1
|
Hu J, Gong C, Jia Y, Feng H, Chen J, Qin G, Liang A, Peng A, Huang Y, Sun M, Rao H, Wang X. Preparation of pH-Responsive Kas@ZnO Quantum Dots for Synergistic Control of Rice Blast and Enhanced Disease Resistance in Rice. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60842-60855. [PMID: 39447151 DOI: 10.1021/acsami.4c12611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The construction of controlled-release formulations improves the sustained-release performance and utilization efficiency of pesticides, which are important aspects in plant protection and environmental chemistry. The current study employs kasugamycin (Kas), which is widely used to control Magnaporthe oryzae, conjugated with carboxyl-functionalized ZnO quantum dots via amide linkages to yield a pH-responsive pesticide delivery system (Kas@ZnO). Physicochemical characterizations indicated the successful preparation of the Kas@ZnO nanoparticles. In vitro drug release assessments indicated that Kas@ZnO exhibited a loading capacity of 21.05% and could effect the controlled release of Kas in an acidic environment, which is beneficial given the unique acidic microenvironment of M. oryzae. Bioactivity assays demonstrated that Kas@ZnO could simultaneously inhibit mycelial growth and spore germination. Additionally, bioactivity tests showed that the control efficacy of Kas@ZnO against rice blast reached 67.43% after 14 days of in vivo spray inoculation, which was higher than that obtained with Kas (55.50%), suggesting improved beneficial effects of Kas@ZnO application over a prolonged duration. Moreover, Kas@ZnO enhanced the activity of defense-related enzymes in rice and upregulated the expression of defense-related genes, such as OsPR2, OsPR3, OsPR5, OsWRKY45, OsLYP6, and OsNAC4. Ultimately, the biosafety assessments revealed that Kas@ZnO did not exert any harmful effects on rice and demonstrated slight toxicity toward zebrafish. These findings indicate that Kas@ZnO can function as a pH-sensitive pesticide delivery system, allowing for targeted release of the pesticide within plant tissues. This technology demonstrates significant potential for eco-friendly plant disease management.
Collapse
Affiliation(s)
- Jie Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Changwei Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Jia
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinfeng Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ge Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ao Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanyan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xuegui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Li R, Tang Y, Wang Q, Zhao B, Su W, Wang B, Li Q. Inactivation of a Wheat Ribosomal Silencing Factor Gene TaRsfS Confers Resistance to Both Powdery Mildew and Stripe Rust. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39323023 DOI: 10.1111/pce.15172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Powdery mildew and stripe rust are major diseases on wheat worldwide that cause significant reductions in wheat production. The ribosomal silencing factor (RsfS) has been proven to regulate protein biosynthesis by inhibiting the translation process in bacterial response to stress. However, the role of RsfS in plant resistance to biotic stresses remains unclear. In this study, the RsfS homolog, TaRsfS was isolated from wheat. Overexpression of TaRsfS (TaRsfS-OE) reduces wheat resistance to powdery mildew and stripe rust and TaRsfS knockout (TaRsfS-KO) increases wheat resistance to both diseases without affecting key agronomic traits. The interaction protein of TaRsfS, 12-oxo-phytodienoic acid reductase 1 (TaOPR1), a key enzyme in the biosynthesis of jasmonic acid (JA), was screened and identified. Knocking-down and overexpression of TaOPR1 indicated that TaOPR1 positively regulates wheat resistance to powdery mildew and stripe rust. TaRsfS may regulate TaOPR1 at upstream, bind to the enzyme activity pocket of TaOPR1 and affect TaOPR1 enzyme activity, resulting in a reduced JA biosynthesis and wheat susceptible to powdery mildew and stripe rust. Collectively, TaRsfS is a susceptibility gene and negatively regulates wheat resistance to powdery mildew and stripe rust, and it has good potential for improving wheat resistance by genetic modifications.
Collapse
Affiliation(s)
- Ruobing Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaqi Tang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiao Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Bingjie Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenwen Su
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Baotong Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiang Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Liu Y, Xiao W, Liao L, Zheng B, Cao Y, Zhao Y, Zhang RX, Han Y. A PpEIL2/3-PpNAC1-PpWRKY14 module regulates fruit ripening by modulating ethylene production in peach. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39185667 DOI: 10.1111/jipb.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024]
Abstract
WRKY transcription factors play key roles in plant resistance to various stresses, but their roles in fruit ripening remain largely unknown. Here, we report a WRKY gene PpWRKY14 involved in the regulation of fruit ripening in peach. The expression of PpWRKY14 showed an increasing trend throughout fruit development. PpWRKY14 was a target gene of PpNAC1, a master regulator of peach fruit ripening. PpWRKY14 could directly bind to the promoters of PpACS1 and PpACO1 to induce their expression, and this induction was greatly enhanced when PpWRKY14 formed a dimer with PpNAC1. However, the transcription of PpNAC1 could be directly suppressed by two EIN3/EIL1 genes, PpEIL2 and PpEIL3. The PpEIL2/3 genes were highly expressed at the early stages of fruit development, but their expression was programmed to decrease significantly during the ripening stage, thus derepressing the expression of PpNAC1. These results suggested a PpEIL2/3-PpNAC1-PpWRKY14 module that regulates fruit ripening by modulating ethylene production in peach. Our results provided an insight into the regulatory roles of EIN3/EIL1 and WRKY genes in fruit ripening.
Collapse
Affiliation(s)
- Yudi Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Xiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Liao Liao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Beibei Zheng
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yunpeng Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yun Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ruo-Xi Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
4
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
5
|
Li X, Li Y, Liu H, Liu D, Xu C, Yan M, Zhang C, Zhang C, Xia Z, An M, Wu Y. Identification of host gene regulation and resistance pathway dynamics at diverse infection stages of Rhizoctonia solani AG3-TB. PHYSIOLOGIA PLANTARUM 2024; 176:e14475. [PMID: 39140303 DOI: 10.1111/ppl.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
Rhizoctonia solani is a fungal pathogen that causes significant losses in agricultural production. Because of its rapid transmission and broad host range, the exploration of genes involved in defense responses to the infection of R. solani has become an important task. Here, we performed a time-course RNA-Seq experiment to explore crucial genes or pathways involved in host responses to R. solani AG3-TB infection at 6, 12, 24, 36, 48, and 72 hours post inoculation (hpi). GO and KEGG enrichment analysis revealed that most DEGs were enriched in the basal metabolism pathways, including carbohydrate metabolic processes and the biosynthesis of amino acids. Moreover, catalase (CAT) and superoxide dismutase (SOD) were up-regulated, and transcription factors (TFs) such as WRKY, AP2, and MYB were increased significantly compared to the control (0 hpi). Silencing of WRKY70 and catalase-3 exhibited elevated susceptibility to the fungal infection. To summarize, the TFs WRKY70 and WRKY75, genes involved in jasmonic acid (JA), salicylic acid (SA), and brassinosteroids (BR) signaling pathways, and defense-related enzymes may play crucial roles in the host responses to R. solani AG3-TB infection.
Collapse
Affiliation(s)
- Xinchun Li
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Rice Research Institute, College of Agriculture, Shenyang Agricultural University, Shenyang, China
| | - Yan Li
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - He Liu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Dongyang Liu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Chuantao Xu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Min Yan
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Chongjin Zhang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Chong Zhang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
6
|
Chen J, Cai R, Tang L, Wang D, Lv R, Guo C. Antagonistic activity and mechanism of Bacillus subtilis CG-6 suppression of root rot and growth promotion in Alfalfa. Microb Pathog 2024; 190:106616. [PMID: 38492826 DOI: 10.1016/j.micpath.2024.106616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Root rot is a common disease, that severely affects the yield and quality of alfalfa. Biocontrol is widely used to control plant diseases caused by pathogenic fungi, however, biocontrol strains for alfalfa root rot are very limited. In this study, a Bacillus subtilis CG-6 strain with a significant biocontrol effect on alfalfa root rot was isolated. CG-6 secretes antibacterial enzymes and siderophore, phosphate solubilization and indoleacetic acid (IAA). The inhibition rate of strain CG-6 against Fusarium oxysporum was 87.33%, and it showed broad-spectrum antifungal activity. Inoculation with CG-6 significantly reduced the incidence of alfalfa root rot, the control effect of greenhouse cultivation reached 58.12%, and CG-6 treatment significantly increased alfalfa plant height, root length, fresh weight, and dry weight. The treatment with CG-6 significantly increased the levels of antioxidant enzymes (catalase, peroxidase, superoxide dismutase, and lipoxygenase) in alfalfa leaves by 15.52%-34.03%. Defensive enzymes (chitinase and β-1,3-glucanase) increased by 24.37% and 28.08%, respectively. The expression levels of regulatory enzyme genes (MsCAT, MsPOD, MsCu, Zn-SOD1, MsCu, Zn-SOD2, MsCu, Zn-SOD3, and MsLOX2) and systemic resistance genes (MsPR1, MsPDF1.2, and MsVSP2) increased by 0.50-2.85 fold, which were higher than those in the pathogen treatment group. Therefore, CG-6 could be used as a potential strain to develop biopesticides against alfalfa root rot.
Collapse
Affiliation(s)
- Jiaxin Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Limin Development Zone, Harbin Normal University, No. 1 of Shida Road, Harbin 150025, China
| | - Run Cai
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Limin Development Zone, Harbin Normal University, No. 1 of Shida Road, Harbin 150025, China
| | - Lu Tang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Limin Development Zone, Harbin Normal University, No. 1 of Shida Road, Harbin 150025, China
| | - Dan Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Limin Development Zone, Harbin Normal University, No. 1 of Shida Road, Harbin 150025, China
| | - Ruiwei Lv
- Science and Technology Building, Heilongjiang Guohong Environmental Co., Ltd., No. 600 of Chuangxin Third Road, Songbei Zone, Harbin 150029, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Limin Development Zone, Harbin Normal University, No. 1 of Shida Road, Harbin 150025, China.
| |
Collapse
|
7
|
Meng XJ, Wang LQ, Ma BG, Wei XH, Zhou Y, Sun ZX, Li YY. Screening, identification and evaluation of an acidophilic strain of Bacillus velezensis B4-7 for the biocontrol of tobacco bacterial wilt. FRONTIERS IN PLANT SCIENCE 2024; 15:1360173. [PMID: 38751839 PMCID: PMC11094357 DOI: 10.3389/fpls.2024.1360173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
Tobacco (Nicotiana tabacum L.) bacterial wilt, caused by Ralstonia solanacearum, is indeed a highly destructive plant disease, leading to substantial damage in tobacco production. While biological control is considered an effective measure for managing bacterial wilt, related research in this area has been relatively limited compared to other control methods. In order to discover new potential antagonistic bacteria with high biocontrol efficacy against tobacco bacterial wilt, we conducted an analysis of the microbial composition differences between disease-suppressive and disease-conducive soils using Illumina sequencing. As a result, we successfully isolated six strains from the disease-suppressive soil that exhibited antibacterial activity against Ralstonia solanacearum. Among these strains, B4-7 showed the strongest antibacterial activity, even at acidic conditions with a pH of 4.0. Based on genome analysis using Average Nucleotide Identity (ANI), B4-7 was identified as Bacillus velezensis. In greenhouse and field trials, strain B4-7 significantly reduced the disease index of tobacco bacterial wilt, with control efficiencies reaching 74.03% and 46.88% respectively. Additionally, B4-7 exhibited plant-promoting abilities that led to a 35.27% increase in tobacco production in field conditions. Quantitative real-time (qPCR) analysis demonstrated that strain B4-7 effectively reduced the abundance of R. solanacearum in the rhizosphere. Genome sequencing and Liquid Chromatography-Mass Spectrometry (LC-MS) analysis revealed that strain B4-7 potentially produces various lipopeptide metabolites, such as microlactin, bacillaene, difficidin, bacilysin, and surfactin. Furthermore, B4-7 influenced the structure of the rhizosphere soil microbial community, increasing bacterial abundance and fungal diversity, while also promoting the growth of different beneficial microorganisms. In addition, B4-7 enhanced tobacco's resistance to R. solanacearum by increasing the activities of defense enzymes, including superoxide dismutase (SOD), phenylalanine ammonia-lyase (PAL), peroxidase (POD), catalase (CAT), and polyphenol oxidase (PPO). Collectively, these findings suggest that B. velezensis B4-7 holds significant biocontrol potential and can be considered a promising candidate strain for eco-friendly management of tobacco bacterial wilt.
