1
|
Zhang J, Li X, Zhang C, Liu X, Wang CL. PpyLTP36 and PpyLTP39 are involved in the transmembrane transport of cuticular wax and are associated with the occurrence of pear fruit russeting. Int J Biol Macromol 2024; 278:134771. [PMID: 39151864 DOI: 10.1016/j.ijbiomac.2024.134771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Non-specific lipid-transfer proteins (nsLTPs) are a group of small, cysteine-rich proteins that are involved in the transport of cuticular wax and other lipid compounds. Accumulating evidence suggests that dynamic changes in cuticular waxes are strongly associated with fruit russeting, an undesirable visual quality that negatively affects consumer appeal in pears. Currently, the regulatory role of nsLTPs in cuticular wax deposition and pear fruit skin russeting remains unclear. Here, we characterized the variations of cuticular waxes in non-treated (russeted) and preharvest bagging treated (non-russeted) pear fruits throughout fruit development and confirmed that the contents of cuticular waxes were significantly negatively correlated with the occurrence of pear fruit russeting. Based on RNA-Sequencing (RNA-Seq) and quantitative real-time PCR (qRT-PCR) analyses, two nsLTP genes (PpyLTP36 and PpyLTP39) were identified, which exhibited high expression levels in non-russeted pear fruit skins and were significantly repressed during fruit skin russeting. Subcellular localization analysis demonstrated that PpyLTP36 and PpyLTP39 were localized to the plasma membrane (PM). Further, transient Virus-Induced Gene Silencing (VIGS) analyses of PpyLTP36 and PpyLTP39 in pear fruits significantly reduced cuticular wax deposition. In conclusion, PpyLTP36 and PpyLTP39 are involved in the transmembrane transport of cuticular wax and are associated with pear fruit skin russeting.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Xi Li
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Chen Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Xiao Liu
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Chun-Lei Wang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China.
| |
Collapse
|
2
|
He J, Wang J, Zhang Z. Toward unveiling transcriptome dynamics and regulatory modules at the maternal/filial interface of developing maize kernel. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2124-2140. [PMID: 38551088 DOI: 10.1111/tpj.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 06/14/2024]
Abstract
The basal region of maize (Zea mays) kernels, which includes the pedicel, placenta-chalazal, and basal endosperm transfer layers, serves as the maternal/filial interface for nutrient transfer from the mother plant to the developing seed. However, transcriptome dynamics of this maternal/filial interface remain largely unexplored. To address this gap, we conducted high-temporal-resolution RNA sequencing of the basal and upper kernel regions between 4 and 32 days after pollination and deeply analyzed transcriptome dynamics of the maternal/filial interface. Utilizing 790 specifically and highly expressed genes in the basal region, we performed the gene ontology (GO) term and weighted gene co-expression network analyses. In the early-stage basal region, we identified five MADS-box transcription factors (TFs) as hubs. Their homologs have been demonstrated as pivotal regulators at the maternal/filial interface of rice or Arabidopsis, suggesting their potential roles in maize kernel development. In the filling-stage basal region, numerous GO terms associated with transcriptional regulation and transporters are significantly enriched. Furthermore, we investigated the molecular function of three hub TFs. Through genome-wide DNA affinity purification sequencing combined with promoter transactivation assays, we suggested that these three TFs act as regulators of 10 basal-specific transporter genes involved in the transfer of sugars, amino acids, and ions. This study provides insights into transcriptomic dynamic and regulatory modules of the maternal/filial interface. In the future, genetic investigation of these hub regulators must advance our understanding of maternal/filial interface development and function.
Collapse
Affiliation(s)
- Juan He
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jincang Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zhiyong Zhang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
3
|
Maghraby A, Alzalaty M. Genome-wide identification and evolutionary analysis of the AP2/EREBP, COX and LTP genes in Zea mays L. under drought stress. Sci Rep 2024; 14:7610. [PMID: 38556556 PMCID: PMC10982304 DOI: 10.1038/s41598-024-57376-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
AP2 (APETALA2)/EREBP (ethylene-responsive element-binding protein), cytochrome c oxidase (COX) and nonspecific lipid transfer proteins (LTP) play important roles in the response to drought stress. This is the first study to identify the COX gene in Zea mays L. via genome-wide analysis. The qRT‒PCR results indicated that AP2/EREBP, COX and LTP were downregulated, with fold changes of 0.84, 0.53 and 0.31, respectively, after 12 h of drought stress. Genome-wide analysis identified 78 AP2/EREBP, 6 COX and 10 LTP genes in Z. mays L. Domain analysis confirmed the presence of the AP2 domain, Cyt_c_Oxidase_Vb domain and nsLTP1 in the AP2/EREBP, COX and LTP proteins, respectively. The AP2/EREBP protein family (AP2) includes five different domain types: the AP2/ERF domain, the EREBP-like factor (EREBP), the ethylene responsive factor (ERF), the dehydration responsive element binding protein (DREB) and the SHN SHINE. Synteny analysis of the AP2/EREBP, COX and LTP genes revealed collinearity orthologous relationships in O. sativa, H. vulgare and A. thaliana. AP2/EREBP genes were found on the 10 chromosomes of Z. mays L. COX genes were found on chromosomes 1, 3, 4, 5, 7 and 8. LTP genes were found on chromosomes 1, 3, 6, 8, 9 and 10. In the present study, the Ka/Ks ratios of the AP2/EREBP paralogous pairs indicated that the AP2/EREBP genes were influenced primarily by purifying selection, which indicated that the AP2/EREBP genes received strong environmental pressure during evolution. The Ka/Ks ratios of the COX-3/COX-4 paralogous pairs indicate that the COX-3/COX-4 genes were influenced primarily by Darwinian selection (driving change). For the LTP genes, the Ka/Ks ratios of the LTP-1/LTP-10, LTP-5/LTP-3 and LTP-4/LTP-8 paralogous pairs indicate that these genes were influenced primarily by purifying selection, while the Ka/Ks ratios of the LTP-2/LTP-6 paralogous pairs indicate that these genes were influenced primarily by Darwinian selection. The duplication time of the AP2/EREBP paralogous gene pairs in Z. mays L. ranged from approximately 9.364 to 100.935 Mya. The duplication time of the COX-3/COX-4 paralogous gene pair was approximately 5.217 Mya. The duplication time of the LTP paralogous gene pairs ranged from approximately 19.064 to 96.477 Mya. The major focus of research is to identify the genes that are responsible for drought stress tolerance to improve maize for drought stress tolerance. The results of the present study will improve the understanding of the functions of the AP2/EREBP, COX and LTP genes in response to drought stress.
Collapse
Affiliation(s)
- Amaal Maghraby
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Mohamed Alzalaty
- Department of Plant Genetic Transformation, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| |
Collapse
|
4
|
Baguma JK, Mukasa SB, Nuwamanya E, Alicai T, Omongo CA, Ochwo-Ssemakula M, Ozimati A, Esuma W, Kanaabi M, Wembabazi E, Baguma Y, Kawuki RS. Identification of Genomic Regions for Traits Associated with Flowering in Cassava ( Manihot esculenta Crantz). PLANTS (BASEL, SWITZERLAND) 2024; 13:796. [PMID: 38592820 PMCID: PMC10974989 DOI: 10.3390/plants13060796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 04/11/2024]
Abstract
Flowering in cassava (Manihot esculenta Crantz) is crucial for the generation of botanical seed for breeding. However, genotypes preferred by most farmers are erect and poor at flowering or never flower. To elucidate the genetic basis of flowering, 293 diverse cassava accessions were evaluated for flowering-associated traits at two locations and seasons in Uganda. Genotyping using the Diversity Array Technology Pty Ltd. (DArTseq) platform identified 24,040 single-nucleotide polymorphisms (SNPs) distributed on the 18 cassava chromosomes. Population structure analysis using principal components (PCs) and kinships showed three clusters; the first five PCs accounted for 49.2% of the observed genetic variation. Linkage disequilibrium (LD) estimation averaged 0.32 at a distance of ~2850 kb (kilo base pairs). Polymorphism information content (PIC) and minor allele frequency (MAF) were 0.25 and 0.23, respectively. A genome-wide association study (GWAS) analysis uncovered 53 significant marker-trait associations (MTAs) with flowering-associated traits involving 27 loci. Two loci, SNPs S5_29309724 and S15_11747301, were associated with all the traits. Using five of the 27 SNPs with a Phenotype_Variance_Explained (PVE) ≥ 5%, 44 candidate genes were identified in the peak SNP sites located within 50 kb upstream or downstream, with most associated with branching traits. Eight of the genes, orthologous to Arabidopsis and other plant species, had known functional annotations related to flowering, e.g., eukaryotic translation initiation factor and myb family transcription factor. This study identified genomic regions associated with flowering-associated traits in cassava, and the identified SNPs can be useful in marker-assisted selection to overcome hybridization challenges, like unsynchronized flowering, and candidate gene validation.
Collapse
Affiliation(s)
- Julius K. Baguma
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Settumba B. Mukasa
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
| | - Ephraim Nuwamanya
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Titus Alicai
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Christopher Abu Omongo
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| | - Mildred Ochwo-Ssemakula
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
| | - Alfred Ozimati
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- School of Biological Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Williams Esuma
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| | - Michael Kanaabi
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Enoch Wembabazi
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Yona Baguma
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| | - Robert S. Kawuki
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| |
Collapse
|
5
|
Ridolo E, Barone A, Ottoni M, Peveri S, Montagni M, Nicoletta F. Factors and co-factors influencing clinical manifestations in nsLTPs allergy: between the good and the bad. FRONTIERS IN ALLERGY 2023; 4:1253304. [PMID: 37841053 PMCID: PMC10568476 DOI: 10.3389/falgy.2023.1253304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) are a family of plant pan-allergens that represent the primary cause of food allergies in the Mediterranean area, characterized by a wide range of clinical manifestations, ranging from the total absence of symptoms up to anaphylaxis. This wide variety of symptoms is related to the intrinsic capacity of nsLTPs to cause an allergic reaction in a specific subject, but also to the presence of co-factors exacerbating (i.e., exercise, NSAIDs, PPIs, alcohol, cannabis, prolonged fasting, menstruation, acute infections, sleep deprivation, chronic urticaria) or protecting from (i.e., co-sensitization to PR10, profilin or polcalcin) severe reactions. In this picture, recognizing some nsLTPs-related peculiarities (i.e., route, type and number of sensitizations, concentration of the allergen, cross-reactions) and eventual co-factors may help the allergist to define the risk profile of the single patient, in order to promote the appropriate management of the allergy from dietary advices up to the prescription of life-saving epinephrine autoinjector.
Collapse
Affiliation(s)
- Erminia Ridolo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Allergology Unit, University Hospital of Parma, Parma, Italy
| | | | - Martina Ottoni
- Allergology Unit, University Hospital of Parma, Parma, Italy
| | - Silvia Peveri
- Departmental Unit of Allergology, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Marcello Montagni
- Departmental Unit of Allergology, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | | |
Collapse
|
6
|
Zhu F, Cao MY, Zhu PX, Zhang QP, Lam HM. Non-specific LIPID TRANSFER PROTEIN 1 enhances immunity against tobacco mosaic virus in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5236-5254. [PMID: 37246636 DOI: 10.1093/jxb/erad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are small, cysteine-rich proteins that play significant roles in biotic and abiotic stress responses; however, the molecular mechanism of their functions against viral infections remains unclear. In this study, we employed virus-induced gene-silencing and transgenic overexpression to functionally analyse a type-I nsLTP in Nicotiana benthamiana, NbLTP1, in the immunity response against tobacco mosaic virus (TMV). NbLTP1 was inducible by TMV infection, and its silencing increased TMV-induced oxidative damage and the production of reactive oxygen species (ROS), compromised local and systemic resistance to TMV, and inactivated the biosynthesis of salicylic acid (SA) and its downstream signaling pathway. The effects of NbLTP1-silencing were partially restored by application of exogenous SA. Overexpressing NbLTP1 activated genes related to ROS scavenging to increase cell membrane stability and maintain redox homeostasis, confirming that an early ROS burst followed by ROS suppression at the later phases of pathogenesis is essential for resistance to TMV infection. The cell-wall localization of NbLTP1 was beneficial to viral resistance. Overall, our results showed that NbLTP1 positively regulates plant immunity against viral infection through up-regulating SA biosynthesis and its downstream signaling component, NONEXPRESSOR OF PATHOGENESIS-RELATED 1 (NPR1), which in turn activates pathogenesis-related genes, and by suppressing ROS accumulation at the later phases of viral pathogenesis.
