. Nanosphere pharmacodynamics improves safety of immunostimulatory cytokine therapy. iScience 2024; 27:108836. [PMID: 38303687 PMCID: PMC10831265 DOI: 10.1016/j.isci.2024.108836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/04/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Systemic administration of interleukin (IL)-12 induces potent anti-tumor immune responses in preclinical cancer models through the systemic activation of effector immune cells and release of proinflammatory cytokines. IL-12-loaded PLGA nanospheres (IL12ns) are hypothesized to improve therapeutic efficacy and thwart unwanted side effects observed in previous human clinical trials. Through the investigation of peripheral blood and local tissue immune responses in healthy BALB/c mice, the immune-protective pharmacodynamics of IL12ns were suggested. Nanospheres increased pro-inflammatory plasma cytokines/chemokines (IFN-γ, IL-6, TNF-α, and CXCL10) without inducing maladaptive transcriptomic signatures in circulating peripheral immune cells. Gene expression profiling revealed activation of pro-inflammatory signaling pathways in systemic tissues, the likely source of these effector cytokines. These data support that nanosphere pharmacodynamics, including shielding IL-12 from circulating immune cells, depositing peripherally in systemic immune tissues, and then slowly eluting bioactive cytokine, thereafter, are essential to safe immunostimulatory therapy.
Collapse
Affiliation(s)
- Ryan A. Lacinski
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Sebastian A. Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26505, USA
- Bioinformatics Core, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Amanda Stewart
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Edwin Chaharbakhshi
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Halima Akhter
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26505, USA
- Bioinformatics Core, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - John J. Pisquiy
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Jack H. Victory
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Joshua B. Hardham
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Claude Chew
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alyson Prorock
- Genome Analysis & Technology Core, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Yongde Bao
- Genome Analysis & Technology Core, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Katia Sol-Church
- Genome Analysis & Technology Core, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Gerald R. Hobbs
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Edwin Klein
- Division of Laboratory Animal Resources, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Michael A. Nalesnik
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26505, USA
- Bioinformatics Core, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Ana de Oliveira
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Stell P. Santiago
- Department of Pathology, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Brock A. Lindsey
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
28
|
Saheli M, Moshrefi M, Baghalishahi M, Mohkami A, Firouzi Y, Suzuki K, Khoramipour K. Cognitive Fitness: Harnessing the Strength of Exerkines for Aging and Metabolic Challenges. Sports (Basel) 2024; 12:57. [PMID: 38393277 PMCID: PMC10891799 DOI: 10.3390/sports12020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Addressing cognitive impairment (CI) represents a significant global challenge in health and social care. Evidence suggests that aging and metabolic disorders increase the risk of CI, yet promisingly, physical exercise has been identified as a potential ameliorative factor. Specifically, there is a growing understanding that exercise-induced cognitive improvement may be mediated by molecules known as exerkines. This review delves into the potential impact of aging and metabolic disorders on CI, elucidating the mechanisms through which various exerkines may bolster cognitive function in this context. Additionally, the discussion extends to the role of exerkines in facilitating stem cell mobilization, offering a potential avenue for improving cognitive impairment.
Collapse
Affiliation(s)
- Mona Saheli
- Department of Anatomical Sciences, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (M.S.); (M.B.)
| | - Mandana Moshrefi
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Masoumeh Baghalishahi
- Department of Anatomical Sciences, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (M.S.); (M.B.)
| | - Amirhossein Mohkami
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar 9617976487, Iran;
| | - Yaser Firouzi
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Bahonar University, Kerman 7616913439, Iran;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| |
Collapse
|
29
|
Mazurek-Mochol M, Bonsmann T, Mochol M, Poniewierska-Baran A, Pawlik A. The Role of Interleukin 6 in Periodontitis and Its Complications. Int J Mol Sci 2024; 25:2146. [PMID: 38396821 PMCID: PMC10889213 DOI: 10.3390/ijms25042146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Interleukin 6 (IL-6) is a pleomorphic pro-inflammatory cytokine that is strongly associated with local as well as systemic inflammatory processes. Its role in physiological and pathogenic processes throughout the human body has been the subject of numerous studies in recent years. Measurements of the IL-6 levels in gingival crevicular fluid (GFC), as well as in serum, can be important diagnostic and prognostic factors in periodontal diseases (PD) and in assessing their impact on a range of related inflammatory diseases. This narrative review explores the significant role of IL-6 in patients with periodontitis and its association with other widespread inflammatory pathologies.
Collapse
Affiliation(s)
- Małgorzata Mazurek-Mochol
- Department of Periodontology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.M.-M.); (M.M.)
| | - Tobias Bonsmann
- Department of Periodontology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.M.-M.); (M.M.)
| | - Martyna Mochol
- Department of Periodontology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.M.-M.); (M.M.)
| | - Agata Poniewierska-Baran
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland;
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
30
|
Khilwani R, Singh S. Traversing through the Mechanistic Event Analysis in IL-6 and IL-17 Signaling for a New Therapeutic Paradigm in NSCLC. Int J Mol Sci 2024; 25:1216. [PMID: 38279220 PMCID: PMC10816370 DOI: 10.3390/ijms25021216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
IL-6 and IL-17 are paradoxical cytokines that progress inflammatory states in chronic diseases, including cancer. In lung cancer, their role has been elucidated to favor cancer development by modulating signaling mechanisms critical to cellular growth. The intrinsic ability of these cytokines to influence macroautophagy is yet another reason to facilitate lung cancer. Here, we employed a systems immunology approach to discover the mechanistic role of these cytokines in cancer development. In a biological system, at later stages, the activation of NFkB stimulates immunosuppressive phenotypes to achieve tolerating effects in a transformed cell. We found that the upregulation of cytokines signaled M2 macrophages to modulate tumor responses through the activation of autophagic intermediates and inflammasome mediators. This caused immune perturbations in the tumor microenvironment, which were associated with cancer inflammation. To address these inflammatory states, we performed triggered event analysis to examine whether overexpressing immune effectors or downregulating immune suppressors may have an effect on cancer reversal. Interestingly, the inhibition of immune regulators opposed the model outcome to an increased immune response. Therefore, IL6-IL17-mediated regulation of lung cancer may address tumor malignancy and potentiate the development of newer therapeutics for NSCLC.