Collapse
Affiliation(s)
- Xiang-jia Meng
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Lan-qin Wang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Bai-ge Ma
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Xi-hong Wei
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Yi Zhou
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- Early Detection and Management of Agricultural and Forestry Pests, Jingzhou, Hubei, China
| | - Zheng-xiang Sun
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- Early Detection and Management of Agricultural and Forestry Pests, Jingzhou, Hubei, China
| | - Yan-yan Li
- Tobacco Research Institute of Hubei Province, Wuhan, Hubei, China
| |
Collapse
|
8
|
Yang X, Yan S, Li Y, Li G, Sun S, Li J, Cui Z, Huo J, Sun Y, Wang X, Liu F. Comparison of Transcriptome between Tolerant and Susceptible Rice Cultivar Reveals Positive and Negative Regulators of Response to Rhizoctonia solani in Rice. Int J Mol Sci 2023; 24:14310. [PMID: 37762614 PMCID: PMC10532033 DOI: 10.3390/ijms241814310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Rice (Oryza sativa L.) is one of the world's most crucial food crops, as it currently supports more than half of the world's population. However, the presence of sheath blight (SB) caused by Rhizoctonia solani has become a significant issue for rice agriculture. This disease is responsible for causing severe yield losses each year and is a threat to global food security. The breeding of SB-resistant rice varieties requires a thorough understanding of the molecular mechanisms involved and the exploration of immune genes in rice. To this end, we conducted a screening of rice cultivars for resistance to SB and compared the transcriptome based on RNA-seq between the most tolerant and susceptible cultivars. Our study revealed significant transcriptomic differences between the tolerant cultivar ZhengDao 22 (ZD) and the most susceptible cultivar XinZhi No.1 (XZ) in response to R. solani invasion. Specifically, the tolerant cultivar showed 7066 differentially expressed genes (DEGs), while the susceptible cultivar showed only 60 DEGs. In further analysis, we observed clear differences in gene category between up- and down-regulated expression of genes (uDEGs and dDEGs) based on Gene Ontology (GO) classes in response to infection in the tolerant cultivar ZD, and then identified uDEGs related to cell surface pattern recognition receptors, the Ca2+ ion signaling pathway, and the Mitogen-Activated Protein Kinase (MAPK) cascade that play a positive role against R. solani. In addition, DEGs of the jasmonic acid and ethylene signaling pathways were mainly positively regulated, whereas DEGs of the auxin signaling pathway were mainly negatively regulated. Transcription factors were involved in the immune response as either positive or negative regulators of the response to this pathogen. Furthermore, our results showed that chloroplasts play a crucial role and that reduced photosynthetic capacity is a critical feature of this response. The results of this research have important implications for better characterization of the molecular mechanism of SB resistance and for the development of resistant cultivars through molecular breeding methods.
Collapse
Affiliation(s)
- Xiurong Yang
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Shuangyong Yan
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yuejiao Li
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Guangsheng Li
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Shuqin Sun
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Junling Li
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Zhongqiu Cui
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Jianfei Huo
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yue Sun
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Xiaojing Wang
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Fangzhou Liu
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| |
Collapse
|
9
|
Yuan DP, Li Z, Chen H, Li S, Xuan YH, Ma D. bZIP23 interacts with NAC028 to modulate rice resistance to sheath blight disease. Biochem Biophys Res Commun 2023; 672:89-96. [PMID: 37343319 DOI: 10.1016/j.bbrc.2023.06.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Rice sheath blight disease (ShB) is a serious threat to rice production, and breeding ShB-resistance varieties is the most effective strategy for ShB control. However, the molecular mechanisms of rice resistance to ShB are largely unknown. In this study, the NAC transcription factor NAC028 was shown to be sensitive to ShB infection. ShB inoculation assays revealed that NAC028 is a positive regulator of ShB resistance. To elucidate the molecular basis of NAC028-mediated ShB resistance, another transcription factor (bZIP23) was identified as a NAC028-interacting protein. Results of the transcriptome and qRT-PCR analyses demonstrated that CAD8B, a key enzyme for lignin biosynthesis and ShB resistance, is regulated by both bZIP23 and NAC028. The combination of the yeast-one hybrid, ChIP-qPCR, and transactivation assays illustrated that both bZIP23 and NAC028 directly bind the CAD8B promoter and activate its expression. The transcriptional connection between bZIP23 and NAC028 was also investigated and the results of in vitro and in vivo assays demonstrated that NAC028 was one of the target genes of bZIP23, but not vice versa. The results presented here provide new insights into the molecular basis of ShB resistance and contribute to the potential targets for the ShB resistance breeding program.
Collapse
Affiliation(s)
- De Peng Yuan
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China; College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhuo Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Huan Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuang Li
- College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | - Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China; Liaodong University, Dandong, 118001, China.
| |
Collapse
|
10
|
Hao Q, Yang H, Chen S, Qu Y, Zhang C, Chen L, Cao D, Yuan S, Guo W, Yang Z, Huang Y, Shan Z, Chen H, Zhou X. RNA-Seq and Comparative Transcriptomic Analyses of Asian Soybean Rust Resistant and Susceptible Soybean Genotypes Provide Insights into Identifying Disease Resistance Genes. Int J Mol Sci 2023; 24:13450. [PMID: 37686258 PMCID: PMC10487414 DOI: 10.3390/ijms241713450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is one of the most destructive foliar diseases that affect soybeans. Developing resistant cultivars is the most cost-effective, environmentally friendly, and easy strategy for controlling the disease. However, the current understanding of the mechanisms underlying soybean resistance to P. pachyrhizi remains limited, which poses a significant challenge in devising effective control strategies. In this study, comparative transcriptomic profiling using one resistant genotype and one susceptible genotype was performed under infected and control conditions to understand the regulatory network operating between soybean and P. pachyrhizi. RNA-Seq analysis identified a total of 6540 differentially expressed genes (DEGs), which were shared by all four genotypes. The DEGs are involved in defense responses, stress responses, stimulus responses, flavonoid metabolism, and biosynthesis after infection with P. pachyrhizi. A total of 25,377 genes were divided into 33 modules using weighted gene co-expression network analysis (WGCNA). Two modules were significantly associated with pathogen defense. The DEGs were mainly enriched in RNA processing, plant-type hypersensitive response, negative regulation of cell growth, and a programmed cell death process. In conclusion, these results will provide an important resource for mining resistant genes to P. pachyrhizi infection and valuable resources to potentially pyramid quantitative resistance loci for improving soybean germplasm.
Collapse
Affiliation(s)
- Qingnan Hao
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Hongli Yang
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Shuilian Chen
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Yanhui Qu
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- The Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chanjuan Zhang
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Limiao Chen
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Dong Cao
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Songli Yuan
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Wei Guo
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Zhonglu Yang
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Yi Huang
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Zhihui Shan
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Haifeng Chen
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xinan Zhou
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
11
|
Ramos RN, Zhang N, Lauff DB, Valenzuela-Riffo F, Figueroa CR, Martin GB, Pombo MA, Rosli HG. Loss-of-function mutations in WRKY22 and WRKY25 impair stomatal-mediated immunity and PTI and ETI responses against Pseudomonas syringae pv. tomato. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01358-0. [PMID: 37226022 DOI: 10.1007/s11103-023-01358-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/27/2023] [Indexed: 05/26/2023]
Abstract
Plants defend themselves against pathogens using a two-layered immune system. The first response, pattern-triggered immunity (PTI), is activated upon recognition of microbe-associated molecular patterns (MAMPs). Virulent bacteria such as Pseudomonas syringae pv. tomato (Pst), deliver effector proteins into the plant cell to promote susceptibility. However, some plants possess resistance (R) proteins that recognize specific effectors leading to the activation of the second response, effector-triggered immunity (ETI). Resistant tomatoes such as Río Grande-PtoR recognize two Pst effectors (AvrPto and AvrPtoB) through the host Pto/Prf complex and activate ETI. We previously showed that the transcription factors (TF) WRKY22 and WRKY25 are positive regulators of plant immunity against bacterial and potentially non-bacterial pathogens in Nicotiana benthamiana. Here, the CRISPR-Cas9 technique was used to develop three knockout tomato lines for either one or both TFs. The single and double mutants were all compromised in Pto/Prf-mediated ETI and had a weaker PTI response. The stomata apertures in all of the mutant lines did not respond to darkness or challenge with Pst DC3000. The WRKY22 and WRKY25 proteins both localize in the nucleus, but we found no evidence of a physical interaction between them. The WRKY22 TF was found to be involved in the transcriptional regulation of WRKY25, supporting the idea that they are not functionally redundant. Together, our results indicate that both WRKY TFs play a role in modulating stomata and are positive regulators of plant immunity in tomato.
Collapse
Affiliation(s)
- Romina N Ramos
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Diana B Lauff
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - Felipe Valenzuela-Riffo
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - Carlos R Figueroa
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853, USA
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Marina A Pombo
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina.
| | - Hernan G Rosli
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| |
Collapse
|
12
|
Islam MR, Chowdhury R, Roy AS, Islam MN, Mita MM, Bashar S, Saha P, Rahat RA, Hasan M, Akter MA, Alam MZ, Latif MA. Native Trichoderma Induced the Defense-Related Enzymes and Genes in Rice against Xanthomonas oryzae pv. oryzae ( Xoo). PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091864. [PMID: 37176922 PMCID: PMC10180545 DOI: 10.3390/plants12091864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 05/15/2023]
Abstract
The application of Trichoderma is a form of biological control that has been effective in combating Xanthomonas oryzae pv. oryzae, the causative agent of the devastating disease known as bacterial blight of rice. In this present study, four strains of Trichoderma, viz., T. paraviridescens (BDISOF67), T. erinaceum (BDISOF91), T. asperellum (BDISOF08), and T. asperellum (BDISOF09), were collected from the rice rhizosphere and used to test their potentiality in reducing bacterial blight. The expression patterns of several core defense-related enzymes and genes related to SA and JA pathways were studied to explore the mechanism of induced resistance by those Trichoderma strains. The results primarily indicated that all Trichoderma were significantly efficient in reducing the lesion length of the leaf over rice check variety (IR24) through enhancing the expression of core defense-related enzymes, such as PAL, PPO, CAT, and POD activities by 4.27, 1.77, 3.53, and 1.57-fold, respectively, over control. Moreover, the results of qRT-PCR exhibited an upregulation of genes OsPR1, OsPR10, OsWRKY45, OsWRKY62, OsWRKY71, OsHI-LOX, and OsACS2 after 24 h of inoculation with all tested Trichoderma strains. However, in the case of RT-PCR, no major changes in OsPR1 and OsPR10 expression were observed in plants treated with different Trichoderma strains during different courses of time. Collectively, Trichoderma induced resistance in rice against X. oryzae pv. oryzae by triggering these core defense-related enzymes and genes associated with SA and JA pathways.
Collapse
Affiliation(s)
- Md Rashidul Islam
- Plant Bacteriology and Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Rabin Chowdhury
- Plant Bacteriology and Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Arpita Saha Roy
- Plant Bacteriology and Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Nazmul Islam
- Plant Bacteriology and Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mamuna Mahjabin Mita
- Plant Bacteriology and Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Samrin Bashar
- Plant Bacteriology and Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Plabon Saha
- Plant Bacteriology and Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Ridwan Ahmed Rahat
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mehedi Hasan
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mst Arjina Akter
- Plant Bacteriology and Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Zahangir Alam
- Plant Bacteriology and Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Abdul Latif
- Plant Pathology Division, Bangladesh Rice Research Institute, Joydebpur, Gazipur 1701, Bangladesh
| |
Collapse
|
13
|
Chen J, Xuan Y, Yi J, Xiao G, Yuan DP, Li D. Progress in rice sheath blight resistance research. FRONTIERS IN PLANT SCIENCE 2023; 14:1141697. [PMID: 37035075 PMCID: PMC10080073 DOI: 10.3389/fpls.2023.1141697] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Rice sheath blight (ShB) disease poses a major threat to rice yield throughout the world. However, the defense mechanisms against ShB in rice remain largely unknown. ShB resistance is a typical quantitative trait controlled by multiple genes. With the rapid development of molecular methods, many quantitative trait loci (QTLs) related to agronomic traits, biotic and abiotic stresses, and yield have been identified by genome-wide association studies. The interactions between plants and pathogens are controlled by various plant hormone signaling pathways, and the pathways synergistically or antagonistically interact with each other, regulating plant growth and development as well as the defense response. This review summarizes the regulatory effects of hormones including auxin, ethylene, salicylic acid, jasmonic acid, brassinosteroids, gibberellin, abscisic acid, strigolactone, and cytokinin on ShB and the crosstalk between the various hormones. Furthermore, the effects of sugar and nitrogen on rice ShB resistance, as well as information on genes related to ShB resistance in rice and their effects on ShB are also discussed. In summary, this review is a comprehensive description of the QTLs, hormones, nutrition, and other defense-related genes related to ShB in rice. The prospects of targeting the resistance mechanism as a strategy for controlling ShB in rice are also discussed.
Collapse
Affiliation(s)
- Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jianghui Yi
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - De Peng Yuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Dandan Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
14
|
Xiong F, Zhu X, Luo C, Liu Z, Zhang Z. The Cytosolic Acetoacetyl-CoA Thiolase TaAACT1 Is Required for Defense against Fusarium pseudograminearum in Wheat. Int J Mol Sci 2023; 24:ijms24076165. [PMID: 37047146 PMCID: PMC10094598 DOI: 10.3390/ijms24076165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Fusarium pseudograminearum is a major pathogen for the destructive disease Fusarium crown rot (FCR) of wheat (Triticum aestivum). The cytosolic Acetoacetyl-CoA thiolase II (AACT) is the first catalytic enzyme in the mevalonate pathway that biosynthesizes isoprenoids in plants. However, there has been no investigation of wheat cytosolic AACT genes in defense against pathogens including Fusarium pseudograminearum. Herein, we identified a cytosolic AACT-encoding gene from wheat, named TaAACT1, and demonstrated its positively regulatory role in the wheat defense response to F. pseudograminearum. One haplotype of TaAACT1 in analyzed wheat genotypes was associated with wheat resistance to FCR. The TaAACT1 transcript level was elevated after F. pseudograminearum infection, and was higher in FCR-resistant wheat genotypes than in susceptible wheat genotypes. Functional analysis indicated that knock down of TaAACT1 impaired resistance against F. pseudograminearum and reduced the expression of downstream defense genes in wheat. TaAACT1 protein was verified to localize in the cytosol of wheat cells. TaAACT1 and its modulated defense genes were rapidly responsive to exogenous jasmonate treatment. Collectively, TaAACT1 contributes to resistance to F. pseudograminearum through upregulating the expression of defense genes in wheat. This study sheds new light on the molecular mechanisms underlying wheat defense against FCR.
