1
|
Ding X, Fan L, Xu L, Ma X, Meng P, Li J, Li J, Yue J. Incomplete Immune Reconstitution and Traditional Chinese Medicine in Patients with HIV/AIDS: Challenges and Perspectives. Infect Drug Resist 2024; 17:5827-5838. [PMID: 39737090 PMCID: PMC11683152 DOI: 10.2147/idr.s497083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/12/2024] [Indexed: 01/01/2025] Open
Abstract
Antiretroviral therapy can reduce human immunodeficiency virus (HIV) load to undetectable levels and restore CD4+ T cells to rebuild immune function in patients with HIV. However, some patients fail to achieve immune reconstitution despite treatment. Traditional Chinese medicine is an important branch of complementary and alternative medicine for the treatment of HIV infection, and a growing number of studies has demonstrated that traditional Chinese medicine can increase CD4+ T cell counts in patients, thereby promoting immune reconstitution, ameliorating symptoms and signs, and improving quality of life. Here, we review pathogenesis in immunological non-responders and research into their treatment with traditional Chinese medicine. Furthermore, we summarize potential future research directions, including elucidation of how traditional Chinese medicine can regulate CD4+ T cells to reduce opportunistic infections and improve quality of life in immunological non-responders.
Collapse
Affiliation(s)
- Xue Ding
- Department of Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Leilei Fan
- Department of Cardiovascular, The First People’s Hospital of Zhengzhou, Zhengzhou, People’s Republic of China
| | - Liran Xu
- Department of the First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Xiuxia Ma
- Department of AIDS Clinical Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Pengfei Meng
- Department of AIDS Clinical Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Jie Li
- Department of AIDS Clinical Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Jiahe Li
- Department of the First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Jingyu Yue
- Department of AIDS Clinical Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| |
Collapse
|
2
|
Tian X, Xie Y, Yu L, Yao P, Dong M, Jin C, Wu N. Analysis of the gut microbiota and fecal metabolites in people living with HIV. Microbiol Spectr 2024; 12:e0023824. [PMID: 39291988 PMCID: PMC11537111 DOI: 10.1128/spectrum.00238-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
The gut microbiome has a pivotal function in human immunodeficiency virus (HIV). However, the associated alterations in the gut microbiome-host interaction are unknown. Herein, we aimed to investigate the gut microbiota and fecal metabolites in people living with HIV (PLWH). We collected stool samples from 70 PLWH and 34 healthy controls (HCs) and carried out 16S rRNA gene sequencing and analyzed the metabolites using liquid chromatography-mass spectrometry. Firmicutes, Proteobacteria, Actinobacteriota, and Bacteroidota were the most abundant phyla in both groups. Among genera, the level of Escherichia-Shigella was upregulated significantly in the PLWH group, whereas in the HC group, Bacteroides spp. were upregulated. Prediction of microbial function indicated significant reductions in alanine, aspartate, glutamate, and histidine metabolism. Furthermore, a comparison of the fecal metabolites between the HC and PLWH groups identified 38 differentially abundant metabolites in four differentially enriched human metabolic pathways. According to Spearman correlation analysis, there are close relationships between four differentially abundant microbiota members and five differentially abundant fecal metabolites, which might influence particular human metabolic pathways. Our findings provide a basis for further experimental investigation of the contribution of the gut microbiota and its associated metabolites to HIV/AIDS, providing a novel perspective for the further study of HIV/AIDS.IMPORTANCEGrowing evidence demonstrates that the gut microbiota is associated with HIV. This study investigated changes in the gut microbiota and fecal metabolites in PLWH. We identified 38 differentially abundant metabolites in four differentially enriched human metabolic pathways. Moreover, close relationships were noted between the four differentially abundant microbiota members and five differentially abundant fecal metabolites, which might influence particular human metabolic pathways. Thus, to benefit PLWH, potential pathobionts could be reduced (e.g., g_Enterococcus); probiotics could be increased (e.g., g_Faecalibacterium and g_Agathobacter); or certain metabolites (e.g., N-acetyl-L-phenylalanine and trehalose) could be reduced by changes in diet or the use of nutritional supplements. Our results provide insights into the interaction between the gut microbiota and the host, identifying possible targets that might be beneficial for PLWH.
Collapse
Affiliation(s)
- Xuebin Tian
- Cell Biology Research Platform, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yiwen Xie
- Cell Biology Research Platform, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lifeng Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong medicine and Health Key Laboratory of Emergency Medicine, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong, China
| | - Peng Yao
- Department of Infectious Disease, Zhejiang Qingchun Hospital, Hangzhou, Zhejiang, China
| | - Mingqing Dong
- Department of Infectious Disease, Zhejiang Qingchun Hospital, Hangzhou, Zhejiang, China
| | - Changzhong Jin
- Cell Biology Research Platform, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Nanping Wu
- Cell Biology Research Platform, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Gáspár Z, Nagavci B, Szabó BG, Lakatos B. Gut Microbiome Alteration in HIV/AIDS and the Role of Antiretroviral Therapy-A Scoping Review. Microorganisms 2024; 12:2221. [PMID: 39597610 PMCID: PMC11596264 DOI: 10.3390/microorganisms12112221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
(1) Background: The gut microbiota plays a crucial role in chronic immune activation associated with human immunodeficiency virus (HIV) infection, acquired immune deficiency syndrome (AIDS) pathogenesis, non-AIDS-related comorbidities, and mortality among people living with HIV (PLWH). The effects of antiretroviral therapy on the microbiome remain underexplored. This study aims to map the evidence of the impact of integrase strand transfer inhibitors (INSTI) and non-nucleoside reverse transcriptase inhibitors (NNRTI) on the gut microbiota of PLWH. (2) Methods: A scoping review was conducted using PubMed, Web of Science, and Embase, with reports collected following PRISMA for Scoping Reviews (PRISMA-ScR). (3) Results: Evidence suggests that INSTI-based regimes generally promote the restoration of alpha diversity, bringing it closer to that of seronegative controls, while beta diversity remains largely unchanged. INSTI-based therapies are suggested to be associated with improvements in microbiota composition and a tendency toward reduced inflammatory markers. In contrast, NNRTI-based treatments demonstrate limited recovery of alpha diversity and are linked to an increase in proinflammatory bacteria. (4) Conclusions: Based on the review of the current literature, it is indicated that INSTI-based antiretroviral therapy (ART) therapy facilitates better recovery of the gut microbiome.
Collapse
Affiliation(s)
- Zsófia Gáspár
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
| | - Blin Nagavci
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
| | - Bálint Gergely Szabó
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Hematology, Semmelweis University, H-1097 Budapest, Hungary
| | - Botond Lakatos
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Hematology, Semmelweis University, H-1097 Budapest, Hungary
| |
Collapse
|
4
|
Markakis K, Tsachouridou O, Georgianou E, Pilalas D, Nanoudis S, Metallidis S. Weight Gain in HIV Adults Receiving Antiretroviral Treatment: Current Knowledge and Future Perspectives. Life (Basel) 2024; 14:1367. [PMID: 39598166 PMCID: PMC11595778 DOI: 10.3390/life14111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
Body weight is impacted by several individual host and environmental factors. In a person living with HIV (PLWH), weight is also influenced by the disease stage. Wasting syndrome is derived from disease progression, and it can be reversed by the effective use of highly active antiretroviral therapy (HAART). Body weight alterations have been studied and compared in several clinical ART trials, and they differ according to antiviral regimens. The newer integrase strand transfer inhibitors (INSTIs), such as bictegravir and dolutegravir, especially when co-administered with tenofovir alafenamide fumarate (TAF), seem to lead to greater weight increases compared to regimens that include tenofovir disoproxil fumarate (TDF), which seem to have an attenuating effect on weight gain. Nevertheless, despite the established association between INSTI and TAF and the negative impact on weight, more recent data suggest a more cautious approach when HAART treatment decisions are taken. In this manuscript, we review weight changes among PLWH receiving HAART and the relevant underlying pathogenic mechanisms described in recent literature. We try to provide a more critical appraisal of the available data and to underline the challenges in assessing the role of HAART in weight changes in both ART initiation and setting switching.
