1
|
Boychev N, Yeung V, Yang M, Kanu LN, Ross AE, Kuang L, Chen L, Ciolino JB. Ocular tear fluid biomarkers collected by contact lenses. Biochem Biophys Res Commun 2024; 734:150744. [PMID: 39340927 DOI: 10.1016/j.bbrc.2024.150744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE To collect tear fluid biomarkers from contact lenses (CLs) and determine the impact of CL wear duration. METHODS Rabbits were fitted with commercial etafilcon A CLs, which were collected after 1 min, 4 and 8 h (n = 4/time point). Tear fluid proteins and cytokines were extracted from the CLs and quantified. An exploratory comparison was performed between CLs and Schirmer Strips (SS) for a 1 min duration. RESULTS The concentration of MUC5AC was significantly higher after 4 h of CL wear. The expression of all investigated cytokines (IL-1α, IL-1β, IL-8, IL-17A, IL-21, Leptin, MIP-1β, MMP-9, NCAM-1, and TNF-α) was detectable after 1 min of CL wear, and over time, all showed significant variations throughout the 8-h CL wear period. Notably, IL-1α significantly increased by 8 h of CL wear, while MMP-9 decreased. Albumin and lysozyme did not show significant variations with CL wear. Differences between CLs and SS after 1 min were statistically significant for albumin, Leptin, TNF-α, IL-1α, IL-1β, and IL-8. CONCLUSIONS The duration of CL wear significantly affects the collection of some tear fluid biomarkers. Albumin, MUC5AC, and cytokines may have individual and synergistic diagnostic or prognostic potential. CLs and SS were similar for lysozyme and MUC5AC but differed in the collection of albumin and some cytokines. CLs are a viable tear fluid collection method for biomarker analyses and can be immediately added as a routine clinical test by being FDA-approved medical devices.
Collapse
Affiliation(s)
- Nikolay Boychev
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA.
| | - Vincent Yeung
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Menglu Yang
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Levi N Kanu
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Amy E Ross
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Liangju Kuang
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Lin Chen
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Joseph B Ciolino
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| |
Collapse
|
2
|
Insua Pereira E, Paula Sampaio A, Lira M. Tear levels of Transforming Growth Factor-β1 and Interleukin 1-β, and clinical correlations in new contact lens users. Cont Lens Anterior Eye 2024:102299. [PMID: 39232893 DOI: 10.1016/j.clae.2024.102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
PURPOSE To assess alterations in the tear Transforming Growth Factor (TGF)-β1 and Interleukin (IL1)-β concentration in new contact lens wearers; and explore correlations with tear film stability, and ocular physiological response. METHODS In this clinical setting, 12 neophytes (5 males), with an average age of 24.0 ± 5.0 years were fitted with delefilcon A contact lenses. Physiological responses (bulbar and limbal hyperemia), Pre-corneal (NIBUT), Pre-lens (PL-NIBUT) non-Invasive Break-Up Times, and tear samples were collected in the morning (before lens insertion; 9 - 10 a.m.) and afternoon (before lens removal; 7 - 8p.m.) of the same day. NIBUT and PL-NIBUT were measured using a tearscope. Tear samples were assayed for TGF-β1 and IL1-β concentrations using Enzyme-Linked Immunosorbent Assay kits. An 11-members control group (6 males) aged 25.0 ± 5.0, served to assess biomarker levels in non-contact lens wearers' tears. RESULTS Subjects wore lenses for an average of 7 h and 20 min (range: 6 to 9 h). Bulbar and limbal hyperemia increased significantly throughout the day (p < 0.001). PL-NIBUT were lower than NIBUT (4.7 ± 2.0 Vs. 12.2 ± 8.8 s; p < 0.001). The IL1-β levels were higher in neophytes than controls (3.2 ± 4.7 Vs. 0.1 ± 0.1 pg/ml; p = 0.05), correlating significantly with bulbar (r = 0.405, p = 0.008) and limbal hyperemia (r = 0.499, p = 0.027). No substantial changes were reported for TGF-β1. CONCLUSION The presence of TGF-β1 in tears does not appear significantly affected by lens wear. The association between physiological parameters and IL1-β levels suggests that lenses may disrupt ocular surface homeostasis by altering cytokine regulatory mechanisms. However, due to its low concentration, IL1-β's role in the subclinical inflammatory response to lens wear is limited.
Collapse
Affiliation(s)
| | - Ana Paula Sampaio
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Portugal
| | - Madalena Lira
- Centre of Physics (CF-UM-UP), School of Sciences, University of Minho, Portugal
| |
Collapse
|
3
|
Amini P, Okeme JO. Tear Fluid as a Matrix for Biomonitoring Environmental and Chemical Exposures. Curr Environ Health Rep 2024; 11:340-355. [PMID: 38967858 DOI: 10.1007/s40572-024-00454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
PURPOSE Exposures to hazardous chemicals have been linked to many detrimental health effects and it is therefore critical to have effective biomonitoring methods to better evaluate key environmental exposures that increase the risk of chronic disease and death. Traditional biomonitoring utilizing blood and urine is limited due to the specialized skills and invasiveness of collecting these fluid samples. This systematic review focuses on tear fluid, which is largely under-researched, as a promising complementary matrix to the traditional fluids used for biomonitoring. The objective is to evaluate the practicability of using human tear fluid for biomonitoring environmental exposures, highlighting potential pitfalls and opportunities. RECENT FINDING Tear fluid biomonitoring represents a promising method for assessing exposures because it can be collected with minimal invasiveness and tears contain exposure markers from both the external and internal environments. Tear fluid uniquely interfaces with the external environment at the air-tear interface, providing a surface for airborne chemicals to diffuse into the ocular environment and interact with biomolecules. Tear fluid also contains molecules from the internal environment that have travelled from the blood to tears by crossing the blood-tear barrier. This review demonstrates that tear fluid can be used to identify hazardous chemicals from the external environment and differentiate exposure groups.
Collapse
Affiliation(s)
- Parshawn Amini
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON, Ontario, L8S 4L8, Canada
| | - Joseph O Okeme
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON, Ontario, L8S 4L8, Canada.
| |
Collapse
|
4
|
Meneux L, Feret N, Pernot S, Girard M, Sarkis S, Caballero Megido A, Quiles M, Müller A, Fichter L, Vialaret J, Hirtz C, Delettre C, Michon F. Inherited mitochondrial dysfunction triggered by OPA1 mutation impacts the sensory innervation fibre identity, functionality and regenerative potential in the cornea. Sci Rep 2024; 14:18794. [PMID: 39138286 PMCID: PMC11322642 DOI: 10.1038/s41598-024-68994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Mitochondrial dysfunctions are detrimental to organ metabolism. The cornea, transparent outmost layer of the eye, is prone to environmental aggressions, such as UV light, and therefore dependent on adequate mitochondrial function. While several reports have linked corneal defects to mitochondrial dysfunction, the impact of OPA1 mutation, known to induce such dysfunction, has never been studied in this context. We used the mouse line carrying OPA1delTTAG mutation to investigate its impact on corneal biology. To our surprise, neither the tear film composition nor the corneal epithelial transcriptomic signature were altered upon OPA1 mutation. However, when analyzing the corneal innervation, we discovered an undersensitivity of the cornea upon the mutation, but an increased innervation volume at 3 months. Furthermore, the fibre identity changed with a decrease of the SP + axons. Finally, we demonstrated that the innervation regeneration was less efficient and less functional in OPA1+/- corneas. Altogether, our study describes the resilience of the corneal epithelial biology, reflecting the mitohormesis induced by the OPA1 mutation, and the adaptation of the corneal innervation to maintain its functionality despite its morphogenesis defects. These findings will participate to a better understanding of the mitochondrial dysfunction on peripheral innervation.
Collapse
Affiliation(s)
- Léna Meneux
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Nadège Feret
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Sarah Pernot
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Mélissa Girard
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Solange Sarkis
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Alicia Caballero Megido
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Melanie Quiles
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
- Faculté de Pharmacie, University of Montpellier, Montpellier, France
| | - Agnès Müller
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
- Faculté de Pharmacie, University of Montpellier, Montpellier, France
| | - Laura Fichter
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
- IRMB-PPC, INM, CHU Montpellier INSERM CNRS, University of Montpellier, Montpellier, France
| | - Jerome Vialaret
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
- IRMB-PPC, INM, CHU Montpellier INSERM CNRS, University of Montpellier, Montpellier, France
| | - Christophe Hirtz
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
- IRMB-PPC, INM, CHU Montpellier INSERM CNRS, University of Montpellier, Montpellier, France
| | - Cecile Delettre
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Frederic Michon
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France.
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France.
| |
Collapse
|
5
|
Moussa SM, Mahmoud SS, Aly EM, Talaat MS. Analyzing Tear Fluid Composition by Synchronous Fluorescence for Diagnosing Dry Eye Disease and the Role of Phytotherapy Intervention. Curr Eye Res 2024; 49:826-834. [PMID: 38679902 DOI: 10.1080/02713683.2024.2344184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE Tear fluid gained attention as a representative biological fluid. Its simple and non-invasive collection methods as well as richness of candidate biomarkers made it a potential diagnostic tool for different diseases such as dry eye. Synchronous fluorescence spectroscopy is a highly sensitive analytical tool that results in narrowing and enhanced peak resolution, and has a potential role in disease diagnosis, biomarker identification, and therapeutic monitoring. We applied synchronous fluorescence spectroscopy to monitor variations of tear fluid composition during the development of dry eye disease and to evaluate the potential effects of phytotherapy. METHODS Dry eye model was induced in Chinchilla rabbits by instillation of 1% atropine sulfate ophthalmic solution. Then, the tear fluid was collected at 3, 7, and 14 days and subjected to synchronous fluorescence spectroscopy. Phytotherapy was achieved by topical instillation of 20 µl of water extracts of pomegranate peel or green tea powders. RESULTS The fluorescence results revealed changes in the structure of tear fluid over time and the eye is subjected to toxification due to oxidative stress. In addition, dry eye disease was found to affect the metabolic/energetic state of the eye. On the other hand, phytotherapy led to enhancement of the metabolic/biosynthesis state due to activation of flavin adenine dinucleotide-associated proteins. CONCLUSION There was change in the electrical conductivity of tear fluid proteins. In the case of dry eyes, they became electrical insulators, while in the case of treatment with extracts, their electrical conductivity properties improved. The effects of phytotherapy can be related to the high content of ellagic acid and anthocyanin of pomegranate extract, while in green tea, they are related to catechins and phenolic compounds.
Collapse
Affiliation(s)
- Shaimaa M Moussa
- Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sherif S Mahmoud
- Biophysics and Laser Science Unit, Research Institute of Ophthalmology, Giza, Egypt
| | - Eman M Aly
- Biophysics and Laser Science Unit, Research Institute of Ophthalmology, Giza, Egypt
| | - Mona S Talaat
- Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Yang L, Jin X, Hu S, Yu P, Wang X. Evaluating the Efficacy of the Diluted Schirmer Method for Tear Collection in Dry Eye Syndrome Patients. Curr Eye Res 2024:1-8. [PMID: 39039702 DOI: 10.1080/02713683.2024.2380446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE This study assesses the diluted Schirmer method's effectiveness in collecting tears from dry eye syndrome patients, aiming to identify the most suitable tear collection technique for them. METHODS A prospective study. Tear samples were collected from patients with dry eye syndrome and healthy individuals using two methods: (1) Direct Schirmer Method: Schirmer strips were directly inserted into the eye to collect tears. (2) Diluted Schirmer Method: After instilling physiological saline into the eye and waiting for 30 s to ensure thorough mixing with tears, Schirmer strips were used for collection. Tear samples from both groups were analyzed and compared for total protein and cytokine levels (IL-1β, IL-6, IL-8, TNF-α). RESULTS (1) The study included 32 participants: 16 with dry eye syndrome (4 males, 12 females, average age 34.92 ± 10.13 years) and 16 healthy controls (5 males, 11 females, average age 32.25 ± 9.87 years). (2) The diluted Schirmer method produced a significantly larger tear volume compared to the direct method (p < 0.05), with lower Visual Analogue Scale (VAS) scores indicating less discomfort (p < 0.05). (3) The average total protein content of the two groups was 51.70 ± 3.166 ng measured by Direct Schirmer method, and the average total protein content of the Diluted Schirmer method was 50.05 ± 3.263 ng. There was no statistical difference between the two groups. (t = 1.051, p = 0.3098) (4) The concentrations of total tear protein and various cytokines measured by both methods were higher in the dry eye group compared to the normal group, with statistically significant differences (p < 0.05). Both methods reflected consistent changes in tear protein profiles. CONCLUSION The diluted Schirmer method can comfortably collect an adequate volume of tear samples in a short time and consistently reflect changes in tear proteins, making it an effective method for tear collection in patients with dry eye syndrome.