Collapse
Affiliation(s)
- Feng Xiong
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuliang Zhu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changsha Luo
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhixiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zengyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
15
|
Genome and Transcriptome-Wide Analysis of OsWRKY and OsNAC Gene Families in Oryza sativa and Their Response to White-Backed Planthopper Infestation. Int J Mol Sci 2022; 23:ijms232315396. [PMID: 36499722 PMCID: PMC9739594 DOI: 10.3390/ijms232315396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Plants are threatened by a wide variety of herbivorous insect assaults, and display a variety of inherent and induced defenses that shield them against herbivore attacks. Looking at the massive damage caused by the white-backed planthopper (WBPH), Sogatella furcifera, we undertook a study to identify and functionally annotate OsWRKY and OsNAC transcription factors (TFs) in rice, especially their involvement in WBPH stress. OsWRKY and OsNAC TFs are involved in various developmental processes and responses to biotic and abiotic stresses. However, no comprehensive reports are available on the specific phycological functions of most of the OsWRKY and OsNAC genes in rice during WBPH infestation. The current study aimed to comprehensively explore the OsWRKY and OsNAC genes by analyzing their phylogenetic relationships, subcellular localizations, exon-intron arrangements, conserved motif identities, chromosomal allocations, interaction networks and differential gene expressions during stress conditions. Comparative phylogenetic trees of 101 OsWRKY with 72 AtWRKY genes, and 121 OsNAC with 110 AtNAC genes were constructed to study relationships among these TFs across species. Phylogenetic relationships classified OsWRKY and OsNAC into eight and nine clades, respectively. Most TFs in the same clade had similar genomic features that represented similar functions, and had a high degree of co-expression. Some OsWRKYs (Os09g0417800 (OsWRKY62), Os11g0117600 (OsWRKY50), Os11g0117400 (OsWRKY104) and OsNACs (Os05g0442700, Os12g0630800, Os01g0862800 and Os12g0156100)) showed significantly higher expressions under WBPH infestation, based on transcriptome datasets. This study provides valuable information and clues about predicting the potential roles of OsWRKYs and OsNACs in rice, by combining their genome-wide characterization, expression profiling, protein-protein interactions and gene expressions under WBPH stress. These findings may require additional investigation to understand their metabolic and expression processes, and to develop rice cultivars that are resistant to WBPH.
Collapse
|
16
|
Joshi A, Jeena GS, Shikha, Kumar RS, Pandey A, Shukla RK. Ocimum sanctum, OscWRKY1, regulates phenylpropanoid pathway genes and promotes resistance to pathogen infection in Arabidopsis. PLANT MOLECULAR BIOLOGY 2022; 110:235-251. [PMID: 35780285 DOI: 10.1007/s11103-022-01297-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
KEY MESSAGE OscWRKY1 from Ocimum sanctum positively regulates phenylpropanoid pathway genes and rosmarinic acid content. OscWRKY1 overexpression promotes resistance against bacterial pathogen in Arabidopsis. WRKY transcription factor (TF) family regulates various developmental and physiological functions in plants. PAL genes encode enzymes which are involved in plant defense responses, but the direct regulation of PAL genes and phenylpropanoid pathway through WRKY TF's is not well characterized. In the present study, we have characterized an OscWRKY1 gene from Ocimum sanctum which shows induced expression by methyl jasmonate (MeJA), salicylic acid (SA), and wounding. The recombinant OscWRKY1 protein binds to the DIG-labeled (Digoxigenin) W-box cis-element TTGAC[C/T] and activates the LacZ reporter gene in yeast. Overexpression of OscWRKY1 enhances Arabidopsis resistance towards Pseudomonas syringae pv. tomato Pst DC3000. Upstream activator sequences of PAL and C4H have been identified to contain the conserved W-box cis-element (TTGACC) in both O. sanctum and Arabidopsis. OscWRKY1 was found to interact with W-box cis-element present in the PAL and C4H promoters. Silencing of OscWRKY1 using VIGS resulted in reduced expression of PAL, C4H, COMT, F5H and 4CL transcripts. OscWRKY1 silenced plants exhibit reduced PAL activity, whereas, the overexpression lines of OscWRKY1 in Arabidopsis exhibit increased PAL activity. Furthermore, the metabolite analysis of OscWRKY1 silenced plants showed reduced rosmarinic acid content. These results revealed that OscWRKY1 positively regulates the phenylpropanoid pathway genes leading to the alteration of rosmarinic acid content and enhances the resistance against bacterial pathogen in Arabidopsis.
Collapse
Affiliation(s)
- Ashutosh Joshi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
| | - Gajendra Singh Jeena
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
| | - Shikha
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ravi Shankar Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
| | - Alok Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
| | - Rakesh Kumar Shukla
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
17
|
Zhang M, Zhao R, Huang K, Huang S, Wang H, Wei Z, Li Z, Bian M, Jiang W, Wu T, Du X. The OsWRKY63-OsWRKY76-OsDREB1B module regulates chilling tolerance in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:383-398. [PMID: 35996876 DOI: 10.1111/tpj.15950] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Rice (Oryza sativa) is sensitive to low temperatures, which affects the yield and quality of rice. Therefore, uncovering the molecular mechanisms behind chilling tolerance is a critical task for improving cold tolerance in rice cultivars. Here, we report that OsWRKY63, a WRKY transcription factor with an unknown function, negatively regulates chilling tolerance in rice. OsWRKY63-overexpressing rice lines are more sensitive to cold stress. Conversely, OsWRKY63-knockout mutants generated using a CRISPR/Cas9 genome editing approach exhibited increased chilling tolerance. OsWRKY63 was expressed in all rice tissues, and OsWRKY63 expression was induced under cold stress, dehydration stress, high salinity stress, and ABA treatment. OsWRKY63 localized in the nucleus plays a role as a transcription repressor and downregulates many cold stress-related genes and reactive oxygen species scavenging-related genes. Molecular, biochemical, and genetic assays showed that OsWRKY76 is a direct target gene of OsWRKY63 and that its expression is suppressed by OsWRKY63. OsWRKY76-knockout lines had dramatically decreased cold tolerance, and the cold-induced expression of five OsDREB1 genes was repressed. OsWRKY76 interacted with OsbHLH148, transactivating the expression of OsDREB1B to enhance chilling tolerance in rice. Thus, our study suggests that OsWRKY63 negatively regulates chilling tolerance through the OsWRKY63-OsWRKY76-OsDREB1B transcriptional regulatory cascade in rice.
Collapse
Affiliation(s)
- Mingxing Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Ranran Zhao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Kai Huang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Shuangzhan Huang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Haitao Wang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Zhiqi Wei
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Zhao Li
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Mingdi Bian
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Wenzhu Jiang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Tao Wu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xinglin Du
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
18
|
“KRiShI”: a manually curated knowledgebase on rice sheath blight disease. Funct Integr Genomics 2022; 22:1403-1410. [DOI: 10.1007/s10142-022-00899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/28/2022] [Accepted: 09/04/2022] [Indexed: 11/04/2022]
|
19
|
Role of PsnWRKY70 in Regulatory Network Response to Infection with Alternaria alternata (Fr.) Keissl in Populus. Int J Mol Sci 2022; 23:ijms23147537. [PMID: 35886886 PMCID: PMC9324512 DOI: 10.3390/ijms23147537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
WRKY is an important complex family of transcription factors involved in plant immune responses. Among them, WRKY70 plays an important role in the process of the plant defense response to the invasion of pathogens. However, the defense mechanism of PsnWRKY70 is not clear in Populus nigra. In this study, we showed that PsnWRKY70-overexpression lines (OE) had fewer leaf blight symptoms than PsnWRKY70-repressing lines (RE). PsnWRKY70 activated MAP kinase cascade genes (PsnM2K4, PsnMPK3, PsnM3K18), calcium channel proteins-related genes (PsnCNG3, PsnCNGC1, PsnCNG4), and calcium-dependent protein kinases genes (PsnCDPKL, PsnCDPKW, PsnCDPKS, PsnCDPKQ). Furthermore, 129 genes of PsnWRKY70 putative genome-wide direct targets (DTGs) were identified by using transcriptome (RNA-seq) and DNA affinity purification sequencing (DAP-seq). PsnWRKY70 directly binds to the promoters of homologous genes and LRR domain proteins to promote the expression of WRKY6, WRKY18, WRKY22, and WRKY22–1, LRR domain proteins LRR8, LRR-RLK, ADR1-like 2, NB-ARC, etc. Our study suggests that PsnWRKY70 enhances the resistance of A. alternata in poplar by activating genes in both pathogen-associated molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI).
Collapse
|
20
|
Das A, Moin M, Sahu A, Kshattry M, Kirti PB, Barah P. Time-course transcriptome analysis identifies rewiring patterns of transcriptional regulatory networks in rice under Rhizoctonia solani infection. Gene X 2022; 828:146468. [PMID: 35390443 DOI: 10.1016/j.gene.2022.146468] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 01/03/2023] Open
Abstract
Sheath Blight (SB) disease in rice is caused by the infection from the fungal pathogen Rhizoctonia solani (R. solani). SB is one of the most severe rice diseases that can cause up to 50% yield losses in rice. Naturally occurring rice varieties resistant to SB have not been reported yet. We have performed a Time-Series RNA-Seq analysis on a widely cultivated rice variety BPT-5204 for identifying transcriptome level response signatures during R. solani infection at 1st, 2nd and 5th day post infection (dpi). In total, 428, 3225 and 1225 genes were differentially expressed in the treated rice plants on 1, 2 and 5 dpi, respectively. GO and KEGG enrichment analysis identified significant processes and pathways differentially altered in the rice plants during the fungal infection. Machine learning and network based integrative approach was used to construct rice Transcriptional Regulatory Networks (TRNs) for the three time points. TRN analysis identified SUB1B, MYB30 and CCA1 as important regulatory hub transcription factors in rice during R. solani infection. Jasmonic acid, salicylic acid, ethylene biogenesis and signaling were induced on infection. SAR was up regulated, while photosynthesis and carbon fixation processes were significantly down regulated. Involvement of MAPK, CYPs, peroxidase, PAL, chitinase genes were also observed in response to the fungal infection. The integrative analysis identified seven putative SB resistance genes differentially regulated in rice during R. solani infection.
Collapse
Affiliation(s)
- Akash Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam 784028, India
| | - Mazahar Moin
- Department of Biotechnology, Indian Institute of Rice Research, Hyderabad 500030, India
| | - Ankur Sahu
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam 784028, India
| | - Mrinmoy Kshattry
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam 784028, India
| | | | - Pankaj Barah
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam 784028, India.
| |
Collapse
|
21
|
Wu XX, Yuan DP, Chen H, Kumar V, Kang SM, Jia B, Xuan YH. Ammonium transporter 1 increases rice resistance to sheath blight by promoting nitrogen assimilation and ethylene signalling. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1085-1097. [PMID: 35170194 PMCID: PMC9129087 DOI: 10.1111/pbi.13789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Sheath blight (ShB) significantly threatens rice yield production. However, the underlying mechanism of ShB defence in rice remains largely unknown. Here, we identified a highly ShB-susceptible mutant Ds-m which contained a mutation at the ammonium transporter 1;1 (AMT1;1) D358 N. AMT1;1 D358 N interacts with AMT1;1, AMT1;2 and AMT1;3 to inhibit the ammonium transport activity. The AMT1 RNAi was more susceptible and similar to the AMT1;1 D358 N mutant; however, plants with higher NH4+ uptake activity were less susceptible to ShB. Glutamine synthetase 1;1 (GS1;1) mutant gs1;1 and overexpressors (GS1;1 OXs) were more and less susceptible to ShB respectively. Furthermore, AMT1;1 overexpressor (AMT1;1 OX)/gs1;1 and gs1;1 exhibited a similar response to ShB, suggesting that ammonium assimilation rather than accumulation controls the ShB defence. Genetic and physiological assays further demonstrated that plants with higher amino acid or chlorophyll content promoted rice resistance to ShB. Interestingly, the expression of ethylene-related genes was higher in AMT1;1 OX and lower in RNAi mutants than in wild-type. Also, ethylene signalling positively regulated rice resistance to ShB and NH4+ uptake, suggesting that ethylene signalling acts downstream of AMT and also NH4+ uptake is under feedback control. Taken together, our data demonstrated that the AMT1 promotes rice resistance to ShB via the regulation of diverse metabolic and signalling pathways.
