1
|
Bremner JD, Russo SJ, Gallagher R, Simon NM. Acute and long-term effects of COVID-19 on brain and mental health: A narrative review. Brain Behav Immun 2025; 123:928-945. [PMID: 39500417 DOI: 10.1016/j.bbi.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/16/2024] [Accepted: 11/02/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND COVID infection has been associated with long term sequalae (Long COVID) which include neurological and behavioral effects in thousands of patients, but the etiology and scope of symptoms is not well understood. This paper reviews long term sequelae of COVID on brain and mental health in patients with the Long COVID syndrome. METHODS This was a literature review which queried databases for Pubmed, Psychinfo, and Medline for the following topics for January 1, 2020-July 15, 2023: Long COVID, PASC, brain, brain imaging, neurological, neurobiology, mental health, anxiety, depression. RESULTS Tens of thousands of patients have developed Long COVID, with the most common neurobehavioral symptoms anosmia (loss of smell) and fatigue. Anxiety and mood disorders are elevated and seen in about 25% of Long COVID patients. Neuropsychological testing studies show a correlation between symptom severity and cognitive dysfunction, while brain imaging studies show global decreases in gray matter and alterations in olfactory and other brain areas. CONCLUSIONS Studies to date show an increase in neurobehavioral disturbances in patients with Long COVID. Future research is needed to determine mechanisms.
Collapse
Affiliation(s)
- J Douglas Bremner
- Departments of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta Georgia, and the Atlanta VA Medical Center, Decatur, GA, USA; Nash Family Department Neuroscience and Brain-Body Research Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Department of Child and Adolescent Psychiatry, New York University (NYU) Langone Health, New York, NY, USA.
| | - Scott J Russo
- Nash Family Department Neuroscience and Brain-Body Research Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Richard Gallagher
- Department of Child and Adolescent Psychiatry, New York University (NYU) Langone Health, New York, NY, USA; Department of Psychiatry, New York University (NYU) Langone Health, New York, NY, USA
| | - Naomi M Simon
- Department of Psychiatry, New York University (NYU) Langone Health, New York, NY, USA
| |
Collapse
|
2
|
Cammarota F, De Icco R, Vaghi G, Corrado M, Bighiani F, Martinelli D, Pozo-Rosich P, Goadsby PJ, Tassorelli C. High-frequency episodic migraine: Time for its recognition as a migraine subtype? Cephalalgia 2024; 44:3331024241291578. [PMID: 39434667 DOI: 10.1177/03331024241291578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
BACKGROUND High-frequency episodic migraine (HFEM) has gained attention in the field of headache research and clinical practice. In this narrative review, we analyzed the available literature to assess the evidence that could help decide whether HFEM may represent a distinct clinical and/or biological entity within the migraine spectrum. METHODS The output of the literature search included 61 papers that were allocated to one of the following topics: (i) socio-demographic features and burden; (ii) clinical and therapeutic aspects; (iii) pathophysiology; and (iv) classification. RESULTS Multiple features differentiate subjects with HFEM from low-frequency episodic migraine and from chronic migraine: education, employment rates, quality of life, disability and psychiatric comorbidities load. Some evidence also suggests that HFEM bears a specific profile of activation of cortical and spinal pain-related pathways, possibly related to maladaptive plasticity. CONCLUSIONS Subjects with HFEM bear a distinctive clinical and socio-demographic profile within the episodic migraine group, with a higher disease burden and an increased risk of transitioning to chronic migraine. Recognizing HFEM as a distinct entity is an opportunity for the better understanding of migraine and the spectrum of frequency with which it can manifest, as well as for stimulating further research and more adequate public health approaches.
Collapse
Affiliation(s)
- Francescantonio Cammarota
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Gloria Vaghi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Michele Corrado
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Federico Bighiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Daniele Martinelli
- Headache Science and Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Patricia Pozo-Rosich
- Headache Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research, Universitat Autonoma of Barcelona, Barcelona, Spain
| | - Peter J Goadsby
- NIHR King's Clinical Research Facility, King's College London, London UK
- Dept. of Neurology, University of California, Los Angeles, CA, USA
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
3
|
Beaudreault CP, Chiang S, Sacknovitz A, Moss R, Brabant P, Zuckerman D, Dorilio JR, Spirollari E, Naftchi AF, McGoldrick PE, Muh CR, Wang R, Nolan B, Clare K, Sukul VV, Wolf SM. Association of reductions in rescue medication requirements with vagus nerve stimulation: Results of long-term community collected data from a seizure diary app. Epilepsy Behav 2024; 159:110008. [PMID: 39222605 DOI: 10.1016/j.yebeh.2024.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/26/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE To assess the impact of vagus nerve stimulation (VNS) on quality of life contributors such as rescue medications. METHODS Using the seizure diary application SeizureTracker™ database, we examined trends in rescue administration frequency before and after the first recorded VNS magnet swipe in patients with drug-resistant epilepsy who had 1) At least one VNS magnet swipe recorded in the diary, and 2) Recorded usage of a benzodiazepine rescue medication (RM) within 90 days prior to the first swipe. A paired Wilcoxon rank-sum test was used to assess changes in RM usage frequency between 30-, 60-, 90-, 180- and 360-day intervals beginning 30 days after first magnet swipe. Longitudinal changes in RM usage frequency were assessed with a generalized estimating equation model. RESULTS We analyzed data of 95 patients who met the inclusion criteria. Median baseline seizure frequency was 8.3 seizures per month, with median baseline rescue medication usage frequency of 2.1 administrations per month (SD 3.3). Significant reductions in rescue medication usage were observed in the 91 to 180 day interval after first VNS magnet swipe, and at 181 to 360 days and at 361 to 720 days, with the magnitude of reduction increasing over time. Decreases in rescue medication usage were sustained when controlling for patients who did not record rescue medication use after the first VNS magnet swipe (N=91). Significant predictors of reductions in rescue medication included baseline frequency of rescue medication usage and time after first VNS magnet swipe. SIGNIFICANCE This retrospective analysis suggests that usage of rescue medications is reduced following the start of VNS treatment in patients with epilepsy, and that the magnitude of reduction may progressively increase over time.
Collapse
Affiliation(s)
| | - Sharon Chiang
- Epilepsy AI, P.O. Box 225039, San Francisco, CA 94122, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, 94131, USA.
| | - Ariel Sacknovitz
- New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA.
| | - Robert Moss
- Seizure Tracker™, P.O. Box 8005, Springfield, VA 22151, USA.
| | - Paige Brabant
- New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA.
| | - David Zuckerman
- New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA.
| | | | - Eris Spirollari
- New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA.
| | | | - Patricia E McGoldrick
- New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA; Division of Pediatric Neurology, Department of Pediatrics, Maria Fareri Children's Hospital, 100 Woods Road, Valhalla, NY 10595, USA.
| | - Carrie R Muh
- New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA; Department of Neurosurgery, Westchester Medical Center, 100 Woods Road, Valhalla, NY 10595, USA.
| | - Richard Wang
- New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA.
| | - Bridget Nolan
- New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA; Department of Neurosurgery, Westchester Medical Center, 100 Woods Road, Valhalla, NY 10595, USA.
| | - Kevin Clare
- New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA; Department of Neurosurgery, Westchester Medical Center, 100 Woods Road, Valhalla, NY 10595, USA.
| | - Vishad V Sukul
- New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA; Department of Neurosurgery, Westchester Medical Center, 100 Woods Road, Valhalla, NY 10595, USA.
| | - Steven M Wolf
- New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA; Division of Pediatric Neurology, Department of Pediatrics, Maria Fareri Children's Hospital, 100 Woods Road, Valhalla, NY 10595, USA; Boston Children's Hospital Physicians, 40 Saw Mill River Road, Hawthorne, NY 10532, USA.
| |
Collapse
|
4
|
Costa V, Gianlorenço AC, Andrade MF, Camargo L, Menacho M, Arias Avila M, Pacheco-Barrios K, Choi H, Song JJ, Fregni F. Transcutaneous vagus nerve stimulation effects on chronic pain: systematic review and meta-analysis. Pain Rep 2024; 9:e1171. [PMID: 39131814 PMCID: PMC11309651 DOI: 10.1097/pr9.0000000000001171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/07/2024] [Accepted: 05/27/2024] [Indexed: 08/13/2024] Open
Abstract
Chronic pain is one of the major causes of disability with a tremendous impact on an individual's quality of life and on public health. Transcutaneous vagus nerve stimulation (tVNS) is a safe therapeutic for this condition. We aimed to evaluate its effects in adults with chronic pain. A comprehensive search was performed, including randomized controlled trials published until October 2023, which assessed the effects of noninvasive tVNS. Cohen's d effect size and 95% confidence intervals (CIs) were calculated, and random-effects meta-analyses were performed. Fifteen studies were included. The results revealed a mean effect size of 0.41 (95% CI 0.17-0.66) in favor of tVNS as compared with control, although a significant heterogeneity was observed (χ2 = 21.7, df = 10, P = 0.02, I 2 = 53.9%). However, when compared with nonactive controls, tVNS shows a larger effect size (0.79, 95% CI 0.25-1.33), although the number of studies was small (n = 3). When analyzed separately, auricular tVNS and cervical tVNS against control, it shows a significant small to moderate effect size, similar to that of the main analysis, respectively, 0.42 (95% CI 0.08-0.76, 8 studies) and 0.36 (95% CI 0.01-0.70, 3 studies). No differences were observed in the number of migraine days for the trials on migraine. This meta-analysis indicates that tVNS shows promise as an effective intervention for managing pain intensity in chronic pain conditions. We discuss the design of future trials to confirm these preliminary results, including sample size and parameters of stimulation.
Collapse
Affiliation(s)
- Valton Costa
- Neurosciences Laboratory, Physical Therapy Department, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
- Spaulding Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Carolyna Gianlorenço
- Neurosciences Laboratory, Physical Therapy Department, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
- Spaulding Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Fernanda Andrade
- Spaulding Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lucas Camargo
- Spaulding Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maryela Menacho
- Neurosciences Laboratory, Physical Therapy Department, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
- Spaulding Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mariana Arias Avila
- Study Group on Chronic Pain (NEDoC), Laboratory of Research on Electrophysical Agents (LAREF), Physical Therapy Department, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
| | - Kevin Pacheco-Barrios
- Spaulding Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, South Korea
- Neurive Co, Ltd, Gimhae, South Korea
| | - Jae-Jun Song
- Neurive Co, Ltd, Gimhae, South Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Seoul, South Korea
| | - Felipe Fregni
- Spaulding Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Ali MSS, Parastooei G, Raman S, Mack J, Kim YS, Chung MK. Genetic labeling of the nucleus of tractus solitarius neurons associated with electrical stimulation of the cervical or auricular vagus nerve in mice. Brain Stimul 2024; 17:987-1000. [PMID: 39173736 PMCID: PMC11555405 DOI: 10.1016/j.brs.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024] Open
Abstract
INTRODUCTION Vagus nerve stimulation (VNS) is clinically useful for treating epilepsy, depression, and chronic pain. Currently, cervical VNS (cVNS) treatment is well-established, while auricular VNS (aVNS) is under development. Vagal stimulation regulates functions in diverse brain regions; therefore, it is critical to better understand how electrically-evoked vagal inputs following cVNS and aVNS engage with different brain regions. OBJECTIVE As vagus inputs are predominantly transmitted to the nucleus of tractus solitarius (NTS), we directly compared the activation of NTS neurons by cVNS or aVNS and the brain regions directly projected by the activated NTS neurons in mice. METHODS We adopted the targeted recombination in active populations method, which allows for the activity-dependent, tamoxifen-inducible expression of mCherry-a reporter protein-in neurons specifically associated with cVNS or aVNS. RESULTS cVNS and aVNS induced comparable bilateral mCherry expressions in neurons within the NTS, especially in its caudal section (cNTS). However, the numbers of mCherry-expressing neurons within different subdivisions of cNTS was distinctive. In both cVNS and aVNS, anterogradely labeled mCherry-expressing axonal terminals were similarly observed across different areas of the forebrain, midbrain, and hindbrain. These terminals were enriched in the rostral ventromedial medulla, parabrachial nucleus, periaqueductal gray, thalamic nuclei, central amygdala, and the hypothalamus. Sex difference of cVNS- and aVNS-induced labeling of NTS neurons was modest. CONCLUSION The central projections of mCherry-expressing cNTS terminals are comparable between aVNS and cVNS, suggesting that cVNS and aVNS activate distinct but largely overlapping projections into the brain through the cNTS.