Collapse
Affiliation(s)
| | - Shailza Singh
- Systems Medicine Laboratory, National Centre for Cell Science, NCCS Complex, Ganeshkhind, SPPU Campus, Pune 411007, India;
| |
Collapse
|
31
|
Shimizu T, Lila ASA, Kitayama Y, Abe R, Takata H, Ando H, Ishima Y, Ishida T. Peritoneal B Cells Play a Role in the Production of Anti-polyethylene Glycol (PEG) IgM against Intravenously Injected siRNA-PEGylated Liposome Complexes. Biol Pharm Bull 2024; 47:469-477. [PMID: 38383000 DOI: 10.1248/bpb.b23-00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Polyethylene glycol (PEG)-modified (PEGylated) cationic liposomes are frequently used as delivery vehicles for small interfering RNA (siRNA)-based drugs because of their ability to encapsulate/complex with siRNA and prolong the circulation half-life in vivo. Nevertheless, we have reported that subsequent intravenous (IV) injections of siRNA complexed with PEGylated cationic liposomes (PLpx) induces the production of anti-PEG immunoglobulin M (IgM), which accelerates the blood clearance of subsequent doses of PLpx and other PEGylated products. In this study, it is interesting that splenectomy (removal of spleen) did not prevent anti-PEG IgM induction by IV injection of PLpx. This indicates that B cells other than the splenic version are involved in anti-PEG IgM production under these conditions. In vitro and in vivo studies have shown that peritoneal cells also secrete anti-PEG IgM in response to the administration of PLpx. Interleukin-6 (IL-6) is a glycoprotein that is secreted by peritoneal immune cells and has been detected in response to the in vivo administration of PLpx. These observations indicate that IV injection of PLpx stimulates the proliferation/differentiation of peritoneal PEG-specific B cells into plasma cells via IL-6 induction, which results in the production of anti-PEG IgM from the peritoneal cavity of mice. Our results suggest the mutual contribution of peritoneal B cells as a potent anti-PEG immune response against PLpx.
Collapse
Affiliation(s)
- Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Amr S Abu Lila
- Department of Pharmaceutics, College of Pharmacy, Hail University
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University
| | - Yuka Kitayama
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Ryo Abe
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| |
Collapse
|
32
|
Fatima F, Chourasiya NK, Mishra M, Kori S, Pathak S, Das R, Kashaw V, Iyer AK, Kashaw SK. Curcumin and its Derivatives Targeting Multiple Signaling Pathways to Elicit Anticancer Activity: A Comprehensive Perspective. Curr Med Chem 2024; 31:3668-3714. [PMID: 37221681 DOI: 10.2174/0929867330666230522144312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 05/25/2023]
Abstract
The uncontrolled growth and spread of aberrant cells characterize the group of disorders known as cancer. According to GLOBOCAN 2022 analysis of cancer patients in either developed countries or developing countries the main concern cancers are breast cancer, lung cancer, and liver cancer which may rise eventually. Natural substances with dietary origins have gained interest for their low toxicity, anti-inflammatory, and antioxidant effects. The evaluation of dietary natural products as chemopreventive and therapeutic agents, the identification, characterization, and synthesis of their active components, as well as the enhancement of their delivery and bioavailability, have all received significant attention. Thus, the treatment strategy for concerning cancers must be significantly evaluated and may include the use of phytochemicals in daily lifestyle. In the present perspective, we discussed one of the potent phytochemicals, that has been used over the past few decades known as curcumin as a panacea drug of the "Cure-all" therapy concept. In our review firstly we included exhausted data from in vivo and in vitro studies on breast cancer, lung cancer, and liver cancer which act through various cancer-targeting pathways at the molecular level. Now, the second is the active constituent of turmeric known as curcumin and its derivatives are enlisted with their targeted protein in the molecular docking studies, which help the researchers design and synthesize new curcumin derivatives with respective implicated molecular and cellular activity. However, curcumin and its substituted derivatives still need to be investigated with unknown targeting mechanism studies in depth.
Collapse
Affiliation(s)
- Firdous Fatima
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Nikhil Kumar Chourasiya
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Mitali Mishra
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam Kori
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Sandhya Pathak
- Department of Chemistry, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Ratnesh Das
- Department of Chemistry, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar (M.P.), India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
- Molecular Imaging Program, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Sushil Kumar Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
33
|
van de Veerdonk FL. COVID-19 Pneumonia and Cytokine Storm Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:307-319. [PMID: 39117824 DOI: 10.1007/978-3-031-59815-9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Virus-associated cytokine storm syndrome (CSS) has been recognized for a long time and the classic viruses associated are the herpes viruses EBV, CMV, and HHV-8 as described in chapters IVa,b. In addition, pandemic viruses such as influenza, SARS, and MERS can result in severe CSS that might ultimately lead to severe acute respiratory distress syndrome (ARDS) and death [1-3]. A new pandemic caused by SARS-CoV-2 that started in 2019 has defined another chapter in the virus-associated CSS. The clinical spectrum of SARS-CoV-2 infection has many faces. In most people, it will be asymptomatic, but it can also result in severe COVID-19 pneumonia, ARDS, and multiorgan failure depending on age, comorbidities, and immune status [4]. In addition, this pandemic has known many different stages and developed in a unique way in the first 2 years. It started in a setting where there was no immunity to the virus and after a year, highly effective vaccines were introduced and herd immunity built up over time. However, vaccine effectiveness was waning over time depending on multiple factors, and novel variant strains of the virus circulated across different areas in the world. Antiviral therapy was developed and introduced, and treatment changed from giving no immunomodulatory treatment, followed by the introduction of corticosteroids [5], and later the addition of more targeted strategies such as JAK inhibitors [6] and blocking IL-6 signaling [7]. Therefore, the scientific literature published on COVID-19 must be seen in the context of a highly dynamic and rapidly changing pandemic, making it difficult to compare results from early studies to more recent reports even within 2 years. Still, a lot has been learned over a very short period. It has become apparent that severe COVID-19 is predominantly a disease of immune dysregulation with components that can be defined as CSS. It has unique features and overlapping characteristics with other CSSs, and immunological treatment addressing the CSS has been extensively explored, which will be described here.