Collapse
Affiliation(s)
- Xian Xin Wu
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - De Peng Yuan
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Huan Chen
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Vikranth Kumar
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | | | - Baolei Jia
- School of BioengineeringState Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology (Shandong Academy of Sciences)JinanChina
- Department of Life SciencesChung‐Ang UniversitySeoulSouth Korea
| | - Yuan Hu Xuan
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
22
|
Wang Z, Deng J, Liang T, Su L, Zheng L, Chen H, Liu D. Lilium regale Wilson WRKY3 modulates an antimicrobial peptide gene, LrDef1, during response to Fusarium oxysporum. BMC PLANT BIOLOGY 2022; 22:257. [PMID: 35606728 PMCID: PMC9128230 DOI: 10.1186/s12870-022-03649-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND WRKY transcription factors (TFs) play vital roles in plant growth and development, secondary metabolite synthesis, and response to biotic and abiotic stresses. In a previous transcriptome sequencing analysis of Lilium regale Wilson, we identified multiple WRKY TFs that respond to exogenous methyl jasmonate treatment and lily Fusarium wilt (Fusarium oxysporum). RESULTS In the present study, the WRKY TF LrWRKY3 was further analyzed to reveal its function in defense response to F. oxysporum. The LrWRKY3 protein was localized in the plant cell nucleus, and LrWRKY3 transgenic tobacco lines showed higher resistance to F. oxysporum compared with wild-type (WT) tobacco. In addition, some genes related to jasmonic acid (JA) biosynthesis, salicylic acid (SA) signal transduction, and disease resistance had higher transcriptional levels in the LrWRKY3 transgenic tobacco lines than in the WT. On the contrary, L. regale scales transiently expressing LrWRKY3 RNA interference fragments showed higher sensitivity to F. oxysporum infection. Moreover, a F. oxysporum-induced defensin gene, Def1, was isolated from L. regale, and the recombinant protein LrDef1 isolated and purified from Escherichia coli possessed antifungal activity to several phytopathogens, including F. oxysporum. Furthermore, co-expression of LrWRKY3 and the LrDef1 promoter in tobacco enhanced the LrDef1 promoter-driven expression activity. CONCLUSIONS These results clearly indicate that LrWRKY3 is an important positive regulator in response to F. oxysporum infection, and one of its targets is the antimicrobial peptide gene LrDef1.
Collapse
Affiliation(s)
- Zie Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Number 727 Jing Ming South Road, Chenggong District, Kunming, 650500, China
| | - Jie Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Number 727 Jing Ming South Road, Chenggong District, Kunming, 650500, China
| | - Tingting Liang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Number 727 Jing Ming South Road, Chenggong District, Kunming, 650500, China
| | - Linlin Su
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Number 727 Jing Ming South Road, Chenggong District, Kunming, 650500, China
| | - Lilei Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Number 727 Jing Ming South Road, Chenggong District, Kunming, 650500, China
| | - Hongjun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Number 727 Jing Ming South Road, Chenggong District, Kunming, 650500, China
| | - Diqiu Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Number 727 Jing Ming South Road, Chenggong District, Kunming, 650500, China.
| |
Collapse
|
23
|
Geng X, Gao Z, Zhao L, Zhang S, Wu J, Yang Q, Liu S, Chen X. Comparative transcriptome analysis of resistant and susceptible wheat in response to Rhizoctonia cerealis. BMC PLANT BIOLOGY 2022; 22:235. [PMID: 35534832 PMCID: PMC9087934 DOI: 10.1186/s12870-022-03584-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sheath blight is an important disease caused by Rhizoctonia cerealis that affects wheat yields worldwide. No wheat varieties have been identified with high resistance or immunity to sheath blight. Understanding the sheath blight resistance mechanism is essential for controlling this disease. In this study, we investigated the response of wheat to Rhizoctonia cerealis infection by analyzing the cytological changes and transcriptomes of common wheat 7182 with moderate sensitivity to sheath blight and H83 with moderate resistance. RESULTS The cytological observation showed that the growth of Rhizoctonia cerealis on the surface and its expansion inside the leaf sheath tissue were more rapid in the susceptible material. According to the transcriptome sequencing results, a total of 88685 genes were identified in both materials, including 20156 differentially expressed genes (DEGs) of which 12087 was upregulated genes and 8069 was downregulated genes. At 36 h post-inoculation, compared with the uninfected control, 11498 DEGs were identified in resistant materials, with 5064 downregulated genes and 6434 upregulated genes, and 13058 genes were detected in susceptible materials, with 6759 downregulated genes and 6299 upregulated genes. At 72 h post-inoculation, compared with the uninfected control, 6578 DEGs were detected in resistant materials, with 2991 downregulated genes and 3587 upregulated genes, and 7324 genes were detected in susceptible materials, with 4119 downregulated genes and 3205 upregulated genes. Functional annotation and enrichment analysis showed that the main pathways enriched for the DEGs included biosynthesis of secondary metabolites, carbon metabolism, plant hormone signal transduction, and plant-pathogen interaction. In particular, phenylpropane biosynthesis pathway is specifically activated in resistant variety H83 after infection. Many DEGs also belonged to the MYB, AP2, NAC, and WRKY transcription factor families. CONCLUSIONS Thus, we suggest that the normal functioning of plant signaling pathways and differences in the expression of key genes and transcription factors in some important metabolic pathways may be important for defending wheat against sheath blight. These findings may facilitate further exploration of the sheath blight resistance mechanism in wheat and the cloning of related genes.
Collapse
Affiliation(s)
- Xingxia Geng
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhen Gao
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Li Zhao
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shufa Zhang
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jun Wu
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qunhui Yang
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuhui Liu
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinhong Chen
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
24
|
Senapati M, Tiwari A, Sharma N, Chandra P, Bashyal BM, Ellur RK, Bhowmick PK, Bollinedi H, Vinod KK, Singh AK, Krishnan SG. Rhizoctonia solani Kühn Pathophysiology: Status and Prospects of Sheath Blight Disease Management in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:881116. [PMID: 35592572 PMCID: PMC9111526 DOI: 10.3389/fpls.2022.881116] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/06/2022] [Indexed: 05/14/2023]
Abstract
Sheath blight caused by necrotrophic fungus Rhizoctonia solani Kühn is one of the most serious diseases of rice. Use of high yielding semi dwarf cultivars with dense planting and high dose of nitrogenous fertilizers accentuates the incidence of sheath blight in rice. Its diverse host range and ability to remain dormant under unfavorable conditions make the pathogen more difficult to manage. As there are no sources of complete resistance, management through chemical control has been the most adopted method for sheath blight management. In this review, we provide an up-to-date comprehensive description of host-pathogen interactions, various control measures such as cultural, chemical, and biological as well as utilizing host plant resistance. The section on utilizing host plant resistance includes identification of resistant sources, mapping QTLs and their validation, identification of candidate gene(s) and their introgression through marker-assisted selection. Advances and prospects of sheath blight management through biotechnological approaches such as overexpression of genes and gene silencing for transgenic development against R. solani are also discussed.
Collapse
Affiliation(s)
- Manoranjan Senapati
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ajit Tiwari
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neha Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Priya Chandra
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Bishnu Maya Bashyal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ranjith Kumar Ellur
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Haritha Bollinedi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - K. K. Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ashok Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - S. Gopala Krishnan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
25
|
Liu J, Shen Y, Cao H, He K, Chu Z, Li N. OsbHLH057 targets the AATCA cis-element to regulate disease resistance and drought tolerance in rice. PLANT CELL REPORTS 2022; 41:1285-1299. [PMID: 35278106 DOI: 10.1007/s00299-022-02859-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/28/2022] [Indexed: 05/27/2023]
Abstract
The AATCA motif was identified to respond pathogens infection in the promoter of defense-related gene Os2H16. OsbHLH057 bound to the motif to positively regulate rice disease resistance and drought tolerance. Sheath blight (ShB), caused by the necrotrophic fungus Rhizoctonia solani, is a devastating disease in rice (Oryza sativa L.). The transcriptional regulation of host defense-related genes in response to R. solani infection is poorly understood. In this study, we identified a cis-element, AATCA, in the promoter of Os2H16, a previously identified multifaceted defense-related gene in rice that responded to fungal attack. Using a DNA pull-down assay coupled with mass spectrometry, a basic helix-loop-helix (bHLH) transcription factor OsbHLH057 was determined to interact with the AATCA cis-element. OsbHLH057 was rapidly induced by R. solani, Xanthomonas oryzae pv. oryzae (Xoo), and osmotic stress. Furthermore, overexpressing OsbHLH057 enhanced rice disease resistance and drought tolerance, while knocking out OsbHLH057 made rice more susceptible to pathogens and drought. Overall, our results uncovered an OsbHLH057 and AATCA module that synergistically regulates the expression of Os2H16 in response to R. solani, Xoo, and drought in conjunction with the previously identified stress-related OsASR2 and GT-1 module.
Collapse
Affiliation(s)
- Jiazong Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Yanting Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Hongxiang Cao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Kang He
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Ning Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
26
|
Liu F, Chern M, Jain R, Martin JA, Schakwitz WS, Ronald PC. Silencing of Dicer-like protein 2a restores the resistance phenotype in the rice mutant, sxi4 (suppressor of Xa21-mediated immunity 4). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:646-657. [PMID: 35106860 DOI: 10.1111/tpj.15692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The rice immune receptor XA21 confers resistance to Xanthomonas oryzae pv. oryzae (Xoo), and upon recognition of the RaxX21-sY peptide produced by Xoo, XA21 activates the plant immune response. Here we screened 21 000 mutant plants expressing XA21 to identify components involved in this response, and reported here the identification of a rice mutant, sxi4, which is susceptible to Xoo. The sxi4 mutant carries a 32-kb translocation from chromosome 3 onto chromosome 7 and displays an elevated level of DCL2a transcript, encoding a Dicer-like protein. Silencing of DCL2a in the sxi4 genetic background restores resistance to Xoo. RaxX21-sY peptide-treated leaves of sxi4 retain the hallmarks of XA21-mediated immune response. However, WRKY45-1, a known negative regulator of rice resistance to Xoo, is induced in the sxi4 mutant in response to RaxX21-sY peptide treatment. A CRISPR knockout of a short interfering RNA (TE-siRNA815) in the intron of WRKY45-1 restores the resistance phenotype in sxi4. These results suggest a model where DCL2a accumulation negatively regulates XA21-mediated immunity by altering the processing of TE-siRNA815.
Collapse
Affiliation(s)
- Furong Liu
- Department of Plant Pathology and Genome Center, University of California, Davis, CA, 95616, USA
| | - Mawsheng Chern
- Department of Plant Pathology and Genome Center, University of California, Davis, CA, 95616, USA
| | - Rashmi Jain
- Department of Plant Pathology and Genome Center, University of California, Davis, CA, 95616, USA
| | - Joel A Martin
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Wendy S Schakwitz
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Pamela C Ronald
- Department of Plant Pathology and Genome Center, University of California, Davis, CA, 95616, USA
- Feedstocks Division, The Joint Bioenergy Institute, Emeryville, CA, 94608, USA
| |
Collapse
|
27
|
Zhu X, Rong W, Wang K, Guo W, Zhou M, Wu J, Ye X, Wei X, Zhang Z. Overexpression of TaSTT3b-2B improves resistance to sharp eyespot and increases grain weight in wheat. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:777-793. [PMID: 34873799 PMCID: PMC8989504 DOI: 10.1111/pbi.13760] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/05/2021] [Accepted: 11/28/2021] [Indexed: 05/12/2023]
Abstract
STAUROSPORINE AND TEMPERATURE SENSITIVE3 (STT3) is a catalytic subunit of oligosaccharyltransferase, which is important for asparagine-linked glycosylation. Sharp eyespot, caused by the necrotrophic fungal pathogen Rhizoctonia cerealis, is a devastating disease of bread wheat. However, the molecular mechanisms underlying wheat defense against R. cerealis are still largely unclear. In this study, we identified TaSTT3a and TaSTT3b, two STT3 subunit genes from wheat and reported their functional roles in wheat defense against R. cerealis and increasing grain weight. The transcript abundance of TaSTT3b-2B was associated with the degree of wheat resistance to R. cerealis and induced by both R. cerealis and exogenous jasmonic acid (JA). Overexpression of TaSTT3b-2B significantly enhanced resistance to R. cerealis, grain weight, and JA content in transgenic wheat subjected to R. cerealis stress, while silencing of TaSTT3b-2B compromised resistance of wheat to R. cerealis. Transcriptomic analysis showed that TaSTT3b-2B affected the expression of a series of defense-related genes and JA biosynthesis-related genes, as well as genes coding starch synthase and sucrose synthase. Application of exogenous JA elevated expression levels of the abovementioned defense- and grain weight-related genes, and rescuing the resistance of TaSTT3b-2B-silenced wheat to R. cerealis, while pretreatment with sodium diethyldithiocarbamate, an inhibitor of JA synthesis, attenuated the TaSTT3b-2B-mediated resistance to R. cerealis, suggesting that TaSTT3b-2B played critical roles in regulating R. cerealis resistance and grain weight via JA biosynthesis. Altogether, this study reveals new functional roles of TaSTT3b-2B in regulating plant innate immunity and grain weight, and illustrates its potential application value for wheat molecular breeding.