Collapse
Affiliation(s)
- Feng Zhu
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Meng-Yao Cao
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Peng-Xiang Zhu
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Qi-Ping Zhang
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
7
|
Peirats-Llobet M, Yi C, Liew L, Berkowitz O, Narsai R, Lewsey M, Whelan J. Spatially resolved transcriptomic analysis of the germinating barley grain. Nucleic Acids Res 2023; 51:7798-7819. [PMID: 37351575 PMCID: PMC10450182 DOI: 10.1093/nar/gkad521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/24/2023] Open
Abstract
Seeds are a vital source of calories for humans and a unique stage in the life cycle of flowering plants. During seed germination, the embryo undergoes major developmental transitions to become a seedling. Studying gene expression in individual seed cell types has been challenging due to the lack of spatial information or low throughput of existing methods. To overcome these limitations, a spatial transcriptomics workflow was developed for germinating barley grain. This approach enabled high-throughput analysis of spatial gene expression, revealing specific spatial expression patterns of various functional gene categories at a sub-tissue level. This study revealed over 14 000 genes differentially regulated during the first 24 h after imbibition. Individual genes, such as the aquaporin gene family, starch degradation, cell wall modification, transport processes, ribosomal proteins and transcription factors, were found to have specific spatial expression patterns over time. Using spatial autocorrelation algorithms, we identified auxin transport genes that had increasingly focused expression within subdomains of the embryo over time, suggesting their role in establishing the embryo axis. Overall, our study provides an unprecedented spatially resolved cellular map for barley germination and identifies specific functional genomics targets to better understand cellular restricted processes during germination. The data can be viewed at https://spatial.latrobe.edu.au/.
Collapse
Affiliation(s)
- Marta Peirats-Llobet
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Changyu Yi
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Lim Chee Liew
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Mathew G Lewsey
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- Research Centre for Engineering Biology, College of Life Science, Zhejiang University, 718 East Haizhou Road, Haining, Jiaxing, Zhejiang 314400, China
| |
Collapse
|
8
|
Saxena H, Negi H, Keshan R, Chitkara P, Kumar S, Chakraborty A, Roy A, Singh IK, Singh A. A comprehensive investigation of lipid-transfer proteins from Cicer arietinum disentangles their role in plant defense against Helicoverpa armigera-infestation. Front Genet 2023; 14:1195554. [PMID: 37456660 PMCID: PMC10348895 DOI: 10.3389/fgene.2023.1195554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Lipid Transfer Proteins (LTPs) play a crucial role in synthesizing lipid barrier polymers and are involved in defense signaling during pest and pathogen attacks. Although LTPs are conserved with multifaceted roles in plants, these are not yet identified and characterized in Cicer arietinum. In this study, a genome-wide analysis of LTPs was executed and their physiochemical properties, biochemical function, gene structure analysis, chromosomal localization, promoter analysis, gene duplication, and evolutionary analysis were performed using in silico tools. Furthermore, tissue-specific expression analysis and gene expression analysis during pest attack was also conducted for the LTPs. A total of 48 LTPs were identified and named as CaLTPs. They were predicted to be small unstable proteins with "Glycolipid transfer protein" and "Alpha-Amylase Inhibitors, Lipid Transfer and Seed Storage" domains, that are translocated to the extracellular region. CaLTPs were predicted to possess 3-4 introns and were located on all the eight chromosomes of chickpea with half of the CaLTPs being localized on chromosomes 4, 5, and 6, and found to be closely related to LTPs of Arabidopsis thaliana and Medicago trancatula. Gene duplication and synteny analysis revealed that most of the CaLTPs have evolved due to tandem or segmental gene duplication and were subjected to purifying selection during evolution. The promoters of CaLTPs had development-related, phytohormone-responsive, and abiotic and biotic stress-related cis-acting elements. A few CaLTP transcripts exhibited differential expression in diverse tissue types, while others showed no/very low expression. Out of 20 jasmonate-regulated CaLTPs, 14 exhibited differential expression patterns during Helicoverpa armigera-infestation, indicating their role in plant defense response. This study identified and characterized CaLTPs from an important legume, C. arietinum, and indicated their involvement in plant defense against H. armigera-infestation, which can be further utilized to explore lipid signaling during plant-pest interaction and pest management.
Collapse
Affiliation(s)
- Harshita Saxena
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States
| | - Harshita Negi
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Radhika Keshan
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Pragya Chitkara
- Bioinformatics Lab, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Shailesh Kumar
- Bioinformatics Lab, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Amrita Chakraborty
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Suchdol, Czechia
| | - Amit Roy
- Forest Molecular Entomology Lab, EXTEMIT-K, EVA 4.0, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Suchdol, Czechia
| | - Indrakant K. Singh
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Climate Change and Sustainability, Institution of Eminence, University of Delhi, Delhi, India
| |
Collapse
|
9
|
Paul M, Tanskanen J, Jääskeläinen M, Chang W, Dalal A, Moshelion M, Schulman AH. Drought and recovery in barley: key gene networks and retrotransposon response. FRONTIERS IN PLANT SCIENCE 2023; 14:1193284. [PMID: 37377802 PMCID: PMC10291200 DOI: 10.3389/fpls.2023.1193284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023]
Abstract
Introduction During drought, plants close their stomata at a critical soil water content (SWC), together with making diverse physiological, developmental, and biochemical responses. Methods Using precision-phenotyping lysimeters, we imposed pre-flowering drought on four barley varieties (Arvo, Golden Promise, Hankkija 673, and Morex) and followed their physiological responses. For Golden Promise, we carried out RNA-seq on leaf transcripts before and during drought and during recovery, also examining retrotransposon BARE1expression. Transcriptional data were subjected to network analysis. Results The varieties differed by their critical SWC (ϴcrit), Hankkija 673 responding at the highest and Golden Promise at the lowest. Pathways connected to drought and salinity response were strongly upregulated during drought; pathways connected to growth and development were strongly downregulated. During recovery, growth and development pathways were upregulated; altogether, 117 networked genes involved in ubiquitin-mediated autophagy were downregulated. Discussion The differential response to SWC suggests adaptation to distinct rainfall patterns. We identified several strongly differentially expressed genes not earlier associated with drought response in barley. BARE1 transcription is strongly transcriptionally upregulated by drought and downregulated during recovery unequally between the investigated cultivars. The downregulation of networked autophagy genes suggests a role for autophagy in drought response; its importance to resilience should be further investigated.
Collapse
Affiliation(s)
- Maitry Paul
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Jaakko Tanskanen
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
- Production Systems, Natural Resources Institute Finland (LUKE), Helsinki, Finland
| | - Marko Jääskeläinen
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Wei Chang
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Ahan Dalal
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Menachem Moshelion
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alan H. Schulman
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
- Production Systems, Natural Resources Institute Finland (LUKE), Helsinki, Finland
| |
Collapse
|
10
|
Song H, Yao P, Zhang S, Jia H, Yang Y, Liu L. A non-specific lipid transfer protein, NtLTPI.38, positively mediates heat tolerance by regulating photosynthetic ability and antioxidant capacity in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107791. [PMID: 37243997 DOI: 10.1016/j.plaphy.2023.107791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/14/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Non-specific lipid transfer proteins (nsLTPs) play an important role in plant growth and stress resistance; however, their function in tobacco remains poorly understood. Therefore, to explore the function of NtLTP in response to high temperature, we identified an NtLTPI.38 from tobacco, obtained its overexpression and knockout transgenic plants, and further studied their response to heat stress (42 °C). The results showed that NtLTPI.38 overexpression in tobacco reduced chlorophyll degradation, alleviated the high temperature damage to photosynthetic organs, and enhanced the photosynthetic capacity of tobacco under heat stress. NtLTPI.38 overexpression in heat-stressed tobacco increased the contents of soluble sugar and protein, proline, and flavonoid substances, reduced the relative conductivity, and decreased H2O2, O2•-, and MDA accumulation, and increased the enzymatic antioxidant activities, such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), compared to wild type (WT) and knockout mutant plants. RT-PCR confirmed that the expression levels of antioxidant enzymes and thermal stress-related genes were significantly upregulated under thermal stress in overexpression plants. Therefore, NtLTPI.38 enhanced heat tolerance in tobacco by mitigating photosynthetic damage and improving osmoregulation and antioxidant capacity. These results provided the theoretical basis and a potential resource for further breeding projects to improve heat tolerance in plants.
Collapse
Affiliation(s)
- Hao Song
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Panpan Yao
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Songtao Zhang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Hongfang Jia
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yongxia Yang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Liping Liu
- China Tobacco Hubei Industrial Company,Ltd, Sanxia Cigarette Factory, Yichang, 443000, China.
| |
Collapse
|
11
|
Santos-Silva CAD, Ferreira-Neto JRC, Amador VC, Bezerra-Neto JP, Vilela LMB, Binneck E, Rêgo MDS, da Silva MD, Mangueira de Melo ALT, da Silva RH, Benko-Iseppon AM. From Gene to Transcript and Peptide: A Deep Overview on Non-Specific Lipid Transfer Proteins (nsLTPs). Antibiotics (Basel) 2023; 12:antibiotics12050939. [PMID: 37237842 DOI: 10.3390/antibiotics12050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) stand out among plant-specific peptide superfamilies due to their multifaceted roles in plant molecular physiology and development, including their protective functions against pathogens. These antimicrobial agents have demonstrated remarkable efficacy against bacterial and fungal pathogens. The discovery of plant-originated, cysteine-rich antimicrobial peptides such as nsLTPs has paved the way for exploring the mentioned organisms as potential biofactories for synthesizing antimicrobial compounds. Recently, nsLTPs have been the focus of a plethora of research and reviews, providing a functional overview of their potential activity. The present work compiles relevant information on nsLTP omics and evolution, and it adds meta-analysis of nsLTPs, including: (1) genome-wide mining in 12 plant genomes not studied before; (2) latest common ancestor analysis (LCA) and expansion mechanisms; (3) structural proteomics, scrutinizing nsLTPs' three-dimensional structure/physicochemical characteristics in the context of nsLTP classification; and (4) broad nsLTP spatiotemporal transcriptional analysis using soybean as a study case. Combining a critical review with original results, we aim to integrate high-quality information in a single source to clarify unexplored aspects of this important gene/peptide family.
Collapse
Affiliation(s)
| | | | - Vinícius Costa Amador
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | | | - Lívia Maria Batista Vilela
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - Eliseu Binneck
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Soja, Londrina 86085-981, Brazil
| | - Mireli de Santana Rêgo
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - Manassés Daniel da Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | | | - Rahisa Helena da Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - Ana Maria Benko-Iseppon
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| |
Collapse
|
12
|
Li J, Wang Q, Wang Y, Wu X, Liu Y, Wan M, Wang L, Wang X, Zhang C, Wang X, Tang X, Heng W. Identification of nsLTP family in Chinese white pear (Pyrus bretschneideri) reveals its potential roles in russet skin formation. PLANTA 2023; 257:113. [PMID: 37165276 DOI: 10.1007/s00425-023-04153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
MAIN CONCLUSION Identification of PbLTP genes in pear and functional characterization of PbLTP4 in the transport of suberin monomers of russet skin formation. Non-specific lipid-transfer protein (nsLTP) is an abundant and diverse alkaline small molecule protein in the plant kingdom with complex and diverse biophysiological functions, such as transfer of phospholipids, reproductive development, pathogen defence and abiotic stress response. Up to now, only a tiny fraction of nsLTPs have been functionally identified, and the distribution of nsLTPs in pear (Pyrus bretschneideri) (PbLTPs) has not been fully characterized. In this study, the genome-wide analysis of the nsLTP gene family in the pear genome identified 67 PbLTP proteins, which could be divided into six types (1, 2, C, D, E, and G). Similar intron/exon structural patterns were observed in the same type, strongly supporting their close evolutionary relationship. In addition, PbLTP4 was highly expressed in russet pear skin compared with green skin, which was located in the plasma membrane. Coexpression network analysis showed that PbLTP4 closely related to suberin biosynthetic genes. The biological function of PbLTP4 in promoting suberification has been demonstrated by overexpression in Arabidopsis. Identification of suberin monomers showed that PbLTP4 promotes suberification by regulating 9,12-octadecadienoic acid and hexadecanoic acid transport. These results provide helpful insights into the characteristics of PbLTP genes and their biological function in the transport of suberin monomers of russet skin formation.