Collapse
|
34
|
Zhang J, Qi C, Li H, Ding C, Wang L, Wu H, Dai W, Wang C. Exploration of the effect and mechanism of Scutellaria barbata D. Don in the treatment of ovarian cancer based on network pharmacology and in vitro experimental verification. Medicine (Baltimore) 2023; 102:e36656. [PMID: 38134066 PMCID: PMC10735072 DOI: 10.1097/md.0000000000036656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
The mortality rate of ovarian cancer is the highest among gynecological cancers, posing a serious threat to women health and life. Scutellaria barbata D. Don (SBD) can effectively treat ovarian cancer. However, its mechanism of action is unclear. The aim of this study was to elucidate the mechanism of SBD in the treatment of ovarian cancer using network pharmacology, and to verify the experimental results using human ovarian cancer SKOV3 cells. The Herb and Disease Gene databases were searched to identify common targets of SBD and ovarian cancer. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and Protein-Protein Interaction (PPI) network analyses were performed to identify the potential molecular mechanisms behind SBD. Finally, the molecular docking and main possible pathways were verified by experimental studies. Cell proliferation, the mRNA expression level of key genes and signaling pathway were all investigated and evaluated in vitro. A total of 29 bioactive ingredients and 137 common targets in SBD were found to inhibit ovarian cancer development. The active ingredients identified include quercetin, luteolin, and wogonin. Analysis of the PPI network showed that AKT1, VEGFA, JUN, TNF, and Caspase-3 shared centrality among all target genes. The results of the KEGG pathway analysis indicated that the cancer pathway, PI3K-Akt signaling pathway, and MAPK signaling pathways mediated the effects of SBD against ovarian cancer progression. Cell experiments showed that quercetin, luteolin, and wogonin inhibited the proliferation and clone formation of SKOV3 cells and regulated mRNA expression of 5 key genes by inhibiting PI3K/Akt signaling pathway. Our results demonstrate that SBD exerted anti-ovarian cancer effects through its key components quercetin, luteolin and wogonin. Mechanistically, its anti-cancer effects were mediated by inhibition of the PI3K/Akt signaling pathways. Therefore, SBD might be a candidate drug for ovarian cancer treatment.
Collapse
Affiliation(s)
- Jie Zhang
- Central Laboratory for Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cong Qi
- Department of Gynecology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - He Li
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenhuan Ding
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Libo Wang
- Central Laboratory for Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjin Wu
- Central Laboratory for Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Dai
- Central Laboratory for Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenglong Wang
- Central Laboratory for Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
35
|
Su R, Zhuang J, Liu S, Liu D, Feng K. EnILs: A General Ensemble Computational Approach for Predicting Inducing Peptides of Multiple Interleukins. J Comput Biol 2023; 30:1289-1304. [PMID: 38010531 DOI: 10.1089/cmb.2023.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Interleukins (ILs) are a group of multifunctional cytokines, which play important roles in immune regulations and inflammatory responses. Recently, IL-6 has been found to affect the development of COVID-19, and significantly elevated levels of IL-6 cytokines have been reported in patients with severe COVID-19. IL-10 and IL-17 are anti-inflammatory and proinflammatory cytokines, respectively, which play multiple protective roles in host defense against pathogens. At present, a number of machine learning methods have been proposed to predict ILs inducing peptides, but their predictive performance needs to be further improved, and the inducing peptides of different ILs are predicted separately, rather than using a general approach. In our work, we combine the statistical features of peptide sequence with word embedding to design a general ensemble model named EnILs to predict inducing peptides of different ILs, in which the predictive probabilities of random forest, eXtreme Gradient Boosting and neural network are integrated in an average way. Compared with the state-of-the-art machine learning methods, EnILs shows considerable performance in the prediction of IL-6, IL-10, and IL-17 inducing peptides. In addition, we predict the most promising IL-6 inducing peptides in Severe Acute Respiratory Syndrome Coronavirus 2 spike protein in the case study for further experimental verification.
Collapse
Affiliation(s)
- Rui Su
- Department of Statistics, School of Science, Dalian Maritime University, Dalian, Liaoning, China
| | - Jujuan Zhuang
- Department of Statistics, School of Science, Dalian Maritime University, Dalian, Liaoning, China
| | - Shuhan Liu
- Department of Statistics, School of Science, Dalian Maritime University, Dalian, Liaoning, China
| | - Di Liu
- Department of Computer Science and Technology, Information Science and Technology College, Dalian Maritime University, Dalian, Liaoning, China
| | - Kexin Feng
- Department of Statistics, School of Science, Dalian Maritime University, Dalian, Liaoning, China
| |
Collapse
|
36
|
HAPİL ZEVKLİLER FZ, ÇOPUROĞLU FE, ERTOSUN MG, MERT U, ÖZEŞ D, ÖZEŞ ON. TNFR1 signaling is positively regulated by Jak-2 and c-Src via tyrosine phosphorylation. Turk J Biol 2023; 48:1-12. [PMID: 38665776 PMCID: PMC11042867 DOI: 10.55730/1300-0152.2677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2024] [Accepted: 11/06/2023] [Indexed: 04/28/2024] Open
Abstract
Background/aim Tumor necrosis factor alpha (TNFα, a.k.a. TNF) is a pleiotropic cytokine that exerts most of its effects through type 1 TNF receptor (TNFR1). Following TNF binding, TNFR1 recruits TRADD (tumor necrosis factor receptor type 1-associated DEATH domain). This interaction triggers formation of signalosome complexes which have been claimed to induce apoptosis (via downstream caspase activations), inflammation (via NF-kappaB) and stress pathways (JNK & p38). However, the mechanism underlying TNF-induced ERK and AKT activation is not completely revealed. TNFR1 is known to constitutively bind c-Src and JAK2, and these enzymes were previously demonstrated to modulate TNF signaling. Therefore, we hypothesized that TNFR1 could be tyrosine phosphorylated by JAK2 and/or c-Src and TNF-induced ERK and Akt activation may be mediated by this phosphorylation. Materials and methods Site-directed mutagenesis (SDM) was performed to substitute the two putative Tyrosine phosphorylation sites on TNFR1 (Y360 and Y401) with alanine (A) or with aspartic acid (D), to inhibit or mimic constitutive phosphorylation, respectively. In 293T cells transfected with mutated or wild type TNFR1, ERK and Akt activations were determined by western blot. TNFR1 interaction with c-Src, JAK2, p85 and Grb2 was examined by co-IP. NF-kB activation was measured by luciferase assay, while proliferation was measured by MTT and apoptosis was evaluated by colorimetric caspase 8/3 assays. For determination of necrosis rates, cellular DNA fragmentation ELISA was performed. Results In this report, we show that TNFR1 is phosphorylated by JAK2 tyrosine kinase at Y401 and by c-Src at Y360 and Y401. Phosphorylation of Y360 and Y401 augments the interaction of Grb2 and PI3Kp85 with TNFR1. We also demonstrate that phosphomimetic mutations of Y360D and Y401D enhance ERK and Akt activation. Conclusion TNFR1 is tyrosine phosphorylated by both c-Src and JAK2, triggering a "noncanonical" pathway, that activates ERK and Akt.
