1
|
Dimaria G, Sicilia A, Modica F, Russo M, Bazzano MC, Massimino ME, Piero ARL, Bella P, Catara V. Biocontrol efficacy of Pseudomonas mediterranea PVCT 3C against Plenodomus tracheiphilus: In vitro and in planta mechanisms at early disease stages. Microbiol Res 2024; 287:127833. [PMID: 39032265 DOI: 10.1016/j.micres.2024.127833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/08/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
In this study, we investigated the biocontrol activity of the P. mediterranea strain PVCT 3C against Mal secco, a severe disease of citrus caused by the vascular fungus Plenodomus tracheiphilus. In vitro, bacterial diffusible compounds, volatile organic compounds and culture filtrates produced by PVCT 3C reduced the mycelial growth and conidial germination of P. tracheiphilus, also affecting the mycelial pigmentation. The application of bacterial suspensions by leaf-spraying before the inoculation with the pathogen on plants of the highly susceptible species sour orange and lemon led to an overall reduction in incidence and disease index, above all during the early disease stage. PVCT 3C genome was subjected to whole-genome shotgun sequencing to study the molecular mechanisms of action of this strain. In silico annotation of biosynthetic gene clusters for secondary metabolites revealed the presence of numerous clusters encoding antimicrobial compounds (e.g. cyclic lipopeptides, hydrogen cyanide, siderophores) and candidate novel products. During the asymptomatic disease phase (seven days post-inoculation), bacterial treatments interfered with the expression of different fungal genes, as assessed with an NGS and de novo assembly RNA-seq approach. These results suggest that P. mediterranea PVCT 3C or its secondary metabolites may offer a potential effective and sustainable alternative to contain P. tracheiphilus infections via integrated management.
Collapse
Affiliation(s)
- Giulio Dimaria
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Angelo Sicilia
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Francesco Modica
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | | | | | - Maria Elena Massimino
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Angela Roberta Lo Piero
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Patrizia Bella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo 90128, Italy
| | - Vittoria Catara
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy.
| |
Collapse
|
2
|
De la Vega-Camarillo E, Sotelo-Aguilar J, González-Silva A, Hernández-García JA, Mercado-Flores Y, Villa-Tanaca L, Hernández-Rodríguez C. Genomic Insights into Pseudomonas protegens E1BL2 from Giant Jala Maize: A Novel Bioresource for Sustainable Agriculture and Efficient Management of Fungal Phytopathogens. Int J Mol Sci 2024; 25:9508. [PMID: 39273455 PMCID: PMC11395412 DOI: 10.3390/ijms25179508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The relationships between plants and bacteria are essential in agroecosystems and bioinoculant development. The leaf endophytic Pseudomonas protegens E1BL2 was previously isolated from giant Jala maize, which is a native Zea mays landrace of Nayarit, Mexico. Using different Mexican maize landraces, this work evaluated the strain's plant growth promotion and biocontrol against eight phytopathogenic fungi in vitro and greenhouse conditions. Also, a plant field trial was conducted on irrigated fields using the hybrid maize Supremo. The grain productivity in this assay increased compared with the control treatment. The genome analysis of P. protegens E1BL2 showed putative genes involved in metabolite synthesis that facilitated its beneficial roles in plant health and environmental adaptation (bdhA, acoR, trpE, speE, potA); siderophores (ptaA, pchC); and extracellular enzymes relevant for PGPB mechanisms (cel3, chi14), protection against oxidative stress (hscA, htpG), nitrogen metabolism (nirD, nit1, hmpA), inductors of plant-induced systemic resistance (ISR) (flaA, flaG, rffA, rfaP), fungal biocontrol (phlD, prtD, prnD, hcnA-1), pest control (vgrG-1, higB-2, aprE, pslA, ppkA), and the establishment of plant-bacteria symbiosis (pgaA, pgaB, pgaC, exbD). Our findings suggest that P. protegens E1BL2 significantly promotes maize growth and offers biocontrol benefits, which highlights its potential as a bioinoculant.
Collapse
Affiliation(s)
- Esaú De la Vega-Camarillo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, Mexico
| | - Josimar Sotelo-Aguilar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, Mexico
| | - Adilene González-Silva
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, Mexico
| | - Juan Alfredo Hernández-García
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, Mexico
| | - Yuridia Mercado-Flores
- Laboratorio de Aprovechamiento Integral de Recursos Bióticos, Universidad Politécnica de Pachuca, Carretera Pachuca-Ciudad Sahagún Km. 20, Rancho Luna, Ex-Hacienda de Santa Bárbara Zempoala, Pachuca 43830, Mexico
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, Mexico
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, Mexico
| |
Collapse
|
3
|
Nicotra D, Ghadamgahi F, Ghosh S, Anzalone A, Dimaria G, Mosca A, Massimino ME, Vetukuri RR, Catara V. Genomic insights and biocontrol potential of ten bacterial strains from the tomato core microbiome. FRONTIERS IN PLANT SCIENCE 2024; 15:1437947. [PMID: 39253574 PMCID: PMC11381245 DOI: 10.3389/fpls.2024.1437947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
Introduction Despite their adverse environmental effects, modern agriculture relies heavily on agrochemicals to manage diseases and pests and enhance plant growth and productivity. Some of these functions could instead be fulfilled by endophytes from the plant microbiota, which have diverse activities beneficial for plant growth and health. Methods We therefore used a microbiome-guided top-down approach to select ten bacterial strains from different taxa in the core microbiome of tomato plants in the production chain for evaluation as potential bioinoculants. High-quality genomes for each strain were obtained using Oxford Nanopore long-read and Illumina short-read sequencing, enabling the dissection of their genetic makeup to identify phyto-beneficial traits. Results Bacterial strains included both taxa commonly used as biofertilizers and biocontrol agents (i.e. Pseudomonas and Bacillus) as well as the less studied genera Leclercia, Chryseobacterium, Glutamicibacter, and Paenarthorbacter. When inoculated in the tomato rhizosphere, these strains promoted plant growth and reduced the severity of Fusarium Crown and Root Rot and Bacterial Spot infections. Genome analysis yielded a comprehensive inventory of genes from each strain related to processes including colonization, biofertilization, phytohormones, and plant signaling. Traits directly relevant to fertilization including phosphate solubilization and acquisition of nitrogen and iron were also identified. Moreover, the strains carried several functional genes putatively involved in abiotic stress alleviation and biotic stress management, traits that indirectly foster plant health and growth. Discussion This study employs a top-down approach to identify new plant growth-promoting rhizobacteria (PGPRs), offering an alternative to the conventional bottom-up strategy. This method goes beyond the traditional screening of the strains and thus can expand the range of potential bioinoculants available for market application, paving the way to the use of new still underexplored genera.
Collapse
Affiliation(s)
- Daniele Nicotra
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Farideh Ghadamgahi
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Samrat Ghosh
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Alice Anzalone
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Giulio Dimaria
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Alexandros Mosca
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Maria Elena Massimino
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Ramesh Raju Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Vittoria Catara
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Ali MA, Ahmed T, Ibrahim E, Rizwan M, Chong KP, Yong JWH. A review on mechanisms and prospects of endophytic bacteria in biocontrol of plant pathogenic fungi and their plant growth-promoting activities. Heliyon 2024; 10:e31573. [PMID: 38841467 PMCID: PMC11152693 DOI: 10.1016/j.heliyon.2024.e31573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024] Open
Abstract
Endophytic bacteria, living inside plants, are competent plant colonizers, capable of enhancing immune responses in plants and establishing a symbiotic relationship with them. Endophytic bacteria are able to control phytopathogenic fungi while exhibiting plant growth-promoting activity. Here, we discussed the mechanisms of phytopathogenic fungi control and plant growth-promoting actions discovered in some major groups of beneficial endophytic bacteria such as Bacillus, Paenibacillus, and Pseudomonas. Most of the studied strains in these genera were isolated from the rhizosphere and soils, and a more extensive study of these endophytic bacteria is needed. It is essential to understand the underlying biocontrol and plant growth-promoting mechanisms and to develop an effective screening approach for selecting potential endophytic bacteria for various applications. We have suggested a screening strategy to identify potentially useful endophytic bacteria based on mechanistic phenomena. The discovery of endophytic bacteria with useful biocontrol and plant growth-promoting characteristics is essential for developing sustainable agriculture.
Collapse
Affiliation(s)
- Md. Arshad Ali
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Temoor Ahmed
- Xianghu Laboratory, Hangzhou, 311231, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- MEU Research Unit, Middle East University, Amman, Jordan
| | - Ezzeldin Ibrahim
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Khim Phin Chong
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456, Alnarp, Sweden
| |
Collapse
|
5
|
Loranger MEW, Yim W, Accomazzi V, Morales-Lizcano N, Moeder W, Yoshioka K. Colour-analyzer: a new dual colour model-based imaging tool to quantify plant disease. PLANT METHODS 2024; 20:60. [PMID: 38698422 PMCID: PMC11067089 DOI: 10.1186/s13007-024-01193-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Despite major efforts over the last decades, the rising demands of the growing global population makes it of paramount importance to increase crop yields and reduce losses caused by plant pathogens. One way to tackle this is to screen novel resistant genotypes and immunity-inducing agents, which must be conducted in a high-throughput manner. RESULTS Colour-analyzer is a free web-based tool that can be used to rapidly measure the formation of lesions on leaves. Pixel colour values are often used to distinguish infected from healthy tissues. Some programs employ colour models, such as RGB, HSV or L*a*b*. Colour-analyzer uses two colour models, utilizing both HSV (Hue, Saturation, Value) and L*a*b* values. We found that the a* b* values of the L*a*b* colour model provided the clearest distinction between infected and healthy tissue, while the H and S channels were best to distinguish the leaf area from the background. CONCLUSION By combining the a* and b* channels to determine the lesion area, while using the H and S channels to determine the leaf area, Colour-analyzer provides highly accurate information on the size of the lesion as well as the percentage of infected tissue in a high throughput manner and can accelerate the plant immunity research field.
Collapse
Affiliation(s)
| | - Winfield Yim
- Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S3B2, Canada
| | - Vittorio Accomazzi
- International Medical Solutions, 2425 Matheson Blvd E. Suite 800, Mississauga, ON, L4W 5K4, Canada
| | - Nadia Morales-Lizcano
- Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S3B2, Canada
| | - Wolfgang Moeder
- Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S3B2, Canada
| | - Keiko Yoshioka
- Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S3B2, Canada.
| |
Collapse
|
6
|
Bielen A, Babić I, Vuk Surjan M, Kazazić S, Šimatović A, Lajtner J, Udiković-Kolić N, Mesić Z, Hudina S. Comparison of MALDI-TOF mass spectrometry and 16S rDNA sequencing for identification of environmental bacteria: a case study of cave mussel-associated culturable microorganisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21752-21764. [PMID: 38393570 DOI: 10.1007/s11356-024-32537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is routinely used as a rapid and cost-effective method for pathogen identification in clinical settings. In comparison, its performance in other microbiological fields, such as environmental microbiology, is still being tested, although isolates of environmental microbes are essential for in-depth in vivo studies of their biology, including biotechnological applications. We investigated the applicability of MALDI-TOF MS for the identification of bacterial isolates from a highly oligotrophic environment - Dinaric Karst caves, which likely harbor specific microorganisms. We cultured bacteria from the shell surface of the endemic mussel Congeria jalzici, one of the three known cave mussels in the world that lives in the Dinaric karst underground. The bacterial isolates were obtained by swabbing the shell surface of mussels living in microhabitats with different amounts of water: 10 air-exposed mussels, 10 submerged mussels, and 10 mussels in the hygropetric zone. A collection of 87 pure culture isolates was obtained, mostly belonging to the phylum Bacillota (72%), followed by Pseudomonadota (16%), Actinomycetota (11%), and Bacteroidota (1%). We compared the results of MALDI-TOF MS identification (Bruker databases DB-5989 and version 11, v11) with the results of 16S rDNA-based phylogenetic analysis, a standard procedure for bacterial identification. Identification to the genus level based on 16S rDNA was possible for all isolates and clearly outperformed the results from MALDI-TOF MS, although the updated MALDI-TOF MS database v11 gave better results than the DB-5989 version (85% versus 62%). However, identification to the species-level by 16S rDNA sequencing was achieved for only 17% of isolates, compared with 14% and 40% for the MALDI-TOF MS databases DB-5989 and v11 database, respectively. In conclusion, our results suggest that continued enrichment of MALDI-TOF MS libraries will result with this method soon becoming a rapid, accurate, and efficient tool for assessing the diversity of culturable bacteria from different environmental niches.