Collapse
Affiliation(s)
- Jiawei Li
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Qi Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yajing Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Xinyi Wu
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yaping Liu
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Minchen Wan
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Lindu Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Xiexuan Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Cheng Zhang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Xueqian Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Xiaomei Tang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China.
| | - Wei Heng
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China.
| |
Collapse
|
13
|
Wei H, Liu G, Qin J, Zhang Y, Chen J, Zhang X, Yu C, Chen Y, Lian B, Zhong F, Movahedi A, Zhang J. Genome-wide characterization, chromosome localization, and expression profile analysis of poplar non-specific lipid transfer proteins. Int J Biol Macromol 2023; 231:123226. [PMID: 36641014 DOI: 10.1016/j.ijbiomac.2023.123226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are small and have a broad biological function involved in reproductive development and abiotic stress resistance. Although a small part of plant nsLTPs have been identified, these proteins have not been characterized in poplar at the genomic level. A genome-wide characterization and expression identification of poplar nsLTP members were performed in this study. A total of 42 poplar nsLTP genes were identified from the poplar genome. A comprehensive analysis of poplar nsLTPs was conducted by a phylogenetic tree, duplication events, gene structures, and conserved motifs. The cis-elements of poplar nsLTPs were predicted to respond to light, hormone, and abiotic stress. Many transcription factors (TFs) were identified to interact with poplar nsLTP cis-elements. The tested poplar nsLTPs were expressed in leaves, stems, and roots, but their expression levels differed among tested tissues. Most poplar nsLTP expression levels were changed by abiotic stress, implying that poplar nsLTP may be involved in abiotic stress resistance. Network analysis showed that poplar nsLTPs are putative genes involved in fatty acid (FA) metabolism. This research provides sight into the further study to explain the regulatory mechanism of the poplar nsLTPs.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China
| | - Jin Qin
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China
| | - Yanyan Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.
| | - Jinxin Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Xingyue Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Bolin Lian
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Ali Movahedi
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| |
Collapse
|
14
|
Wang D, Song J, Lin T, Yin Y, Mu J, Liu S, Wang Y, Kong D, Zhang Z. Identification of potato Lipid transfer protein gene family and expression verification of drought genes StLTP1 and StLTP7. PLANT DIRECT 2023; 7:e491. [PMID: 36993902 PMCID: PMC10041547 DOI: 10.1002/pld3.491] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Lipid transfer proteins (LTPs) are widely distributed in plants and play an important role in the response to stress. Potato (Solanum tuberosum L.) is sensitive to a lack of water, and drought stress is one of the limiting factors for its yield. Therefore, mining candidate functional genes for drought stress and creating new types of potato germplasm for drought resistance is an effective way to solve this problem. There are few reports on the LTP family in potato. In this study, 39 members of the potato LTP family were identified. They were located on seven chromosomes, and the amino acid sequences encoded ranged from 101 to 345 aa. All 39 family members contained introns and had exons that ranged from one to four. Conserved motif analysis of potato LTP transcription factors showed that 34 transcription factors contained Motif 2 and Motif 4, suggesting that they were conserved motifs of potato LTP. Compared with the LTP genes of homologous crops, the potato and tomato (Solanum lycopersicum L.) LTPs were the mostly closely related. The StLTP1 and StLTP7 genes were screened by quantitative reverse transcription PCR combined with potato transcriptome data to study their expression in tissues and the characteristics of their responses to drought stress. The results showed that StLTP1 and StLTP7 were upregulated in the roots, stems, and leaves after PEG 6000 stress. Taken together, our study provides comprehensive information on the potato LTP family that will help to develop a framework for further functional studies.
Collapse
Affiliation(s)
- Dan Wang
- College of Life Sciences and TechnologyJining Normal UniversityUlanqabInner MongoliaChina
| | - Jian Song
- Institute of Industrial CropsShanxi Agricultural UniversityTaiyuanShanxiChina
| | - Tuanrong Lin
- Wulanchabu Academy of Agricultural and Forestry Research SciencesWulanchabuInner MongoliaChina
| | - Yuhe Yin
- Wulanchabu Academy of Agricultural and Forestry Research SciencesWulanchabuInner MongoliaChina
| | - Junxiang Mu
- College of Life Sciences and TechnologyJining Normal UniversityUlanqabInner MongoliaChina
| | - Shuancheng Liu
- College of Life Sciences and TechnologyJining Normal UniversityUlanqabInner MongoliaChina
| | - Yaqin Wang
- College of Life Sciences and TechnologyJining Normal UniversityUlanqabInner MongoliaChina
| | - Dejuan Kong
- Wulanchabu Academy of Agricultural and Forestry Research SciencesWulanchabuInner MongoliaChina
| | - Zhicheng Zhang
- Wulanchabu Academy of Agricultural and Forestry Research SciencesWulanchabuInner MongoliaChina
| |
Collapse
|
15
|
A Systematic Investigation of Lipid Transfer Proteins Involved in Male Fertility and Other Biological Processes in Maize. Int J Mol Sci 2023; 24:ijms24021660. [PMID: 36675174 PMCID: PMC9864150 DOI: 10.3390/ijms24021660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Plant lipid transfer proteins (LTPs) play essential roles in various biological processes, including anther and pollen development, vegetative organ development, seed development and germination, and stress response, but the research progress varies greatly among Arabidopsis, rice and maize. Here, we presented a preliminary introduction and characterization of the whole 65 LTP genes in maize, and performed a phylogenetic tree and gene ontology analysis of the LTP family members in maize. We compared the research progresses of the reported LTP genes involved in male fertility and other biological processes in Arabidopsis and rice, and thus provided some implications for their maize orthologs, which will provide useful clues for the investigation of LTP transporters in maize. We predicted the functions of LTP genes based on bioinformatic analyses of their spatiotemporal expression patterns by using RNA-seq and qRT-PCR assays. Finally, we discussed the advances and challenges in substrate identification of plant LTPs, and presented the future research directions of LTPs in plants. This study provides a basic framework for functional research and the potential application of LTPs in multiple plants, especially for male sterility research and application in maize.
Collapse
|
16
|
Genome-Wide Identification of Common Bean PvLTP Family Genes and Expression Profiling Analysis in Response to Drought Stress. Genes (Basel) 2022; 13:genes13122394. [PMID: 36553661 PMCID: PMC9777604 DOI: 10.3390/genes13122394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Common bean is one of the most important legume crops for human consumption. Its yield is adversely affected by environmental stress. Plant non-specific lipid transfer proteins (nsLTPs) are essential for plant growth, development, and resistance to abiotic stress, such as salt, drought, and alkali. However, changes in nsLTP family genes responding to drought stress are less known. The PvLTP gene family in the common bean was identified by a comprehensive genome-wide analysis. Molecular weights, theoretical isoelectric points, phylogenetic tree, conserved motifs, gene structures, gene duplications, chromosome localization, and expression profiles were analyzed by SignalP 5.0, ExPASy, ClustalX 2.1, MEGA 7.0, NCBI-CDD, MEME, Weblogo, and TBtools 1.09876, respectively. Heatmap and qRT-PCR analyses were performed to validate the expression profiles of PvLTP genes in different organs. In addition, the expression patterns of nine PvLTP genes in common beans treated with drought stress were investigated by qRT-PCR. We obtained 58 putative PvLTP genes in the common bean genome via genome-wide analyses. Based on the diversity of the eight-cysteine motif (ECM), these genes were categorized into five types (I, II, IV, V, and VIII). The signal peptides of the PvLTP precursors were predicted to be from 16 to 42 amino acid residues. PvLTPs had a predicated theoretical isoelectric point of 3.94-10.34 and a molecular weight of 7.15-12.17 kDa. The phylogenetic analysis showed that PvLTPs were closer to AtLTPs than OsLTPs. Conserved motif and gene structure analyses indicated that PvLTPs were randomly distributed on all chromosomes except chromosome 9. In addition, 23 tandem duplicates of PvLTP genes were arranged in 10 gene clusters on chromosomes 1 and 2. The heatmap and qRT-PCR showed that PvLTP expression significantly varied in different tissues. Moreover, 9 PvLTP genes were up-regulated under drought treatment. Our results reveal that PvLTPs play potentially vital roles in plants and provide a comprehensive reference for studies on PvLTP genes and a theoretical basis for further analysis of regulatory mechanisms influencing drought tolerance in the common bean.
Collapse
|
17
|
Li J, Zhao JY, Shi Y, Fu HY, Huang MT, Meng JY, Gao SJ. Systematic and functional analysis of non-specific lipid transfer protein family genes in sugarcane under Xanthomonas albilineans infection and salicylic acid treatment. FRONTIERS IN PLANT SCIENCE 2022; 13:1014266. [PMID: 36275567 PMCID: PMC9581186 DOI: 10.3389/fpls.2022.1014266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are small basic proteins that play a significant regulatory role in a wide range of physiological processes. To date, no genome-wide survey and expression analysis of this gene family in sugarcane has been performed. In this study we identified the nsLTP gene family in Saccharum spontaneum and carried out expression profiling of nsLTPs in two sugarcane cultivars (Saccharum spp.) that have different resistance to leaf scald caused by Xanthomonas albilineans (Xa) infection. The effect of stress related to exogenous salicylic acid (SA) treatment was also examined. At a genome-wide level, S. spontaneum AP85-441 had 71 SsnsLTP genes including 66 alleles. Tandem (9 gene pairs) and segmental (36 gene pairs) duplication events contributed to SsnsLTP gene family expansion. Five SsnsLTP proteins were predicted to interact with five other proteins. Expression of ShnsLTPI.8/10/Gb.1 genes was significantly upregulated in LCP85-384 (resistant cultivar), but downregulated in ROC20 (susceptible cultivar), suggesting that these genes play a positive regulatory role in response of sugarcane to Xa infection. Conversely, ShnsLTPGa.4/Ge.3 appears to act as a negative regulator in response Xa infection. The majority (16/17) of tested genes were positively induced in LCP85-384 72 h after SA treatment. In both cultivars, but particularly in LCP85-384, ShnsLTPIV.3/VIII.1 genes were upregulated at all time-points, suggesting that the two genes might act as positive regulators under SA stress. Meanwhile, both cultivars showed downregulated ShnsLTPGb.1 gene expression, indicating its potential negative role in SA treatment responses. Notably, the ShnsLTPGb.1 gene had contrasting effects, with positive regulation of gene expression in response to Xa infection and negative regulation induced by SA stress. Together, our results provide valuable information for elucidating the function of ShnsLTP family members under two stressors and identified novel gene sources for development of sugarcane that are tolerant of environmental stimuli.
Collapse
|
18
|
Genome-Wide Identification and Expression Analysis of nsLTP Gene Family in Rapeseed (Brassica napus) Reveals Their Critical Roles in Biotic and Abiotic Stress Responses. Int J Mol Sci 2022; 23:ijms23158372. [PMID: 35955505 PMCID: PMC9368849 DOI: 10.3390/ijms23158372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) are small cysteine-rich basic proteins which play essential roles in plant growth, development and abiotic/biotic stress response. However, there is limited information about the nsLTP gene (BnLTP) family in rapeseed (Brassica napus). In this study, 283 BnLTP genes were identified in rapeseed, which were distributed randomly in 19 chromosomes of rapeseed. Phylogenetic analysis showed that BnLTP proteins were divided into seven groups. Exon/intron structure and MEME motifs both remained highly conserved in each BnLTP group. Segmental duplication and hybridization of rapeseed’s two sub-genomes mainly contributed to the expansion of the BnLTP gene family. Various potential cis-elements that respond to plant growth, development, biotic/abiotic stresses, and phytohormone signals existed in BnLTP gene promoters. Transcriptome analysis showed that BnLTP genes were expressed in various tissues/organs with different levels and were also involved in the response to heat, drought, NaCl, cold, IAA and ABA stresses, as well as the treatment of fungal pathogens (Sclerotinia sclerotiorum and Leptosphaeria maculans). The qRT-PCR assay validated the results of RNA-seq expression analysis of two top Sclerotinia-responsive BnLTP genes, BnLTP129 and BnLTP161. Moreover, batches of BnLTPs might be regulated by BnTT1 and BnbZIP67 to play roles in the development, metabolism or adaptability of the seed coat and embryo in rapeseed. This work provides an important basis for further functional study of the BnLTP genes in rapeseed quality improvement and stress resistance.