Collapse
Affiliation(s)
- Li Yang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuming Jin
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengjia Hu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Pingping Yu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinchang Wang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Beisel A, Jones G, Glass J, Lee TJ, Töteberg-Harms M, Estes A, Ulrich L, Bollinger K, Sharma S, Sharma A. Comparative analysis of human tear fluid and aqueous humor proteomes. Ocul Surf 2024; 33:16-22. [PMID: 38561100 PMCID: PMC11179983 DOI: 10.1016/j.jtos.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE Technological advancements allowing for the analysis of low-volume samples have led to the investigation of human tear fluid and aqueous humor (AH) as potential biomarker sources. However, acquiring AH samples poses significant challenges, making human tear fluid a more accessible alternative. This study aims to compare the protein compositions of these two biofluids to evaluate their suitability for biomarker discovery. METHODS Paired tear and AH samples were collected from 20 patients undergoing cataract surgery. Tear samples were collected using Schirmer strips prior to surgery, and AH samples were collected from the anterior chamber immediately after corneal incision. Proteins were extracted and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS A total of 481 proteins were identified in greater than 50% of the tear samples, and 191 proteins were detected in greater than 50% of the AH samples. Of these proteins, 82 were found to be common between the two biofluids, with ALB, LTF, TF, LCN1, and IGKC being the most abundant. CONCLUSION Although tear fluid and the AH are functionally independent and physically separated, many of the proteins detected in AH were also detected in tears. This direct comparison of the proteomic content of tear fluid and AH may aid in further investigation of tear fluid as a source of readily accessible biomarkers for various human diseases.
Collapse
Affiliation(s)
- August Beisel
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Garrett Jones
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Joshua Glass
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Marc Töteberg-Harms
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Amy Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Lane Ulrich
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Kathryn Bollinger
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Shruti Sharma
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Ashok Sharma
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
8
|
Fucito M, Spedicato M, Felletti S, Yu AC, Busin M, Pasti L, Franchina FA, Cavazzini A, De Luca C, Catani M. A Look into Ocular Diseases: The Pivotal Role of Omics Sciences in Ophthalmology Research. ACS MEASUREMENT SCIENCE AU 2024; 4:247-259. [PMID: 38910860 PMCID: PMC11191728 DOI: 10.1021/acsmeasuresciau.3c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 06/25/2024]
Abstract
Precision medicine is a new medical approach which considers both population characteristics and individual variability to provide customized healthcare. The transition from traditional reactive medicine to personalized medicine is based on a biomarker-driven process and a deep knowledge of biological mechanisms according to which the development of diseases occurs. In this context, the advancements in high-throughput omics technologies represent a unique opportunity to discover novel biomarkers and to provide an unbiased picture of the biological system. One of the medical fields in which omics science has started to be recently applied is that of ophthalmology. Ocular diseases are very common, and some of them could be highly disabling, thus leading to vision loss and blindness. The pathogenic mechanism of most ocular diseases may be dependent on various genetic and environmental factors, whose effect has not been yet completely understood. In this context, large-scale omics approaches are fundamental to have a comprehensive evaluation of the whole system and represent an essential tool for the development of novel therapies. This Review summarizes the recent advancements in omics science applied to ophthalmology in the last ten years, in particular by focusing on proteomics, metabolomics and lipidomics applications from an analytical perspective. The role of high-efficiency separation techniques coupled to (high-resolution) mass spectrometry ((HR)MS) is also discussed, as well as the impact of sampling, sample preparation and data analysis as integrating parts of the analytical workflow.
Collapse
Affiliation(s)
- Maurine Fucito
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Matteo Spedicato
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Simona Felletti
- Department
of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Angeli Christy Yu
- Department
of Translational Medicine and for Romagna, University of Ferrara, via Aldo Moro 8, 44124 Ferrara, Italy
| | - Massimo Busin
- Department
of Translational Medicine and for Romagna, University of Ferrara, via Aldo Moro 8, 44124 Ferrara, Italy
| | - Luisa Pasti
- Department
of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Flavio A. Franchina
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Alberto Cavazzini
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
- Council
for Agricultural Research and Economics, via della Navicella 2/4, Rome 00184, Italy
| | - Chiara De Luca
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Martina Catani
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Thomas KM, Ajithaprasad S, N M, Pavithran M S, Chidangil S, Lukose J. Raman spectroscopy assisted tear analysis: A label free, optical approach for noninvasive disease diagnostics. Exp Eye Res 2024; 243:109913. [PMID: 38679225 DOI: 10.1016/j.exer.2024.109913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/25/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
In recent times, tear fluid analysis has garnered considerable attention in the field of biomarker-based diagnostics due to its noninvasive sample collection method. Tears encompass a reservoir of biomarkers that assist in diagnosing not only ocular disorders but also a diverse list of systemic diseases. This highlights the necessity for sensitive and dependable screening methods to employ tear fluid as a potential noninvasive diagnostic specimen in clinical environments. Considerable research has been conducted to investigate the potential of Raman spectroscopy-based investigations for tear analysis in various diagnostic applications. Raman Spectroscopy (RS) is a highly sensitive and label free spectroscopic technique which aids in investigating the molecular structure of samples by evaluating the vibrational frequencies of molecular bonds. Due to the distinct chemical compositions of different samples, it is possible to obtain a sample-specific spectral fingerprint. The distinctive spectral fingerprints obtained from Raman spectroscopy enable researchers to identify specific compounds or functional groups present in a sample, aiding in diverse biomedical applications. Its sensitivity to changes in molecular structure or environment provides invaluable insights into subtle alterations associated with various diseases. Thus, Raman Spectroscopy has the potential to assist in diagnosis and treatment as well as prognostic evaluation. Raman spectroscopy possesses several advantages, such as the non-destructive examination of samples, remarkable sensitivity to structural variations, minimal prerequisites for sample preparation, negligible interference from water, and the aptness for real-time investigation of tear samples. The purpose of this review is to highlight the potential of Raman spectroscopic technique in facilitating the clinical diagnosis of various ophthalmic and systemic disorders through non-invasive tear analysis. Additionally, the review delves into the advancements made in Raman spectroscopy with regards to paper-based sensing substrates and tear analysis methods integrated into contact lenses. Furthermore, the review also addresses the obstacles and future possibilities associated with implementing Raman spectroscopy as a routine diagnostic tool based on tear analysis in clinical settings.
Collapse
Affiliation(s)
- Keziah Mary Thomas
- Dr. Agarwal's Eye Hospital and Eye Research Centre, Chennai, Tamil Nadu, India
| | - Sreeprasad Ajithaprasad
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Mithun N
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanoop Pavithran M
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
10
|
Boychev N, Lee S, Yeung V, Ross AE, Kuang L, Chen L, Dana R, Ciolino JB. Contact lenses as novel tear fluid sampling vehicles for total RNA isolation, precipitation, and amplification. Sci Rep 2024; 14:11727. [PMID: 38778161 PMCID: PMC11111455 DOI: 10.1038/s41598-024-62215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The tear fluid is a readily accessible, potential source for biomarkers of disease and could be used to monitor the ocular response to contact lens (CL) wear or ophthalmic pathologies treated by therapeutic CLs. However, the tear fluid remains largely unexplored as a biomarker source for RNA-based molecular analyses. Using a rabbit model, this study sought to determine whether RNA could be collected from commercial CLs and whether the duration of CL wear would impact RNA recovery. The results were referenced to standardized strips of filtered paper (e.g., Shirmer Strips) placed in the inferior fornix. By performing total RNA isolation, precipitation, and amplification with commercial kits and RT-PCR methods, CLs were found to have no significant differences in RNA concentration and purity compared to Schirmer Strips. The study also identified genes that could be used to normalize RNA levels between tear samples. Of the potential control genes or housekeeping genes, GAPDH was the most stable. This study, which to our knowledge has never been done before, provides a methodology for the detection of RNA and gene expression changes from tear fluid that could be used to monitor or study eye diseases.
Collapse
Affiliation(s)
- Nikolay Boychev
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, and Harvard Medical School, Boston, USA.
| | - Seokjoo Lee
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, and Harvard Medical School, Boston, USA
| | - Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, and Harvard Medical School, Boston, USA
| | - Amy E Ross
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, and Harvard Medical School, Boston, USA
| | - Liangju Kuang
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, and Harvard Medical School, Boston, USA
| | - Lin Chen
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Reza Dana
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, and Harvard Medical School, Boston, USA
| | - Joseph B Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, and Harvard Medical School, Boston, USA
| |
Collapse
|
11
|
Shipton C, Aitken J, Atkinson S, Burchmore R, Hamilton R, Mactier H, McGill S, Millar E, Houtman AC. Tear Proteomics in Infants at Risk of Retinopathy of Prematurity: A Feasibility Study. Transl Vis Sci Technol 2024; 13:1. [PMID: 38691083 PMCID: PMC11077915 DOI: 10.1167/tvst.13.5.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/25/2024] [Indexed: 05/03/2024] Open
Abstract
Purpose This feasibility study investigated the practicability of collecting and analyzing tear proteins from preterm infants at risk of retinopathy of prematurity (ROP). We sought to identify any tear proteins which might be implicated in the pathophysiology of ROP as well as prognostic markers. Methods Schirmer's test was used to obtain tear samples from premature babies, scheduled for ROP screening, after parental informed consent. Mass spectrometry was used for proteomic analysis. Results Samples were collected from 12 infants, which were all adequate for protein analysis. Gestational age ranged from 25 + 6 to 31 + 1 weeks. Postnatal age at sampling ranged from 19 to 66 days. One infant developed self-limiting ROP. Seven hundred one proteins were identified; 261 proteins identified in the majority of tear samples, including several common tear proteins, were used for analyses. Increased risk of ROP as determined by the postnatal growth ROP (G-ROP) criteria was associated with an increase in lactate dehydrogenase B chain in tears. Older infants demonstrated increased concentration of immunoglobulin complexes within their tear samples and two sets of twins in the cohort showed exceptionally similar proteomes, supporting validity of the analysis. Conclusions Tear sampling by Schirmer test strips and subsequent proteomic analysis by mass spectrometry in preterm infants is feasible. A larger study is required to investigate the potential use of tear proteomics in identification of ROP. Translational Relevance Tear sampling and subsequent mass spectrometry in preterm infants is feasible. Investigation of the premature tear proteome may increase our understanding of retinal development and provide noninvasive biomarkers for identification of treatment-warranted ROP.
Collapse
Affiliation(s)
| | | | - Samuel Atkinson
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Foresterhill, Aberdeen, Scotland, UK
| | - Richard Burchmore
- University of Glasgow, Wolfson Wohl Cancer Research Centre, Bearsden, Glasgow, Scotland, UK
| | - Ruth Hamilton
- Royal Hospital for Children, Glasgow, Glasgow, Scotland, UK
| | | | - Suzanne McGill
- University of Glasgow, Wolfson Wohl Cancer Research Centre, Bearsden, Glasgow, Scotland, UK
| | | | | |
Collapse
|
12
|
Ponzini E. Tear biomarkers. Adv Clin Chem 2024; 120:69-115. [PMID: 38762243 DOI: 10.1016/bs.acc.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
An extensive exploration of lacrimal fluid molecular biomarkers in understanding and diagnosing a spectrum of ocular and systemic diseases is presented. The chapter provides an overview of lacrimal fluid composition, elucidating the roles of proteins, lipids, metabolites, and nucleic acids within the tear film. Pooled versus single-tear analysis is discussed to underline the benefits and challenges associated with both approaches, offering insights into optimal strategies for tear sample analysis. Subsequently, an in-depth analysis of tear collection methods is presented, with a focus on Schirmer's test strips and microcapillary tubes methods. Alternative tear collection techniques are also explored, shedding light on their applicability and advantages. Variability factors, including age, sex, and diurnal fluctuations, are examined in the context of their impact on tear biomarker analysis. The main body of the chapter is dedicated to discussing specific biomarkers associated with ocular discomfort and a wide array of ocular diseases. From dry eye disease and thyroid-associated ophthalmopathy to keratoconus, age-related macular degeneration, diabetic retinopathy, and glaucoma, the intricate relationship between molecular biomarkers and these conditions is thoroughly dissected. Expanding beyond ocular pathologies, the chapter explores the applicability of tear biomarkers in diagnosing systemic diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and cancer. This broader perspective underscores the potential of lacrimal fluid analysis in offering non-invasive diagnostic tools for conditions with far-reaching implications.