Collapse
Affiliation(s)
- Ana Bielen
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia.
| | - Ivana Babić
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Marija Vuk Surjan
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | | | - Ana Šimatović
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Jasna Lajtner
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | | | - Zrinka Mesić
- Oikon Ltd., Trg Senjskih Uskoka 1-2, 10020, Zagreb, Croatia
| | - Sandra Hudina
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| |
Collapse
|
7
|
Gupta G, Chauhan PS, Jha PN, Verma RK, Singh S, Yadav VK, Sahoo DK, Patel A. Secretory molecules from secretion systems fine-tune the host-beneficial bacteria (PGPRs) interaction. Front Microbiol 2024; 15:1355750. [PMID: 38468848 PMCID: PMC10925705 DOI: 10.3389/fmicb.2024.1355750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Numerous bacterial species associate with plants through commensal, mutualistic, or parasitic association, affecting host physiology and health. The mechanism for such association is intricate and involves the secretion of multiple biochemical substances through dedicated protein systems called secretion systems SS. Eleven SS pathways deliver protein factors and enzymes in their immediate environment or host cells, as well as in competing microbial cells in a contact-dependent or independent fashion. These SS are instrumental in competition, initiation of infection, colonization, and establishment of association (positive or negative) with host organisms. The role of SS in infection and pathogenesis has been demonstrated for several phytopathogens, including Agrobacterium, Xanthomonas, Ralstonia, and Pseudomonas. Since there is overlap in mechanisms of establishing association with host plants, several studies have investigated the role of SSs in the interaction of plant and beneficial bacteria, including symbiotic rhizobia and plant growth bacteria (PGPB). Therefore, the present review updates the role of different SSs required for the colonization of beneficial bacteria such as rhizobia, Burkholderia, Pseudomonas, Herbaspirillum, etc., on or inside plants, which can lead to a long-term association. Most SS like T3SS, T4SS, T5SS, and T6SS are required for the antagonistic activity needed to prevent competing microbes, including phytopathogens, ameliorate biotic stress in plants, and produce substances for successful colonization. Others are required for chemotaxis, adherence, niche formation, and suppression of immune response to establish mutualistic association with host plants.
Collapse
Affiliation(s)
- Garima Gupta
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
- Microbial Technologies Group, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Puneet Singh Chauhan
- Microbial Technologies Group, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Prabhat Nath Jha
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Rakesh Kumar Verma
- Department of Biosciences, SLAS Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Sachidanand Singh
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
8
|
Liu Y, Xu Z, Chen L, Xun W, Shu X, Chen Y, Sun X, Wang Z, Ren Y, Shen Q, Zhang R. Root colonization by beneficial rhizobacteria. FEMS Microbiol Rev 2024; 48:fuad066. [PMID: 38093453 PMCID: PMC10786197 DOI: 10.1093/femsre/fuad066] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Rhizosphere microbes play critical roles for plant's growth and health. Among them, the beneficial rhizobacteria have the potential to be developed as the biofertilizer or bioinoculants for sustaining the agricultural development. The efficient rhizosphere colonization of these rhizobacteria is a prerequisite for exerting their plant beneficial functions, but the colonizing process and underlying mechanisms have not been thoroughly reviewed, especially for the nonsymbiotic beneficial rhizobacteria. This review systematically analyzed the root colonizing process of the nonsymbiotic rhizobacteria and compared it with that of the symbiotic and pathogenic bacteria. This review also highlighted the approaches to improve the root colonization efficiency and proposed to study the rhizobacterial colonization from a holistic perspective of the rhizosphere microbiome under more natural conditions.
Collapse
Affiliation(s)
- Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Lin Chen
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, 1 Shuizha West Road, Beijing 102300, P.R. China
| | - Weibing Xun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Xia Shu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, P.R. China
| | - Yu Chen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Xinli Sun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Zhengqi Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Yi Ren
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Ruifu Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| |
Collapse
|
9
|
Marzorati F, Rossi R, Bernardo L, Mauri P, Silvestre DD, Lauber E, Noël LD, Murgia I, Morandini P. Arabidopsis thaliana Early Foliar Proteome Response to Root Exposure to the Rhizobacterium Pseudomonas simiae WCS417. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:737-748. [PMID: 37470457 DOI: 10.1094/mpmi-05-23-0071-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Pseudomonas simiae WCS417 is a plant growth-promoting rhizobacterium that improves plant health and development. In this study, we investigate the early leaf responses of Arabidopsis thaliana to WCS417 exposure and the possible involvement of formate dehydrogenase (FDH) in such responses. In vitro-grown A. thaliana seedlings expressing an FDH::GUS reporter show a significant increase in FDH promoter activity in their roots and shoots after 7 days of indirect exposure (without contact) to WCS417. After root exposure to WCS417, the leaves of FDH::GUS plants grown in the soil also show an increased FDH promoter activity in hydathodes. To elucidate early foliar responses to WCS417 as well as FDH involvement, the roots of A. thaliana wild-type Col and atfdh1-5 knock-out mutant plants grown in soil were exposed to WCS417, and proteins from rosette leaves were subjected to proteomic analysis. The results reveal that chloroplasts, in particular several components of the photosystems PSI and PSII, as well as members of the glutathione S-transferase family, are among the early targets of the metabolic changes induced by WCS417. Taken together, the alterations in the foliar proteome, as observed in the atfdh1-5 mutant, especially after exposure to WCS417 and involving stress-responsive genes, suggest that FDH is a node in the early events triggered by the interactions between A. thaliana and the rhizobacterium WCS417. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Francesca Marzorati
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Rossana Rossi
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Letizia Bernardo
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Pierluigi Mauri
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Dario Di Silvestre
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Emmanuelle Lauber
- Laboratoire des interactions plantes-microbes-environnement CNRS-INRAE, University of Toulouse, Castanet-Tolosan, France
| | - Laurent D Noël
- Laboratoire des interactions plantes-microbes-environnement CNRS-INRAE, University of Toulouse, Castanet-Tolosan, France
| | - Irene Murgia
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Piero Morandini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Soares-Castro P, Soares F, Reis F, Lino-Neto T, Santos PM. Bioprospection of the bacterial β-myrcene-biotransforming trait in the rhizosphere. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12650-w. [PMID: 37405434 PMCID: PMC10386936 DOI: 10.1007/s00253-023-12650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023]
Abstract
The biocatalysis of β-myrcene into value-added compounds, with enhanced organoleptic/therapeutic properties, may be performed by resorting to specialized enzymatic machinery of β-myrcene-biotransforming bacteria. Few β-myrcene-biotransforming bacteria have been studied, limiting the diversity of genetic modules/catabolic pathways available for biotechnological research. In our model Pseudomonas sp. strain M1, the β-myrcene catabolic core-code was identified in a 28-kb genomic island (GI). The lack of close homologs of this β-myrcene-associated genetic code prompted a bioprospection of cork oak and eucalyptus rhizospheres, from 4 geographic locations in Portugal, to evaluate the environmental diversity and dissemination of the β-myrcene-biotransforming genetic trait (Myr+). Soil microbiomes were enriched in β-myrcene-supplemented cultures, from which β-myrcene-biotransforming bacteria were isolated, belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Sphingobacteriia classes. From a panel of representative Myr+ isolates that included 7 bacterial genera, the production of β-myrcene derivatives previously reported in strain M1 was detected in Pseudomonas spp., Cupriavidus sp., Sphingobacterium sp., and Variovorax sp. A comparative genomics analysis against the genome of strain M1 found the M1-GI code in 11 new Pseudomonas genomes. Full nucleotide conservation of the β-myrcene core-code was observed throughout a 76-kb locus in strain M1 and all 11 Pseudomonas spp., resembling the structure of an integrative and conjugative element (ICE), despite being isolated from different niches. Furthermore, the characterization of isolates not harboring the Myr+-related 76-kb locus suggested that they may biotransform β-myrcene via alternative catabolic loci, being thereby a novel source of enzymes and biomolecule catalogue for biotechnological exploitation. KEY POINTS: • The isolation of 150 Myr+ bacteria hints the ubiquity of such trait in the rhizosphere. • The Myr+ trait is spread across different bacterial taxonomic classes. • The core-code for the Myr+ trait was detected in a novel ICE, only found in Pseudomonas spp.
Collapse
Affiliation(s)
- Pedro Soares-Castro
- CBMA - Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Filipa Soares
- CBMA - Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Francisca Reis
- CBMA - Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Teresa Lino-Neto
- CBMA - Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Pedro M Santos
- CBMA - Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal.
| |
Collapse
|
11
|
Verbon EH, Liberman LM, Zhou J, Yin J, Pieterse CMJ, Benfey PN, Stringlis IA, de Jonge R. Cell-type-specific transcriptomics reveals that root hairs and endodermal barriers play important roles in beneficial plant-rhizobacterium interactions. MOLECULAR PLANT 2023; 16:1160-1177. [PMID: 37282370 PMCID: PMC10527033 DOI: 10.1016/j.molp.2023.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Growth- and health-promoting bacteria can boost crop productivity in a sustainable way. Pseudomonas simiae WCS417 is such a bacterium that efficiently colonizes roots, modifies the architecture of the root system to increase its size, and induces systemic resistance to make plants more resistant to pests and pathogens. Our previous work suggested that WCS417-induced phenotypes are controlled by root cell-type-specific mechanisms. However, it remains unclear how WCS417 affects these mechanisms. In this study, we transcriptionally profiled five Arabidopsis thaliana root cell types following WCS417 colonization. We found that the cortex and endodermis have the most differentially expressed genes, even though they are not in direct contact with this epiphytic bacterium. Many of these genes are associated with reduced cell wall biogenesis, and mutant analysis suggests that this downregulation facilitates WCS417-driven root architectural changes. Furthermore, we observed elevated expression of suberin biosynthesis genes and increased deposition of suberin in the endodermis of WCS417-colonized roots. Using an endodermal barrier mutant, we showed the importance of endodermal barrier integrity for optimal plant-beneficial bacterium association. Comparison of the transcriptome profiles in the two epidermal cell types that are in direct contact with WCS417-trichoblasts that form root hairs and atrichoblasts that do not-implies a difference in potential for defense gene activation. While both cell types respond to WCS417, trichoblasts displayed both higher basal and WCS417-dependent activation of defense-related genes compared with atrichoblasts. This suggests that root hairs may activate root immunity, a hypothesis that is supported by differential immune responses in root hair mutants. Taken together, these results highlight the strength of cell-type-specific transcriptional profiling to uncover "masked" biological mechanisms underlying beneficial plant-microbe associations.
Collapse
Affiliation(s)
- Eline H Verbon
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Louisa M Liberman
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jiayu Zhou
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Jie Yin
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Philip N Benfey
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands; Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece.