Collapse
Affiliation(s)
- Xiuliang Zhu
- Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Wei Rong
- Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Kai Wang
- Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Wei Guo
- Jiangsu Academy of Agricultural SciencesNanjingChina
| | - Miaoping Zhou
- Jiangsu Academy of Agricultural SciencesNanjingChina
| | - Jizhong Wu
- Jiangsu Academy of Agricultural SciencesNanjingChina
| | - Xingguo Ye
- Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xuening Wei
- Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zengyan Zhang
- Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
28
|
Samal P, Molla KA, Bal A, Ray S, Swain H, Khandual A, Sahoo P, Behera M, Jaiswal S, Iquebal A, Chakraborti M, Behera L, Kar MK, Mukherjee AK. Comparative transcriptome profiling reveals the basis of differential sheath blight disease response in tolerant and susceptible rice genotypes. PROTOPLASMA 2022; 259:61-73. [PMID: 33811539 DOI: 10.1007/s00709-021-01637-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/17/2021] [Indexed: 05/27/2023]
Abstract
Rice sheath blight (ShB) disease, caused by the fungal pathogen Rhizoctonia solani AG1-IA, is one of the devastating diseases and causes severe yield losses all over the world. No completely resistant germplasm is known till now, and as a result, the progress in resistance breeding is unsatisfactory. Basic studies to identify candidate genes, QTLs, and to better understand the host-pathogen interaction are also scanty. In this study, we report the identification of a new ShB-tolerant rice germplasm, CR 1014. Further, we investigated the basis of tolerance by exploring the disease responsive differentially expressed transcriptome and comparing them with that of a susceptible variety, Swarna-Sub1. A total of 815 and 551 genes were found to be differentially regulated in CR 1014 and Swarna-Sub1, respectively, at two different time points. The result shows that the ability to upregulate genes for glycosyl hydrolase, secondary metabolite biosynthesis, cytoskeleton and membrane integrity, the glycolytic pathway, and maintaining photosynthesis make CR 1014 a superior performer in resisting the ShB pathogen. We discuss several putative candidate genes for ShB resistance. The present study, for the first time, revealed the basis of ShB tolerance in the germplasm CR1014 and should prove to be particularly valuable in understanding molecular response to ShB infection. The knowledge could be utilized to devise strategies to manage the disease better.
Collapse
Affiliation(s)
| | | | - Archana Bal
- ICAR-National Rice Research Institute, Bidyadharpur, Cuttack, Odisha, 753006, India
| | - Soham Ray
- ICAR-National Rice Research Institute, Bidyadharpur, Cuttack, Odisha, 753006, India
- ICAR-Central Research Institute for Jute and Allied Fibers, Barrackpore, Kolkata, West Bengal, India
| | - Harekrushna Swain
- ICAR-National Rice Research Institute, Bidyadharpur, Cuttack, Odisha, 753006, India
| | - Ansuman Khandual
- ICAR-National Rice Research Institute, Bidyadharpur, Cuttack, Odisha, 753006, India
| | - Pritiranjan Sahoo
- ICAR-National Rice Research Institute, Bidyadharpur, Cuttack, Odisha, 753006, India
| | - Motilal Behera
- ICAR-National Rice Research Institute, Bidyadharpur, Cuttack, Odisha, 753006, India
| | - Sarika Jaiswal
- ICAR-Indian Agricultural Statistical Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Asif Iquebal
- ICAR-Indian Agricultural Statistical Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Mridul Chakraborti
- ICAR-National Rice Research Institute, Bidyadharpur, Cuttack, Odisha, 753006, India
| | - Lambodar Behera
- ICAR-National Rice Research Institute, Bidyadharpur, Cuttack, Odisha, 753006, India
| | - Meera K Kar
- ICAR-National Rice Research Institute, Bidyadharpur, Cuttack, Odisha, 753006, India
| | - Arup K Mukherjee
- ICAR-National Rice Research Institute, Bidyadharpur, Cuttack, Odisha, 753006, India.
| |
Collapse
|
29
|
Gao Y, Xue CY, Liu JM, He Y, Mei Q, Wei S, Xuan YH. Sheath blight resistance in rice is negatively regulated by WRKY53 via SWEET2a activation. Biochem Biophys Res Commun 2021; 585:117-123. [PMID: 34801931 DOI: 10.1016/j.bbrc.2021.11.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/29/2022]
Abstract
Sheath blight (ShB) is one of the most common diseases in rice that significantly affects yield production. However, the underlying mechanisms of rice defense remain largely unknown. Our previous transcriptome analysis identified that infection with Rhizoctonia solani significantly induced the expression level of SWEET2a, a member of the SWEET sugar transporter. The sweet2a genome-editing mutants were less susceptible to ShB. Further yeast-one hybrid, ChIP, and transient assays demonstrated that WRKY53 binds to the SWEET2a promoter to activate its expression. WRKY53 is a key brassinosteroid (BR) signaling transcription factor. Similar to the BR receptor gene BRI1 and biosynthetic gene D2 mutants, the WRKY53 mutant and overexpressor were less and more susceptible to ShB compared to wild-type, respectively. Inoculation with R. solani induced expression of BRI1, D2, and WRKY53, but inhibited MPK6 (a BR-signaling regulator) activity. Also, MPK6 is known to phosphorylate WRKY53 to enhance its transcription activation activity. Transient assay results indicated that co-expression of MPK6 and WRKY53 enhanced WRKY53 trans-activation activity to SWEET2a. Furthermore, expression of WRKY53 SD (the active phosphorylated forms of WRKY53) but not WRKY53 SA (the inactive phosphorylated forms of WRKY53), enhanced WRKY53-mediated activation of SWEET2a compared to expression of WRKY53 alone. Taken together, our analyses showed that R. solani infection may activate BR signaling to induce SWEET2a expression via WRKY53 through negative regulation of ShB resistance in rice.
Collapse
Affiliation(s)
- Yue Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Cai Yun Xue
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jing Miao Liu
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology (Wenzhou Academy of Agricultural Sciences), Wenzhou, Zhejiang, 325006, China.
| | - Ying He
- Foreign Language Teaching Department, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Qiong Mei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Songhong Wei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
30
|
Lin QJ, Chu J, Kumar V, Yuan DP, Li ZM, Mei Q, Xuan YH. Protein Phosphatase 2A Catalytic Subunit PP2A-1 Enhances Rice Resistance to Sheath Blight Disease. Front Genome Ed 2021; 3:632136. [PMID: 34713255 PMCID: PMC8525387 DOI: 10.3389/fgeed.2021.632136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/08/2021] [Indexed: 11/22/2022] Open
Abstract
Rice (Oryza sativa) production is damaged to a great extent by sheath blight disease (ShB). However, the defense mechanism in rice against this disease is largely unknown. Previous transcriptome analysis identified a significantly induced eukaryotic protein phosphatase 2A catalytic subunit 1 (PP2A-1) after the inoculation of Rhizoctonia solani. Five genes encoding PP2A exist in rice genome, and these five genes are ubiquitously expressed in different tissues and stages. Inoculation of R. solani showed that the genome edited pp2a-1 mutants using the CRISPR/Cas9 were more susceptible to ShB than the wild-type control, but other PP2A gene mutants exhibited similar response to ShB compared to wild-type plants. In parallel, PP2A-1 expression level was higher in the activation tagging line, and PP2A-1 overexpression inhibited plant height and promoted the resistance to ShB. PP2A-1-GFP was localized in the cytoplasm and nucleus. In addition, R. solani-dependent induction kinetics of pathogen-related genes PBZ1 and PR1b was lower in pp2a-1 mutants but higher in PP2A-1 activation line compared to those in the wild-type. In conclusion, our analysis shows that PP2A-1 is a member of protein phosphatase, which regulates rice resistance to ShB. This result broadens the understanding of the defense mechanism against ShB and provides a potential target for rice breeding for disease resistance.
Collapse
Affiliation(s)
- Qiu Jun Lin
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jin Chu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Vikranth Kumar
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea
| | - De Peng Yuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zhi Min Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Qiong Mei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
31
|
Ma Z, Qin G, Zhang Y, Liu C, Wei M, Cen Z, Yan Y, Luo T, Li Z, Liang H, Huang D, Deng G. Bacterial leaf streak 1 encoding a mitogen-activated protein kinase confers resistance to bacterial leaf streak in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1084-1101. [PMID: 34101285 DOI: 10.1111/tpj.15368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 05/25/2023]
Abstract
Bacterial leaf streak (BLS) is a major bacterial disease of rice. Utilization of host genetic resistance has become one of the most important strategies for controlling BLS. However, only a few resistance genes have been characterized. Previously, a recessive BLS resistance gene bls1 was roughly mapped on chromosome 6. Here, we further delineated bls1 to a 21 kb region spanning four genes. Genetic analysis confirmed that the gene encoding a mitogen-activated protein kinase (OsMAPK6) is the target of the allelic genes BLS1 and bls1. Overexpression of BLS1 weakened resistance to the specific Xanthomonas oryzae pv. oryzicola (Xoc) strain JZ-8, while low expression of bls1 increased resistance. However, both overexpression of BLS1 and low expression of bls1 could increase no-race-specific broad-spectrum resistance. These results indicate that BLS1 and bls1 negatively regulate race-specific resistance to Xoc strain JZ-8 but positively and negatively control broad-spectrum resistance, respectively. Subcellular localization demonstrated that OsMAPK6 was localized in the nucleus. RGA4, which is known to mediate resistance to Xoc, is the potential target of OsMAPK6. Overexpression of BLS1 and low expression of bls1 showed increase in salicylic acid and induced expression of defense-related genes, simultaneously increasing broad-spectrum resistance. Moreover, low expression of bls1 showed increase an in jasmonic acid and abscisic acid, in company with an increase in resistance to Xoc strain JZ-8. Collectively, our study provides new insights into the understanding of BLS resistance and facilitates the development of rice host-resistant cultivars.
Collapse
Affiliation(s)
- Zengfeng Ma
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Gang Qin
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yuexiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Chi Liu
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Minyi Wei
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhenlu Cen
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yong Yan
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Tongping Luo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhenjing Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Haifu Liang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Dahui Huang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Guofu Deng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| |
Collapse
|
32
|
Wang A, Shu X, Jing X, Jiao C, Chen L, Zhang J, Ma L, Jiang Y, Yamamoto N, Li S, Deng Q, Wang S, Zhu J, Liang Y, Zou T, Liu H, Wang L, Huang Y, Li P, Zheng A. Identification of rice (Oryza sativa L.) genes involved in sheath blight resistance via a genome-wide association study. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1553-1566. [PMID: 33600077 PMCID: PMC8384605 DOI: 10.1111/pbi.13569] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 02/02/2021] [Accepted: 02/12/2021] [Indexed: 05/05/2023]
Abstract
Rice sheath blight (RSB) is an economically significant disease affecting rice yield worldwide. Genetic resistance to RSB is associated with multiple minor genes, with each providing a minor phenotypic effect, but the underlying dominant resistance genes remain unknown. A genome-wide association study (GWAS) of 259 diverse rice varieties, with genotypes based on a single nucleotide polymorphism (SNP) and haplotype, was conducted to assess their sheath blight reactions at three developmental stages (seedlings, tillering and booting). A total of 653 genes were correlated with sheath blight resistance, of which the disease resistance protein RPM1 (OsRSR1) and protein kinase domain-containing protein (OsRLCK5) were validated by overexpression and knockdown assays. We further found that the coiled-coil (CC) domain of OsRSR1 (OsRSR1-CC) and full-length OsRLCK5 interacted with serine hydroxymethyltransferase 1 (OsSHM1) and glutaredoxin (OsGRX20), respectively. It was found that OsSHM1, which has a role in the reactive oxygen species (ROS) burst, and OsGRX20 enhanced the antioxidation ability of plants. A regulation model of the new RSB resistance though the glutathione (GSH)-ascorbic acid (AsA) antioxidant system was therefore revealed. These results enhance our understanding of RSB resistance mechanisms and provide better gene resources for the breeding of disease resistance in rice.