Collapse
Affiliation(s)
| | - Olga Tsachouridou
- Infectious Diseases Division, 1st Internal Medicine Department, AHEPA University Hospital, 54636 Thessaloniki, Greece; (K.M.); (E.G.); (S.N.); (S.M.)
| | | | | | | | | |
Collapse
|
5
|
Lee JJ, Kim KM, Kim HJ, Sohn J, Song JW, Koo HY, Lee S. The Consumption of Lacticaseibacillus rhamnosus HDB1258 Changes Human Gut Microbiota and Induces Immune Enhancement Through NK Cell Activation. Microorganisms 2024; 12:2109. [PMID: 39458418 PMCID: PMC11510592 DOI: 10.3390/microorganisms12102109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The gut microbiota can play an important role in enhancing the host's complex immune system. In this regard, many studies indicate that probiotics consumption has a beneficial impact on alterations in the composition of the gut microbiota. Our previous study demonstrated that the oral administration of Lacticaseibacillus rhamnosus HDB1258 (HDB1258) enhances immune cell activity and alters the composition of gut microbiota in C57BL/6 mice, thereby showing its potential as a novel immunostimulatory ingredient. Therefore, this clinical trial assessed the effects of HDB1258 on human natural killer (NK) cell activity and changes in gut microbiota. It also investigated the correlation between gut microbiota and NK cell activity following HDB1258 supplementation. Participants (n = 71) were randomized into placebo and HDB1258 groups, and NK cell activity and gut microbiota were investigated at baseline (week 0) and endline (week 8). The present study showed that HDB1258 significantly increased NK cell activity and resulted in positive regulatory effects on the gut microbial balance in subjects compared to the placebo group. HDB1258 affected the gut microbial balance by inducing the growth of beneficial bacteria such as Lactococcus and Sutterella. Especially, the changes in Escherichia-Shigella composition were negatively correlated with the changes in NK cell activity after HDB1258 consumption. There was also a positive correlation between the NK cell activity in the HDB1258 group and the composition of Prevotella 9 and Adlercreutzia. These findings suggest that HDB1258 may improve the host's intestinal environment by regulating gut bacteria related to immune response and promote NK cell activation. This study was registered at clinical research information service (CRIS: KCT0008204).
Collapse
Affiliation(s)
- Jin-Joo Lee
- Biohealthcare R&D Center, Hyundai Bioland Co., Ltd., Manhae-ro, Danwon-gu, Ansan 15407, Republic of Korea; (J.-J.L.); (H.-J.K.); (J.S.); (J.-W.S.)
| | - Kyung-Min Kim
- Biohealthcare R&D Center, Hyundai Bioland Co., Ltd., Manhae-ro, Danwon-gu, Ansan 15407, Republic of Korea; (J.-J.L.); (H.-J.K.); (J.S.); (J.-W.S.)
| | - Hyeon-Jeong Kim
- Biohealthcare R&D Center, Hyundai Bioland Co., Ltd., Manhae-ro, Danwon-gu, Ansan 15407, Republic of Korea; (J.-J.L.); (H.-J.K.); (J.S.); (J.-W.S.)
| | - Johann Sohn
- Biohealthcare R&D Center, Hyundai Bioland Co., Ltd., Manhae-ro, Danwon-gu, Ansan 15407, Republic of Korea; (J.-J.L.); (H.-J.K.); (J.S.); (J.-W.S.)
| | - Ji-Won Song
- Biohealthcare R&D Center, Hyundai Bioland Co., Ltd., Manhae-ro, Danwon-gu, Ansan 15407, Republic of Korea; (J.-J.L.); (H.-J.K.); (J.S.); (J.-W.S.)
| | - Hye-Yeon Koo
- Department of Family Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Family Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seunghun Lee
- Biohealthcare R&D Center, Hyundai Bioland Co., Ltd., Manhae-ro, Danwon-gu, Ansan 15407, Republic of Korea; (J.-J.L.); (H.-J.K.); (J.S.); (J.-W.S.)
| |
Collapse
|
6
|
Atugonza C, Muwonge A, Najjuka CF, Kateete DP, Katagirya E, Mwesigwa S, Asiimwe B. Early changes in the gut microbiome among HIV-infected Individuals in Uganda initiating daily TMP/SMX. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.07.24315002. [PMID: 39417122 PMCID: PMC11482993 DOI: 10.1101/2024.10.07.24315002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Daily cotrimoxazole (TMP/SXT) prophylaxis is part of the HIV treatment package for all new HIV-infected individuals in Uganda. Although this treatment has shown reduced morbidity and mortality in HIV, it remains controversial due to its contribution to developing antibiotic-resistant bacteria. Moreover, the effects of daily use of a broad-spectrum antibiotic on the gut microbiome remain unknown. To study the early effects, we analysed shotgun metagenome sequence data from stool samples of five newly HIV-infected individuals initiating TMP/SXT prophylaxis longitudinally for the first 30 days of treatment. Using shotgun metagenomics sequencing, we generated both taxonomic and functional profiles from each patient and compared gut microbial changes Pre- TMP/SXT and post-TMP/SXT on Day 5, Day 14, and Day 30. Daily TMP/SXT prophylaxis resulted in a shift characterised by an enrichment of Prevetollea and Ruminococcus genera members and the depletion of Lactococcus and Bacteroides genera members. Furthermore, these microbial shifts were associated with changes in the functional profile revealed by a differential abundance of pathways of amino acid metabolism, carbohydrate metabolism, and nucleotide biosynthesis linked to members of the Bacteroidaceae and Enterobacteriaceae families. TMP/SXT daily prophylaxis in HIV-infected individuals is associated with dramatic changes in microbial composition and functional profiles; however, other factors such as Age, Gender, HIV clinical stage, and ART regiment are at play. Further investigation is needed to examine the implication of these shifts on clinical management and outcomes among HIV patients.
Collapse
Affiliation(s)
| | - Adrian Muwonge
- Genetics and genomics, Roslin Institute, University of Edinburgh
| | | | - David P. Kateete
- Department of Immunology and Molecular Biology, Makerere University
| | | | | | | |
Collapse
|
7
|
Jones R, Robinson AT, Beach LB, Lindsey ML, Kirabo A, Hinton A, Erlandson KM, Jenkins ND. Exercise to Prevent Accelerated Vascular Aging in People Living With HIV. Circ Res 2024; 134:1607-1635. [PMID: 38781293 PMCID: PMC11126195 DOI: 10.1161/circresaha.124.323975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Given advances in antiretroviral therapy, the mortality rate for HIV infection has dropped considerably over recent decades. However, people living with HIV (PLWH) experience longer life spans coupled with persistent immune activation despite viral suppression and potential toxicity from long-term antiretroviral therapy use. Consequently, PLWH face a cardiovascular disease (CVD) risk more than twice that of the general population, making it the leading cause of death among this group. Here, we briefly review the epidemiology of CVD in PLWH highlighting disparities at the intersections of sex and gender, age, race/ethnicity, and the contributions of social determinants of health and psychosocial stress to increased CVD risk among individuals with marginalized identities. We then overview the pathophysiology of HIV and discuss the primary factors implicated as contributors to CVD risk among PLWH on antiretroviral therapy. Subsequently, we highlight the functional evidence of premature vascular dysfunction as an early pathophysiological determinant of CVD risk among PLWH, discuss several mechanisms underlying premature vascular dysfunction in PLWH, and synthesize current research on the pathophysiological mechanisms underlying accelerated vascular aging in PLWH, focusing on immune activation, chronic inflammation, and oxidative stress. We consider understudied aspects such as HIV-related changes to the gut microbiome and psychosocial stress, which may serve as mechanisms through which exercise can abrogate accelerated vascular aging. Emphasizing the significance of exercise, we review various modalities and their impacts on vascular health, proposing a holistic approach to managing CVD risks in PLWH. The discussion extends to critical future study areas related to vascular aging, CVD, and the efficacy of exercise interventions, with a call for more inclusive research that considers the diversity of the PLWH population.
Collapse
Affiliation(s)
- Raymond Jones
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | - Lauren B. Beach
- Department of Medical Social Sciences, Northwestern, Chicago, IL
- Department of Preventive Medicine, Northwestern, Chicago, IL
| | - Merry L. Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, TN
- Research Service, Nashville VA Medical Center, Nashville, TN
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Nashville, TN
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN
- Vanderbilt Institute for Global Health, Nashville, TN
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | | | - Nathaniel D.M. Jenkins
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| |
Collapse
|
8
|
Salvador PBU, Altavas PJDR, del Rosario MAS, Ornos EDB, Dalmacio LMM. Alterations in the Gut Microbiome Composition of People Living with HIV in the Asia-Pacific Region: A Systematic Review. Clin Pract 2024; 14:846-861. [PMID: 38804398 PMCID: PMC11130874 DOI: 10.3390/clinpract14030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection continues to present a global health issue. Recent studies have explored the potential role of the gut microbiome in HIV infection for novel therapeutic approaches. We investigated the gut microbiome composition of people living with HIV (PLHIV) in the Asia-Pacific region. This review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. An electronic search was conducted in the PubMed/MEDLINE, Scopus, and ScienceDirect databases using keywords such as "HIV", "PLHIV", "AIDS", "gut microbiome", "gut dysbiosis", and "metagenomics". Only peer-reviewed and full-text studies published in English were included. A total of 15 studies from the Asia-Pacific region were included for analysis. Compared to healthy controls, PLHIV showed an increased abundance of Proteobacteria and its genera, which may be considered pathobionts, and decreased abundances of Bacteroidetes and several genera under Firmicutes with known short-chain fatty acid and immunoregulatory activities. Predominant taxa such as Ruminococcaceae and Prevotellaceae were also associated with clinical factors such as CD4 count, the CD4/CD8 ratio, and inflammatory cytokines. This review highlights gut microbiome changes among PLHIV in the Asia-Pacific region, indicating potential bacterial signatures for prognostication. The partial restoration of the microbiome toward beneficial taxa may ensure the long-term success of treatment, promoting immune recovery while maintaining viral load suppression.