Collapse
Affiliation(s)
- Md Sams Sazzad Ali
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Ghazaal Parastooei
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Swarnalakshmi Raman
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Jalen Mack
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Yu Shin Kim
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Programs in Integrated Biomedical Sciences, Translational Sciences, Biomedical Engineering, Radiological Sciences, University of Texas Health Science Center at San Antonio, USA
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Guzzi G, Della Torre A, Bruni A, Lavano A, Bosco V, Garofalo E, La Torre D, Longhini F. Anatomo-physiological basis and applied techniques of electrical neuromodulation in chronic pain. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:29. [PMID: 38698460 PMCID: PMC11064427 DOI: 10.1186/s44158-024-00167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Chronic pain, a complex and debilitating condition, poses a significant challenge to both patients and healthcare providers worldwide. Conventional pharmacological interventions often prove inadequate in delivering satisfactory relief while carrying the risks of addiction and adverse reactions. In recent years, electric neuromodulation emerged as a promising alternative in chronic pain management. This method entails the precise administration of electrical stimulation to specific nerves or regions within the central nervous system to regulate pain signals. Through mechanisms that include the alteration of neural activity and the release of endogenous pain-relieving substances, electric neuromodulation can effectively alleviate pain and improve patients' quality of life. Several modalities of electric neuromodulation, with a different grade of invasiveness, provide tailored strategies to tackle various forms and origins of chronic pain. Through an exploration of the anatomical and physiological pathways of chronic pain, encompassing neurotransmitter involvement, this narrative review offers insights into electrical therapies' mechanisms of action, clinical utility, and future perspectives in chronic pain management.
Collapse
Affiliation(s)
- Giusy Guzzi
- Neurosurgery Department, "R. Dulbecco" Hospital, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Attilio Della Torre
- Neurosurgery Department, "R. Dulbecco" Hospital, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Andrea Bruni
- Anesthesia and Intensive Care Unit, "R. Dulbecco" Univesity Hospital, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy
| | - Angelo Lavano
- Neurosurgery Department, "R. Dulbecco" Hospital, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Vincenzo Bosco
- Anesthesia and Intensive Care Unit, "R. Dulbecco" Univesity Hospital, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy
| | - Eugenio Garofalo
- Anesthesia and Intensive Care Unit, "R. Dulbecco" Univesity Hospital, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy
| | - Domenico La Torre
- Neurosurgery Department, "R. Dulbecco" Hospital, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Federico Longhini
- Anesthesia and Intensive Care Unit, "R. Dulbecco" Univesity Hospital, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy.
| |
Collapse
|
7
|
Pak RJ, Ku JB, Abd-Elsayed A. Neuromodulation for Craniofacial Pain and Headaches. Biomedicines 2023; 11:3328. [PMID: 38137549 PMCID: PMC10741888 DOI: 10.3390/biomedicines11123328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Headaches and facial pain are highly prevalent diseases but are often difficult to treat. Though there have been significant advances in medical management, many continue to suffer from refractory pain. Neuromodulation has been gaining interest for its therapeutic purposes in many chronic pain conditions, including headaches and facial pain. There are many potential targets of neuromodulation for headache and facial pain, and some have more robust evidence in favor of their use than others. Despite the need for more high-quality research, the available evidence for the use of neuromodulation in treating headaches and facial pain is promising. Considering the suffering that afflicts patients with intractable headache, neuromodulation may be an appropriate tool to improve not only pain but also disability and quality of life.
Collapse
Affiliation(s)
- Ray J. Pak
- Department of Physical Medicine and Rehabilitation, New York Medical College, Metropolitan Hospital, New York, NY 10029, USA;
| | - Jun B. Ku
- Department of Physical Medicine and Rehabilitation, New York Medical College, Metropolitan Hospital, New York, NY 10029, USA;
| | - Alaa Abd-Elsayed
- Department of Anesthesia, University of Wisconsin, Madison, WI 53792, USA
| |
Collapse
|
8
|
Alam MJ, Chen JDZ. Non-invasive neuromodulation: an emerging intervention for visceral pain in gastrointestinal disorders. Bioelectron Med 2023; 9:27. [PMID: 37990288 PMCID: PMC10664460 DOI: 10.1186/s42234-023-00130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Gastrointestinal (GI) disorders, which extend from the esophagus to the anus, are the most common diseases of the GI tract. Among these disorders, pain, encompassing both abdominal and visceral pain, is a predominant feature, affecting the patients' quality of life and imposing a substantial financial burden on society. Pain signals originating from the gut intricately shape brain dynamics. In response, the brain sends appropriate descending signals to respond to pain through neuronal inhibition. However, due to the heterogeneous nature of the disease and its limited pathophysiological understanding, treatment options are minimal and often controversial. Consequently, many patients with GI disorders use complementary and alternative therapies such as neuromodulation to treat visceral pain. Neuromodulation intervenes in the central, peripheral, or autonomic nervous system by alternating or modulating nerve activity using electrical, electromagnetic, chemical, or optogenetic methodologies. Here, we review a few emerging noninvasive neuromodulation approaches with promising potential for alleviating pain associated with functional dyspepsia, gastroparesis, irritable bowel syndrome, inflammatory bowel disease, and non-cardiac chest pain. Moreover, we address critical aspects, including the efficacy, safety, and feasibility of these noninvasive neuromodulation methods, elucidate their mechanisms of action, and outline future research directions. In conclusion, the emerging field of noninvasive neuromodulation appears as a viable alternative therapeutic avenue for effectively managing visceral pain in GI disorders.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
9
|
Bremner JD, Gazi AH, Lambert TP, Nawar A, Harrison AB, Welsh JW, Vaccarino V, Walton KM, Jaquemet N, Mermin-Bunnell K, Mesfin H, Gray TA, Ross K, Saks G, Tomic N, Affadzi D, Bikson M, Shah AJ, Dunn KE, Giordano NA, Inan OT. Noninvasive Vagal Nerve Stimulation for Opioid Use Disorder. ANNALS OF DEPRESSION AND ANXIETY 2023; 10:1117. [PMID: 38074313 PMCID: PMC10699253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Background Opioid Use Disorder (OUD) is an escalating public health problem with over 100,000 drug overdose-related deaths last year most of them related to opioid overdose, yet treatment options remain limited. Non-invasive Vagal Nerve Stimulation (nVNS) can be delivered via the ear or the neck and is a non-medication alternative to treatment of opioid withdrawal and OUD with potentially widespread applications. Methods This paper reviews the neurobiology of opioid withdrawal and OUD and the emerging literature of nVNS for the application of OUD. Literature databases for Pubmed, Psychinfo, and Medline were queried for these topics for 1982-present. Results Opioid withdrawal in the context of OUD is associated with activation of peripheral sympathetic and inflammatory systems as well as alterations in central brain regions including anterior cingulate, basal ganglia, and amygdala. NVNS has the potential to reduce sympathetic and inflammatory activation and counter the effects of opioid withdrawal in initial pilot studies. Preliminary studies show that it is potentially effective at acting through sympathetic pathways to reduce the effects of opioid withdrawal, in addition to reducing pain and distress. Conclusions NVNS shows promise as a non-medication approach to OUD, both in terms of its known effect on neurobiology as well as pilot data showing a reduction in withdrawal symptoms as well as physiological manifestations of opioid withdrawal.
Collapse
Affiliation(s)
- J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA
- Atlanta Veterans Affairs Healthcare System, Decatur GA
| | - Asim H Gazi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Tamara P Lambert
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Afra Nawar
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Anna B Harrison
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Justine W Welsh
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta GA
| | - Kevin M Walton
- Clinical Research Grants Branch, Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, Bethesda, MD
| | - Nora Jaquemet
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Kellen Mermin-Bunnell
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Hewitt Mesfin
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Trinity A Gray
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Keyatta Ross
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Georgia Saks
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Nikolina Tomic
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Danner Affadzi
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY
| | - Amit J Shah
- Atlanta Veterans Affairs Healthcare System, Decatur GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta GA
| | - Kelly E Dunn
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD
| | | | - Omer T Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
10
|
Yu X, Kong Q. Potential value of neuroimmunotherapy for COVID-19: efficacies and mechanisms of vagus nerve stimulation, electroacupuncture, and cholinergic drugs. Front Immunol 2023; 14:1197467. [PMID: 37475861 PMCID: PMC10355152 DOI: 10.3389/fimmu.2023.1197467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/23/2023] [Indexed: 07/22/2023] Open
Abstract
COVID-19 is an inflammatory disease with multiple organs involved, mainly respiratory symptoms. Although the majority of patients with COVID-19 present with a mild to moderate self-limited course of illness, about 5-10% of patients with inflammatory disorders in severe COVID-19 have life-threatening progression. With the exception of a few drugs that have shown outstanding anti-COVID-19 effects, the efficacy of most drugs remains controversial. An increasing number of animal and clinical studies have shown that neuromodulation has a significant effect on reducing inflammatory markers of COVID-19, thus exerting an effective neuroimmunotherapeutic value. Currently, the main neuroimmunomodulatory measures effective against COVID-19 include vagus nerve stimulation, electroacupuncture, and cholinergic drugs. In this review, we will summarize the research progress of potential value of this neuroimmunotherapy measures for COVID-19 and elaborate its efficacies and mechanisms, in order to provide reliable evidence for clinical intervention.
Collapse
Affiliation(s)
- Xianqiang Yu
- Women and Children's Hospital Affiliated to Qingdao University, Heart center, Qingdao, China
- University of California, Los Angeles, Department of Cardiology, Los Angeles, CA, United States
| | - Qingming Kong
- School of Laboratory Medicine and Bioengineering, Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
11
|
Shao P, Li H, Jiang J, Guan Y, Chen X, Wang Y. Role of Vagus Nerve Stimulation in the Treatment of Chronic Pain. Neuroimmunomodulation 2023; 30:167-183. [PMID: 37369181 PMCID: PMC10614462 DOI: 10.1159/000531626] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Vagus nerve stimulation (VNS) can modulate vagal activity and neuro-immune communication. Human and animal studies have provided growing evidence that VNS can produce analgesic effects in addition to alleviating refractory epilepsy and depression. The vagus nerve (VN) projects to many brain regions related to pain processing, which can be affected by VNS. In addition to neural regulation, the anti-inflammatory property of VNS may also contribute to its pain-inhibitory effects. To date, both invasive and noninvasive VNS devices have been developed, with noninvasive devices including transcutaneous stimulation of auricular VN or carotid VN that are undergoing many clinical trials for chronic pain treatment. This review aimed to provide an update on both preclinical and clinical studies of VNS in the management for chronic pain, including fibromyalgia, abdominal pain, and headaches. We further discuss potential underlying mechanisms for VNS to inhibit chronic pain.
Collapse
Affiliation(s)
- Peiqi Shao
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Huili Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jia Jiang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Xueming Chen
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Villar-Martinez MD, Goadsby PJ. Non-invasive neuromodulation of the cervical vagus nerve in rare primary headaches. FRONTIERS IN PAIN RESEARCH 2023; 4:1062892. [PMID: 36994091 PMCID: PMC10040883 DOI: 10.3389/fpain.2023.1062892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
Primary headache disorders can be remarkably disabling and the therapeutic options available are usually limited to medication with a high rate of adverse events. Here, we discuss the mechanism of action of non-invasive vagal nerve stimulation, as well as the findings of the main studies involving patients with primary headaches other than migraine or cluster headache, such as hemicrania continua, paroxysmal hemicrania, cough headache, or short-lasting neuralgiform headache attacks (SUNCT/SUNA), in a narrative analysis. A bibliographical search of low-prevalence disorders such as rare primary headaches retrieves a moderate number of studies, usually underpowered. Headache intensity, severity, and duration showed a clinically significant reduction in the majority, especially those involving indomethacin-responsive headaches. The lack of response of some patients with a similar diagnosis could be due to a different stimulation pattern, technique, or total dose. The use of non-invasive vagal nerve stimulation for the treatment of primary headache disorders represents an excellent option for patients with these debilitating and otherwise refractory conditions, or that cannot tolerate several lines of preventive medication, and should always be considered before contemplating invasive, non-reversible stimulation techniques.
