1
|
Xue X, Eslamloo K, Caballero-Solares A, Katan T, Umasuthan N, Taylor RG, Fast MD, Andreassen R, Rise ML. Characterization of the impact of dietary immunostimulant CpG on the expression of mRNA biomarkers involved in the immune responses in Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109840. [PMID: 39153579 DOI: 10.1016/j.fsi.2024.109840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Infectious diseases have significantly impacted Atlantic salmon aquaculture worldwide. Modulating fish immunity with immunostimulant-containing functional feeds could be an effective strategy in mitigating disease problems. Previously, we characterized the impact of polyriboinosinic polyribocytidylic acid (pIC) and formalin-killed typical Aeromonas salmonicida bacterin on miRNA expression in Atlantic salmon fed a commercial diet with and without immunostimulant CpG. A set of miRNA biomarkers of Atlantic salmon head kidney responding to pIC and/or bacterin immune stimulations was identified (Xue et al., 2019) [1]. Herein, we report a complementary qPCR study that investigated the impact of the pIC, bacterin and dietary CpG on the expression of immune-relevant mRNAs (n = 31) using the same samples as in the previous study (Xue et al., 2019) [1]. Twenty-six of these genes were predicted target transcripts of the pIC- and/or bacterin-responsive miRNAs identified in the earlier study. The current data showed that pIC and/or bacterin stimulations significantly modulated the majority of the qPCR-analyzed genes involved in various immune pathways. Some genes responded to both stimulations (e.g. tnfa, il10rb, ifng, irf9, cxcr3, campb) while others appeared to be stimulation specific [e.g. irf3, irf7a, il1r1, mxa, mapk3 (pIC only); clra (bacterin only)]. A. salmonicida bacterin stimulation produced a strong inflammatory response (e.g. higher expression of il1b, il8a and tnfa), while salmon stimulated with pIC showed robust interferon responses (both type I and II). Furthermore, the current data indicated significant down-regulation of immune-relevant transcripts (e.g. tlr9, irf5, il1r1, hsp90ab1, itgb2) by dietary immunostimulant CpG, especially among pre-injection and PBS-injected fish. Together with our prior miRNA study, the present research provided complementary information on Atlantic salmon anti-viral and anti-bacterial immune responses and on how dietary CpG may modulate these responses.
Collapse
Affiliation(s)
- Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Tomer Katan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Navaneethaiyer Umasuthan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Richard G Taylor
- Cargill Animal Nutrition, 10383 165th Avenue NW, Elk River, MN, 55330, USA
| | - Mark D Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, N-0130, Oslo, Norway
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
2
|
Virtanen MI, Iversen MH, Patel DM, Brinchmann MF. Daily crowding stress has limited, yet detectable effects on skin and head kidney gene expression in surgically tagged atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2024; 152:109794. [PMID: 39089638 DOI: 10.1016/j.fsi.2024.109794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
To ensure welfare-friendly and effective internal tagging, the tagging process should not cause a long-term burden on individuals given that tagged fish serve as representatives for the entire population in telemetry applications. To some extent, stress is inevitable within regular aquaculture practices, and thus, the consequences of long-term stress should be described in terms of their effects on internal tagging. In fish, stressors activate the Hypothalamus-Pituitary-Interrenal (HPI) and Brain-Sympathetic-Chromaffin Cell (BSC) axes, leading to neuroimmunoendocrine communication and paracrine interactions among stress hormones. The interrelation between wound healing and stress is complex, owing to their shared components, pathways, and energy demands. This study assessed 14 genes (mmp9, mmp13, il-2, il-4, il-8a, il-10, il-12, il-17d, il-1b, tnfa, ifng, leg-3, igm, and crh) in the skin (1.5 cm from the wound) and head kidney over eight weeks. These genes, associated with cell signaling in immunity, wound healing, and stress, have previously been identified as influenced and regulated by these processes. Half of a group of Atlantic salmon (n = 90) with surgically implanted dummy smart-tags were exposed to daily crowding stress. The goal was to investigate how this gene panel responds to a wound alone and then to the combined effects of wounding and daily crowding stress. Our observations indicate that chronic stress impacts inflammation and impedes wound healing, as seen through the expression of matrix metalloproteinases genes in the skin but not in the head kidney. This difference is likely due to the ongoing internal wound repair, in contrast to the externally healed wound incision. Cytokine expression, when significant in the skin, was mainly downregulated in both treatments compared to control values, particularly in the study's first half. Conversely, the head kidney showed initial cytokine downregulation followed by upregulation. Across all weeks observed and combining both tissues, the significantly expressed gene differences were 12 % between the Wound and Stress+ groups, 28 % between Wound and Control, and 25 % between Stress+ and Control. Despite significant fluctuations in cytokines, sustained variations across multiple weeks are only evident in a few select genes. Furthermore, Stress+ individuals demonstrated the most cytokine correlations within the head kidney, which may suggest that chronic stress affects cytokine expression. This investigation unveils that the presence of stress and prolonged activation of the HPI axis in an eight weeklong study has limited yet detectable effects on the selected gene expression within immunity, wound healing, and stress, with notable tissue-specific differences.
Collapse
|
3
|
Emam M, Kumar S, Eslamloo K, Caballero-Solares A, Hall JR, Xue X, Paradis H, Gendron RL, Santander J, Rise ML. Transcriptomic response of lumpfish ( Cyclopterus lumpus) head kidney to viral mimic, with a focus on the interferon regulatory factor family. Front Immunol 2024; 15:1439465. [PMID: 39211041 PMCID: PMC11357929 DOI: 10.3389/fimmu.2024.1439465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
The economic importance of lumpfish (Cyclopterus lumpus) is increasing, but several aspects of its immune responses are not well understood. To discover genes and mechanisms involved in the lumpfish antiviral response, fish were intraperitoneally injected with either the viral mimic polyinosinic:polycytidylic acid [poly(I:C)] or phosphate-buffered saline (PBS; vehicle control), and head kidneys were sampled 24 hours post-injection (hpi) for transcriptomic analyses. RNA sequencing (RNA-Seq) (adjusted p-value <0.05) identified 4,499 upregulated and 3,952 downregulated transcripts in the poly(I:C)-injected fish compared to the PBS-injected fish. Eighteen genes identified as differentially expressed by RNA-Seq were included in a qPCR study that confirmed the upregulation of genes encoding proteins with antiviral immune response functions (e.g., rsad2) and the downregulation of genes (e.g., jarid2b) with potential cellular process functions. In addition, transcript expression levels of 12 members of the interferon regulatory factor (IRF) family [seven of which were identified as poly(I:C)-responsive in this RNA-Seq study] were analyzed using qPCR. Levels of irf1a, irf1b, irf2, irf3, irf4b, irf7, irf8, irf9, and irf10 were significantly higher and levels of irf4a and irf5 were significantly lower in the poly(I:C)-injected fish compared to the PBS-injected fish. This research and associated new genomic resources enhance our understanding of the genes and molecular mechanisms underlying the lumpfish response to viral mimic stimulation and help identify possible therapeutic targets and biomarkers for viral infections in this species.
Collapse
Affiliation(s)
- Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
- Centre for Marine Applied Research, Dartmouth, NS, Canada
| | | | - Jennifer R. Hall
- Aquatic Research Cluster, Core Research Equipment and Instrument Training (CREAIT) Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Hélène Paradis
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Robert L. Gendron
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
4
|
Gjøen T, Ruyter B, Østbye TK. Effects of eicosapentaneoic acid on innate immune responses in an Atlantic salmon kidney cell line in vitro. PLoS One 2024; 19:e0302286. [PMID: 38805503 PMCID: PMC11132502 DOI: 10.1371/journal.pone.0302286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/02/2024] [Indexed: 05/30/2024] Open
Abstract
Studies of the interplay between metabolism and immunity, known as immunometabolism, is steadily transforming immunological research into new understandings of how environmental cues like diet are affecting innate and adaptive immune responses. The aim of this study was to explore antiviral transcriptomic responses under various levels of polyunsaturated fatty acid. Atlantic salmon kidney cells (ASK cell line) were incubated for one week in different levels of the unsaturated n-3 eicosapentaneoic acid (EPA) resulting in cellular levels ranging from 2-20% of total fatty acid. These cells were then stimulated with the viral mimic and interferon inducer poly I:C (30 ug/ml) for 24 hours before total RNA was isolated and sequenced for transcriptomic analyses. Up to 200 uM EPA had no detrimental effects on cell viability and induced very few transcriptional changes in these cells. However, in combination with poly I:C, our results shows that the level of EPA in the cellular membranes exert profound dose dependent effects of the transcriptional profiles induced by this treatment. Metabolic pathways like autophagy, apelin and VEGF signaling were attenuated by EPA whereas transcripts related to fatty acid metabolism, ferroptosis and the PPAR signaling pathways were upregulated. These results suggests that innate antiviral responses are heavily influenced by the fatty acid profile of salmonid cells and constitute another example of the strong linkage between general metabolic pathways and inflammatory responses.
Collapse
Affiliation(s)
- Tor Gjøen
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | - Bente Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| | - Tone Kari Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| |
Collapse
|
5
|
Caballero-Solares A, Eslamloo K, Hall JR, Katan T, Emam M, Xue X, Taylor RG, Balder R, Parrish CC, Rise ML. Vegetable omega-3 and omega-6 fatty acids differentially modulate the antiviral and antibacterial immune responses of Atlantic salmon. Sci Rep 2024; 14:10947. [PMID: 38740811 DOI: 10.1038/s41598-024-61144-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The immunomodulatory effects of omega-3 and omega-6 fatty acids are a crucial subject of investigation for sustainable fish aquaculture, as fish oil is increasingly replaced by terrestrial vegetable oils in aquafeeds. Unlike previous research focusing on fish oil replacement with vegetable alternatives, our study explored how the omega-6 to omega-3 polyunsaturated fatty acid (PUFA) ratio in low-fish oil aquafeeds influences Atlantic salmon's antiviral and antibacterial immune responses. Atlantic salmon were fed aquafeeds rich in soy oil (high in omega-6) or linseed oil (high in omega-3) for 12 weeks and then challenged with bacterial (formalin-killed Aeromonas salmonicida) or viral-like (polyriboinosinic polyribocytidylic acid) antigens. The head kidneys of salmon fed high dietary omega-3 levels exhibited a more anti-inflammatory fatty acid profile and a restrained induction of pro-inflammatory and neutrophil-related genes during the immune challenges. The high-omega-3 diet also promoted a higher expression of genes associated with the interferon-mediated signaling pathway, potentially enhancing antiviral immunity. This research highlights the capacity of vegetable oils with different omega-6 to omega-3 PUFA ratios to modulate specific components of fish immune responses, offering insights for future research on the intricate lipid nutrition-immunity interplay and the development of novel sustainable low-fish oil clinical aquaculture feeds.
Collapse
Affiliation(s)
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
- Centre for Marine Applied Research, Dartmouth, NS, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Tomer Katan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
- Stantec Inc., St. John's, NL, Canada
| | - Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Rachel Balder
- Cargill Animal Nutrition and Health, Elk River, MN, USA
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
6
|
Finnegan D, Tocmo R, Loscher C. Targeted Application of Functional Foods as Immune Fitness Boosters in the Defense against Viral Infection. Nutrients 2023; 15:3371. [PMID: 37571308 PMCID: PMC10421353 DOI: 10.3390/nu15153371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
In recent times, the emergence of viral infections, including the SARS-CoV-2 virus, the monkeypox virus, and, most recently, the Langya virus, has highlighted the devastating effects of viral infection on human life. There has been significant progress in the development of efficacious vaccines for the prevention and control of viruses; however, the high rates of viral mutation and transmission necessitate the need for novel methods of control, management, and prevention. In recent years, there has been a shift in public awareness on health and wellbeing, with consumers making significant dietary changes to improve their immunity and overall health. This rising health awareness is driving a global increase in the consumption of functional foods. This review delves into the benefits of functional foods as potential natural means to modulate the host immune system to enhance defense against viral infections. We provide an overview of the functional food market in Europe and discuss the benefits of enhancing immune fitness in high-risk groups, including the elderly, those with obesity, and people with underlying chronic conditions. We also discuss the immunomodulatory mechanisms of key functional foods, including dairy proteins and hydrolysates, plant-based functional foods, fermentates, and foods enriched with vitamin D, zinc, and selenium. Our findings reveal four key immunity boosting mechanisms by functional foods, including inhibition of viral proliferation and binding to host cells, modulation of the innate immune response in macrophages and dendritic cells, enhancement of specific immune responses in T cells and B cells, and promotion of the intestinal barrier function. Overall, this review demonstrates that diet-derived nutrients and functional foods show immense potential to boost viral immunity in high-risk individuals and can be an important approach to improving overall immune health.