Collapse
Affiliation(s)
- Paul Benedic U. Salvador
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (P.J.d.R.A.); (L.M.M.D.)
| | - Patrick Josemaria d. R. Altavas
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (P.J.d.R.A.); (L.M.M.D.)
| | - Mark Angelo S. del Rosario
- Multi-Omics Research Program for Health, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (M.A.S.d.R.); (E.D.B.O.)
| | - Eric David B. Ornos
- Multi-Omics Research Program for Health, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (M.A.S.d.R.); (E.D.B.O.)
- Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
| | - Leslie Michelle M. Dalmacio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (P.J.d.R.A.); (L.M.M.D.)
| |
Collapse
|
9
|
Suda Y, Nakamura K, Matsuyama F, Hamada Y, Makabe H, Narita M, Nagumo Y, Mori T, Kuzumaki N, Narita M. Peripheral-central network analysis of cancer cachexia status accompanied by the polarization of hypothalamic microglia with low expression of inhibitory immune checkpoint receptors. Mol Brain 2024; 17:20. [PMID: 38685046 PMCID: PMC11059753 DOI: 10.1186/s13041-024-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
While the excessive inflammation in cancer cachexia is well-known to be induced by the overproduction of inflammatory mediators in the periphery, microflora disruption and brain dysfunction are also considered to contribute to the induction of cancer cachexia. Hypothalamic microglia play a crucial role in brain inflammation and central-peripheral immune circuits via the production of inflammatory mediators. In the present study, we evaluated possible changes in excessive secretion of gut microbiota-derived endotoxin and the expression timeline of several inflammation-regulatory mediators and their inhibiting modulators in hypothalamic microglia of a mouse model of cancer cachexia following transplantation of pancreatic cancer cells. We demonstrated that the plasma level of lipopolysaccharide (LPS) was significantly increased with an increase in anaerobic bacteria, especially Firmicutes, in the gut at the late stage of tumor-bearing mice that exhibited dramatic appetite loss, sarcopenia and severe peripheral immune suppression. At the early stage, in which tumor-bearing mice had not yet displayed "cachexia symptoms", the mRNA expression of pro-inflammatory cytokines, but not of the neurodegenerative and severe inflammatory modulator lipocalin-2 (LCN2), was significantly increased, whereas at the late "cachexia stage", the level of LCN2 mRNA was significantly increased along with significant decreases in levels of inhibitory immune checkpoint receptors programmed death receptor-1 (PD-1) and CD112R in hypothalamic microglia. In addition, a high density of activated neurons in the paraventricular nucleus (PVN) of the hypothalamus region and a significant increase in corticosterone secretion were found in cachexia model mice. Related to the cachexia state, released corticosterone was clearly increased in normal mice with specific activation of PVN neurons. A marked decrease in the natural killer cell population was also observed in the spleen of mice with robust activation of PVN neurons as well as mice with cancer cachexia. On the other hand, in vivo administration of LPS in normal mice induced hypothalamic microglia with low expression of inhibitory immune checkpoint receptors. These findings suggest that the induction of cancer cachexia may parallel exacerbation of the hypothalamic inflammatory status with polarization to microglia expressed with low levels of inhibitory immune checkpoint receptors following LPS release from the gut microflora.
Collapse
Affiliation(s)
- Yukari Suda
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Keiko Nakamura
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
- Department of Pharmacy, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Fukiko Matsuyama
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
- Japan Small Animal Medical Center, 1-10-4 Higashitokorozawawada, Tokorozawa-Shi, Saitama, 359-0023, Japan
| | - Yusuke Hamada
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hitoshi Makabe
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Michiko Narita
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yasuyuki Nagumo
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Tomohisa Mori
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan.
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan.
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
10
|
Santiago MSA, Avellar MCW, Perobelli JE. Could the gut microbiota be capable of making individuals more or less susceptible to environmental toxicants? Toxicology 2024; 503:153751. [PMID: 38354972 DOI: 10.1016/j.tox.2024.153751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Environmental toxicants are chemical substances capable to impair environmental quality and exert adverse effects on humans and other animals. The main routes of exposure to these pollutants are through the respiratory tract, skin, and oral ingestion. When ingested orally, they will encounter trillions of microorganisms that live in a community - the gut microbiota (GM). While pollutants can disrupt the GM balance, GM plays an essential role in the metabolism and bioavailability of these chemical compounds. Under physiological conditions, strategies used by the GM for metabolism and/or excretion of xenobiotics include reductive and hydrolytic transformations, lyase and functional group transfer reactions, and enzyme-mediated functional transformations. Simultaneously, the host performs metabolic processes based mainly on conjugation, oxidation, and hydrolysis reactions. Thus, due to the broad variety of bacterial enzymes present in GM, the repertoire of microbial transformations of chemicals is considered a key component of the machinery involved in the metabolism of pollutants in humans and other mammals. Among pollutants, metals deserve special attention once contamination by metals is a worldwide problem, and their adverse effects can be observed even at very low concentrations due to their toxic properties. In this review, bidirectional interaction between lead, arsenic, cadmium, and mercury and the host organism and its GM will be discussed given the most recent literature, presenting an analysis of the ability of GM to alter the host organism's susceptibility to the toxic effects of heavy metals, as well as evaluating the extent to which interventions targeting the microbiota could be potential initiatives to mitigate the adverse effects resulting from poisoning by heavy metals. This study is the first to highlight the overlap between some of the bacteria found to be altered by metal exposure and the bacteria that also aid the host organism in the metabolism of these metals. This could be a key factor to determine the beneficial species able to minimize the toxicity of metals in future therapeutic approaches.
Collapse
Affiliation(s)
- Marcella S A Santiago
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil
| | - Maria Christina W Avellar
- Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, Três de Maio, 100, São Paulo, SP 04044-020, Brazil
| | - Juliana E Perobelli
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil.
| |
Collapse
|
11
|
Singh S, Giron LB, Shaikh MW, Shankaran S, Engen PA, Bogin ZR, Bambi SA, Goldman AR, Azevedo JLLC, Orgaz L, de Pedro N, González P, Giera M, Verhoeven A, Sánchez-López E, Pandrea I, Kannan T, Tanes CE, Bittinger K, Landay AL, Corley MJ, Keshavarzian A, Abdel-Mohsen M. Distinct intestinal microbial signatures linked to accelerated systemic and intestinal biological aging. MICROBIOME 2024; 12:31. [PMID: 38383483 PMCID: PMC10882811 DOI: 10.1186/s40168-024-01758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND People living with HIV (PLWH), even when viral replication is controlled through antiretroviral therapy (ART), experience persistent inflammation. This inflammation is partly attributed to intestinal microbial dysbiosis and translocation, which may lead to non-AIDS-related aging-associated comorbidities. The extent to which living with HIV - influenced by the infection itself, ART usage, sexual orientation, or other associated factors - affects the biological age of the intestines is unclear. Furthermore, the role of microbial dysbiosis and translocation in the biological aging of PLWH remains to be elucidated. To investigate these uncertainties, we used a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PLWH on ART and people living without HIV (PLWoH) as controls. RESULTS PLWH exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to PLWoH. Investigating the relationship between microbial translocation and biological aging, PLWH had decreased levels of tight junction proteins in the intestines, along with increased microbial translocation. This intestinal permeability correlated with faster biological aging and increased inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PLWH had higher abundance of specific pro-inflammatory bacteria, such as Catenibacterium and Prevotella. These bacteria correlated with accelerated biological aging. Conversely, the intestines of PLWH had lower abundance of bacteria known for producing the anti-inflammatory short-chain fatty acids, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbe-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid. CONCLUSIONS We identified specific microbial compositions and microbiota-related metabolic pathways that are intertwined with intestinal and systemic biological aging. This microbial signature of biological aging is likely reflecting various factors including the HIV infection itself, ART usage, sexual orientation, and other aspects associated with living with HIV. A deeper understanding of the mechanisms underlying these connections could offer potential strategies to mitigate accelerated aging and its associated health complications. Video Abstract.