Collapse
Affiliation(s)
- Maria Dolores Villar-Martinez
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College Hospital, London, United Kingdom
| | - Peter J. Goadsby
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College Hospital, London, United Kingdom
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
- Correspondence: Peter J. Goadsby
| |
Collapse
|
13
|
Elamin ABA, Forsat K, Senok SS, Goswami N. Vagus Nerve Stimulation and Its Cardioprotective Abilities: A Systematic Review. J Clin Med 2023; 12:jcm12051717. [PMID: 36902505 PMCID: PMC10003006 DOI: 10.3390/jcm12051717] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Despite the vagus nerve stimulator (VNS) being used in neuroscience, it has recently been highlighted that it has cardioprotective functions. However, many studies related to VNS are not mechanistic in nature. This systematic review aims to focus on the role of VNS in cardioprotective therapy, selective vagus nerve stimulators (sVNS), and their functional capabilities. A systemic review of the current literature was conducted on VNS, sVNS, and their ability to induce positive effects on arrhythmias, cardiac arrest, myocardial ischemia/reperfusion injury, and heart failure. Both experimental and clinical studies were reviewed and assessed separately. Of 522 research articles retrieved from literature archives, 35 met the inclusion criteria and were included in the review. Literature analysis proves that combining fiber-type selectivity with spatially-targeted vagus nerve stimulation is feasible. The role of VNS as a tool for modulating heart dynamics, inflammatory response, and structural cellular components was prominently seen across the literature. The application of transcutaneous VNS, as opposed to implanted electrodes, provides the best clinical outcome with minimal side effects. VNS presents a method for future cardiovascular treatment that can modulate human cardiac physiology. However, continued research is needed for further insight.
Collapse
Affiliation(s)
| | - Kowthar Forsat
- College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Solomon Silas Senok
- College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Nandu Goswami
- Institute of Physiology (Gravitational Physiology and Medicine), Medical University of Graz, 8036 Graz, Austria
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
- Correspondence:
| |
Collapse
|
14
|
George N, Tepper SJ. Novel Migraine Treatments: A Review. J Oral Facial Pain Headache 2023; 37:25-32. [PMID: 36917235 PMCID: PMC10586574 DOI: 10.11607/ofph.3163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/29/2022] [Indexed: 03/16/2023]
Abstract
Aims: To present a review of the mechanisms of action, available clinical data, and safety profiles of novel migraine therapeutics to inform practice. Methods: PubMed, Medline, and Google Scholar were searched for randomized controlled trials (24 publications), review articles (15 publications), and other pertinent literature (16 publications) discussing the novel migraine therapeutics available between the years 2010 and 2021. All publications were reviewed to assess the mechanism of action, relevant clinical data, and side effect profile for each novel treatment. Therapeutic gain was also recorded in studies that included a placebo arm. Results: A total of 55 studies were included in the final analysis. In the preventive treatment of migraine, novel medications target calcitonin gene-related peptide (CGRP) and fall into either the monoclonal anti-CGRP or gepant class. For the acute treatment of migraine, novel medications fall into either the ditan or gepant class. Several medical devices have been developed for the acute and preventive treatment of migraine. Conclusion: Novel therapeutics are available for both the prevention and acute treatment of migraine headaches. These new medications and neuromodulatory devices appear overall to be safe and effective in the management of migraine headaches.
Collapse
|
15
|
Bascour-Sandoval C, Gajardo-Burgos R, Muñoz-Poblete C, Riedemann-González P, Erices-Salas S, Martínez-Molina A, Gálvez-García G. Transcutaneous Vagal Stimulation in Knee Osteoarthritis (TRAVKO): Protocol of a Superiority, Outcome Assessor- and Participant-Blind, Randomised Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:311. [PMID: 36612632 PMCID: PMC9819338 DOI: 10.3390/ijerph20010311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Current treatments for knee osteoarthritis (KOA) are partially effective. It is, therefore, necessary to find new strategies that can complement the existing ones. In this scenario, transcutaneous vagal stimulation (TVS) neurophysiological effects could be a helpful solution. However, there is no evidence of the efficacy of TVS in KOA. This trial aims to assess the efficacy of TVS in decreasing pain in participants aged 55 years or older with KOA. A randomised controlled, two-arm, double-blind (participants and outcome assessors) and clinical superiority trial will be conducted for 70 patients with KOA. All the participants will carry out an exercise program. It consists of 12 sessions over four weeks. In addition, they will be randomly assigned to (1) active TVS plus physical exercise or (2) sham TVS plus physical exercise. The application of active TVS consists of electronic stimulation of the auricular concha using a portable device. Sham TVS condition consists of the stimulation of the earlobe that does not cause neurophysiological effects. The primary outcome is the reduction in pain intensity. Additionally, functional capacity, physical performance, pain-related interference, pain-related distress, quality of life in older adults and global change will be measured. Assessments will be conducted at the beginning of the study (baseline), at the end of the intervention and after 1 and 3 months of follow-up. This trial will generate evidence regarding the efficacy of TVS in pain perception in individuals with KOA. This information will serve as an input in the clinical decision-making on the use or non-use of TVS in individuals with KOA. Thus, if the efficacy of TVS is confirmed, a new therapeutic tool may be included in the rehabilitation of individuals with KOA.
Collapse
Affiliation(s)
- Claudio Bascour-Sandoval
- Departamento de Ciencias de la Rehabilitación, Universidad de La Frontera, Temuco 4780000, Chile
- Programa de Magister en Terapía Física Mención Musculoesquelética, Departamento de Ciencias de la Rehabilitación, Universidad de La Frontera, Temuco 4780000, Chile
| | - Rubén Gajardo-Burgos
- Programa de Magister en Terapía Física Mención Musculoesquelética, Departamento de Ciencias de la Rehabilitación, Universidad de La Frontera, Temuco 4780000, Chile
- Instituto de Aparato Locomotor y Rehabilitación, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Claudio Muñoz-Poblete
- Departamento de Ciencias de la Rehabilitación, Universidad de La Frontera, Temuco 4780000, Chile
- Programa de Magister en Terapía Física Mención Musculoesquelética, Departamento de Ciencias de la Rehabilitación, Universidad de La Frontera, Temuco 4780000, Chile
| | | | | | - Agustín Martínez-Molina
- Departamento de Psicología Social y Metodología, Facultad de Psicología, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Germán Gálvez-García
- Departamento de Psicología, Universidad de La Frontera, Temuco 4780000, Chile
- Departamento de Psicología Básica, Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
16
|
Gazi AH, Harrison AB, Lambert TP, Nawar A, Obideen M, Driggers EG, Vaccarino V, Shah AJ, Rozell CJ, Bikson M, Welsh JW, Inan OT, Bremner JD. Pain is reduced by transcutaneous cervical vagus nerve stimulation and correlated with cardiorespiratory variability measures in the context of opioid withdrawal. FRONTIERS IN PAIN RESEARCH 2022; 3:1031368. [PMID: 36438447 PMCID: PMC9682166 DOI: 10.3389/fpain.2022.1031368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
Over 100,000 individuals in the United States lost their lives secondary to drug overdose in 2021, with opioid use disorder (OUD) being a leading cause. Pain is an important component of opioid withdrawal, which can complicate recovery from OUD. This study's objectives were to assess the effects of transcutaneous cervical vagus nerve stimulation (tcVNS), a technique shown to reduce sympathetic arousal in other populations, on pain during acute opioid withdrawal and to study pain's relationships with objective cardiorespiratory markers. Twenty patients with OUD underwent opioid withdrawal while participating in a two-hour protocol. The protocol involved opioid cues to induce opioid craving and neutral conditions for control purposes. Adhering to a double-blind design, patients were randomly assigned to receive active tcVNS (n = 9) or sham stimulation (n = 11) throughout the protocol. At the beginning and end of the protocol, patients' pain levels were assessed using the numerical rating scale (0-10 scale) for pain (NRS Pain). During the protocol, electrocardiogram and respiratory effort signals were measured, from which heart rate variability (HRV) and respiration pattern variability (RPV) were extracted. Pre- to post- changes (denoted with a Δ) were computed for all measures. Δ NRS Pain scores were lower (P = 0.045) for the active group (mean ± standard deviation: -0.8 ± 2.4) compared to the sham group (0.9 ± 1.0). A positive correlation existed between Δ NRS pain scores and Δ RPV (Spearman's ρ = 0.46; P = 0.04). Following adjustment for device group, a negative correlation existed between Δ HRV and Δ NRS Pain (Spearman's ρ = -0.43; P = 0.04). This randomized, double-blind, sham-controlled pilot study provides the first evidence of tcVNS-induced reductions in pain in patients with OUD experiencing opioid withdrawal. This study also provides the first quantitative evidence of an association between breathing irregularity and pain. The correlations between changes in pain and changes in objective physiological markers add validity to the data. Given the clinical importance of reducing pain non-pharmacologically, the findings support the need for further investigation of tcVNS and wearable cardiorespiratory sensing for pain monitoring and management in patients with OUD.
Collapse
Affiliation(s)
- Asim H. Gazi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Anna B. Harrison
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Tamara P. Lambert
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Afra Nawar
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Malik Obideen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Emily G. Driggers
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Amit J. Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States
- Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Christopher J. Rozell
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States
| | - Justine W. Welsh
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - J. Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
17
|
Paccione CE, Stubhaug A, Diep LM, Rosseland LA, Jacobsen HB. Meditative-based diaphragmatic breathing vs. vagus nerve stimulation in the treatment of fibromyalgia-A randomized controlled trial: Body vs. machine. Front Neurol 2022; 13:1030927. [PMID: 36438970 PMCID: PMC9687386 DOI: 10.3389/fneur.2022.1030927] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/13/2022] [Indexed: 07/25/2023] Open
Abstract
IMPORTANCE Vagus nerve innervation via electrical stimulation and meditative-based diaphragmatic breathing may be promising treatment avenues for fibromyalgia. OBJECTIVE Explore and compare the treatment effectiveness of active and sham transcutaneous vagus nerve stimulation (tVNS) and meditative-based diaphragmatic breathing (MDB) for fibromyalgia. DESIGN Participants enrolled from March 2019-October 2020 and randomly assigned to active tVNS (n = 28), sham tVNS (n = 29), active MDB (n = 29), or sham MDB (n = 30). Treatments were self-delivered at home for 15 min/morning and 15 min/evening for 14 days. Follow-up was at 2 weeks. SETTING Outpatient pain clinic in Oslo, Norway. PARTICIPANTS 116 adults aged 18-65 years with severe fibromyalgia were consecutively enrolled and randomized. 86 participants (74%) had an 80% treatment adherence and 107 (92%) completed the study at 2 weeks; 1 participant dropped out due to adverse effects from active tVNS. INTERVENTIONS Active tVNS is placed on the cymba conchae of the left ear; sham tVNS is placed on the left earlobe. Active MDB trains users in nondirective meditation with deep breathing; sham MDB trains users in open-awareness meditation with paced breathing. MAIN OUTCOMES AND MEASURES Primary outcome was change from baseline in ultra short-term photoplethysmography-measured cardiac-vagal heart rate variability at 2 weeks. Prior to trial launch, we hypothesized that (1) those randomized to active MDB or active tVNS would display greater increases in heart rate variability compared to those randomized to sham MDB or sham tVNS after 2-weeks; (2) a change in heart rate variability would be correlated with a change in self-reported average pain intensity; and (3) active treatments would outperform sham treatments on all pain-related secondary outcome measures. RESULTS No significant across-group changes in heart rate variability were found. Furthermore, no significant correlations were found between changes in heart rate variability and average pain intensity during treatment. Significant across group differences were found for overall FM severity yet were not found for average pain intensity. CONCLUSIONS AND RELEVANCE These findings suggest that changes in cardiac-vagal heart rate variability when recorded with ultra short-term photoplethysmography in those with fibromyalgia may not be associated with treatment-specific changes in pain intensity. Further research should be conducted to evaluate potential changes in long-term cardiac-vagal heart rate variability in response to noninvasive vagus nerve innervation in those with fibromyalgia. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT03180554, Identifier: NCT03180554.
