1
|
Darnet E, Teixeira B, Schaller H, Rogez H, Darnet S. Elucidating the Mesocarp Drupe Transcriptome of Açai ( Euterpe oleracea Mart.): An Amazonian Tree Palm Producer of Bioactive Compounds. Int J Mol Sci 2023; 24:ijms24119315. [PMID: 37298279 DOI: 10.3390/ijms24119315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Euterpe oleracea palm, endemic to the Amazon region, is well known for açai, a fruit violet beverage with nutritional and medicinal properties. During E. oleracea fruit ripening, anthocyanin accumulation is not related to sugar production, contrarily to grape and blueberry. Ripened fruits have a high content of anthocyanins, isoprenoids, fibers, and proteins, and are poor in sugars. E. oleracea is proposed as a new genetic model for metabolism partitioning in the fruit. Approximately 255 million single-end-oriented reads were generated on an Ion Proton NGS platform combining fruit cDNA libraries at four ripening stages. The de novo transcriptome assembly was tested using six assemblers and 46 different combinations of parameters, a pre-processing and a post-processing step. The multiple k-mer approach with TransABySS as an assembler and Evidential Gene as a post-processer have shown the best results, with an N50 of 959 bp, a read coverage mean of 70x, a BUSCO complete sequence recovery of 36% and an RBMT of 61%. The fruit transcriptome dataset included 22,486 transcripts representing 18 Mbp, of which a proportion of 87% had significant homology with other plant sequences. Approximately 904 new EST-SSRs were described, and were common and transferable to Phoenix dactylifera and Elaeis guineensis, two other palm trees. The global GO classification of transcripts showed similar categories to that in P. dactylifera and E. guineensis fruit transcriptomes. For an accurate annotation and functional description of metabolism genes, a bioinformatic pipeline was developed to precisely identify orthologs, such as one-to-one orthologs between species, and to infer multigenic family evolution. The phylogenetic inference confirmed an occurrence of duplication events in the Arecaceae lineage and the presence of orphan genes in E. oleracea. Anthocyanin and tocopherol pathways were annotated entirely. Interestingly, the anthocyanin pathway showed a high number of paralogs, similar to in grape, whereas the tocopherol pathway exhibited a low and conserved gene number and the prediction of several splicing forms. The release of this exhaustively annotated molecular dataset of E. oleracea constitutes a valuable tool for further studies in metabolism partitioning and opens new great perspectives to study fruit physiology with açai as a model.
Collapse
Affiliation(s)
- Elaine Darnet
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA) & Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
- International Associated Laboratory PALMHEAT, Frech Scientific Research National Center (CNRS)/UFPA, 75016 Paris, France
| | - Bruno Teixeira
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA) & Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
| | - Hubert Schaller
- International Associated Laboratory PALMHEAT, Frech Scientific Research National Center (CNRS)/UFPA, 75016 Paris, France
- Plant Isoprenoid Biology, Institute of Molecular Biology of Plants of the Scientific Research National Center, Strasbourg University, 67081 Strasbourg, France
| | - Hervé Rogez
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA) & Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
| | - Sylvain Darnet
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA) & Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
- International Associated Laboratory PALMHEAT, Frech Scientific Research National Center (CNRS)/UFPA, 75016 Paris, France
- Plant Isoprenoid Biology, Institute of Molecular Biology of Plants of the Scientific Research National Center, Strasbourg University, 67081 Strasbourg, France
| |
Collapse
|
2
|
Krishna P, Pandey G, Thomas R, Parks S. Improving Blueberry Fruit Nutritional Quality through Physiological and Genetic Interventions: A Review of Current Research and Future Directions. Antioxidants (Basel) 2023; 12:antiox12040810. [PMID: 37107184 PMCID: PMC10135188 DOI: 10.3390/antiox12040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023] Open
Abstract
Blueberry, hailed as an antioxidant superfood, is the fruit of small shrubs in the genus Vaccinium (family Ericaceae). The fruits are a rich source of vitamins, minerals and antioxidants such as flavonoids and phenolic acids. The antioxidative and anti-inflammatory activities derived from the polyphenolic compounds, particularly from the abundantly present anthocyanin pigment, have been highlighted as the major contributing factor to the health-benefitting properties of blueberry. In recent years, blueberry cultivation under polytunnels has expanded, with plastic covers designed to offer protection of crop and fruit yield from suboptimal environmental conditions and birds. An important consideration is that the covers reduce photosynthetically active radiation (PAR) and filter out ultraviolet (UV) radiation that is critical for the fruit’s bioactive composition. Blueberry fruits grown under covers have been reported to have reduced antioxidant capacity as compared to fruits from open fields. In addition to light, abiotic stresses such as salinity, water deficit, and low temperature trigger accumulation of antioxidants. We highlight in this review how interventions such as light-emitting diodes (LEDs), photo-selective films, and exposure of plants to mild stresses, alongside developing new varieties with desired traits, could be used to optimise the nutritional quality, particularly the content of polyphenols, of blueberry grown under covers.