Collapse
Affiliation(s)
- Shalini Singh
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Leila B Giron
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Maliha W Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
| | - Shivanjali Shankaran
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
- Department of Medicine, Rush University, Chicago, IL, USA
| | - Phillip A Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
| | - Zlata R Bogin
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
| | - Simona A Bambi
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
| | - Aaron R Goldman
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Joao L L C Azevedo
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | | | | | | | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Aswin Verhoeven
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Elena Sánchez-López
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Toshitha Kannan
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Ceylan E Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alan L Landay
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
- Department of Medicine, Rush University, Chicago, IL, USA
| | | | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
- Department of Medicine, Rush University, Chicago, IL, USA
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Johnson M, Lazarus SK, Bennett AE, Tovar-Salazar A, Robertson CE, Kofonow JM, Li S, McCollister B, Nunes MC, Madhi SA, Frank DN, Weinberg A. Gut Microbiota and Other Factors Associated With Increased Regulatory T Cells in Hiv-exposed Uninfected Infants. RESEARCH SQUARE 2024:rs.3.rs-3909424. [PMID: 38352510 PMCID: PMC10862973 DOI: 10.21203/rs.3.rs-3909424/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
HIV-exposed uninfected infants (HEU) have higher infectious morbidity than HIV-unexposed infants (HUU). HEU have multiple immune defects of unknown origin. We hypothesized that HEU have higher regulatory T cells (Treg) than HUU, which may dampen their immune defenses against pathogens. We compared 25 Treg subsets between HEU and HUU and sought the factors that may affect Treg frequencies. At birth, 3 Treg subsets, including CD4 + FOXP3 + and CD4 + FOXP3 + CD25+, had higher frequencies in 123 HEU than 117 HUU and 3 subsets were higher in HUU. At 28 and 62 weeks of life, 5 Treg subsets were higher in HEU, and none were higher in HUU. The frequencies of the discrepant Treg subsets correlated at birth with differential abundances of bacterial taxas in maternal gut microbiome and at subsequent visits in infant gut microbiomes. In vitro, bacterial taxa most abundant in HEU expanded Treg subsets with higher frequencies in HEU, recapitulating the in vivo observations. Other factors that correlated with increased Treg were low maternal CD4 + T cells in HEU at birth and male sex in HUU at 28 weeks. We conclude that maternal and infant gut dysbiosis are central to the Treg increase in HEU and may be targeted by mitigating interventions.
Collapse
|
13
|
Ishizaka A, Koga M, Mizutani T, Yamayoshi S, Iwatsuki-Horimoto K, Adachi E, Suzuki Y, Kawaoka Y, Yotsuyanagi H. Association of gut microbiota with the pathogenesis of SARS-CoV-2 Infection in people living with HIV. BMC Microbiol 2024; 24:6. [PMID: 38172680 PMCID: PMC10763188 DOI: 10.1186/s12866-023-03157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND People living with HIV (PLWH) with chronic inflammation may have an increasing risk for coronavirus disease 2019 (COVID-19) severity; however, the impact of their gut microbiota on COVID-19 is not fully elucidated. Here, we analyzed the temporal changes in the gut microbiota composition of hospitalized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected PLWH (PLWH-CoV) and their correlation with COVID-19 severity. RESULT The 16S rRNA analysis results using stool samples (along the timeline from disease onset) from 12 hospitalized PLWH-CoV, whose median CD4 + T cell count was 671 cells/µl, were compared to those of 19 healthy people and 25 PLWH. Bacterial diversity in PLWH-CoV is not significantly different from that of healthy people and SARS-CoV-2 non-infected PLWH, but a significant difference in the microbiota diversity was observed in the classification according to the disease severity. Immediately after the disease onset, remarkable changes were observed in the gut microbiota of PLWH-CoV, and the changing with a decrease in some short-chain fatty acid-producing bacteria and an increase in colitis-related pathobiont. In the second week after disease onset, relative amounts of specific bacteria distinguished between disease severity. One month after the disease onset, dysbiosis of the gut microbiota persisted, and the number of Enterobacteriaceae, mainly Escherichia-Shigella, which is potentially pathogenic, increased and were enriched in patients who developed post-acute sequelae of COVID-19 (PASC). CONCLUSION The changes in the gut microbiota associated with SARS-CoV-2 infection observed in PLWH in this study indicated a persistent decrease in SCFA-producing bacteria and an intestinal environment with an increase in opportunistic pathogens associated with enteritis. This report demonstrates that the intestinal environment in PLWH tends to show delayed improvement even after COVID-19 recovery, and highlights the importance of the dysbiosis associated with SARS-CoV-2 infection as a potential factor in the COVID-19 severity and the PASC in PLWH.
Collapse
Affiliation(s)
- Aya Ishizaka
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Taketoshi Mizutani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Chiba, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, 6-2-3 Kashiwanoha, 277-0882, Kashiwa-shi, Chiba, Japan.
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Chiba, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Pandemic Preparedness, Infection and Advanced Research Center, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan.
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan.
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan.
| |
Collapse
|
14
|
Li S, Su B, Wu H, He Q, Zhang T. Integrated analysis of gut and oral microbiome in men who have sex with men with HIV Infection. Microbiol Spectr 2023; 11:e0106423. [PMID: 37850756 PMCID: PMC10714972 DOI: 10.1128/spectrum.01064-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Our longitudinal integrated study has shown the marked alterations in the gut and oral microbiome resulting from acute and chronic HIV infection and from antiretroviral therapy. Importantly, the relationship between oral and gut microbiomes in people living with acute and chronic HIV infection and "healthy" controls has also been explored. These findings might contribute to a better understanding of the interactions between the oral and gut microbiomes and its potential role in HIV disease progression.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qiushui He
- Institute of Biomedicine, Research Center for Infections and Immunity, University of Turku, Turku, Finland
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Munjoma PT, Chandiwana P, Wyss J, Mazhandu AJ, Jordi SBU, Gutsire R, Katsidzira L, Yilmaz B, Misselwitz B, Duri K. Immune activation and inflammation in lactating women on combination antiretroviral therapy: role of gut dysfunction and gut microbiota imbalance. Front Immunol 2023; 14:1280262. [PMID: 38045684 PMCID: PMC10693333 DOI: 10.3389/fimmu.2023.1280262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Combination antiretroviral therapy (cART) effectively controls HIV; however, chronic low-level viremia and gut microbiota dysbiosis remain significant drivers of gut and systemic inflammation. In this study, we explored the relationship between gut microbiota composition, intestinal inflammation, microbial translocation, and systemic inflammation in women on cART in Sub-Saharan Africa. Methods We conducted a study in HIV-infected and HIV-uninfected lactating women followed up at 6 weeks and 6 months postpartum in Harare, Zimbabwe. We used 16S ribosomal Ribonucleic Acid (rRNA) sequencing and MesoScale Discovery V-Plex assays to examine the gut microbiome and to quantify plasma inflammatory biomarkers, respectively. In addition, we measured fecal calprotectin, plasma lipopolysaccharide-binding protein (LBP), and soluble cluster of differentiation 14 (sCD14) by enzyme-linked immunosorbent assay to assess gut inflammation, microbial translocation, and monocyte/macrophage activation. Results A group of 77 lactating women were studied, of which 35% were HIV-infected. Fecal calprotectin levels were similar by HIV status at both follow-up time points. In the HIV-infected group at 6 weeks postpartum, fecal calprotectin was elevated: median (interquartile range) [158.1 µg/g (75.3-230.2)] in women who had CD4+ T-lymphocyte counts <350 cells/µL compared with those with ≥350 cells/µL [21.1 µg/g (0-58.4)], p = 0.032. Plasma sCD14 levels were significantly higher in the HIV-infected group at both 6 weeks and 6 months postpartum, p < 0.001. Plasma LBP levels were similar, but higher levels were observed in HIV-infected women with elevated fecal calprotectin. We found significant correlations between fecal calprotectin, LBP, and sCD14 with proinflammatory cytokines. Gut microbial alpha diversity was not affected by HIV status and was not affected by use of antibiotic prophylaxis. HIV significantly affected microbial beta diversity, and significant differences in microbial composition were noted. The genera Slackia and Collinsella were relatively more abundant in the HIV-infected group, whereas a lower relative abundance of Clostriduim sensu_stricto_1 was observed. Our study also found correlations between gut microbial taxa abundance and systemic inflammatory biomarkers. Discussion and conclusion HIV-infected lactating women had increased immune activation and increased microbial translocation associated with increased gut inflammation. We identified correlations between the gut inflammation and microbial composition, microbial translocation, and systemic inflammation. The interplay of these parameters might affect the health of this vulnerable population.