Collapse
Affiliation(s)
- Charles Ethan Paccione
- Division of Emergencies and Critical Care, Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Mind-Body Lab, Department of Psychology, University of Oslo, Oslo, Norway
| | - Audun Stubhaug
- Division of Emergencies and Critical Care, Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lien My Diep
- Oslo Center for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Leiv Arne Rosseland
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Emergencies and Critical Care, Department of Research and Development, Oslo University Hospital, Oslo, Norway
| | - Henrik Børsting Jacobsen
- Division of Emergencies and Critical Care, Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway
- Mind-Body Lab, Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Asif N, Patel A, Vedantam D, Poman DS, Motwani L. Migraine With Comorbid Depression: Pathogenesis, Clinical Implications, and Treatment. Cureus 2022; 14:e25998. [PMID: 35865445 PMCID: PMC9290761 DOI: 10.7759/cureus.25998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 11/05/2022] Open
|
19
|
Ahmed U, Chang YC, Zafeiropoulos S, Nassrallah Z, Miller L, Zanos S. Strategies for precision vagus neuromodulation. Bioelectron Med 2022; 8:9. [PMID: 35637543 PMCID: PMC9150383 DOI: 10.1186/s42234-022-00091-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
The vagus nerve is involved in the autonomic regulation of physiological homeostasis, through vast innervation of cervical, thoracic and abdominal visceral organs. Stimulation of the vagus with bioelectronic devices represents a therapeutic opportunity for several disorders implicating the autonomic nervous system and affecting different organs. During clinical translation, vagus stimulation therapies may benefit from a precision medicine approach, in which stimulation accommodates individual variability due to nerve anatomy, nerve-electrode interface or disease state and aims at eliciting therapeutic effects in targeted organs, while minimally affecting non-targeted organs. In this review, we discuss the anatomical and physiological basis for precision neuromodulation of the vagus at the level of nerve fibers, fascicles, branches and innervated organs. We then discuss different strategies for precision vagus neuromodulation, including fascicle- or fiber-selective cervical vagus nerve stimulation, stimulation of vagal branches near the end-organs, and ultrasound stimulation of vagus terminals at the end-organs themselves. Finally, we summarize targets for vagus neuromodulation in neurological, cardiovascular and gastrointestinal disorders and suggest potential precision neuromodulation strategies that could form the basis for effective and safe therapies.
Collapse
Affiliation(s)
- Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Yao-Chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Stefanos Zafeiropoulos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Zeinab Nassrallah
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Larry Miller
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA.
| |
Collapse
|
20
|
Goggins E, Mitani S, Tanaka S. Clinical perspectives on vagus nerve stimulation: present and future. Clin Sci (Lond) 2022; 136:695-709. [PMID: 35536161 PMCID: PMC9093220 DOI: 10.1042/cs20210507] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/30/2022]
Abstract
The vagus nerve, the great wanderer, is involved in numerous processes throughout the body and vagus nerve stimulation (VNS) has the potential to modulate many of these functions. This wide-reaching capability has generated much interest across a range of disciplines resulting in several clinical trials and studies into the mechanistic basis of VNS. This review discusses current preclinical and clinical evidence supporting the efficacy of VNS in different diseases and highlights recent advancements. Studies that provide insights into the mechanism of VNS are considered.
Collapse
Affiliation(s)
- Eibhlin Goggins
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, U.S.A
| | - Shuhei Mitani
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinji Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Liu TT, Morais A, Takizawa T, Mulder I, Simon BJ, Chen SP, Wang SJ, Ayata C, Yen JC. Efficacy profile of noninvasive vagus nerve stimulation on cortical spreading depression susceptibility and the tissue response in a rat model. J Headache Pain 2022; 23:12. [PMID: 35062860 PMCID: PMC8903561 DOI: 10.1186/s10194-022-01384-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
Background Noninvasive vagus nerve stimulation (nVNS) has recently emerged as a promising therapy for migraine. We previously demonstrated that vagus nerve stimulation inhibits cortical spreading depression (CSD), the electrophysiological event underlying migraine aura and triggering headache; however, the optimal nVNS paradigm has not been defined. Methods Various intensities and doses of nVNS were tested to improve efficacy on KCl-evoked CSD frequency and electrical threshold of CSD in a validated rat model. Chronic efficacy was evaluated by daily nVNS delivery for four weeks. We also examined the effects of nVNS on neuroinflammation and trigeminovascular activation by western blot and immunohistochemistry. Results nVNS suppressed susceptibility to CSD in an intensity-dependent manner. Two 2-minute nVNS 5 min apart afforded the highest efficacy on electrical CSD threshold and frequency of KCl-evoked CSD. Daily nVNS for four weeks did not further enhance efficacy over a single nVNS 20 min prior to CSD. The optimal nVNS also attenuated CSD-induced upregulation of cortical cyclooxygenase-2, calcitonin gene-related peptide in trigeminal ganglia, and c-Fos expression in trigeminal nucleus caudalis. Conclusions Our study provides insight on optimal nVNS parameters to suppress CSD and suggests its benefit on CSD-induced neuroinflammation and trigeminovascular activation in migraine treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01384-1.
Collapse
|
22
|
Veiz E, Kieslich SK, Czesnik D, Herrmann-Lingen C, Meyer T, Staab J. Increased Concentrations of Circulating Interleukins following Non-Invasive Vagus Nerve Stimulation: Results from a Randomized, Sham-Controlled, Crossover Study in Healthy Subjects. Neuroimmunomodulation 2022; 29:450-459. [PMID: 35576915 DOI: 10.1159/000524646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The vagus nerve constitutes the main component of the parasympathetic nervous system and plays an important role in the regulation of neuro-immune responses. Invasive stimulation of the vagus nerve produces anti-inflammatory effects; however, data on humoral immune responses of transcutaneous vagus nerve stimulation (tVNS) are rare. Therefore, the present study investigated changes in serum cytokine concentrations of interleukin-1β (IL-1β), IL-6, IL-8, and tumor necrosis factor α (TNFα) following a short-term, non-invasive stimulation of the vagus nerve. METHODS Whole blood samples were collected before and after a short-lived application of active tVNS at the inner tragus as well as sham stimulation of the earlobe. Cytokine serum concentrations were determined in two healthy cohorts of younger (n = 20) and older participants (n = 19). Differences between active and sham conditions were analyzed using linear mixed models and post hoc F tests after applying Yeo-Johnson power transformations. This trial was part of a larger study registered on ClinicalTrials.gov (NCT05007743). RESULTS In the young cohort, IL-6 and IL-1β concentrations were significantly increased after active stimulation, whereas they were slightly decreased after sham stimulation (IL-6: p = 0.012; IL-1β: p = 0.012). Likewise, in the older cohort, IL-1β and IL-8 concentrations were significantly elevated after active stimulation and reduced after sham application (IL-8: p = 0.007; IL-1β: p = 0.001). In contrast, circulating TNFα concentrations did not change significantly in either group. CONCLUSION Our results show that active tVNS led to an immediate increase in the serum concentrations of certain pro-inflammatory cytokines such as IL-1β, IL-6, and/or IL-8 in two independent cohorts of healthy study participants.
Collapse
Affiliation(s)
- Elisabeth Veiz
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre, Göttingen, Germany
- Department of Neurology, University Medical Centre, Göttingen, Germany
| | - Susann-Kristin Kieslich
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre, Göttingen, Germany
| | - Dirk Czesnik
- Department of Neurology, University Medical Centre, Göttingen, Germany
| | - Christoph Herrmann-Lingen
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre, Göttingen, Germany,
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany,
| | - Julia Staab
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
23
|
Papakonstantinou D, Tomos C. Workplace productivity loss as a result of absenteeism and presenteeism in chronic and episodic migraine: a scoping review. INTERNATIONAL JOURNAL OF WORKPLACE HEALTH MANAGEMENT 2021. [DOI: 10.1108/ijwhm-05-2021-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeMigraine consists of a chronic neurological disorder with episodic attacks. Migraine prevails in people of their most productive working age, followed by difficulties at work and social functions. This scoping review aims to analyze the economic burden on a workplace due to chronic migraine compared to episodic migraine by focusing on the indirect costs of absenteeism and presenteeism and addressing the research gaps in this field.Design/methodology/approachAccording to the PRISMA Extension for Scoping Reviews, a comprehensive electronic literature search was carried out from 2010 to 2020 using the Google Scholar and Medline/PubMed databases.FindingsThe findings confirm that chronic and episodic migraine harm the workplace's productivity, escalating with the frequency of migraine attacks. Differences occur between presenteeism and absenteeism rates among chronic and episodic migraine, and higher presenteeism than absenteeism rates.Originality/valueThis review sheds new light on the indirect burden of migraine. It shows the gaps in the explored research area and the need for more targeted and extended research that could provide a deeper understanding of the workplace's hidden costs of migraine. The issues discussed are important as they can raise awareness of the interested parties, policymakers, employers and vocational rehabilitation specialists on the work disability associated with migraine.
Collapse
|
24
|
Komisaruk BR, Frangos E. Vagus nerve afferent stimulation: Projection into the brain, reflexive physiological, perceptual, and behavioral responses, and clinical relevance. Auton Neurosci 2021; 237:102908. [PMID: 34823149 DOI: 10.1016/j.autneu.2021.102908] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 12/26/2022]
Abstract
The afferent vagus nerves project to diverse neural networks within the brainstem and forebrain, based on neuroanatomical, neurophysiological, and functional (fMRI) brain imaging evidence. In response to afferent vagal stimulation, multiple homeostatic visceral reflexes are elicited. Physiological stimuli and both invasive and non-invasive electrical stimulation that activate the afferent vagus elicit perceptual and behavioral responses that are of physiological and clinical significance. In the present review, we address these multiple roles of the afferent vagus under normal and pathological conditions, based on both animal and human evidence.
Collapse
Affiliation(s)
- Barry R Komisaruk
- Department of Psychology, Rutgers, The State University of New Jersey, Newark, NJ 07102, United States.
| | - Eleni Frangos
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
25
|
Peripheral Nerve Stimulation for Treatment of Headaches: An Evidence-Based Review. Biomedicines 2021; 9:biomedicines9111588. [PMID: 34829819 PMCID: PMC8615534 DOI: 10.3390/biomedicines9111588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 01/06/2023] Open
Abstract
Headaches are one of the most common medical complaints worldwide, and treatment is often made difficult because of misclassification. Peripheral nerve stimulation has emerged as a novel treatment for the treatment of intractable headaches in recent years. While high-quality evidence does exist regarding its use, efficacy is generally limited to specific nerves and headache types. While much research remains to bring this technology to the mainstream, clinicians are increasingly able to provide safe yet efficacious pain control.
Collapse
|
26
|
Safety and efficacy of remote electrical neuromodulation for the acute treatment of chronic migraine: an open-label study. Pain Rep 2021; 6:e966. [PMID: 34667919 PMCID: PMC8519197 DOI: 10.1097/pr9.0000000000000966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 12/28/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. The efficacy of REN was evaluated in patients with chronic migraine. Pain relief was achieved in 59.3% of participants and pain disappearance in 20.9% (2 hours posttreatment). Introduction: Remote electrical neuromodulation (REN) is an acute treatment of migraine. The results from several studies in patients with episodic migraine suggest that REN is an effective and safe acute treatment of migraine. A recent pilot study provided initial support that REN is effective in patients with chronic migraine as well. Objectives: The current study aimed to validate and provide further evidence for the safety and efficacy of REN in a large sample of patients impacted by chronic migraine. Methods: In this open-label, single-arm study, patients with chronic migraine treated their headaches with the REN device (Nerivio, Theranica Bio-Electronics Ltd, Israel) for 4 weeks. Participants used an electronic diary to record their symptoms at treatment initiation, 2 hours after treatment, and 24 hours after treatment. The primary end point was the percentage of subjects who achieved pain relief at 2 hours posttreatment. Secondary end points included pain freedom and improvement of associated symptoms and functional disability. Results: One hundred twenty-six subjects were enrolled into the study, of which 91 subjects had an evaluable treatment with REN. Pain relief and pain disappearance at 2 hours were achieved by 59.3% (54/91) and 20.9% (19/91) of modified intent-to-treat subjects, respectively (with worst-case sensitivity analysis indicating 54.5% and 19.2%, respectively). Sustained pain relief at 24 hours was observed in 64.4% (29/45) of those who achieved pain relief at 2 hours (with worst-case sensitivity analysis indicating 45.6%). The findings of the study show that REN has a favorable effect on nausea, photophobia, and phonophobia and improves functional ability. One device-related adverse event was reported. Conclusions: Remote electrical neuromodulation treatments results in the relief of migraine headaches and associated symptoms, thus offering a drug-free acute treatment option for people with chronic migraine. Trial registration: ClinicalTrials.gov NCT04194008.