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands.
| |
Collapse
|
12
|
Kumari K, Rawat V, Shadan A, Sharma PK, Deb S, Singh RP. In-depth genome and pan-genome analysis of a metal-resistant bacterium Pseudomonas parafulva OS-1. Front Microbiol 2023; 14:1140249. [PMID: 37408640 PMCID: PMC10318148 DOI: 10.3389/fmicb.2023.1140249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023] Open
Abstract
A metal-resistant bacterium Pseudomonas parafulva OS-1 was isolated from waste-contaminated soil in Ranchi City, India. The isolated strain OS-1 showed its growth at 25-45°C, pH 5.0-9.0, and in the presence of ZnSO4 (upto 5 mM). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain OS-1 belonged to the genus Pseudomonas and was most closely related to parafulva species. To unravel the genomic features, we sequenced the complete genome of P. parafulva OS-1 using Illumina HiSeq 4,000 sequencing platform. The results of average nucleotide identity (ANI) analysis indicated the closest similarity of OS-1 to P. parafulva PRS09-11288 and P. parafulva DTSP2. The metabolic potential of P. parafulva OS-1 based on Clusters of Othologous Genes (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated a high number of genes related to stress protection, metal resistance, and multiple drug-efflux, etc., which is relatively rare in P. parafulva strains. Compared with other parafulva strains, P. parafulva OS-1 was found to have the unique β-lactam resistance and type VI secretion system (T6SS) gene. Additionally, its genomes encode various CAZymes such as glycoside hydrolases and other genes associated with lignocellulose breakdown, suggesting that strain OS-1 have strong biomass degradation potential. The presence of genomic complexity in the OS-1 genome indicates that horizontal gene transfer (HGT) might happen during evolution. Therefore, genomic and comparative genome analysis of parafulva strains is valuable for further understanding the mechanism of resistance to metal stress and opens a perspective to exploit a newly isolated bacterium for biotechnological applications.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Vaishnavi Rawat
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Afreen Shadan
- Department of Microbiology, Dr. Shyama Prasad Mukerjee University, Ranchi, India
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Sushanta Deb
- Department of Veterinary Microbiology and Pathology, Washington State University (WSU), Pullman, WA, United States
| | - Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| |
Collapse
|
13
|
Karczyński P, Orłowska A, Kępczyńska E. Two Medicago truncatula growth-promoting rhizobacteria capable of limiting in vitro growth of the Fusarium soil-borne pathogens modulate defense genes expression. PLANTA 2023; 257:118. [PMID: 37173556 PMCID: PMC10181981 DOI: 10.1007/s00425-023-04145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
MAIN CONCLUSION PGPRs: P. fluorescens Ms9N and S. maltophilia Ll4 inhibit in vitro growth of three legume fungal pathogens from the genus Fusarium. One or both trigger up-regulation of some genes (CHIT, GLU, PAL, MYB, WRKY) in M. truncatula roots and leaves in response to soil inoculation. Pseudomonas fluorescens (referred to as Ms9N; GenBank accession No. MF618323, not showing chitinase activity) and Stenotrophomonas maltophilia (Ll4; GenBank accession No. MF624721, showing chitinase activity), previously identified as promoting growth rhizobacteria of Medicago truncatula, were found, during an in vitro experiment, to exert an inhibitory effect on three soil-borne fungi: Fusarium culmorum Cul-3, F. oxysporum 857 and F. oxysporum f. sp. medicaginis strain CBS 179.29, responsible for serious diseases of most legumes including M. truncatula. S. maltophilia was more active than P. fluorescens in suppressing the mycelium growth of two out of three Fusarium strains. Both bacteria showed β-1,3-glucanase activity which was about 5 times higher in P. fluorescens than in S. maltophilia. Upon soil treatment with a bacterial suspension, both bacteria, but particularly S. maltophilia, brought about up-regulation of plant genes encoding chitinases (MtCHITII, MtCHITIV, MtCHITV), glucanases (MtGLU) and phenylalanine ammonia lyases (MtPAL2, MtPAL4, MtPAL5). Moreover, the bacteria up-regulate some genes from the MYB (MtMYB74, MtMYB102) and WRKY (MtWRKY6, MtWRKY29, MtWRKY53, MtWRKY70) families which encode TFs in M. truncatula roots and leaves playing multiple roles in plants, including a defense response. The effect depended on the bacterium species and the plant organ. This study provides novel information about effects of two M. truncatula growth-promoting rhizobacteria strains and suggests that both have a potential to be candidates for PGPR inoculant products on account of their ability to inhibit in vitro growth of Fusarium directly and indirectly by up-regulation of some defense priming markers such as CHIT, GLU and PAL genes in plants. This is also the first study of the expression of some MYB and WRKY genes in roots and leaves of M. truncatula upon soil treatment with two PGPR suspensions.
Collapse
Affiliation(s)
- Piotr Karczyński
- Institute of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| | - Anna Orłowska
- Institute of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| | - Ewa Kępczyńska
- Institute of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
| |
Collapse
|
14
|
Charron-Lamoureux V, Haroune L, Pomerleau M, Hall L, Orban F, Leroux J, Rizzi A, Bourassa JS, Fontaine N, d'Astous ÉV, Dauphin-Ducharme P, Legault CY, Bellenger JP, Beauregard PB. Pulcherriminic acid modulates iron availability and protects against oxidative stress during microbial interactions. Nat Commun 2023; 14:2536. [PMID: 37137890 PMCID: PMC10156857 DOI: 10.1038/s41467-023-38222-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
Siderophores are soluble or membrane-embedded molecules that bind the oxidized form of iron, Fe(III), and play roles in iron acquisition by microorganisms. Fe(III)-bound siderophores bind to specific receptors that allow microbes to acquire iron. However, certain soil microbes release a compound (pulcherriminic acid, PA) that, upon binding to Fe(III), forms a precipitate (pulcherrimin) that apparently functions by reducing iron availability rather than contributing to iron acquisition. Here, we use Bacillus subtilis (PA producer) and Pseudomonas protegens as a competition model to show that PA is involved in a peculiar iron-managing system. The presence of the competitor induces PA production, leading to precipitation of Fe(III) as pulcherrimin, which prevents oxidative stress in B. subtilis by restricting the Fenton reaction and deleterious ROS formation. In addition, B. subtilis uses its known siderophore bacillibactin to retrieve Fe(III) from pulcherrimin. Our findings indicate that PA plays multiple roles by modulating iron availability and conferring protection against oxidative stress during inter-species competition.
Collapse
Affiliation(s)
| | - Lounès Haroune
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Institut de pharmacologie de Sherbrooke, Faculté de médecine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maude Pomerleau
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Léo Hall
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Frédéric Orban
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Julie Leroux
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Adrien Rizzi
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Sébastien Bourassa
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nicolas Fontaine
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Élodie V d'Astous
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Claude Y Legault
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Bellenger
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pascale B Beauregard
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
15
|
Cao Z, Zuo W, Wang L, Chen J, Qu Z, Jin F, Dai L. Spatial profiling of microbial communities by sequential FISH with error-robust encoding. Nat Commun 2023; 14:1477. [PMID: 36932092 PMCID: PMC10023729 DOI: 10.1038/s41467-023-37188-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Spatial analysis of microbiomes at single cell resolution with high multiplexity and accuracy has remained challenging. Here we present spatial profiling of a microbiome using sequential error-robust fluorescence in situ hybridization (SEER-FISH), a highly multiplexed and accurate imaging method that allows mapping of microbial communities at micron-scale. We show that multiplexity of RNA profiling in microbiomes can be increased significantly by sequential rounds of probe hybridization and dissociation. Combined with error-correction strategies, we demonstrate that SEER-FISH enables accurate taxonomic identification in complex microbial communities. Using microbial communities composed of diverse bacterial taxa isolated from plant rhizospheres, we apply SEER-FISH to quantify the abundance of each taxon and map microbial biogeography on roots. At micron-scale, we identify clustering of microbial cells from multiple species on the rhizoplane. Under treatment of plant metabolites, we find spatial re-organization of microbial colonization along the root and alterations in spatial association among microbial taxa. Taken together, SEER-FISH provides a useful method for profiling the spatial ecology of complex microbial communities in situ.
Collapse
Affiliation(s)
- Zhaohui Cao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenlong Zuo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lanxiang Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junyu Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zepeng Qu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fan Jin
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Yang P, Zhao Z, Fan J, Liang Y, Bernier MC, Gao Y, Zhao L, Opiyo SO, Xia Y. Bacillus proteolyticus OSUB18 triggers induced systemic resistance against bacterial and fungal pathogens in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1078100. [PMID: 36755698 PMCID: PMC9900001 DOI: 10.3389/fpls.2023.1078100] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/04/2023] [Indexed: 05/27/2023]
Abstract
Pseudomonas syringae and Botrytis cinerea cause destructive bacterial speck and grey mold diseases in many plant species, leading to substantial economic losses in agricultural production. Our study discovered that the application of Bacillus proteolyticus strain OSUB18 as a root-drench enhanced the resistance of Arabidopsis plants against P. syringae and B. cinerea through activating Induced Systemic Resistance (ISR). The underlying mechanisms by which OSUB18 activates ISR were studied. Our results revealed that the Arabidopsis plants with OSUB18 root-drench showed the enhanced callose deposition and ROS production when inoculated with Pseudomonas syringae and Botrytis cinerea pathogens, respectively. Also, the increased salicylic acid (SA) levels were detected in the OSUB18 root-drenched plants compared with the water root-drenched plants after the P. syringae infection. In contrast, the OSUB18 root-drenched plants produced significantly higher levels of jasmonyl isoleucine (JA-Ile) than the water root-drenched control after the B. cinerea infection. The qRT-PCR analyses indicated that the ISR-responsive gene MYC2 and the ROS-responsive gene RBOHD were significantly upregulated in OSUB18 root-drenched plants upon both pathogen infections compared with the controls. Also, twenty-four hours after the bacterial or fungal inoculation, the OSUB18 root-drenched plants showed the upregulated expression levels of SA-related genes (PR1, PR2, PR5, EDS5, and SID2) or JA-related genes (PDF1.2, LOX3, JAR1 and COI1), respectively, which were consistent with the related hormone levels upon these two different pathogen infections. Moreover, OSUB18 can trigger ISR in jar1 or sid2 mutants but not in myc2 or npr1 mutants, depending on the pathogen's lifestyles. In addition, OSUB18 prompted the production of acetoin, which was reported as a novel rhizobacterial ISR elicitor. In summary, our studies discover that OSUB18 is a novel ISR inducer that primes plants' resistance against bacterial and fungal pathogens by enhancing the callose deposition and ROS accumulation, increasing the production of specific phytohormones and other metabolites involved in plant defense, and elevating the expression levels of multiple defense genes.
Collapse
Affiliation(s)
- Piao Yang
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH, United States
| | - Zhenzhen Zhao
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH, United States
| | - Jiangbo Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yinping Liang
- College of Grassland Science, Shanxi Agriculture University, Taigu, China
| | - Matthew C. Bernier
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH, United States
| | - Yu Gao
- Ohio State University (OSU) South Centers, Piketon, OH, United States
- Department of Extension, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, United States
| | - Lijing Zhao
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH, United States
| | - Stephen Obol Opiyo
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH, United States
| | - Ye Xia
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
17
|
Paravar A, Piri R, Balouchi H, Ma Y. Microbial seed coating: An attractive tool for sustainable agriculture. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 37:e00781. [PMID: 36655147 PMCID: PMC9841043 DOI: 10.1016/j.btre.2023.e00781] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
Seed coating is considered one of the best methods to promote sustainable agriculture where the physical and physiological properties of seeds can be improved to facilitate planting, increase growth indices and alleviate abiotic and biotic stresses. Several methods of seed coating are used to attain good application uniformity and adherence in the seed coating process. Seed coating has been tested in seeds of various plant species with different dimensions, forms, textures, and germination types. Plant beneficial microorganisms (PBM), such as rhizobia, bacteria, and fungi inoculated via seed inoculation can increase seed germination, plant performance and tolerance across biotic (e.g., pathogens and pests) and abiotic stress (e.g., salt, drought, and heavy metals) while reducing the use of agrochemical inputs. In this review, the microbial seed coating process and their ability to increase seed performance and protect plants from biotic and abiotic stresses are well discussed and highlighted in sustainable agricultural systems.
Collapse
Affiliation(s)
- Arezoo Paravar
- Department of Crop Production and Plant Breeding, College of Agriculture, Shahed University, Tehran, Iran
| | - Ramin Piri
- Department of Agronomy and Plant Breeding, College of Agriculture, University of Tehran, Tehran, Iran
| | - Hamidreza Balouchi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran,Corresponding authors.
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China,Corresponding authors.
| |
Collapse
|
18
|
Grosse C, Brandt N, Van Antwerpen P, Wintjens R, Matthijs S. Two new siderophores produced by Pseudomonas sp. NCIMB 10586: The anti-oomycete non-ribosomal peptide synthetase-dependent mupirochelin and the NRPS-independent triabactin. Front Microbiol 2023; 14:1143861. [PMID: 37032897 PMCID: PMC10080011 DOI: 10.3389/fmicb.2023.1143861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Globisporangium ultimum is an oomycetal pathogen causing damping-off on over 300 different plant hosts. Currently, as for many phytopathogens, its control relies in the use of chemicals with negative impact on health and ecosystems. Therefore, many biocontrol strategies are under investigation to reduce the use of fungicides. Results In this study, the soil bacterium Pseudomonas sp. NCIMB 10586 demonstrates a strong iron-repressed in vitro antagonism against G. ultimum MUCL 38045. This antagonism does not depend on the secretion of the broad-range antibiotic mupirocin or of the siderophore pyoverdine by the bacterial strain. The inhibitor molecule was identified as a novel non-ribosomal peptide synthetase (NRPS) siderophore named mupirochelin. Its putative structure bears similarities to other siderophores and bioactive compounds. The transcription of its gene cluster is affected by the biosynthesis of pyoverdine, the major known siderophore of the strain. Besides mupirochelin, we observed the production of a third and novel NRPS-independent siderophore (NIS), here termed triabactin. The iron-responsive transcriptional repression of the two newly identified siderophore gene clusters corroborates their role as iron scavengers. However, their respective contributions to the strain fitness are dissimilar. Bacterial growth in iron-deprived conditions is greatly supported by pyoverdine production and, to a lesser extent, by triabactin. On the contrary, mupirochelin does not contribute to the strain fitness under the studied conditions. Conclusion Altogether, we have demonstrated here that besides pyoverdine, Pseudomonas sp. NCIMB 10586 produces two newly identified siderophores, namely mupirochelin, a weak siderophore with strong antagonism activity against G. ultimum, and the potent siderophore triabactin.