Collapse
Affiliation(s)
| | - Fatma Ece ÇOPUROĞLU
- Department of Medical Biology and Genetics, Akdeniz University, Antalya,
Turkiye
| | | | - Ufuk MERT
- Atatürk Health Care Vocational School, Ege University, İzmir,
Turkiye
| | | | | |
Collapse
|
37
|
Lodra EH, Effendi MC, Pematasari N, Dradjat RS. Fenugreek Seed Ethanolic Extract Improves Alveolar Bone Parameters by Attenuating Inflammation in Ovariectomized Rats. J Inflamm Res 2023; 16:4933-4940. [PMID: 37927959 PMCID: PMC10624190 DOI: 10.2147/jir.s428791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Alveolar bone residual ridge resorption remains a major challenge for dental implant placement in patients with edentulism. Fenugreek seed extracts have been reported to have potential roles in bone metabolism. Purpose This study aimed to evaluate the effects of fenugreek seed ethanolic extract (FSEE) on bone cells, inflammation, hormones, and angiogenesis parameters of alveolar bone tissue following teeth extraction in an ovariectomized (OVX) model. Methods A total of 30 adults female Wistar rats were assigned into two major groups. Each group consisted of control, OVX, OVX+FSEE 100 mg/kg BW, OVX+FSEE 200 mg/kg BW, and OVX+FSEE 400 mg/kg BW. The FSEE treatment was applied through the intragastric route for 7 days in the first group and for 30 days in the second group of animals. The first molar tooth of the right maxilla was extracted before the FSEE treatment. The level of 17β-estradiol was measured by the ELISA method. The dissected maxilla alveolar bone processus was sectioned for histological evaluation by hematoxylin-eosin staining and an immunohistochemistry assay. Results This study found that FSEE reduced the blood estrogen level and increased estrogen receptor-α (ER-α) expression. FSEE administration modified the number of bone cells, angiogenesis, vascular endothelial growth factor (VEGF), sclerostin, and the osteoprotegerin/receptor activator of nuclear factor kappa-β ligand (OPG/RANKL) ratio. Alterations were seen in the inflammatory markers interleukin-6 (IL-6), transforming growth factor-β1 (TGF-β1), and the macrophage-1/macrophage-2 (M1/M2) ratio. Conclusion In this study, inflammation was found to be attenuated by reductions in IL-6 and sclerostin, and an increase in TGF-β1. The maturation of bone osteocytes increased along with the increase in ER-α expression and ratio of OPG/RANKL.
Collapse
Affiliation(s)
- Ester Handayani Lodra
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Muhammad Chair Effendi
- Department of Pediatric Dentistry, Faculty of Dentistry, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Nur Pematasari
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Respati Suryanto Dradjat
- Department of Orthopedic and Traumatology, Faculty of Medicine, Universitas Brawijaya and Dr. Saiful Anwar Hospital, Malang, East Java, Indonesia
| |
Collapse
|
38
|
Xu WJ, Wu Q, He WN, Wang S, Zhao YL, Huang JX, Yan XS, Jiang R. Interleukin-6 and pulmonary hypertension: from physiopathology to therapy. Front Immunol 2023; 14:1181987. [PMID: 37449201 PMCID: PMC10337993 DOI: 10.3389/fimmu.2023.1181987] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive, pulmonary vascular disease with high morbidity and mortality. Unfortunately, the pathogenesis of PH is complex and remains unclear. Existing studies have suggested that inflammatory factors are key factors in PH. Interleukin-6 (IL-6) is a multifunctional cytokine that plays a crucial role in the regulation of the immune system. Current studies reveal that IL-6 is elevated in the serum of patients with PH and it is negatively correlated with lung function in those patients. Since IL-6 is one of the most important mediators in the pathogenesis of inflammation in PH, signaling mechanisms targeting IL-6 may become therapeutic targets for this disease. In this review, we detailed the potential role of IL-6 in accelerating PH process and the specific mechanisms and signaling pathways. We also summarized the current drugs targeting these inflammatory pathways to treat PH. We hope that this study will provide a more theoretical basis for targeted treatment in patients with PH in the future.
Collapse
Affiliation(s)
- Wei-Jie Xu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiong Wu
- Department of Pulmonary and Critical Care Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Ni He
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shang Wang
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ya-Lin Zhao
- Department of Respiratory Critical Care Medicine, The First Hospital of Kunming, Kunming, China
| | - Jun-Xia Huang
- Department of Hematology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xue-Shen Yan
- Department of Hematology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Rong Jiang
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
39
|
Gugliandolo E, Macrì F, Fusco R, Siracusa R, Cordaro M, D'amico R, Peritore AF, Impellizzeri D, Genovese T, Cuzzocrea S, Di Paola R, Crupi R. Inhibiting IL-6 in medicine: a new twist to sustain inhibition of his cytokine tin the therapy of Pulmonary Arterial Hypertension. Pharmacol Res 2023; 192:106750. [PMID: 37004831 DOI: 10.1016/j.phrs.2023.106750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/18/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic, progressive disease characterized by an increase in blood pressure in the lungs' arteries. It can occur in a variety of species, including humans, dogs, cats, and horses. To date, PAH has a high mortality rate in both veterinary and human medicine, often due to complications such as heart failure. The complex pathological mechanisms of PAH involve multiple cellular signalling pathways at various levels. IL-6 is a powerful pleiotropic cytokine that regulates several phases of immune response, inflammation, and tissue remodelling. The hypothesis of this study was that the use of an IL-6 antagonist in PAH could interrupt or mitigate the cascade of events that leads to the progression of the disease and the worsening of clinical outcome, as well as tissue remodelling. In this study, we used two pharmacological protocols with an IL-6 receptor antagonist in a monocrotaline-induced PAH model in rats. Our results showed that the use of an IL-6 receptor antagonist had a significant protective effect, ameliorating both haemodynamic parameters, lung and cardiac function, tissue remodelling, and the inflammation associated with PAH. The results of this study suggest that the inhibition IL-6 could be a useful pharmacological strategy in PAH, in both human and veterinary medicine.