Collapse
|
27
|
Mungoven TJ, Henderson LA, Meylakh N. Chronic Migraine Pathophysiology and Treatment: A Review of Current Perspectives. FRONTIERS IN PAIN RESEARCH 2021; 2:705276. [PMID: 35295486 PMCID: PMC8915760 DOI: 10.3389/fpain.2021.705276] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic migraine is a disabling neurological disorder that imposes a considerable burden on individual and socioeconomic outcomes. Chronic migraine is defined as headaches occurring on at least 15 days per month with at least eight of these fulfilling the criteria for migraine. Chronic migraine typically evolves from episodic migraine as a result of increasing attack frequency and/or several other risk factors that have been implicated with migraine chronification. Despite this evolution, chronic migraine likely develops into its own distinct clinical entity, with unique features and pathophysiology separating it from episodic migraine. Furthermore, chronic migraine is characterized with higher disability and incidence of comorbidities in comparison to episodic migraine. While existing migraine studies primarily focus on episodic migraine, less is known about chronic migraine pathophysiology. Mounting evidence on aberrant alterations suggest that pronounced functional and structural brain changes, central sensitization and neuroinflammation may underlie chronic migraine mechanisms. Current treatment options for chronic migraine include risk factor modification, acute and prophylactic therapies, evidence-based treatments such as onabotulinumtoxinA, topiramate and newly approved calcitonin gene-related peptide or receptor targeted monoclonal antibodies. Unfortunately, treatments are still predominantly ineffective in aborting migraine attacks and decreasing intensity and frequency, and poor adherence and compliance with preventative medications remains a significant challenge. Novel emerging chronic migraine treatments such as neuromodulation offer promising therapeutic approaches that warrant further investigation. The aim of this narrative review is to provide an update of current knowledge and perspectives regarding chronic migraine background, pathophysiology, current and emerging treatment options with the intention of facilitating future research into this debilitating and largely indeterminant disorder.
Collapse
Affiliation(s)
| | | | - Noemi Meylakh
- Department of Anatomy and Histology, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
28
|
De Martino ML, De Bartolo M, Leemhuis E, Pazzaglia M. Rebuilding Body-Brain Interaction from the Vagal Network in Spinal Cord Injuries. Brain Sci 2021; 11:brainsci11081084. [PMID: 34439702 PMCID: PMC8391959 DOI: 10.3390/brainsci11081084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injuries (SCIs) exert devastating effects on body awareness, leading to the disruption of the transmission of sensory and motor inputs. Researchers have attempted to improve perceived body awareness post-SCI by intervening at the multisensory level, with the integration of somatic sensory and motor signals. However, the contributions of interoceptive-visceral inputs, particularly the potential interaction of motor and interoceptive signals, remain largely unaddressed. The present perspective aims to shed light on the use of interoceptive signals as a significant resource for patients with SCI to experience a complete sense of body awareness. First, we describe interoceptive signals as a significant obstacle preventing such patients from experiencing body awareness. Second, we discuss the multi-level mechanisms associated with the homeostatic stability of the body, which creates a unified, coherent experience of one's self and one's body, including real-time updates. Body awareness can be enhanced by targeting the vagus nerve function by, for example, applying transcutaneous vagus nerve stimulation. This perspective offers a potentially useful insight for researchers and healthcare professionals, allowing them to be better equipped in SCI therapy. This will lead to improved sensory motor and interoceptive signals, a decreased likelihood of developing deafferentation pain, and the successful implementation of modern robotic technologies.
Collapse
Affiliation(s)
- Maria Luisa De Martino
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Mina De Bartolo
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
| | - Erik Leemhuis
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Mariella Pazzaglia
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Correspondence: ; Tel.: +39-6-49917633
| |
Collapse
|
29
|
Lloyd J, Biloshytska M, Andreou AP, Lambru G. Noninvasive Neuromodulation in Headache: An Update. Neurol India 2021; 69:S183-S193. [PMID: 34003164 DOI: 10.4103/0028-3886.315998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Migraine is a common disabling primary headache condition. Although strives have been made in treatment, there remains an unmet need for safe, effective acute, and preventative treatments. The promising concept of neuromodulation of relevant neuronal targets in a noninvasive fashion for the treatment of primary headache disorders has led to the trial of numerous devices over the years. Objective We aimed to review the evidence on current neuromodulation treatments available for the management of primary headache disorders. Methods Randomized controlled trial as well as open-label and real-world studies on central and peripheral cephalic and noncephalic neuromodulation modalities in primary headaches were critically reviewed. Results The current evidence suggests a role of single-pulse transcranial magnetic stimulation, supraorbital nerve stimulation, and remote noncephalic electrical stimulation as migraine abortive treatments, with stronger evidence in episodic rather than in chronic migraine. Single-pulse transcranial magnetic stimulation and supraorbital nerve stimulation also hold promising evidence in episodic migraine prevention and initial positive evidence in chronic migraine prevention. More evidence should clarify the therapeutic role of the external vagus nerve stimulation and transcranial direct current stimulation in migraine. However, external vagus nerve stimulation may be effective in the acute treatment of episodic but not chronic cluster headache, in the prevention of hemicrania continua and paroxysmal hemicrania but not of short-lasting neuralgiform headache attacks. The difficulty in setting up sham-controlled studies has thus far prevented the publication of robust trials. This limitation along with the cost of these therapies has meant that their use is limited in most countries. Conclusion Neuromodulation is a promising nonpharmacological treatment approach for primary headaches. More studies with appropriate blinding strategies and reduction of device cost may allow more widespread approval of these treatments and in turn increase clinician's experience in neuromodulation.
Collapse
Affiliation(s)
- Joseph Lloyd
- Headache Research-Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - Maryna Biloshytska
- Headache Research-Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - Anna P Andreou
- Department of Functional Neurosurgery and Neuromodulation, Romodanov Neurosurgery Institute, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine; The Headache Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Giorgio Lambru
- The Headache Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
30
|
Keute M, Wienke C, Ruhnau P, Zaehle T. Effects of transcutaneous vagus nerve stimulation (tVNS) on beta and gamma brain oscillations. Cortex 2021; 140:222-231. [PMID: 34015727 DOI: 10.1016/j.cortex.2021.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/01/2022]
Abstract
Physiological and behavioral effects induced through transcutaneous vagus nerve stimulation (tVNS) are under scrutiny in a growing number of studies, yet its mechanisms of action remain poorly understood. One candidate mechanism is a modulation of γ-aminobutyric acid (GABA) transmission through tVNS. Two recent behavioral studies suggest that such a GABAergic effect might occur in a lateralized fashion, i.e., the GABA modulation might be stronger in the left than in the right brain hemisphere after tVNS applied to the left ear. Using magnetoencephalography (MEG), we tested for GABA-associated modulations in resting and event-related brain oscillations and for a lateralization of those effects in a sample of 41 healthy young adults. Our data provide substantial evidence against all hypotheses, i.e., we neither find effects of tVNS on oscillatory power nor a lateralization of effects.
Collapse
Affiliation(s)
- Marius Keute
- Department of Neurology, Otto-von Guericke-University, Magdeburg, Germany; Institute for Neuromodulation and Neurotechnology, University of Tübingen, Tübingen, Germany.
| | - Christian Wienke
- Department of Neurology, Otto-von Guericke-University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg
| | - Philipp Ruhnau
- Department of Neurology, Otto-von Guericke-University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg
| | - Tino Zaehle
- Department of Neurology, Otto-von Guericke-University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg
| |
Collapse
|
31
|
Richter F, García AM, Rodriguez Arriagada N, Yoris A, Birba A, Huepe D, Zimmer H, Ibáñez A, Sedeño L. Behavioral and neurophysiological signatures of interoceptive enhancements following vagus nerve stimulation. Hum Brain Mapp 2021; 42:1227-1242. [PMID: 33325575 PMCID: PMC7927286 DOI: 10.1002/hbm.25288] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 01/26/2023] Open
Abstract
An accruing body of research has shown that interoception (the sensing of signals from the body's internal milieu) relies on both a direct route (afforded by the vagus nerve) and a secondary route (supported by somatosensory mechanisms). However, no study has causally tested the differential role of these pathways, let alone via direct stimulation. To bridge this gap, we tested whether multidimensional signatures of interoception are modulated by noninvasive vagus nerve stimulation (nVNS). Sixty-three participants were divided into an nVNS and a sham-stimulation group. Before and after stimulation, both groups performed a validated heartbeat detection (HBD) task including a genuinely interoceptive condition (monitoring one's own heartbeat) and a control exteroceptive condition (tracking an aurally presented heartbeat). Electroencephalographic signals were obtained during both conditions to examine modulations of the heartbeat-evoked potential (HEP). Moreover, before and after stimulation, participants were asked to complete a somatosensory heartbeat localization task. Results from the interoceptive condition revealed that, after treatment, only the nVNS group exhibited improved performance and greater HEP modulations. No behavioral differences were found for the exteroceptive control condition, which was nonetheless associated with significant HEP modulations. Finally, no between-group differences were observed regarding the localization of the heartbeat sensations or relevant cardiodynamic variables (heart rate and or heart rate variability). Taken together, these results constitute unprecedented evidence that the vagus nerve plays a direct role in neurovisceral integration during interoception. This finding can constrain mechanistic models of the domain while informing a promising transdiagnostic agenda for interoceptive impairments across neuropsychiatric conditions.
Collapse
Affiliation(s)
- Fabian Richter
- Department of PsychologyUniversity of CologneCologneGermany
| | - Adolfo M. García
- Universidad de San AndrésBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
- Faculty of EducationNational University of Cuyo (UNCuyo)MendozaArgentina
- Global Brain Health InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Nicolas Rodriguez Arriagada
- Universidad de San AndrésBuenos AiresArgentina
- Faculty of PsychologyUniversity of Buenos AiresBuenos AiresArgentina
| | - Adrian Yoris
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
- Institute of Translational and Cognitive Neuroscience (INECO Foundation Favaloro‐University‐CONICET)Buenos AiresArgentina
| | - Agustina Birba
- Universidad de San AndrésBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| | - David Huepe
- Center for Social and Cognitive Neuroscience, School of PsychologyUniversidad Adolfo IbáñezSantiagoChile
| | - Heinz Zimmer
- Department of PsychologyUniversity of CologneCologneGermany
| | - Agustín Ibáñez
- Universidad de San AndrésBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
- Global Brain Health InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Center for Social and Cognitive Neuroscience, School of PsychologyUniversidad Adolfo IbáñezSantiagoChile
- Universidad Autónoma del CaribeBarranquillaColombia
| | - Lucas Sedeño
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| |
Collapse
|
32
|
Farmer AD, Strzelczyk A, Finisguerra A, Gourine AV, Gharabaghi A, Hasan A, Burger AM, Jaramillo AM, Mertens A, Majid A, Verkuil B, Badran BW, Ventura-Bort C, Gaul C, Beste C, Warren CM, Quintana DS, Hämmerer D, Freri E, Frangos E, Tobaldini E, Kaniusas E, Rosenow F, Capone F, Panetsos F, Ackland GL, Kaithwas G, O'Leary GH, Genheimer H, Jacobs HIL, Van Diest I, Schoenen J, Redgrave J, Fang J, Deuchars J, Széles JC, Thayer JF, More K, Vonck K, Steenbergen L, Vianna LC, McTeague LM, Ludwig M, Veldhuizen MG, De Couck M, Casazza M, Keute M, Bikson M, Andreatta M, D'Agostini M, Weymar M, Betts M, Prigge M, Kaess M, Roden M, Thai M, Schuster NM, Montano N, Hansen N, Kroemer NB, Rong P, Fischer R, Howland RH, Sclocco R, Sellaro R, Garcia RG, Bauer S, Gancheva S, Stavrakis S, Kampusch S, Deuchars SA, Wehner S, Laborde S, Usichenko T, Polak T, Zaehle T, Borges U, Teckentrup V, Jandackova VK, Napadow V, Koenig J. International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020). Front Hum Neurosci 2021; 14:568051. [PMID: 33854421 PMCID: PMC8040977 DOI: 10.3389/fnhum.2020.568051] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice.