Collapse
Affiliation(s)
- Erika Ponzini
- Department of Materials Science, University of Milano Bicocca, Milan, Italy; COMiB Research Center, University of Milano Bicocca, Milan, Italy.
| |
Collapse
|
13
|
Jones G, Altman J, Ahmed S, Lee TJ, Zhi W, Sharma S, Sharma A. Unraveling the Intraday Variations in the Tear Fluid Proteome. Invest Ophthalmol Vis Sci 2024; 65:2. [PMID: 38441890 PMCID: PMC10916888 DOI: 10.1167/iovs.65.3.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Purpose Tear fluid is a complex and dynamic biological fluid that plays essential roles in maintaining ocular homeostasis and protecting against the external environment. Owing to the small sample volume, studying the tear proteome is challenging. However, advances in high-resolution mass spectrometry have expanded tear proteome profiling, revealing >500 unique proteins. Tears are emerging as a noninvasive source of biomarkers for both ocular and systemic diseases; nevertheless, intraday variability of proteins in tear fluid remains questionable. This study investigates intraday variations in the tear fluid proteome to identify stable proteins that could act as candidate biomarkers. Methods Tear samples from 15 individuals at four time points (10 am, 12 pm, 2 pm, and 4 pm) were analyzed using mass spectrometry to evaluate protein variation during these intervals. Technical variation was assessed by analyzing pooled samples and was subtracted from the total variation to isolate biological variability. Results Owing to high technical variation, low-abundant proteins were filtered, and only 115 proteins met the criteria for further analysis. These criteria include being detected at all four time points in at least eight subjects, having a mean peptide-spectrum match count greater than 5, and having a technical variation less than 0.10. Lactotransferrin, lipocalin-1, and several immunoglobulins were among the 51 stable proteins (mean biological coefficient of variation < 0.10). Additionally, 43 proteins displayed significant slopes across the 4 time points, with 17 increasing and 26 decreasing over time. Conclusions These findings contribute to the understanding of tear fluid dynamics and further expand our knowledge of the tear proteome.
Collapse
Affiliation(s)
- Garrett Jones
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jeremy Altman
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Saleh Ahmed
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
14
|
Almutleb ES, El-Hiti GA, Alshulayyil AN, Alghamdi AD, Almutairi MS, Baashen MA, Altoaimi BH, Alanazi SA, Masmali AM. Assessment of lipid layer patterns in domestic dogs and rabbits: an observational study. Open Vet J 2024; 14:879-884. [PMID: 38682146 PMCID: PMC11052619 DOI: 10.5455/ovj.2024.v14.i3.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/25/2024] [Indexed: 05/01/2024] Open
Abstract
Background Maintaining a stable tear film is crucial for having healthy human and animal vision. Animals are expected to have thicker lipid layers than humans due to living in high-temperature and humid environments. Aim The study aimed to evaluate the lipid layer patterns (LLPs) in Arabian dogs and rabbits using a non-invasive, practical, and easy-to-use device and compare them to humans with healthy eyes. Methods The study included 75 domestic Arabian dogs (42 males and 33 females; mean ± SD = 6.1 ± 12.7 months) and 75 rabbits (37 males and 38 females; mean ± SD = 3.1 ± 3.4 months). In addition, 75 individuals with healthy eyes (39 males and 36 females; mean ± SD = 25.7 ± 5.0 years) were included for comparison. EASYTEAR View+ assessed the LLP in each animal's and individual's right eye. Results The median LLP grades significantly differed between dogs and humans (Mann-Whitney U test, p < 0.001). Similarly, the LLP grades differed significantly between rabbits and humans (Mann-Whitney U test, p < 0.001). No significant difference (Mann-Whitney U test) in the LLP grades between dogs and rabbits was found. The analysis indicated that most dogs had either an A (34.7%) or a B grade (37.3%). Similarly, rabbits had predominantly A or 1 (46.7%) and B (30.7%) grades. On the other hand, humans had predominantly D (53.3%) and E (30.7%) grades. Conclusion The EASYTEAR View+ has been employed to assess LLP in dogs and rabbits, and the measurements were compared to those of humans with normal ocular health. Dogs and rabbits have thinner lipid layers than healthy humans.
Collapse
Affiliation(s)
- Essam S. Almutleb
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Gamal A. El-Hiti
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulmalik N. Alshulayyil
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah D. Alghamdi
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Meznah S. Almutairi
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mashaaer A. Baashen
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Basal H. Altoaimi
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saud A. Alanazi
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali M. Masmali
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Kontoh-Twumasi R, Budkin S, Edupuganti N, Vashishtha A, Sharma S. Role of Serine Protease Inhibitors A1 and A3 in Ocular Pathologies. Invest Ophthalmol Vis Sci 2024; 65:16. [PMID: 38324301 PMCID: PMC10854419 DOI: 10.1167/iovs.65.2.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Serine protease inhibitors A1 (SerpinA1) and A3 (SerpinA3) are important members of the serpin family, playing crucial roles in the regulation of serine proteases and influencing various physiological processes. SerpinA1, also known as α-1-antitrypsin, is a versatile glycoprotein predominantly synthesized in the liver, with additional production in inflammatory and epithelial cell types. It exhibits multifaceted functions, including immune modulation, complement activation regulation, and inhibition of endothelial cell apoptosis. SerpinA3, also known as α-1-antichymotrypsin, is expressed both extracellularly and intracellularly in various tissues, particularly in the retina, kidney, liver, and pancreas. It exerts anti-inflammatory, anti-angiogenic, antioxidant, and antifibrotic activities. Both SerpinA1 and SerpinA3 have been implicated in conditions such as keratitis, diabetic retinopathy, age-related macular degeneration, glaucoma, cataracts, dry eye disease, keratoconus, uveitis, and pterygium. Their role in influencing metalloproteinases and cytokines, as well as endothelial permeability, and their protective effects on Müller cells against oxidative stress further highlight their diverse and critical roles in ocular pathologies. This review provides a comprehensive overview of the etiology and functions of SerpinA1 and SerpinA3 in ocular diseases, emphasizing their multifaceted roles and the complexity of their interactions within the ocular microenvironment.
Collapse
Affiliation(s)
- Richard Kontoh-Twumasi
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Stepan Budkin
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Neel Edupuganti
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Ayushi Vashishtha
- Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
16
|
Bruszel B, Tóth-Molnár E, Janáky T, Szabó Z. Sources of Variance in Human Tear Proteomic Samples: Statistical Evaluation, Quality Control, Normalization, and Biological Insight. Int J Mol Sci 2024; 25:1559. [PMID: 38338841 PMCID: PMC10855525 DOI: 10.3390/ijms25031559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Human tear fluid contains numerous compounds, which are present in highly variable amounts owing to the dynamic and multipurpose functions of tears. A better understanding of the level and sources of variance is essential for determining the functions of the different tear components and the limitations of tear samples as a potential biomarker source. In this study, a quantitative proteomic method was used to analyze variations in the tear protein profiles of healthy volunteers. High day-to-day and inter-eye personal variances were observed in the tear volumes, protein content, and composition of the tear samples. Several normalization and outlier exclusion approaches were evaluated to decrease variances. Despite the intrapersonal variances, statistically significant differences and cluster analysis revealed that proteome profile and immunoglobulin composition of tear fluid present personal characteristics. Using correlation analysis, we could identify several correlating protein clusters, mainly related to the source of the proteins. Our study is the first attempt to achieve more insight into the biochemical background of human tears by statistical evaluation of the experimentally observed dynamic behavior of the tear proteome. As a pilot study for determination of personal protein profiles of the tear fluids of individual patients, it contributes to the application of this noninvasively collectible body fluid in personal medicine.
Collapse
Affiliation(s)
- Bella Bruszel
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (B.B.); (T.J.)
| | - Edit Tóth-Molnár
- Department of Ophtalmology, Albert Szent-Györgyi Health Centre, University of Szeged, Korányi Fasor 10-11, H-6720 Szeged, Hungary;
| | - Tamás Janáky
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (B.B.); (T.J.)
| | - Zoltán Szabó
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (B.B.); (T.J.)
| |
Collapse
|
17
|
Yılmaz Tuğan B, Sarıhan M, Kasap M, Akpınar G, Karabaş L, Şahin N, Yüksel N, Bayrak YE, Sönmez HE. Is tear proteome profile a predictor of developing uveitis in ANA-positive patients with oligoarticular juvenile idiopathic arthritis? Graefes Arch Clin Exp Ophthalmol 2024; 262:211-221. [PMID: 37773290 DOI: 10.1007/s00417-023-06251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023] Open
Abstract
PURPOSE Although less than one-third of anti-nuclear antibody (ANA) positive patients with oJIA develop uveitis, ANA positivity is still the most well-known marker for assessing the risk of uveitis in oligoarticular JIA (oJIA). Therefore, novel biomarkers are needed to better assess the risk of developing uveitis. For this purpose, we performed a comparative tear proteome analysis of uveitis patients to reveal the identity of differentially regulated proteins. DESIGN Tear samples were collected using the Schirmer strips in 7 oJIA and 7 oJIA patients with uveitis (oJIA-U). All oJIA-U patients had developed bilateral anterior uveitis and were inactive and topical treatment-free. METHODS The nHPLC LC-MS/MS system was used for protein identification and label-free proteome comparisons. The PANTHER and STRING analyses were carried out using UniProt accession numbers of the identified proteins. RESULTS Patient characteristics, e.g., age, gender, disease duration, and treatments were similar. For protein identification, three different databases were searched. Twenty-two, 147, and 258 database searches, respectively. Of these, 15 were common to all three proteome databases. Of these 15 proteins, 10 proteins were upregulated, and 2 were downregulated, based on the twofold regulation criteria. The upregulated proteins were, namely, cystatin-S, secretoglobin family 1D member, opiorphin prepropeptide, mammaglobin-B, lysozyme C, mesothelin, immunoglobulin kappa constant, extracellular glycoprotein lacritin, beta-2-microglobulin, and immunoglobulin J chain. The downregulated proteins were dermcidin and prolactin-inducible protein. Among the differentially regulated proteins, cystatin-S was the most regulated protein with an 18-fold upregulation ratio in tear samples from uveitis patients. CONCLUSION Here, the identities and regulation ratios of several proteins were revealed when tear samples from uveitis patients were compared to patients without uveitis. These proteins are putative biomarkers for assessing uveitis risk and require further attention.
Collapse
Affiliation(s)
- Büşra Yılmaz Tuğan
- Department of Ophthalmology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey.
| | - Mehmet Sarıhan
- Department of Basic Medical Sciences, Medical Biology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Murat Kasap
- Department of Basic Medical Sciences, Medical Biology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Gürler Akpınar
- Department of Basic Medical Sciences, Medical Biology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Levent Karabaş
- Department of Ophthalmology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Nihal Şahin
- Department of Pediatrics, Division of Pediatric Rheumatology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Nurşen Yüksel
- Department of Ophthalmology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Yunus Emre Bayrak
- Department of Pediatrics, Division of Pediatric Rheumatology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Hafize Emine Sönmez
- Department of Pediatrics, Division of Pediatric Rheumatology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| |
Collapse
|
18
|
Li J, Guan S, Cai B, Li Q, Rong S. Low molecular weight chitosan oligosaccharides form stable complexes with human lactoferrin. FEBS Open Bio 2023; 13:2215-2223. [PMID: 37872003 PMCID: PMC10699096 DOI: 10.1002/2211-5463.13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/09/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023] Open
Abstract
Proteins in tears, including human lactoferrin (HLF), can be deposited and denatured on contact lenses, increasing the risk of microbial cell attachment to the lens and ocular complications. The surfactants currently used in commercial contact lens care solutions have low clearance ability for tear proteins. Chitosan oligosaccharide (COS) binds to a variety of proteins and has potential for use in protein removal, especially in contact lens care solutions. Here, we analyzed the interaction mechanism of COSs hydrolyzed from chitosan from different resources with HLF. The molecular weights (MWs) and concentrations of COSs were key factors for the formation of COS-HLF complexes. Lower MWs of COSs could form more stable COS-HLF complexes. COS from Aspergillus ochraceus had a superior effect on HLF compared with COS from shrimp and crab shell with the same MWs. In conclusion, COSs could bind to and cause a conformational change in HLF. Therefore, COSs, especially those with low MWs, have potential as deproteinizing agents in contact lens care solution.