Collapse
Affiliation(s)
- Camille Grosse
- Unité de Recherche NaturaMonas, Institut de Recherche LABIRIS, Brussels, Belgium
| | - Nathalie Brandt
- Unité de Recherche NaturaMonas, Institut de Recherche LABIRIS, Brussels, Belgium
| | - Pierre Van Antwerpen
- RD3 – Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - René Wintjens
- Unité Microbiologie, Chimie Bioorganique et Macromoléculaire, Department of Research in Drug Development (RD3), Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Sandra Matthijs
- Unité de Recherche NaturaMonas, Institut de Recherche LABIRIS, Brussels, Belgium
- *Correspondence: Sandra Matthijs,
| |
Collapse
|
19
|
Zboralski A, Biessy A, Ciotola M, Cadieux M, Albert D, Blom J, Filion M. Harnessing the genomic diversity of Pseudomonas strains against lettuce bacterial pathogens. Front Microbiol 2022; 13:1038888. [PMID: 36620043 PMCID: PMC9814014 DOI: 10.3389/fmicb.2022.1038888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Lettuce is a major vegetable crop worldwide that is affected by numerous bacterial pathogens, including Xanthomonas hortorum pv. vitians, Pseudomonas cichorii, and Pectobacterium carotovorum. Control methods are scarce and not always effective. To develop new and sustainable approaches to contain these pathogens, we screened more than 1,200 plant-associated Pseudomonas strains retrieved from agricultural soils for their in vitro antagonistic capabilities against the three bacterial pathogens under study. Thirty-five Pseudomonas strains significantly inhibited some or all three pathogens. Their genomes were fully sequenced and annotated. These strains belong to the P. fluorescens and P. putida phylogenomic groups and are distributed in at least 27 species, including 15 validly described species. They harbor numerous genes and clusters of genes known to be involved in plant-bacteria interactions, microbial competition, and biocontrol. Strains in the P. putida group displayed on average better inhibition abilities than strains in the P. fluorescens group. They carry genes and biosynthetic clusters mostly absent in the latter strains that are involved in the production of secondary metabolites such as 7-hydroxytropolone, putisolvins, pyochelin, and xantholysin-like and pseudomonine-like compounds. The presence of genes involved in the biosynthesis of type VI secretion systems, tailocins, and hydrogen cyanide also positively correlated with the strains' overall inhibition abilities observed against the three pathogens. These results show promise for the development of biocontrol products against lettuce bacterial pathogens, provide insights on some of the potential biocontrol mechanisms involved, and contribute to public Pseudomonas genome databases, including quality genome sequences on some poorly represented species.
Collapse
Affiliation(s)
- Antoine Zboralski
- Centre de Recherche et de Développement de Saint-Jean-sur-Richelieu, Agriculture et Agroalimentaire Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Adrien Biessy
- Centre de Recherche et de Développement de Saint-Jean-sur-Richelieu, Agriculture et Agroalimentaire Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Marie Ciotola
- Centre de Recherche et de Développement de Saint-Jean-sur-Richelieu, Agriculture et Agroalimentaire Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Mélanie Cadieux
- Centre de Recherche et de Développement de Saint-Jean-sur-Richelieu, Agriculture et Agroalimentaire Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Daphné Albert
- Centre de Recherche et de Développement de Saint-Jean-sur-Richelieu, Agriculture et Agroalimentaire Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Filion
- Centre de Recherche et de Développement de Saint-Jean-sur-Richelieu, Agriculture et Agroalimentaire Canada, Saint-Jean-sur-Richelieu, QC, Canada,*Correspondence: Martin Filion,
| |
Collapse
|
20
|
Hansen ML, Wibowo M, Jarmusch SA, Larsen TO, Jelsbak L. Sequential interspecies interactions affect production of antimicrobial secondary metabolites in Pseudomonas protegens DTU9.1. THE ISME JOURNAL 2022; 16:2680-2690. [PMID: 36123523 PMCID: PMC9666462 DOI: 10.1038/s41396-022-01322-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Soil and rhizosphere microbiomes play important roles in suppression of plant pathogens through production of antagonistic secondary metabolites, yet mechanisms that determine the strength of pathogen control are not well understood. Many Pseudomonas species are associated with soil and rhizosphere microbiomes, and their ability to suppress pathogens is well documented. Here, we investigate how interactions within the Pseudomonas genus affect their production of antimicrobial metabolites. From a biosensor-based screen, we identify P. capeferrum species as capable of modulating secondary metabolite production in P. protegens. We show that P. capeferrum alters production of pyoluteorin and 2,4-diacetylphloroglucinol (DAPG) in P. protegens via two distinct and sequential mechanisms that depends on spatial proximity of the two species. Specifically, P. capeferrum secretes a diffusible signal that induce pyoluteorin production up to 100-fold in neighboring P. protegens colonies. In contrast, the interaction results in reduced DAPG production, but only within mixed-species colonies. Additionally, we found that increased pyoluteorin production and cell lysis of P. capeferrum is required for inhibition of DAPG production, suggesting that pyoluteorin-facilitated antibiosis of P. protegens on P. capeferrum leads to release of cell-associated metabolites and subsequent inhibition of DAPG production in P. protegens. As the interaction modulates in vitro bioactivity of the species, genus-specific interactions may assist in improving efficacy of biocontrol strains and consortia.
Collapse
Affiliation(s)
- Morten Lindqvist Hansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs Lyngby, Denmark
| | - Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs Lyngby, Denmark
| | - Scott Alexander Jarmusch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs Lyngby, Denmark
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs Lyngby, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs Lyngby, Denmark.
| |
Collapse
|
21
|
Overgaard CK, Tao K, Zhang S, Christensen BT, Blahovska Z, Radutoiu S, Kelly S, Dueholm MKD. Application of ecosystem-specific reference databases for increased taxonomic resolution in soil microbial profiling. Front Microbiol 2022; 13:942396. [DOI: 10.3389/fmicb.2022.942396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Intensive agriculture systems have paved the way for a growing human population. However, the abundant use of mineral fertilizers and pesticides may negatively impact nutrient cycles and biodiversity. One potential alternative is to harness beneficial relationships between plants and plant-associated rhizobacteria to increase nutrient-use efficiency and provide pathogen resistance. Plant-associated microbiota profiling can be achieved using high-throughput 16S rRNA gene amplicon sequencing. However, interrogation of these data is limited by confident taxonomic classifications at high taxonomic resolution (genus- or species level) with the commonly applied universal reference databases. High-throughput full-length 16S rRNA gene sequencing combined with automated taxonomy assignment (AutoTax) can be used to create amplicon sequence variant resolved ecosystems-specific reference databases that are superior to the traditional universal reference databases. This approach was used here to create a custom reference database for bacteria and archaea based on 987,353 full-length 16S rRNA genes from Askov and Cologne soils. We evaluated the performance of the database using short-read amplicon data and found that it resulted in the increased genus- and species-level classification compared to commonly use universal reference databases. The custom database was utilized to evaluate the ecosystem-specific primer bias and taxonomic resolution of amplicon primers targeting the V5–V7 region of the 16S rRNA gene commonly used within the plant microbiome field. Finally, we demonstrate the benefits of custom ecosystem-specific databases through the analysis of V5–V7 amplicon data to identify new plant-associated microbes for two legumes and two cereal species.
Collapse
|
22
|
Zhu L, Huang J, Lu X, Zhou C. Development of plant systemic resistance by beneficial rhizobacteria: Recognition, initiation, elicitation and regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:952397. [PMID: 36017257 PMCID: PMC9396261 DOI: 10.3389/fpls.2022.952397] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
A plant growing in nature is not an individual, but it holds an intricate community of plants and microbes with relatively stable partnerships. The microbial community has recently been demonstrated to be closely linked with plants since their earliest evolution, to help early land plants adapt to environmental threats. Mounting evidence has indicated that plants can release diverse kinds of signal molecules to attract beneficial bacteria for mediating the activities of their genetics and biochemistry. Several rhizobacterial strains can promote plant growth and enhance the ability of plants to withstand pathogenic attacks causing various diseases and loss in crop productivity. Beneficial rhizobacteria are generally called as plant growth-promoting rhizobacteria (PGPR) that induce systemic resistance (ISR) against pathogen infection. These ISR-eliciting microbes can mediate the morphological, physiological and molecular responses of plants. In the last decade, the mechanisms of microbial signals, plant receptors, and hormone signaling pathways involved in the process of PGPR-induced ISR in plants have been well investigated. In this review, plant recognition, microbial elicitors, and the related pathways during plant-microbe interactions are discussed, with highlights on the roles of root hair-specific syntaxins and small RNAs in the regulation of the PGPR-induced ISR in plants.
Collapse
Affiliation(s)
- Lin Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiameng Huang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Xiaoming Lu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Cheng Zhou
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Díaz M, Bach T, González Anta G, Agaras B, Wibberg D, Noguera F, Canciani W, Valverde C. Agronomic efficiency and genome mining analysis of the wheat-biostimulant rhizospheric bacterium Pseudomonas pergaminensis sp. nov. strain 1008 T. FRONTIERS IN PLANT SCIENCE 2022; 13:894985. [PMID: 35968096 PMCID: PMC9369656 DOI: 10.3389/fpls.2022.894985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Pseudomonas sp. strain 1008 was isolated from the rhizosphere of field grown wheat plants at the tillering stage in an agricultural plot near Pergamino city, Argentina. Based on its in vitro phosphate solubilizing capacity and the production of IAA, strain 1008 was formulated as an inoculant for bacterization of wheat seeds and subjected to multiple field assays within the period 2010-2017. Pseudomonas sp. strain 1008 showed a robust positive impact on the grain yield (+8% on average) across a number of campaigns, soil properties, seed genotypes, and with no significant influence of the simultaneous seed treatment with a fungicide, strongly supporting the use of this biostimulant bacterium as an agricultural input for promoting the yield of wheat. Full genome sequencing revealed that strain 1008 has the capacity to access a number of sources of inorganic and organic phosphorus, to compete for iron scavenging, to produce auxin, 2,3-butanediol and acetoin, and to metabolize GABA. Additionally, the genome of strain 1008 harbors several loci related to rhizosphere competitiveness, but it is devoid of biosynthetic gene clusters for production of typical secondary metabolites of biocontrol representatives of the Pseudomonas genus. Finally, the phylogenomic, phenotypic, and chemotaxonomic comparative analysis of strain 1008 with related taxa strongly suggests that this wheat rhizospheric biostimulant isolate is a representative of a novel species within the genus Pseudomonas, for which the name Pseudomonas pergaminensis sp. nov. (type strain 1008T = DSM 113453T = ATCC TSD-287T) is proposed.