Collapse
Affiliation(s)
| | | | - Christine Loscher
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (D.F.); (R.T.)
| |
Collapse
|
7
|
Crossman AH, Ignatz EH, Hall JR, Kumar S, Fast MD, Eslamloo K, Rise ML. Basal and immune-responsive transcript expression of two Atlantic salmon interferon regulatory factor 2 (irf2) paralogues. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 143:104689. [PMID: 36934886 DOI: 10.1016/j.dci.2023.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Atlantic salmon (Salmo salar) is one of the most economically important aquaculture species globally. However, disease has become a prevalent threat to this industry. A thorough understanding of the genes and molecular pathways involved in the immune responses of Atlantic salmon is imperative for selective breeding of disease-resistant broodstock, as well as developing new diets and vaccines to mitigate the impact of disease. Members of the interferon regulatory factor (IRF) family of transcription factors play roles in the induction of interferons and other cytokines involved in host immune responses to intracellular and parasitic pathogens. IRF family members also play diverse roles in other biological processes, such as stress response, reproduction and development. The current study focused on one member of the IRF family: interferon regulatory factor 2 (irf2). As previously shown, due to the genome duplication that occurred ∼80 million years ago in the salmonid lineage, there are two irf2 paralogues in the Atlantic salmon genome. In silico analyses at the cDNA and deduced amino acid levels were conducted followed by phylogenetic tree construction with IRF2 amino acid sequences from various ray-finned fishes, cartilaginous fish and tetrapods. qPCR was then used to analyze paralogue-specific irf2 constitutive expression across 17 adult tissues, as well as responses to the viral mimic pIC (i.e., synthetic double-stranded RNA analog) in cultured macrophage-like cells (in vitro) and to infection with the Gram-negative bacterium Moritella viscosa in skin samples (in vivo). The qPCR studies showed sex- and paralogue-specific differences in expression across tissues. For example, expression of both paralogues was higher in ovary than in testes; expression (considering both sexes together) was highest for irf2-1 in gonad and for irf2-2 in hindgut. Both irf2 paralogues were responsive to pIC stimulation, but varied in their induction level, with irf2-1 having an overall stronger response than irf2-2. Only one paralogue, irf2-2, was significantly responsive to M. viscosa infection. Differences in irf2-1 and irf2-2 transcript expression levels constitutively across tissues, and in response to pIC and M. viscosa, may suggest neo- or subfunctionalization of the duplicated genes. This novel information expands current knowledge and provides insight into how genome duplication events may impact host regulation of important immune markers.
Collapse
Affiliation(s)
- Aleksandra H Crossman
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Eric H Ignatz
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Jennifer R Hall
- Memorial University, Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Surendra Kumar
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Mark D Fast
- Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, PE, CIA 4P3, Canada.
| | - Khalil Eslamloo
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Matthew L Rise
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
8
|
Estrada-Luna D, Carreón-Torres E, González-Reyes S, Martínez-Salazar MF, Ortiz-Rodríguez MA, Ramírez-Moreno E, Arias-Rico J, Jiménez-Osorio AS. Nutraceuticals for Complementary Treatment of Multisystem Inflammatory Syndrome in Children: A Perspective from Their Use in COVID-19. Life (Basel) 2022; 12:life12101652. [PMID: 36295088 PMCID: PMC9605437 DOI: 10.3390/life12101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) has been widely reported in some children diagnosed with SARS-CoV-2. Clinical signs of MIS-C are manifested at 2 to 4 weeks after SARS-CoV-2 infection, where elevated biomarkers of inflammation and cardiac dysfunction are the hallmark of this syndrome when infection or exposure to SARS-CoV-2 has been confirmed. However, after two years of acknowledgment, MIS-C treatment is still under research to reach safety and effectiveness in the acute phase in children. Therefore, in this review, we discuss the potential use of natural compounds with antioxidant and anti-inflammatory effects to reduce collateral damage caused by hyperinflammation in MIS-C pathology for new research in treatment and interventions.
Collapse
Affiliation(s)
- Diego Estrada-Luna
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
| | - Elizabeth Carreón-Torres
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Susana González-Reyes
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | - María Fernanda Martínez-Salazar
- Facultad de Ciencias del Deporte, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001 Col. Chamilpa, Cuernavaca 62209, Mexico
| | - María Araceli Ortiz-Rodríguez
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Iztaccíhuatl 100 Col. Los Volcanes, Cuernavaca 62350, Mexico
| | - Esther Ramírez-Moreno
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
| | - José Arias-Rico
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
| | - Angélica Saraí Jiménez-Osorio
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
- Correspondence: ; Tel.: +52-771-717-2000 (ext. 4323)
| |
Collapse
|
9
|
Emam M, Eslamloo K, Caballero-Solares A, Lorenz EK, Xue X, Umasuthan N, Gnanagobal H, Santander J, Taylor RG, Balder R, Parrish CC, Rise ML. Nutritional immunomodulation of Atlantic salmon response to Renibacterium salmoninarum bacterin. Front Mol Biosci 2022; 9:931548. [PMID: 36213116 PMCID: PMC9532746 DOI: 10.3389/fmolb.2022.931548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
We investigated the immunomodulatory effect of varying levels of dietary ω6/ω3 fatty acids (FA) on Atlantic salmon (Salmo salar) antibacterial response. Two groups were fed either high-18:3ω3 or high-18:2ω6 FA diets for 8 weeks, and a third group was fed for 4 weeks on the high-18:2ω6 diet followed by 4 weeks on the high-18:3ω3 diet and termed "switched-diet". Following the second 4 weeks of feeding (i.e., at 8 weeks), head kidney tissues from all groups were sampled for FA analysis. Fish were then intraperitoneally injected with either a formalin-killed Renibacterium salmoninarum bacterin (5 × 107 cells mL-1) or phosphate-buffered saline (PBS control), and head kidney tissues for gene expression analysis were sampled at 24 h post-injection. FA analysis showed that the head kidney profile reflected the dietary FA, especially for C18 FAs. The qPCR analyses of twenty-three genes showed that both the high-ω6 and high-ω3 groups had significant bacterin-dependent induction of some transcripts involved in lipid metabolism (ch25ha and lipe), pathogen recognition (clec12b and tlr5), and immune effectors (znrf1 and cish). In contrast, these transcripts did not significantly respond to the bacterin in the "switched-diet" group. Concurrently, biomarkers encoding proteins with putative roles in biotic inflammatory response (tnfrsf6b) and dendritic cell maturation (ccl13) were upregulated, and a chemokine receptor (cxcr1) was downregulated with the bacterin injection regardless of the experimental diets. On the other hand, an inflammatory regulator biomarker, bcl3, was only significantly upregulated in the high-ω3 fed group, and a C-type lectin family member (clec3a) was only significantly downregulated in the switched-diet group with the bacterin injection (compared with diet-matched PBS-injected controls). Transcript fold-change (FC: bacterin/PBS) showed that tlr5 was significantly over 2-fold higher in the high-18:2ω6 diet group compared with other diet groups. FC and FA associations highlighted the role of DGLA (20:3ω6; anti-inflammatory) and/or EPA (20:5ω3; anti-inflammatory) vs. ARA (20:4ω6; pro-inflammatory) as representative of the anti-inflammatory/pro-inflammatory balance between eicosanoid precursors. Also, the correlations revealed associations of FA proportions (% total FA) and FA ratios with several eicosanoid and immune receptor biomarkers (e.g., DGLA/ARA significant positive correlation with pgds, 5loxa, 5loxb, tlr5, and cxcr1). In summary, dietary FA profiles and/or regimens modulated the expression of some immune-relevant genes in Atlantic salmon injected with R. salmoninarum bacterin. The modulation of Atlantic salmon responses to bacterial pathogens and their associated antigens using high-ω6/high-ω3 diets warrants further investigation.
Collapse
Affiliation(s)
- Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Evandro Kleber Lorenz
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Rachel Balder
- Cargill Animal Nutrition and Health, Minneapolis, MN, United States
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
10
|
Huang X, Chen F, Guan J, Xu C, Li Y, Xie D. Beneficial effects of re-feeding high α-linolenic acid diets on the muscle quality, cold temperature and disease resistance of tilapia. FISH & SHELLFISH IMMUNOLOGY 2022; 126:303-310. [PMID: 35662581 DOI: 10.1016/j.fsi.2022.05.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
To investigate the effects of re-feeding high α-linolenic acid (ALA) diets on the muscle quality, cold temperature and disease resistance of the tilapia with nutritional history of soybean oil diets, three experimental diets with linoleic aicd (LA)/ALA ratios at 9 (D1, taking soybean oil as lipid sources), 3 and 1 (D2 and D3, taking soybean and linseed oils as lipid sources) were prepared to re-feed juveniles for 10 weeks, and the growth performance, muscle quality were analyzed. After the re-feeding trial, the fish were fasted for 8 weeks at cold temperature (15°C-20 °C) and then subjected to the Aeromonas hydrophila challenge, and the cold temperature and disease resistance of the fish were evaluated. It was shown that a comparable growth performance was detected among the three dietary groups, while, the high feed efficiency and low viscerosomatic and hepatosomatic index were detected in the D2 and D3 groups compared with the D1 group. In addition, the docosahexaenoic acid (DHA) and n-3 polyunsaturated fatty acid (PUFA) levels of the muscle increased in a parallel pattern with the dietary ALA levels, and the muscular tenderness, adhesiveness, and chewiness were modified substantially in fish fed the diets D2 and D3. After 8-week fasting at cold temperature, the low serum total antioxidant capacity (T-AOC) and malondialdehyde (MDA) levels, and high serum lysozyme (LZM) and C3 levels were observed in the D2 and D3 groups compared with the D1 group. It was also shown that high eicosapentaenoic acid (EPA), DHA, and n-3 PUFA levels were observed in the intestine, liver, and spleen of fish from D2 and D3 groups. Correspondingly, in the fish of the D2 and D3 groups, the mRNA levels of lzm in the liver, intestine, and spleen, and c3 in the intestine and spleen were increased, while the mRNA levels of il-1β, ifn-γ, and tnf-α in the intestine, and ifn-γ, tnf-α in the liver, as well as spleen il-1β, were decreased. Furthermore, the survival at day 15 post-challenge of A. hydrophila in the D2 and D3 groups were higher than those of the D1 group. The results demonstrated that re-feeding high ALA diets were beneficial to the muscle quality, cold temperature and disease resistance in the tilapia, and provide a basis for selecting the dietary lipid sources of tilapia pre-winter feed.