Collapse
Affiliation(s)
- Aijun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
- Key laboratory of Sichuan Crop Major DiseaseSichuan Agricultural UniversityChengduChina
| | - Xinyue Shu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
- Key laboratory of Sichuan Crop Major DiseaseSichuan Agricultural UniversityChengduChina
| | - Xin Jing
- Novogene Bioinformatics InstituteBeijingChina
| | | | - Lei Chen
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
| | - Jinfeng Zhang
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
| | - Li Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
- Key laboratory of Sichuan Crop Major DiseaseSichuan Agricultural UniversityChengduChina
| | - Yuqi Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
- Key laboratory of Sichuan Crop Major DiseaseSichuan Agricultural UniversityChengduChina
| | - Naoki Yamamoto
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
- Key laboratory of Sichuan Crop Major DiseaseSichuan Agricultural UniversityChengduChina
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
| | - Qiming Deng
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
| | - Shiquan Wang
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
| | - Jun Zhu
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
| | - Yueyang Liang
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
| | - Ting Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
| | - Huainian Liu
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
| | - Lingxia Wang
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
| | - Yubi Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
| | - Ping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
- Key laboratory of Sichuan Crop Major DiseaseSichuan Agricultural UniversityChengduChina
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
- Key laboratory of Sichuan Crop Major DiseaseSichuan Agricultural UniversityChengduChina
| |
Collapse
|
33
|
Wu G, Zhang Y, Wang B, Li K, Lou Y, Zhao Y, Liu F. Proteomic and Transcriptomic Analyses Provide Novel Insights into the Crucial Roles of Host-Induced Carbohydrate Metabolism Enzymes in Xanthomonas oryzae pv. oryzae Virulence and Rice-Xoo Interaction. RICE (NEW YORK, N.Y.) 2021; 14:57. [PMID: 34176023 PMCID: PMC8236019 DOI: 10.1186/s12284-021-00503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/11/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight, a devastating rice disease. The Xoo-rice interaction, wherein wide ranging host- and pathogen-derived proteins and genes wage molecular arms race, is a research hotspot. Hence, the identification of novel rice-induced Xoo virulence factors and characterization of their roles affecting rice global gene expression profiles will provide an integrated and better understanding of Xoo-rice interactions from the molecular perspective. RESULTS Using comparative proteomics and an in vitro interaction system, we revealed that 5 protein spots from Xoo exhibited significantly different expression patterns (|fold change| > 1.5) at 3, 6, 12 h after susceptible rice leaf extract (RLX) treatment. MALDI-TOF MS analysis and pathogenicity tests showed that 4 host-induced proteins, including phosphohexose mutase, inositol monophosphatase, arginase and septum site-determining protein, affected Xoo virulence. Among them, mutants of two host-induced carbohydrate metabolism enzyme-encoding genes, ΔxanA and Δimp, elicited enhanced defense responses and nearly abolished Xoo virulence in rice. To decipher rice differentially expressed genes (DEGs) associated with xanA and imp, transcriptomic responses of ΔxanA-treated and Δimp-treated susceptible rice were compared to those in rice treated with PXO99A at 1 and 3 dpi. A total of 1521 and 227 DEGs were identified for PXO99A vs Δimp at 1 and 3 dpi, while for PXO99A vs ΔxanA, there were 131 and 106 DEGs, respectively. GO, KEGG and MapMan analyses revealed that the DEGs for PXO99A vs Δimp were mainly involved in photosynthesis, signal transduction, transcription, oxidation-reduction, hydrogen peroxide catabolism, ion transport, phenylpropanoid biosynthesis and metabolism of carbohydrates, lipids, amino acids, secondary metabolites, hormones, and nucleotides, while the DEGs from PXO99A vs ΔxanA were predominantly associated with photosynthesis, signal transduction, oxidation-reduction, phenylpropanoid biosynthesis, cytochrome P450 and metabolism of carbohydrates, lipids, amino acids, secondary metabolites and hormones. Although most pathways were associated with both the Δimp and ΔxanA treatments, the underlying genes were not the same. CONCLUSION Our study identified two novel host-induced virulence factors XanA and Imp in Xoo, and revealed their roles in global gene expression in susceptible rice. These results provide valuable insights into the molecular mechanisms of pathogen infection strategies and plant immunity.
Collapse
Affiliation(s)
- Guichun Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, P. R. China
| | - Yuqiang Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, P. R. China
| | - Bo Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, P. R. China
| | - Kaihuai Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yuanlai Lou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, P. R. China
| | - Yancun Zhao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, P. R. China.
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, P. R. China.
| |
Collapse
|
34
|
Comparative transcriptomic and physiological analyses of weedy rice and cultivated rice to identify vital differentially expressed genes and pathways regulating the ABA response. Sci Rep 2021; 11:12881. [PMID: 34145345 PMCID: PMC8213743 DOI: 10.1038/s41598-021-92504-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/03/2021] [Indexed: 01/15/2023] Open
Abstract
Weedy rice is a valuable germplasm resource characterized by its high tolerance to both abiotic and biotic stresses. Abscisic acid (ABA) serves as a regulatory signal in plant cells as part of their adaptive response to stress. However, a global understanding of the response of weedy rice to ABA remains to be elucidated. In the present study, the sensitivity to ABA of weedy rice (WR04-6) was compared with that of temperate japonica Shennong9816 (SN9816) in terms of seed germination and post-germination growth via the application of exogenous ABA and diniconazole, an inhibitor of ABA catabolism. Physiological analysis and a transcriptomic comparison allowed elucidation of the molecular and physiological mechanisms associated with continuous ABA and diniconazole treatment. WR04-6 was found to display higher ABA sensitivity than SN9816, resulting in the rapid promotion of antioxidant enzyme activity. Comparative transcriptomic analyses indicated that the number of differentially expressed genes (DEGs) in WR04-6 seedlings treated with 2 μM ABA or 10 μM diniconazole was greater than that in SN9816 seedlings. Genes involved in stress defense, hormone signal transduction, and glycolytic and citrate cycle pathways were highly expressed in WR04-6 in response to ABA and diniconazole. These findings provide new insight into key processes mediating the ABA response between weedy and cultivated rice.
Collapse
|
35
|
Abbas A, Fu Y, Qu Z, Zhao H, Sun Y, Lin Y, Xie J, Cheng J, Jiang D. Isolation and evaluation of the biocontrol potential of Talaromyces spp. against rice sheath blight guided by soil microbiome. Environ Microbiol 2021; 23:5946-5961. [PMID: 33989446 DOI: 10.1111/1462-2920.15596] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022]
Abstract
Rice sheath blight caused by Rhizoctonia solani is the major disease of rice that seriously threatens food security worldwide. Efficient and eco-friendly biological approaches are urgently needed since no resistant cultivars are available. In this study, fallow and paddy soils were initially subjected to microbiome analyses, and the results showed that Talaromyces spp. were significantly more abundant in the paddy soil, while Trichoderma spp. were more abundant in the fallow soil, suggesting that Talaromyces spp. could live and survive better in the paddy soil. Five Talaromyces isolates, namely, TF-04, TF-03, TF-02, TF-01 and TA-02, were isolated from the paddy soil using sclerotia of R. solani as baits and were further evaluated for their activity against rice sheath blight. These isolates efficiently parasitized the hyphae and rotted the sclerotia even at higher water contents in the sterilized sand and the soil. Isolate TF-04 significantly promoted rice growth, reduced the severity of rice sheath blight and increased the rice yield under outdoor conditions. Defence-related genes were upregulated and enzyme activities were enhanced in rice treated with isolate TF-04. Our research supplies a microbiome-guided approach to screen biological control agents and provides Talaromyces isolates to biologically control rice sheath blight.
Collapse
Affiliation(s)
- Aqleem Abbas
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Zheng Qu
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Huizhang Zhao
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Yongjian Sun
- Xiangyang Academy of Agricultural Sciences, Xiangyang, Hubei Province, 441057, People's Republic of China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Jiatao Xie
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Jiasen Cheng
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| |
Collapse
|
36
|
Viana VE, Carlos da Maia L, Busanello C, Pegoraro C, Costa de Oliveira A. When rice gets the chills: comparative transcriptome profiling at germination shows WRKY transcription factor responses. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:100-112. [PMID: 33773005 DOI: 10.1111/plb.13262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Rice is vital for food security. Due to its tropical origin, rice suffers from cold temperatures that affect its entire life cycle. Key genes have been identified involved in cold tolerance. WRKYs are generally downstream of the MAPK cascade and can act together with VQ proteins to regulate stress-responsive genes. Chilling treatment was applied at germination to two rice genotypes (tolerant and sensitive). Shoots at S3 stage were collected for RNA-seq to identify OsWRKY, OsMAPKs and OsVQs expression. Relationships among MAPKs, WRKYs and VQs were predicted through correlation analysis. OsWRKY transcriptional regulation was predicted by in silico analysis of cis-regulatory elements. A total of 39 OsWRKYs were differentially expressed. OsWRKY21, OsWRK24 and OsWRKY69 are potential positive regulators, while OsWRKY10, OsWRK47, OsWRKY62, OsWRKY72 and OsWRKY77 are potential negative regulators, of chilling tolerance. 12 OsMAPKs were differentially expressed. OsMAPKs were downregulated and negatively correlated with the upregulated OsWRKYs in the tolerant genotype. 19 OsVQs were differentially expressed, three and six OsVQs were positively correlated with OsWRKYs in the tolerant and sensitive genotypes, respectively. Seven differentially expressed OsWRKYs have cold-responsive elements in their promoters and five upregulated OsWRKYs in the tolerant genotype contained the W-box motif. Chilling causes changes in OsWRKY, OsMAPK and OsVQ gene expression at germination. OsWRKYs may not act downstream of the MAPK cascade to coordinate chilling tolerance, but OsWRKYs may act with VQs to regulate chilling tolerance. Candidate OsWRKYs are correlated and have a W-box in the promoter, suggesting an auto-regulation mechanism.
Collapse
Affiliation(s)
- V E Viana
- Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, Pelotas-RS, Brazil
| | - L Carlos da Maia
- Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, Pelotas-RS, Brazil
| | - C Busanello
- Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, Pelotas-RS, Brazil
| | - C Pegoraro
- Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, Pelotas-RS, Brazil
| | - A Costa de Oliveira
- Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, Pelotas-RS, Brazil
| |
Collapse
|
37
|
Li D, Li S, Wei S, Sun W. Strategies to Manage Rice Sheath Blight: Lessons from Interactions between Rice and Rhizoctonia solani. RICE (NEW YORK, N.Y.) 2021; 14:21. [PMID: 33630178 PMCID: PMC7907341 DOI: 10.1186/s12284-021-00466-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Rhizoctonia solani is an important phytopathogenic fungus with a wide host range and worldwide distribution. The anastomosis group AG1 IA of R. solani has been identified as the predominant causal agent of rice sheath blight, one of the most devastating diseases of crop plants. As a necrotrophic pathogen, R. solani exhibits many characteristics different from biotrophic and hemi-biotrophic pathogens during co-evolutionary interaction with host plants. Various types of secondary metabolites, carbohydrate-active enzymes, secreted proteins and effectors have been revealed to be essential pathogenicity factors in R. solani. Meanwhile, reactive oxygen species, phytohormone signaling, transcription factors and many other defense-associated genes have been identified to contribute to sheath blight resistance in rice. Here, we summarize the recent advances in studies on molecular interactions between rice and R. solani. Based on knowledge of rice-R. solani interactions and sheath blight resistance QTLs, multiple effective strategies have been developed to generate rice cultivars with enhanced sheath blight resistance.
Collapse
Affiliation(s)
- Dayong Li
- College of Plant Protection, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Shuai Li
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, 110866, Shenyang, Liaoning, China
| | - Songhong Wei
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, 110866, Shenyang, Liaoning, China
| | - Wenxian Sun
- College of Plant Protection, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China.
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
38
|
Overexpression of ZmWRKY65 transcription factor from maize confers stress resistances in transgenic Arabidopsis. Sci Rep 2021; 11:4024. [PMID: 33597656 PMCID: PMC7889854 DOI: 10.1038/s41598-021-83440-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
Plant-specific WRKY transcription factors play important roles in regulating the expression of defense-responsive genes against pathogen attack. A multiple stress-responsive WRKY gene, ZmWRKY65, was identified in maize by screening salicylic acid (SA)-induced de novo transcriptomic sequences. The ZmWRKY65 protein was localized in the nucleus of mesophyll protoplasts. The analysis of the ZmWRKY65 promoter sequence indicated that it contains several stress-related transcriptional regulatory elements. Many environmental factors affecting the transcription of ZmWRKY65 gene, such as drought, salinity, high temperature and low temperature stress. Moreover, the transcription of ZmWRKY65 gene was also affected by the induction of defense related plant hormones such as SA and exogenous ABA. The results of seed germination and stomatal aperture assays indicated that transgenic Arabidopsis plants exhibit enhanced sensitivity to ABA and high concentrations of SA. Overexpression of ZmWRKY65 improved tolerance to both pathogen attack and abiotic stress in transgenic Arabidopsis plants and activated several stress-related genes such as RD29A, ERD10, and STZ as well as pathogenesis-related (PR) genes such as PR1, PR2 and PR5; these genes are involved in resistance to abiotic and biotic stresses in Arabidopsis. Together, this evidence implies that the ZmWRKY65 gene is involved in multiple stress signal transduction pathways.
Collapse
|
39
|
Tiwari P, Indoliya Y, Chauhan AS, Singh P, Singh PK, Singh PC, Srivastava S, Pande V, Chakrabarty D. Auxin-salicylic acid cross-talk ameliorates OsMYB-R1 mediated defense towards heavy metal, drought and fungal stress. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122811. [PMID: 32540701 DOI: 10.1016/j.jhazmat.2020.122811] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The MYB TF family is an immensely large and functionally diverse class of proteins involved in the regulation of cell cycle, cell morphogenesis to stress signaling mechanism. The present study deciphered the hormonal cross-talk of wound inducible and stress-responsive OsMYB-R1 transcription factor in combating abiotic [Cr(VI) and drought/PEG] as well as biotic (Rhizoctonia solani) stress. OsMYB-R1 over-expressing rice transgenics exhibit a significant increase in lateral roots, which may be associated with increased tolerance under Cr(VI) and drought exposure. In contrast, its loss-of-function reduces stress tolerance. Higher auxin accumulation in the OsMYB-R1 over-expressed lines further strengthens the protective role of lateral roots under stress conditions. RNA-seq. data reveals over-representation of salicylic acid signaling molecule calcium-dependent protein kinases, which probably activate the stress-responsive downstream genes (Peroxidases, Glutathione S-transferases, Osmotins, Heat Shock Proteins, Pathogenesis Related-Proteins). Enzymatic studies further confirm OsMYB-R1 mediated robust antioxidant system as catalase, guaiacol peroxidase and superoxide dismutase activities were found to be increased in the over-expressed lines. Our results suggest that OsMYB-R1 is part of a complex network of transcription factors controlling the cross-talk of auxin and salicylic acid signaling and other genes in response to multiple stresses by modifying molecular signaling, internal cellular homeostasis and root morphology.