Collapse
|
3
|
Yang Z, Dong H, Zhang S, Jiang J, Zhu H, Yang H, Li L. Isolation and identification of mycorrhizal helper bacteria of Vaccinium uliginosum and their interaction with mycorrhizal fungi. Front Microbiol 2023; 14:1180319. [PMID: 37143547 PMCID: PMC10151510 DOI: 10.3389/fmicb.2023.1180319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Mycorrhizal helper bacteria (MHB) can promote mycorrhizal fungal colonization and form mycorrhizal symbiosis structures. To investigate the effect of interactions between mycorrhizal beneficial microorganisms on the growth of blueberry, 45 strains of bacteria isolated from the rhizosphere soil of Vaccinium uliginosum were screened for potential MHB strains using the dry-plate confrontation assay and the bacterial extracellular metabolite promotion method. The results showed that the growth rate of mycelium of Oidiodendron maius 143, an ericoid mycorrhizal fungal strain, was increased by 33.33 and 77.77% for bacterial strains L6 and LM3, respectively, compared with the control in the dry-plate confrontation assay. In addition, the extracellular metabolites of L6 and LM3 significantly promoted the growth of O. maius 143 mycelium with an average growth rate of 40.9 and 57.1%, respectively, the cell wall-degrading enzyme activities and genes of O. maius 143 was significantly increased. Therefore, L6 and LM3 were preliminarily identified as potential MHB strains. In addition, the co-inoculated treatments significantly increased blueberry growth; increased the nitrate reductase, glutamate dehydrogenase, glutamine synthetase, and glutamate synthase activities in the leaves; and promoted nutrient uptake in blueberry. Based on the physiological, and 16S rDNA gene molecular analyses, we initially identified strain L6 as Paenarthrobacter nicotinovorans and LM3 as Bacillus circulans. Metabolomic analysis revealed that mycelial exudates contain large amounts of sugars, organic acids and amino acids, which can be used as substrates to stimulate the growth of MHB. In conclusion, L6 and LM3 and O. maius 143 promote each other's growth, while co-inoculation of L6 and LM3 with O. maius 143 can promote the growth of blueberry seedlings, providing a theoretical basis for further studies on the mechanism of ericoid mycorrhizal fungi-MHB-blueberry interactions. It laid the technical foundation for the exploitation of biocontrol strain resources and the development of biological fertilizer.
Collapse
Affiliation(s)
- Zhiyu Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Hui Dong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Sai Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jing Jiang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Haifeng Zhu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Hongyi Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- *Correspondence: Hongyi Yang,
| | - Lili Li
- Institute of Forestry Science of Heilongjiang Province, Harbin, China
- Lili Li,
| |
Collapse
|
4
|
Comparative transcriptome profiling and molecular marker development for oil palm fruit color. Sci Rep 2022; 12:15507. [PMID: 36109663 PMCID: PMC9478095 DOI: 10.1038/s41598-022-19890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Oil palm harvesting is normally determined by fruit exocarp color. To detect expressed sequence tag (EST)-simple sequence repeat (SSR) markers in oil palm hybrid populations, de novo transcriptomic profiling of Nigeria black and Suratthani 1 (Deli × Calabar) plants was performed. More than 46 million high-quality clean reads with a mean length of 1117 bp were generated. Functional annotation and gene ontology (GO) enrichment analysis of differentially expressed genes (DEGs) revealed that the genes were involved in fruit color development and pigment synthesis. Comparison of immature/mature DEGs indicated that nigrescent fruit color was driven by the anthocyanin biosynthesis pathway (ABP); however, the carotenoid biosynthesis pathway (CBP) was involved in the color development of both fruit types. The transcripts of both unique and different genes involved in the ABP and CBP in higher plants were highlighted for further study, especially 3GT, downstream genes in the ABP, and DEARF27 in the CBP. Additionally, SSR primer motifs, namely, 9949, discovered from the DEGs upregulated in the virescent type that encode vacuolar iron transporter (VIT), could separate the nigrescence and virescence traits of Nigeria hybrids. This novel primer has potential to be used as a molecular for further selection in breeding programs especially involving the specific genetic backgrounds described in this study.