Collapse
|
19
|
Han Y, Hu M, Ma X, Yan G, Wang C, Jiang S, Lai J, Zhang M. Exploring key developmental phases and phase-specific genes across the entirety of anther development in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1394-1410. [PMID: 35607822 PMCID: PMC10360140 DOI: 10.1111/jipb.13276] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Anther development from stamen primordium to pollen dispersal is complex and essential to sexual reproduction. How this highly dynamic and complex developmental process is controlled genetically is not well understood, especially for genes involved in specific key developmental phases. Here we generated RNA sequencing libraries spanning 10 key stages across the entirety of anther development in maize (Zea mays). Global transcriptome analyses revealed distinct phases of cell division and expansion, meiosis, pollen maturation, and mature pollen, for which we detected 50, 245, 42, and 414 phase-specific marker genes, respectively. Phase-specific transcription factor genes were significantly enriched in the phase of meiosis. The phase-specific expression of these marker genes was highly conserved among the maize lines Chang7-2 and W23, indicating they might have important roles in anther development. We explored a desiccation-related protein gene, ZmDRP1, which was exclusively expressed in the tapetum from the tetrad to the uninucleate microspore stage, by generating knockout mutants. Notably, mutants in ZmDRP1 were completely male-sterile, with abnormal Ubisch bodies and defective pollen exine. Our work provides a glimpse into the gene expression dynamics and a valuable resource for exploring the roles of key phase-specific genes that regulate anther development.
Collapse
Affiliation(s)
- Yingjia Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Mingjian Hu
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center of China Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xuxu Ma
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Ge Yan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyu Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siqi Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center of China Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Mei Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
20
|
Cytotoxic activity of non-specific lipid transfer protein (nsLTP1) from Ajwain (Trachyspermum ammi) seeds. BMC Complement Med Ther 2022; 22:135. [PMID: 35578215 PMCID: PMC9112568 DOI: 10.1186/s12906-022-03616-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022] Open
Abstract
Background Trachyspermum ammi, commonly known as Ajwain, is a member of the Apiaceae family. It is a therapeutic herbal spice with diverse pharmacological properties, used in traditional medicine for various ailments. However, all previous studies were conducted using small molecule extracts, leaving the protein’s bioactivity undiscovered. Aim The current study aimed to demonstrate the cytotoxic activity of Ajwain non-specific lipid transfer protein (nsLTP1) in normal breast (MCF10A), breast cancer (MCF-7), and pancreatic cancer (AsPC-1) cell lines. Also, to evaluate its structural stability in human serum as well as at high temperature conditions. Methods The cytotoxic activity of Ajwain nsLTP1 was evaluated in MCF-7 and AsPC-1 cell lines using MTT assay. Annexin V-FITC and PI staining were used to detect the early apoptotic and late apoptotic cells. The role of nsLTP1 in inducing apoptosis was further studied by quantifying Bcl-2, Bax, Caspase-3, Survivin, EGFR, and VEGF genes expression using RT-PCR. CD spectroscopy analyzed the nsLTP1 conformational changes after thermal treatment for structure stability determination. The RP-HPLC was used to analyze the nsLTP1 degradation rate in human serum at different time intervals incubated at 37 °C. Results Ajwain nsLTP1 showed a potent cytotoxic effect in MCF-7 and AsPC-1. The IC50 value obtained in MCF-7 was 8.21 μM, while for AsPC-1 4.17 μM. The effect of nsLTP1 on stimulating apoptosis revealed that the proportions of apoptotic cells in both cell lines were relatively increased depending on the concentration. The apoptotic cells percentage at 20 μM was in MCF-7 71% (***P < 0.001) and AsPC-1 88% (***P < 0.001). These results indicate that nsLTP1 might efficaciously induce apoptosis in multiple types of cancerous cells. Genes expression in MCF-7 and AsPC-1 showed significant upregulation in Bax and Caspase-3 and downregulation in Bcl-2, Survivin, EGFR, and VEGF protein. The CD analysis of nsLTP1 showed a significant thermostable property. In serum, nsLTP1 showed a slow degradation rate, indicating high stability with a half-life of ~ 8.4 h. Conclusion Our results revealed the potential anticancer activity of Ajwain nsLTP1 and its mechanism in inducing apoptosis. It further exhibited thermostable properties at high temperatures and in human serum, which suggested this protein as a promising anticancer agent. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03616-y.
Collapse
|
21
|
de Oliveira Silva L, da Silva Pereira L, Pereira JL, Gomes VM, Grativol C. Divergence and conservation of defensins and lipid transfer proteins (LTPs) from sugarcane wild species and modern cultivar genomes. Funct Integr Genomics 2022; 22:235-250. [PMID: 35195843 DOI: 10.1007/s10142-022-00832-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/24/2021] [Accepted: 02/15/2022] [Indexed: 11/04/2022]
Abstract
Plant defensins and lipid transfer proteins (LTPs) constitute a large and evolutionarily diverse family of antimicrobial peptides. Defensins and LTPs are two pathogenesis-related proteins (PR proteins) whose characterization may help to uncover aspects about the sugarcane response to pathogens attack. LTPs have also been investigated for their participation in the response to different types of stress. Despite the important roles of defensins and LTPs in biotic and abiotic stresses, scarce knowledge is found about these proteins in sugarcane. By using bioinformatics approaches, we characterized defensins and LTPs in the sugarcane wild species and modern cultivar genomes. The identification of defensins and LTPs showed that all five defensins groups and eight of the nine LTPs have their respective genes loci, although some was only identified in the cultivar genome. Phylogenetic analysis showed that defensins appear to be more conserved among groups of plants than LTPs. Some defensins and LTPs showed opposite expression during pathogenic and benefic bacterial interactions. Interestingly, the expression of defensins and LTPs in shoots and roots was completely different in plants submitted to benefic bacteria or water depletion. Finally, the modeling and comparison of isoforms of LTPs and defensins in wild species and cultivars revealed a high conservation of tertiary structures, with variation of amino acids in different regions of proteins, which could impact their antimicrobial activity. Our data contributed to the characterization of defensins and LTPs in sugarcane and provided new elements for understanding the involvement of these proteins in sugarcane response to different types of stress.
Collapse
Affiliation(s)
- Leandro de Oliveira Silva
- Laboratório de Química, Função de Proteínas E Peptídeos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Lídia da Silva Pereira
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Jacymara Lopes Pereira
- Laboratório de Química, Função de Proteínas E Peptídeos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Clícia Grativol
- Laboratório de Química, Função de Proteínas E Peptídeos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
22
|
Wei H, Movahedi A, Liu G, Zhu S, Chen Y, Yu C, Zhong F, Zhang J. Characteristics, expression profile, and function of non-specific lipid transfer proteins of Populus trichocarpa. Int J Biol Macromol 2022; 202:468-481. [PMID: 35063485 DOI: 10.1016/j.ijbiomac.2022.01.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are involved in various physiological processes. However, the characteristics and function of LTPs in Populus trichocarpa are unclear. Here, we report the functional properties of type IV, V, and VI P. trichocarpa nsLTPs (PtLTPs). The IV, V, and VI PtLTPs clustered in the same clade shared similar gene structures and motif and distributions. Also, collinearity analysis revealed 2 and 7 gene pairs have tandem duplication and segmental duplication events, respectively. The expression patterns of type IV, V, and VI PtLTPs differed among poplar tissues. We investigated the effects of various stresses on the Potri.010G100600, Potri.010G196300, and Potri.016G104300 (type V LTPs) mRNA levels, and type V LTPs can respond to multiple stresses. Potri.008G061800 was localized to the cell wall, extracellular space, and plasma membrane. Glutathione-S-transferase-Potri.008G061800 obtained by prokaryotic expression had weakly inhibited the growth of Septotis populiperda in vitro. Taken together, our data show that type IV, V, and VI PtLTPs may be thought as novel regulators of plant stresses. They could be considered an effective genetic resource for molecular breeding in poplar.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, Jiangsu 226001, China
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; College of Arts and Sciences, Arlington International University, Wilmington, DE 19804, USA.
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, Jiangsu 226001, China
| | - Sheng Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, Jiangsu 226001, China
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, Jiangsu 226001, China
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, Jiangsu 226001, China
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
23
|
Missaoui K, Gonzalez-Klein Z, Pazos-Castro D, Hernandez-Ramirez G, Garrido-Arandia M, Brini F, Diaz-Perales A, Tome-Amat J. Plant non-specific lipid transfer proteins: An overview. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:115-127. [PMID: 34992048 DOI: 10.1016/j.plaphy.2021.12.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 05/26/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are usually defined as small, basic proteins, with a wide distribution in all orders of higher plants. Structurally, nsLTPs contain a conserved motif of eight cysteines, linked by four disulphide bonds, and a hydrophobic cavity in which the ligand is housed. This structure confers stability and enhances the ability to bind and transport a variety of hydrophobic molecules. Their highly conserved structural resemblance but low sequence identity reflects the wide variety of ligands they can carry, as well as the broad biological functions to which they are linked to, such as membrane stabilization, cell wall organization and signal transduction. In addition, they have also been described as essential in resistance to biotic and abiotic stresses, plant growth and development, seed development, and germination. Hence, there is growing interest in this family of proteins for their critical roles in plant development and for the many unresolved questions that need to be clarified, regarding their subcellular localization, transfer capacity, expression profile, biological function, and evolution.
Collapse
Affiliation(s)
- Khawla Missaoui
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax (CBS), University of Sfax, Tunisia
| | - Zulema Gonzalez-Klein
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Diego Pazos-Castro
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Guadalupe Hernandez-Ramirez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Maria Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Faical Brini
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax (CBS), University of Sfax, Tunisia
| | - Araceli Diaz-Perales
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain.
| |
Collapse
|
24
|
Transcriptome analysis of Kentucky bluegrass subject to drought and ethephon treatment. PLoS One 2021; 16:e0261472. [PMID: 34914788 PMCID: PMC8675742 DOI: 10.1371/journal.pone.0261472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/03/2021] [Indexed: 11/19/2022] Open
Abstract
Kentucky bluegrass (Poa pratensis L.) is an excellent cool-season turfgrass utilized widely in Northern China. However, turf quality of Kentucky bluegrass declines significantly due to drought. Ethephon seeds-soaking treatment has been proved to effectively improve the drought tolerance of Kentucky bluegrass seedlings. In order to investigate the effect of ethephon leaf-spraying method on drought tolerance of Kentucky bluegrass and understand the underlying mechanism, Kentucky bluegrass plants sprayed with and without ethephon are subjected to either drought or well watered treatments. The relative water content and malondialdehyde conent were measured. Meanwhile, samples were sequenced through Illumina. Results showed that ethephon could improve the drought tolerance of Kentucky bluegrass by elevating relative water content and decreasing malondialdehyde content under drought. Transcriptome analysis showed that 58.43% transcripts (254,331 out of 435,250) were detected as unigenes. A total of 9.69% (24,643 out of 254,331) unigenes were identified as differentially expressed genes in one or more of the pairwise comparisons. Differentially expressed genes due to drought stress with or without ethephon pre-treatment showed that ethephon application affected genes associated with plant hormone, signal transduction pathway and plant defense, protein degradation and stabilization, transportation and osmosis, antioxidant system and the glyoxalase pathway, cell wall and cuticular wax, fatty acid unsaturation and photosynthesis. This study provides a theoretical basis for revealing the mechanism for how ethephon regulates drought response and improves drought tolerance of Kentucky bluegrass.
Collapse
|
25
|
Amador VC, dos Santos-Silva CA, Vilela LMB, Oliveira-Lima M, de Santana Rêgo M, Roldan-Filho RS, de Oliveira-Silva RL, Lemos AB, de Oliveira WD, Ferreira-Neto JRC, Crovella S, Benko-Iseppon AM. Lipid Transfer Proteins (LTPs)-Structure, Diversity and Roles beyond Antimicrobial Activity. Antibiotics (Basel) 2021; 10:1281. [PMID: 34827219 PMCID: PMC8615156 DOI: 10.3390/antibiotics10111281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 01/21/2023] Open
Abstract
Lipid transfer proteins (LTPs) are among the most promising plant-exclusive antimicrobial peptides (AMPs). They figure among the most challenging AMPs from the point of view of their structural diversity, functions and biotechnological applications. This review presents a current picture of the LTP research, addressing not only their structural, evolutionary and further predicted functional aspects. Traditionally, LTPs have been identified by their direct isolation by biochemical techniques, whereas omics data and bioinformatics deserve special attention for their potential to bring new insights. In this context, new possible functions have been identified revealing that LTPs are actually multipurpose, with many additional predicted roles. Despite some challenges due to the toxicity and allergenicity of LTPs, a systematic review and search in patent databases, indicate promising perspectives for the biotechnological use of LTPs in human health and also plant defense.