Collapse
Affiliation(s)
- Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy.
| | - Francesco Macrì
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Ramona D'amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy
| |
Collapse
|
40
|
Tada R, Yamazaki H, Nagai Y, Takeda Y, Ohshima A, Kunisawa J, Negishi Y. Intranasal administration of sodium nitroprusside augments antigen-specific mucosal and systemic antibody production in mice. Int Immunopharmacol 2023; 119:110262. [PMID: 37150015 PMCID: PMC10161703 DOI: 10.1016/j.intimp.2023.110262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
The coronavirus disease 2019, i.e., the COVID-19 pandemic, caused by a highly virulent and transmissible pathogen, has profoundly impacted global society. One approach to combat infectious diseases caused by pathogenic microbes is using mucosal vaccines, which can induce antigen-specific immune responses at both the mucosal and systemic sites. Despite its potential, the clinical implementation of mucosal vaccination is hampered by the lack of safe and effective mucosal adjuvants. Therefore, developing safe and effective mucosal adjuvants is essential for the fight against infectious diseases and the widespread clinical use of mucosal vaccines. In this study, we demonstrated the potent mucosal adjuvant effects of intranasal administration of sodium nitroprusside (SNP), a known nitric oxide (NO) donor, in mice. The results showed that intranasal administration of ovalbumin (OVA) in combination with SNP induced the production of OVA-specific immunoglobulin A in the mucosa and increased serum immunoglobulin G1 levels, indicating a T helper-2 (Th2)-type immune response. However, an analog of SNP, sodium ferrocyanide, which does not generate NO, failed to show any adjuvant effects, suggesting the critical role of NO generation in activating an immune response. In addition, SNPs facilitated the delivery of antigens to the lamina propria, where antigen-presenting cells are located, when co-administered with antigens, and also transiently elicited the expression of interleukin-6, interleukin-1β, granulocyte colony-stimulating factor, C-X-C motif chemokine ligand 1, and C-X-C motif chemokine ligand 2 in nasal tissue. These result suggest that SNP is a dual-functional formulation with antigen delivery capabilities to the lamina propria and the capacity to activate innate immunity. In summary, these results demonstrate the ability of SNP to induce immune responses via an antigen-specific Th2-type response, making it a promising candidate for further development as a mucosal vaccine formulation against infectious diseases.
Collapse
Affiliation(s)
- Rui Tada
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Haruka Yamazaki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuzuho Nagai
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yukino Takeda
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Ohshima
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
41
|
García-Pérez D, García-Posadas G, San-Juan R, Brañas P, Panero-Pérez I, Delgado-Fernández J, Paredes I. A prospective study to identify preoperative serum parameters for spinal implant infection detected by sonication fluid culture. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:1818-1829. [PMID: 36897428 DOI: 10.1007/s00586-023-07628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/03/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
PURPOSE Low-virulent microorganisms identified on pedicle screws by sonication fluid culture (SFC) are an important cause of implant loosening. While sonication of explanted material improves the detection rate, the risk of contamination exists and no standardized diagnostic criteria for chronic low-grade spinal implant-related infection (CLGSII) are stablished. Besides, the role of serum C-reactive protein (CRP) and procalcitonin (PCT) in CLGSII has not been adequately investigated. METHODS Blood samples were collected prior to implant removal. To increase sensitivity, the explanted screws were sonicated and processed separately. Patients exhibiting at least one positive SFC were classified in the infection group (loose criteria). To increase specificity, the strict criteria only considered multiple positive SFC (≥ 3 implants and/or ≥ 50% of explanted devices) as meaningful for CLGSII. Factors which might promote implant infection were also recorded. RESULTS Thirty-six patients and 200 screws were included. Among them, 18 (50%) patients had any positive SFCs (loose criteria), whereas 11 (31%) patients fulfilled the strict criteria for CLGSII. Higher serum protein level was the most accurate marker for the preoperative detection of CLGSSI, exhibiting an area under the curve of 0.702 (loose criteria) and 0.819 (strict criteria) for the diagnosis of CLGSII. CRP only exhibited a modest accuracy, whereas PCT was not a reliable biomarker. Patient history (spinal trauma, ICU hospitalization and/or previous wound-related complications) increased the likelihood of CLGSII. CONCLUSION Markers of systemic inflammation (serum protein level) and patient history should be employed to stratify preoperative risk of CLGSII and decide the best treatment strategy.
Collapse
Affiliation(s)
- Daniel García-Pérez
- Department of Neurosurgery, University Hospital, 12 de Octubre, Avda de Córdoba S/N, 28041, Madrid, Spain.
- Department of Neurosurgery, Complejo Universitario Hospital Albacete, Calle Hermanos Falcó 37, 02008, Albacete, Spain.
| | - Guillermo García-Posadas
- Department of Neurosurgery, University Hospital, 12 de Octubre, Avda de Córdoba S/N, 28041, Madrid, Spain
| | - Rafael San-Juan
- Unit of Infectious Diseases, University Hospital, 12 de Octubre, Avda de Córdoba S/N, 28041, Madrid, Spain
| | - Patricia Brañas
- Department of Clinical Microbiology, University Hospital, 12 de Octubre, Avda de Córdoba S/N, 28041, Madrid, Spain
| | - Irene Panero-Pérez
- Department of Neurosurgery, University Hospital, 12 de Octubre, Avda de Córdoba S/N, 28041, Madrid, Spain
| | - Juan Delgado-Fernández
- Department of Neurosurgery, University Hospital, 12 de Octubre, Avda de Córdoba S/N, 28041, Madrid, Spain
| | - Igor Paredes
- Department of Neurosurgery, University Hospital, 12 de Octubre, Avda de Córdoba S/N, 28041, Madrid, Spain
| |
Collapse
|
42
|
Flux MC, Smith DG, Allen JJB, Mehl MR, Medrano A, Begay TK, Middlemist BH, Marquart BM, Cole SP, Sauder CJ, Lowry CA, Raison CL. Association of plasma cytokines and antidepressant response following mild-intensity whole-body hyperthermia in major depressive disorder. Transl Psychiatry 2023; 13:132. [PMID: 37085494 PMCID: PMC10121589 DOI: 10.1038/s41398-023-02402-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/23/2023] Open
Abstract
Whole-body hyperthermia (WBH) shows promise for the treatment of major depressive disorder (MDD). Because MDD is associated with increased inflammation, and anti-inflammatory agents show some promise as antidepressants, the current study sought to identify the acute and longer-term immune effects of WBH in participants with MDD and to explore whether these effects associate with the procedure's antidepressant properties. Thirty participants who met DSM-IV-TR criteria for MDD were randomized to receive a single session of WBH (n = 16) or sham treatment (n = 14). Hamilton Depression Rating Scale (HDRS) scores were assessed at baseline and 1, 2, 4, and 6 weeks post-treatment (WBH vs. sham), and plasma cytokine concentrations were assessed at baseline, immediately post-treatment, and 1 and 4 weeks post-treatment. As previously reported, WBH produced a rapid and sustained antidepressant effect. When compared to sham, WBH increased plasma interleukin (IL)-6 immediately post-treatment (time by treatment: χ2(3, N=108) = 47.33, p < 0.001), while having no effect on other cytokines acutely and no impact on IL-6, or any other cytokine, at 1 or 4 weeks post treatment. In the study sample as a whole, increased IL-6 post-treatment was associated with reduced HDRS depression scores over the 6 weeks of follow-up (F(1, 102.3) = 6.74, p = 0.01). These results suggest a hitherto unrecognized relationship between hyperthermia, the immune system, and depression, and may point to WBH as a novel modality for exploring behavioral effects of IL-6 when the cytokine is activated in isolation from the inflammatory mediators with which it frequently travels.