Collapse
|
5
|
Wu Y, Huang Z, Zhang C, Shi C, Lyu L, Li W, Wu W. Comparative Analysis of the Morphological, Physiological, Proteomic, and Metabolic Mechanisms of the "Biloxi" Blueberry Response to Shade Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:877789. [PMID: 35592566 PMCID: PMC9111170 DOI: 10.3389/fpls.2022.877789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 05/03/2023]
Abstract
Blueberry is an important small berry crop in economic forests. In hot summers, the top tip of blueberry often burns and withers due to water loss. Therefore, this study subjected blueberry to shading treatment in the summer to study the effects of different shading treatments on the growth, morphology, physiology and protein levels of the plant. The results showed that the 50% shading (T1) treatment yielded the highest average increases in plant height, crown width, and ground diameter of blueberry. Under the 80% shading (T2) treatment, the cells of the leaves dissolved, the morphology was incomplete, the vascular bundles disappeared, and no supporting skeleton was detected. As demonstrated by physiological and biochemical data and the proteome expression levels, the T1 shading treatment was beneficial to the growth of blueberry and significantly enriched the photosynthetic pathway and flavonoid biosynthesis. An analysis of the interaction network of differentially expressed proteins indicated that trans-cinnamate 4-monooxygenase (C4H, CYP73A), naringenin 3-dioxygenase (F3H) and bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase (DFR) exhibited high connectivity and mutual regulation. In short, 50% shading can improve the growth index of blueberry and lead to an enrichment of flavonoid biosynthesis. This study provides a scientific basis for the breeding and summer protection of blueberry seedlings.
Collapse
Affiliation(s)
- Yaqiong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Zhengjin Huang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Chunhong Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Chong Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lianfei Lyu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wenlong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
6
|
Edger PP, Iorizzo M, Bassil NV, Benevenuto J, Ferrão LFV, Giongo L, Hummer K, Lawas LMF, Leisner CP, Li C, Munoz PR, Ashrafi H, Atucha A, Babiker EM, Canales E, Chagné D, DeVetter L, Ehlenfeldt M, Espley RV, Gallardo K, Günther CS, Hardigan M, Hulse-Kemp AM, Jacobs M, Lila MA, Luby C, Main D, Mengist MF, Owens GL, Perkins-Veazie P, Polashock J, Pottorff M, Rowland LJ, Sims CA, Song GQ, Spencer J, Vorsa N, Yocca AE, Zalapa J. There and back again; historical perspective and future directions for Vaccinium breeding and research studies. HORTICULTURE RESEARCH 2022; 9:uhac083. [PMID: 35611183 PMCID: PMC9123236 DOI: 10.1093/hr/uhac083] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/22/2022] [Indexed: 06/02/2023]
Abstract
The genus Vaccinium L. (Ericaceae) contains a wide diversity of culturally and economically important berry crop species. Consumer demand and scientific research in blueberry (Vaccinium spp.) and cranberry (Vaccinium macrocarpon) have increased worldwide over the crops' relatively short domestication history (~100 years). Other species, including bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and ohelo berry (Vaccinium reticulatum) are largely still harvested from the wild but with crop improvement efforts underway. Here, we present a review article on these Vaccinium berry crops on topics that span taxonomy to genetics and genomics to breeding. We highlight the accomplishments made thus far for each of these crops, along their journey from the wild, and propose research areas and questions that will require investments by the community over the coming decades to guide future crop improvement efforts. New tools and resources are needed to underpin the development of superior cultivars that are not only more resilient to various environmental stresses and higher yielding, but also produce fruit that continue to meet a variety of consumer preferences, including fruit quality and health related traits.