Collapse
Affiliation(s)
- Poonam Tiwari
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Department of Biotechnology, Kumaun University, Nainital 26300, India
| | - Yuvraj Indoliya
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhishek Singh Chauhan
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Puja Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradyumna Kumar Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Poonam C Singh
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Suchi Srivastava
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital 26300, India
| | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
40
|
Kouzai Y, Shimizu M, Inoue K, Uehara‐Yamaguchi Y, Takahagi K, Nakayama R, Matsuura T, Mori IC, Hirayama T, Abdelsalam SSH, Noutoshi Y, Mochida K. BdWRKY38 is required for the incompatible interaction of Brachypodium distachyon with the necrotrophic fungus Rhizoctonia solani. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:995-1008. [PMID: 32891065 PMCID: PMC7756360 DOI: 10.1111/tpj.14976] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/23/2020] [Accepted: 08/12/2020] [Indexed: 05/05/2023]
Abstract
Rhizoctonia solani is a soil-borne necrotrophic fungus that causes sheath blight in grasses. The basal resistance of compatible interactions between R. solani and rice is known to be modulated by some WRKY transcription factors (TFs). However, genes and defense responses involved in incompatible interaction with R. solani remain unexplored, because no such interactions are known in any host plants. Recently, we demonstrated that Bd3-1, an accession of the model grass Brachypodium distachyon, is resistant to R. solani and, upon inoculation with the fungus, undergoes rapid induction of genes responsive to the phytohormone salicylic acid (SA) that encode the WRKY TFs BdWRKY38 and BdWRKY44. Here, we show that endogenous SA and these WRKY TFs positively regulate this accession-specific R. solani resistance. In contrast to a susceptible accession (Bd21), the infection process in the resistant accessions Bd3-1 and Tek-3 was suppressed at early stages before the development of fungal biomass and infection machinery. A comparative transcriptome analysis during pathogen infection revealed that putative WRKY-dependent defense genes were induced faster in the resistant accessions than in Bd21. A gene regulatory network (GRN) analysis based on the transcriptome dataset demonstrated that BdWRKY38 was a GRN hub connected to many target genes specifically in resistant accessions, whereas BdWRKY44 was shared in the GRNs of all three accessions. Moreover, overexpression of BdWRKY38 increased R. solani resistance in Bd21. Our findings demonstrate that these resistant accessions can activate an incompatible host response to R. solani, and BdWRKY38 regulates this response by mediating SA signaling.
Collapse
Affiliation(s)
- Yusuke Kouzai
- Bioproductivity Informatics Research TeamRIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐choTsurumi, Yokohama230‐0045Japan
- Kihara Institute for Biological ResearchYokohama City University641‐12 Maioka‐choTotsuka, Yokohama244‐0813Japan
| | - Minami Shimizu
- Bioproductivity Informatics Research TeamRIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐choTsurumi, Yokohama230‐0045Japan
- Kihara Institute for Biological ResearchYokohama City University641‐12 Maioka‐choTotsuka, Yokohama244‐0813Japan
| | - Komaki Inoue
- Bioproductivity Informatics Research TeamRIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐choTsurumi, Yokohama230‐0045Japan
| | - Yukiko Uehara‐Yamaguchi
- Bioproductivity Informatics Research TeamRIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐choTsurumi, Yokohama230‐0045Japan
| | - Kotaro Takahagi
- Bioproductivity Informatics Research TeamRIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐choTsurumi, Yokohama230‐0045Japan
- Graduate School of NanobioscienceYokohama City University22‐2 Seto, Kanazawa‐kuYokohamaKanagawa236‐0027Japan
| | - Risa Nakayama
- Bioproductivity Informatics Research TeamRIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐choTsurumi, Yokohama230‐0045Japan
- Kihara Institute for Biological ResearchYokohama City University641‐12 Maioka‐choTotsuka, Yokohama244‐0813Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources (IPSR)Okayama University2‐20‐1 ChuoKurashiki710‐0046Japan
| | - Izumi C. Mori
- Institute of Plant Science and Resources (IPSR)Okayama University2‐20‐1 ChuoKurashiki710‐0046Japan
| | - Takashi Hirayama
- Institute of Plant Science and Resources (IPSR)Okayama University2‐20‐1 ChuoKurashiki710‐0046Japan
| | - Sobhy S. H. Abdelsalam
- Graduate School of Environmental and Life ScienceOkayama University1‐1‐1 TsushimanakaOkayama700‐8530Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life ScienceOkayama University1‐1‐1 TsushimanakaOkayama700‐8530Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research TeamRIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐choTsurumi, Yokohama230‐0045Japan
- Kihara Institute for Biological ResearchYokohama City University641‐12 Maioka‐choTotsuka, Yokohama244‐0813Japan
- Graduate School of NanobioscienceYokohama City University22‐2 Seto, Kanazawa‐kuYokohamaKanagawa236‐0027Japan
- Institute of Plant Science and Resources (IPSR)Okayama University2‐20‐1 ChuoKurashiki710‐0046Japan
- Microalgae Production Technology LaboratoryRIKEN Baton Zone ProgramRIKEN Cluster for Science, Technology and Innovation Hub1‐7‐22 Suehiro‐cho, Tsurumi‐kuYokohamaKanagawa230‐0045Japan
| |
Collapse
|
41
|
Yang J, Xiao Q, Xu J, Da L, Guo L, Huang L, Liu Y, Xu W, Su Z, Yang S, Pan Q, Jiang W, Zhou T. GelFAP: Gene Functional Analysis Platform for Gastrodia elata. FRONTIERS IN PLANT SCIENCE 2020; 11:563237. [PMID: 33193491 PMCID: PMC7642037 DOI: 10.3389/fpls.2020.563237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Gastrodia elata, also named Tianma, is a valuable traditional Chinese herbal medicine. It has numerous important pharmacological roles such as in sedation and lowering blood pressure and as anticonvulsant and anti-aging, and it also has effects on the immune and cardiovascular systems. The whole genome sequencing of G. elata has been completed in recent years, which provides a strong support for the construction of the G. elata gene functional analysis platform. Therefore, in our research, we collected and processed 39 transcriptome data of G. elata and constructed the G. elata gene co-expression networks, then we identified functional modules by the weighted correlation network analysis (WGCNA) package. Furthermore, gene families of G. elata were identified by tools including HMMER, iTAK, PfamScan, and InParanoid. Finally, we constructed a gene functional analysis platform for G. elata . In our platform, we introduced functional analysis tools such as BLAST, gene set enrichment analysis (GSEA), and cis-elements (motif) enrichment analysis tool. In addition, we analyzed the co-expression relationship of genes which might participate in the biosynthesis of gastrodin and predicted 19 mannose-binding lectin antifungal proteins of G. elata. We also introduced the usage of the G. elata gene function analysis platform (GelFAP) by analyzing CYP51G1 and GFAP4 genes. Our platform GelFAP may help researchers to explore the gene function of G. elata and make novel discoveries about key genes involved in the biological processes of gastrodin.
Collapse
Affiliation(s)
- Jiaotong Yang
- Source Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiaoqiao Xiao
- Source Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiao Xu
- Source Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lingling Da
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Wenying Xu
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Su
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shiping Yang
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qi Pan
- Source Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Weike Jiang
- Source Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tao Zhou
- Source Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
42
|
Panthapulakkal Narayanan S, Lung SC, Liao P, Lo C, Chye ML. The overexpression of OsACBP5 protects transgenic rice against necrotrophic, hemibiotrophic and biotrophic pathogens. Sci Rep 2020; 10:14918. [PMID: 32913218 PMCID: PMC7483469 DOI: 10.1038/s41598-020-71851-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
The most devastating diseases in rice (Oryza sativa) are sheath blight caused by the fungal necrotroph Rhizoctonia solani, rice blast by hemibiotrophic fungus Magnaporthe oryzae, and leaf blight by bacterial biotroph Xanthomonas oryzae (Xoo). It has been reported that the Class III acyl-CoA-binding proteins (ACBPs) such as those from dicots (Arabidopsis and grapevine) play a role in defence against biotrophic pathogens. Of the six Arabidopsis (Arabidopsis thaliana) ACBPs, AtACBP3 conferred protection in transgenic Arabidopsis against Pseudomonas syringae, but not the necrotrophic fungus, Botrytis cinerea. Similar to Arabidopsis, rice possesses six ACBPs, designated OsACBPs. The aims of this study were to test whether OsACBP5, the homologue of AtACBP3, can confer resistance against representative necrotrophic, hemibiotrophic and biotrophic phytopathogens and to understand the mechanisms in protection. Herein, when OsACBP5 was overexpressed in rice, the OsACBP5-overexpressing (OsACBP5-OE) lines exhibited enhanced disease resistance against representative necrotrophic (R. solani & Cercospora oryzae), hemibiotrophic (M. oryzae & Fusarium graminearum) and biotrophic (Xoo) phytopathogens. Progeny from a cross between OsACBP5-OE9 and the jasmonate (JA)-signalling deficient mutant were more susceptible than the wild type to infection by the necrotroph R. solani. In contrast, progeny from a cross between OsACBP5-OE9 and the salicylic acid (SA)-signalling deficient mutant was more susceptible to infection by the hemibiotroph M. oryzae and biotroph Xoo. Hence, enhanced resistance of OsACBP5-OEs against representative necrotrophs appears to be JA-dependent whilst that to (hemi)biotrophs is SA-mediated.
Collapse
Affiliation(s)
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China.
| |
Collapse
|
43
|
Benbow HR, Brennan CJ, Zhou B, Christodoulou T, Berry S, Uauy C, Mullins E, Doohan FM. Insights into the resistance of a synthetically-derived wheat to Septoria tritici blotch disease: less is more. BMC PLANT BIOLOGY 2020; 20:407. [PMID: 32883202 PMCID: PMC7469286 DOI: 10.1186/s12870-020-02612-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 08/18/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Little is known about the initial, symptomless (latent) phase of the devastating wheat disease Septoria tritici blotch. However, speculations as to its impact on fungal success and disease severity in the field have suggested that a long latent phase is beneficial to the host and can reduce inoculum build up in the field over a growing season. The winter wheat cultivar Stigg is derived from a synthetic hexaploid wheat and contains introgressions from wild tetraploid wheat Triticum turgidum subsp. dicoccoides, which contribute to cv. Stigg's exceptional STB resistance, hallmarked by a long latent phase. We compared the early transcriptomic response to Zymoseptoria tritici of cv. Stigg to a susceptible wheat cultivar, to elucidate the mechanisms of and differences in pathogen recognition and disease response in these two hosts. RESULTS The STB-susceptible cultivar Longbow responds to Z. tritici infection with a stress response, including activation of hormone-responsive transcription factors, post translational modifications, and response to oxidative stress. The activation of key genes associated with these pathways in cv. Longbow was independently observed in a second susceptible wheat cultivar based on an independent gene expression study. By comparison, cv. Stigg is apathetic in response to STB, and appears to fail to activate a range of defence pathways that cv. Longbow employs. Stigg also displays some evidence of sub-genome bias in its response to Z. tritici infection, whereas the susceptible cv. Longbow shows even distribution of Z. tritici responsive genes across the three wheat sub-genomes. CONCLUSIONS We identify a suite of disease response genes that are involved in early pathogen response in susceptible wheat cultivars that may ultimately lead to susceptibility. In comparison, we hypothesise that rather than an active defence response to stave off disease progression, cv. Stigg's defence strategy is molecular lethargy, or a lower-amplitude of pathogen recognition that may stem from cv. Stigg's wild wheat-derived ancestry. Overall, we present insights into cv. Stigg's exceptional resistance to STB, and present key biological processes for further characterisation in this pathosystem.
Collapse
Affiliation(s)
- Harriet R Benbow
- UCD School of Biology and Environmental Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Earth Institute, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Centre for Plant Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
| | - Ciarán J Brennan
- UCD School of Biology and Environmental Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Earth Institute, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Centre for Plant Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
| | - Binbin Zhou
- UCD School of Biology and Environmental Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Earth Institute, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Centre for Plant Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
| | - Thalia Christodoulou
- UCD School of Biology and Environmental Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Earth Institute, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Centre for Plant Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
| | - Simon Berry
- Limagrain UK Ltd, Windmill Avenue, Woolpit, Suffolk, IP30 9UP, UK
| | | | - Ewen Mullins
- Teagasc Crops Research, Oak Park, Co. Carlow, Ireland
| | - Fiona M Doohan
- UCD School of Biology and Environmental Science, University College Dublin, UCD Belfield, Dublin 4, Ireland.