Collapse
Affiliation(s)
- Vinícius Costa Amador
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Carlos André dos Santos-Silva
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, 34100 Trieste, Italy;
| | - Lívia Maria Batista Vilela
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Marx Oliveira-Lima
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Mireli de Santana Rêgo
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Ricardo Salas Roldan-Filho
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Roberta Lane de Oliveira-Silva
- General Microbiology Laboratory, Agricultural Science Campus, Universidade Federal do Vale do São Francisco, Petrolina 56300-990, Brazil;
| | - Ayug Bezerra Lemos
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Wilson Dias de Oliveira
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - José Ribamar Costa Ferreira-Neto
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Sérgio Crovella
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha 1883, Qatar;
| | - Ana Maria Benko-Iseppon
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| |
Collapse
|
26
|
Transcriptome Profiling of Maize ( Zea mays L.) Leaves Reveals Key Cold-Responsive Genes, Transcription Factors, and Metabolic Pathways Regulating Cold Stress Tolerance at the Seedling Stage. Genes (Basel) 2021; 12:genes12101638. [PMID: 34681032 PMCID: PMC8535276 DOI: 10.3390/genes12101638] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 01/22/2023] Open
Abstract
Cold tolerance is a complex trait that requires a critical perspective to understand its underpinning mechanism. To unravel the molecular framework underlying maize (Zea mays L.) cold stress tolerance, we conducted a comparative transcriptome profiling of 24 cold-tolerant and 22 cold-sensitive inbred lines affected by cold stress at the seedling stage. Using the RNA-seq method, we identified 2237 differentially expressed genes (DEGs), namely 1656 and 581 annotated and unannotated DEGs, respectively. Further analysis of the 1656 annotated DEGs mined out two critical sets of cold-responsive DEGs, namely 779 and 877 DEGs, which were significantly enhanced in the tolerant and sensitive lines, respectively. Functional analysis of the 1656 DEGs highlighted the enrichment of signaling, carotenoid, lipid metabolism, transcription factors (TFs), peroxisome, and amino acid metabolism. A total of 147 TFs belonging to 32 families, including MYB, ERF, NAC, WRKY, bHLH, MIKC MADS, and C2H2, were strongly altered by cold stress. Moreover, the tolerant lines’ 779 enhanced DEGs were predominantly associated with carotenoid, ABC transporter, glutathione, lipid metabolism, and amino acid metabolism. In comparison, the cold-sensitive lines’ 877 enhanced DEGs were significantly enriched for MAPK signaling, peroxisome, ribosome, and carbon metabolism pathways. The biggest proportion of the unannotated DEGs was implicated in the roles of long non-coding RNAs (lncRNAs). Taken together, this study provides valuable insights that offer a deeper understanding of the molecular mechanisms underlying maize response to cold stress at the seedling stage, thus opening up possibilities for a breeding program of maize tolerance to cold stress.
Collapse
|
27
|
Tao Y, Zou T, Zhang X, Liu R, Chen H, Yuan G, Zhou D, Xiong P, He Z, Li G, Zhou M, Liu S, Deng Q, Wang S, Zhu J, Liang Y, Yu X, Zheng A, Wang A, Liu H, Wang L, Li P, Li S. Secretory lipid transfer protein OsLTPL94 acts as a target of EAT1 and is required for rice pollen wall development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:358-377. [PMID: 34314535 DOI: 10.1111/tpj.15443] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The plant pollen wall protects the male gametophyte from various biotic and abiotic stresses. The formation of a unique pollen wall structure and elaborate exine pattern is a well-organized process, which needs coordination between reproductive cells and the neighboring somatic cells. However, molecular mechanisms underlying this process remain largely unknown. Here, we report a rice male-sterile mutant (l94) that exhibits defective pollen exine patterning and abnormal tapetal cell development. MutMap and knockout analyses demonstrated that the causal gene encodes a type-G non-specific lipid transfer protein (OsLTPL94). Histological and cellular analyses established that OsLTPL94 is strongly expressed in the developing microspores and tapetal cells, and its protein is secreted to the plasma membrane. The l94 mutation impeded the secretory ability of OsLTPL94 protein. Further in vivo and in vitro investigations supported the hypothesis that ETERNAL TAPETUM 1 (EAT1), a basic helix-loop-helix transcription factor (bHLH TF), activated OsLTPL94 expression through direct binding to the E-box motif of the OsLTPL94 promoter, which was supported by the positive correlation between the expression of EAT1 and OsLTPL94 in two independent eat1 mutants. Our findings suggest that the secretory OsLTPL94 plays a key role in the coordinated development of tapetum and microspores with the regulation of EAT1.
Collapse
Affiliation(s)
- Yang Tao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoqiang Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dan Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pingping Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiyuan He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gongwen Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Menglin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sijing Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiming Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiquan Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiumei Yu
- College of Resource, Sichuan Agricultural University, Chengdu, 611130, China
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Aijun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huainian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingxia Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
28
|
Duo J, Xiong H, Wu X, Li Y, Si J, Zhang C, Duan R. Genome-wide identification and expression profile under abiotic stress of the barley non-specific lipid transfer protein gene family and its Qingke Orthologues. BMC Genomics 2021; 22:674. [PMID: 34544387 PMCID: PMC8451110 DOI: 10.1186/s12864-021-07958-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant non-specific lipid transfer proteins (nsLTPs), a group of small, basic ubiquitous proteins to participate in lipid transfer, cuticle formation and stress response, are involved in the regulation of plant growth and development. To date, although the nsLTP gene family of barley (Hordeum vulgare L.) has been preliminarily identified, it is still unclear in the recently completed genome database of barley and Qingke, and its transcriptional profiling under abiotic stress has not been elucidated as well. RESULTS We identified 40 barley nsLTP (HvLTP) genes through a strict screening strategy based on the latest barley genome and 35 Qingke nsLTP (HtLTP) orthologues using blastp, and these LTP genes were divided into four types (1, 2, D and G). At the same time, a comprehensive analysis of the physical and chemical characteristics, homology alignment, conserved motifs, gene structure and evolution of HvLTPs and HtLTPs further supported their similar nsLTP characteristics and classification. The genomic location of HvLTPs and HtLTPs showed that these genes were unevenly distributed, and obvious HvLTP and HtLTP gene clusters were found on the 7 chromosomes including six pairs of tandem repeats and one pair of segment repeats in the barley genome, indicating that these genes may be co-evolutionary and co-regulated. A spatial expression analysis showed that most HvLTPs and HtLTPs had different tissue-specific expression patterns. Moreover, the upstream cis-element analysis of HvLTPs and HtLTPs showed that there were many different stress-related transcriptional regulatory elements, and the expression pattern of HvLTPs and HtLTPs under abiotic stress also indicated that numerous HvLTP and HtLTP genes were related to the abiotic stress response. Taken together, these results may be due to the differences in promoters rather than by genes themselves resulting in different expression patterns under abiotic stress. CONCLUSION Due to a stringent screening and comprehensive analysis of the nsLTP gene family in barley and Qingke and its expression profile under abiotic stress, this study can be considered a useful source for the future studies of nsLTP genes in either barley or Qingke or for comparisons of different plant species.
Collapse
Affiliation(s)
- Jiecuo Duo
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, Qinghai Province, China.,Qinghai Qaidam Vocational & Technical College, Delingha, 817000, Qinghai Province, China
| | - Huiyan Xiong
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai Province, China
| | - Xiongxiong Wu
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, Qinghai Province, China
| | - Yuan Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, Qinghai Province, China
| | - Jianping Si
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, Qinghai Province, China
| | - Chao Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, Qinghai Province, China
| | - Ruijun Duan
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, Qinghai Province, China.
| |
Collapse
|
29
|
Zhao Y, Liu X, Wang M, Bi Q, Cui Y, Wang L. Transcriptome and physiological analyses provide insights into the leaf epicuticular wax accumulation mechanism in yellowhorn. HORTICULTURE RESEARCH 2021; 8:134. [PMID: 34059653 PMCID: PMC8167135 DOI: 10.1038/s41438-021-00564-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/03/2021] [Accepted: 03/14/2021] [Indexed: 06/02/2023]
Abstract
Plantations and production of yellowhorn, one of the most important woody oil and urban greening trees widely cultivated in northern China, have gradually become limited by drought stress. The epicuticular wax layer plays a key role in the protection of yellowhorn trees from drought and other stresses. However, there is no research on the mechanism of wax loading in yellowhorn trees. In this study, we investigated the anatomical and physiological characteristics of leaves from different germplasm resources and different parts of the same tree and compared their cuticle properties. In addition, the different expression patterns of genes involved in wax accumulation were analyzed, and a coexpression network was built based on transcriptome sequencing data. Morphological and physiological comparisons found that the sun leaves from the outer part of the crown had thicker epicuticular wax, which altered the permeability and improved the drought resistance of leaves, than did shade leaves. Based on transcriptome data, a total of 3008 and 1324 differentially expressed genes (DEGs) were identified between the sun leaves and shade leaves in glossy- and non-glossy-type germplasm resources, respectively. We identified 138 DEGs involved in wax biosynthesis and transport, including structural genes (such as LACS8, ECH1, and ns-LTP) and transcription factors (such as MYB, WRKY, and bHLH transcription factor family proteins). The coexpression network showed a strong correlation between these DEGs. The differences in gene expression patterns between G- and NG-type germplasm resources under different light conditions were very clear. These results not only provide a theoretical basis for screening and developing drought-resistant yellowhorn germplasm resources but also provide a data platform to reveal the wax accumulation process of yellowhorn leaves.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Xiaojuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China
| | - Mengke Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China
| | - Quanxin Bi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China
| | - Yifan Cui
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China
| | - Libing Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China.
| |
Collapse
|
30
|
Liu X, Bourgault R, Galli M, Strable J, Chen Z, Feng F, Dong J, Molina I, Gallavotti A. The FUSED LEAVES1-ADHERENT1 regulatory module is required for maize cuticle development and organ separation. THE NEW PHYTOLOGIST 2021; 229:388-402. [PMID: 32738820 PMCID: PMC7754373 DOI: 10.1111/nph.16837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
All aerial epidermal cells in land plants are covered by the cuticle, an extracellular hydrophobic layer that provides protection against abiotic and biotic stresses and prevents organ fusion during development. Genetic and morphological analysis of the classic maize adherent1 (ad1) mutant was combined with genome-wide binding analysis of the maize MYB transcription factor FUSED LEAVES1 (FDL1), coupled with transcriptional profiling of fdl1 mutants. We show that AD1 encodes an epidermally-expressed 3-KETOACYL-CoA SYNTHASE (KCS) belonging to a functionally uncharacterized clade of KCS enzymes involved in cuticular wax biosynthesis. Wax analysis in ad1 mutants indicates that AD1 functions in the formation of very-long-chain wax components. We demonstrate that FDL1 directly binds to CCAACC core motifs present in AD1 regulatory regions to activate its expression. Over 2000 additional target genes of FDL1, including many involved in cuticle formation, drought response and cell wall organization, were also identified. Our results identify a regulatory module of cuticle biosynthesis in maize that is conserved across monocots and eudicots, and highlight previously undescribed factors in lipid metabolism, transport and signaling that coordinate organ development and cuticle formation.
Collapse
Affiliation(s)
- Xue Liu
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJ08854‐8020USA
| | - Richard Bourgault
- Department of BiologyAlgoma UniversitySault Ste. MarieONP6A 2G4Canada
| | - Mary Galli
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJ08854‐8020USA
| | - Josh Strable
- School of Integrative Plant SciencePlant Biology SectionCornell UniversityIthacaNY14853USA
| | - Zongliang Chen
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJ08854‐8020USA
| | - Fan Feng
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJ08854‐8020USA
| | - Jiaqiang Dong
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJ08854‐8020USA
| | - Isabel Molina
- Department of BiologyAlgoma UniversitySault Ste. MarieONP6A 2G4Canada
| | - Andrea Gallavotti
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJ08854‐8020USA
- Department of Plant BiologyRutgers UniversityNew BrunswickNJ08901USA
| |
Collapse
|
31
|
Liu X, Bourgault R, Galli M, Strable J, Chen Z, Feng F, Dong J, Molina I, Gallavotti A. The FUSED LEAVES1-ADHERENT1 regulatory module is required for maize cuticle development and organ separation. THE NEW PHYTOLOGIST 2021; 229:388-402. [PMID: 32738820 DOI: 10.1101/2020.02.11.943787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/22/2020] [Indexed: 05/27/2023]
Abstract
All aerial epidermal cells in land plants are covered by the cuticle, an extracellular hydrophobic layer that provides protection against abiotic and biotic stresses and prevents organ fusion during development. Genetic and morphological analysis of the classic maize adherent1 (ad1) mutant was combined with genome-wide binding analysis of the maize MYB transcription factor FUSED LEAVES1 (FDL1), coupled with transcriptional profiling of fdl1 mutants. We show that AD1 encodes an epidermally-expressed 3-KETOACYL-CoA SYNTHASE (KCS) belonging to a functionally uncharacterized clade of KCS enzymes involved in cuticular wax biosynthesis. Wax analysis in ad1 mutants indicates that AD1 functions in the formation of very-long-chain wax components. We demonstrate that FDL1 directly binds to CCAACC core motifs present in AD1 regulatory regions to activate its expression. Over 2000 additional target genes of FDL1, including many involved in cuticle formation, drought response and cell wall organization, were also identified. Our results identify a regulatory module of cuticle biosynthesis in maize that is conserved across monocots and eudicots, and highlight previously undescribed factors in lipid metabolism, transport and signaling that coordinate organ development and cuticle formation.