Collapse
Affiliation(s)
- Privilege Tendai Munjoma
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Panashe Chandiwana
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Jacqueline Wyss
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, Bern, Switzerland
| | - Arthur John Mazhandu
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Sebastian Bruno Ulrich Jordi
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, Bern, Switzerland
| | - Rutendo Gutsire
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Leolin Katsidzira
- Department of Internal Medicine, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, Bern, Switzerland
| | - Benjamin Misselwitz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, Bern, Switzerland
| | - Kerina Duri
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| |
Collapse
|
16
|
Singh S, Giron LB, Shaikh MW, Shankaran S, Engen PA, Bogin ZR, Bambi SA, Goldman AR, Azevedo JLLC, Orgaz L, de Pedro N, González P, Giera M, Verhoeven A, Sánchez-López E, Pandrea IV, Kannan T, Tanes CE, Bittinger K, Landay AL, Corley MJ, Keshavarzian A, Abdel-Mohsen M. Distinct Intestinal Microbial Signatures Linked to Accelerated Biological Aging in People with HIV. RESEARCH SQUARE 2023:rs.3.rs-3492242. [PMID: 37961645 PMCID: PMC10635386 DOI: 10.21203/rs.3.rs-3492242/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background People with HIV (PWH), even with controlled viral replication through antiretroviral therapy (ART), experience persistent inflammation. This is partly due to intestinal microbial dysbiosis and translocation. Such ongoing inflammation may lead to the development of non-AIDS-related aging-associated comorbidities. However, there remains uncertainty regarding whether HIV affects the biological age of the intestines and whether microbial dysbiosis and translocation influence the biological aging process in PWH on ART. To fill this knowledge gap, we utilized a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PWH on ART and their matched HIV-negative counterparts. Results Despite having similar chronological ages, PWH on ART exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to HIV-negative controls. Investigating the relationship between microbial translocation and biological aging, PWH on ART had decreased levels of tight junction proteins in the colon and ileum, along with increased microbial translocation. This increased intestinal permeability correlated with faster intestinal and systemic biological aging, as well as increased systemic inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PWH on ART had higher abundance of specific pro-inflammatory bacterial genera, such as Catenibacterium and Prevotella. These bacteria significantly correlated with accelerated local and systemic biological aging. Conversely, the intestines of PWH on ART had lower abundance of bacterial genera known for producing short-chain fatty acids and exhibiting anti-inflammatory properties, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria taxa were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbial-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid and oleic acid. Conclusions We identified a specific microbial composition and microbiome-related metabolic pathways that are intertwined with both intestinal and systemic biological aging in PWH on ART. A deeper understanding of the mechanisms underlying these connections could potentially offer strategies to counteract premature aging and its associated health complications in PWH.
Collapse
|
17
|
Wang Q, He L, Tan H, Huang G, Liu J. Causal relationship between gut microbiota and otitis media: a two-sample Mendelian randomized study. Eur Arch Otorhinolaryngol 2023; 280:4715-4717. [PMID: 37405450 DOI: 10.1007/s00405-023-08102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023]
Affiliation(s)
- Qiuyang Wang
- Department of ENT, First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu, China
- Department of Otolaryngology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Lisha He
- School of Public Health and Management, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Teaching Office, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Huazhang Tan
- Department of Otolaryngology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Guoxin Huang
- Department of Evidence-Based Medicine Center, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, 15 Jiefang Road, Fancheng District, Xiangyang, 441000, China.
- School of Public Health and Management, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Jisheng Liu
- Department of ENT, First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
18
|
Rodriguez MT, McLaurin KA, Shtutman M, Kubinak JL, Mactutus CF, Booze RM. Therapeutically targeting the consequences of HIV-1-associated gastrointestinal dysbiosis: Implications for neurocognitive and affective alterations. Pharmacol Biochem Behav 2023; 229:173592. [PMID: 37390973 PMCID: PMC10494709 DOI: 10.1016/j.pbb.2023.173592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Approximately 50 % of the individuals living with human immunodeficiency virus type 1 (HIV-1) are plagued by debilitating neurocognitive impairments (NCI) and/or affective alterations. Sizeable alterations in the composition of the gut microbiome, or gastrointestinal dysbiosis, may underlie, at least in part, the NCI, apathy, and/or depression observed in this population. Herein, two interrelated aims will be critically addressed, including: 1) the evidence for, and functional implications of, gastrointestinal microbiome dysbiosis in HIV-1 seropositive individuals; and 2) the potential for therapeutically targeting the consequences of this dysbiosis for the treatment of HIV-1-associated NCI and affective alterations. First, gastrointestinal microbiome dysbiosis in HIV-1 seropositive individuals is characterized by decreased alpha (α) diversity, a decreased relative abundance of bacterial species belonging to the Bacteroidetes phylum, and geographic-specific alterations in Bacillota (formerly Firmicutes) spp. Fundamentally, changes in the relative abundance of Bacteroidetes and Bacillota spp. may underlie, at least in part, the deficits in γ-aminobutyric acid and serotonin neurotransmission, as well as prominent synaptodendritic dysfunction, observed in this population. Second, there is compelling evidence for the therapeutic utility of targeting synaptodendritic dysfunction as a method to enhance neurocognitive function and improve motivational dysregulation in HIV-1. Further research is needed to determine whether the therapeutics enhancing synaptic efficacy exert their effects by altering the gut microbiome. Taken together, understanding gastrointestinal microbiome dysbiosis resulting from chronic HIV-1 viral protein exposure may afford insight into the mechanisms underlying HIV-1-associated neurocognitive and/or affective alterations; mechanisms which can be subsequently targeted via novel therapeutics.
Collapse
Affiliation(s)
- Mason T Rodriguez
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Kristen A McLaurin
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Michael Shtutman
- Drug Discovery and Biomedical Sciences, College of Pharmacy, 715 Sumter Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Jason L Kubinak
- Pathology, Microbiology & Immunology, School of Medicine Columbia, 6311 Garners Ferry Road, Building 2, Columbia, SC 29209, United States of America
| | - Charles F Mactutus
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Rosemarie M Booze
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America.
| |
Collapse
|
19
|
Tian X, Xie Y, Chen J, Yin W, Zhao YL, Yao P, Dong M, Jin C, Wu N. Increased Microbial Translocation is a Prognostic Biomarker of Different Immune Responses to ART in People Living with HIV. Infect Drug Resist 2023; 16:3871-3878. [PMID: 37351382 PMCID: PMC10284156 DOI: 10.2147/idr.s404384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023] Open
Abstract
Background Microbial translocation (MT) is a characteristic of human immunodeficiency virus (HIV) infection. Whether MT is also a biomarker of different immune responses to antiretroviral therapy (ART) received by people living with HIV (PLWH) is not known. Methods We examined the presence of MT in a cohort of 33 HIV-infected immunological responders (IRs) and 28 immunological non-responders (INRs) (≥500 and <200 cluster of differentiation (CD)4+ T-cell counts/µL after 2 years of HIV-1 suppression, respectively) with no comorbidities. Plasma samples were used to measure the circulating levels of MT markers. All enrolled study participants had received 2 years of viral-suppression therapy. Results Levels of lipopolysaccharide (P = 0.0185), LPS-binding protein (P < 0.0001), soluble-CD14 (P < 0.0001), and endogenous endotoxin-core antibody (P < 0.0001) at baseline were significantly higher in INRs than in IRs and were associated with an increased risk of an immunological non-response, whereas the level of intestinal fatty acid-binding protein did not show this association. Analysis of receiver operating characteristic (ROC) curves demonstrated the utility of these individual microbial markers in discriminating INRs after ART in people living with HIV with high sensitivity, specificity, and area under the ROC curve. Conclusion INRs in HIV infection are characterized by increased MT at baseline. These markers could be used as a rapid prognostic tool for predicting immune responses in people infected with the HIV.
Collapse
Affiliation(s)
- Xuebin Tian
- Cell Biology Research Platform, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, People’s Republic of China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Yiwen Xie
- Cell Biology Research Platform, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, People’s Republic of China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jingjing Chen
- Hospital Office, Shandong Second Provincial General Hospital, Jinan, Shandong, People’s Republic of China
| | - Wanpeng Yin
- Cell Biology Research Platform, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, People’s Republic of China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Yu Long Zhao
- Cell Biology Research Platform, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, People’s Republic of China
| | - Peng Yao
- Department of Infectious Disease, Zhejiang Qingchun Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Mingqing Dong
- Department of Infectious Disease, Zhejiang Qingchun Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Changzhong Jin
- Cell Biology Research Platform, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, People’s Republic of China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Nanping Wu
- Cell Biology Research Platform, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, People’s Republic of China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
20
|
Goosen C, Proost S, Baumgartner J, Mallick K, Tito RY, Barnabas SL, Cotton MF, Zimmermann MB, Raes J, Blaauw R. Associations of HIV and iron status with gut microbiota composition, gut inflammation and gut integrity in South African school-age children: a two-way factorial case-control study. J Hum Nutr Diet 2023; 36:819-832. [PMID: 36992541 PMCID: PMC10946596 DOI: 10.1111/jhn.13171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/19/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Human immunodeficiency virus (HIV) and iron deficiency (ID) affect many African children. Both HIV and iron status interact with gut microbiota composition and related biomarkers. The study's aim was to determine the associations of HIV and iron status with gut microbiota composition, gut inflammation and gut integrity in South African school-age children. METHODS In this two-way factorial case-control study, 8- to 13-year-old children were enrolled into four groups based on their HIV and iron status: (1) With HIV (HIV+) and ID (n = 43), (2) HIV+ and iron-sufficient nonanaemic (n = 41), (3) without HIV (HIV-) and ID (n = 44) and (4) HIV- and iron-sufficient nonanaemic (n = 38). HIV+ children were virally suppressed (<50 HIV RNA copies/ml) on antiretroviral therapy (ART). Microbial composition of faecal samples (16S rRNA sequencing) and markers of gut inflammation (faecal calprotectin) and gut integrity (plasma intestinal fatty acid-binding protein [I-FABP]) were assessed. RESULTS Faecal calprotectin was higher in ID versus iron-sufficient nonanaemic children (p = 0.007). I-FABP did not significantly differ by HIV or iron status. ART-treated HIV (redundancy analysis [RDA] R2 = 0.009, p = 0.029) and age (RDA R2 = 0.013 p = 0.004) explained the variance in the gut microbiota across the four groups. Probabilistic models showed that the relative abundance of the butyrate-producing genera Anaerostipes and Anaerotruncus was lower in ID versus iron-sufficient children. Fusicatenibacter was lower in HIV+ and in ID children versus their respective counterparts. The prevalence of the inflammation-associated genus Megamonas was 42% higher in children with both HIV and ID versus HIV- and iron-sufficient nonanaemic counterparts. CONCLUSIONS In our sample of 8- to 13-year-old virally suppressed HIV+ and HIV- children with or without ID, ID was associated with increased gut inflammation and changes in the relative abundance of specific microbiota. Moreover, in HIV+ children, ID had a cumulative effect that further shifted the gut microbiota to an unfavourable composition.