Collapse
Affiliation(s)
- Juan Li
- Department of Bioengineering, School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Shimin Guan
- Department of Bioengineering, School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Baoguo Cai
- Department of Bioengineering, School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Qianqian Li
- Department of Bioengineering, School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Shaofeng Rong
- Department of Bioengineering, School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| |
Collapse
|
19
|
Tham ML, Mahmud A, Abdullah M, Md Saleh R, Mohammad Razali A, Cheah YK, Mohd Taib N, Ho KL, Mahmud M, Mohd Isa M. Tear Samples for Protein Extraction: Comparative Analysis of Schirmer's Test Strip and Microcapillary Tube Methods. Cureus 2023; 15:e50972. [PMID: 38259376 PMCID: PMC10800704 DOI: 10.7759/cureus.50972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
INTRODUCTION Tear sampling is an attractive option for collecting biological samples in ophthalmology clinics, as it offers a non-invasive alternative to other invasive techniques. However, there are many tear sampling methods still in consideration. This study explores the suitability of Schirmer's test strip and microcapillary tube as reliable and satisfactory methods for tear sampling. METHODS Tear samples were collected from eight healthy volunteers using the standard Schirmer's test strip method with or without anesthesia and microcapillary tubes. The total tear protein concentrations were analyzed via spectrophotometry and bicinchoninic acid (BCA) protein assay. The protein profile was determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal wetting length of Schirmer's strip and suitable buffer solutions were compared. Discomfort levels reported by participants and the ease of execution for ophthalmologists were also evaluated. RESULTS Tear samples exhibited typical protein profiles as shown by SDS-PAGE. The mean total protein obtained from an optimum wetting length of 20 mm using Schirmer's strip without anesthesia in phosphate-buffered saline (PBS) yielded substantial quantities of protein as measured by nanophotometer (220.20 ± 67.43 µg) and the BCA protein assay (210.34 ± 59.46 µg). This method collected a significantly higher quantity of protein compared to the microcapillary tube method (p=0.004) which was much more difficult to standardize. The clinician found it harder to utilize microcapillary tubes, while participants experienced higher insecurity and less discomfort with the microcapillary tube method. PBS used during the tear protein extraction process eluted higher tear protein concentration than ammonium bicarbonate, although the difference was not statistically significant. Using anaesthesia did not ease the sampling procedure substantially and protein quantity was maintained. CONCLUSION Good quality and quantity of protein from tear samples were extracted with the optimized procedure. Schirmer's strip test in the absence of local anesthesia provided a standard, convenient, and non-invasive method for tear collection.
Collapse
Affiliation(s)
- May Ling Tham
- Department of Ophthalmology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, MYS
| | - Aidalina Mahmud
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, MYS
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, MYS
| | - Rafidah Md Saleh
- Department of Ophthalmology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, MYS
| | - Amirah Mohammad Razali
- Department of Ophthalmology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, MYS
| | - Yoke Kqueen Cheah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, MYS
| | - Niazlin Mohd Taib
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, MYS
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, MYS
| | - Mazaya Mahmud
- Department of Ophthalmology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, MYS
| | - Muhammad Mohd Isa
- Department of Ophthalmology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, MYS
| |
Collapse
|
20
|
Yazdani M. Tear film lipid layer and corneal oxygenation: a new function? Eye (Lond) 2023; 37:3534-3541. [PMID: 37138094 PMCID: PMC10686381 DOI: 10.1038/s41433-023-02557-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/22/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
The classic model of tear film is composed of mucin layer, aqueous layer and the outermost tear film lipid layer (TFLL). The complex mixture of different classes of lipids, mainly secreted by meibomian glands, gives the TFLL unique physicochemical properties. Based on these properties, several functions of TFLL have been found and/or proposed such as the resistance to evaporation and facilitating the formation of a thin film. However, the role of TFLL in the oxygenation of the cornea, a transparent avascular tissue, has never been discussed in the literature. The continuous metabolic activity of the corneal surface and the replenishment of atmospheric gas creates an O2 gradient in the tear film. The molecules of O2 must therefore be transferred from the gas phase to the liquid phase through the TFLL. This process is a function of the diffusion and solubility of the lipid layer as well as interface transfer, which is influenced by alterations in the physical state and lipid composition. In the absence of research on TFLL, the present paper aims to bring the topic into the spotlight for the first time based on existing knowledge on O2 permeability of the lipid membranes and evaporation resistance of the lipid layers. The oxidative stress generated in perturbed lipid layers and the consequent adverse effects are also covered. The function of the TFLL proposed here intends to encourage future research in both basic and clinical sciences, e.g., opening new avenues for the diagnosis and treatment of ocular surface conditions.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, 0027, Oslo, Norway.
| |
Collapse
|
21
|
Lee D, Song S, Cho G, Dalle Ore LC, Malmstadt N, Fuwad A, Kim SM, Jeon TJ. Elucidating the Molecular Interactions between Lipids and Lysozyme: Evaporation Resistance and Bacterial Barriers for Dry Eye Disease. NANO LETTERS 2023; 23:9451-9460. [PMID: 37842945 DOI: 10.1021/acs.nanolett.3c02936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Dry eye disease (DED) is a chronic condition characterized by ocular dryness and inflammation. The tear film lipid layer (TFLL) is the outermost layer composed of lipids and proteins that protect the ocular surface. However, environmental contaminants can disrupt its structure, potentially leading to DED. Although the importance of tear proteins in the TFLL functionality has been clinically recognized, the molecular mechanisms underlying TFLL-protein interactions remain unclear. In this study, we investigated tear protein-lipid interactions and analyzed their role in the TFLL functionality. The results show that lysozyme (LYZ) increases the stability of the TFLL by reducing its surface tension and increasing its surface pressure, resulting in increased TFLL evaporation and bacterial invasion resistance, with improved wettability and lubrication performance. These findings highlight the critical role of LYZ in maintaining ocular health and provide potential avenues for investigating novel approaches to DED treatment and patient well-being.
Collapse
Affiliation(s)
- Deborah Lee
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Seoyoon Song
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Geonho Cho
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Lucia C Dalle Ore
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Noah Malmstadt
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Ahmed Fuwad
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Sun Min Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
22
|
Akkurt Arslan M, Brignole-Baudouin F, Chardonnet S, Pionneau C, Blond F, Baudouin C, Kessal K. Profiling tear film enzymes reveals major metabolic pathways involved in the homeostasis of the ocular surface. Sci Rep 2023; 13:15231. [PMID: 37709789 PMCID: PMC10502076 DOI: 10.1038/s41598-023-42104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023] Open
Abstract
The ocular surface (OS) enzymes are of great interest due to their potential for novel ocular drug development. We aimed first to profile and classify the enzymes of the OS to describe major biological processes and pathways that are involved in the maintenance of homeostasis. Second, we aimed to compare the enzymatic profiles between the two most common tear collection methods, capillary tubes (CT) and Schirmer strips (ScS). A comprehensive tear proteomic dataset was generated by pooling all enzymes identified from nine tear proteomic analyses of healthy subjects using mass spectrometry. In these studies, tear fluid was collected using CT (n = 4), ScS (n = 4) or both collection methods (n = 1). Classification and functional analysis of the enzymes was performed using a combination of bioinformatic tools. The dataset generated identified 1010 enzymes. The most representative classes were hydrolases (EC 3) and transferases (EC 2). Phosphotransferases, esterases and peptidases were the most represented subclasses. A large portion of the identified enzymes was common to both collection methods (n = 499). More enzymes were specifically detected in the ScS-extracted proteome. The major pathways in which the identified enzymes participate are related to the immune system and protein, carbohydrate and lipid metabolism. Metabolic processes for nucleosides, cellular amides, sugars and sulfur compounds constituted the most enriched biological processes. Knowledge of these molecules highly susceptible to pharmacological manipulation might help to predict the metabolism of ophthalmic medications and develop novel prodrug strategies as well as new drug delivery systems. Combining such extensive knowledge of the OS enzymes with new analytical approaches and techniques might create new prospects for understanding, predicting and manipulating the metabolism of ocular pharmaceuticals. Our study reports new, essential data on OS enzymes while also comparing the enzyme profiles obtained via the two most popular methods of tear collection, capillary tubes and Schirmer strips.
Collapse
Affiliation(s)
- Murat Akkurt Arslan
- Institut National de la Santé et de la Recherche Médicale INSERM UMRS 968, CNRS UMR 7210, Institut de la Vision, IHU ForeSight, Sorbonne Université UM80, 75012, Paris, France
| | - Françoise Brignole-Baudouin
- Institut National de la Santé et de la Recherche Médicale INSERM UMRS 968, CNRS UMR 7210, Institut de la Vision, IHU ForeSight, Sorbonne Université UM80, 75012, Paris, France
- Hôpital National de la Vision des 15-20, INSERM-DGOS CIC 1423, IHU ForeSight, 75012, Paris, France
- Hôpital National de la Vision des 15-20, Laboratoire d'Ophtalmobiologie, 75012, Paris, France
- Faculté de Pharmacie de Paris, Université de Paris Cité, 75006, Paris, France
| | - Solenne Chardonnet
- INSERM, UMS Production et Analyse des donnees en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, Sorbonne Université, 75013, Paris, France
| | - Cédric Pionneau
- INSERM, UMS Production et Analyse des donnees en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, Sorbonne Université, 75013, Paris, France
| | - Frédéric Blond
- Institut National de la Santé et de la Recherche Médicale INSERM UMRS 968, CNRS UMR 7210, Institut de la Vision, IHU ForeSight, Sorbonne Université UM80, 75012, Paris, France
| | - Christophe Baudouin
- Institut National de la Santé et de la Recherche Médicale INSERM UMRS 968, CNRS UMR 7210, Institut de la Vision, IHU ForeSight, Sorbonne Université UM80, 75012, Paris, France
- Hôpital National de la Vision des 15-20, INSERM-DGOS CIC 1423, IHU ForeSight, 75012, Paris, France
- Ambroise Paré, Assistance Publique-Hôpitaux de Paris APHP, Service d'Ophtalmologie, Université Versailles Saint-Quentin-en-Yvelines, 92100, Boulogne, France
| | - Karima Kessal
- Institut National de la Santé et de la Recherche Médicale INSERM UMRS 968, CNRS UMR 7210, Institut de la Vision, IHU ForeSight, Sorbonne Université UM80, 75012, Paris, France.
- Hôpital National de la Vision des 15-20, INSERM-DGOS CIC 1423, IHU ForeSight, 75012, Paris, France.
- Hôpital National de la Vision des 15-20, Laboratoire d'Ophtalmobiologie, 75012, Paris, France.
| |
Collapse
|
23
|
Lépine M, Zambito O, Sleno L. Targeted Workflow Investigating Variations in the Tear Proteome by Liquid Chromatography Tandem Mass Spectrometry. ACS OMEGA 2023; 8:31168-31177. [PMID: 37663498 PMCID: PMC10468840 DOI: 10.1021/acsomega.3c03186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023]
Abstract
Proteins in tears have an important role in eye health and have been shown as a promising source of disease biomarkers. The goal of this study was to develop a robust, sensitive, and targeted method for profiling tear proteins to examine the variability within a group of healthy volunteers over three days. Inter-individual and inter-day variabilities were examined to contribute to understanding the normal variations in the tear proteome, as well as to establish which proteins may be better candidates as eventual biomarkers of specific diseases. Tear samples collected on Schirmer strips were subjected to bottom-up proteomics, and resulting peptides were analyzed using an optimized targeted method measuring 226 proteins by liquid chromatography-scheduled multiple reaction monitoring. This method was developed using an in-house database of identified proteins from tears compiled from high-resolution data-dependent liquid chromatography tandem mass spectrometry data. The measurement of unique peptide signals can help better understand the dynamics of each of these proteins in tears. Some interesting trends were seen in specific pathways or protein classes, including higher variabilities for those involved in glycolysis, glutathione metabolism, and cytoskeleton proteins and lower variation for those involving the degradation of the extracellular matrix. The overall aim of this study was to contribute to the field of tear proteomics with the development of a novel and targeted method that is highly amenable to the clinical laboratory using high flow LC and commonly used triple quadrupole mass spectrometry while ensuring that protein quantitation was reported based on unique peptides for each protein and robust peak areas with data normalization. These results report on variabilities on over 200 proteins that are robustly detected in tear samples from healthy volunteers with a simple sample preparation procedure.