Collapse
Affiliation(s)
- Xue Liu
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Richard Bourgault
- Department of Biology, Algoma University, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Josh Strable
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Fan Feng
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Jiaqiang Dong
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
32
|
Megeressa M, Siraj B, Zarina S, Ahmed A. Structural characterization and in vitro lipid binding studies of non-specific lipid transfer protein 1 (nsLTP1) from fennel (Foeniculum vulgare) seeds. Sci Rep 2020; 10:21243. [PMID: 33277525 PMCID: PMC7718255 DOI: 10.1038/s41598-020-77278-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/06/2020] [Indexed: 11/09/2022] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) are cationic proteins involved in intracellular lipid shuttling in growth and reproduction, as well as in defense against pathogenic microbes. Even though the primary and spatial structures of some nsLTPs from different plants indicate their similar features, they exhibit distinct lipid-binding specificities signifying their various biological roles that dictate further structural study. The present study determined the complete amino acid sequence, in silico 3D structure modeling, and the antiproliferative activity of nsLTP1 from fennel (Foeniculum vulgare) seeds. Fennel is a member of the family Umbelliferae (Apiaceae) native to southern Europe and the Mediterranean region. It is used as a spice medicine and fresh vegetable. Fennel nsLTP1 was purified using the combination of gel filtration and reverse-phase high-performance liquid chromatography (RP-HPLC). Its homogeneity was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. The purified nsLTP1 was treated with 4-vinyl pyridine, and the modified protein was then digested with trypsin. The complete amino acid sequence of nsLTP1 established by intact protein sequence up to 28 residues, overlapping tryptic peptides, and cyanogen bromide (CNBr) peptides. Hence, it is confirmed that fennel nsLTP1 is a 9433 Da single polypeptide chain consisting of 91 amino acids with eight conserved cysteines. Moreover, the 3D structure is predicted to have four α-helices interlinked by three loops and a long C-terminal tail. The lipid-binding property of fennel nsLTP1 is examined in vitro using fluorescent 2-p-toluidinonaphthalene-6-sulfonate (TNS) and validated using a molecular docking study with AutoDock Vina. Both of the binding studies confirmed the order of binding efficiency among the four studied fatty acids linoleic acid > linolenic acid > Stearic acid > Palmitic acid. A preliminary screening of fennel nsLTP1 suppressed the growth of MCF-7 human breast cancer cells in a dose-dependent manner with an IC50 value of 6.98 µM after 48 h treatment.
Collapse
Affiliation(s)
- Mekdes Megeressa
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Bushra Siraj
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Shamshad Zarina
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Aftab Ahmed
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA.
| |
Collapse
|
33
|
Li H, Kim YJ, Yang L, Liu Z, Zhang J, Shi H, Huang G, Persson S, Zhang D, Liang W. Grass-Specific EPAD1 Is Essential for Pollen Exine Patterning in Rice. THE PLANT CELL 2020; 32:3961-3977. [PMID: 33093144 PMCID: PMC7721331 DOI: 10.1105/tpc.20.00551] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 05/20/2023]
Abstract
The highly variable and species-specific pollen surface patterns are formed by sporopollenin accumulation. The template for sporopollenin deposition and polymerization is the primexine that appears on the tetrad surface, but the mechanism(s) by which primexine guides exine patterning remain elusive. Here, we report that the Poaceae-specific EXINE PATTERN DESIGNER 1 (EPAD1), which encodes a nonspecific lipid transfer protein, is required for primexine integrity and pollen exine patterning in rice (Oryza sativa). Disruption of EPAD1 leads to abnormal exine pattern and complete male sterility, although sporopollenin biosynthesis is unaffected. EPAD1 is specifically expressed in male meiocytes, indicating that reproductive cells exert genetic control over exine patterning. EPAD1 possesses an N-terminal signal peptide and three redundant glycosylphosphatidylinositol (GPI)-anchor sites at its C terminus, segments required for its function and localization to the microspore plasma membrane. In vitro assays indicate that EPAD1 can bind phospholipids. We propose that plasma membrane lipids bound by EPAD1 may be involved in recruiting and arranging regulatory proteins in the primexine to drive correct exine deposition. Our results demonstrate that EPAD1 is a meiocyte-derived determinant that controls primexine patterning in rice, and its orthologs may play a conserved role in the formation of grass-specific exine pattern elements.
Collapse
Affiliation(s)
- HuanJun Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Jin Kim
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang 50463, Republic of Korea
| | - Liu Yang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ze Liu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haotian Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Staffan Persson
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
34
|
Zaidi MA, O'Leary SJB, Gagnon C, Chabot D, Wu S, Hubbard K, Tran F, Sprott D, Hassan D, Vucurevich T, Sheedy C, Laroche A, Gleddie S, Robert LS. A triticale tapetal non-specific lipid transfer protein (nsLTP) is translocated to the pollen cell wall. PLANT CELL REPORTS 2020; 39:1185-1197. [PMID: 32638075 DOI: 10.1007/s00299-020-02556-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/05/2020] [Indexed: 05/28/2023]
Abstract
A Triticeae type III non-specific lipid transfer protein (nsLTP) was shown for the first time to be translocated from the anther tapetum to the pollen cell wall. Two anther-expressed non-specific lipid transfer proteins (nsLTPs) were identified in triticale (× Triticosecale Wittmack). LTPc3a and LTPc3b contain a putative signal peptide sequence and eight cysteine residues in a C-Xn-C-Xn-CC-Xn-CXC-Xn-C-Xn-C pattern. These proteins belong to the type III class of nsLTPs which are expressed exclusively in the inflorescence of angiosperms. The level of LTPc3 transcript in the anther was highest at the tetrad and uninucleate microspore stages, and absent in mature pollen. In situ hybridization showed that LTPc3 was expressed in the tapetal layer of the developing triticale anther. The expression of the LTPc3 protein peaked at the uninucleate microspore stage, but was also found to be associated with the mature pollen. Accordingly, an LTPc3a::GFP translational fusion expressed in transgenic Brachypodium distachyon first showed activity in the tapetum, then in the anther locule, and later on the mature pollen grain. Altogether, these results represent the first detailed characterization of a Triticeae anther-expressed type III nsLTP with possible roles in pollen cell wall formation.
Collapse
Affiliation(s)
- Mohsin Abbas Zaidi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE, C1A 4N6, Canada
| | - Stephen J B O'Leary
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council, of Canada, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Christine Gagnon
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Denise Chabot
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Shaobo Wu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610052, Sichuan, China
| | - Keith Hubbard
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Frances Tran
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, AB, T4L 1W1, Canada
| | - Dave Sprott
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Dhuha Hassan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Tara Vucurevich
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, PO Box 3000, Lethbridge, AB, T1J 4B1, Canada
| | - Claudia Sheedy
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, PO Box 3000, Lethbridge, AB, T1J 4B1, Canada
| | - André Laroche
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, PO Box 3000, Lethbridge, AB, T1J 4B1, Canada
| | - Steve Gleddie
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
35
|
Ogden AJ, Bhatt JJ, Brewer HM, Kintigh J, Kariuki SM, Rudrabhatla S, Adkins JN, Curtis WR. Phloem Exudate Protein Profiles during Drought and Recovery Reveal Abiotic Stress Responses in Tomato Vasculature. Int J Mol Sci 2020; 21:E4461. [PMID: 32586033 PMCID: PMC7352395 DOI: 10.3390/ijms21124461] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022] Open
Abstract
Drought is the leading cause of agricultural yield loss among all abiotic stresses, and the link between water deficit and phloem protein contents is relatively unexplored. Here we collected phloem exudates from Solanum lycopersicum leaves during periods of drought stress and recovery. Our analysis identified 2558 proteins, the most abundant of which were previously localized to the phloem. Independent of drought, enrichment analysis of the total phloem exudate protein profiles from all samples suggests that the protein content of phloem sap is complex, and includes proteins that function in chaperone systems, branched-chain amino acid synthesis, trehalose metabolism, and RNA silencing. We observed 169 proteins whose abundance changed significantly within the phloem sap, either during drought or recovery. Proteins that became significantly more abundant during drought include members of lipid metabolism, chaperone-mediated protein folding, carboxylic acid metabolism, abscisic acid signaling, cytokinin biosynthesis, and amino acid metabolism. Conversely, proteins involved in lipid signaling, sphingolipid metabolism, cell wall organization, carbohydrate metabolism, and a mitogen-activated protein kinase are decreased during drought. Our experiment has achieved an in-depth profiling of phloem sap protein contents during drought stress and recovery that supports previous findings and provides new evidence that multiple biological processes are involved in drought adaptation.
Collapse
Affiliation(s)
- Aaron J. Ogden
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratories, 902 Battelle Blvd, Richland, WA 99301, USA; (A.J.O.); (H.M.B.); (J.N.A.)
| | - Jishnu J. Bhatt
- Plant Biology Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Heather M. Brewer
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratories, 902 Battelle Blvd, Richland, WA 99301, USA; (A.J.O.); (H.M.B.); (J.N.A.)
| | - Jack Kintigh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.K.); (S.M.K.)
| | - Samwel M. Kariuki
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.K.); (S.M.K.)
| | - Sairam Rudrabhatla
- School of Science, Engineering, and Technology, The Pennsylvania State University, Harrisburg Campus, 777 W Harrisburg Pike, Middletown, PA 17057, USA;
| | - Joshua N. Adkins
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratories, 902 Battelle Blvd, Richland, WA 99301, USA; (A.J.O.); (H.M.B.); (J.N.A.)
| | - Wayne R. Curtis
- Plant Biology Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.K.); (S.M.K.)
| |
Collapse
|
36
|
Madni ZK, Tripathi SK, Salunke DM. Structural insights into the lipid transfer mechanism of a non-specific lipid transfer protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:340-352. [PMID: 31793077 DOI: 10.1111/tpj.14627] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
The non-specific lipid transfer proteins (nsLTPs) are multifunctional seed proteins engaged in several different physiological processes. The nsLTPs are stabilized by four disulfide bonds and exhibit a characteristic hydrophobic cavity, which is the primary lipid binding site. While these proteins are known to transfer lipids between membranes, the mechanism of lipid transfer has remained elusive. Four crystal structures of nsLTP from Solanum melongena, one in the apo-state and three myristic acid bound states were determined. Among the three lipid bound states, two lipid molecules were bound on the nsLTP surface at different positions and one was inside the cavity. The lipid-dependent conformational changes leading to opening of the cavity were revealed based on structural and spectroscopic data. The surface-bound lipid represented a transient intermediate state and the lipid ultimately moved inside the cavity through the cavity gate as revealed by molecular dynamics simulations. Two critical residues in the loop regions played possible 'gating' role in the opening and closing of the cavity. Antifungal activity and membrane permeabilization effect of nsLTP against Fusarium oxysporum suggested that it could possibly involve in bleaching out the lipids. Collectively, these studies support a model of lipid transfer mechanism by nsLTP via intermediate states.
Collapse
Affiliation(s)
- Zaid Kamal Madni
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, 121001, India
| | - Sunil Kumar Tripathi
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, 121001, India
| | - Dinakar M Salunke
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, 121001, India
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
37
|
Das K, Datta K, Karmakar S, Datta SK. Antimicrobial Peptides - Small but Mighty Weapons for Plants to Fight Phytopathogens. Protein Pept Lett 2019; 26:720-742. [PMID: 31215363 DOI: 10.2174/0929866526666190619112438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/27/2019] [Accepted: 04/25/2019] [Indexed: 11/22/2022]
Abstract
Antimicrobial Peptides (AMPs) have diverse structures, varied modes of actions, and can inhibit the growth of a wide range of pathogens at low concentrations. Plants are constantly under attack by a wide range of phytopathogens causing massive yield losses worldwide. To combat these pathogens, nature has armed plants with a battery of defense responses including Antimicrobial Peptides (AMPs). These peptides form a vital component of the two-tier plant defense system. They are constitutively expressed as part of the pre-existing first line of defense against pathogen entry. When a pathogen overcomes this barrier, it faces the inducible defense system, which responds to specific molecular or effector patterns by launching an arsenal of defense responses including the production of AMPs. This review emphasizes the structural and functional aspects of different plant-derived AMPs, their homology with AMPs from other organisms, and how their biotechnological potential could generate durable resistance in a wide range of crops against different classes of phytopathogens in an environmentally friendly way without phenotypic cost.