Collapse
Affiliation(s)
- Adam D. Farmer
- Department of Gastroenterology, University Hospitals of North Midlands NHS Trust, Stoke on Trent, United Kingdom
| | - Adam Strzelczyk
- Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | | | - Alexander V. Gourine
- Department of Neuroscience, Physiology and Pharmacology, Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, United Kingdom
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Andreas M. Burger
- Laboratory for Biological Psychology, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
| | | | - Ann Mertens
- Department of Neurology, Institute for Neuroscience, 4Brain, Ghent University Hospital, Gent, Belgium
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Bart Verkuil
- Clinical Psychology and the Leiden Institute of Brain and Cognition, Leiden University, Leiden, Netherlands
| | - Bashar W. Badran
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Carlos Ventura-Bort
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | - Charly Gaul
- Migraine and Headache Clinic Koenigstein, Königstein im Taunus, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | | | - Daniel S. Quintana
- NORMENT, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Dorothea Hämmerer
- Medical Faculty, Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Center for Behavioral Brain Sciences Magdeburg (CBBS), Otto-von-Guericke University, Magdeburg, Germany
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleni Frangos
- Pain and Integrative Neuroscience Branch, National Center for Complementary and Integrative Health, NIH, Bethesda, MD, United States
| | - Eleonora Tobaldini
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Eugenijus Kaniusas
- Institute of Electrodynamics, Microwave and Circuit Engineering, TU Wien, Vienna, Austria
- SzeleSTIM GmbH, Vienna, Austria
| | - Felix Rosenow
- Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fivos Panetsos
- Faculty of Biology and Faculty of Optics, Complutense University of Madrid and Institute for Health Research, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Gareth L. Ackland
- Translational Medicine and Therapeutics, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Georgia H. O'Leary
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Hannah Genheimer
- Department of Biological Psychology, Clinical Psychology and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Heidi I. L. Jacobs
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, Netherlands
| | - Ilse Van Diest
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
| | - Jean Schoenen
- Headache Research Unit, Department of Neurology-Citadelle Hospital, University of Liège, Liège, Belgium
| | - Jessica Redgrave
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Jiliang Fang
- Functional Imaging Lab, Department of Radiology, Guang An Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jim Deuchars
- School of Biomedical Science, Faculty of Biological Science, University of Leeds, Leeds, United Kingdom
| | - Jozsef C. Széles
- Division for Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Julian F. Thayer
- Department of Psychological Science, University of California, Irvine, Irvine, CA, United States
| | - Kaushik More
- Institute for Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Neuromodulatory Networks, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Kristl Vonck
- Department of Neurology, Institute for Neuroscience, 4Brain, Ghent University Hospital, Gent, Belgium
| | - Laura Steenbergen
- Clinical and Cognitive Psychology and the Leiden Institute of Brain and Cognition, Leiden University, Leiden, Netherlands
| | - Lauro C. Vianna
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasilia, Brasilia, Brazil
| | - Lisa M. McTeague
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Mareike Ludwig
- Department of Anatomy, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Maria G. Veldhuizen
- Mental Health and Wellbeing Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marijke De Couck
- Faculty of Health Care, University College Odisee, Aalst, Belgium
- Division of Epileptology, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Marina Casazza
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Marius Keute
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, United States
| | - Marta Andreatta
- Department of Biological Psychology, Clinical Psychology and Psychotherapy, University of Würzburg, Würzburg, Germany
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Martina D'Agostini
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
- Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| | - Matthew Betts
- Department of Anatomy, Faculty of Medicine, Mersin University, Mersin, Turkey
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Matthias Prigge
- Neuromodulatory Networks, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Section for Translational Psychobiology in Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Munich, Germany
| | - Michelle Thai
- Department of Psychology, College of Liberal Arts, University of Minnesota, Minneapolis, MN, United States
| | - Nathaniel M. Schuster
- Department of Anesthesiology, Center for Pain Medicine, University of California, San Diego Health System, La Jolla, CA, United States
| | - Nicola Montano
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIPLab), University of Göttingen, Göttingen, Germany
| | - Nils B. Kroemer
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rico Fischer
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Robert H. Howland
- Department of Psychiatry, University of Pittsburgh School of Medicine, UPMC Western Psychiatric Hospital, Pittsburgh, PA, United States
| | - Roberta Sclocco
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Radiology, Logan University, Chesterfield, MO, United States
| | - Roberta Sellaro
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden, Netherlands
- Department of Developmental Psychology and Socialisation, University of Padova, Padova, Italy
| | - Ronald G. Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sebastian Bauer
- Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Sofiya Gancheva
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stavros Stavrakis
- Faculty of Biological Science, School of Biomedical Science, University of Leeds, Leeds, United Kingdom
| | - Stefan Kampusch
- Institute of Electrodynamics, Microwave and Circuit Engineering, TU Wien, Vienna, Austria
- SzeleSTIM GmbH, Vienna, Austria
| | - Susan A. Deuchars
- School of Biomedical Science, Faculty of Biological Science, University of Leeds, Leeds, United Kingdom
| | - Sven Wehner
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Sylvain Laborde
- Department of Performance Psychology, Institute of Psychology, Deutsche Sporthochschule, Köln, Germany
| | - Taras Usichenko
- Department of Anesthesiology, University Medicine Greifswald, Greifswald, Germany
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - Thomas Polak
- Laboratory of Functional Neurovascular Diagnostics, AG Early Diagnosis of Dementia, Department of Psychiatry, Psychosomatics and Psychotherapy, University Clinic Würzburg, Würzburg, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Uirassu Borges
- Department of Performance Psychology, Institute of Psychology, Deutsche Sporthochschule, Köln, Germany
- Department of Social and Health Psychology, Institute of Psychology, Deutsche Sporthochschule, Köln, Germany
| | - Vanessa Teckentrup
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Vera K. Jandackova
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
- Department of Human Movement Studies, Faculty of Education, University of Ostrava, Ostrava, Czechia
| | - Vitaly Napadow
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Radiology, Logan University, Chesterfield, MO, United States
| | - Julian Koenig
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Section for Experimental Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
33
|
Cervical transcutaneous vagal neuromodulation in chronic pancreatitis patients with chronic pain: A randomised sham controlled clinical trial. PLoS One 2021; 16:e0247653. [PMID: 33635894 PMCID: PMC7909707 DOI: 10.1371/journal.pone.0247653] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND & AIMS Chronic abdominal pain is the primary symptom of chronic pancreatitis, but unfortunately it is difficult to treat. Vagal nerve stimulation studies have provided evidence of anti-nociceptive effect in several chronic pain conditions. We investigated the pain-relieving effects of transcutaneous vagal nerve stimulation in comparison to sham treatment in chronic pancreatitis patients. METHODS We conducted a randomised double-blinded, sham-controlled, crossover trial in patients with chronic pancreatitis. Patients were randomly assigned to receive a two-week period of cervical transcutaneous vagal nerve stimulation using the gammaCore device followed by a two-week sham stimulation, or vice versa. We measured clinical and experimental endpoints before and after each treatment. The primary clinical endpoint was pain relief, documented in a pain diary using a visual analogue scale. Secondary clinical endpoints included Patients' Global Impression of Change score, quality of life and Brief Pain Inventory questionnaire. Secondary experimental endpoints included cardiac vagal tone and heart rate. RESULTS No differences in pain scores were seen in response to two weeks transcutaneous vagal nerve stimulation as compared to sham treatment (difference in average pain score (visual analogue scale): 0.17, 95%CI (-0.86;1.20), P = 0.7). Similarly, no differences were seen for secondary clinical endpoints, except from an increase in the appetite loss score (13.9, 95%CI (0.5:27.3), P = 0.04). However, improvements in maximum pain scores were seen for transcutaneous vagal nerve stimulation and sham treatments as compared to their respective baselines: vagal nerve stimulation (-1.3±1.7, 95%CI (-2.21:-0.42), P = 0.007), sham (-1.3±1.9, 95%CI (-2.28:-0.25), P = 0.018). Finally, heart rate was decreased after two weeks transcutaneous vagal nerve stimulation in comparison to sham treatment (-3.7 beats/min, 95%CI (-6.7:-0.6), P = 0.02). CONCLUSION In this sham-controlled crossover study, we found no evidence that two weeks transcutaneous vagal nerve stimulation induces pain relief in patients with chronic pancreatitis. TRIAL REGISTRATION NUMBER The study is registered at NCT03357029; www.clinicaltrials.gov.
Collapse
|
34
|
Grazzi L, Toppo C, D’Amico D, Leonardi M, Martelletti P, Raggi A, Guastafierro E. Non-Pharmacological Approaches to Headaches: Non-Invasive Neuromodulation, Nutraceuticals, and Behavioral Approaches. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1503. [PMID: 33562487 PMCID: PMC7914516 DOI: 10.3390/ijerph18041503] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Significant side effects or drug interactions can make pharmacological management of headache disorders very difficult. Non-conventional and non-pharmacological treatments are becoming increasingly used to overcome these issues. In particular, non-invasive neuromodulation, nutraceuticals, and behavioral approaches are well tolerated and indicated for specific patient categories such as adolescents and pregnant women. This paper aims to present the main approaches reported in the literature in the management of headache disorders. We therefore reviewed the available literature published between 2010 and 2020 and performed a narrative presentation for each of the three categories (non-invasive neuromodulation, nutraceuticals, and behavioral therapies). Regarding non-invasive neuromodulation, we selected transcranial magnetic stimulation, supraorbital nerve stimulation, transcranial direct current stimulation, non-invasive vagal nerve stimulation, and caloric vestibular stimulation. For nutraceuticals, we selected Feverfew, Butterbur, Riboflavin, Magnesium, and Coenzyme Q10. Finally, for behavioral approaches, we selected biofeedback, cognitive behavioral therapy, relaxation techniques, mindfulness-based therapy, and acceptance and commitment therapy. These approaches are increasingly seen as a valid treatment option in headache management, especially for patients with medication overuse or contraindications to drug treatment. However, further investigations are needed to consider the effectiveness of these approaches also with respect to the long-term effects.
Collapse
Affiliation(s)
- Licia Grazzi
- UOC Neuroalgologia, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Claudia Toppo
- UOC Neurologia, Salute Pubblica e Disabilità, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (C.T.); (M.L.); (A.R.); (E.G.)
| | - Domenico D’Amico
- UOC Neuroalgologia, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Matilde Leonardi
- UOC Neurologia, Salute Pubblica e Disabilità, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (C.T.); (M.L.); (A.R.); (E.G.)
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University, 00185 Rome, Italy;
| | - Alberto Raggi
- UOC Neurologia, Salute Pubblica e Disabilità, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (C.T.); (M.L.); (A.R.); (E.G.)
| | - Erika Guastafierro
- UOC Neurologia, Salute Pubblica e Disabilità, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (C.T.); (M.L.); (A.R.); (E.G.)
| |
Collapse
|
35
|
Zhang Y, Huang Y, Li H, Yan Z, Zhang Y, Liu X, Hou X, Chen W, Tu Y, Hodges S, Chen H, Liu B, Kong J. Transcutaneous auricular vagus nerve stimulation (taVNS) for migraine: an fMRI study. Reg Anesth Pain Med 2020; 46:145-150. [PMID: 33262253 DOI: 10.1136/rapm-2020-102088] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dysfunction of the thalamocortical connectivity network is thought to underlie the pathophysiology of the migraine. This current study aimed to explore the thalamocortical connectivity changes during 4 weeks of continuous transcutaneous vagus nerve stimulation (taVNS) treatment on migraine patients. METHODS 70 migraine patients were recruited and randomized in an equal ratio to receive real taVNS or sham taVNS treatments for 4 weeks. Resting-state functional MRI was collected before and after treatment. The thalamus was parceled into functional regions of interest (ROIs) on the basis of six priori-defined cortical ROIs covering the entire cortex. Seed-based functional connectivity analysis between each thalamic subregion and the whole brain was further compared across groups after treatment. RESULTS Of the 59 patients that finished the study, those in the taVNS group had significantly reduced number of migraine days, pain intensity and migraine attack times after 4 weeks of treatment compared with the sham taVNS. Functional connectivity analysis revealed that taVNS can increase the connectivity between the motor-related thalamus subregion and anterior cingulate cortex/medial prefrontal cortex, and decrease the connectivity between occipital cortex-related thalamus subregion and postcentral gyrus/precuneus. CONCLUSION Our findings suggest that taVNS can relieve the symptoms of headache as well as modulate the thalamocortical circuits in migraine patients. The results provide insights into the neural mechanism of taVNS and reveal potential therapeutic targets for migraine patients.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yiting Huang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hui Li
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhaoxian Yan
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xian Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoyan Hou
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Weicui Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yiheng Tu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sierra Hodges
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Helen Chen
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bo Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Robinson K, Platt S, Stewart G, Reno L, Barber R, Boozer L. Feasibility of Non-Invasive Vagus Nerve Stimulation (gammaCore VET™) for the Treatment of Refractory Seizure Activity in Dogs. Front Vet Sci 2020; 7:569739. [PMID: 33195555 PMCID: PMC7524862 DOI: 10.3389/fvets.2020.569739] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/12/2020] [Indexed: 11/18/2022] Open
Abstract
Idiopathic epilepsy is the most common chronic neurologic condition in dogs. Approximately 20–30% of those dogs are refractory to standard medical therapy and commonly experience side effects from antiepileptic drugs. Non-invasive vagus nerve stimulation (nVNS) has been frequently used in human medicine as an adjunct seizure therapy with low incidence of adverse events. Canine studies are limited to invasive surgical implants with no non-invasive evaluations currently published. We investigated the feasibility and efficacy of nVNS (gammaCore VET) as an adjunct treatment for refractory epilepsy in dogs. In total, 14 client-owned dogs completed the trial of either 8- or 16-week treatment periods during which they received 90–120 s stimulation three times per day in the region of the left cervical vagus nerve. Owners recorded seizure type (focal or generalized) and frequency as well as any adverse effects. Out of 14 dogs, nine achieved a reduction in seizure frequency and four were considered responders with a 50% or greater reduction in seizures from baseline to the final treatment period. However, there was no statistically significant difference in overall seizure frequency (p = 0.53) or percent change in seizure frequency between groups (p = 0.75). Adverse effects occurred in 25% of dogs originally enrolled, with reports of a hoarse bark and limb trembling, lethargy, behavioral changes, and an increase in seizure frequency. Non-invasive VNS was found to be safe and easy to administer with mild adverse events. It is considered a feasible treatment option as an adjunct therapy in refractory seizures and should be further investigated.