Collapse
Affiliation(s)
- Michael C Flux
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - David G Smith
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
- Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA, 19107, USA
| | - John J B Allen
- Department of Psychology, University of Arizona, Tucson, AZ, 85721, USA
| | - Matthias R Mehl
- Department of Psychology, University of Arizona, Tucson, AZ, 85721, USA
| | - Andi Medrano
- Department of Psychiatry, University of Arizona, Tucson, AZ, 85724, USA
- School of Social Work, University of Washington, Seattle, WA, 98105, USA
| | - Tommy K Begay
- Department of Psychiatry, University of Arizona, Tucson, AZ, 85724, USA
| | - Brandon H Middlemist
- Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brandon M Marquart
- Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Steven P Cole
- Research Design Associates Inc, Yorktown Heights, New York, NY, 10598, USA
| | - Christina J Sauder
- Department of Human Development and Family Studies, School of Human Ecology, University of Wisconsin-Madison, Madison, WI, 53703, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
| | - Charles L Raison
- Department of Human Development and Family Studies, School of Human Ecology, University of Wisconsin-Madison, Madison, WI, 53703, USA.
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
43
|
Cho KH, Nam HS, Kim JE, Na HJ, Del Carmen Dominguez-Horta M, Martinez-Donato G. CIGB-258 Exerts Potent Anti-Inflammatory Activity against Carboxymethyllysine-Induced Acute Inflammation in Hyperlipidemic Zebrafish via the Protection of Apolipoprotein A-I. Int J Mol Sci 2023; 24:ijms24087044. [PMID: 37108210 PMCID: PMC10139093 DOI: 10.3390/ijms24087044] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammation and atherosclerosis are intimately associated via the production of dysfunctional high-density lipoproteins (HDL) and modification of apolipoprotein (apo) A-I. A putative interaction between CIGB-258 and apoA-I was investigated to provide mechanistic insight into the protection of HDL. The protective activity of CIGB-258 was tested in the CML-mediated glycation of apoA-I. The in vivo anti-inflammatory efficacy was compared in paralyzed hyperlipidemic zebrafish and its embryo in the presence of CML. Treatment of CML induced greater glycation extent of HDL/apoA-I and proteolytic degradation of apoA-I. In the presence of CML, however, co-treatment of CIGB-258 inhibited the glycation of apoA-I and protected the degradation of apoA-I, exerting enhanced ferric ion reduction ability. Microinjection of CML (500 ng) into zebrafish embryos resulted in acute death with the lowest survivability with severe developmental defects with interleukin (IL)-6 production. Conversely, a co-injection of CIGB-258 or Tocilizumab produced the highest survivability with a normal development speed and morphology. In hyperlipidemic zebrafish, intraperitoneal injection of CML (500 μg) caused the complete loss of swimming ability and severe acute death with only 13% survivability 3 h post-injection. A co-injection of the CIGB-258 resulted in a 2.2-fold faster recovery of swimming ability than CML alone, with higher survivability of approximately 57%. These results suggest that CIGB-258 protected hyperlipidemic zebrafish from the acute neurotoxicity of CML. Histological analysis showed that the CIGB-258 group had 37% lower infiltration of neutrophils in hepatic tissue and 70% lower fatty liver changes than those of the CML-alone group. The CIGB-258 group exhibited the smallest IL-6 expression in the liver and the lowest blood triglyceride level. CIGB-258 displayed potent anti-inflammatory activity in hyperlipidemic zebrafish by inhibiting apoA-I glycation, promoting rapid recovery from the paralysis of CML toxicity and suppression of IL-6, and lowering fatty liver changes.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
- LipoLab, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hyo-Seon Nam
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Ji-Eun Kim
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Hye-Jee Na
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | | | - Gillian Martinez-Donato
- Center for Genetic Engineering and Biotechnology, Ave 31, e/158 y 190, Playa, La Habana 10600, Cuba
| |
Collapse
|
44
|
Shanazz K, Nalloor R, Lucas R, Vazdarjanova A. Neuroinflammation is a susceptibility factor in developing a PTSD-like phenotype. Front Behav Neurosci 2023; 17:1112837. [PMID: 37064304 PMCID: PMC10090279 DOI: 10.3389/fnbeh.2023.1112837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionPost-Traumatic Stress Disorder (PTSD) is a psychological disorder that occurs after a traumatic event in a subset of exposed individuals. This implies the existence of susceptibility factors that foster the development of PTSD. Susceptibility factors are present before trauma and can contribute to the development and maintenance of PTSD after trauma. Manipulation of susceptibility factors may decrease the probability of developing PTSD. A putative susceptibility factor is inflammation. Patients with PTSD have been documented to have a higher pro-inflammatory profile compared to non-PTSD subjects. In addition, they are more likely to develop and die from cardiovascular disease which has a strong inflammation component. It is not known, however, whether inflammation plays a role in developing PTSD or whether reducing inflammation can prevent PTSD.MethodsWe used the Revealing Individual Susceptibility to a PTSD-like phenotype (RISP) model to behaviorally classify male rats as resilient or susceptible before trauma and tested their serum and prefrontal cortical (mPFC) levels of IL-1β, IL-6, TNFα, IL-10, IFN IFNγ, and KC/GRO to determine whether inflammation represents a putative susceptibility factor for PTSD.ResultsWe found elevated IL-6 levels in the mPFC, but not serum, of susceptible rats compared to resilient animals before trauma. Serum and mPFC levels were not correlated in any of the cytokines/chemokines. Rats with high anxiety-like behavior had elevated IL-6 and IL-10 mPFC levels. Acoustic startle responses were not associated with cytokine/chemokine levels.DiscussionNeuroinflammation, rather than systemic inflammation exists in susceptible male rats before trauma and is thus a putative susceptibility factor for PTSD. Thus, susceptibility appears neurogenic in its pathogenesis. The lack of differences between susceptible and resilient rats in serum cytokine/chemokine levels infers that peripheral markers will not be useful in determining susceptibility. Chronic neuroinflammation appears more broadly associated with anxiety rather than startle responses.