Collapse
Affiliation(s)
- Maggy Lépine
- Chemistry Department, Université du Québec à Montréal, PO Box 8888 Downtown Station, Montreal, Quebec H3C 3P8, Canada
| | - Oriana Zambito
- Chemistry Department, Université du Québec à Montréal, PO Box 8888 Downtown Station, Montreal, Quebec H3C 3P8, Canada
| | - Lekha Sleno
- Chemistry Department, Université du Québec à Montréal, PO Box 8888 Downtown Station, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
24
|
Pittalà MG, Di Francesco A, Cucina A, Saletti R, Zilberstein G, Zilberstein S, Arhire T, Righetti PG, Cunsolo V. Count Dracula Resurrected: Proteomic Analysis of Vlad III the Impaler's Documents by EVA Technology and Mass Spectrometry. Anal Chem 2023; 95:12732-12744. [PMID: 37552208 PMCID: PMC10469356 DOI: 10.1021/acs.analchem.3c01461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/17/2023] [Indexed: 08/09/2023]
Abstract
The interest of scientists in analyzing items of World Cultural Heritage has been exponentially increasing since the beginning of the new millennium. These studies have grown considerably in tandem with the development and use of sophisticated and sensitive technologies such as high-resolution mass spectrometry (MS) and the non-invasive and non-damaging technique, known under the acronym EVA (ethylene-vinyl acetate). Here, we report the results of the MS characterization of the peptides and proteins harvested by the EVA technology applied to three letters written in 1457 and 1475 by the voivode of Wallachia, Vlad III, also known as Vlad the Impaler, or Vlad Dracula. The discrimination of the "original" endogenous peptides from contaminant ones was obtained by monitoring their different levels of deamidation and of other diagenetic chemical modifications. The characterization of the ancient proteins extracted from these documents allowed us to explore the environmental conditions, in the second half of the 15th century, of the Wallachia, a region considered as a meeting point for soldiers, migrants, and travelers that probably carried not only trade goods and cultural traditions but also diseases and epidemics. In addition, the identification of many human peptides and proteins harvested from the letters allowed us to uncover more about Vlad Dracula the Impaler. Particularly, the experimental data show that he probably suffered from inflammatory processes of the respiratory tract and/or of the skin. In addition, proteomics data, although not exhaustive, suggest that, according to some stories, he might also have suffered from a pathological condition called hemolacria, that is, he could shed tears admixed with blood. It is worth noting that more medieval people may have touched these documents, which cannot be denied, but it is also presumable that the most prominent ancient proteins should be related to Prince Vlad the Impaler, who wrote and signed these letters. The data have been deposited to the ProteomeXchange with the identifier ⟨PXD041350⟩.
Collapse
Affiliation(s)
- Maria
Gaetana Giovanna Pittalà
- Laboratory
of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Antonella Di Francesco
- Laboratory
of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Annamaria Cucina
- Laboratory
of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Rosaria Saletti
- Laboratory
of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Gleb Zilberstein
- SpringStyle
Tech Design Ltd, Oppenheimer
7, Rehovot 7670107, Israel
| | | | - Tudor Arhire
- Sibiu
County Department of Romania National Archives, Strada Arhivelor 3, Sibiu 557260, Romania
| | - Pier Giorgio Righetti
- Department
of Chemistry, Materials and Chemical Engineering ‘‘Giulio
Natta’’, Politecnico di Milano, Via Mancinelli 7, Milano 20131, Italy
| | - Vincenzo Cunsolo
- Laboratory
of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| |
Collapse
|
25
|
Birhanu AG. Mass spectrometry-based proteomics as an emerging tool in clinical laboratories. Clin Proteomics 2023; 20:32. [PMID: 37633929 PMCID: PMC10464495 DOI: 10.1186/s12014-023-09424-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023] Open
Abstract
Mass spectrometry (MS)-based proteomics have been increasingly implemented in various disciplines of laboratory medicine to identify and quantify biomolecules in a variety of biological specimens. MS-based proteomics is continuously expanding and widely applied in biomarker discovery for early detection, prognosis and markers for treatment response prediction and monitoring. Furthermore, making these advanced tests more accessible and affordable will have the greatest healthcare benefit.This review article highlights the new paradigms MS-based clinical proteomics has created in microbiology laboratories, cancer research and diagnosis of metabolic disorders. The technique is preferred over conventional methods in disease detection and therapy monitoring for its combined advantages in multiplexing capacity, remarkable analytical specificity and sensitivity and low turnaround time.Despite the achievements in the development and adoption of a number of MS-based clinical proteomics practices, more are expected to undergo transition from bench to bedside in the near future. The review provides insights from early trials and recent progresses (mainly covering literature from the NCBI database) in the application of proteomics in clinical laboratories.
Collapse
|
26
|
Taylor Gonzalez DJ, Djulbegovic M, Antonietti M, Cordova M, Dayhoff GW, Mattes R, Galor A, Uversky VN, Karp CL. Intrinsic Disorder in the Human Tear Proteome. Invest Ophthalmol Vis Sci 2023; 64:14. [PMID: 37561450 PMCID: PMC10424804 DOI: 10.1167/iovs.64.11.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023] Open
Abstract
Purpose We aimed to characterize the proteome of human tears and assess for the presence of intrinsically disordered proteins (IDPs). IDPs, despite lacking a rigid three-dimensional structure, maintain biological functionality and could shed light on the molecular interactions within tears. Methods We analyzed a dataset of 1475 proteins identified in the tear film of three healthy subjects. We employed several computational tools, including the Compositional Profiler, Rapid Intrinsic Disorder Analysis Online, Search Tool for the Retrieval of Interacting Genes, and Database of Disordered Protein Predictors to evaluate the intrinsic disorder, protein interactions, and functional characterization of the disordered regions within this proteome. Results Our analysis showed a notable inclination toward intrinsic disorder. Two out of 10 order-promoting residues and five out of 10 disorder-promoting residues were found enriched. Using the Predictor of Natural Disordered Regions (PONDR) VSL2 output, 95% of these proteins were classified as highly or moderately disordered. We revealed an extensive protein-protein interaction network with significant interaction enrichment. The most disordered proteins exhibited higher disorder binding sites and diverse posttranslational modifications compared to the most ordered ones. Conclusions To the best of our knowledge, our study is the first comprehensive analysis of intrinsic disorder in the human tear film proteome, and it revealed an abundance of IDPs and their role in protein function and interaction networks. These findings suggest that variations in the intrinsic disorder of a tear film could be impacted by systemic and ocular conditions, offering promising avenues for disease biomarker identification and drug target development. Further research is needed to understand the implications of these findings in human health and disease.
Collapse
Affiliation(s)
| | - Mak Djulbegovic
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Michael Antonietti
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Matthew Cordova
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Guy W. Dayhoff
- Department of Chemistry, University of South Florida, Tampa, Florida, United States
| | - Robby Mattes
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
- Ophthalmology, Miami Veterans Affairs Medical Center, Miami, Florida, United States
- Research Services, Miami Veterans Affairs Medical Center, Miami, Florida, United States
| | - Vladimir N. Uversky
- Molecular Medicine and USF Health Byrd Alzheimer's Center and Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Carol L. Karp
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| |
Collapse
|
27
|
Dualde P, Miralles P, Peris-Martínez C, Yusà V, Coscollà C. Untargeted analysis and tentative identification of unknown substances in human tears by ultra-high performance liquid chromatography-high resolution mass spectrometry: Pilot study. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123832. [PMID: 37478724 DOI: 10.1016/j.jchromb.2023.123832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/16/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
In this work, a new approach for the identification of unknown compounds in human tears has been developed and validated using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) linked to an intelligent data acquisition mode (AcquireX DS-dd-MS2) coupled to an automated data processing software (Compound Discoverer™ 3.2). As a pilot research study, four human tear samples from volunteers were analyzed. Data were acquired in both positive and negative ionization modes and exact mass, isotope pattern, and MS2 spectra match were used for the tentative identification. Following this approach, 58 substances were identified, 47 in positive mode and 11 in negative mode, with an estimated concentration ranging from 0.1 to 9000 ng mL-1. Most of them were amino acids, hormones, metabolites, and pharmaceuticals. In order to validate the proposed method, the system suitability was evaluated and 29 commercial analytical standards of the tentatively identified substances were analyzed, of which 28 were confirmed obtaining a high identification accuracy (96.6 %). These results confirm that the screening tool presented in this work can facilitate the discovery of new metabolites, novel potential biomarkers, and substances to which the person is exposed, such as pollutants.
Collapse
Affiliation(s)
- Pablo Dualde
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO-Public Health), Valencia, Spain
| | - Pablo Miralles
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO-Public Health), Valencia, Spain.
| | - Cristina Peris-Martínez
- FISABIO-Medical Ophthalmology (FOM), Valencia, Spain; Department of Surgery (Ophthalmology), University of Valencia, Valencia, Spain
| | - Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO-Public Health), Valencia, Spain
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO-Public Health), Valencia, Spain
| |
Collapse
|
28
|
Soleimani M, Mahdavi Sharif P, Cheraqpour K, Koganti R, Masoumi A, Baharnoori SM, Salabati M, Djalilian AR. Ocular graft-versus-host disease (oGVHD): From A to Z. Surv Ophthalmol 2023; 68:697-712. [PMID: 36870423 PMCID: PMC10293080 DOI: 10.1016/j.survophthal.2023.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is a definitive therapy for a variety of disorders. One of the complications is acute graft-versus-host disease (aGVHD), which has a high mortality rate. Patients can also develop chronic graft-versus-host disease (cGVHD), a more indolent yet afflicting condition that affects up to 70% of patients. Ocular involvement (oGVHD) is one of the most prevalent presentations of cGVHD and can manifest as dry eye disease, meibomian gland dysfunction, keratitis, and conjunctivitis. Early recognition of ocular involvement using regular clinical assessments as well as robust biomarkers can aid in better management and prevention. Currently, the therapeutic strategies for the management of cGVHD, and oGVHD in particular, have mainly focused on the control of symptoms. There is an unmet need for translating the preclinical and molecular understandings of oGVHD into clinical practice. Herein, we have comprehensively reviewed the pathophysiology, pathologic features, and clinical characteristics of oGVHD and summarized the therapeutic landscape available to combat it. We also discuss the direction of future research regarding a more directed delineation of pathophysiologic underpinnings of oGVHD and the development of preventive interventions.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Pouya Mahdavi Sharif
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ahmad Masoumi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahbod Baharnoori
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mirataollah Salabati
- Department of Ophthalmology, Virginia Commonwealth University Health System, Richmond, VA, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
29
|
Chen Z, Xiang Z, Cui L, Qin X, Chen S, Jin H, Zou H. Significantly different results in the ocular surface microbiome detected by tear paper and conjunctival swab. BMC Microbiol 2023; 23:31. [PMID: 36707800 PMCID: PMC9883858 DOI: 10.1186/s12866-023-02775-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/16/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Great variation has been observed in the composition of the normal microbiota of the ocular surface, and therefore, in addition to differences in detection techniques, the method of collecting ocular surface specimens has a significant impact on the test results.The goal of this study is to ascertain whether the eye surface microbial communities detected by two different sampling methods are consistent and hence explore the feasibility of using tear test paper instead of conjunctival swabs to collect eye surface samples for microbial investigation. MATERIALS AND METHODS From July 15, 2021, to July 30, 2021, nonirritating tear test strips and conjunctival swabs of both eyes were used in 158 elderly people (> 60 years old) (79 diabetic and 79 nondiabetic adults) in Xinjing Community for high-throughput sequencing of the V3-V4 region of the 16S rRNA gene. The composition of the microbial communities in tear test paper and conjunctival swab samples was analyzed. RESULTS There was no statistically significant difference in Alpha diversity of ocular surface microorganisms represented by tear strip and conjunctival swab in diabetic group (P > 0.05), but there was statistically significant difference in Alpha diversity of ocular surface microorganisms detected by tear strip and conjunctival swab in nondiabetic group (P < 0.05). There were statistically significant differences in Beta diversity of ocular surface microorganisms detected by two sampling methods between diabetic group and nondiabetic group (P < 0.05). There were statistically significant differences in ocular surface microorganisms detected by tear strip method between diabetic group and nondiabetic group (P < 0.05), but there was no statistically significant difference in conjunctival swab method (P > 0.05). CONCLUSIONS Tear test paper and conjunctival swabs detect different compositions of microbes through two different techniques of eye surface microbe sampling. Tear test paper cannot completely replace conjunctival swab specimens for the study of microbes related to eye surface diseases.