Collapse
Affiliation(s)
- Kelsey Robinson
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Simon Platt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | | | - Lisa Reno
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Renee Barber
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Lindsay Boozer
- Friendship Hospital for Animals, Washington, DC, United States
| |
Collapse
|
37
|
Bremner JD, Gurel NZ, Wittbrodt MT, Shandhi MH, Rapaport MH, Nye JA, Pearce BD, Vaccarino V, Shah AJ, Park J, Bikson M, Inan OT. Application of Noninvasive Vagal Nerve Stimulation to Stress-Related Psychiatric Disorders. J Pers Med 2020; 10:E119. [PMID: 32916852 PMCID: PMC7563188 DOI: 10.3390/jpm10030119] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vagal Nerve Stimulation (VNS) has been shown to be efficacious for the treatment of depression, but to date, VNS devices have required surgical implantation, which has limited widespread implementation. METHODS New noninvasive VNS (nVNS) devices have been developed which allow external stimulation of the vagus nerve, and their effects on physiology in patients with stress-related psychiatric disorders can be measured with brain imaging, blood biomarkers, and wearable sensing devices. Advantages in terms of cost and convenience may lead to more widespread implementation in psychiatry, as well as facilitate research of the physiology of the vagus nerve in humans. nVNS has effects on autonomic tone, cardiovascular function, inflammatory responses, and central brain areas involved in modulation of emotion, all of which make it particularly applicable to patients with stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD) and depression, since dysregulation of these circuits and systems underlies the symptomatology of these disorders. RESULTS This paper reviewed the physiology of the vagus nerve and its relevance to modulating the stress response in the context of application of nVNS to stress-related psychiatric disorders. CONCLUSIONS nVNS has a favorable effect on stress physiology that is measurable using brain imaging, blood biomarkers of inflammation, and wearable sensing devices, and shows promise in the prevention and treatment of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- James Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
- Department of Radiology, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
| | - Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
| | - Matthew T. Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
| | - Mobashir H. Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
| | - Mark H. Rapaport
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
| | - Jonathon A. Nye
- Department of Radiology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Bradley D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
- Department of Medicine, Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amit J. Shah
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
- Department of Medicine, Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeanie Park
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
- Department of Medicine, Renal Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City University of New York, New York, NY 10010, USA;
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
38
|
Beh SC. Noninvasive Vagus Nerve Stimulation for Nausea Prevention During BPPV Treatment. Neuromodulation 2020; 23:886-887. [DOI: 10.1111/ner.13129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/15/2020] [Accepted: 02/03/2020] [Indexed: 11/29/2022]
|
39
|
Paciorek A, Skora L. Vagus Nerve Stimulation as a Gateway to Interoception. Front Psychol 2020; 11:1659. [PMID: 32849014 PMCID: PMC7403209 DOI: 10.3389/fpsyg.2020.01659] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
The last two decades have seen a growing interest in the study of interoception. Interoception can be understood as a hierarchical phenomenon, referring to the body-to-brain communication of internal signals, their sensing, encoding, and representation in the brain, influence on other cognitive and affective processes, and their conscious perception. Interoceptive signals have been notoriously challenging to manipulate in experimental settings. Here, we propose that this can be achieved through electrical stimulation of the vagus nerve (either in an invasive or non-invasive fashion). The vagus nerve is the main pathway for conveying information about the internal condition of the body to the brain. Despite its intrinsic involvement in interoception, surprisingly little research in the field has used Vagus Nerve Stimulation to explicitly modulate bodily signals. Here, we review a range of cognitive, affective and clinical research using Vagus Nerve Stimulation, showing that it can be applied to the study of interoception at each level of its hierarchy. This could have considerable implications for our understanding of the interoceptive dimension of cognition and affect in both health and disease, and lead to development of new therapeutic tools.
Collapse
Affiliation(s)
| | - Lina Skora
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom.,School of Psychology, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
40
|
Remote Electrical Neuromodulation for the Acute Treatment of Migraine in Patients with Chronic Migraine: An Open-Label Pilot Study. Pain Ther 2020; 9:531-543. [PMID: 32648205 PMCID: PMC7648773 DOI: 10.1007/s40122-020-00185-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Remote electrical neuromodulation (REN) is a novel acute treatment of migraine. Upper arm peripheral nerves are stimulated to induce conditioned pain modulation (CPM)-an endogenous analgesic mechanism in which conditioning stimulation inhibits pain in remote body regions. The REN device (Nerivio®, Theranica Bio-Electronics LTD., Israel) is FDA-authorized for acute treatment of migraine in adults who do not have chronic migraine. The current study assessed the consistency of response over multiple migraine attacks in people with chronic migraine who are typically characterized with severe pain intensity, high disability, and less robust response to triptans. METHODS This was an open-label, single-arm, dual-center study conducted on adults with chronic migraine. Participants underwent a 4-week treatment phase in which they treated their migraine headaches with the device for 45 min within 1 h of attack onset. Pain levels were recorded at baseline, 2 h, and 24 h post-treatment. Efficacy outcomes (pain relief and pain-free responses at 2 h, sustained pain relief and sustained pain-free responses at 24 h) focused on intra-individual consistency of response across multiple attacks, which was defined as response in at least 50% of the treatments. RESULTS Forty-two participants were enrolled, and 38 participants were evaluable for analyses; 73.7% (28/38) achieved pain relief at 2 h, 26.3% (10/38) were pain-free at 2 h, 84.4% (27/32) had sustained pain relief response at 24 h and 45.0% (9/20) had sustained pain relief response at 24 h in at least 50% of their treated attacks. The effects of REN on associated symptoms and improvement in function were also consistent. The incidence of device-related adverse events was low (1.8%). CONCLUSIONS REN used for a series of migraine attacks was effective and well tolerated across attacks. REN may offer a safe and effective non-pharmacological alternative for acute treatment in patients with chronic migraine. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT04161807. Retrospectively registered on November 13, 2019.
Collapse
|
41
|
Schoenen J, Ambrosini A. Update on noninvasive neuromodulation for migraine treatment-Vagus nerve stimulation. PROGRESS IN BRAIN RESEARCH 2020; 255:249-274. [PMID: 33008508 DOI: 10.1016/bs.pbr.2020.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
Abstract
Noninvasive neurostimulation methods are particularly suited for migraine treatment thanks to their most favorable adverse event profile. Among them, noninvasive vagus nerve stimulation (nVNS) has raised great hope because of the role the vagus nerve is known to play in pain modulation, inflammation and brain excitability. We will critically review the clinical studies performed for migraine attack treatment and migraine prevention with the GammaCore® device, which allows cervical vagus nerve stimulation. nVNS is effective for the abortive treatment of migraine attacks, although the effect size is modest and numbers-to-treat appear not superior to those of other noninvasive neurostimulation methods, and inferior to those of oral triptans. The effect of nVNS with the GammaCore® in migraine prevention is not superior to sham stimulation, except possibly in patients with high adherence to the treatment. Both in acute and preventive trials, nVNS was characterized by an outstanding tolerance and safety profile, like the other noninvasive neurostimulation techniques. In physiological animal and human studies, cervical nVNS was shown to generate somatosensory evoked responses, to modulate pain perception and several areas of the cerebral pain network, and to inhibit experimental cortical spreading depression, which are relevant effects for migraine therapy.
Collapse
Affiliation(s)
- Jean Schoenen
- Department of Neurology, Headache Research Unit, University of Liège, Citadelle Hospital, Liege, Belgium.
| | | |
Collapse
|
42
|
Dirr EW, Urdaneta ME, Patel Y, Johnson RD, Campbell-Thompson M, Otto KJ. Designing a bioelectronic treatment for Type 1 diabetes: targeted parasympathetic modulation of insulin secretion. BIOELECTRONICS IN MEDICINE 2020; 3:17-31. [PMID: 33169091 PMCID: PMC7604671 DOI: 10.2217/bem-2020-0006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/29/2020] [Indexed: 12/31/2022]
Abstract
The pancreas is a visceral organ with exocrine functions for digestion and endocrine functions for maintenance of blood glucose homeostasis. In pancreatic diseases such as Type 1 diabetes, islets of the endocrine pancreas become dysfunctional and normal regulation of blood glucose concentration ceases. In healthy individuals, parasympathetic signaling to islets via the vagus nerve, triggers release of insulin from pancreatic β-cells and glucagon from α-cells. Using electrical stimulation to augment parasympathetic signaling may provide a way to control pancreatic endocrine functions and ultimately control blood glucose. Historical data suggest that cervical vagus nerve stimulation recruits many visceral organ systems. Simultaneous modulation of liver and digestive function along with pancreatic function provides differential signals that work to both raise and lower blood glucose. Targeted pancreatic vagus nerve stimulation may provide a solution to minimizing off-target effects through careful electrode placement just prior to pancreatic insertion.
Collapse
Affiliation(s)
- Elliott W Dirr
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Morgan E Urdaneta
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Yogi Patel
- Department of Biomedical Engineering, Georgia Institute of Technology University of Florida, Gainesville, FL 32611, USA
| | - Richard D Johnson
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Martha Campbell-Thompson
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
- Department of Pathology, Immunology, & Laboratory Medicine University of Florida, Gainesville, FL 32611, USA
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
- Department of Neurology, University of Florida, Gainesville, FL 32611, USA
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA
- Department of Electrical & Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
43
|
Tao X, Lee MS, Donnelly CR, Ji RR. Neuromodulation, Specialized Proresolving Mediators, and Resolution of Pain. Neurotherapeutics 2020; 17:886-899. [PMID: 32696274 PMCID: PMC7609770 DOI: 10.1007/s13311-020-00892-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The current crises in opioid abuse and chronic pain call for the development of nonopioid and nonpharmacological therapeutics for pain relief. Neuromodulation-based approaches, such as spinal cord stimulation, dorsal root ganglion simulation, and nerve stimulation including vagus nerve stimulation, have shown efficacy in achieving pain control in preclinical and clinical studies. However, the mechanisms by which neuromodulation alleviates pain are not fully understood. Accumulating evidence suggests that neuromodulation regulates inflammation and neuroinflammation-a localized inflammation in peripheral nerves, dorsal root ganglia/trigeminal ganglia, and spinal cord/brain-through neuro-immune interactions. Specialized proresolving mediators (SPMs) such as resolvins, protectins, maresins, and lipoxins are lipid molecules produced during the resolution phase of inflammation and exhibit multiple beneficial effects in resolving inflammation in various animal models. Recent studies suggest that SPMs inhibit inflammatory pain, postoperative pain, neuropathic pain, and cancer pain in rodent models via immune, glial, and neuronal modulations. It is noteworthy that sham surgery is sufficient to elevate resolvin levels and may serve as a model of resolution. Interestingly, it has been shown that the vagus nerve produces SPMs and vagus nerve stimulation (VNS) induces SPM production in vitro. In this review, we discuss how neuromodulation such as VNS controls pain via immunomodulation and neuro-immune interactions and highlight possible involvement of SPMs. In particular, we demonstrate that VNS via auricular electroacupuncture effectively attenuates chemotherapy-induced neuropathic pain. Furthermore, auricular stimulation is able to increase resolvin levels in mice. Thus, we propose that neuromodulation may control pain and inflammation/neuroinflammatioin via SPMs. Finally, we discuss key questions that remain unanswered in our understanding of how neuromodulation-based therapies provide short-term and long-term pain relief.