Collapse
Affiliation(s)
- Marisa Díaz
- Rizobacter Argentina S.A., Buenos Aires, Argentina
| | - Teresa Bach
- Rizobacter Argentina S.A., Buenos Aires, Argentina
| | - Gustavo González Anta
- Escuela de Ciencias Agrarias, Exactas y Naturales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
- Departamento de Ciencias Naturales y Exactas, Universidad Nacional de San Antonio de Areco (UNSAdA), Buenos Aires, Argentina
- Indrasa Biotecnología S.A., Córdoba, Argentina
| | - Betina Agaras
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Universidad Nacional de Quilmes-CONICET, Buenos Aires, Argentina
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | | | | | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Universidad Nacional de Quilmes-CONICET, Buenos Aires, Argentina
| |
Collapse
|
24
|
RclS Sensor Kinase Modulates Virulence of Pseudomonas capeferrum. Int J Mol Sci 2022; 23:ijms23158232. [PMID: 35897798 PMCID: PMC9331949 DOI: 10.3390/ijms23158232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Signal transduction systems are the key players of bacterial adaptation and survival. The orthodox two-component signal transduction systems perceive diverse environmental stimuli and their regulatory response leads to cellular changes. Although rarely described, the unorthodox three-component systems are also implemented in the regulation of major bacterial behavior such as the virulence of clinically relevant pathogen P. aeruginosa. Previously, we described a novel three-component system in P. capeferrum WCS358 (RclSAR) where the sensor kinase RclS stimulates the intI1 transcription in stationary growth phase. In this study, using rclS knock-out mutant, we identified RclSAR regulon in P. capeferrum WCS358. The RNA sequencing revealed that activity of RclSAR signal transduction system is growth phase dependent with more pronounced regulatory potential in early stages of growth. Transcriptional analysis emphasized the role of RclSAR in global regulation and indicated the involvement of this system in regulation of diverse cellular activities such as RNA binding and metabolic and biocontrol processes. Importantly, phenotypic comparison of WCS358 wild type and ΔrclS mutant showed that RclS sensor kinase contributes to modulation of antibiotic resistance, production of AHLs and siderophore as well as host cell adherence and cytotoxicity. Finally, we proposed the improved model of interplay between RclSAR, RpoS and LasIR regulatory systems in P. capeferrum WCS358.
Collapse
|
25
|
Loo EPI, Tajima Y, Yamada K, Kido S, Hirase T, Ariga H, Fujiwara T, Tanaka K, Taji T, Somssich IE, Parker JE, Saijo Y. Recognition of Microbe- and Damage-Associated Molecular Patterns by Leucine-Rich Repeat Pattern Recognition Receptor Kinases Confers Salt Tolerance in Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:554-566. [PMID: 34726476 DOI: 10.1094/mpmi-07-21-0185-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In plants, a first layer of inducible immunity is conferred by pattern recognition receptors (PRRs) that bind microbe- and damage-associated molecular patterns to activate pattern-triggered immunity (PTI). PTI is strengthened or followed by another potent form of immunity when intracellular receptors recognize pathogen effectors, termed effector-triggered immunity. Immunity signaling regulators have been reported to influence abiotic stress responses as well, yet the governing principles and mechanisms remain ambiguous. Here, we report that PRRs of a leucine-rich repeat ectodomain also confer salt tolerance in Arabidopsis thaliana, following recognition of cognate ligands such as bacterial flagellin (flg22 epitope) and elongation factor Tu (elf18 epitope), and the endogenous Pep peptides. Pattern-triggered salt tolerance (PTST) requires authentic PTI signaling components; namely, the PRR-associated kinases BAK1 and BIK1 and the NADPH oxidase RBOHD. Exposure to salt stress induces the release of Pep precursors, pointing to the involvement of the endogenous immunogenic peptides in developing plant tolerance to high salinity. Transcriptome profiling reveals an inventory of PTST target genes, which increase or acquire salt responsiveness following a preexposure to immunogenic patterns. In good accordance, plants challenged with nonpathogenic bacteria also acquired salt tolerance in a manner dependent on PRRs. Our findings provide insight into signaling plasticity underlying biotic or abiotic stress cross-tolerance in plants conferred by PRRs.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Eliza P-I Loo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Yuri Tajima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Kohji Yamada
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829 Germany
| | - Shota Kido
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Taishi Hirase
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Hirotaka Ariga
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Tadashi Fujiwara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Imre E Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829 Germany
| | - Jane E Parker
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829 Germany
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Germany
| | - Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829 Germany
- JST PRESTO, Kawaguchi, 332-0012 Japan
| |
Collapse
|
26
|
Kuhl-Nagel T, Rodriguez PA, Gantner I, Chowdhury SP, Schwehn P, Rosenkranz M, Weber B, Schnitzler JP, Kublik S, Schloter M, Rothballer M, Falter-Braun P. Novel Pseudomonas sp. SCA7 Promotes Plant Growth in Two Plant Families and Induces Systemic Resistance in Arabidopsis thaliana. Front Microbiol 2022; 13:923515. [PMID: 35875540 PMCID: PMC9297469 DOI: 10.3389/fmicb.2022.923515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas sp. SCA7, characterized in this study, was isolated from roots of the bread wheat Triticum aestivum. Sequencing and annotation of the complete SCA7 genome revealed that it represents a potential new Pseudomonas sp. with a remarkable repertoire of plant beneficial functions. In vitro and in planta experiments with the reference dicot plant A. thaliana and the original monocot host T. aestivum were conducted to identify the functional properties of SCA7. The isolate was able to colonize roots, modify root architecture, and promote growth in A. thaliana. Moreover, the isolate increased plant fresh weight in T. aestivum under unchallenged conditions. Gene expression analysis of SCA7-inoculated A. thaliana indicated a role of SCA7 in nutrient uptake and priming of plants. Moreover, confrontational assays of SCA7 with fungal and bacterial plant pathogens revealed growth restriction of the pathogens by SCA7 in direct as well as indirect contact. The latter indicated involvement of microbial volatile organic compounds (mVOCs) in this interaction. Gas chromatography-mass spectrometry (GC-MS) analyses revealed 1-undecene as the major mVOC, and octanal and 1,4-undecadiene as minor abundant compounds in the emission pattern of SCA7. Additionally, SCA7 enhanced resistance of A. thaliana against infection with the plant pathogen Pseudomonas syringae pv. tomato DC3000. In line with these results, SA- and JA/ET-related gene expression in A. thaliana during infection with Pst DC3000 was upregulated upon treatment with SCA7, indicating the ability of SCA7 to induce systemic resistance. The thorough characterization of the novel Pseudomonas sp. SCA7 showed a remarkable genomic and functional potential of plant beneficial traits, rendering it a promising candidate for application as a biocontrol or a biostimulation agent.
Collapse
Affiliation(s)
- Theresa Kuhl-Nagel
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Patricia Antonia Rodriguez
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Isabella Gantner
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Soumitra Paul Chowdhury
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Patrick Schwehn
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Maaria Rosenkranz
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Baris Weber
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Rothballer
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Pascal Falter-Braun
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
27
|
Khan MS, Gao J, Zhang M, Xue J, Zhang X. Pseudomonas aeruginosa Ld-08 isolated from Lilium davidii exhibits antifungal and growth-promoting properties. PLoS One 2022; 17:e0269640. [PMID: 35714148 PMCID: PMC9205524 DOI: 10.1371/journal.pone.0269640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
A plant growth-promoting and antifungal endophytic bacteria designated as Ld-08 isolated from the bulbs of Lilium davidii was identified as Pseudomonas aeruginosa based on phenotypic, microscopic, and 16S rRNA gene sequence analysis. Ld-08 exhibited antifungal effects against Fusarium oxysporum, Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi. Ld-08 showed the highest growth inhibition, i.e., 83.82±4.76% against B. dothidea followed by 74.12±3.87%, 67.56±3.35%, and 63.67±3.39% against F. fujikuroi, B. cinerea, and F. oxysporum, respectively. The ethyl acetate fraction of Ld-08 revealed the presence of several bioactive secondary metabolites. Prominent compounds were quinolones; 3,9-dimethoxypterocarpan; cascaroside B; dehydroabietylamine; epiandrosterone; nocodazole; oxolinic acid; pyochelin; rhodotulic acid; 9,12-octadecadienoic acid; di-peptides; tri-peptides; ursodiol, and venlafaxine. The strain Ld-08 showed organic acids, ACC deaminase, phosphate solubilization, IAA, and siderophore. The sterilized bulbs of a Lilium variety, inoculated with Ld-08, were further studied for plant growth-promoting traits. The inoculated plants showed improved growth than the control plants. Importantly, some growth parameters such as plant height, leaf length, bulb weight, and root length were significantly (P ≤0.05) increased in the inoculated plants than in the control un-inoculated plants. Further investigations are required to explore the potential of this strain to be used as a plant growth-promoting and biocontrol agent in sustainable agriculture.
Collapse
Affiliation(s)
- Mohammad Sayyar Khan
- Microbiology Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Junlian Gao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mingfang Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Xue
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiuhai Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
28
|
Helal DS, El-Khawas H, Elsayed TR. Molecular characterization of endophytic and ectophytic plant growth promoting bacteria isolated from tomato plants (Solanum lycopersicum L.) grown in different soil types. J Genet Eng Biotechnol 2022; 20:79. [PMID: 35608711 PMCID: PMC9130443 DOI: 10.1186/s43141-022-00361-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/02/2022] [Indexed: 11/24/2022]
Abstract
Background Successful rhizosphere colonization by plant growth promoting rhizobacteria (PGPR) is of crucial importance to perform the desired plant growth promoting activities. Since rhizocompetence is a dynamic process influenced by surrounding environmental conditions. In the present study, we hypothesized that bacterial isolates obtained from different tomato plant microhabitats (balk soil, rhizosphere, endorhiza, phyllosphere, and endoshoot) grown in different soils (sand, clay, and peat moss) will show different rhizocompetence abilities. Results To evaluate this hypothesis, bacterial isolates were obtained from different plant microhabitats and screened for their phosphate solubilizing and nitrogen fixing activates. BOX-PCR fingerprint profiles showed high genotypic diversity among the tested isolates and that same genotypes were shared between different soils and/or plant microhabitats. 16S rRNA gene sequences of 25 PGP isolates, representing different plant spheres and soil types, were affiliated to eight genera: Enterobacter, Paraburkholderia, Klebsiella, Bacillus, Paenibacillus, Stenotrophomonas, Pseudomonas, and Kosakonia. The rhizocompetence of each isolate was evaluated in the rhizosphere of tomato plants grown on a mixture of the three soils. Different genotypes of the same bacterial species displayed different rhizocompetence potentials. However, isolates obtained from the above-ground parts of the plant showed high rhizocompetence. In addition, biological control-related genes, ituD and srfC, were detected in the obtained spore forming bacterial isolates. Conclusion This study evaluates, for the first time, the relationship between plant microhabitat and the rhizocompetence ability in tomato rhizosphere. The results indicated that soil type and plant sphere can influence both the genotypic diversity and rhizocompetence ability of the same bacterial species. Bacterial isolates obtained in this study are promising to be used as an environmentally friendly substitution of chemical fertilizers. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00361-0.
Collapse
Affiliation(s)
- Donia S Helal
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Hussein El-Khawas
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Tarek R Elsayed
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Cairo, Egypt.
| |
Collapse
|
29
|
Balthazar C, Novinscak A, Cantin G, Joly DL, Filion M. Biocontrol Activity of Bacillus spp. and Pseudomonas spp. Against Botrytis cinerea and Other Cannabis Fungal Pathogens. PHYTOPATHOLOGY 2022; 112:549-560. [PMID: 34293909 DOI: 10.1094/phyto-03-21-0128-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gray mold caused by Botrytis cinerea is one of the most widespread and damaging diseases in cannabis crops worldwide. With challenging restrictions on pesticide use and few effective control measures, biocontrol agents are needed to manage this disease. The aim of this study was to identify bacterial biocontrol agents with wide-spectrum activity against B. cinerea and other cannabis fungal pathogens. Twelve Bacillus and Pseudomonas strains were first screened with in vitro confrontational assays against 10 culturable cannabis pathogens, namely B. cinerea, Sclerotinia sclerotiorum, Fusarium culmorum, F. sporotrichoides, F. oxysporum, Nigrospora sphaerica, N. oryzae, Alternaria alternata, Phoma sp., and Cercospora sp. Six strains displaying the highest inhibitory activity, namely Bacillus velezensis LBUM279, FZB42, LBUM1082, Bacillus subtilis LBUM979, P. synxantha LBUM223, and P. protegens Pf-5, were further assessed in planta where all, except LBUM223, significantly controlled gray mold development on cannabis leaves. Notably, LBUM279 and FZB42 reduced disease severity by at least half compared with water-treated plants and prevented lesion development and/or sporulation up to 9 days after pathogen inoculation. Genomes of LBUM279, LBUM1082, and LBUM979 were sequenced de novo and taxonomic affiliations were determined to ensure nonrelatedness with pathogenic strains. Moreover, the genomes were exempt of detrimental genes encoding major toxins and virulence factors that could otherwise pose a biosafety risk when used on crops. Eighteen gene clusters of potential biocontrol interest were also identified. To our knowledge, this is the first reported attempt to control cannabis fungal diseases in planta by direct antagonism with beneficial bacteria.