Collapse
Affiliation(s)
- Zhangling Chen
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai, China ,grid.412478.c0000 0004 1760 4628Department of Ophthalmology, Shanghai General Hospital, Nanjing Medical University, Hongkou District, No. 100, Haining Road, Shanghai, 200080 China
| | - Zhaoyu Xiang
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lipu Cui
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinran Qin
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuli Chen
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huiyi Jin
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haidong Zou
- grid.412478.c0000 0004 1760 4628Department of Ophthalmology, Shanghai General Hospital, Nanjing Medical University, Hongkou District, No. 100, Haining Road, Shanghai, 200080 China ,grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China ,grid.412478.c0000 0004 1760 4628Shanghai Key Laboratory of Fundus Diseases, Shanghai, China ,Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, Shanghai, China ,grid.412478.c0000 0004 1760 4628National Clinical Research Center for Eye Diseases, Shanghai, China ,grid.412478.c0000 0004 1760 4628Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
30
|
Gijs M, Arumugam S, van de Sande N, Webers CAB, Sethu S, Ghosh A, Shetty R, Vehof J, Nuijts RMMA. Pre-analytical sample handling effects on tear fluid protein levels. Sci Rep 2023; 13:1317. [PMID: 36693949 PMCID: PMC9873914 DOI: 10.1038/s41598-023-28363-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Tear fluid is emerging as a source of non-invasive biomarkers, both for ocular and systemic conditions. Accurate quantification of tear proteins can be improved by standardizing methods to collect and process tear fluid. The aim of this study was to determine sample handling factors that may influence the tear protein biomarker profile. Tear fluid was collected using Schirmer's strips. Tear proteins were extracted by elution through centrifugation. Total protein content was determined using the bicinchoninic acid assay. Key concepts that apply to the entire sample processing cycle are tear sampling, tear storage, protein extraction and data normalization. Differences in wetting or migration length were observed between Schirmer's strips from different manufacturers, and between protein-free and protein-rich solutions. One unit of migration length (mm) did not correspond to one unit of volume (µL). A positive correlation (r = 0.6671, p < 0.0001) was observed between migration length and total tear protein content. The most beneficial storage conditions were strips that were not stored (+ 21.8%), or underwent 'wet' storage (+ 11.1%). Protein recovery was the highest in 400 µL extraction buffer and independent of protein molecular weight. This study helps to explain inter- and intra-variability that is often seen with tear biomarker research. This information is critical to ensure accuracy of test results, as tear biomarkers will be used for patient management and in clinical trials in the near future. This study also highlights the need for standardization of Schirmer's strip manufacturing, tear fluid processing and analyte concentration normalization.
Collapse
Affiliation(s)
- Marlies Gijs
- University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.
| | - Sinthuja Arumugam
- University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Nienke van de Sande
- University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Swaminathan Sethu
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Rohit Shetty
- University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Jelle Vehof
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Dutch Dry Eye Clinic, Velp, The Netherlands
- Department of Ophthalmology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Rudy M M A Nuijts
- University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
- Department of Ophthalmology, Zuyderland Medical Center, Heerlen, The Netherlands
| |
Collapse
|
31
|
Qin G, Chao C, Lattery LJ, Lin H, Fu W, Richdale K, Cai C. Tear proteomic analysis of young glasses, orthokeratology, and soft contact lens wearers. J Proteomics 2023; 270:104738. [PMID: 36191803 DOI: 10.1016/j.jprot.2022.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 02/01/2023]
Abstract
Contact lens-related ocular surface complications occur more often in teenagers and young adults. The purpose of this study was to determine changes in tear proteome of young patients wearing glasses (GL), orthokeratology lenses (OK), and soft contact lenses (SCL). Twenty-two young subjects (10-26 years of age) who were established GL, OK, and SCL wearers were recruited. Proteomic data were collected using a data-independent acquisition-parallel accumulation serial fragmentation workflow. In total, 3406 protein groups were identified, the highest number of proteins identified in Schirmer strip tears to date. Eight protein groups showed higher abundance, and 11 protein groups showed lower abundance in the SCL group compared to the OK group. In addition, the abundance of 82 proteins significantly differed in children compared to young adult GL wearers, among which 67 proteins were higher, and 15 proteins were lower in children. These 82 proteins were involved in inflammation, immune, and glycoprotein metabolic biological processes. In summary, this work identified over 3000 proteins in Schirmer Strip tears. The results indicated that tear proteomes were altered by orthokeratology and soft contact wear and age, which warrants further larger-scale study on the ocular surface responses of teenagers and young adults separately to contact lens wear. SIGNIFICANCE: In this work, we examined the tear proteomes of young patients wearing glasses, orthokeratology lenses, and soft contact lenses using a data-independent acquisition-parallel accumulation serial fragmentation (diaPASEF) workflow and identified 3406 protein groups in Schirmer strip tears. Nineteen protein groups showed significant abundance changes between orthokeratology and soft contact lens wearers. Moreover, eighty-two protein groups significantly differed in abundance in children and young adult glasses wearers. As a pilot study, this work provides a deep coverage of tear proteome and suggests the need to investigate ocular responses to contact lens wear separately for children and young adults.
Collapse
Affiliation(s)
- Guoting Qin
- College of Optometry, University of Houston, Houston, TX 77204, United States of America; Mass Spectrometry Laboratory, Department of Chemistry, University of Houston, Houston, TX 77204, United States of America.
| | - Cecilia Chao
- College of Optometry, University of Houston, Houston, TX 77204, United States of America; School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2023, Australia
| | - Lauren J Lattery
- College of Optometry, University of Houston, Houston, TX 77204, United States of America
| | - Hong Lin
- Department of Computer Science & Engineering Technology, University of Houston - Downtown, Houston, TX 77002, United States of America
| | - Wenjiang Fu
- Department of Mathematics, University of Houston, Houston, TX 77204, United States of America
| | - Kathryn Richdale
- College of Optometry, University of Houston, Houston, TX 77204, United States of America
| | - Chengzhi Cai
- Mass Spectrometry Laboratory, Department of Chemistry, University of Houston, Houston, TX 77204, United States of America.
| |
Collapse
|
32
|
Ozdalgic B, Gul M, Uygun ZO, Atçeken N, Tasoglu S. Emerging Applications of Electrochemical Impedance Spectroscopy in Tear Film Analysis. BIOSENSORS 2022; 12:827. [PMID: 36290964 PMCID: PMC9599721 DOI: 10.3390/bios12100827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Human tear film, with a flow rate of 1-3 µL/min, is a rich bodily fluid that transmits a variety of metabolites and hormones containing proteins, lipids and electrolytes that provide clues about ocular and systemic diseases. Analysis of disease biomarkers such as proteins, mRNA, enzymes and cytokines in the tear film, collected by noninvasive methods, can provide significant results for sustaining a predictive, preventive and personalized medicine regarding various diseases such as glaucoma, diabetic retinopathy, keratoconus, dry eye, cancer, Alzheimer's disease, Parkinson's disease and COVID-19. Electrochemical impedance spectroscopy (EIS) offers a powerful technique for analyzing these biomarkers. EIS detects electrical equivalent circuit parameters related to biorecognition of receptor-analyte interactions on the electrode surface. This method is advantageous as it performs a label-free detection and allows the detection of non-electroactive compounds that cannot be detected by direct electron transfer, such as hormones and some proteins. Here, we review the opportunities regarding the integration of EIS into tear fluid sampling approaches.
Collapse
Affiliation(s)
- Berin Ozdalgic
- Department of Mechanical Engineering, Engineering Faculty, Koç University, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Division of Optometry, School of Med Services & Techniques, Dogus University, Istanbul 34775, Türkiye
| | - Munire Gul
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
| | - Zihni Onur Uygun
- Department of Mechanical Engineering, Engineering Faculty, Koç University, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Department of Biochemistry, Faculty of Medicine, Kafkas University, Kars 36100, Türkiye
| | - Nazente Atçeken
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
| | - Savas Tasoglu
- Department of Mechanical Engineering, Engineering Faculty, Koç University, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Türkiye
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Türkiye
| |
Collapse
|
33
|
Goñi N, Martínez-Soroa I, Ibarrondo O, Azkargorta M, Elortza F, Galarreta DJ, Acera A. Tear proteome profile in eyes with keratoconus after intracorneal ring segment implantation or corneal crosslinking. Front Med (Lausanne) 2022; 9:944504. [PMID: 36203781 PMCID: PMC9531826 DOI: 10.3389/fmed.2022.944504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeKeratoconus (KC) is a corneal ectasia characterized by structural changes, resulting in progressive thinning and biomechanical weakening that can lead to worsening visual acuity due to irregular astigmatism. Corneal collagen Crosslinking (CXL) and Intracorneal Ring Segment (ICRS) are widely used treatments in KC disease, but the alterations they cause in biomechanical mediators are still poorly understood. The aim of this study was to analyze the tear proteome profile before and after treatments to identify biomarkers altered by surgery.Materials and methodsAn observational, prospective, case-control pilot study was conducted, analyzing tear samples from KC patients by nano-liquid chromatography-mass spectrometry (nLC-MS/MS). Data are available via ProteomeXchange with identifier PXD035655. Patients with KC who underwent ICRS surgery (n = 4), CXL (n = 4), and healthy subjects (Ctrl, n = 4) were included in this study. Clinical parameters were measured and tear samples were collected before and 18 months after surgery. Proteins with ≥2 expression change and p-value < 0.05 between groups and times were selected to study their role in post-operative corneal changes.ResultsThese analyses led to the identification of 447 tear proteins, some of which were dysregulated in KC patients. In comparisons between the two surgical groups and Ctrls, the biological processes that were altered in KC patients at baseline were those that were dysregulated as a consequence of the disease and not of the surgical intervention. Among the biological processes seen to be altered were: immune responses, cytoskeleton components, protein synthesis and metabolic reactions. When comparing the two treatment groups (ICRS and CXL), the process related to cytoskeleton components was the most altered, probably due to corneal thinning which was more pronounced in patients undergoing CXL.ConclusionThe changes observed in tears after 18 months post-operatively could be due to the treatments performed and the pathology. Among the deregulated proteins detected, A-kinase anchor protein 13 (AKAP-13) deserves special attention for its involvement in corneal thinning, and for its strong overexpression in the tears of patients with more active KC and faster disease progression. However, it should be kept in mind that this is a pilot study conducted in a small number of patients.
Collapse
Affiliation(s)
- Nahia Goñi
- Department of Ophthalmology, Hospital Universitario Donostia, San Sebastian, Spain
- Department of Ophthalmology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Itziar Martínez-Soroa
- Department of Ophthalmology, Hospital Universitario Donostia, San Sebastian, Spain
- Department of Ophthalmology, University of the Basque Country UPV/EHU, Leioa, Spain
| | | | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Derio, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Derio, Spain
| | - David J. Galarreta
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Arantxa Acera
- Department of Cell Biology and Histology, Experimental Ophthalmo-Biology Group (GOBE:www.ehu.eus/gobe), University of the Basque Country UPV/EHU, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- *Correspondence: Arantxa Acera,
| |
Collapse
|
34
|
Effect of poly(ethylene glycol) methacrylate on the ophthalmic properties of silicone hydrogel contact lenses. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Ponzini E, Santambrogio C, De Palma A, Mauri P, Tavazzi S, Grandori R. Mass spectrometry-based tear proteomics for noninvasive biomarker discovery. MASS SPECTROMETRY REVIEWS 2022; 41:842-860. [PMID: 33759206 PMCID: PMC9543345 DOI: 10.1002/mas.21691] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 05/05/2023]
Abstract
The lacrimal film has attracted increasing interest in the last decades as a potential source of biomarkers of physiopathological states, due to its accessibility, moderate complexity, and responsiveness to ocular and systemic diseases. High-performance liquid chromatography-mass spectrometry (LC-MS) has led to effective approaches to tear proteomics, despite the intrinsic limitations in sample amounts. This review focuses on the recent progress in strategy and technology, with an emphasis on the potential for personalized medicine. After an introduction on lacrimal-film composition, examples of applications to biomarker discovery are discussed, comparing approaches based on pooled-sample and single-tear analysis. Then, the most critical steps of the experimental pipeline, that is, tear collection, sample fractionation, and LC-MS implementation, are discussed with reference to proteome-coverage optimization. Advantages and challenges of the alternative procedures are highlighted. Despite the still limited number of studies, tear quantitative proteomics, including single-tear investigation, could offer unique contributions to the identification of low-invasiveness, sustained-accessibility biomarkers, and to the development of personalized approaches to therapy and diagnosis.