Collapse
Affiliation(s)
- Charlene Goosen
- Division of Human Nutrition, Department of Global Health, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Sebastian Proost
- Laboratory of Molecular Bacteriology, Department of Microbiology and ImmunologyRega Institute, KU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Jeannine Baumgartner
- Laboratory of Human Nutrition, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Department of Nutritional SciencesKing's College LondonLondonUK
| | - Kashish Mallick
- Laboratory of Human Nutrition, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Raul Y. Tito
- Laboratory of Molecular Bacteriology, Department of Microbiology and ImmunologyRega Institute, KU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Shaun L. Barnabas
- Department of Paediatrics and Child Health, Family Centre for Research with UbuntuStellenbosch UniversityCape TownSouth Africa
| | - Mark F. Cotton
- Department of Paediatrics and Child Health, Family Centre for Research with UbuntuStellenbosch UniversityCape TownSouth Africa
| | - Michael B. Zimmermann
- Laboratory of Human Nutrition, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology and ImmunologyRega Institute, KU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Renée Blaauw
- Division of Human Nutrition, Department of Global Health, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
21
|
Castillo-Rozas G, Lopez MN, Soto-Rifo R, Vidal R, Cortes CP. Enteropathy and gut dysbiosis as obstacles to achieve immune recovery in undetectable people with HIV: a clinical view of evidence, successes, and projections. AIDS 2023; 37:367-378. [PMID: 36695354 DOI: 10.1097/qad.0000000000003450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Immune performance following antiretroviral therapy initiation varies among patients. Despite achieving viral undetectability, a subgroup of patients fails to restore CD4+ T-cell counts during follow-up, which exposes them to non-AIDS defining comorbidities and increased mortality. Unfortunately, its mechanisms are incompletely understood, and no specific treatment is available. In this review, we address some of the pathophysiological aspects of the poor immune response from a translational perspective, with emphasis in the interaction between gut microbiome, intestinal epithelial dysfunction, and immune system, and we also discuss some studies attempting to improve immune performance by intervening in this vicious cycle.
Collapse
Affiliation(s)
- Gabriel Castillo-Rozas
- Molecular and Cellular Virology Laboratory, Virology Program
- Cancer Regulation and Immunoediting Laboratory, Immunology Program
- Center for HIV/AIDS Integral Research -CHAIR, Universidad de Chile, Santiago
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Mercedes N Lopez
- Cancer Regulation and Immunoediting Laboratory, Immunology Program
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program
- Center for HIV/AIDS Integral Research -CHAIR, Universidad de Chile, Santiago
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Roberto Vidal
- Microbiology and Mycology Program, Institute of Biomedical Sciences
| | - Claudia P Cortes
- Internal Medicine Department, Faculty of Medicine, Universidad de Chile
- Center for HIV/AIDS Integral Research -CHAIR, Universidad de Chile, Santiago
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
22
|
ToVinh M, Hörr G, Hoffmeister C, Dobrikova K, Gotter C, Raabe J, Kaiser KM, Ahmad S, Finnemann C, Matejec E, Hack G, Bischoff J, Rieke GJ, Schwarze-Zander C, Boesecke C, van Bremen K, Wasmuth JC, Eis-Hübinger AM, Streeck H, Verhasselt HL, Oldenburg J, Strassburg CP, Rockstroh JK, Spengler U, Krämer B, Nattermann J. HIV-Associated Microbial Translocation May Affect Cytokine Production of CD56bright NK Cells via Stimulation of Monocytes. J Infect Dis 2023; 227:577-582. [PMID: 36520641 DOI: 10.1093/infdis/jiac485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The mechanisms involved in HIV-associated natural killer (NK) cell impairment are still incompletely understood. We observed HIV infection to be associated with increased plasma levels of IFABP, a marker for gut epithelial barrier dysfunction, and LBP, a marker for microbial translocation. Both IFABP and LBP plasma concentrations were inversely correlated with NK cell interferon-γ production, suggesting microbial translocation to modulate NK cell functions. Accordingly, we found lipopolysaccharide to have an indirect inhibitory effect on NK cells via triggering monocytes' transforming growth factor-β production. Taken together, our data suggest increased microbial translocation to be involved in HIV-associated NK cell dysfunction.
Collapse
Affiliation(s)
- Michael ToVinh
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.,German Center for Infection Research, Thematical Translation Units HIV, Cologne/Bonn, Germany
| | - Gregor Hörr
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.,German Center for Infection Research, Thematical Translation Units HIV, Cologne/Bonn, Germany
| | - Christoph Hoffmeister
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.,German Center for Infection Research, Thematical Translation Units HIV, Cologne/Bonn, Germany
| | - Kristiyana Dobrikova
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Christina Gotter
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.,German Center for Infection Research, Thematical Translation Units HIV, Cologne/Bonn, Germany
| | - Jan Raabe
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Kim M Kaiser
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sarah Ahmad
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Claudia Finnemann
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Eyleen Matejec
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Gudrun Hack
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jenny Bischoff
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Gereon J Rieke
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Carolynne Schwarze-Zander
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.,German Center for Infection Research, Thematical Translation Units HIV, Cologne/Bonn, Germany
| | - Christoph Boesecke
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.,German Center for Infection Research, Thematical Translation Units HIV, Cologne/Bonn, Germany
| | - Kathrin van Bremen
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.,German Center for Infection Research, Thematical Translation Units HIV, Cologne/Bonn, Germany
| | - Jan-Christian Wasmuth
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.,German Center for Infection Research, Thematical Translation Units HIV, Cologne/Bonn, Germany
| | - Anna M Eis-Hübinger
- Institute of Virology, University Hospital, University of Bonn, Bonn, Germany
| | - Hendrik Streeck
- Institute of Virology, University Hospital, University of Bonn, Bonn, Germany
| | - Hedda L Verhasselt
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes Oldenburg
- Institute for Experimental Hematology and Transfusion Medicine, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Christian P Strassburg
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.,German Center for Infection Research, Thematical Translation Units HIV, Cologne/Bonn, Germany
| | - Jürgen K Rockstroh
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.,German Center for Infection Research, Thematical Translation Units HIV, Cologne/Bonn, Germany
| | - Ulrich Spengler
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.,German Center for Infection Research, Thematical Translation Units HIV, Cologne/Bonn, Germany
| | - Benjamin Krämer
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.,German Center for Infection Research, Thematical Translation Units HIV, Cologne/Bonn, Germany
| |
Collapse
|
23
|
The Gut Microbiome, Microbial Metabolites, and Cardiovascular Disease in People Living with HIV. Curr HIV/AIDS Rep 2023; 20:86-99. [PMID: 36708497 DOI: 10.1007/s11904-023-00648-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW To synthesize recent evidence relating the gut microbiome and microbial metabolites to cardiovascular disease (CVD) in people living with HIV (PLWH). RECENT FINDINGS A few cross-sectional studies have reported on the gut microbiome and cardiovascular outcomes in the context of HIV, with no consistent patterns emerging. The largest such study found that gut Fusobacterium was associated with carotid artery plaque. More studies have evaluated microbial metabolite trimethylamine N-oxide with CVD risk in PLWH, but results were inconsistent, with recent prospective analyses showing null effects. Studies of other microbial metabolites are scarce. Microbial translocation biomarkers (e.g., lipopolysaccharide binding protein) have been related to incident CVD in PLWH. Microbial translocation may increase CVD risk in PLWH, but there is insufficient and/or inconsistent evidence regarding specific microbial species and microbial metabolites associated with cardiovascular outcomes in PLWH. Further research is needed in large prospective studies integrating the gut microbiome, microbial translocation, and microbial metabolites with cardiovascular outcomes in PLWH.