Collapse
Affiliation(s)
- Kaushik Das
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Karabi Datta
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Subhasis Karmakar
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Swapan K Datta
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| |
Collapse
|
38
|
Non-Specific Lipid Transfer Proteins in Triticum kiharae Dorof. et Migush.: Identification, Characterization and Expression Profiling in Response to Pathogens and Resistance Inducers. Pathogens 2019; 8:pathogens8040221. [PMID: 31694319 PMCID: PMC6963497 DOI: 10.3390/pathogens8040221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 01/14/2023] Open
Abstract
Non-specific lipid-transfer proteins (nsLTPs) represent a family of plant antimicrobial peptides (AMPs) implicated in diverse physiological processes. However, their role in induced resistance (IR) triggered by non-pathogenic fungal strains and their metabolites is poorly understood. In this work, using RNA-seq data and our AMP search pipeline, we analyzed the repertoire of nsLTP genes in the wheat Triticum kiharae and studied their expression in response to Fusarium oxysporum infection and treatment with the intracellular metabolites of Fusarium sambucinum FS-94. A total of 243 putative nsLTPs were identified, which were classified into five structural types and characterized. Expression analysis showed that 121 TkLTPs including sets of paralogs with identical mature peptides displayed specific expression patters in response to different treatments pointing to their diverse roles in resistance development. We speculate that upregulated nsLTP genes are involved in protection due to their antimicrobial activity or signaling functions. Furthermore, we discovered that in IR-displaying plants, a vast majority of nsLTP genes were downregulated, suggesting their role as negative regulators of immune mechanisms activated by the FS-94 elicitors. The results obtained add to our knowledge of the role of nsLTPs in IR and provide candidate molecules for genetic engineering of crops to enhance disease resistance.
Collapse
|
39
|
de Freitas GM, Thomas J, Liyanage R, Lay JO, Basu S, Ramegowda V, do Amaral MN, Benitez LC, Bolacel Braga EJ, Pereira A. Cold tolerance response mechanisms revealed through comparative analysis of gene and protein expression in multiple rice genotypes. PLoS One 2019; 14:e0218019. [PMID: 31181089 PMCID: PMC6557504 DOI: 10.1371/journal.pone.0218019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 05/24/2019] [Indexed: 11/25/2022] Open
Abstract
Due to its tropical origin and adaptation, rice is significantly impacted by cold stress, and consequently sustains large losses in growth and productivity. Currently, rice is the second most consumed cereal in the world and production losses caused by extreme temperature events in the context of "major climatic changes" can have major impacts on the world economy. We report here an analysis of rice genotypes in response to low-temperature stress, studied through physiological gas-exchange parameters, biochemical changes in photosynthetic pigments and antioxidants, and at the level of gene and protein expression, towards an understanding and identification of multiple low-temperature tolerance mechanisms. The first effects of cold stress were observed on photosynthesis among all genotypes. However, the tropical japonica genotypes Secano do Brazil and Cypress had a greater reduction in gas exchange parameters like photosynthesis and water use efficiency in comparison to the temperate japonica Nipponbare and M202 genotypes. The analysis of biochemical profiles showed that despite the impacts of low temperature on tolerant plants, they quickly adjusted to maintain their cellular homeostasis by an accumulation of antioxidants and osmolytes like phenolic compounds and proline. The cold tolerant and sensitive genotypes showed a clear difference in gene expression at the transcript level for OsGH3-2, OsSRO1a, OsZFP245, and OsTPP1, as well as for expression at the protein level for LRR-RLKs, bHLH, GLYI, and LTP1 proteins. This study exemplifies the cold tolerant features of the temperate japonica Nipponbare and M202 genotypes, as observed through the analysis of physiological and biochemical responses and the associated changes in gene and protein expression patterns. The genes and proteins showing differential expression response are notable candidates towards understanding the biological pathways affected in rice and for engineering cold tolerance, to generate cultivars capable of maintaining growth, development, and reproduction under cold stress. We also propose that the mechanisms of action of the genes analyzed are associated with the tolerance response.
Collapse
Affiliation(s)
- Gabriela Moraes de Freitas
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
- Department of Botany, Federal University of Pelotas, Pelotas, Brazil
| | - Julie Thomas
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Rohana Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Jackson O. Lay
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Supratim Basu
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Venkategowda Ramegowda
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | | | | | | | - Andy Pereira
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
40
|
Li G, Hou M, Liu Y, Pei Y, Ye M, Zhou Y, Huang C, Zhao Y, Ma H. Genome-wide identification, characterization and expression analysis of the non-specific lipid transfer proteins in potato. BMC Genomics 2019; 20:375. [PMID: 31088347 PMCID: PMC6518685 DOI: 10.1186/s12864-019-5698-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant non-specific lipid transfer proteins (nsLTPs) are small, basic proteins that are abundant in higher plants. They have been reported to play an important role in various plant physiological processes, such as lipid transfer, signal transduction, and pathogen defense. To date, a comprehensive analysis of the potato nsLTP gene family is still lacking after the completion of potato (Solanum tuberosum L.) genome sequencing. A genome-wide characterization, classification and expression analysis of the StnsLTP gene family was performed in this study. RESULTS In this study, a total of 83 nsLTP genes were identified and categorized into eight types based on Boutrot's method. Multiple characteristics of these genes, including phylogeny, gene structures, conserved motifs, protein domains, chromosome locations, and cis-elements in the promoter sequences, were analyzed. The chromosome distribution and the collinearity analyses suggested that the expansion of the StnsLTP gene family was greatly enhanced by the tandem duplications. Ka/Ks analysis showed that 47 pairs of duplicated genes tended to undergo purifying selection during evolution. Moreover, the expression of StnsLTP genes in various tissues was analyzed by using RNA-seq data and verified by quantitative real-time PCR, revealing that the StnsLTP genes were mainly expressed in younger tissues. These results indicated that StnsLTPs may played significant and functionally varied roles in the development of different tissues. CONCLUSION In this study, we comprehensively analyzed nsLTPs in potato, providing valuable information to better understand the functions of StnsLTPs in different tissues and pathways, especially in response to abiotic stress.
Collapse
Affiliation(s)
- Guojun Li
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Menglu Hou
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yaxue Liu
- Innovation Experimental College, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yue Pei
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Minghui Ye
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yao Zhou
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chenxi Huang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yaqi Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Haoli Ma
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
41
|
Nazeer M, Waheed H, Saeed M, Ali SY, Choudhary MI, Ul-Haq Z, Ahmed A. Purification and Characterization of a Nonspecific Lipid Transfer Protein 1 (nsLTP1) from Ajwain (Trachyspermum ammi) Seeds. Sci Rep 2019; 9:4148. [PMID: 30858403 PMCID: PMC6411740 DOI: 10.1038/s41598-019-40574-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/19/2019] [Indexed: 12/19/2022] Open
Abstract
Ajwain (Trachyspermum ammi) belongs to the family Umbelliferae, is commonly used in traditional, and folk medicine due to its carminative, stimulant, antiseptic, diuretic, antihypertensive, and hepatoprotective activities. Non-specific lipid transfer proteins (nsLTPs) reported from various plants are known to be involved in transferring lipids between membranes and in plants defense response. Here, we describe the complete primary structure of a monomeric non-specific lipid transfer protein 1 (nsLTP1), with molecular weight of 9.66 kDa, from ajwain seeds. The nsLTP1 has been purified by combination of chromatographic techniques, and further characterized by mass spectrometry, and Edman degradation. The ajwain nsLTP1 is comprised of 91 amino acids, with eight conserved cysteine residues. The amino acid sequence based predicted three dimensional (3D) structure is composed of four α-helices stabilized by four disulfide bonds, and a long C-terminal tail. The predicted model was verified by using different computational tools; i.e. ERRAT, verify 3D web server, and PROCHECK. The docking of ajwain nsLTP1 with ligands; myristic acid (MYR), and oleic acid (OLE) was performed, and molecular dynamics (MD) simulation was used to validate the docking results. The findings suggested that amino acids; Leu11, Leu12, Ala55, Ala56, Val15, Tyr59, and Leu62 are pivotal for the binding of lipid molecules with ajwain nsLTP1.
Collapse
Affiliation(s)
- Meshal Nazeer
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Humera Waheed
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Maria Saeed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Saman Yousuf Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - M Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Aftab Ahmed
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA.
| |
Collapse
|
42
|
D'Agostino N, Buonanno M, Ayoub J, Barone A, Monti SM, Rigano MM. Identification of non-specific Lipid Transfer Protein gene family members in Solanum lycopersicum and insights into the features of Sola l 3 protein. Sci Rep 2019; 9:1607. [PMID: 30733555 PMCID: PMC6367377 DOI: 10.1038/s41598-018-38301-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 12/21/2018] [Indexed: 01/11/2023] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) are characterized by an eight-cysteine motif backbone that is stabilized by four disulphide bonds. The strong interest towards this protein family is mainly due to the fact that nsLTPs are involved in many biological processes and have been identified as major human allergens. Since tomato (Solanum lycopersicum L.) is one of the most consumed and allergenic vegetables, a full characterization of this family is needed. In this study, hidden Markov model profiles were used to identify nsLTPs within the tomato protein complement. Following manual curation, 64 nsLTP genes were classified into six sub-families. Furthermore, nsLTP gene structure, distribution and arrangement along tomato chromosomes were investigated. Available RNA-seq expression profile data and Real-Time PCR analyses were used to derive expression patterns of tomato nsLTPs in different tissues/organs. Non-specific LTP genes with high level of expression in tomato fruits were filtered out since they could play a key role in tomato allergenicity. Among these genes was Solyc10g075090 that encodes the allergen Sola l 3. Finally, cloning, heterologous expression, purification and biochemical characterization of the recombinant protein Sola l 3 was performed.
Collapse
Affiliation(s)
- Nunzio D'Agostino
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano Faiano, Italy.
| | | | - Joëlle Ayoub
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
- University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
43
|
Zhang M, Kim Y, Zong J, Lin H, Dievart A, Li H, Zhang D, Liang W. Genome-wide analysis of the barley non-specific lipid transfer protein gene family. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Kouidri A, Baumann U, Okada T, Baes M, Tucker EJ, Whitford R. Wheat TaMs1 is a glycosylphosphatidylinositol-anchored lipid transfer protein necessary for pollen development. BMC PLANT BIOLOGY 2018; 18:332. [PMID: 30518316 PMCID: PMC6280385 DOI: 10.1186/s12870-018-1557-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 11/21/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND In flowering plants, lipid biosynthesis and transport within anthers is essential for male reproductive success. TaMs1, a dominant wheat fertility gene located on chromosome 4BS, has been previously fine mapped and identified to encode a glycosylphosphatidylinositol (GPI)-anchored non-specific lipid transfer protein (nsLTP). Although this gene is critical for pollen exine development, details of its function remains poorly understood. RESULTS In this study, we report that TaMs1 is only expressed from the B sub-genome, with highest transcript abundance detected in anthers containing microspores undergoing pre-meiosis through to meiosis. β-glucuronidase transcriptional fusions further revealed that TaMs1 is expressed throughout all anther cell-types. TaMs1 was identified to be expressed at an earlier stage of anther development relative to genes reported to be necessary for sporopollenin precursor biosynthesis. In anthers missing a functional TaMs1 (ms1c deletion mutant), these same genes were not observed to be mis-regulated, indicating an independent function for TaMs1 in pollen development. Exogenous hormone treatments on GUS reporter lines suggest that TaMs1 expression is increased by both indole-3-acetic acid (IAA) and abscisic acid (ABA). Translational fusion constructs showed that TaMs1 is targeted to the plasma membrane. CONCLUSIONS In summary, TaMs1 is a wheat fertility gene, expressed early in anther development and encodes a GPI-LTP targeted to the plasma membrane. The work presented provides a new insight into the process of wheat pollen development.