Collapse
Affiliation(s)
- Erika Ponzini
- Materials Science DepartmentUniversity of Milano‐BicoccaMilanItaly
| | - Carlo Santambrogio
- Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
| | - Antonella De Palma
- Institute for Biomedical TechnologiesNational Research Council (ITB‐CNR)Segrate (MI)Italy
| | - Pierluigi Mauri
- Institute for Biomedical TechnologiesNational Research Council (ITB‐CNR)Segrate (MI)Italy
| | - Silvia Tavazzi
- Materials Science DepartmentUniversity of Milano‐BicoccaMilanItaly
- COMiBUniversity of Milano‐BicoccaMilanItaly
| | - Rita Grandori
- Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
| |
Collapse
|
36
|
Proteases and Their Potential Role as Biomarkers and Drug Targets in Dry Eye Disease and Ocular Surface Dysfunction. Int J Mol Sci 2022; 23:ijms23179795. [PMID: 36077189 PMCID: PMC9456293 DOI: 10.3390/ijms23179795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder that leads to ocular discomfort, visual disturbance, and tear film instability. DED is accompanied by an increase in tear osmolarity and ocular surface inflammation. The diagnosis and treatment of DED still present significant challenges. Therefore, novel biomarkers and treatments are of great interest. Proteases are present in different tissues on the ocular surface. In a healthy eye, proteases are highly regulated. However, dysregulation occurs in various pathologies, including DED. With this review, we provide an overview of the implications of different families of proteases in the development and severity of DED, along with studies involving protease inhibitors as potential therapeutic tools. Even though further research is needed, this review aims to give suggestions for identifying novel biomarkers and developing new protease inhibitors.
Collapse
|
37
|
Hu L, Zhang T, Ma H, Pan Y, Wang S, Liu X, Dai X, Zheng Y, Lee LP, Liu F. Discovering the Secret of Diseases by Incorporated Tear Exosomes Analysis via Rapid-Isolation System: iTEARS. ACS NANO 2022; 16:11720-11732. [PMID: 35856505 DOI: 10.1021/acsnano.2c02531] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanoscale small extracellular vesicles (sEVs, exosomes) in tears allow us to investigate the multisignatures of diseases. However, the translations of tear sEVs for biomarker discovery and clinical diagnostics are practically limited by low recovery, long processing time, and small sample volume. Here, we report an incorporated tear-exosomes analysis via rapid-isolation system (iTEARS) via nanotechnology to discover the secrets of ocular disorders and systemic diseases. We isolate exosomes rapidly with high yield and purity from a few teardrops (∼10 μL) within 5 min via nanoporous membrane-based resonators for the quantitative detection and biomarker discovery through proteomic and transcriptomic analysis. We have identified 904 proteins, among which 228 proteins are discovered, 426 proteins are detected from exosomes of dry eye disease, and demonstrate CALML5, KRT6A, and S100P for the classification of dry eye disease. We have also investigated 484 miRNAs in tear exosomes and show miR-145-5p, miR-214-3p, miR-218-5p, and miR-9-5p are dysregulated during diabetic retinopathy development. We believe iTEARS can be used for improving molecular diagnostics via tears to identify ocular disorders, systemic diseases, and numerous other neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Liang Hu
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Wenzhou 325027, China
| | - Ting Zhang
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Huixiang Ma
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Wenzhou 325027, China
| | - Youjin Pan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Siyao Wang
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Wenzhou 325027, China
| | - Xiaoling Liu
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Wenzhou 325027, China
| | - Xiaodan Dai
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Wenzhou 325027, China
| | - Yuyang Zheng
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Luke P Lee
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, California 94720, United States
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| | - Fei Liu
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325001, China
| |
Collapse
|
38
|
Hou X, Zhang X, Zhang Z. Role of surfactant protein-D in ocular bacterial infection. Int Ophthalmol 2022; 42:3611-3623. [PMID: 35639299 PMCID: PMC9151998 DOI: 10.1007/s10792-022-02354-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/18/2022] [Indexed: 02/07/2023]
Abstract
Purpose Our review explains the role of surfactant protein D (SP-D) in different kinds of bacterial infection based on its presence in different ocular surface tissues. We discuss the potential role of SP-D against invasion by pathogens, with the aim of identifying new prospects for the possible mechanism of SP-D-mediated immune processes, and the diagnosis, prognosis, or treatment of ocular bacterial infection. Methods We reviewed articles about the role of SP-D in various ocular bacterial infections or infection-related ocular diseases through PubMed, Google Scholar, and the Web of Science databases. Results SP-D acts as an important immune factor that can resemble molecules in different polymerization states and that defends against pathogen invasion. The increased SP-D production and secretion in tear fluid and the cornea after ocular bacterial infections such as Staphylococcus aureus, Pseudomonas aeruginosa keratitis, and infection-related ocular diseases, was shown to have potential anti-inflammatory effects. The mechanisms of SP-D’s action against ocular bacterial infections include presenting, aggregating, opsonizing, and phagocytizing antigens, as well as regulating anti-bacterial immunity processes, including toll-like receptor-5 (TLR-5) pathway and IL-8 effect, TLR-4 and TLR-2 pathways and other possible ways remained to be elucidated in more detail. The findings demonstrate the potential of SP-D as an important clinical diagnostic biomarker prognosis predictor, and target for ocular immunotherapy. Conclusion SP-D participates in invasion by different ocular bacteria and infection-related ocular diseases through multiple immune mechanisms. This finding provides new prospects for the diagnosis, prognosis and treatment of ocular bacterial infection.
Collapse
Affiliation(s)
- Xinzhu Hou
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Xin Zhang
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Zhiyong Zhang
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China. .,Eye Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, People's Republic of China.
| |
Collapse
|
39
|
Suárez-Cortés T, Merino-Inda N, Benitez-Del-Castillo JM. Tear and ocular surface disease biomarkers: A diagnostic and clinical perspective for ocular allergies and dry eye disease. Exp Eye Res 2022; 221:109121. [PMID: 35605673 DOI: 10.1016/j.exer.2022.109121] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022]
Abstract
Validated biomarkers to be used as biological tools for managing ocular surface diseases (OSDs) are still an unmet need in daily clinical practice. Many studies have contributed to the already extensive list of candidate biomarkers for these disorders. Dry eye (DE) and ocular allergy (OA) are complex and multifactorial diseases, often coexisting and with overlapping symptoms. The purpose of this review is to present a comprehensive updated revision of the most relevant biomarkers of DE and OA, with an emphasis on quantitative analyses and correlations with clinical parameter data. Analysis of biomarkers common for these pathologies has highlighted an important physiological process. Namely, the interleukin proteins (IL-1α, IL-1β and IL-17), tumour necrotic factor (TNFα) and interferon gamma (IFNγ; Th1-Th7 pathway) and IL-4, IL-5 and IL-13 (Th2 pathway) seem to represent similar inflammatory mechanisms. Moreover, changes in the levels of mucins (MUC1, MUC2, MUC4, MUC5 and MUC16) are common alterations in the tear film mucous layer. We also examine the current state of medical devices and the main limitations to their use in clinical practice. Translational research in biomarkers for clinical practice depends on a feasible transition from the laboratory to the point-of-care. This requires large-scale, coordinated clinical validation campaigns to select the biomarkers with the highest specificity and sensitivity and significant correlation with clinical parameters. Moreover, technical limitations of multiplexed quantitation systems must be overcome to detect and measure the levels of several biomarkers in very small samples. To ensure the future of biomarker research, significant progress is necessary in a number of fields. There is an urgent need for global unification of clinical classification and diagnostics criteria. Widespread integration of proteomic and transcriptomic data is paramount for performing meaningful analyses using appropriate bioinformatics tools and artificial intelligence systems.
Collapse
|
40
|
Kim W, Kim S, Han J, Kim TG, Bang A, Choi HW, Min GE, Shin JH, Moon SW, Choi S. An excitation wavelength-optimized, stable SERS biosensing nanoplatform for analyzing adenoviral and AstraZeneca COVID-19 vaccination efficacy status using tear samples of vaccinated individuals. Biosens Bioelectron 2022; 204:114079. [PMID: 35151942 PMCID: PMC8824302 DOI: 10.1016/j.bios.2022.114079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022]
Abstract
We introduce a label-free surface-enhanced Raman scattering (SERS) biosensing platform equipped with metallic nanostructures that can identify the efficacy of Oxford-AstraZeneca (AZD1222) vaccine in vaccinated individuals using non-invasive tear samples. We confirmed the hypothesis that the tears of people who receive the AZD1222 vaccine may be similar to those of adenovirus epidemic keratoconjunctivitis patients since the Oxford-AstraZeneca vaccine is derived from a replication-deficient ChAdOx1 vector of chimpanzee adenovirus. Additionally, we confirmed the potential of the three markers for estimating the vaccination status via analyzing the signals emanating from antibodies or immunoglobulin G by-product using our label-free, SERS biosensing technique with a high reproducibility (<3% relative standard deviation), femtomole-scale limit of detection (1 × 10-14 M), and high SERS response of >108. Therefore, our label-free SERS biosensing nanoplatforms with long-term storage and robust stability will enable rapid and robust monitoring of the vaccine presence in vaccinated individuals.
Collapse
Affiliation(s)
- Wansun Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Soogeun Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jisang Han
- Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Tae Gi Kim
- Department of Ophthalmology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ayoung Bang
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyung Woo Choi
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Gyeong Eun Min
- Department of Urology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae-Ho Shin
- Department of Ophthalmology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Sang Woong Moon
- Department of Ophthalmology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Samjin Choi
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
41
|
Biochemistry of human tear film: A review. Exp Eye Res 2022; 220:109101. [DOI: 10.1016/j.exer.2022.109101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
|
42
|
Chao C, Lattery L, Qin G, Kamat M, Basso K, Lakkis C, Hasan M, Richdale K. Tear Proteomics of Children and Young Adult Soft Contact Lens, Orthokeratology and Spectacle Wearers - A Pilot Study. Curr Eye Res 2022; 47:832-842. [PMID: 35317695 DOI: 10.1080/02713683.2022.2047206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Contact lens complications occur more often in older teenagers and young adults compared to children. This study explored differences in tear proteomics between children and young adults wearing soft contact lens (SCL), orthokeratology or spectacles for >3 years. METHODS Twelve children and 12 sex- and correction-matched young adults were enrolled. Tears were collected via Schirmer strips for tear proteomic analysis using mass spectrometry. Proteome Discoverer was used for protein identification. Label-Free Quantitation was generated using Scaffold software; Fisher's Exact tests were used to compare proteins by age and correction groups. Generalized linear models were used to assess differences in overall protein levels by age and correction groups. A secondary analysis of proteins presented in >50% of samples of each group was conducted using the R/Bioconductor limma package. RESULTS There were 385 proteins present only in young adults while 183 were unique in children. There were 528 unique proteins to SCL, 96 to orthokeratology and 149 to spectacle wearers. Based on Fisher's Exact analyses, 126 proteins were higher in young adults than children (all P < 0.048). Forty-seven protein levels were higher in SCL compared to orthokeratology (all P < 0.01), 33 protein levels were higher in SCL compared to spectacles (all P < 0.01), 15 protein levels were higher in orthokeratology compared to spectacle wearers (all P < 0.01). Based on generalized linear models, young adults had higher overall protein levels than children (P = 0.001), SCL had higher protein levels than spectacle wearers (P < 0.001) but no differences were found between orthokeratology and spectacle wearers (P = 0.79). Based on the secondary analysis, only Antileukoproteinase was higher in the young adult orthokeratology group compared to other groups (P < 0.01). CONCLUSIONS Tear protein type and abundance differ by age and correction. Further research is needed to understand the effects of contact lens correction in children and young adults on the tear proteome.