Collapse
|
24
|
Damane BP, Mulaudzi TV, Kader SS, Naidoo P, Savkovic SD, Dlamini Z, Mkhize-Kwitshana ZL. Unraveling the Complex Interconnection between Specific Inflammatory Signaling Pathways and Mechanisms Involved in HIV-Associated Colorectal Oncogenesis. Cancers (Basel) 2023; 15:748. [PMID: 36765706 PMCID: PMC9913377 DOI: 10.3390/cancers15030748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
The advancement of HIV treatment has led to increased life expectancy. However, people living with HIV (PLWH) are at a higher risk of developing colorectal cancers. Chronic inflammation has a key role in oncogenesis, affecting the initiation, promotion, transformation, and advancement of the disease. PLWH are prone to opportunistic infections that trigger inflammation. It has been documented that 15-20% of cancers are triggered by infections, and this percentage is expected to be increased in HIV co-infections. The incidence of parasitic infections such as helminths, with Ascariasis being the most common, is higher in HIV-infected individuals. Cancer cells and opportunistic infections drive a cascade of inflammatory responses which assist in evading immune surveillance, making them survive longer in the affected individuals. Their survival leads to a chronic inflammatory state which further increases the probability of oncogenesis. This review discusses the key inflammatory signaling pathways involved in disease pathogenesis in HIV-positive patients with colorectal cancers. The possibility of the involvement of co-infections in the advancement of the disease, along with highlights on signaling mechanisms that can potentially be utilized as therapeutic strategies to prevent oncogenesis or halt cancer progression, are addressed.
Collapse
Affiliation(s)
- Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Sayed Shakeel Kader
- Department of Surgery, University of KwaZulu Natal, Congella, Durban 4013, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
- SAMRC Research Capacity Development Division, South African Medical Research Council, Tygerberg, Cape Town 4091, South Africa
| | - Suzana D. Savkovic
- School of Medicine, Department of Pathology & Laboratory Medicine, 1430 Tulane Ave., SL-79, New Orleans, LA 70112, USA
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Zilungile Lynette Mkhize-Kwitshana
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
- SAMRC Research Capacity Development Division, South African Medical Research Council, Tygerberg, Cape Town 4091, South Africa
| |
Collapse
|
25
|
Zaongo SD, Chen Y. Gut microbiota: a potential key player in boosting immune reconstitution of immunological nonresponders. Future Microbiol 2023; 18:83-85. [PMID: 36727529 DOI: 10.2217/fmb-2022-0215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Silvere D Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, 400036, China
| |
Collapse
|
26
|
Xiao Q, Yu F, Yan L, Zhao H, Zhang F. Alterations in circulating markers in HIV/AIDS patients with poor immune reconstitution: Novel insights from microbial translocation and innate immunity. Front Immunol 2022; 13:1026070. [PMID: 36325329 PMCID: PMC9618587 DOI: 10.3389/fimmu.2022.1026070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
After long-term anti-retroviral therapy (ART) treatment, most human immunodeficiency virus (HIV)/Acquired Immure Deficiency Syndrome (AIDS) patients can achieve virological suppression and gradual recovery of CD4+ T-lymphocyte (CD4+ T cell) counts. However, some patients still fail to attain normal CD4+ T cell counts; this group of patients are called immune non-responders (INRs), and these patients show severe immune dysfunction. The potential mechanism of poor immune reconstitution (PIR) remains unclear and the identification of uniform biomarkers to predict the occurrence of PIR is particularly vital. But limited information is available on the relationship between circulating markers of INRs and immune recovery. Hence, this review summarises alterations in the intestine microbiota and associated markers in the setting of PIR to better understand host-microbiota-metabolite interactions in HIV immune reconstitution and to identify biomarkers that can predict recovery of CD4+ T cell counts in INRs.
Collapse
Affiliation(s)
- Qing Xiao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Fengting Yu
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Liting Yan
- Infectious Disease Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongxin Zhao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Fujie Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Russo E, Nannini G, Sterrantino G, Kiros ST, Di Pilato V, Coppi M, Baldi S, Niccolai E, Ricci F, Ramazzotti M, Pallecchi M, Lagi F, Rossolini GM, Bartoloni A, Bartolucci G, Amedei A. Effects of viremia and CD4 recovery on gut “microbiome-immunity” axis in treatment-naïve HIV-1-infected patients undergoing antiretroviral therapy. World J Gastroenterol 2022; 28:635-652. [PMID: 35317423 PMCID: PMC8900548 DOI: 10.3748/wjg.v28.i6.635] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/30/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) infection is characterized by persistent systemic inflammation and immune activation, even in patients receiving effective antiretroviral therapy (ART). Converging data from many cross-sectional studies suggest that gut microbiota (GM) changes can occur throughout including human immunodeficiency virus (HIV) infection, treated by ART; however, the results are contrasting. For the first time, we compared the fecal microbial composition, serum and fecal microbial metabolites, and serum cytokine profile of treatment-naïve patients before starting ART and after reaching virological suppression, after 24 wk of ART therapy. In addition, we compared the microbiota composition, microbial metabolites, and cytokine profile of patients with CD4/CD8 ratio < 1 (immunological non-responders [INRs]) and CD4/CD8 > 1 (immunological responders [IRs]), after 24 wk of ART therapy.
AIM To compare for the first time the fecal microbial composition, serum and fecal microbial metabolites, and serum cytokine profile of treatment-naïve patients before starting ART and after reaching virological suppression (HIV RNA < 50 copies/mL) after 24 wk of ART.
METHODS We enrolled 12 treatment-naïve HIV-infected patients receiving ART (mainly based on integrase inhibitors). Fecal microbiota composition was assessed through next generation sequencing. In addition, a comprehensive analysis of a blood broad-spectrum cytokine panel was performed through a multiplex approach. At the same time, serum free fatty acid (FFA) and fecal short chain fatty acid levels were obtained through gas chromatography-mass spectrometry.
RESULTS We first compared microbiota signatures, FFA levels, and cytokine profile before starting ART and after reaching virological suppression. Modest alterations were observed in microbiota composition, in particular in the viral suppression condition, we detected an increase of Ruminococcus and Succinivibrio and a decrease of Intestinibacter. Moreover, in the same condition, we also observed augmented levels of serum propionic and butyric acids. Contemporarily, a reduction of serum IP-10 and an increase of IL-8 levels were detected in the viral suppression condition. In addition, the same components were compared between IRs and INRs. Concerning the microflora population, we detected a reduction of Faecalibacterium and an increase of Alistipes in INRs. Simultaneously, fecal isobutyric, isovaleric, and 2-methylbutyric acids were also increased in INRs.
CONCLUSION Our results provided an additional perspective about the impact of HIV infection, ART, and immune recovery on the “microbiome-immunity axis” at the metabolism level. These factors can act as indicators of the active processes occurring in the gastrointestinal tract. Individuals with HIV-1 infection, before ART and after reaching virological suppression with 24 wk of ART, displayed a microbiota with unchanged overall bacterial diversity; moreover, their systemic inflammatory status seems not to be completely restored. In addition, we confirmed the role of the GM metabolites in immune reconstitution.
Collapse
Affiliation(s)
- Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Giulia Nannini
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Gaetana Sterrantino
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Seble Tekle Kiros
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa 16126, Italy
| | - Marco Coppi
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Simone Baldi
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Federica Ricci
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical "Mario Serio", University of Florence, Florence 50134, Italy
| | - Marco Pallecchi
- Department of Biomedical, Experimental and Clinical "Mario Serio", University of Florence, Florence 50134, Italy
| | - Filippo Lagi
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Gian Maria Rossolini
- Microbiology and Virology Unit, Florence Careggi University Hospital, University of Florence, Florence 50134, Italy
| | - Alessandro Bartoloni
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence 50019, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| |
Collapse
|
28
|
Ouyang J, Zaongo SD, Zhang X, Qi M, Hu A, Wu H, Chen Y. Microbiota-Meditated Immunity Abnormalities Facilitate Hepatitis B Virus Co-Infection in People Living With HIV: A Review. Front Immunol 2022; 12:755890. [PMID: 35069530 PMCID: PMC8770824 DOI: 10.3389/fimmu.2021.755890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) co-infection is fairly common in people living with HIV (PLWH) and affects millions of people worldwide. Identical transmission routes and HIV-induced immune suppression have been assumed to be the main factors contributing to this phenomenon. Moreover, convergent evidence has shown that people co-infected with HIV and HBV are more likely to have long-term serious medical problems, suffer more from liver-related diseases, and have higher mortality rates, compared to individuals infected exclusively by either HIV or HBV. However, the precise mechanisms underlying the comorbid infection of HIV and HBV have not been fully elucidated. In recent times, the human gastrointestinal microbiome is progressively being recognized as playing a pivotal role in modulating immune function, and is likely to also contribute significantly to critical processes involving systemic inflammation. Both antiretroviral therapy (ART)-naïve HIV-infected subjects and ART-treated individuals are now known to be characterized by having gut microbiomic dysbiosis, which is associated with a damaged intestinal barrier, impaired mucosal immunological functioning, increased microbial translocation, and long-term immune activation. Altered microbiota-related products in PLWH, such as lipopolysaccharide (LPS) and short-chain fatty acids (SCFA), have been associated with the development of leaky gut syndrome, favoring microbial translocation, which in turn has been associated with a chronically activated underlying host immune response and hence the facilitated pathogenesis of HBV infection. Herein, we critically review the interplay among gut microbiota, immunity, and HIV and HBV infection, thus laying down the groundwork with respect to the future development of effective strategies to efficiently restore normally diversified gut microbiota in PLWH with a dysregulated gut microbiome, and thus potentially reduce the prevalence of HBV infection in this population.