Collapse
Affiliation(s)
- Xiaoping Huang
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China
| | - Fang Chen
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China
| | - Junfeng Guan
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China
| | - Chao Xu
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China
| | - Yuanyou Li
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China.
| | - Dizhi Xie
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China.
| |
Collapse
|
11
|
Yang CP, Chang CM, Yang CC, Pariante CM, Su KP. Long COVID and long chain fatty acids (LCFAs): Psychoneuroimmunity implication of omega-3 LCFAs in delayed consequences of COVID-19. Brain Behav Immun 2022; 103:19-27. [PMID: 35390469 PMCID: PMC8977215 DOI: 10.1016/j.bbi.2022.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the lasting pandemic of coronavirus disease 2019 (COVID-19) and the post-acute phase sequelae of heterogeneous negative impacts in multiple systems known as the "long COVID." The mechanisms of neuropsychiatric complications of long COVID are multifactorial, including long-term tissue damages from direct CNS viral involvement, unresolved systemic inflammation and oxidative stress, maladaptation of the renin-angiotensin-aldosterone system and coagulation system, dysregulated immunity, the dysfunction of neurotransmitters and hypothalamus-pituitaryadrenal (HPA) axis, and the psychosocial stress imposed by societal changes in response to this pandemic. The strength of safety, well-acceptance, and accumulating scientific evidence has now afforded nutritional medicine a place in the mainstream of neuropsychiatric intervention and prophylaxis. Long chain omega-3 polyunsaturated fatty acids (omega-3 or n-3 PUFAs) might have favorable effects on immunity, inflammation, oxidative stress and psychoneuroimmunity at different stages of SARS-CoV-2 infection. Omega-3 PUFAs, particularly EPA, have shown effects in treating mood and neurocognitive disorders by reducing pro-inflammatory cytokines, altering the HPA axis, and modulating neurotransmission via lipid rafts. In addition, omega-3 PUFAs and their metabolites, including specialized pro-resolvin mediators, accelerate the process of cleansing chronic inflammation and restoring tissue homeostasis, and therefore offer a promising strategy for Long COVID. In this article, we explore in a systematic review the putative molecular mechanisms by which omega-3 PUFAs and their metabolites counteract the negative effects of long COVID on the brain, behavior, and immunity.
Collapse
Affiliation(s)
- Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan; Department of Nutrition, HungKuang University, Taichung, Taiwan
| | - Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chia Yang
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | | | - Kuan-Pin Su
- King's College London, London, UK; Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan.
| |
Collapse
|
12
|
Ziyaei K, Ataie Z, Mokhtari M, Adrah K, Daneshmehr MA. An insight to the therapeutic potential of algae-derived sulfated polysaccharides and polyunsaturated fatty acids: Focusing on the COVID-19. Int J Biol Macromol 2022; 209:244-257. [PMID: 35306019 PMCID: PMC8924028 DOI: 10.1016/j.ijbiomac.2022.03.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 01/07/2023]
Abstract
Covid-19 pandemic severely affected human health worldwide. The rapidly increasing COVID-19 cases and successive mutations of the virus have made it a major challenge for scientists to find the best and efficient drug/vaccine/strategy to counteract the virus pathogenesis. As a result of research in scientific databases, regulating the immune system and its responses with nutrients and nutritional interventions is the most critical solution to prevent and combat this infection. Also, modulating other organs such as the intestine with these compounds can lead to the vaccines' effectiveness. Marine resources, mainly algae, are rich sources of nutrients and bioactive compounds with known immunomodulatory properties and the gut microbiome regulations. According to the purpose of the review, algae-derived bioactive compounds with immunomodulatory activities, sulfated polysaccharides, and polyunsaturated fatty acids have a good effect on the immune system. In addition, they have probiotic/prebiotic properties in the intestine and modulate the gut microbiomes; therefore, they can increase the effectiveness of vaccines produced. Thus, they with respectable safety, immune regulation, and modulation of microbiota have potential therapeutic against infections, especially COVID-19. They can also be employed as promising candidates for the prevention and treatment of viral infections, such as COVID-19.
Collapse
Affiliation(s)
- Kobra Ziyaei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Zahra Ataie
- Evidence-based Phytotherapy & Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran,Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Mokhtari
- Department of Medical Bioinformatics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran,Laboratory of System Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Kelvin Adrah
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Mohammad Ali Daneshmehr
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Caballero-Solares A, Umasuthan N, Xue X, Katan T, Kumar S, Westcott JD, Chen Z, Fast MD, Skugor S, Taylor RG, Rise ML. Interacting Effects of Sea Louse (Lepeophtheirus salmonis) Infection and Formalin-Killed Aeromonas salmonicida on Atlantic Salmon Skin Transcriptome. Front Immunol 2022; 13:804987. [PMID: 35401509 PMCID: PMC8987027 DOI: 10.3389/fimmu.2022.804987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Lepeophtheirus salmonis (sea lice) and bacterial co-infection threatens wild and farmed Atlantic salmon performance and welfare. In the present study, pre-adult L. salmonis-infected and non-infected salmon were intraperitoneally injected with either formalin-killed Aeromonas salmonicida bacterin (ASAL) or phosphate-buffered saline (PBS). Dorsal skin samples from each injection/infection group (PBS/no lice, PBS/lice, ASAL/no lice, and ASAL/lice) were collected at 24 h post-injection and used for transcriptome profiling using a 44K salmonid microarray platform. Microarray results showed no clear inflammation gene expression signatures and revealed extensive gene repression effects by pre-adult lice (2,189 down and 345 up-regulated probes) in the PBS-injected salmon (PBS/lice vs. PBS/no lice), which involved basic cellular (e.g., RNA and protein metabolism) processes. Lice repressive effects were not observed within the group of ASAL-injected salmon (ASAL/lice vs. ASAL/no lice); on the contrary, the observed skin transcriptome changes –albeit of lesser magnitude (82 up and 1 down-regulated probes)– suggested the activation in key immune and wound healing processes (e.g., neutrophil degranulation, keratinocyte differentiation). The molecular skin response to ASAL was more intense in the lice-infected (ASAL/lice vs. PBS/lice; 272 up and 11 down-regulated probes) than in the non-infected fish (ASAL/no lice vs. PBS/no lice; 27 up-regulated probes). Regardless of lice infection, the skin’s response to ASAL was characterized by the putative activation of both antibacterial and wound healing pathways. The transcriptomic changes prompted by ASAL+lice co-stimulation (ASAL/lice vs. PBS/no lice; 1878 up and 3120 down-regulated probes) confirmed partial mitigation of lice repressive effects on fundamental cellular processes and the activation of pathways involved in innate (e.g., neutrophil degranulation) and adaptive immunity (e.g., antibody formation), as well as endothelial cell migration. The qPCR analyses evidenced immune-relevant genes co-stimulated by ASAL and lice in an additive (e.g., mbl2b, bcl6) and synergistic (e.g., hampa, il4r) manner. These results provided insight on the physiological response of the skin of L. salmonis-infected salmon 24 h after ASAL stimulation, which revealed immunostimulatory properties by the bacterin with potential applications in anti-lice treatments for aquaculture. As a simulated co-infection model, the present study also serves as a source of candidate gene biomarkers for sea lice and bacterial co-infection.
Collapse
Affiliation(s)
- Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
- *Correspondence: Albert Caballero-Solares,
| | | | - Xi Xue
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Tomer Katan
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | | | - Zhiyu Chen
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
- Fisheries and Marine Institute, Memorial University, St. John’s, NL, Canada
| | - Mark D. Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Stanko Skugor
- Cargill Aqua Nutrition, Cargill, Sea Lice Research Center (SLRC), Sandnes, Norway
| | | | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| |
Collapse
|
14
|
Eslamloo K, Kumar S, Xue X, Parrish KS, Purcell SL, Fast MD, Rise ML. Global gene expression responses of Atlantic salmon skin to Moritella viscosa. Sci Rep 2022; 12:4622. [PMID: 35301338 PMCID: PMC8931016 DOI: 10.1038/s41598-022-08341-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
Moritella viscosa is a Gram-negative pathogen that causes large, chronic ulcers, known as winter-ulcer disease, in the skin of several fish species including Atlantic salmon. We used a bath challenge approach to profile the transcriptome responses of M. viscosa-infected Atlantic salmon skin at the lesion (Mv-At) and away from the lesion (Mv-Aw) sites. M. viscosa infection was confirmed through RNA-based qPCR assays. RNA-Seq identified 5212 and 2911 transcripts differentially expressed in the Mv-At compared to no-infection control and Mv-Aw groups, respectively. Also, there were 563 differentially expressed transcripts when comparing the Mv-Aw to control samples. Our results suggest that M. viscosa caused massive and strong, but largely infection site-focused, transcriptome dysregulations in Atlantic salmon skin, and its effects beyond the skin lesion site were comparably subtle. The M. viscosa-induced transcripts of Atlantic salmon were mainly involved in innate and adaptive immune response-related pathways, whereas the suppressed transcripts by this pathogen were largely connected to developmental and cellular processes. As validated by qPCR, M. viscosa dysregulated transcripts encoding receptors, signal transducers, transcription factors and immune effectors playing roles in TLR- and IFN-dependent pathways as well as immunoregulation, antigen presentation and T-cell development. This study broadened the current understanding of molecular pathways underlying M. viscosa-triggered responses of Atlantic salmon, and identified biomarkers that may assist to diagnose and combat this pathogen.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada. .,Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada.
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Kathleen S Parrish
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Sara L Purcell
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Mark D Fast
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
15
|
Islam SS, Xue X, Caballero-Solares A, Bradbury IR, Rise ML, Fleming IA. Distinct early life stage gene expression effects of hybridization among European and North American farmed and wild Atlantic salmon populations. Mol Ecol 2022; 31:2712-2729. [PMID: 35243721 DOI: 10.1111/mec.16418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 11/27/2022]
Abstract
Due to multi-generation domestication selection, farmed and wild Atlantic salmon diverge genetically, which raises concerns about potential genetic interactions among escaped farmed and wild populations and disruption of local adaptation through introgression. When farmed strains of distant geographic origin are used, it is unknown whether the genetic consequences posed by escaped farmed fish will be greater than if more locally derived strains are used. Quantifying gene transcript expression differences among divergent farmed, wild and F1 hybrids under controlled conditions is one of the ways to explore the consequences of hybridization. We compared the transcriptomes of fry at the end of yolk sac absorption of a European (EO) farmed ("StofnFiskur", Norwegian strain), a North American (NA) farmed (Saint John River, NB strain), a Newfoundland (NF) wild population with EO ancestry, and related F1 hybrids using 44K microarrays. Our findings indicate that the wild population showed greater transcriptome differences from the EO farmed strain than that of the NA farmed strain. We also found the largest differences in global gene expression between the two farmed strains. We detected the fewest differentially expressed transcripts between F1 hybrids and domesticated/wild maternal strains. We also found that the differentially expressed genes between cross types over-represented GO terms associated with metabolism, development, growth, immune response, and redox homeostasis processes. These findings suggest that the interbreeding of escaped EO/NA farmed and NF wild population would alter gene transcription, and the consequences of hybridization would be greater from escaped EO farmed than NA farmed salmon, resulting in potential effects on the wild populations.
Collapse
Affiliation(s)
- Shahinur S Islam
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada
| | - Xi Xue
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada
| | - Ian R Bradbury
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada.,Salmonids Section, Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, 80 East White Hills Road, St. John's, NL, A1C 5X, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada
| | - Ian A Fleming
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada
| |
Collapse
|
16
|
Xue X, Caballero-Solares A, Hall JR, Umasuthan N, Kumar S, Jakob E, Skugor S, Hawes C, Santander J, Taylor RG, Rise ML. Transcriptome Profiling of Atlantic Salmon ( Salmo salar) Parr With Higher and Lower Pathogen Loads Following Piscirickettsia salmonis Infection. Front Immunol 2022; 12:789465. [PMID: 35035387 PMCID: PMC8758579 DOI: 10.3389/fimmu.2021.789465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/03/2021] [Indexed: 12/29/2022] Open
Abstract
Salmonid rickettsial septicemia (SRS), caused by Piscirickettsia salmonis, is one of the most devastating diseases of salmonids. However, the transcriptomic responses of Atlantic salmon (Salmon salar) in freshwater to an EM-90-like isolate have not been explored. Here, we infected Atlantic salmon parr with an EM-90-like isolate and conducted time-course qPCR analyses of pathogen load and four biomarkers (campb, hampa, il8a, tlr5a) of innate immunity on the head kidney samples. Transcript expression of three of these genes (except hampa), as well as pathogen level, peaked at 21 days post-injection (DPI). Multivariate analyses of infected individuals at 21 DPI revealed two infection phenotypes [lower (L-SRS) and higher (H-SRS) infection level]. Five fish from each group (Control, L-SRS, and H-SRS) were selected for transcriptome profiling using a 44K salmonid microarray platform. We identified 1,636 and 3,076 differentially expressed probes (DEPs) in the L-SRS and H-SRS groups compared with the control group, respectively (FDR = 1%). Gene ontology term enrichment analyses of SRS-responsive genes revealed the activation of a large number of innate (e.g. “phagocytosis”, “defense response to bacterium”, “inflammatory response”) and adaptive (e.g. “regulation of T cell activation”, “antigen processing and presentation of exogenous antigen”) immune processes, while a small number of general physiological processes (e.g. “apoptotic process”, development and metabolism relevant) was enriched. Transcriptome results were confirmed by qPCR analyses of 42 microarray-identified transcripts. Furthermore, the comparison of individuals with differing levels of infection (H-SRS vs. L-SRS) generated insights into the biological processes possibly involved in disease resistance or susceptibility. This study demonstrated a low mortality (~30%) EM-90-like infection model and broadened the current understanding of molecular pathways underlying P. salmonis-triggered responses of Atlantic salmon, identifying biomarkers that may assist to diagnose and combat this pathogen.