Collapse
Affiliation(s)
- Xueshu Tao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Michael S Lee
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Christopher R Donnelly
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
44
|
Takizawa T, Ayata C, Chen SP. Therapeutic implications of cortical spreading depression models in migraine. PROGRESS IN BRAIN RESEARCH 2020; 255:29-67. [PMID: 33008510 DOI: 10.1016/bs.pbr.2020.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Migraine is among the most common and disabling neurological diseases in the world. Cortical spreading depression (CSD) is a wave of near-complete depolarization of neurons and glial cells that slowly propagates along the cortex creating the perception of aura. Evidence suggests that CSD can trigger migraine headache. Experimental models of CSD have been considered highly translational as they recapitulate migraine-related phenomena and have been validated for screening migraine therapeutics. Here we outline the essential components of validated experimental models of CSD and provide a comprehensive review of potential modulators and targets against CSD. We further focus on novel interventions that have been recently shown to suppress CSD susceptibility that may lead to therapeutic targets in migraine.
Collapse
Affiliation(s)
- Tsubasa Takizawa
- Department of Neurology, Keio Universrity School of Medicine, Tokyo, Japan
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shih-Pin Chen
- Department of Medical Research & Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
45
|
Fan JZ, Lopez-Rivera V, Sheth SA. Over the Horizon: The Present and Future of Endovascular Neural Recording and Stimulation. Front Neurosci 2020; 14:432. [PMID: 32435184 PMCID: PMC7218134 DOI: 10.3389/fnins.2020.00432] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/08/2020] [Indexed: 11/13/2022] Open
Abstract
The past decade has witnessed an explosion in applications for neural recording and stimulation in the treatment of clinical disorders. Neuromodulatory approaches are now a mainstay of care for essential tremor and Parkinson's disease, and are expanding rapidly into a wide range of other neurological and psychiatric diseases. In parallel, advancements in endovascular approaches to cerebrovascular diseases have resulted in minimally invasive techniques that deliver devices to neural tissue in the central and peripheral nervous systems, with significantly improved safety and efficacy. In this review, we discuss the history of endovascular neural recording and stimulation, its current progress, and applications for neurological disease.
Collapse
Affiliation(s)
| | | | - Sunil A. Sheth
- Department of Neurology, UTHealth McGovern Medical School, Houston, TX, United States
| |
Collapse
|
46
|
Adair D, Truong D, Esmaeilpour Z, Gebodh N, Borges H, Ho L, Bremner JD, Badran BW, Napadow V, Clark VP, Bikson M. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul 2020; 13:717-750. [PMID: 32289703 PMCID: PMC7196013 DOI: 10.1016/j.brs.2020.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The cranial nerves are the pathways through which environmental information (sensation) is directly communicated to the brain, leading to perception, and giving rise to higher cognition. Because cranial nerves determine and modulate brain function, invasive and non-invasive cranial nerve electrical stimulation methods have applications in the clinical, behavioral, and cognitive domains. Among other neuromodulation approaches such as peripheral, transcranial and deep brain stimulation, cranial nerve stimulation is unique in allowing axon pathway-specific engagement of brain circuits, including thalamo-cortical networks. In this review we amalgamate relevant knowledge of 1) cranial nerve anatomy and biophysics; 2) evidence of the modulatory effects of cranial nerves on cognition; 3) clinical and behavioral outcomes of cranial nerve stimulation; and 4) biomarkers of nerve target engagement including physiology, electroencephalography, neuroimaging, and behavioral metrics. Existing non-invasive stimulation methods cannot feasibly activate the axons of only individual cranial nerves. Even with invasive stimulation methods, selective targeting of one nerve fiber type requires nuance since each nerve is composed of functionally distinct axon-types that differentially branch and can anastomose onto other nerves. None-the-less, precisely controlling stimulation parameters can aid in affecting distinct sets of axons, thus supporting specific actions on cognition and behavior. To this end, a rubric for reproducible dose-response stimulation parameters is defined here. Given that afferent cranial nerve axons project directly to the brain, targeting structures (e.g. thalamus, cortex) that are critical nodes in higher order brain networks, potent effects on cognition are plausible. We propose an intervention design framework based on driving cranial nerve pathways in targeted brain circuits, which are in turn linked to specific higher cognitive processes. State-of-the-art current flow models that are used to explain and design cranial-nerve-activating stimulation technology require multi-scale detail that includes: gross anatomy; skull foramina and superficial tissue layers; and precise nerve morphology. Detailed simulations also predict that some non-invasive electrical or magnetic stimulation approaches that do not intend to modulate cranial nerves per se, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), may also modulate activity of specific cranial nerves. Much prior cranial nerve stimulation work was conceptually limited to the production of sensory perception, with individual titration of intensity based on the level of perception and tolerability. However, disregarding sensory emulation allows consideration of temporal stimulation patterns (axon recruitment) that modulate the tone of cortical networks independent of sensory cortices, without necessarily titrating perception. For example, leveraging the role of the thalamus as a gatekeeper for information to the cerebral cortex, preventing or enhancing the passage of specific information depending on the behavioral state. We show that properly parameterized computational models at multiple scales are needed to rationally optimize neuromodulation that target sets of cranial nerves, determining which and how specific brain circuitries are modulated, which can in turn influence cognition in a designed manner.
Collapse
Affiliation(s)
- Devin Adair
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Dennis Truong
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| | - Nigel Gebodh
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Helen Borges
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Libby Ho
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Bashar W Badran
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Vitaly Napadow
- Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Harvard medical school, Boston, MA, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; The Mind Research Network of the Lovelace Biomedical Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| |
Collapse
|
47
|
Yap JYY, Keatch C, Lambert E, Woods W, Stoddart PR, Kameneva T. Critical Review of Transcutaneous Vagus Nerve Stimulation: Challenges for Translation to Clinical Practice. Front Neurosci 2020; 14:284. [PMID: 32410932 PMCID: PMC7199464 DOI: 10.3389/fnins.2020.00284] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/12/2020] [Indexed: 12/25/2022] Open
Abstract
Several studies have illustrated that transcutaneous vagus nerve stimulation (tVNS) can elicit therapeutic effects that are similar to those produced by its invasive counterpart, vagus nerve stimulation (VNS). VNS is an FDA-approved therapy for the treatment of both depression and epilepsy, but it is limited to the management of more severe, intervention-resistant cases as a second or third-line treatment option due to perioperative risks involved with device implantation. In contrast, tVNS is a non-invasive technique that involves the application of electrical currents through surface electrodes at select locations, most commonly targeting the auricular branch of the vagus nerve (ABVN) and the cervical branch of the vagus nerve in the neck. Although it has been shown that tVNS elicits hypo- and hyperactivation in various regions of the brain associated with anxiety and mood regulation, the mechanism of action and influence of stimulation parameters on clinical outcomes remains predominantly hypothetical. Suppositions are largely based on correlations between the neurobiology of the vagus nerve and its effects on neural activity. However, tVNS has also been investigated for several other disorders, including tinnitus, migraine and pain, by targeting the vagus nerve at sites in both the ear and the neck. As most of the described methods differ in the parameters and protocols applied, there is currently no firm evidence on the optimal location for tVNS or the stimulation parameters that provide the greatest therapeutic effects for a specific condition. This review presents the current status of tVNS with a focus on stimulation parameters, stimulation sites, and available devices. For tVNS to reach its full potential as a non-invasive and clinically relevant therapy, it is imperative that systematic studies be undertaken to reveal the mechanism of action and optimal stimulation modalities.
Collapse
Affiliation(s)
- Jonathan Y. Y. Yap
- ARC Training Centre in Biodevices, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Charlotte Keatch
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Elisabeth Lambert
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Will Woods
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Paul R. Stoddart
- ARC Training Centre in Biodevices, Swinburne University of Technology, Hawthorn, VIC, Australia
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Tatiana Kameneva
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC, Australia
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
48
|
Renner T, Sollmann N, Heinen F, Albers L, Trepte-Freisleder F, Klose B, König H, Krieg SM, Bonfert MV, Landgraf MN. Alleviation of migraine symptoms by application of repetitive peripheral magnetic stimulation to myofascial trigger points of neck and shoulder muscles - A randomized trial. Sci Rep 2020; 10:5954. [PMID: 32249788 PMCID: PMC7136237 DOI: 10.1038/s41598-020-62701-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/30/2020] [Indexed: 12/20/2022] Open
Abstract
Migraine is a burdensome disease with an especially high prevalence in women between the age of 15 and 49 years. Non-pharmacological, non-invasive therapeutic methods to control symptoms are increasingly in demand to complement a multimodal intervention approach in migraine. Thirty-seven subjects (age: 25.0 ± 4.1 years; 36 females) diagnosed with high-frequency episodic migraine who presented at least one active myofascial trigger point (mTrP) in the trapezius muscles and at least one latent mTrP in the deltoid muscles bilaterally prospectively underwent six sessions of repetitive peripheral magnetic stimulation (rPMS) over two weeks. Patients were randomly assigned to receive rPMS applied to the mTrPs of the trapezius (n = 19) or deltoid muscles (n = 18). Whereas the trapezius muscle is supposed to be part of the trigemino-cervical complex (TCC) and, thus, involved in the pathophysiology of migraine, the deltoid muscle was not expected to interfere with the TCC and was therefore chosen as a control stimulation site. The headache calendar of the German Migraine and Headache Society (DMKG) as well as the Migraine Disability Assessment (MIDAS) questionnaire were used to evaluate stimulation-related effects. Frequency of headache days decreased significantly in both the trapezius and the deltoid group after six sessions of rPMS (trapezius group: p = 0.005; deltoid group: p = 0.003). The MIDAS score decreased significantly from 29 to 13 points (p = 0.0004) in the trapezius and from 31 to 15 points (p = 0.002) in the deltoid group. Thus, rPMS applied to mTrPs of neck and shoulder muscles offers a promising approach to alleviate headache frequency and symptom burden. Future clinical trials are needed to examine more profoundly these effects, preferably using a sham-controlled setting.
Collapse
Affiliation(s)
- Tabea Renner
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, LMU - University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| | - Florian Heinen
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, LMU - University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Lucia Albers
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, LMU - University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Florian Trepte-Freisleder
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, LMU - University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Birgit Klose
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, LMU - University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Helene König
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, LMU - University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michaela V Bonfert
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, LMU - University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Mirjam N Landgraf
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, LMU - University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
49
|
Suer M, Abd-Elsayed A. Patient with a Vagal Nerve Stimulator. GUIDE TO THE INPATIENT PAIN CONSULT 2020:45-56. [DOI: 10.1007/978-3-030-40449-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
50
|
Auricular Electrical Stimulation Alleviates Headache through CGRP/COX-2/TRPV1/TRPA1 Signaling Pathways in a Nitroglycerin-Induced Migraine Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2413919. [PMID: 31885641 PMCID: PMC6927049 DOI: 10.1155/2019/2413919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/17/2019] [Accepted: 11/23/2019] [Indexed: 12/15/2022]
Abstract
The study aimed to investigate effect of auricular electrical stimulation (ES) on migraine. Migraine was induced in rats by intraperitoneal administration of nitroglycerin (NTG, 10 mg/kg) three times. Auricular ES pretreatment was performed for five consecutive days. Migraine behaviors were observed by a video recording. Auricular ES pretreatment could reverse the decrease of the total time spent on exploratory (2619.0 ± 113.0 s vs 1581.7 ± 217.6 s, p=0.0029) and locomotor behaviors (271.3 ± 21.4 s vs 114.3 ± 19.7 s, p=0.0135) and also could reverse the increase of the total time spent on resting (19.0 ± 10.6 s vs 154.3 ± 46.5 s, p=0.0398) and grooming (369.9 ± 66.8 s vs 1302.0 ± 244.5 s, p=0.0324) behaviors. Auricular ES pretreatment could increase the frequency of rearing behaviors (38.0 ± 1.8 vs 7.7 ± 3.5, p < 0.0001) and total distance traveled (1372.0 ± 157.9 cm vs 285.3 ± 85.6 cm, p < 0.0001) and also could increase the percentage of inner zone time (6.0 ± 1.6% vs 0.4 ± 0.2%, p=0.0472). The CGRP, COX-2, TRPV1, and TRPA1 immunoreactive cells in the trigeminal ganglion increased in the NTG group compared with the control group (all p < 0.0001); this increase could, however, be reduced by auricular ES pretreatment (27.8 ± 2.6 vs 63.0 ± 4.2, p < 0.0001; 21.7 ± 1.2 vs 61.8 ± 4.0, p < 0.0001; 24.3 ± 1.0 vs 36.5 ± 1.7, p=0.0003; and 20.7 ± 1.9 vs 90.8 ± 6.5, p < 0.0001, respectively). Therefore, we suggest that auricular ES pretreatment is beneficial for the treatment of migraine and this effect is partly related to CGRP/COX-2/TRPV1/TRPA1 signaling pathways.
Collapse
|