Collapse
Affiliation(s)
- Carole Balthazar
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Amy Novinscak
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Gabrielle Cantin
- Institute of Health and Life Sciences, Collège La Cité, Ottawa, ON K1K 4R3, Canada
| | - David L Joly
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Martin Filion
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Saint-Jean-sur-Richelieu Research and Development Center, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| |
Collapse
|
30
|
Extracellular degradation of a polyurethane oligomer involving outer membrane vesicles and further insights on the degradation of 2,4-diaminotoluene in Pseudomonas capeferrum TDA1. Sci Rep 2022; 12:2666. [PMID: 35177693 PMCID: PMC8854710 DOI: 10.1038/s41598-022-06558-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
The continuing reports of plastic pollution in various ecosystems highlight the threat posed by the ever-increasing consumption of synthetic polymers. Therefore, Pseudomonas capeferrum TDA1, a strain recently isolated from a plastic dump site, was examined further regarding its ability to degrade polyurethane (PU) compounds. The previously reported degradation pathway for 2,4-toluene diamine, a precursor and degradation intermediate of PU, could be confirmed by RNA-seq in this organism. In addition, different cell fractions of cells grown on a PU oligomer were tested for extracellular hydrolytic activity using a standard assay. Strikingly, purified outer membrane vesicles (OMV) of P. capeferrum TDA1 grown on a PU oligomer showed higher esterase activity than cell pellets. Hydrolases in the OMV fraction possibly involved in extracellular PU degradation were identified by mass spectrometry. On this basis, we propose a model for extracellular degradation of polyester-based PUs by P. capeferrum TDA1 involving the role of OMVs in synthetic polymer degradation.
Collapse
|
31
|
Zhou Q, He R, Zhao D, Zeng J, Yu Z, Wu QL. Contrasting Patterns of the Resident and Active Rhizosphere Bacterial Communities of Phragmites Australis. MICROBIAL ECOLOGY 2022; 83:314-327. [PMID: 33956174 DOI: 10.1007/s00248-021-01767-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Rhizosphere microbes play a key role in maintaining plant health and regulating biogeochemical cycles. The active bacterial community (ABC) in rhizosphere, as a small fraction of the rhizosphere resident bacterial community (RBC), has the potential to actively participate in nutrient cycling processes at the root-sediment interface. Here, we investigated the ABC and RBC within the rhizosphere of Phragmites australis (P. australis) subjected to different environmental conditions (i.e., seasons and flooding conditions) in Lake Taihu, China. Our results indicated that RBC exhibited significantly higher alpha diversity as well as lower beta diversity than ABC. The active ratios of 16S rRNA to 16S rDNA (also RNA/DNA) of the bacterial communities in summer and winter suggested a lower proportion of potential active taxa in the rhizosphere bacterial community during summer. Network analysis showed that negative correlations in each network were observed to dominate the species correlations between the rhizosphere and bulk sediment bacterial communities. Our results revealed that niche differentiation and seasonal variation played crucial roles in driving the assembly of ABC and RBC associated with the rhizospheres of P. australis. These findings broaden our knowledge about how rhizosphere bacterial communities respond to environmental variations through changing their diversity and composition.
Collapse
Affiliation(s)
- Qi Zhou
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Rujia He
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| | - Zhongbo Yu
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
32
|
Genome analysis of Pseudomonas sp. 14A reveals metabolic capabilities to support epiphytic behavior. World J Microbiol Biotechnol 2022; 38:49. [DOI: 10.1007/s11274-022-03238-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022]
|
33
|
Zboralski A, Biessy A, Filion M. Bridging the Gap: Type III Secretion Systems in Plant-Beneficial Bacteria. Microorganisms 2022; 10:187. [PMID: 35056636 PMCID: PMC8780523 DOI: 10.3390/microorganisms10010187] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/30/2022] Open
Abstract
Type III secretion systems (T3SSs) are bacterial membrane-embedded nanomachines translocating effector proteins into the cytoplasm of eukaryotic cells. They have been intensively studied for their important roles in animal and plant bacterial diseases. Over the past two decades, genome sequencing has unveiled their ubiquitous distribution in many taxa of Gram-negative bacteria, including plant-beneficial ones. Here, we discuss the distribution and functions of the T3SS in two agronomically important bacterial groups: the symbiotic nodule-forming nitrogen-fixing rhizobia and the free-living plant-beneficial Pseudomonas spp. In legume-rhizobia symbiosis, T3SSs and their cognate effectors play important roles, including the modulation of the plant immune response and the initiation of the nodulation process in some cases. In plant-beneficial Pseudomonas spp., the roles of T3SSs are not fully understood, but pertain to plant immunity suppression, biocontrol against eukaryotic plant pathogens, mycorrhization facilitation, and possibly resistance against protist predation. The diversity of T3SSs in plant-beneficial bacteria points to their important roles in multifarious interkingdom interactions in the rhizosphere. We argue that the gap in research on T3SSs in plant-beneficial bacteria must be bridged to better understand bacteria/eukaryotes rhizosphere interactions and to support the development of efficient plant-growth promoting microbial inoculants.
Collapse
Affiliation(s)
| | | | - Martin Filion
- Research and Development Centre, Agriculture and Agri-Food Canada, 430 Gouin Boulevard, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (A.Z.); (A.B.)
| |
Collapse
|
34
|
Pescador L, Fernandez I, Pozo MJ, Romero-Puertas MC, Pieterse CMJ, Martínez-Medina A. Nitric oxide signalling in roots is required for MYB72-dependent systemic resistance induced by Trichoderma volatile compounds in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:584-595. [PMID: 34131708 PMCID: PMC8757496 DOI: 10.1093/jxb/erab294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 05/03/2023]
Abstract
Volatile compounds (VCs) of Trichoderma fungi trigger induced systemic resistance (ISR) in Arabidopsis that is effective against a broad spectrum of pathogens. The root-specific transcription factor MYB72 is an early regulator of ISR and also controls the activation of iron-deficiency responses. Nitric oxide (NO) is involved in the regulation of MYB72-dependent iron-deficiency responses in Arabidopsis roots, but the role of NO in the regulation of MYB72 and ISR by Trichoderma VCs remains unexplored. Using in vitro bioassays, we applied Trichoderma VCs to Arabidopsis seedlings. Plant perception of Trichoderma VCs triggered a burst of NO in Arabidopsis roots. By suppressing this burst using an NO scavenger, we show the involvement of NO in Trichoderma VCs-mediated regulation of MYB72 expression. Using an NO scavenger and the Arabidopsis lines myb72 and nia1nia2 in in planta bioassays, we demonstrate that NO signalling is required in the roots for activation of Trichoderma VCs-mediated ISR against the leaf pathogen Botrytis cinerea. Analysis of the defence-related genes PR1 and PDF1.2 points to the involvement of root NO in priming leaves for enhanced defence. Our results support a key role of root NO signalling in the regulation of MYB72 expression during the activation of ISR by Trichoderma VCs.
Collapse
Affiliation(s)
- Leyre Pescador
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
- Department of Biochemistry, Cell and Molecular Plant Biology, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig/Institute of Biodiversity, Friedrich Schiller University Jena, Puschstraße 4, 04103 Leipzig, Germany
| | - Iván Fernandez
- Plant–Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40, 37008 Salamanca, Spain
| | - María J Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - María C Romero-Puertas
- Department of Biochemistry, Cell and Molecular Plant Biology, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ainhoa Martínez-Medina
- Plant–Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40, 37008 Salamanca, Spain
| |
Collapse
|
35
|
Oni FE, Esmaeel Q, Onyeka JT, Adeleke R, Jacquard C, Clement C, Gross H, Ait Barka E, Höfte M. Pseudomonas Lipopeptide-Mediated Biocontrol: Chemotaxonomy and Biological Activity. Molecules 2022; 27:372. [PMID: 35056688 PMCID: PMC8777863 DOI: 10.3390/molecules27020372] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas lipopeptides (Ps-LPs) play crucial roles in bacterial physiology, host-microbe interactions and plant disease control. Beneficial LP producers have mainly been isolated from the rhizosphere, phyllosphere and from bulk soils. Despite their wide geographic distribution and host range, emerging evidence suggests that LP-producing pseudomonads and their corresponding molecules display tight specificity and follow a phylogenetic distribution. About a decade ago, biocontrol LPs were mainly reported from the P. fluorescens group, but this has drastically advanced due to increased LP diversity research. On the one hand, the presence of a close-knit relationship between Pseudomonas taxonomy and the molecule produced may provide a startup toolbox for the delineation of unknown LPs into existing (or novel) LP groups. Furthermore, a taxonomy-molecule match may facilitate decisions regarding antimicrobial activity profiling and subsequent agricultural relevance of such LPs. In this review, we highlight and discuss the production of beneficial Ps-LPs by strains situated within unique taxonomic groups and the lineage-specificity and coevolution of this relationship. We also chronicle the antimicrobial activity demonstrated by these biomolecules in limited plant systems compared with multiple in vitro assays. Our review further stresses the need to systematically elucidate the roles of diverse Ps-LP groups in direct plant-pathogen interactions and in the enhancement of plant innate immunity.
Collapse
Affiliation(s)
- Feyisara Eyiwumi Oni
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
- Department of Biological Sciences, Faculty of Science, Anchor University, Ayobo P.M.B 00001, Lagos State, Nigeria
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa;
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
| | - Joseph Tobias Onyeka
- Plant Pathology Unit, National Root Crops Research Institute (NRCRI), Umudike 440001, Abia State, Nigeria;
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa;
| | - Cedric Jacquard
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
| | - Christophe Clement
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
| | - Harald Gross
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tubingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany;
| | - Essaid Ait Barka
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| |
Collapse
|
36
|
Irshad A, Rehman RNU, Kareem HA, Yang P, Hu T. Addressing the challenge of cold stress resilience with the synergistic effect of Rhizobium inoculation and exogenous melatonin application in Medicago truncatula. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112816. [PMID: 34597844 DOI: 10.1016/j.ecoenv.2021.112816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 05/17/2023]
Abstract
Cold stress is an adverse environmental condition that limits the growth and yield of leguminous plants. Thus, discovering an effective way of ameliorating cold-mediated damage is important for sustainable legume production. In this study, the combined use of Rhizobium inoculation (RI) and melatonin (MT) pretreatment was investigated in Medicago truncatula plants under cold stress. Eight-week-old seedlings were divided into eight groups: (i) CK (no stress, noninoculated, no MT), (ii) RI (Rhizobium inoculated), (iii) MT (75 μM melatonin), (iv) RI+MT, (v) CS (cold stress at 4 °C without Rhizobium inoculation and melatonin), (vi) CS+RI, (vii) CS+MT, and (viii) CS+RI+MT. Plants were exposed to cold stress for 24 hrs. Cold stress decreased photosynthetic pigments and increased oxidative stress. Pretreatment with RI and MT alone or combined significantly improved root activity and plant biomass production under cold stress. Interestingly, chlorophyll contents increased by 242.81% and MDA levels dramatically decreased by 34.22% in the CS+RI+MT treatment compared to the CS treatment. Moreover, RI+MT pretreatment improved the antioxidative ability by increasing the activities of peroxidase (POD; 8.45%), superoxide dismutase (SOD; 50.36%), catalase (CAT; 140.26%), and ascorbate peroxidase (APX; 42.63%) over CS treated plants. Additionally, increased osmolyte accumulation, nutrient uptake, and nitrate reductase activity due to the combined use of RI and MT helped the plants counteract cold-mediated damage by strengthening the nonenzymatic antioxidant system. These data indicate that pretreatment with a combined application of RI and MT can attenuate cold damage by enhancing the antioxidation ability of legumes.