Collapse
Affiliation(s)
- Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Eva Jakob
- Cargill Innovation Centre - Colaco, Colaco, Chile
| | - Stanko Skugor
- Cargill Aqua Nutrition, Cargill, Sea Lice Research Center (SLRC), Sandnes, Norway
| | | | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Richard G Taylor
- Cargill Animal Nutrition and Health, Elk River, MN, United States
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
17
|
Andresen AMS, Gjøen T. Chitosan nanoparticle formulation attenuates poly (I:C) induced innate immune responses against inactivated virus vaccine in Atlantic salmon (Salmo salar). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100915. [PMID: 34634571 DOI: 10.1016/j.cbd.2021.100915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Many vaccine formulations, in particular vaccines based on inactivated virus, needs adjuvants to boost immunogenicity. In aquaculture, mineral and plant oil are used as adjuvant in commercial vaccines, and the advent of oil-adjuvanted vaccines was crucial to aquaculture development. Nevertheless, some of these approved vaccines display suboptimal performance in the field compared to experimental conditions. Therefore, there is a need to improve adjuvants and delivery methods for fish vaccines against viruses. We used RNA sequencing of Atlantic salmon head kidney to analyse the difference in gene expression 24 h after injection of different experimental vaccine formulations. We compared five different formulations in addition to a PBS control: inactivated virus alone (group V), soluble poly (I:C) (group P), nanoparticles containing poly (I:C) (group N), soluble poly (I:C) + inactivated virus (group PV) and finally nanoparticles containing poly (I:C) + inactivated virus (group NV). Our results showed poly (I:C)'s ability as adjuvant and its capacity influence innate immune genes expression in Atlantic salmon. Soluble poly (I:C) upregulated multiple immune related genes and was more effective compared to poly (I:C) formulated into chitosan nanoparticles (more than 10 fold increase in differentially expressed genes, DEGs). However, inclusion of inactivated ISA virus in the nanoparticle vaccine, increased the number of DEGs fivefold suggesting a synergistic effect of adjuvant and antigen. Our results indicate that the way poly (I:C) is formulated and the presence of antigen is important for the magnitude of the innate immune response in Atlantic salmon.
Collapse
Affiliation(s)
| | - Tor Gjøen
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
18
|
Smith NC, Umasuthan N, Kumar S, Woldemariam NT, Andreassen R, Christian SL, Rise ML. Transcriptome Profiling of Atlantic Salmon Adherent Head Kidney Leukocytes Reveals That Macrophages Are Selectively Enriched During Culture. Front Immunol 2021; 12:709910. [PMID: 34484211 PMCID: PMC8415484 DOI: 10.3389/fimmu.2021.709910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/05/2021] [Indexed: 01/23/2023] Open
Abstract
The Atlantic salmon (Salmo salar) is an economically important fish, both in aquaculture and in the wild. In vertebrates, macrophages are some of the first cell types to respond to pathogen infection and disease. While macrophage biology has been characterized in mammals, less is known in fish. Our previous work identified changes in the morphology, phagocytic ability, and miRNA profile of Atlantic salmon adherent head kidney leukocytes (HKLs) from predominantly “monocyte-like” at Day 1 of in vitro culture to predominantly “macrophage-like” at Day 5 of culture. Therefore, to further characterize these two cell populations, we examined the mRNA transcriptome profile in Day 1 and Day 5 HKLs using a 44K oligonucleotide microarray. Large changes in the transcriptome were revealed, including changes in the expression of macrophage and immune-related transcripts (e.g. csf1r, arg1, tnfa, mx2), lipid-related transcripts (e.g. fasn, dhcr7, fabp6), and transcription factors involved in macrophage differentiation and function (e.g. klf2, klf9, irf7, irf8, stat1). The in silico target prediction analysis of differentially expressed genes (DEGs) using miRNAs known to change expression in Day 5 HKLs, followed by gene pathway enrichment analysis, supported that these miRNAs may be involved in macrophage maturation by targeting specific DEGs. Elucidating how immune cells, such as macrophages, develop and function is a key step in understanding the Atlantic salmon immune system. Overall, the results indicate that, without the addition of exogenous factors, the adherent HKL cell population differentiates in vitro to become macrophage-like.
Collapse
Affiliation(s)
- Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Nardos T Woldemariam
- Department of Life Sciences and Health, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Rune Andreassen
- Department of Life Sciences and Health, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Sherri L Christian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
19
|
Hermel M, Sweeney M, Ni YM, Bonakdar R, Triffon D, Suhar C, Mehta S, Dalhoumi S, Gray J. Natural Supplements for COVID19-Background, Rationale, and Clinical Trials. J Evid Based Integr Med 2021; 26:2515690X211036875. [PMID: 34384258 PMCID: PMC8369961 DOI: 10.1177/2515690x211036875] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Worldwide, the turmoil of the SARS-CoV-2 (COVID-19) pandemic has generated a burst of research efforts in search of effective prevention and treatment modalities. Current recommendations on natural supplements arise from mostly anecdotal evidence in other viral infections and expert opinion, and many clinical trials are ongoing. Here the authors review the evidence and rationale for the use of natural supplements for prevention and treatment of COVID-19, including those with potential benefit and those with potential harms. Specifically, the authors review probiotics, dietary patterns, micronutrients, antioxidants, polyphenols, melatonin, and cannabinoids. Authors critically evaluated and summarized the biomedical literature published in peer-reviewed journals, preprint servers, and current guidelines recommended by expert scientific governing bodies. Ongoing and future trials registered on clinicaltrials.gov were also recorded, appraised, and considered in conjunction with the literature findings. In light of the controversial issues surrounding the manufacturing and marketing of natural supplements and limited scientific evidence available, the authors assessed the available data and present this review to equip clinicians with the necessary information regarding the evidence for and potential harms of usage to promote open discussions with patients who are considering dietary supplements to prevent and treat COVID-19.
Collapse
Affiliation(s)
- Melody Hermel
- 2697Scripps Health, Cardiology, San Diego, CA, USA.,540266Scripps Center for Integrative Medicine, La Jolla, CA, USA
| | - Megan Sweeney
- 2697Scripps Health, Cardiology, San Diego, CA, USA.,540266Scripps Center for Integrative Medicine, La Jolla, CA, USA
| | - Yu-Ming Ni
- 2697Scripps Health, Cardiology, San Diego, CA, USA.,540266Scripps Center for Integrative Medicine, La Jolla, CA, USA
| | - Robert Bonakdar
- 540266Scripps Center for Integrative Medicine, La Jolla, CA, USA
| | - Douglas Triffon
- 2697Scripps Health, Cardiology, San Diego, CA, USA.,540266Scripps Center for Integrative Medicine, La Jolla, CA, USA
| | - Christopher Suhar
- 2697Scripps Health, Cardiology, San Diego, CA, USA.,540266Scripps Center for Integrative Medicine, La Jolla, CA, USA
| | - Sandeep Mehta
- 2697Scripps Health, Cardiology, San Diego, CA, USA.,540266Scripps Center for Integrative Medicine, La Jolla, CA, USA
| | - Sarah Dalhoumi
- 540266Scripps Center for Integrative Medicine, La Jolla, CA, USA
| | - James Gray
- 2697Scripps Health, Cardiology, San Diego, CA, USA.,540266Scripps Center for Integrative Medicine, La Jolla, CA, USA
| |
Collapse
|
20
|
Beemelmanns A, Zanuzzo FS, Sandrelli RM, Rise ML, Gamperl AK. The Atlantic salmon's stress- and immune-related transcriptional responses to moderate hypoxia, an incremental temperature increase, and these challenges combined. G3 (BETHESDA, MD.) 2021; 11:jkab102. [PMID: 34015123 PMCID: PMC8613830 DOI: 10.1093/g3journal/jkab102] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
The marine environment is predicted to become warmer, and more hypoxic, and these conditions may negatively impact the health and survival of coastal fish species, including wild and farmed Atlantic salmon (Salmo salar). Thus, we examined how: (1) moderate hypoxia (∼70% air saturation) at 12°C for 3 weeks; (2) an incremental temperature increase from 12°C to 20°C (at 1°C week-1) followed by 4 weeks at 20°C; and (3) treatment "2" combined with moderate hypoxia affected transcript expression in the liver of post-smolts as compared to control conditions (normoxia, 12°C). Specifically, we assessed the expression of 45 genes related to the heat shock response, oxidative stress, apoptosis, metabolism and immunity using a high-throughput qPCR approach (Fluidigm Biomark™ HD). The expression profiles of 27 "stress"-related genes indicated that: (i) moderate hypoxia affected the expression of several stress genes at 12°C; (ii) their expression was impacted by 16°C under normoxic conditions, and this effect increased until 20°C; (iii) the effects of moderate hypoxia were not additive to those at temperatures above 16°C; and (iv) long-term (4 weeks) exposure to 20°C, with or without hypoxia, resulted in a limited acclimatory response. In contrast, the expression of 15 immune-related genes was not greatly affected until temperatures reached 20°C, and this effect was particularly evident in fish exposed to the added challenge of hypoxia. These results provide valuable information on how these two important environmental factors affect the "stress" physiology and immunology of Atlantic salmon, and we identify genes that may be useful as hypoxia and/or temperature biomarkers in salmonids and other fishes.
Collapse
Affiliation(s)
- Anne Beemelmanns
- Department of Ocean Sciences, Memorial University,
St. John’s, NL A1C 5S7, Canada
| | - Fábio S Zanuzzo
- Department of Ocean Sciences, Memorial University,
St. John’s, NL A1C 5S7, Canada
| | - Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University,
St. John’s, NL A1C 5S7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University,
St. John’s, NL A1C 5S7, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University,
St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
21
|
Katan T, Xue X, Caballero-Solares A, Taylor RG, Parrish CC, Rise ML. Influence of Varying Dietary ω6 to ω3 Fatty Acid Ratios on the Hepatic Transcriptome, and Association with Phenotypic Traits (Growth, Somatic Indices, and Tissue Lipid Composition), in Atlantic Salmon ( Salmo salar). BIOLOGY 2021; 10:biology10070578. [PMID: 34202562 PMCID: PMC8301090 DOI: 10.3390/biology10070578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Plant oils are routinely used in fish feeds as a fish oil replacement. However, these terrestrial alternatives typically contain high levels of ω6 fatty acids (FA) and, thus, high ω6 to ω3 (ω6:ω3) FA ratios, which influence farmed fish and their consumers. The ω6:ω3 ratio is known to affect many biological processes (e.g., inflammation, FA metabolism) and human diseases; however, its impacts on fish physiology and the underlying molecular mechanisms are less well understood. In this study, we used 44 K microarrays to examine which genes and molecular pathways are altered by variation in dietary ω6:ω3 in Atlantic salmon. Our microarray study showed that several genes related to immune response, lipid metabolism, cell proliferation, and translation were differentially expressed between the two extreme ω6:ω3 dietary treatments. We also revealed that the PPARα activation-related transcript helz2 is a potential novel molecular biomarker of tissue variation in ω6:ω3. Further, correlation analyses illustrated the relationships between liver transcript expression and tissue (liver, muscle) lipid composition, and other phenotypic traits in salmon fed low levels of fish oil. This nutrigenomic study enhanced the current understanding of Atlantic salmon gene expression response to varying dietary ω6:ω3. Abstract The importance of dietary omega-6 to omega-3 (ω6:ω3) fatty acid (FA) ratios for human health has been extensively examined. However, its impact on fish physiology, and the underlying molecular mechanisms, are less well understood. This study investigated the influence of plant-based diets (12-week exposure) with varying ω6:ω3 (0.4–2.7) on the hepatic transcriptome of Atlantic salmon. Using 44 K microarray analysis, genes involved in immune and inflammatory response (lect2a, itgb5, helz2a, p43), lipid metabolism (helz2a), cell proliferation (htra1b), control of muscle and neuronal development (mef2d) and translation (eif2a, eif4b1, p43) were identified; these were differentially expressed between the two extreme ω6:ω3 dietary treatments (high ω6 vs. high ω3) at week 12. Eight out of 10 microarray-identified transcripts showed an agreement in the direction of expression fold-change between the microarray and qPCR studies. The PPARα activation-related transcript helz2a was confirmed by qPCR to be down-regulated by high ω6 diet compared with high ω3 diet. The transcript expression of two helz2 paralogues was positively correlated with ω3, and negatively with ω6 FA in both liver and muscle, thus indicating their potential as biomarkers of tissue ω6:ω3 variation. Mef2d expression in liver was suppressed in the high ω6 compared to the balanced diet (ω6:ω3 of 2.7 and 0.9, respectively) fed fish, and showed negative correlations with ω6:ω3 in both tissues. The hepatic expression of two lect2 paralogues was negatively correlated with viscerosomatic index, while htra1b correlated negatively with salmon weight gain and condition factor. Finally, p43 and eif2a were positively correlated with liver Σω3, while these transcripts and eif4b2 showed negative correlations with 18:2ω6 in the liver. This suggested that some aspects of protein synthesis were influenced by dietary ω6:ω3. In summary, this nutrigenomic study identified hepatic transcripts responsive to dietary variation in ω6:ω3, and relationships of transcript expression with tissue (liver, muscle) lipid composition and other phenotypic traits.