Collapse
Affiliation(s)
- Cecilia Chao
- College of Optometry, University of Houston, Houston, TX, USA.,School of Optometry and Vision Science, University of New South Wales Sydney, Kensington, Australia
| | - Lauren Lattery
- College of Optometry, University of Houston, Houston, TX, USA
| | - Guoting Qin
- College of Optometry, University of Houston, Houston, TX, USA
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kari Basso
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Carol Lakkis
- College of Optometry, University of Houston, Houston, TX, USA
| | | | | |
Collapse
|
43
|
Lemos CN, da Silva LECM, Faustino JF, Fantucci MZ, Murashima ADAB, Adriano L, Alves M, Rocha EM. Oxidative Stress in the Protection and Injury of the Lacrimal Gland and the Ocular Surface: are There Perspectives for Therapeutics? Front Cell Dev Biol 2022; 10:824726. [PMID: 35359431 PMCID: PMC8963457 DOI: 10.3389/fcell.2022.824726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress (OS) is a major disruption in the physiology of the lacrimal functional unit (LFU). Antioxidant enzymes have dual protective activities: antioxidant and antimicrobial activities. Peroxidases have been indistinctly used as markers of the secretory activity of the LFU and implicated in the pathophysiology, diagnosis and treatment of dry eye disease (DED), even though they comprise a large family of enzymes that includes lactoperoxidase (LPO) and glutathione peroxidase (GPO), among others. Assays to measure and correlate OS with other local LFU phenomena have methodological limitations. Studies implicate molecules and reactions involved in OS as markers of homeostasis, and other studies identify them as part of the physiopathology of diseases. Despite these conflicting concepts and observations, it is clear that OS is influential in the development of DED. Moreover, many antioxidant strategies have been proposed for its treatment, including calorie restriction to nutritional supplementation. This review offers a critical analysis of the biological mechanisms, diagnostic outcomes, drug use, dietary supplements, and life habits that implicate the influence of OS on DED.
Collapse
Affiliation(s)
- Camila Nunes Lemos
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- *Correspondence: Camila Nunes Lemos,
| | - Lilian Eslaine Costa Mendes da Silva
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Jacqueline Ferreira Faustino
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Marina Zilio Fantucci
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Adriana de Andrade Batista Murashima
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Leidiane Adriano
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Monica Alves
- Department of Ophthalmology and Otorhinolaryngology, Faculty of Medical Sciences, State University of Campinas (Unicamp), Campinas, Brazil
| | - Eduardo Melani Rocha
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
44
|
Safonova TN, Medvedeva ES. [Modern possibilities of studying the composition of meibomian glands secretion]. Vestn Oftalmol 2022; 138:84-89. [PMID: 35234426 DOI: 10.17116/oftalma202213801184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As the main source of various lipids, the meibomian glands are involved in the formation of lipid layer of the tear film and the maintenance of homeostasis of the ocular surface. This process is directly dependent on the chemical composition and thickness of the lipid layer. In addition to lipid components, the meibum also contains various proteins that affect the properties of the tear film. The introduction of various modifications of mass spectrometry into clinical practice is a new diagnostic approach that allows obtaining information about the composition of meibomian glands secretion and tears.
Collapse
Affiliation(s)
- T N Safonova
- Research Institute of Eye Diseases, Moscow, Russia
| | | |
Collapse
|
45
|
Di Zazzo A, Coassin M, Surico PL, Bonini S. Age-related ocular surface failure: A narrative review. Exp Eye Res 2022; 219:109035. [DOI: 10.1016/j.exer.2022.109035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/28/2022] [Accepted: 03/13/2022] [Indexed: 12/26/2022]
|
46
|
Jones G, Lee TJ, Glass J, Rountree G, Ulrich L, Estes A, Sezer M, Zhi W, Sharma S, Sharma A. Comparison of Different Mass Spectrometry Workflows for the Proteomic Analysis of Tear Fluid. Int J Mol Sci 2022; 23:2307. [PMID: 35216421 PMCID: PMC8875482 DOI: 10.3390/ijms23042307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
The tear film is a multi-layer fluid that covers the corneal and conjunctival epithelia of the eye and provides lubrication, nutrients, and protection from the outside environment. Tear fluid contains a high concentration of proteins and has thus been recognized as a potential source of biomarkers for ocular disorders due to its proximity to disease sites on the ocular surface and the non-invasive nature of its collection. This is particularly true in the case of dry eye disease, which directly impacts the tear film and its components. Proteomic analysis of tear fluid is challenging mainly due to the wide dynamic range of proteins and the small sample volumes. However, recent advancements in mass spectrometry have revolutionized the field of proteomics enabling unprecedented depth, speed, and accuracy, even with small sample volumes. In this study using the Orbitrap Fusion Tribrid mass spectrometer, we compared four different mass spectrometry workflows for the proteomic analysis of tear fluid collected via Schirmer strips. We were able to establish a method of in-strip protein digestion that identified >3000 proteins in human tear samples from 11 healthy subjects. Our method offers a significant improvement in the number of proteins identified compared to previously reported methods without pooling samples.
Collapse
Affiliation(s)
- Garrett Jones
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Joshua Glass
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Grace Rountree
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lane Ulrich
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Amy Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mary Sezer
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
47
|
Hosseinian H, Hosseini S, Martinez-Chapa SO, Sher M. A Meta-Analysis of Wearable Contact Lenses for Medical Applications: Role of Electrospun Fiber for Drug Delivery. Polymers (Basel) 2022; 14:185. [PMID: 35012207 PMCID: PMC8747307 DOI: 10.3390/polym14010185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/14/2023] Open
Abstract
In recent years, wearable contact lenses for medical applications have attracted significant attention, as they enable continuous real-time recording of physiological information via active and noninvasive measurements. These devices play a vital role in continuous monitoring of intraocular pressure (IOP), noninvasive glucose monitoring in diabetes patients, drug delivery for the treatment of ocular illnesses, and colorblindness treatment. In specific, this class of medical devices is rapidly advancing in the area of drug loading and ocular drug release through incorporation of electrospun fibers. The electrospun fiber matrices offer a high surface area, controlled morphology, wettability, biocompatibility, and tunable porosity, which are highly desirable for controlled drug release. This article provides an overview of the advances of contact lens devices in medical applications with a focus on four main applications of these soft wearable devices: (i) IOP measurement and monitoring, (ii) glucose detection, (iii) ocular drug delivery, and (iv) colorblindness treatment. For each category and application, significant challenges and shortcomings of the current devices are thoroughly discussed, and new areas of opportunity are suggested. We also emphasize the role of electrospun fibers, their fabrication methods along with their characteristics, and the integration of diverse fiber types within the structure of the wearable contact lenses for efficient drug loading, in addition to controlled and sustained drug release. This review article also presents relevant statistics on the evolution of medical contact lenses over the last two decades, their strengths, and the future avenues for making the essential transition from clinical trials to real-world applications.
Collapse
Affiliation(s)
- Hamed Hosseinian
- School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (H.H.); (S.O.M.-C.)
| | - Samira Hosseini
- School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (H.H.); (S.O.M.-C.)
- Writing Lab, Institute for the Future of Education, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Sergio O. Martinez-Chapa
- School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (H.H.); (S.O.M.-C.)
| | - Mazhar Sher
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
Cystatin C and cystatin SN as possible soluble tumor markers in malignant uveal melanoma. Radiol Oncol 2021; 56:83-91. [PMID: 34957724 PMCID: PMC8884861 DOI: 10.2478/raon-2021-0049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/21/2021] [Indexed: 11/22/2022] Open
Abstract
Background The aim of the study was to determine the concentration of endogenous cystatin C and cystatin SN, as potential tumor biomarkers, in the serum and biological fluids of the eye in both healthy controls and patients with uveal melanoma. Patients and methods The concentration of both cystatins was determined in the intraocular fluid (IOF), tear fluid, and serum of patients with uveal melanoma and compared to baseline measurements in IOF, tears, serum, cerebral spinal fluid, saliva and urine of healthy controls. Results The concentration of cystatin C in all the biological matrices obtained from healthy controls significantly exceeded the concentration of cystatin SN and was independent of gender. Cystatin C concentrations in the tear fluid of patients with uveal melanoma (both the eye with the malignancy, as well as the contralateral, non-affected eye), were significantly greater than cystatin C concentrations in the tear fluid of healthy controls and was independent of tumor size. The concentration of cystatin SN in IOF of patients with uveal melanoma was significantly less than the corresponding concentration of cystatin SN in healthy controls. Conclusions The ratio of cystatins (CysC:CysSN) in both the serum and tear fluid, as well as the concentration of cystatin SN in IOF, would appear to strongly suggest the presence of uveal melanoma. It is further suggested that multiple diagnostic criteria be utilized if a patient is suspected of having uveal melanoma, such as determination of the cystatin C and cystatin SN concentrations in serum, tears, and IOF, ocular fundus and ultrasound imaging, and biopsy with histopathological evaluation.
Collapse
|
49
|
Proteomic Analysis of Tears and Conjunctival Cells Collected with Schirmer Strips Using timsTOF Pro: Preanalytical Considerations. Metabolites 2021; 12:metabo12010002. [PMID: 35050124 PMCID: PMC8778087 DOI: 10.3390/metabo12010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the human proteome profile of samples collected from whole (W) Schirmer strips (ScS) and their two parts—the bulb (B) and the rest of the strip (R)—with a comprehensive proteomic approach using a trapped ion mobility mass spectrometer, the timsTOF Pro. Eight ScS were collected from two healthy subjects at four different visits to be separated into three batches, i.e., 4W, 4B, and 4R. In total, 1582 proteins were identified in the W, B, and R batches. Among all identified proteins, binding proteins (43.4%) and those with catalytic activity (42.2%) constituted more than 80% of the molecular functions. The most represented biological processes were cellular processes (31.2%), metabolic processes (20.8%), and biological regulation (13.1%). Enzymes were the most represented protein class (41%), consisting mainly of hydrolases (47.5%), oxidoreductases (22.1%), and transferases (16.7%). The bulb (B), which is in contact with the conjunctiva, might collect both tear and cell proteins and therefore promote the identification of more proteins. Processing B and R separately before mass spectrometry (MS) analysis, combined with the high data acquisition speed and the addition of ion-mobility-based separation in the timsTOF Pro, can bring a new dimension to biomarker investigations of a limited sample such as tear fluid.
Collapse
|
50
|
Raposo AC, Lebrilla C, Portela RW, Xu G, Oriá AP. The glycoproteomics of hawk and caiman tears. BMC Vet Res 2021; 17:381. [PMID: 34886864 PMCID: PMC8656020 DOI: 10.1186/s12917-021-03088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 11/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glycoproteins are important tear components that participate in the stability of the ocular surface. However, the glycopeptides that are present in the tears of wild animals have not yet been described. This work aimed to describe the glycoproteomic profile of roadside hawk (Rupornis magnirostris) and caiman (Caiman latirostris) tears. METHODS Tears collected from 10 hawks and 70 caimans using Schirmer tear test strips were used in this study. The samples were submitted to trypsin digestion and separated using a reverse-phase column coupled to a mass spectrometer associated to a nanospray ionization source. The glycoproteins were categorized as: cellular components, biological processes and molecular function, according to the UniProt Knowledgebase. RESULTS As shown by the liquid chromatography-mass spectrometry, all glycopeptides found were classified as N-type. Of the 51 glycoproteins that were identified in the hawk tear film, the most abundant were ovotransferrin, globulins and complement system proteins. In the caiman tear film, 29 glycoproteins were identified. The most abundant caiman glycoproteins were uncharacterized proteins, ATPases, globulins and proteasome components. Ontological characterization revealed that the glycoproteins were extracellular, and the most identified molecular function was endopeptidase activity for both species. CONCLUSION Glycoproteins are abundant in the tear film of the bird and reptile species studied herein, and all these molecules were shown to have N-type modifications. Location at the extracellular space and an endopeptidase inhibitor activity were the main cell component and molecular function for both species, respectively. These profiles showed differences when compared to human tears, are possibly linked to adaptive processes and can be the basis for further studies on the search of disease biomarkers.
Collapse
Affiliation(s)
- Ana Cláudia Raposo
- School of Veterinary Medicine, Federal University of Bahia, Brazil, Salvador, 40.110-060, Brazil
| | - Carlito Lebrilla
- Chemistry Department, Mass Spectrometry Facilities Campus, University of California, Davis, CA, 95616-8585, USA
| | - Ricardo Wagner Portela
- Institute of Health Sciences, Federal University of Bahia, Brazil, Salvador, 40.110-100, Brazil
| | - Gege Xu
- Chemistry Department, Mass Spectrometry Facilities Campus, University of California, Davis, CA, 95616-8585, USA
| | - Arianne Pontes Oriá
- School of Veterinary Medicine, Federal University of Bahia, Brazil, Salvador, 40.110-060, Brazil.
| |
Collapse
|