Collapse
Affiliation(s)
- Annie Irshad
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rana Naveed Ur Rehman
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hafiz Abdul Kareem
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
37
|
Friman J, Karssemeijer PN, Haller J, de Kreek K, van Loon JJ, Dicke M. Shoot and root insect herbivory change the plant rhizosphere microbiome and affects cabbage-insect interactions through plant-soil feedback. THE NEW PHYTOLOGIST 2021; 232:2475-2490. [PMID: 34537968 PMCID: PMC9291931 DOI: 10.1111/nph.17746] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/09/2021] [Indexed: 05/06/2023]
Abstract
Plant-soil feedback (PSF) may influence plant-insect interactions. Although plant defense differs between shoot and root tissues, few studies have examined root-feeding insect herbivores in a PSF context. We examined here how plant growth and resistance against root-feeding Delia radicum larvae was influenced by PSF. We conditioned soil with cabbage plants that were infested with herbivores that affect D. radicum through plant-mediated effects: leaf-feeding Plutella xylostella caterpillars and Brevicoryne brassicae aphids, root-feeding D. radicum larvae, and/or added rhizobacterium Pseudomonas simiae WCS417r. We analyzed the rhizosphere microbial community, and in a second set of conspecific plants exposed to conditioned soil, we assessed growth, expression of defense-related genes, and D. radicum performance. The rhizosphere microbiome differed mainly between shoot and root herbivory treatments. Addition of Pseudomonas simiae did not influence rhizosphere microbiome composition. Plant shoot biomass, gene expression, and plant resistance against D. radicum larvae was affected by PSF in a treatment-specific manner. Soil conditioning overall reduced plant shoot biomass, Pseudomonas simiae-amended soil causing the largest growth reduction. In conclusion, shoot and root insect herbivores alter the rhizosphere microbiome differently, with consequences for growth and resistance of plants subsequently exposed to conditioned soil.
Collapse
Affiliation(s)
- Julia Friman
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Peter N. Karssemeijer
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Julian Haller
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Kris de Kreek
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Joop J.A. van Loon
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| |
Collapse
|
38
|
Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiol Res 2021; 254:126901. [PMID: 34700186 DOI: 10.1016/j.micres.2021.126901] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
In the light of intensification of cropping practices and changing climatic conditions, nourishing a growing global population requires optimizing environmental sustainability and reducing ecosystem impacts of food production. The use of microbiological systems to ameliorate the agricultural production in a sustainable and eco-friendly way is widespread accepted as a future key-technology. However, the multitude of interaction possibilities between the numerous beneficial microbes and plants in their habitat calls for systematic analysis and management of the rhizospheric microbiome. This review exploits present and future strategies for rhizospheric microbiome management with the aim to generate a comprehensive understanding of the known tools and techniques. Significant information on the structure and dynamics of rhizospheric microbiota of isolated microbial communities is now available. These microbial communities have beneficial effects including increased plant growth, essential nutrient acquisition, pathogens tolerance, and increased abiotic as well as biotic stress tolerance such as drought, temperature, salinity and antagonistic activities against the phyto-pathogens. A better and comprehensive understanding of the various effects and microbial interactions can be gained by application of molecular approaches as extraction of DNA/RNA and other biochemical markers to analyze microbial soil diversity. Novel techniques like interactome network analysis and split-ubiquitin system framework will enable to gain more insight into communication and interactions between the proteins from microbes and plants. The aim of the analysis tasks leads to the novel approach of Rhizosphere microbiome engineering. The capability of forming the rhizospheric microbiome in a defined way will allow combining several microbes (e.g. bacteria and fungi) for a given environment (soil type and climatic zone) in order to exert beneficial influences on specific plants. This integration will require a large-scale effort among academic researchers, industry researchers and farmers to understand and manage interactions of plant-microbiomes within modern farming systems, and is clearly a multi-domain approach and can be mastered only jointly by microbiology, mathematics and information technology. These innovations will open up a new avenue for designing and implementing intensive farming microbiome management approaches to maximize resource productivity and stress tolerance of agro-ecosystems, which in return will create value to the increasing worldwide population, for both food production and consumption.
Collapse
|
39
|
Prospect and Challenges for Sustainable Management of Climate Change-Associated Stresses to Soil and Plant Health by Beneficial Rhizobacteria. STRESSES 2021. [DOI: 10.3390/stresses1040015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Climate change imposes biotic and abiotic stresses on soil and plant health all across the planet. Beneficial rhizobacterial genera, such as Bacillus, Pseudomonas, Paraburkholderia, Rhizobium, Serratia, and others, are gaining popularity due to their ability to provide simultaneous nutrition and protection of plants in adverse climatic conditions. Plant growth-promoting rhizobacteria are known to boost soil and plant health through a variety of direct and indirect mechanisms. However, various issues limit the wider commercialization of bacterial biostimulants, such as variable performance in different environmental conditions, poor shelf-life, application challenges, and our poor understanding on complex mechanisms of their interactions with plants and environment. This study focused on detecting the most recent findings on the improvement of plant and soil health under a stressful environment by the application of beneficial rhizobacteria. For a critical and systematic review story, we conducted a non-exhaustive but rigorous literature survey to assemble the most relevant literature (sorting of a total of 236 out of 300 articles produced from the search). In addition, a critical discussion deciphering the major challenges for the commercialization of these bioagents as biofertilizer, biostimulants, and biopesticides was undertaken to unlock the prospective research avenues and wider application of these natural resources. The advancement of biotechnological tools may help to enhance the sustainable use of bacterial biostimulants in agriculture. The perspective of biostimulants is also systematically evaluated for a better understanding of the molecular crosstalk between plants and beneficial bacteria in the changing climate towards sustainable soil and plant health.
Collapse
|
40
|
Evaluation of Indigenous Olive Biocontrol Rhizobacteria as Protectants against Drought and Salt Stress. Microorganisms 2021; 9:microorganisms9061209. [PMID: 34204989 PMCID: PMC8230297 DOI: 10.3390/microorganisms9061209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/24/2022] Open
Abstract
Stress caused by drought and salinity may compromise growth and productivity of olive (Olea europaea L.) tree crops. Several studies have reported the use of beneficial rhizobacteria to alleviate symptoms produced by these stresses, which is attributed in some cases to the activity of 1-aminocyclopropane-1-carboxylic acid deaminase (ACD). A collection of beneficial olive rhizobacteria was in vitro screened for ACD activity. Pseudomonas sp. PICF6 displayed this phenotype and sequencing of its genome confirmed the presence of an acdS gene. In contrast, the well-known root endophyte and biocontrol agent Pseudomonas simiae PICF7 was defective in ACD activity, even though the presence of an ACD-coding gene was earlier predicted in its genome. In this study, an unidentified deaminase was confirmed instead. Greenhouse experiments with olive ‘Picual’ plants inoculated either with PICF6 or PICF7, or co-inoculated with both strains, and subjected to drought or salt stress were carried out. Several physiological and biochemical parameters increased in stressed plants (i.e., stomatal conductance and flavonoids content), regardless of whether or not they were previously bacterized. Results showed that neither PICF6 (ACD positive) nor PICF7 (ACD negative) lessened the negative effects caused by the abiotic stresses tested, at least under our experimental conditions.
Collapse
|
41
|
Santoyo G, Urtis-Flores CA, Loeza-Lara PD, Orozco-Mosqueda MDC, Glick BR. Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR). BIOLOGY 2021; 10:biology10060475. [PMID: 34072072 PMCID: PMC8229920 DOI: 10.3390/biology10060475] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Plant growth-promoting rhizobacteria (PGPR) are an eco-friendly alternative to the use of chemicals in agricultural production and crop protection. However, the efficacy of PGPR as bioinoculants can be diminished by a low capacity to colonize spaces in the rhizosphere. In this work, we review pioneering and recent developments on several important functions that rhizobacteria exhibit in order to compete, colonize, and establish themselves in the plant rhizosphere. Therefore, the use of highly competitive strains in open field trials should be a priority, in order to have consistent and better results in agricultural production activities. Abstract The application of plant growth-promoting rhizobacteria (PGPR) in the field has been hampered by a number of gaps in the knowledge of the mechanisms that improve plant growth, health, and production. These gaps include (i) the ability of PGPR to colonize the rhizosphere of plants and (ii) the ability of bacterial strains to thrive under different environmental conditions. In this review, different strategies of PGPR to colonize the rhizosphere of host plants are summarized and the advantages of having highly competitive strains are discussed. Some mechanisms exhibited by PGPR to colonize the rhizosphere include recognition of chemical signals and nutrients from root exudates, antioxidant activities, biofilm production, bacterial motility, as well as efficient evasion and suppression of the plant immune system. Moreover, many PGPR contain secretion systems and produce antimicrobial compounds, such as antibiotics, volatile organic compounds, and lytic enzymes that enable them to restrict the growth of potentially phytopathogenic microorganisms. Finally, the ability of PGPR to compete and successfully colonize the rhizosphere should be considered in the development and application of bioinoculants.
Collapse
Affiliation(s)
- Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico;
- Correspondence:
| | - Carlos Alberto Urtis-Flores
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico;
| | - Pedro Damián Loeza-Lara
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo 59103, Mexico;
| | - Ma. del Carmen Orozco-Mosqueda
- Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo, Melchor Ocampo, Uruapan 60170, Mexico;
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
42
|
Complete Genome Sequence of a Pseudomonas simiae Strain with Biocontrol Potential against Aphanomyces Root Rot. Microbiol Resour Announc 2021; 10:10/18/e00222-21. [PMID: 33958418 PMCID: PMC8103863 DOI: 10.1128/mra.00222-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aphanomyces euteiches is a soilborne plant pathogen. It causes severe root rot in leguminous crop species. We report the complete genome sequence of a biocontrol strain, Pseudomonas simiae K-Hf-L9. The strain inhibited Aphanomyces euteiches mycelia and zoospores and suppressed root rot in field peas grown under controlled growth chamber conditions.
Collapse
|
43
|
Yu K, Stringlis IA, van Bentum S, de Jonge R, Snoek BL, Pieterse CMJ, Bakker PAHM, Berendsen RL. Transcriptome Signatures in Pseudomonas simiae WCS417 Shed Light on Role of Root-Secreted Coumarins in Arabidopsis-Mutualist Communication. Microorganisms 2021; 9:microorganisms9030575. [PMID: 33799825 PMCID: PMC8000642 DOI: 10.3390/microorganisms9030575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas simiae WCS417 is a root-colonizing bacterium with well-established plant-beneficial effects. Upon colonization of Arabidopsis roots, WCS417 evades local root immune responses while triggering an induced systemic resistance (ISR) in the leaves. The early onset of ISR in roots shows similarities with the iron deficiency response, as both responses are associated with the production and secretion of coumarins. Coumarins can mobilize iron from the soil environment and have a selective antimicrobial activity that impacts microbiome assembly in the rhizosphere. Being highly coumarin-tolerant, WCS417 induces the secretion of these phenolic compounds, likely to improve its own niche establishment, while providing growth and immunity benefits for the host in return. To investigate the possible signaling function of coumarins in the mutualistic Arabidopsis-WCS417 interaction, we analyzed the transcriptome of WCS417 growing in root exudates of coumarin-producing Arabidopsis Col-0 and the coumarin-biosynthesis mutant f6′h1. We found that coumarins in F6′H1-dependent root exudates significantly affected the expression of 439 bacterial genes (8% of the bacterial genome). Of those, genes with functions related to transport and metabolism of carbohydrates, amino acids, and nucleotides were induced, whereas genes with functions related to cell motility, the bacterial mobilome, and energy production and conversion were repressed. Strikingly, most genes related to flagellar biosynthesis were down-regulated by F6′H1-dependent root exudates and we found that application of selected coumarins reduces bacterial motility. These findings suggest that coumarins’ function in the rhizosphere as semiochemicals in the communication between the roots and WCS417. Collectively, our results provide important novel leads for future functional analysis of molecular processes in the establishment of plant-mutualist interactions.
Collapse
Affiliation(s)
- Ke Yu
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.Y.); (I.A.S.); (S.v.B.); (R.d.J.); (C.M.J.P.); (P.A.H.M.B.)
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, China
| | - Ioannis A. Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.Y.); (I.A.S.); (S.v.B.); (R.d.J.); (C.M.J.P.); (P.A.H.M.B.)
| | - Sietske van Bentum
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.Y.); (I.A.S.); (S.v.B.); (R.d.J.); (C.M.J.P.); (P.A.H.M.B.)
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.Y.); (I.A.S.); (S.v.B.); (R.d.J.); (C.M.J.P.); (P.A.H.M.B.)