Collapse
Affiliation(s)
- Tomer Katan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (C.C.P.); (M.L.R.)
- Correspondence: (T.K.); (A.C.-S.); Tel.: +1-709-7703846 (T.K.); Tel.: +1-709-3251598 (A.C.-S.)
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (C.C.P.); (M.L.R.)
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (C.C.P.); (M.L.R.)
- Correspondence: (T.K.); (A.C.-S.); Tel.: +1-709-7703846 (T.K.); Tel.: +1-709-3251598 (A.C.-S.)
| | - Richard G. Taylor
- Cargill Animal Nutrition, 10383 165th Avenue NW, Elk River, MN 55330, USA;
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (C.C.P.); (M.L.R.)
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (C.C.P.); (M.L.R.)
| |
Collapse
|
22
|
Beemelmanns A, Zanuzzo FS, Xue X, Sandrelli RM, Rise ML, Gamperl AK. The transcriptomic responses of Atlantic salmon (Salmo salar) to high temperature stress alone, and in combination with moderate hypoxia. BMC Genomics 2021; 22:261. [PMID: 33845767 PMCID: PMC8042886 DOI: 10.1186/s12864-021-07464-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/22/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Increases in ocean temperatures and in the frequency and severity of hypoxic events are expected with climate change, and may become a challenge for cultured Atlantic salmon and negatively affect their growth, immunology and welfare. Thus, we examined how an incremental temperature increase alone (Warm & Normoxic-WN: 12 → 20 °C; 1 °C week- 1), and in combination with moderate hypoxia (Warm & Hypoxic-WH: ~ 70% air saturation), impacted the salmon's hepatic transcriptome expr\ession compared to control fish (CT: 12 °C, normoxic) using 44 K microarrays and qPCR. RESULTS Overall, we identified 2894 differentially expressed probes (DEPs, FDR < 5%), that included 1111 shared DEPs, while 789 and 994 DEPs were specific to WN and WH fish, respectively. Pathway analysis indicated that the cellular mechanisms affected by the two experimental conditions were quite similar, with up-regulated genes functionally associated with the heat shock response, ER-stress, apoptosis and immune defence, while genes connected with general metabolic processes, proteolysis and oxidation-reduction were largely suppressed. The qPCR assessment of 41 microarray-identified genes validated that the heat shock response (hsp90aa1, serpinh1), apoptosis (casp8, jund, jak2) and immune responses (apod, c1ql2, epx) were up-regulated in WN and WH fish, while oxidative stress and hypoxia sensitive genes were down-regulated (cirbp, cyp1a1, egln2, gstt1, hif1α, prdx6, rraga, ucp2). However, the additional challenge of hypoxia resulted in more pronounced effects on heat shock and immune-related processes, including a stronger influence on the expression of 14 immune-related genes. Finally, robust correlations between the transcription of 19 genes and several phenotypic traits in WH fish suggest that changes in gene expression were related to impaired physiological and growth performance. CONCLUSION Increasing temperature to 20 °C alone, and in combination with hypoxia, resulted in the differential expression of genes involved in similar pathways in Atlantic salmon. However, the expression responses of heat shock and immune-relevant genes in fish exposed to 20 °C and hypoxia were more affected, and strongly related to phenotypic characteristics (e.g., growth). This study provides valuable information on how these two environmental challenges affect the expression of stress-, metabolic- and immune-related genes and pathways, and identifies potential biomarker genes for improving our understanding of fish health and welfare.
Collapse
Affiliation(s)
- Anne Beemelmanns
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada.
- Current Address: Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, G1V 0A6, Canada.
| | - Fábio S Zanuzzo
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
23
|
Foroutani MB, Parrish CC, Wells J, Taylor RG, Rise ML. Minimizing marine ingredients in diets of farmed Atlantic salmon (Salmo salar): effects on liver and head kidney lipid class and fatty acid composition. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2331-2353. [PMID: 33001367 DOI: 10.1007/s10695-020-00862-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Limited fish meal and fish oil supplies have necessitated research on alternatives for aquafeeds. Seven dietary treatments with different protein and lipid sources were formulated for farmed Atlantic salmon, and their effects on liver and head kidney lipid class, fatty acid, and elemental composition were studied. Fish meal, fish oil, and EPA + DHA content ranged from 5-35%, 0-12%, and 0.1-3%, respectively. Elemental analysis showed that the C to N ratio was higher in the head kidney than in the liver, which is consistent with higher content of total lipids in the head kidney compared with the liver. There was a greater susceptibility to dietary lipid alterations in the liver compared with the head kidney despite liver having a greater proportion of phospholipid and a much lower proportion of triacylglycerol. So long as fish oil levels were 5% or more of the diet, arachidonic acid (ARA) and docosahexaenoic acid (DHA) proportions were the same for each tissue as with feeding the marine diet with 12% fish oil; however, livers and head kidneys from fish fed the lowest amount of fish meal and fish oil had the lowest levels of eicosapentaenoic (EPA) and DHA and the highest ARA levels. Removal of fish oil and reduction of fish meal to 5% in diets of farmed Atlantic salmon affected elemental and lipid compositions of the liver and head kidney tissues potentially increasing susceptibility to inflammation. However, with 10% of the diet comprising fish meal and fish oil, lipid contents were comparable with fish fed marine-based diets.
Collapse
Affiliation(s)
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Jeanette Wells
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | | | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
24
|
Hathaway D, Pandav K, Patel M, Riva-Moscoso A, Singh BM, Patel A, Min ZC, Singh-Makkar S, Sana MK, Sanchez-Dopazo R, Desir R, Fahem MMM, Manella S, Rodriguez I, Alvarez A, Abreu R. Omega 3 Fatty Acids and COVID-19: A Comprehensive Review. Infect Chemother 2020; 52:478-495. [PMID: 33377319 PMCID: PMC7779984 DOI: 10.3947/ic.2020.52.4.478] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
The rapid international spread of severe acute respiratory syndrome coronavirus 2 responsible for coronavirus disease 2019 (COVID-19) has posed a global health emergency in 2020. It has affected over 52 million people and led to over 1.29 million deaths worldwide, as of November 13th, 2020. Patients diagnosed with COVID-19 present with symptoms ranging from none to severe and include fever, shortness of breath, dry cough, anosmia, and gastrointestinal abnormalities. Severe complications are largely due to overdrive of the host immune system leading to "cytokine storm". This results in disseminated intravascular coagulation, acute respiratory distress syndrome, multiple organ dysfunction syndrome, and death. Due to its highly infectious nature and concerning mortality rate, every effort has been focused on prevention and creating new medications or repurposing old treatment options to ameliorate the suffering of COVID-19 patients including the immune dysregulation. Omega-3 fatty acids are known to be incorporated throughout the body into the bi-phospholipid layer of the cell membrane leading to the production of less pro-inflammatory mediators compared to other fatty acids that are more prevalent in the Western diet. In this article, the benefits of omega-3 fatty acids, especially eicosapentaenoic acid and docosahexaenoic acid, including their anti-inflammatory, immunomodulating, and possible antiviral effects have been discussed.
Collapse
Affiliation(s)
- Donald Hathaway
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA.
| | - Krunal Pandav
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | - Madhusudan Patel
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | - Adrian Riva-Moscoso
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | - Bishnu Mohan Singh
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | - Aayushi Patel
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | - Zar Chi Min
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | | | - Muhammad Khawar Sana
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | | | - Rockeven Desir
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | | | - Susan Manella
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | - Ivan Rodriguez
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | - Alina Alvarez
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | - Rafael Abreu
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| |
Collapse
|
25
|
Eslamloo K, Caballero-Solares A, Inkpen SM, Emam M, Kumar S, Bouniot C, Avendaño-Herrera R, Jakob E, Rise ML. Transcriptomic Profiling of the Adaptive and Innate Immune Responses of Atlantic Salmon to Renibacterium salmoninarum Infection. Front Immunol 2020; 11:567838. [PMID: 33193341 PMCID: PMC7656060 DOI: 10.3389/fimmu.2020.567838] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
Bacterial Kidney Disease (BKD), which is caused by a Gram-positive, intracellular bacterial pathogen (Renibacterium salmoninarum), affects salmonids including Atlantic salmon (Salmo salar). However, the transcriptome response of Atlantic salmon to BKD remained unknown before the current study. We used a 44K salmonid microarray platform to characterise the global gene expression response of Atlantic salmon to BKD. Fish (~54 g) were injected with a dose of R. salmoninarum (H-2 strain, 2 × 108 CFU per fish) or sterile medium (control), and then head kidney samples were collected at 13 days post-infection/injection (dpi). Firstly, infection levels of individuals were determined through quantifying the R. salmoninarum level by RNA-based TaqMan qPCR assays. Thereafter, based on the qPCR results for infection level, fish (n = 5) that showed no (control), higher (H-BKD), or lower (L-BKD) infection level at 13 dpi were subjected to microarray analyses. We identified 6,766 and 7,729 differentially expressed probes in the H-BKD and L-BKD groups, respectively. There were 357 probes responsive to the infection level (H-BKD vs. L-BKD). Several adaptive and innate immune processes were dysregulated in R. salmoninarum-infected Atlantic salmon. Adaptive immune pathways associated with lymphocyte differentiation and activation (e.g., lymphocyte chemotaxis, T-cell activation, and immunoglobulin secretion), as well as antigen-presenting cell functions, were shown to be differentially regulated in response to BKD. The infection level-responsive transcripts were related to several mechanisms such as the JAK-STAT signalling pathway, B-cell differentiation and interleukin-1 responses. Sixty-five microarray-identified transcripts were subjected to qPCR validation, and they showed the same fold-change direction as microarray results. The qPCR-validated transcripts studied herein play putative roles in various immune processes including pathogen recognition (e.g., tlr5), antibacterial activity (e.g., hamp and camp), regulation of immune responses (e.g., tnfrsf11b and socs1), T-/B-cell differentiation (e.g., ccl4, irf1 and ccr5), T-cell functions (e.g., rnf144a, il13ra1b and tnfrsf6b), and antigen-presenting cell functions (e.g., fcgr1). The present study revealed diverse immune mechanisms dysregulated by R. salmoninarum in Atlantic salmon, and enhanced the current understanding of Atlantic salmon response to BKD. The identified biomarker genes can be used for future studies on improving the resistance of Atlantic salmon to BKD.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Sabrina M Inkpen
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Ruben Avendaño-Herrera
- Facultad Ciencias de la Vida, Viña del Mar, and FONDAP Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Santiago, Chile
| | - Eva Jakob
- Cargill Innovation Center-Colaco, Calbuco, Chile
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
26
|
Smith NC, Wajnberg G, Chacko S, Woldemariam NT, Lacroix J, Crapoulet N, Ayre DC, Lewis SM, Rise ML, Andreassen R, Christian SL. Characterization of miRNAs in Extracellular Vesicles Released From Atlantic Salmon Monocyte-Like and Macrophage-Like Cells. Front Immunol 2020; 11:587931. [PMID: 33262769 PMCID: PMC7686242 DOI: 10.3389/fimmu.2020.587931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Cell-derived extracellular vesicles (EVs) participate in cell-cell communication via transfer of molecular cargo including genetic material like miRNAs. In mammals, it has previously been established that EV-mediated transfer of miRNAs can alter the development or function of immune cells, such as macrophages. Our previous research revealed that Atlantic salmon head kidney leukocytes (HKLs) change their morphology, phagocytic ability and miRNA profile from primarily “monocyte-like” at Day 1 to primarily “macrophage-like” at Day 5 of culture. Therefore, we aimed to characterize the miRNA cargo packaged in EVs released from these two cell populations. We successfully isolated EVs from Atlantic salmon HKL culture supernatants using the established Vn96 peptide-based pull-down. Isolation was validated using transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. RNA-sequencing identified 19 differentially enriched (DE) miRNAs packaged in Day 1 versus Day 5 EVs. Several of the highly abundant miRNAs, including those that were DE (e.g. ssa-miR-146a, ssa-miR-155 and ssa-miR-731), were previously identified as DE in HKLs and are associated with macrophage differentiation and immune response in other species. Interestingly, the abundance relative of the miRNAs in EVs, including the most abundant miRNA (ssa-miR-125b), was different than the miRNA abundance in HKLs, indicating selective packaging of miRNAs in EVs. Further study of the miRNA cargo in EVs derived from fish immune cells will be an important next step in identifying EV biomarkers useful for evaluating immune cell function, fish health, or response to disease.