Collapse
Affiliation(s)
- Khadijah Shanazz
- VA Research Service, Charlie Norwood VA Medical Center, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Rebecca Nalloor
- VA Research Service, Charlie Norwood VA Medical Center, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Division of Pulmonary and Critical Care Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Almira Vazdarjanova
- VA Research Service, Charlie Norwood VA Medical Center, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- *Correspondence: Almira Vazdarjanova,
| |
Collapse
|
45
|
Jawale D, Khandibharad S, Singh S. Decoding systems immunological model of sphingolipids with IL-6/IL-17/IL-23 axes in L. major infection. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159261. [PMID: 36494028 DOI: 10.1016/j.bbalip.2022.159261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
IL-6, IL-17, IL-23 and IL-1β are the crucial cytokines controlling inflammatory and immune response during L. major infection. During cutaneous leishmaniasis, an important T helper cell type CD4+ Th17 subset plays a deterministic role in lesion formation through channelling infected macrophages and production of IL-1β, IL-6, IL-23 and IFN-γ. Ceramide derived sphingosine precursors may assist in pro-inflammatory cytokine response. However, the role of these metabolites in inflammation with pleiotropic pro-inflammatory cytokines in L. major infection is unknown. The present study indicates IL-6/IL-17/IL-23 and SPHK1-S1P-S1PRs signaling axes with the overexpression of SATB1 aiding in disease progression. Targeting SATB1 might modulate the secretion of pro-inflammatory cytokines and abnormal immune functioning, thereby killing the intracellular parasite. Systems immunological methods assisted in a step towards identifying the key to the mystery of crucial components and serving as an approach for therapeutic intervention in L. major infection.
Collapse
Affiliation(s)
- Diksha Jawale
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Shweta Khandibharad
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India.
| |
Collapse
|
46
|
Shin HR, Ko EJ, Kang YJ, Yu HS, Ock MS, Cha HJ. Effect of parasitic infection on muscular function of dystrophin gene (Dmd) deficient mouse. Genes Genomics 2023; 45:183-190. [PMID: 36571712 DOI: 10.1007/s13258-022-01355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/15/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Previous studies have reported many cases of Trichinella spiralis (T. spiralis) infection in normal skeletal muscle but there is little research on T. spiralis infection in abnormal muscle tissue. OBJECTIVE To identify the effect of T. spiralis infection on muscular dystrophy, this study compared aspects of infection between normal (C57BL/10) and dystrophin-deficient Duchenne muscular dystrophy (DMD) mdx mice. METHOD Infection rate was found to be lower in mdx mice than in C57BL/10 mice at early stages of infection; however, infection and inflammation in mdx mice persisted at later stages of infection while the infection rate and inflammation in C57BL/10 mice decreased gradually. The inflammation area was proportional to the degree of infection in both groups. Muscle strength was measured by the time of latency to fall in the wire-hanging test. Hanging time was shorter in the infected group than in the uninfected group in both C57BL/10 and mdx mice. RESULTS Muscle strength was also reduced in mdx mice compared with C57BL/10 mice in both the un-infected and infected groups. The muscle intracellular cytokines TGF-β and IL-6 were continuously expressed from early stage to late-stage infection. IL-10 was strongly expressed at the early stage of infection but decreased as the infection progressed. TNF-α expression remained stable from early to late-stage infection in mdx mice, while TNF-α was elevated only during early-stage infection in C57BL/10 mice. The degree of muscle damage was significantly higher in mdx mice than in C57BL/10 mice because of the high level of serum creatine kinase (CK). CONCLUSION These results suggest that mdx mice continued in infection and inflammation until the late stages of disease, which was in contrast to the C57BL/10 mice that recovered to some extent in the late stage of infection. In addition, that dystrophin-deficient mice are not suitable for T. spiralis infection compared to normal mice, and the degree of inflammation may be worse in mdx mice.
Collapse
Affiliation(s)
- Ha Rim Shin
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun-Ji Ko
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea
| | - Yun-Jeong Kang
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea
| | - Hak-Sun Yu
- Department of Parasitology, College of Medicine, Pusan National University, Busan, South Korea
| | - Mee Sun Ock
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea.
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea.
| |
Collapse
|
47
|
Kampan NC, Kartikasari AER, Deceneux C, Madondo MT, McNally OM, Flanagan KL, Aziz NA, Stephens AN, Reynolds J, Quinn MA, Plebanski M. Combining TNFR2-Expressing Tregs and IL-6 as Superior Diagnostic Biomarkers for High-Grade Serous Ovarian Cancer Masses. Cancers (Basel) 2023; 15:667. [PMID: 36765633 PMCID: PMC9913655 DOI: 10.3390/cancers15030667] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
We hypothesised that the inclusion of immunosuppressive and inflammatory biomarkers in HGSOC patients would improve the sensitivity and specificity of the preoperative marker prediction of malignancy in patients with ovarian masses. We tested a panel of 29 soluble immune factors by multiplex bead immunoassay and 16 phenotypic T cell markers by flow cytometry in pre-treatment blood samples from 66 patients undergoing surgery for suspected ovarian cancer or ovarian cancer risk reduction. The potential diagnostic utility of all parameters was explored using Volcano plots, principal component analysis (PCA) and receiver operator characteristic (ROC) analysis. We also assessed the effect of culturing PBMCs from 20 healthy donors in the presence of malignant ascites fluid. The combination of TNFR2+ Tregs and IL-6 in the pre-treatment blood of patients with advanced HGSOC effectively discriminated patients with benign or malignant ovarian masses. In vitro culturing of the PBMCs of healthy donors in malignant ascites promoted an increase in TNFR2-expressing Tregs, which were decreased following blockade with IL-6 or STAT3 activity. Pre-treatment serum IL-6 and peripheral blood TNFR2+ Tregs may be potential clinical biomarkers that can discriminate patients with malignant compared to benign ovarian cancer masses, and the relationship between IL-6 and TNFR2+ Treg is likely to be mediated via the STAT3 signalling pathway.