- UCD Earth Institute, University College Dublin, UCD Belfield, Dublin 4, Ireland.
- UCD Centre for Plant Science, University College Dublin, UCD Belfield, Dublin 4, Ireland.
| |
Collapse
|
44
|
Molla KA, Karmakar S, Molla J, Bajaj P, Varshney RK, Datta SK, Datta K. Understanding sheath blight resistance in rice: the road behind and the road ahead. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:895-915. [PMID: 31811745 PMCID: PMC7061877 DOI: 10.1111/pbi.13312] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 05/03/2023]
Abstract
Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation worldwide, especially after the adoption of high-yielding varieties. The pathogen is challenging to manage because of its extensively broad host range and high genetic variability and also due to the inability to find any satisfactory level of natural resistance from the available rice germplasm. It is high time to find remedies to combat the pathogen for reducing rice yield losses and subsequently to minimize the threat to global food security. The development of genetic resistance is one of the alternative means to avoid the use of hazardous chemical fungicides. This review mainly focuses on the effort of better understanding the host-pathogen relationship, finding the gene loci/markers imparting resistance response and modifying the host genome through transgenic development. The latest development and trend in the R. solani-rice pathosystem research with gap analysis are provided.
Collapse
Affiliation(s)
- Kutubuddin A. Molla
- ICAR‐National Rice Research InstituteCuttackIndia
- Laboratory of Translational Research on Transgenic CropsDepartment of BotanyUniversity of CalcuttaKolkataIndia
- The Huck Institute of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPAUSA
- Department of Plant Pathology and Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Subhasis Karmakar
- Laboratory of Translational Research on Transgenic CropsDepartment of BotanyUniversity of CalcuttaKolkataIndia
| | - Johiruddin Molla
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Prasad Bajaj
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Swapan K. Datta
- Laboratory of Translational Research on Transgenic CropsDepartment of BotanyUniversity of CalcuttaKolkataIndia
| | - Karabi Datta
- Laboratory of Translational Research on Transgenic CropsDepartment of BotanyUniversity of CalcuttaKolkataIndia
| |
Collapse
|
45
|
Chen X, Li C, Wang H, Guo Z. WRKY transcription factors: evolution, binding, and action. PHYTOPATHOLOGY RESEARCH 2019; 1:13. [PMID: 0 DOI: 10.1186/s42483-019-0022-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/28/2019] [Indexed: 05/25/2023]
|
46
|
Kachewar NR, Gupta V, Ranjan A, Patel HK, Sonti RV. Overexpression of OsPUB41, a Rice E3 ubiquitin ligase induced by cell wall degrading enzymes, enhances immune responses in Rice and Arabidopsis. BMC PLANT BIOLOGY 2019; 19:530. [PMID: 31783788 PMCID: PMC6884774 DOI: 10.1186/s12870-019-2079-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/16/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Cell wall degrading enzymes (CWDEs) induce plant immune responses and E3 ubiquitin ligases are known to play important roles in regulating plant defenses. Expression of the rice E3 ubiquitin ligase, OsPUB41, is enhanced upon treatment of leaves with Xanthomonas oryzae pv. oryzae (Xoo) secreted CWDEs such as Cellulase and Lipase/Esterase. However, it is not reported to have a role in elicitation of immune responses. RESULTS Expression of the rice E3 ubiquitin ligase, OsPUB41, is induced when rice leaves are treated with either CWDEs, pathogen associated molecular patterns (PAMPs), damage associated molecular patterns (DAMPs) or pathogens. Overexpression of OsPUB41 leads to induction of callose deposition, enhanced tolerance to Xoo and Rhizoctonia solani infection in rice and Arabidopsis respectively. In rice, transient overexpression of OsPUB41 leads to enhanced expression of PR genes and SA as well as JA biosynthetic and response genes. However, in Arabidopsis, ectopic expression of OsPUB41 results in upregulation of only JA biosynthetic and response genes. Transient overexpression of either of the two biochemically inactive mutants (OsPUB41C40A and OsPUB41V51R) of OsPUB41 in rice and stable transgenics in Arabidopsis ectopically expressing OsPUB41C40A failed to elicit immune responses. This indicates that the E3 ligase activity of OsPUB41 protein is essential for induction of plant defense responses. CONCLUSION The results presented here suggest that OsPUB41 is possibly involved in elicitation of CWDE triggered immune responses in rice.
Collapse
Affiliation(s)
| | - Vishal Gupta
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
| | - Ashish Ranjan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Hitendra Kumar Patel
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
| | - Ramesh V. Sonti
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
- National Institute of Plant Genome Research, New Delhi, 110067 India
| |
Collapse
|
47
|
Singh P, Mazumdar P, Harikrishna JA, Babu S. Sheath blight of rice: a review and identification of priorities for future research. PLANTA 2019; 250:1387-1407. [PMID: 31346804 DOI: 10.1007/s00425-019-03246-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/20/2019] [Indexed: 05/04/2023]
Abstract
Rice sheath blight research should prioritise optimising biological control approaches, identification of resistance gene mechanisms and application in genetic improvement and smart farming for early disease detection. Rice sheath blight, caused by Rhizoctonia solani AG1-1A, is one of the most devasting diseases of the crop. To move forward with effective crop protection against sheath blight, it is important to review the published information related to pathogenicity and disease management and to determine areas of research that require deeper study. While progress has been made in the identification of pathogenesis-related genes both in rice and in the pathogen, the mechanisms remain unclear. Research related to disease management practices has addressed the use of agronomic practices, chemical control, biological control and genetic improvement: Optimising nitrogen fertiliser use in conjunction with plant spacing can reduce spread of infection while smart agriculture technologies such as crop monitoring with Unmanned Aerial Systems assist in early detection and management of sheath blight disease. Replacing older fungicides with natural fungicides and use of biological agents can provide effective sheath blight control, also minimising environmental impact. Genetic approaches that show promise for the control of sheath blight include treatment with exogenous dsRNA to silence pathogen gene expression, genome editing to develop rice lines with lower susceptibility to sheath blight and development of transgenic rice lines overexpressing or silencing pathogenesis related genes. The main challenges that were identified for effective crop protection against sheath blight are the adaptive flexibility of the pathogen, lack of resistant rice varieties, abscence of single resistance genes for use in breeding and low access of farmers to awareness programmes for optimal management practices.
Collapse
Affiliation(s)
- Pooja Singh
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Faculty of Science, Institute of Biological Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Subramanian Babu
- VIT School of Agricultural Innovations and Advanced Learning, VIT University, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
48
|
Baillo EH, Kimotho RN, Zhang Z, Xu P. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement. Genes (Basel) 2019; 10:E771. [PMID: 31575043 PMCID: PMC6827364 DOI: 10.3390/genes10100771] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 01/24/2023] Open
Abstract
In field conditions, crops are adversely affected by a wide range of abiotic stresses including drought, cold, salt, and heat, as well as biotic stresses including pests and pathogens. These stresses can have a marked effect on crop yield. The present and future effects of climate change necessitate the improvement of crop stress tolerance. Plants have evolved sophisticated stress response strategies, and genes that encode transcription factors (TFs) that are master regulators of stress-responsive genes are excellent candidates for crop improvement. Related examples in recent studies include TF gene modulation and overexpression approaches in crop species to enhance stress tolerance. However, much remains to be discovered about the diverse plant TFs. Of the >80 TF families, only a few, such as NAC, MYB, WRKY, bZIP, and ERF/DREB, with vital roles in abiotic and biotic stress responses have been intensively studied. Moreover, although significant progress has been made in deciphering the roles of TFs in important cereal crops, fewer TF genes have been elucidated in sorghum. As a model drought-tolerant crop, sorghum research warrants further focus. This review summarizes recent progress on major TF families associated with abiotic and biotic stress tolerance and their potential for crop improvement, particularly in sorghum. Other TF families and non-coding RNAs that regulate gene expression are discussed briefly. Despite the emphasis on sorghum, numerous examples from wheat, rice, maize, and barley are included. Collectively, the aim of this review is to illustrate the potential application of TF genes for stress tolerance improvement and the engineering of resistant crops, with an emphasis on sorghum.
Collapse
Affiliation(s)
- Elamin Hafiz Baillo
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
- Agricultural Research Corporation (ARC), Ministry of Agriculture, Gezira 21111, Sudan.
| | - Roy Njoroge Kimotho
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhengbin Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ping Xu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
49
|
Ruan B, Hua Z, Zhao J, Zhang B, Ren D, Liu C, Yang S, Zhang A, Jiang H, Yu H, Hu J, Zhu L, Chen G, Shen L, Dong G, Zhang G, Zeng D, Guo L, Qian Q, Gao Z. OsACL-A2 negatively regulates cell death and disease resistance in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1344-1356. [PMID: 30582769 PMCID: PMC6576086 DOI: 10.1111/pbi.13058] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 05/20/2023]
Abstract
ATP-citrate lyases (ACL) play critical roles in tumour cell propagation, foetal development and growth, and histone acetylation in human and animals. Here, we report a novel function of ACL in cell death-mediated pathogen defence responses in rice. Using ethyl methanesulphonate (EMS) mutagenesis and map-based cloning, we identified an Oryza sativa ACL-A2 mutant allele, termed spotted leaf 30-1 (spl30-1), in which an A-to-T transversion converts an Asn at position 343 to a Tyr (N343Y), causing a recessive mutation that led to a lesion mimic phenotype. Compared to wild-type plants, spl30-1 significantly reduces ACL enzymatic activity, accumulates high reactive oxygen species and increases degradation rate of nuclear deoxyribonucleic acids. CRISPR/Cas9-mediated insertion/deletion mutation analysis and complementation assay confirmed that the phenotype of spl30-1 resulted from the defective function of OsACL-A2 protein. We further biochemically identified that the N343Y mutation caused a significant degradation of SPL30N343Y in a ubiquitin-26S proteasome system (UPS)-dependent manner without alteration in transcripts of OsACL-A2 in spl30-1. Transcriptome analysis identified a number of up-regulated genes associated with pathogen defence responses in recessive mutants of OsACL-A2, implying its role in innate immunity. Suppressor mutant screen suggested that OsSL, which encodes a P450 monooxygenase protein, acted as a downstream key regulator in spl30-1-mediated pathogen defence responses. Taken together, our study discovered a novel role of OsACL-A2 in negatively regulating innate immune responses in rice.
Collapse
Affiliation(s)
- Banpu Ruan
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Zhihua Hua
- Department of Environmental and Plant BiologyInterdisciplinary Program in Molecular and Cellular BiologyOhio UniversityAthensOHUSA
| | - Juan Zhao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Bin Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Deyong Ren
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Chaolei Liu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Shenglong Yang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Anpeng Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Hongzhen Jiang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Haiping Yu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Jiang Hu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Li Zhu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Guang Chen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Lan Shen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Guojun Dong
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Guangheng Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Dali Zeng
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Longbiao Guo
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Qian Qian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Zhenyu Gao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| |
Collapse
|
50
|
John Lilly J, Subramanian B. Gene network mediated by WRKY13 to regulate resistance against sheath infecting fungi in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:269-282. [PMID: 30824005 DOI: 10.1016/j.plantsci.2018.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 05/05/2023]
Abstract
OsWRKY13 TF gene is known to play a regulatory role of signaling in physiological pathways related to either development or disease resistance in rice plants. Rice cultivars IR 50 and TRY 3, resistant and susceptible respectively to sheath blight, TRY 3 and CO 43 resistant and susceptible respectively to sheath rot were challenged with fungal pathogens and disease scoring was carried out. Percent Disease Index (PDI) was significantly higher in susceptible varieties than resistant varieties. RT-PCR and qPCR analyses of WRKY13 using RNA extracted from the plant tissues revealed higher WRKY13 expression in resistant varieties (both diseases) upon pathogen challenge compared to uninfected control and also the susceptible varieties. To compute and evaluate the possible molecular mechanism for observed resistance correlated to WRKY13 gene expression, rice gene expression profiles against bacterial leaf blight and leaf blast disease from ROAD database were used to prioritize the locus IDs that were used as input in RiceNet v2 tool. The expression of WRKY13-regulated TIFY9 gene was predicted and validated using RT-PCR and qRT-PCR along with WRKY12 and PR2. All three genes showed induced expression in R. solani challenged sheath blight resistant variety. WRKY12 and PR2 expression in S. oryzae challenged sheath rot resistant variety was higher. Agrobacterium mediated transformation was carried out in rice plants using overexpression construct of WRKY13 (agroinfection in seeds of varieties susceptible to sheath blight and sheath rot, followed by selection in antibiotic media, germinating and hardening of putative transgenic lines). Based on qPCR analysis, the expression level of WRKY13 and the co-expression levels of WRKY12, TIFY9 and PR2 were found higher in PCR-positive T1 plants compared to wild-type. Infection bioassays in the transgenic plants of both varieties revealed enhanced resistance to the pathogens. A mechanism by which WRKY13 would influence the MAPK cascade with TIFY9 acting as a mediator, is proposed.
Collapse
Affiliation(s)
- Jimmy John Lilly
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Babu Subramanian
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|