Collapse
Affiliation(s)
- Nicole C Smith
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | | | - Simi Chacko
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Nardos T Woldemariam
- Department of Life Sciences and Health, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | | | | | - D Craig Ayre
- Department of Molecular Sciences, University of Medicine and Health Sciences, Basseterre, Saint Kitts and Nevis
| | - Stephen M Lewis
- Atlantic Cancer Research Institute, Moncton, NB, Canada.,Department of Chemistry & Biochemistry, Université de Moncton, Moncton, NB, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Rune Andreassen
- Department of Life Sciences and Health, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Sherri L Christian
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada.,Department of Biochemistry, Memorial University, St. John's, NL, Canada
| |
Collapse
|
27
|
Lu C, Zhu J, Chen X, Hu Y, Xie W, Yao J, Huang S. Risk Stratification in Acute Myeloid Leukemia Using CXCR Gene Signatures: A Bioinformatics Analysis. Front Oncol 2020; 10:584766. [PMID: 33381455 PMCID: PMC7769120 DOI: 10.3389/fonc.2020.584766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
The role of CXC chemokine receptors in tumors has been an increasingly researched focus in recent years. However, significant prognostic values of CXCR members in acute myeloid leukemia are yet to be explored profoundly. In this study, we firstly made an analysis of the relationship of CXCR family members and AML using samples from TCGA. Our results suggested that transcriptional expressions of CXCRs serve an important role in AML. CXCR transcript expressions, except CXCR1 expression, were significantly increased in AML. It displayed the expression pattern of CXCR members in different AML subtypes according to FAB classification. The correlations of CXCR transcript expression with different genotypes and karyotypes were also present. High CXCR2 expression was found to have a significantly worse prognosis compared with that of low CXCR2 expression, and CXCR2 was also found to be an independent prognostic factor. We also established a CXCR signature to identify high-risk subgroups of patients with AML. It was an independent prognostic factor and could become a powerful method to predict the survival rate of patients.
Collapse
Affiliation(s)
- Cong Lu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Biological Targeted Therapy Key Laboratory in Hubei, Wuhan, China
| | - Jiang Zhu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Biological Targeted Therapy Key Laboratory in Hubei, Wuhan, China
| | - Xiangjun Chen
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Biological Targeted Therapy Key Laboratory in Hubei, Wuhan, China
| | - Yanjie Hu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Biological Targeted Therapy Key Laboratory in Hubei, Wuhan, China
| | - Wei Xie
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Biological Targeted Therapy Key Laboratory in Hubei, Wuhan, China
| | - Junxia Yao
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Biological Targeted Therapy Key Laboratory in Hubei, Wuhan, China
| | - Shiang Huang
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Biological Targeted Therapy Key Laboratory in Hubei, Wuhan, China
| |
Collapse
|
28
|
Li Q, Cui K, Wu M, Xu D, Mai K, Ai Q. Polyunsaturated Fatty Acids Influence LPS-Induced Inflammation of Fish Macrophages Through Differential Modulation of Pathogen Recognition and p38 MAPK/NF-κB Signaling. Front Immunol 2020; 11:559332. [PMID: 33123132 PMCID: PMC7572853 DOI: 10.3389/fimmu.2020.559332] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/17/2020] [Indexed: 01/18/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) not only serve as essential nutrients but also function as modulators of the immune response in marine fish. However, their immunomodulatory mechanism is poorly understood given that the underlying regulation of the innate immune response in fish has not been fully elucidated. Hence, study of the innate immunity of fish could help elucidate the mechanism by which PUFAs affect the fish immune response. Here, we used combined transcriptome analysis and in vitro experimentation to study the mechanism of LPS-induced inflammation. Transcriptome profiling indicated that LPS elicited strong pro-inflammatory responses featuring high expression levels of pathogen recognition receptors (PRRs) and cytokines along with the activation of NF-κB and MAPK signaling pathways. The transcription factor p65 alone could increase the transcription of IL1β by binding to the promoter of IL1β, and this promoting effect disappeared after mutation or deletion of its binding sites. We then examined the effects of PUFAs on the levels of gene expression and the abundance of proteins of critical kinases associated with LPS-induced inflammation. We found that LA exerts pro-inflammatory response while ALA, EPA, and DHA induced anti-inflammatory effects by modulating the expression of PRRs, phosphorylation of IKK and p38, and the nuclear translocation of p65. Overall, this study advances our understanding of the regulatory mechanisms by which PUFAs regulate LPS-induced inflammation in a non-model fish species.
Collapse
Affiliation(s)
- Qingfei Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China
| | - Mengjiao Wu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China
| | - Dan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
29
|
Li Q, Wu M, Cui K, Zhu S, Mai K, Ai Q. Characterization of antiviral immune response induced by poly(I:C) in macrophages of farmed large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2020; 104:663-672. [PMID: 32497725 DOI: 10.1016/j.fsi.2020.05.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Fish tend to rely more on their innate immunity to executing defense against viral infection by inducing antiviral gene production. However, the expression pattern and underlying mechanism of fish antiviral responses have yet to be fully defined. In the present study, an in vitro viral infection model was established by exposing head kidney-derived macrophages of large yellow croaker to virus analog, poly(I:C). Transcriptome analysis indicated that poly(I:C) appeared to induce potent antiviral activity featuring dominant interferon a3 (IFNa3) expression through activation of toll-like receptors (TLRs)/TIR-domain-containing adapter-inducing interferon-β (TRIF) and retinoic acid-inducible gene I-like receptors (RLRs)/mitochondrial antiviral signaling protein (MAVS) pathways. Inhibition of nuclear factor κB (NF-κB) and stimulator of interferon genes (STING)/interferon regulatory factor 3 (IRF3) pathways diminished the expression of IFNa3. Mechanistically, transcription factors including p65 and IRF3 could promote expression of IRF3, and activated IRF3 alone further increased the transcriptional activity of IFNa3. We also characterized the promoter of IFNa3 with direct IRF3 binding site which was sufficient to render the transcription of IFNa3. This effect was attenuated after deletion or mutation of the IRF3 binding sites. Taken together, our findings illustrate the distinct transcriptional profiling of fish macrophages triggered by poly(I:C). Also, this work provides new insights into the molecular mechanism underpinning coordinated activation of pathogen recognition and signaling transduction in the antiviral responses of non-model fish species.
Collapse
Affiliation(s)
- Qingfei Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Mengjiao Wu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Si Zhu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, People's Republic of China.
| |
Collapse
|
30
|
Inguglia L, Chiaramonte M, Di Stefano V, Schillaci D, Cammilleri G, Pantano L, Mauro M, Vazzana M, Ferrantelli V, Nicolosi R, Arizza V. Salmo salar fish waste oil: Fatty acids composition and antibacterial activity. PeerJ 2020; 8:e9299. [PMID: 32596043 PMCID: PMC7307567 DOI: 10.7717/peerj.9299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Fish by-products are generally used to produce fishmeal or fertilizers, with fish oil as a by-product. Despite their importance, fish wastes are still poorly explored and characterized and more studies are needed to reveal their potentiality. The goal of the present study was to qualitatively characterize and investigate the antimicrobial effects of the fish oil extracted from Salmo salar waste samples and to evaluate the potential use of these compounds for treating pathogen infections. METHODS Salmo salar waste samples were divided in two groups: heads and soft tissues. Fatty acids composition, and in particular the content in saturated (SAFAs), mono-unsaturated (MUFAs) and Polyunsaturated (PUFAs) fatty acids, was characterized through GC/MS Thermo Focus GC-DSQ II equipped with a ZB-5 fused silica capillary tubes column. The antimicrobial activity of the salmon waste oils was evaluated through the Minimum Inhibitory Concentration assay and the antibiotics contamination was determined by Liquid Chromatography with tandem Mass Spectrometry (LC-MS/MS) analysis. All experiments were done at least in triplicate. RESULTS GC/MS analysis has shown the specific fatty acid composition of the salmon waste oils and their enrichment in MUFAs and PUFAs, with special reference to omega-3, -6, -7, -9 fatty acids. Furthermore, our study has highlighted the antimicrobial activity of the fish waste oil samples against two Gram+ and Gram- bacterial strains. CONCLUSIONS These data confirm that the fish waste is still quantitatively and qualitatively an important source of available biological properties that could be extracted and utilized representing an important strategy to counteract infective diseases in the context of the circular economy.
Collapse
Affiliation(s)
| | | | | | | | | | - Licia Pantano
- Istituto Zooprofilattico della Sicilia “A.Mirri”, Palermo, Italy, Italy
| | - Manuela Mauro
- STEBICEF, University of Palermo, Palermo, Italy, Italy
| | | | | | | | | |
Collapse
|
31
|
Smith NC, Christian SL, Woldemariam NT, Clow KA, Rise ML, Andreassen R. Characterization of miRNAs in Cultured Atlantic Salmon Head Kidney Monocyte-Like and Macrophage-Like Cells. Int J Mol Sci 2020; 21:ijms21113989. [PMID: 32498303 PMCID: PMC7312525 DOI: 10.3390/ijms21113989] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
Abstract
Macrophages are among the first cells to respond to infection and disease. While microRNAs (miRNAs) are involved in the process of monocyte-to-macrophage differentiation in mammals, less is known in teleost fish. Here, Atlantic salmon head kidney leukocytes (HKLs) were used to study the expression of miRNAs in response to in vitro culture. The morphological analysis of cultures showed predominantly monocyte-like cells on Day 1 and macrophage-like cells on Day 5, suggesting that the HKLs had differentiated from monocytes to macrophages. Day 5 HKLs also contained a higher percentage of phagocytic cells. Small RNA sequencing and qPCR analysis were applied to examine the miRNA diversity and expression. There were 370 known mature Atlantic salmon miRNAs in HKLs. Twenty-two miRNAs (15 families) were downregulated while 44 miRNAs (25 families) were upregulated on Day 5 vs. Day 1. Mammalian orthologs of many of the differentially expressed (DE) miRNAs are known to regulate macrophage activation and differentiation, while the teleost-specific miR-2188, miR-462 and miR-731 were also DE and are associated with immune responses in fish. In silico predictions identified several putative target genes of qPCR-validated miRNAs associated with vertebrate macrophage differentiation. This study identified Atlantic salmon miRNAs likely to influence macrophage differentiation, providing important knowledge for future functional studies.