Collapse
Affiliation(s)
- Nirmala Chandralega Kampan
- Department of Immunology & Pathology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
- Oncology Unit, Royal Women’s Hospital, 20 Flemington Road, Parkville, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | | | - Cyril Deceneux
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| | - Mutsa Tatenda Madondo
- Department of Immunology & Pathology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
| | - Orla M. McNally
- Oncology Unit, Royal Women’s Hospital, 20 Flemington Road, Parkville, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, Melbourne University, Parkville, VIC 3052, Australia
| | - Katie Louise Flanagan
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Hobart, TAS 7005, Australia
| | - Norhaslinda A. Aziz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Andrew N. Stephens
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
- Epworth Research Institute, Epworth Healthcare, Richmond, VIC 3121, Australia
| | - John Reynolds
- Biostatistics Consulting Platform, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
| | - Michael A. Quinn
- Oncology Unit, Royal Women’s Hospital, 20 Flemington Road, Parkville, VIC 3052, Australia
| | - Magdalena Plebanski
- Department of Immunology & Pathology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| |
Collapse
|
48
|
Potential Impact of Prosthetic Biomaterials on the Periodontium: A Comprehensive Review. Molecules 2023; 28:molecules28031075. [PMID: 36770741 PMCID: PMC9921997 DOI: 10.3390/molecules28031075] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The success of a prosthetic treatment is closely related to the periodontal health of the individual. The aim of this article was to review and present the importance of prosthetic restorative materials on the condition of the periodontium, the changes that occur in the composition of the subgingival microbiota and the levels of inflammatory markers in gingival crevicular fluid. Articles on the influence of different prosthetic restorative materials on subgingival microbiota and proinflammatory cytokines were searched for using the keywords "prosthetic biomaterials", "fixed prosthesis", "periodontal health", "subgingival microbiota", "periodontal biomarkers" and "gingival crevicular fluid" in PubMed/Medline, Science Direct, Scopus and Google Scholar. The type of material used for prosthesis fabrication together with poor marginal and internal fit can result in changes in the composition of the subgingival microbiota, as well as increased accumulation and retention of dentobacterial plaque, thus favoring the development of periodontal disease and prosthetic treatment failure. Biological markers have helped to understand the inflammatory response of different prosthetic materials on periodontal tissues with the main purpose of improving their clinical application in patients who need them. Metal-free ceramic prostheses induce a lower inflammatory response regardless of the fabrication method; however, the use of CAD/CAM systems is recommended for their fabrication. In addition, it is presumed that metal-ceramic prostheses cause changes in the composition of the subgingival microbiota producing a more dysbiotic biofilm with a higher prevalence of periodontopathogenic bacteria, which may further favor periodontal deterioration.
Collapse
|
49
|
Varma M, Kaur A, Bhandari R, Kumar A, Kuhad A. Major depressive disorder (mdd): emerging immune targets at preclinical level. Expert Opin Ther Targets 2023; 27:479-501. [PMID: 37334668 DOI: 10.1080/14728222.2023.2225216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Major depressive disorder is a mental health disorder that is characterized by a persistently low mood and loss of interest. MDD is affecting over 3.8% of the global population as a major health problem. Its etiology is complex, and involves the interaction between a number of factors, including genetic predisposition and the presence of environmental stresses. AREAS COVERED The role of the immune and inflammatory systems in depression has been gaining interest, with evidence suggesting the potential involvement of pro-inflammatory molecules like TNF, interleukins, prostaglandins, and other cytokines, among others, has been put forth. Along with this, the potential of agents, from NSAIDs to antibiotics, are being evaluated in therapy for depression. The current review will discuss emerging immune targets at the preclinical level. EXPERT OPINION With increasing evidence to show that immune and inflammatory mediators are implicated in MDD, increasing research toward their potential as drug targets is encouraged. At the same time, agents acting on these mediators and possessing anti-inflammatory potential are also being evaluated as future therapeutic options for MDD, and increasing focus toward non-conventional drugs which can act through these mechanisms is important as regards the future prospects of the use of anti-inflammatory agents in depression.
Collapse
Affiliation(s)
- Manasi Varma
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Arshpreet Kaur
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Ranjana Bhandari
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Ashwani Kumar
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Anurag Kuhad
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| |
Collapse
|
50
|
Shah L, Latif A, Williams KJ, Mancuso E, Tirella A. Invasion and Secondary Site Colonization as a Function of In Vitro Primary Tumor Matrix Stiffness: Breast to Bone Metastasis. Adv Healthc Mater 2023; 12:e2201898. [PMID: 36351739 PMCID: PMC11468571 DOI: 10.1002/adhm.202201898] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/08/2022] [Indexed: 11/11/2022]
Abstract
Increased breast tissue stiffness is correlated with breast cancer risk and invasive cancer progression. However, its role in promoting bone metastasis, a major cause of mortality, is not yet understood. It is previously identified that the composition and stiffness of alginate-based hydrogels mimicking normal (1-2 kPa) and cancerous (6-10 kPa) breast tissue govern phenotype of breast cancer cells (including MDA-MB-231) in vitro. Here, to understand the causal effect of primary tumor stiffness on metastatic potential, a new breast-to-bone in vitro model is described. Together with alginate-gelatin hydrogels to mimic breast tissue, 3D printed biohybrid poly-caprolactone (PCL)-composite scaffolds, decellularized following bone-ECM deposition through Saos-2 engraftment, are used to mimic the bone tissue. It is reported that higher hydrogel stiffness results in the increased migration and invasion capacity of MDA-MB 231 cells. Interestingly, increased expression of osteolytic factors PTHrP and IL-6 is observed when MDA-MB-231 cells pre-conditioned in stiffer hydrogels (10 kPa, 3% w/v gelatin) colonize the bone/PCL scaffolds. The new breast-to-bone in vitro models herein described are designed with relevant tissue microenvironmental factors and could emerge as future non-animal technological platforms for monitoring metastatic processes and therapeutic efficacy.
Collapse
Affiliation(s)
- Lekha Shah
- Division of Pharmacy and OptometryFaculty of BiologyMedicine and HealthUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- Present address:
BIOtech Center for Biomedical TechnologiesDepartment of Industrial EngineeringUniversity of TrentoVia delle Regole 101Trento38123Italy
| | - Ayşe Latif
- Division of Pharmacy and OptometryFaculty of BiologyMedicine and HealthUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Kaye J. Williams
- Division of Pharmacy and OptometryFaculty of BiologyMedicine and HealthUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Elena Mancuso
- Nanotechnology and Integrated Bio‐Engineering Centre (NIBEC)Ulster UniversityShore RoadNewtownabbeyBT37 0QBUK
- Present address:
Engineering Ingegneria Informatica S.P.A. ‐ R&D DivisionPiazzale dell'Agricoltura 24Rome00144Italy
| | - Annalisa Tirella
- Division of Pharmacy and OptometryFaculty of BiologyMedicine and HealthUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- BIOtech – Center for Biomedical TechnologiesDepartment of Industrial EngineeringUniversity of TrentoVia delle Regole 101Trento38123Italy
| |
Collapse
|