Collapse
Affiliation(s)
- Allan Kouidri
- University of Adelaide, School of Agriculture, Food and Wine, Waite Campus, Urrbrae, South Australia 5064 Australia
| | - Ute Baumann
- University of Adelaide, School of Agriculture, Food and Wine, Waite Campus, Urrbrae, South Australia 5064 Australia
| | - Takashi Okada
- University of Adelaide, School of Agriculture, Food and Wine, Waite Campus, Urrbrae, South Australia 5064 Australia
| | - Mathieu Baes
- University of Adelaide, School of Agriculture, Food and Wine, Waite Campus, Urrbrae, South Australia 5064 Australia
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Waite Campus, Urrbrae, South Australia 5064 Australia
| | - Elise J. Tucker
- University of Adelaide, School of Agriculture, Food and Wine, Waite Campus, Urrbrae, South Australia 5064 Australia
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Waite Campus, Urrbrae, South Australia 5064 Australia
| | - Ryan Whitford
- University of Adelaide, School of Agriculture, Food and Wine, Waite Campus, Urrbrae, South Australia 5064 Australia
| |
Collapse
|
45
|
Kouidri A, Whitford R, Suchecki R, Kalashyan E, Baumann U. Genome-wide identification and analysis of non-specific Lipid Transfer Proteins in hexaploid wheat. Sci Rep 2018; 8:17087. [PMID: 30459322 PMCID: PMC6244205 DOI: 10.1038/s41598-018-35375-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/26/2018] [Indexed: 01/17/2023] Open
Abstract
Non-specific Lipid Transfer Proteins (nsLTPs) are involved in numerous biological processes. To date, only a fraction of wheat (Triticum aestivum L.) nsLTPs (TaLTPs) have been identified, and even fewer have been functionally analysed. In this study, the identification, classification, phylogenetic reconstruction, chromosome distribution, functional annotation and expression profiles of TaLTPs were analysed. 461 putative TaLTPs were identified from the wheat genome and classified into five types (1, 2, C, D and G). Phylogenetic analysis of the TaLTPs along with nsLTPs from Arabidopsis thaliana and rice, showed that all five types were shared across species, however, some type 2 TaLTPs formed wheat-specific clades. Gene duplication analysis indicated that tandem duplications contributed to the expansion of this gene family in wheat. Analysis of RNA sequencing data showed that TaLTPs were expressed in most tissues and stages of wheat development. Further, we refined the expression profile of anther-enriched expressed genes, and identified potential cis-elements regulating their expression specificity. This analysis provides a valuable resource towards elucidating the function of TaLTP family members during wheat development, aids our understanding of the evolution and expansion of the TaLTP gene family and, additionally, provides new information for developing wheat male-sterile lines with application to hybrid breeding.
Collapse
Affiliation(s)
- Allan Kouidri
- University of Adelaide, School of Agriculture, Food & Wine, Waite Campus, Urrbrae, South Australia, 5064, Australia
| | - Ryan Whitford
- University of Adelaide, School of Agriculture, Food & Wine, Waite Campus, Urrbrae, South Australia, 5064, Australia
| | - Radoslaw Suchecki
- University of Adelaide, School of Agriculture, Food & Wine, Waite Campus, Urrbrae, South Australia, 5064, Australia
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Waite Campus, Urrbrae, South Australia, 5064, Australia
| | - Elena Kalashyan
- University of Adelaide, School of Agriculture, Food & Wine, Waite Campus, Urrbrae, South Australia, 5064, Australia
| | - Ute Baumann
- University of Adelaide, School of Agriculture, Food & Wine, Waite Campus, Urrbrae, South Australia, 5064, Australia.
| |
Collapse
|
46
|
Kumar J, Gunapati S, Kianian SF, Singh SP. Comparative analysis of transcriptome in two wheat genotypes with contrasting levels of drought tolerance. PROTOPLASMA 2018; 255:1487-1504. [PMID: 29651660 DOI: 10.1007/s00709-018-1237-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/05/2018] [Indexed: 05/19/2023]
Abstract
Drought tolerance is a complex trait that is governed by multiple genes. The study presents differential transcriptome analysis between drought-tolerant (Triticum aestivum Cv. C306) and drought-sensitive (Triticum aestivum Cv. WL711) genotypes, using Affymetrix GeneChip® Wheat Genome Array. Both genotypes exhibited diverse global transcriptional responses under control and drought conditions. Pathway analysis suggested significant induction or repression of genes involved in secondary metabolism, nucleic acid synthesis, protein synthesis, and transport in C306, as compared to WL711. Significant up- and downregulation of transcripts for enzymes, hormone metabolism, and stress response pathways were observed in C306 under drought. The elevated expression of plasma membrane intrinsic protein 1 and downregulation of late embryogenesis abundant in the leaf tissues could play an important role in delayed wilting in C306. The other regulatory genes such as MT, FT, AP2, SKP1, ABA2, ARF6, WRKY6, AOS, and LOX2 are involved in defense response in C306 genotype. Additionally, transcripts with unknown functions were identified as differentially expressed, which could participate in drought responses.
Collapse
Affiliation(s)
- Jitendra Kumar
- National Agri-Food Biotechnology Institute, Mohali, India
- USDA-ARS Cereal Disease Laboratory, St. Paul, MN, USA
| | - Samatha Gunapati
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | | | - Sudhir P Singh
- National Agri-Food Biotechnology Institute, Mohali, India.
- Center of Innovative and Applied Bioprocessing, Mohali, India.
| |
Collapse
|
47
|
Edqvist J, Blomqvist K, Nieuwland J, Salminen TA. Plant lipid transfer proteins: are we finally closing in on the roles of these enigmatic proteins? J Lipid Res 2018; 59:1374-1382. [PMID: 29555656 PMCID: PMC6071764 DOI: 10.1194/jlr.r083139] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/23/2018] [Indexed: 12/22/2022] Open
Abstract
The nonspecific lipid transfer proteins (LTPs) are small compact proteins folded around a tunnel-like hydrophobic cavity, making them suitable for lipid binding and transport. LTPs are encoded by large gene families in all land plants, but they have not been identified in algae or any other organisms. Thus, LTPs are considered key proteins for plant survival on and colonization of land. LTPs are abundantly expressed in most plant tissues, both above and below ground. They are usually localized to extracellular spaces outside the plasma membrane. Although the in vivo functions of LTPs remain unclear, accumulating evidence suggests a role for LTPs in the transfer and deposition of monomers required for assembly of the waterproof lipid barriers, such as cutin and cuticular wax, suberin, and sporopollenin, formed on many plant surfaces. Some LTPs may be involved in other processes, such as signaling during pathogen attacks. Here, we present the current status of LTP research with a focus on the role of these proteins in lipid barrier deposition and cell expansion. We suggest that LTPs facilitate extracellular transfer of barrier materials and adhesion between barriers and extracellular materials. A growing body of research may uncover the true role of LTPs in plants.
Collapse
Affiliation(s)
| | | | - Jeroen Nieuwland
- Faculty of Computing, Engineering, and Science, University of South Wales, CF37 1DL Pontypridd, United Kingdom
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| |
Collapse
|
48
|
Tian N, Liu F, Wang P, Yan X, Gao H, Zeng X, Wu G. Overexpression of BraLTP2, a Lipid Transfer Protein of Brassica napus, Results in Increased Trichome Density and Altered Concentration of Secondary Metabolites. Int J Mol Sci 2018; 19:ijms19061733. [PMID: 29895724 PMCID: PMC6032385 DOI: 10.3390/ijms19061733] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 12/19/2022] Open
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) belong to a large multigene family that possesses complex physiological functions. Trichomes are present on the aerial surfaces of most plants and include both glandular secretory hairs and non-glandular hairs. In this study, BraLTP2 was isolated from Brassica rapa (B. rapa) and its function was characterized in the important oilseed crop Brassica napus (B. napus). B. rapa lipid transfer protein 2 (BraLTP2) belongs to the little-known Y class of nsLTPs and encodes a predicted secretory protein. In ProBraLTP2::GUS (β-glucuronidase) transgenic plants, strong GUS activity was observed in young leaves and roots, while low activity was observed in the anther. It is noteworthy that strong GUS activity was observed in trichomes of the first four leaves of 4-week-old and 8-week-old seedings, however, it disappeared in 12-week-old seedings. In transgenic plants expressing a BraLTP2::GFP (green fluorescent protein) fusion protein, GFP fluorescence localized in the extracellular space of epidermal cells and trichomes. Overexpression of BraLTP2 in B. napus caused an increase in trichome number and altered the accumulation of secondary metabolites in leaves, including 43 upregulated secondary metabolites. Moreover, transgenic plants showed significantly increased activities of antioxidant enzymes. These results suggest that BraLTP2, a new nsLTP gene, may play a role in trichome development and the accumulation of secondary metabolites.
Collapse
Affiliation(s)
- Nini Tian
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Fang Liu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Pandi Wang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Xiaohong Yan
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Hongfei Gao
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Xinhua Zeng
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Gang Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| |
Collapse
|
49
|
Wang J, Wang J, Wang X, Li R, Chen B. Proteomic response of hybrid wild rice to cold stress at the seedling stage. PLoS One 2018; 13:e0198675. [PMID: 29879216 PMCID: PMC5991693 DOI: 10.1371/journal.pone.0198675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/23/2018] [Indexed: 11/19/2022] Open
Abstract
Low temperature at the seedling stage is a major damaging factor for rice production in southern China. To better understand the cold response of cultivated and wild rice, cold-sensitive cultivar 93–11 (Oryza sativa L. ssp. Indica) and cold-resistant hybrid wild rice DC907 with a 93–11 genetic background were used for a quantitative proteomic analysis with tandem mass tags (TMT) in parallel. Rice seedlings grown for four weeks at a normal temperature (25°C) were treated at 8–10°C for 24, 72 and 120 h. The number of differentially expressed proteins increased gradually over time in the cold-exposed rice in comparison with the untreated rice. A total of 366 unique proteins involved in ATP synthesis, photosystem, reactive oxygen species, stress response, cell growth and integrity were identified as responding to cold stress in DC907. While both DC907 and 93–11 underwent similar alterations in proteomic profiles in response to cold stress, DC907 responded in a prompter manner in terms of expressing cold-responding proteins, maintained a higher level of photosynthesis to power the cells, and possessed a stable and higher level of DIR proteins to prevent the plant from obtaining irreversible cell structure damage. The observations made in this study may lay a new foundation for further investigation of cold sensitivity or tolerance mechanisms in rice.
Collapse
Affiliation(s)
- Jinzi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- College of Agriculture, Guangxi University, Nanning, China
| | - Jun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xin Wang
- College of Agriculture, Guangxi University, Nanning, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- College of Agriculture, Guangxi University, Nanning, China
- * E-mail: (BC); (RL)
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
- * E-mail: (BC); (RL)
| |
Collapse
|
50
|
Transcriptome analysis for identifying possible gene regulations during maize root emergence and formation at the initial growth stage. Genes Genomics 2018; 40:755-766. [PMID: 29934814 DOI: 10.1007/s13258-018-0687-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
The root plays an important role during plant development and growth, i.e., the plant body maintenance, nutrient storage, absorption of water, oxygen and nutrient from the soil, and storage of water and carbohydrates, etc. The objective of this study was attempted to determine root-specific genes at the initial developmental stages of maize by using network-based transcriptome analysis. The raw data obtained using RNA-seq were filtered for quality control of the reads with the FASTQC tool, and the filtered reads were pre-proceed using the TRIMMOMATIC tool. The enriched BINs of the DEGs were detected using PageMan analysis with the ORA_FISHER statistical test, and genes were assigned to metabolic pathways by using the MapMan tool, which was also used for detecting transcription factors (TFs). For reconstruction of the co-expression network, we used the algorithm for the reconstruction of accurate cellular networks (ARACNE) in the R package, and then the reconstructed co-expression network was visualized using the Cytoscape tool. RNA-seq. was performed using maize shoots and roots at different developmental stages of root emergence (6-10 days after planting, VE) and 1 week after plant emergence (V2). A total of 1286 differentially expressed genes (DEGs) were detected in both tissues. Many DEGs involved in metabolic pathways exhibited altered mRNA levels between VE and V2. In addition, we observed gene expression changes for 113 transcription factors and found five enriched cis-regulatory elements in the 1-kb upstream regions of both DEGs. The network-based transcriptome analysis showed two modules as co-expressed gene clusters differentially expressed between the shoots and roots during plant development. The DEGs of one module exhibited gene expressional coherence in the maize root tips, suggesting that their functional relationships are associated with the initial developmental stage of the maize root. Finally, we confirmed reliable mRNA levels of the hub genes in the potential sub-network related to initial root development at the different developmental stages of VE, V2, and 2 weeks after plant emergence.
Collapse
|