Collapse
Affiliation(s)
- Nicole C. Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John’s, NL A1C 5S7, Canada; (N.C.S.); (K.A.C.)
| | - Sherri L. Christian
- Department of Biochemistry, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John’s, NL A1B 3X9, Canada;
| | - Nardos T. Woldemariam
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, N-0130 Oslo, Norway; (N.T.W.); (R.A.)
| | - Kathy A. Clow
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John’s, NL A1C 5S7, Canada; (N.C.S.); (K.A.C.)
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John’s, NL A1C 5S7, Canada; (N.C.S.); (K.A.C.)
- Correspondence: ; Tel.: +1-709-864-7478
| | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, N-0130 Oslo, Norway; (N.T.W.); (R.A.)
| |
Collapse
|
32
|
Xue X, Hall JR, Caballero-Solares A, Eslamloo K, Taylor RG, Parrish CC, Rise ML. Liver Transcriptome Profiling Reveals That Dietary DHA and EPA Levels Influence Suites of Genes Involved in Metabolism, Redox Homeostasis, and Immune Function in Atlantic Salmon (Salmo salar). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:263-284. [PMID: 32040779 DOI: 10.1007/s10126-020-09950-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/17/2020] [Indexed: 05/09/2023]
Abstract
The optimal dietary requirement of omega-3 long-chain polyunsaturated fatty acids (ω3 LC-PUFA), namely docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), for Atlantic salmon that promotes growth and health warrants careful investigation. We used 44K microarrays to study the influence of increasing levels of dietary DHA + EPA (0, 1.0, and 1.4% of the diet, as formulated) in the presence of high linoleic acid (LA) on Atlantic salmon growth and liver transcriptome. After a 14-week feeding trial, Atlantic salmon fed diet ω3LC0 (i.e. 0% of DHA + EPA) showed significantly lower final weight and weight gain, and higher feed conversion ratio compared with ω3LC1.0 and ω3LC1.4 diet groups. The microarray experiment identified 55 and 77 differentially expressed probes (Rank Products analyses; PFP < 10%) in salmon fed diets ω3LC1.4 and ω3LC1.0 compared with those fed diet ω3LC0, respectively. The comparison between ω3LC1.4 and ω3LC1.0 revealed 134 differentially expressed probes. The microarray results were confirmed by qPCR analyses of 22 microarray-identified transcripts. Several key genes involved in fatty acid metabolism including LC-PUFA synthesis were upregulated in fish fed ω3LC0 compared with both other groups. Hierarchical clustering and linear regression analyses of liver qPCR and fatty acid composition data demonstrated significant correlations. In the current study, 1.0% ω3 LC-PUFA seemed to be the minimum requirement for Atlantic salmon based on growth performance; however, multivariate statistical analyses (PERMANOVA and SIMPER) showed that fish fed ω3LC1.0 and ω3LC1.4 diets had similar hepatic fatty acid profiles but marked differences in the transcript expression of biomarker genes involved in redox homeostasis (mgst1), immune responses (mxb, igmb, irf3, lect2a, srk2, and lyz2), and LC-PUFA synthesis (srebp1, fadsd5, and elovl2). This research has provided new insights into dietary requirement of DHA and EPA and their impact on physiologically important pathways in addition to lipid metabolism in Atlantic salmon.
Collapse
Affiliation(s)
- Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Richard G Taylor
- Cargill Animal Nutrition, 10383 165th Avenue NW, Elk River, MN, 55330, USA
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
33
|
Umasuthan N, Xue X, Caballero-Solares A, Kumar S, Westcott JD, Chen Z, Fast MD, Skugor S, Nowak BF, Taylor RG, Rise ML. Transcriptomic Profiling in Fins of Atlantic Salmon Parasitized with Sea Lice: Evidence for an Early Imbalance Between Chalimus-Induced Immunomodulation and the Host's Defense Response. Int J Mol Sci 2020; 21:E2417. [PMID: 32244468 PMCID: PMC7177938 DOI: 10.3390/ijms21072417] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 01/08/2023] Open
Abstract
Parasitic sea lice (e.g., Lepeophtheirus salmonis) cause costly outbreaks in salmon farming. Molecular insights into parasite-induced host responses will provide the basis for improved management strategies. We investigated the early transcriptomic responses in pelvic fins of Atlantic salmon parasitized with chalimus I stage sea lice. Fin samples collected from non-infected (i.e. pre-infected) control (PRE) and at chalimus-attachment sites (ATT) and adjacent to chalimus-attachment sites (ADJ) from infected fish were used in profiling global gene expression using 44 K microarrays. We identified 6568 differentially expressed probes (DEPs, FDR < 5%) that included 1928 shared DEPs between ATT and ADJ compared to PRE. The ATT versus ADJ comparison revealed 90 DEPs, all of which were upregulated in ATT samples. Gene ontology/pathway term network analyses revealed profound changes in physiological processes, including extracellular matrix (ECM) degradation, tissue repair/remodeling and wound healing, immunity and defense, chemotaxis and signaling, antiviral response, and redox homeostasis in infected fins. The QPCR analysis of 37 microarray-identified transcripts representing these functional themes served to confirm the microarray results with a significant positive correlation (p < 0.0001). Most immune/defense-relevant transcripts were downregulated in both ATT and ADJ sites compared to PRE, suggesting that chalimus exerts immunosuppressive effects in the salmon's fins. The comparison between ATT and ADJ sites demonstrated the upregulation of a suite of immune-relevant transcripts, evidencing the salmon's attempt to mount an anti-lice response. We hypothesize that an imbalance between immunomodulation caused by chalimus during the early phase of infection and weak defense response manifested by Atlantic salmon makes it a susceptible host for L. salmonis.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| | - Jillian D. Westcott
- Fisheries and Marine Institute, Memorial University of Newfoundland, P.O. Box 4920, St. John’s, NL A1C 5R3, Canada; (J.D.W.); (Z.C.)
| | - Zhiyu Chen
- Fisheries and Marine Institute, Memorial University of Newfoundland, P.O. Box 4920, St. John’s, NL A1C 5R3, Canada; (J.D.W.); (Z.C.)
| | - Mark D. Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Stanko Skugor
- Cargill Aqua Nutrition, Cargill, Sea Lice Research Center (SLRC), Hanaveien 17, 4327 Sandnes, Norway;
| | - Barbara F. Nowak
- Institute of Marine and Antarctic Studies, University of Tasmania, Locked Bag 1370, Launceston 7250, TAS, Australia;
| | - Richard G. Taylor
- Cargill Animal Nutrition, 10383 165th Avenue NW, Elk River, MN 55330, USA;
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| |
Collapse
|
34
|
Eslamloo K, Kumar S, Caballero-Solares A, Gnanagobal H, Santander J, Rise ML. Profiling the transcriptome response of Atlantic salmon head kidney to formalin-killed Renibacterium salmoninarum. FISH & SHELLFISH IMMUNOLOGY 2020; 98:937-949. [PMID: 31770640 DOI: 10.1016/j.fsi.2019.11.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/17/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Renibacterium salmoninarum is a Gram-positive, intracellular bacterial pathogen that causes Bacterial Kidney Disease (BKD) in Atlantic salmon (Salmo salar). The host transcriptomic response to this immune-suppressive pathogen remains poorly understood. To identify R. salmoninarum-responsive genes, Atlantic salmon were intraperitoneally injected with a low (5 × 105 cells/kg, Low-Rs) or high (5 × 107 cells/kg; High-Rs) dose of formalin-killed R. salmoninarum bacterin or phosphate-buffered saline (PBS control); head kidney samples were collected before and 24 h after injection. Using 44K microarray analysis, we identified 107 and 345 differentially expressed probes in response to R. salmoninarum bacterin (i.e. High-Rs vs. PBS control) by Significance Analysis of Microarrays (SAM) and Rank Products (RP), respectively. Twenty-two microarray-identified genes were subjected to qPCR assays, and 17 genes were confirmed as being significantly responsive to the bacterin. There was an up-regulation in expression of genes playing putative roles as immune receptors and antimicrobial effectors. Genes with putative roles as pathogen recognition (e.g. clec12b and tlr5) or immunoregulatory (e.g. tnfrsf6b and tnfrsf11b) receptors were up-regulated in response to R.salmoninarum bacterin. Also, chemokines and a chemokine receptor showed opposite regulation [up-regulation of effectors (i.e. ccl13 and ccl) and down-regulation of cxcr1] in response to the bacterin. The present study identified and validated novel biomarker genes (e.g. ctsl1, lipe, cldn4, ccny) that can be used to assess Atlantic salmon response to R. salmoninarum, and will be valuable in the development of tools to combat BKD.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Hajarooba Gnanagobal
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Javier Santander
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
35
|
Ignatz EH, Braden LM, Benfey TJ, Caballero-Solares A, Hori TS, Runighan CD, Fast MD, Westcott JD, Rise ML. Impact of rearing temperature on the innate antiviral immune response of growth hormone transgenic female triploid Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2020; 97:656-668. [PMID: 31891812 DOI: 10.1016/j.fsi.2019.12.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
AquAdvantage Salmon (growth hormone transgenic female triploid Atlantic salmon) are a faster-growing alternative to conventional farmed diploid Atlantic salmon. To investigate optimal rearing conditions for their commercial production, a laboratory study was conducted in a freshwater recirculating aquaculture system (RAS) to examine the effect of rearing temperature (10.5 °C, 13.5 °C, 16.5 °C) on their antiviral immune and stress responses. When each temperature treatment group reached an average weight of 800 g, a subset of fish were intraperitoneally injected with either polyriboinosinic polyribocytidylic acid (pIC, a viral mimic) or an equal volume of sterile phosphate-buffered saline (PBS). Blood and head kidney samples were collected before injection and 6, 24 and 48 h post-injection (hpi). Transcript abundance of 7 antiviral biomarker genes (tlr3, lgp2, stat1b, isg15a, rsad2, mxb, ifng) was measured by real-time quantitative polymerase chain reaction (qPCR) on head kidney RNA samples. Plasma cortisol levels from blood samples collected pre-injection and from pIC and PBS groups at 24 hpi were quantified by ELISA. While rearing temperature and treatment did not significantly affect circulating cortisol, all genes tested were significantly upregulated by pIC at all three temperatures (except for tlr3, which was only upregulated in the 10.5 °C treatment). Target gene activation was generally observed at 24 hpi, with most transcript levels decreasing by 48 hpi in pIC-injected fish. Although a high amount of biological variability in response to pIC was evident across all treatments, rearing temperature significantly influenced transcript abundance and/or fold-changes comparing time- and temperature-matched pIC- and PBS-injected fish for several genes (tlr3, lgp2, stat1b, isg15a, rsad2 and ifng) at 24 hpi. As an example, significantly higher fold-changes of rsad2, isg15a and ifng were found in fish reared at 10.5 °C when compared to 16.5 °C. Multivariate analysis confirmed that rearing temperature modulated antiviral immune response. The present experiment provides novel insight into the relationship between rearing temperature and innate antiviral immune response in AquAdvantage Salmon.