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Basten L. Snoek
- Theoretical Biology & Bioinformatics, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.Y.); (I.A.S.); (S.v.B.); (R.d.J.); (C.M.J.P.); (P.A.H.M.B.)
| | - Peter A. H. M. Bakker
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.Y.); (I.A.S.); (S.v.B.); (R.d.J.); (C.M.J.P.); (P.A.H.M.B.)
| | - Roeland L. Berendsen
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.Y.); (I.A.S.); (S.v.B.); (R.d.J.); (C.M.J.P.); (P.A.H.M.B.)
- Correspondence: ; Tel.: +31-3025-36860
| |
Collapse
|
44
|
Chiniquy D, Barnes EM, Zhou J, Hartman K, Li X, Sheflin A, Pella A, Marsh E, Prenni J, Deutschbauer AM, Schachtman DP, Tringe SG. Microbial Community Field Surveys Reveal Abundant Pseudomonas Population in Sorghum Rhizosphere Composed of Many Closely Related Phylotypes. Front Microbiol 2021; 12:598180. [PMID: 33767674 PMCID: PMC7985074 DOI: 10.3389/fmicb.2021.598180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
While the root-associated microbiome is typically less diverse than the surrounding soil due to both plant selection and microbial competition for plant derived resources, it typically retains considerable complexity, harboring many hundreds of distinct bacterial species. Here, we report a time-dependent deviation from this trend in the rhizospheres of field grown sorghum. In this study, 16S rRNA amplicon sequencing was used to determine the impact of nitrogen fertilization on the development of the root-associated microbiomes of 10 sorghum genotypes grown in eastern Nebraska. We observed that early rhizosphere samples exhibit a significant reduction in overall diversity due to a high abundance of the bacterial genus Pseudomonas that occurred independent of host genotype in both high and low nitrogen fields and was not observed in the surrounding soil or associated root endosphere samples. When clustered at 97% identity, nearly all the Pseudomonas reads in this dataset were assigned to a single operational taxonomic unit (OTU); however, exact sequence variant (ESV)-level resolution demonstrated that this population comprised a large number of distinct Pseudomonas lineages. Furthermore, single-molecule long-read sequencing enabled high-resolution taxonomic profiling revealing further heterogeneity in the Pseudomonas lineages that was further confirmed using shotgun metagenomic sequencing. Finally, field soil enriched with specific carbon compounds recapitulated the increase in Pseudomonas, suggesting a possible connection between the enrichment of these Pseudomonas species and a plant-driven exudate profile.
Collapse
Affiliation(s)
- Dawn Chiniquy
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States.,Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Department of Energy, Berkeley, CA, United States
| | - Elle M Barnes
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Jinglie Zhou
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Kyle Hartman
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Xiaohui Li
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States.,Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Department of Energy, Berkeley, CA, United States.,Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, United States.,Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Amy Sheflin
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, United States
| | - Allyn Pella
- Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Ellen Marsh
- Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Jessica Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, United States
| | - Adam M Deutschbauer
- Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Daniel P Schachtman
- Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Susannah G Tringe
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States.,Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Department of Energy, Berkeley, CA, United States
| |
Collapse
|
45
|
Montes-Osuna N, Gómez-Lama Cabanás C, Valverde-Corredor A, Berendsen RL, Prieto P, Mercado-Blanco J. Assessing the Involvement of Selected Phenotypes of Pseudomonas simiae PICF7 in Olive Root Colonization and Biological Control of Verticillium dahliae. PLANTS 2021; 10:plants10020412. [PMID: 33672351 PMCID: PMC7926765 DOI: 10.3390/plants10020412] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022]
Abstract
Pseudomonas simiae PICF7 is an indigenous inhabitant of the olive (Olea europaea L.) rhizosphere/root endosphere and an effective biocontrol agent against Verticillium wilt of olive (VWO), caused by the soil-borne fungus Verticillium dahliae. This study aimed to evaluate the potential involvement of selected phenotypes of strain PICF7 in root colonization ability and VWO biocontrol. Therefore, a random transposon-insertion mutant bank of P. simiae PICF7 was screened for the loss of phenotypes likely involved in rhizosphere/soil persistence (copper resistance), root colonization (biofilm formation) and plant growth promotion (phytase activity). Transposon insertions in genes putatively coding for the transcriptional regulator CusR or the chemotaxis protein CheV were found to affect copper resistance, whereas an insertion in fleQ gene putatively encoding a flagellar regulatory protein hampered the ability to form a biofilm. However, these mutants displayed the same antagonistic effect against V. dahliae as the parental strain. Remarkably, two mutants impaired in biofilm formation were never found inside olive roots, whereas their ability to colonize the root exterior and to control VWO remained unaffected. Endophytic colonization of olive roots was unaltered in mutants impaired in copper resistance and phytase production. Results demonstrated that the phenotypes studied were irrelevant for VWO biocontrol.
Collapse
Affiliation(s)
- Nuria Montes-Osuna
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal s/n, Campus “Alameda del Obispo”, 14004 Córdoba, Spain; (N.M.-O.); (C.G.-L.C.); (A.V.-C.)
| | - Carmen Gómez-Lama Cabanás
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal s/n, Campus “Alameda del Obispo”, 14004 Córdoba, Spain; (N.M.-O.); (C.G.-L.C.); (A.V.-C.)
| | - Antonio Valverde-Corredor
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal s/n, Campus “Alameda del Obispo”, 14004 Córdoba, Spain; (N.M.-O.); (C.G.-L.C.); (A.V.-C.)
| | - Roeland L. Berendsen
- Plant–Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Pilar Prieto
- Departamento de Mejora Genética Vegetal, Instituto de Agricultura Sostenible, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal s/n, Campus “Alameda del Obispo”, 14004 Córdoba, Spain;
| | - Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal s/n, Campus “Alameda del Obispo”, 14004 Córdoba, Spain; (N.M.-O.); (C.G.-L.C.); (A.V.-C.)
- Correspondence:
| |
Collapse
|
46
|
Lurthy T, Pivato B, Lemanceau P, Mazurier S. Importance of the Rhizosphere Microbiota in Iron Biofortification of Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:744445. [PMID: 34925398 PMCID: PMC8679237 DOI: 10.3389/fpls.2021.744445] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/29/2021] [Indexed: 05/13/2023]
Abstract
Increasing the iron content of plant products and iron assimilability represents a major issue for human nutrition and health. This is also a major challenge because iron is not readily available for plants in most cultivated soils despite its abundance in the Earth's crust. Iron biofortification is defined as the enhancement of the iron content in edible parts of plants. This biofortification aims to reach the objectives defined by world organizations for human nutrition and health while being environment friendly. A series of options has been proposed to enhance plant iron uptake and fight against hidden hunger, but they all show limitations. The present review addresses the potential of soil microorganisms to promote plant iron nutrition. Increasing knowledge on the plant microbiota and plant-microbe interactions related to the iron dynamics has highlighted a considerable contribution of microorganisms to plant iron uptake and homeostasis. The present overview of the state of the art sheds light on plant iron uptake and homeostasis, and on the contribution of plant-microorganism (plant-microbe and plant-plant-microbe) interactions to plant nutritition. It highlights the effects of microorganisms on the plant iron status and on the co-occurring mechanisms, and shows how this knowledge may be valued through genetic and agronomic approaches. We propose a change of paradigm based on a more holistic approach gathering plant and microbial traits mediating iron uptake. Then, we present the possible applications in plant breeding, based on plant traits mediating plant-microbe interactions involved in plant iron uptake and physiology.
Collapse
|
47
|
Plant Growth-Promoting Rhizobacteria (PGPR): Current and Future Prospects for Crop Improvement. ENVIRONMENTAL AND MICROBIAL BIOTECHNOLOGY 2021. [DOI: 10.1007/978-981-15-6949-4_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Desrut A, Moumen B, Thibault F, Le Hir R, Coutos-Thévenot P, Vriet C. Beneficial rhizobacteria Pseudomonas simiae WCS417 induce major transcriptional changes in plant sugar transport. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7301-7315. [PMID: 32860502 DOI: 10.1093/jxb/eraa396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/27/2020] [Indexed: 05/21/2023]
Abstract
Plants live in close relationships with complex populations of microorganisms, including rhizobacterial species commonly referred to as plant growth-promoting rhizobacteria (PGPR). PGPR are able to improve plant productivity, but the molecular mechanisms involved in this process remain largely unknown. Using an in vitro experimental system, the model plant Arabidopsis thaliana, and the well-characterized PGPR strain Pseudomonas simiae WCS417r (PsWCS417r), we carried out a comprehensive set of phenotypic and gene expression analyses. Our results show that PsWCS417r induces major transcriptional changes in sugar transport and in other key biological processes linked to plant growth, development, and defense. Notably, we identified a set of 13 genes of the SWEET and ERD6-like sugar transporter gene families whose expression is up- or down-regulated in response to seedling root inoculation with the PGPR or exposure to their volatile compounds. Using a reverse genetic approach, we demonstrate that SWEET11 and SWEET12 are functionally involved in the interaction and its plant growth-promoting effects, possibly by controlling the amount of sugar transported from the shoot to the root and to the PGPR. Altogether, our study reveals that PGPR-induced beneficial effects on plant growth and development are associated with changes in plant sugar transport.
Collapse
Affiliation(s)
- Antoine Desrut
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex, France
| | - Florence Thibault
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex, France
| | - Rozenn Le Hir
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Pierre Coutos-Thévenot
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex, France
| | - Cécile Vriet
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex, France
| |
Collapse
|
49
|
Zboralski A, Filion M. Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp. Comput Struct Biotechnol J 2020; 18:3539-3554. [PMID: 33304453 PMCID: PMC7711191 DOI: 10.1016/j.csbj.2020.11.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) actively colonize the soil portion under the influence of plant roots, called the rhizosphere. Many plant-beneficial Pseudomonas spp. have been characterized as PGPR. They are ubiquitous rod-shaped motile Gram-negative bacteria displaying a high metabolic versatility. Their capacity to protect plants from pathogens and improve plant growth closely depends on their rhizosphere colonization abilities. Various molecular and cellular mechanisms are involved in this complex process, such as chemotaxis, biofilm formation, secondary metabolites biosynthesis, metabolic versatility, and evasion of plant immunity. The burst in Pseudomonas spp. genome sequencing in recent years has been crucial to better understand how they colonize the rhizosphere. In this review, we discuss the recent advances regarding these mechanisms and the underlying bacterial genetic factors required for successful rhizosphere colonization.
Collapse
Affiliation(s)
- Antoine Zboralski
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Martin Filion
- Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| |
Collapse
|
50
|
Liu H, Robinson DS, Wu ZY, Kuo R, Yoshikuni Y, Blaby IK, Cheng JF. Bacterial genome editing by coupling Cre-lox and CRISPR-Cas9 systems. PLoS One 2020; 15:e0241867. [PMID: 33147260 PMCID: PMC7641437 DOI: 10.1371/journal.pone.0241867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/21/2020] [Indexed: 01/25/2023] Open
Abstract
The past decade has been a golden age for microbiology, marked by the discovery of an unprecedented increase in the number of novel bacterial species. Yet gaining biological knowledge of those organisms has not kept pace with sequencing efforts. To unlock this genetic potential there is an urgent need for generic (i.e. non-species specific) genetic toolboxes. Recently, we developed a method, termed chassis-independent recombinase-assisted genome engineering (CRAGE), enabling the integration and expression of large complex gene clusters directly into the chromosomes of diverse bacteria. Here we expand upon this technology by incorporating CRISPR-Cas9 allowing precise genome editing across multiple bacterial species. To do that we have developed a landing pad that carries one wild-type and two mutant lox sites to allow integration of foreign DNA at two locations through Cre-lox recombinase-mediated cassette exchange (RMCE). The first RMCE event is to integrate the Cas9 and the DNA repair protein genes RecET, and the second RMCE event enables the integration of customized sgRNA and a repair template. Following this workflow, we achieved precise genome editing in four different gammaproteobacterial species. We also show that the inserted landing pad and the entire editing machinery can be removed scarlessly after editing. We report here the construction of a single landing pad transposon and demonstrate its functionality across multiple species. The modular design of the landing pad and accessory vectors allows design and assembly of genome editing platforms for other organisms in a similar way. We believe this approach will greatly expand the list of bacteria amenable to genetic manipulation and provides the means to advance our understanding of the microbial world.
Collapse
Affiliation(s)
- Hualan Liu
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - David S. Robinson
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Zong-Yen Wu
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Rita Kuo
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Ian K. Blaby
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Jan-Fang Cheng
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|