Collapse
Affiliation(s)
- Jing Ouyang
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D Zaongo
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Xue Zhang
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Miaomiao Qi
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Aizhen Hu
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Hao Wu
- Department of Infectious Diseases, You'an Hospital, Capital Medical University, Beijing, China
| | - Yaokai Chen
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
29
|
Wang N, Gao X, Zhang Z, Yang L. Composition of the Gut Microbiota in Attention Deficit Hyperactivity Disorder: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2022; 13:838941. [PMID: 35370947 PMCID: PMC8972063 DOI: 10.3389/fendo.2022.838941] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/17/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The latest research accumulates information to explore the correlation between gut microbiota and neurodevelopmental disorders, which may lead to new approaches to treat diseases such as attention deficit/hyperactivity disorder (ADHD). However, the conclusions of previous studies are not completely consistent. The objective of the systematic review and meta-analysis was to identify evidence on the dysbiosis of gut microbiota in ADHD and find potential distinctive traits compared to healthy controls. METHODS Electronic databases, including PubMed, Embase, Web of Science, Cochrane Library, and PsycINFO, were searched up to August 24, 2021, using predetermined terms. Meta-analysis was performed to estimate the comparison of microbiota profiles (alpha and beta diversity) and the relative abundance of gut microbiota in ADHD patients and healthy controls. RESULTS A total of eight studies were included in the meta-analysis, containing 316 ADHD patients and 359 healthy controls. There was a higher Shannon index in ADHD patients than in healthy controls (SMD = 0.97; 95% CI, 0.13 to 1.82; P = 0.02; I2 = 96%), but the significance vanished after sensitivity analysis because of high heterogeneity. No significant differences in other alpha diversity indexes were found. Regarding the relative abundance of gut microbiota, the genus Blautia was significantly elevated in ADHD patients compared with controls (SMD = 0.34; 95% CI, 0.06 to 0.63; P = 0.02; I2 = 0%). CONCLUSIONS Patients with ADHD had gut microbiome alterations compared to healthy controls. Though more studies with strict methodology are warranted due to the high heterogeneity, further studies to translate the findings of gut microbiota dysbiosis to clinical application in ADHD patients are needed and may guide targeted therapies. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=273993], identifier PROSPERO (CRD42021273993).
Collapse
Affiliation(s)
- Ning Wang
- Department of Child and Adolescent Psychiatry, National Clinical Research Center for Mental Disorders and NHC Key Laboratory of Mental Health (Peking University Sixth Hospital), Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
| | - Xuping Gao
- Department of Child and Adolescent Psychiatry, National Clinical Research Center for Mental Disorders and NHC Key Laboratory of Mental Health (Peking University Sixth Hospital), Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
| | - Zifeng Zhang
- Department of Psychiatry, Yan’an Third People’s Hospital, Yan’an, China
- *Correspondence: Li Yang, ; Zifeng Zhang,
| | - Li Yang
- Department of Child and Adolescent Psychiatry, National Clinical Research Center for Mental Disorders and NHC Key Laboratory of Mental Health (Peking University Sixth Hospital), Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
- Department of Psychiatry, Yan’an Third People’s Hospital, Yan’an, China
- *Correspondence: Li Yang, ; Zifeng Zhang,
| |
Collapse
|
30
|
Liu S, Cao R, Liu L, Lv Y, Qi X, Yuan Z, Fan X, Yu C, Guan Q. Correlation Between Gut Microbiota and Testosterone in Male Patients With Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:836485. [PMID: 35399957 PMCID: PMC8990747 DOI: 10.3389/fendo.2022.836485] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/18/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE This study aimed at investigating the association between testosterone levels and gut microbiota in male patients with type 2 diabetes mellitus (T2DM) and providing a new strategy to elucidate the pathological mechanism of testosterone deficiency in T2DM patients. METHODS In an observational study including 46 T2DM male patients, the peripheral venous blood and fecal samples of all subjects were collected. The V3-V4 regions of bacterial 16S rDNA were amplified and sequenced. Alpha and beta diversities were calculated by QIIME software. The possible association between gut microbial community and clinical indicators was assessed using the Spearman correlation coefficient. The association between the relative abundance of bacteria and testosterone levels was discovered using linear regression analysis in R language. RESULTS There was no substantial difference in alpha and beta diversity. Blautia and Lachnospirales were significantly much higher in the testosterone deficiency group. Linear regression analysis showed that the abundance of Firmicutes at the phylum level and Lachnospirales at the order level were negatively correlated with testosterone level. After correcting for C-reactive protein (CRP) and homeostatic model assessment of insulin resistance (HOMA-IR), the relative abundance of Lachnospirales still had a significant negative correlation with testosterone level. Meanwhile, at the genus level, Lachnoclostridium, Blautia, and Bergeyella had a statistically significant negative association with testosterone level, respectively. Blautia was positively associated with FPG and total cholesterol level. Streptococcus was found positively associated with insulin, connecting peptide, and index of homeostatic model assessment of insulin resistance. CONCLUSION T2DM patients with testosterone deficiency have different gut microbiota compositions compared with T2DM patients alone. Low serum testosterone patients tend to have an increased abundance of opportunistic pathogens, which may be related to the occurrence and development of testosterone deficiency.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Ruying Cao
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Endocrinology, ChangQing People’s Hospital, Jinan, China
| | - Luna Liu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Youyuan Lv
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Xiangyu Qi
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Chunxiao Yu, ; Qingbo Guan,
| | - Qingbo Guan
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Chunxiao Yu, ; Qingbo Guan,
| |
Collapse
|
31
|
Xie Y, Sun J, Hu C, Ruan B, Zhu B. Oral Microbiota Is Associated With Immune Recovery in Human Immunodeficiency Virus-Infected Individuals. Front Microbiol 2021; 12:794746. [PMID: 34956162 PMCID: PMC8696184 DOI: 10.3389/fmicb.2021.794746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
The role of the oral microbiota in HIV-infected individuals deserves attention as either HIV infection or antiretroviral therapy (ART) may have effect on the diversity and the composition of the oral microbiome. However, few studies have addressed the oral microbiota and its interplay with different immune responses to ART in HIV-infected individuals. Salivary microbiota and immune activation were studied in 30 HIV-infected immunological responders (IR) and 34 immunological non-responders (INR) (≥500 and < 200 CD4 + T-cell counts/μl after 2 years of HIV-1 viral suppression, respectively) with no comorbidities. Metagenome sequencing revealed that the IR and the INR group presented similar salivary bacterial richness and diversity. The INR group presented a significantly higher abundance of genus Selenomonas_4, while the IR group manifested higher abundances of Candidatus_Saccharimonas and norank_p_Saccharimonas. Candidatus_Saccharimonas and norank_p_Saccharimonas were positively correlated with the current CD4 + T-cells. Candidatus_Saccharimonas was positively correlated with the markers of adaptive immunity CD4 + CD57 + T-cells, while negative correlation was found between norank _p_Saccharimonas and the CD8 + CD38 + T-cells as well as the CD4/CD8 + HLADR + CD38 + T-cells. The conclusions are that the overall salivary microbiota structure was similar in the immunological responders and immunological non-responders, while there were some taxonomic differences in the salivary bacterial composition. Selenomona_4, Candidatus_Saccharimonas, and norank _p_Saccharimonas might act as important factors of the immune recovery in the immunodeficiency patients, and Candidatus_Saccharimonas could be considered in the future as screening biomarkers for the immune responses in the HIV-infected individuals.
Collapse
Affiliation(s)
- Yirui Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jia Sun
- Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Caiqin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Bing Ruan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Biao Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|