Collapse
Affiliation(s)
- Eric H Ignatz
- AquaBounty Canada, 718 Route 310, Fortune, PE, C0A 2B0, Canada; Memorial University, Fisheries and Marine Institute, 155 Ridge Road, St. John's, NL, A1C 5R3, Canada; Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Laura M Braden
- AquaBounty Canada, 718 Route 310, Fortune, PE, C0A 2B0, Canada; Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PE, C1A 4P3, Canada.
| | - Tillmann J Benfey
- University of New Brunswick, Department of Biology, 10 Bailey Drive, Fredericton, NB, E3B 5A3, Canada.
| | - Albert Caballero-Solares
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Tiago S Hori
- Center for Aquaculture Technologies Canada, 20 Hope Street, Souris, PE, C0A 2B0, Canada.
| | - C Dawn Runighan
- AquaBounty Canada, 718 Route 310, Fortune, PE, C0A 2B0, Canada.
| | - Mark D Fast
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PE, C1A 4P3, Canada.
| | - Jillian D Westcott
- Memorial University, Fisheries and Marine Institute, 155 Ridge Road, St. John's, NL, A1C 5R3, Canada.
| | - Matthew L Rise
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
36
|
Carvajal-Lopez P, Von Borstel FD, Torres A, Rustici G, Gutierrez J, Romero-Vivas E. Microarray-Based Quality Assessment as a Supporting Criterion for de novo Transcriptome Assembly Selection. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:198-206. [PMID: 30059314 DOI: 10.1109/tcbb.2018.2860997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
RNA-Sequencing and de novo assembly have enabled the analysis of species with non-available reference transcriptomes, although intrinsic features (biological and technical) induce errors in the reconstruction. A strategy to resolve these errors consists of varying assembling process parameters to generate multiple reconstructions. However, the best assembly selection remains a challenge. Quantitative metrics for quality assessment have been inconsistent when compared with pertinent references. In this paper, a criterion for supporting assembly selection based on mapping DNA microarray hybridized probes to assembly sets is proposed. Mouse and fruit fly RNA-Seq datasets were assembled with standard de novo procedures. Quality assessment was estimated using quantitative metrics and the proposed criterion. The assembly that best mapped to the available reference transcriptomes of these model species provided the highest quality assembly. The hybridized probes identified the best assemblies, whereas quantitative metrics remained inconsistent. For example, subtle probe mapping difference of 0.25 percent, but statistically significant (ANOVA, p < 0.05), enabled the assembly selection that led to identify 3,719 more contigs and led to 1,049 further mapped contigs to the mouse reference transcriptome. The microarray data availability for non-model species makes the proposed criterion suitable for quality assessment of multiple de novo assembly strategies.
Collapse
|
37
|
Ou M, Huang R, Luo Q, Xiong L, Chen K, Wang Y. Characterisation of scavenger receptor class B type 1 in rare minnow (Gobiocypris rarus). FISH & SHELLFISH IMMUNOLOGY 2019; 89:614-622. [PMID: 30991152 DOI: 10.1016/j.fsi.2019.04.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Scavenger receptor class B type 1 (SRB1) is a transmembrane protein belonging to the scavenger receptors (SRs) family and it plays an important role in viral entry. Not much is known on SRB1 in teleost fish. Grass carp reovirus (GCRV) cause huge economic losses in grass carp industry. In this study, rare minnow (Gobiocypris rarus) was used as a model fish to investigate the mechanism of GCRV infection, which is sensitive to GCRV. The structure of SRB1 gene in G. rarus (GrSRB1) was cloned and elucidated. GrSRB1 is composed of 13 exons and 12 introns, and its full-length cDNA is 2296 bp in length, with 1521 bp open reading frame (ORF) that encodes a 506 amino acid protein. The GrSRB1 protein is predicted to contain a typical CD36 domain and two transmembrane regions. In G. rarus, GrSRB1 is expressed strongly in the liver (L), intestines (I), brain (B) and muscle (M), while it is expressed poorly in the heart (H), middle kidney (MK), head kidney (HK) and gills (G). After infection with GCRV, GrSRB1 expression was up-regulated in main immune tissues during the early infection period. Moreover, co-immunoprecipitation assays revealed that GrSRB1 could interact with the outer capsid protein of GCRV (VP5 and VP7). These results suggest that GrSRB1 could be a receptor for GCRV. We have managed to characterize the GrSRB1 gene and provide evidence for its potential functions for GCRV entry into host cells.
Collapse
Affiliation(s)
- Mi Ou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qing Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Lv Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Kunci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
38
|
Eslamloo K, Ghorbani A, Xue X, Inkpen SM, Larijani M, Rise ML. Characterization and Transcript Expression Analyses of Atlantic Cod Viperin. Front Immunol 2019; 10:311. [PMID: 30894853 PMCID: PMC6414715 DOI: 10.3389/fimmu.2019.00311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/06/2019] [Indexed: 12/29/2022] Open
Abstract
Viperin is a key antiviral effector in immune responses of vertebrates including the Atlantic cod (Gadus morhua). Using cloning, sequencing and gene expression analyses, we characterized the Atlantic cod viperin at the nucleotide and hypothetical amino acid levels, and its regulating factors were investigated. Atlantic cod viperin cDNA is 1,342 bp long, and its predicted protein contains 347 amino acids. Using in silico analyses, we showed that Atlantic cod viperin is composed of 5 exons, as in other vertebrate orthologs. In addition, the radical SAM domain and C-terminal sequences of the predicted Viperin protein are highly conserved among various species. As expected, Atlantic cod Viperin was most closely related to other teleost orthologs. Using computational modeling, we show that the Atlantic cod Viperin forms similar overall protein architecture compared to mammalian Viperins. qPCR revealed that viperin is a weakly expressed transcript during embryonic development of Atlantic cod. In adults, the highest constitutive expression of viperin transcript was found in blood compared with 18 other tissues. Using isolated macrophages and synthetic dsRNA (pIC) stimulation, we tested various immune inhibitors to determine the possible regulating pathways of Atlantic cod viperin. Atlantic cod viperin showed a comparable pIC induction to other well-known antiviral genes (e.g., interferon gamma and interferon-stimulated gene 15-1) in response to various immune inhibitors. The pIC induction of Atlantic cod viperin was significantly inhibited with 2-Aminopurine, Chloroquine, SB202190, and Ruxolitinib. Therefore, endosomal-TLR-mediated pIC recognition and signal transducers (i.e., PKR and p38 MAPK) downstream of the TLR-dependent pathway may activate the gene expression response of Atlantic cod viperin. Also, these results suggest that antiviral responses of Atlantic cod viperin may be transcriptionally regulated through the interferon-activated pathway.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Atefeh Ghorbani
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sabrina M Inkpen
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mani Larijani
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
39
|
Caballero-Solares A, Xue X, Parrish CC, Foroutani MB, Taylor RG, Rise ML. Changes in the liver transcriptome of farmed Atlantic salmon (Salmo salar) fed experimental diets based on terrestrial alternatives to fish meal and fish oil. BMC Genomics 2018; 19:796. [PMID: 30390635 PMCID: PMC6215684 DOI: 10.1186/s12864-018-5188-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/19/2018] [Indexed: 01/06/2023] Open
Abstract
Background Dependence on marine natural resources threatens the sustainability of Atlantic salmon aquaculture. In the present study, Atlantic salmon fed for 14 weeks with an experimental diet based on animal by-products and vegetable oil (ABP) exhibited reduced growth performance compared with others fed a fish meal/fish oil based experimental diet (MAR) and a plant protein/vegetable oil-based experimental diet (VEG). To characterize the molecular changes underlying the differences in growth performance, we conducted a 44 K microarray study of the liver transcriptome of the three dietary groups. Results The microarray experiment identified 122 differentially expressed features (Rank Products, PFP < 10%). Based on their associated Gene Ontology terms, 46 probes were classified as metabolic and growth-relevant genes, 25 as immune-related, and 12 as related to oxidation-reduction processes. The microarray results were validated by qPCR analysis of 29 microarray-identified transcripts. Diets significantly modulated the transcription of genes involved in carbohydrate metabolism (gck and pfkfb4), cell growth and proliferation (sgk2 and htra1), apoptosis (gadd45b), lipid metabolism (fabp3, idi1, sqs), and immunity (igd, mx, ifit5, and mhcI). Hierarchical clustering and linear correlation analyses were performed to find gene expression patterns among the qPCR-analyzed transcripts, and connections between them and muscle and liver lipid composition. Overall, our results indicate that changes in the liver transcriptome and tissue lipid composition were driven by cholesterol synthesis up-regulation by ABP and VEG diets, and the lower carbohydrate intake in the ABP group. Two of the microarray-identified genes (sgk2 and htra1) might be key to explaining glucose metabolism regulation and the dietary-modulation of the immune system in fish. To evaluate the potential of these genes as predictive biomarkers, we subjected the qPCR data to a stepwise discriminant analysis. Three sets of no more than four genes were found to be able to predict, with high accuracy (67–94%), salmon growth and fatty acid composition. Conclusions This study provides new findings on the impact of terrestrial animal and plant products on the nutrition and health of farmed Atlantic salmon, and a new method based on gene biomarkers for potentially predicting desired phenotypes, which could help formulate superior feeds for the Atlantic salmon aquaculture industry. Electronic supplementary material The online version of this article (10.1186/s12864-018-5188-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Maryam Beheshti Foroutani
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | | | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
40
|
Palstra AP, Kals J, Blanco Garcia A, Dirks RP, Poelman M. Immunomodulatory Effects of Dietary Seaweeds in LPS Challenged Atlantic Salmon Salmo salar as Determined by Deep RNA Sequencing of the Head Kidney Transcriptome. Front Physiol 2018; 9:625. [PMID: 29910738 PMCID: PMC5992350 DOI: 10.3389/fphys.2018.00625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/09/2018] [Indexed: 02/03/2023] Open
Abstract
Seaweeds may represent immuno-stimulants that could be used as health-promoting fish feed components. This study was performed to gain insights into the immunomodulatory effects of dietary seaweeds in Atlantic salmon. Specifically tested were 10% inclusion levels of Laminaria digitata (SW1) and a commercial blend of seaweeds (Oceanfeed®) (SW2) against a fishmeal based control diet (FMC). Differences between groups were assessed in growth, feed conversion ratio and blood parameters hematocrit and hemoglobin. After a LPS challenge of fish representing each of the three groups, RNAseq was performed on the head kidney as major immune organ to determine transcriptomic differences in response to the immune activation. Atlantic salmon fed with dietary seaweeds did not show major differences in performance in comparison with fishmeal fed fish. RNAseq resulted in ∼154 million reads which were mapped against a NCBI Salmo salar reference and against a de novo assembled S. salar reference for analyses of expression of immune genes and ontology of immune processes among the 87,600 cDNA contigs. The dietary seaweeds provoked a more efficient immune response which involved more efficient identification of the infection site, and processing and presentation of antigens. More specifically, chemotaxis and the chemokine-mediated signaling were improved and therewith the defense response to Gram-positive bacterium reduced. Specific Laminaria digitata effects included reduction of the interferon-gamma-mediated signaling. Highly upregulated and specific for this diet was the expression of major histocompatibility complex class I-related gene protein. The commercial blend of seaweeds caused more differential expression than Laminaria digitata and improved immune processes such as receptor-mediated endocytosis and cell adhesion, and increased the expression of genes involved in response to lipopolysaccharide and inflammatory response. Particularly, expression of many important immune receptors was up-regulated illustrating increased responsiveness. NF-kappa-B inhibitor alpha is an important gene that marked the difference between both seaweed diets as Laminaria digitata inhibits the expression for this cytokine while the blend of seaweeds stimulates it. It can be concluded that the inclusion of seaweeds such as Laminaria digitata can have important modulatory effects on the immune capacity of Atlantic salmon resulting in a more efficient immune response.
Collapse
Affiliation(s)
- Arjan P Palstra
- Wageningen Marine Research, Wageningen University & Research, Yerseke, Netherlands.,Department of Animal Breeding and Genomics, Wageningen Livestock Research, Wageningen University & Research, Wageningen, Netherlands
| | - Jeroen Kals
- Wageningen Marine Research, Wageningen University & Research, Yerseke, Netherlands.,Department of Animal Nutrition, Wageningen Livestock Research, Wageningen University & Research, Wageningen, Netherlands
| | - Ainhoa Blanco Garcia
- Wageningen Marine Research, Wageningen University & Research, Yerseke, Netherlands
| | | | - Marnix Poelman
- Wageningen Marine Research, Wageningen University & Research, Yerseke, Netherlands
| |
Collapse
|