Collapse
Affiliation(s)
- Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- MSU AgBioResearch, Michigan State University, East Lansing, MI, 48824, USA
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Nahla V Bassil
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Juliana Benevenuto
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Luis Felipe V Ferrão
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Lara Giongo
- Fondazione Edmund Mach - Research and Innovation CentreItaly
| | - Kim Hummer
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Lovely Mae F Lawas
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Courtney P Leisner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Changying Li
- Phenomics and Plant Robotics Center, College of Engineering, University of Georgia, Athens, USA
| | - Patricio R Munoz
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Amaya Atucha
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ebrahiem M Babiker
- USDA-ARS Southern Horticultural Laboratory, Poplarville, MS 39470-0287, USA
| | - Elizabeth Canales
- Department of Agricultural Economics, Mississippi State University, Mississippi State, MS 39762, USA
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Lisa DeVetter
- Department of Horticulture, Washington State University Northwestern Washington Research and Extension Center, Mount Vernon, WA, 98221, USA
| | - Mark Ehlenfeldt
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Karina Gallardo
- School of Economic Sciences, Washington State University, Puyallup, WA 98371, USA
| | - Catrin S Günther
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Michael Hardigan
- USDA-ARS, Horticulture Crops Research Unit, Corvallis, OR 97333, USA
| | - Amanda M Hulse-Kemp
- USDA-ARS, Genomics and Bioinformatics Research Unit, Raleigh, NC 27695, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - MacKenzie Jacobs
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48823, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
| | - Claire Luby
- USDA-ARS, Horticulture Crops Research Unit, Corvallis, OR 97333, USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, 99163, USA
| | - Molla F Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | | | | | - James Polashock
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Marti Pottorff
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
| | - Lisa J Rowland
- USDA-ARS, Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville, MD 20705, USA
| | - Charles A Sims
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Jessica Spencer
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Nicholi Vorsa
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Alan E Yocca
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Juan Zalapa
- USDA-ARS, VCRU, Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Tang Q, Chi FM, Liu HD, Zhang HJ, Song Y. Single-Molecule Real-Time and Illumina Sequencing to Analyze Transcriptional Regulation of Flavonoid Synthesis in Blueberry. FRONTIERS IN PLANT SCIENCE 2021; 12:754325. [PMID: 34659323 PMCID: PMC8514788 DOI: 10.3389/fpls.2021.754325] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/08/2021] [Indexed: 05/24/2023]
Abstract
Blueberries (Vaccinium corymbosum) contain large amounts of flavonoids, which play important roles in the plant's ability to resist stress and can also have beneficial effects on human health when the fruits are eaten. However, the molecular mechanisms that regulate flavonoid synthesis in blueberries are still unclear. In this study, we combined two different transcriptome sequencing platforms, single-molecule real-time (SMRT) and Illumina sequencing, to elucidate the flavonoid synthetic pathways in blueberries. We analyzed transcript quantity, length, and the number of annotated genes. We mined genes associated with flavonoid synthesis (such as anthocyanins, flavonols, and proanthocyanidins) and employed fluorescence quantitative PCR to analyze the expression of these genes and their correlation with flavonoid synthesis. We discovered one R2R3 MYB transcription factor from the sequencing library, VcMYB1, that can positively regulate anthocyanin synthesis in blueberries. VcMYB1 is mainly expressed in colored (mature) fruits. Experiments showed that overexpression and transient expression of VcMYB1 promoted anthocyanin synthesis in Arabidopsis, tobacco (Nicotiana benthamiana) plants and green blueberry fruits. Yeast one-hybrid (Y1H) assay, electrophoretic mobility shift assay, and transient expression experiments showed that VcMYB1 binds to the MYB binding site on the promoter of the structural gene for anthocyanin synthesis, VcMYB1 to positively regulate the transcription of VcDFR, thereby promoting anthocyanin synthesis. We also performed an in-depth investigation of transcriptional regulation of anthocyanin synthesis. This study provides background information and data for studying the synthetic pathways of flavonoids and other secondary metabolites in blueberries.
Collapse
|
8
|
Wang A, Liang K, Yang S, Cao Y, Wang L, Zhang M, Zhou J, Zhang L. Genome-wide analysis of MYB transcription factors of Vaccinium corymbosum and their positive responses to drought stress. BMC Genomics 2021; 22:565. [PMID: 34294027 PMCID: PMC8296672 DOI: 10.1186/s12864-021-07850-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/25/2021] [Indexed: 01/22/2023] Open
Abstract
Background Blueberry (Vaccinium corymbosum L.) is an important species with a high content of flavonoids in fruits. As a perennial shrub, blueberry is characterized by shallow-rooted property and susceptible to drought stress. MYB transcription factor was reported to be widely involved in plant response to abiotic stresses, however, the role of MYB family in blueberry responding to drought stress remains elusive. Results In this study, we conducted a comprehensive analysis of VcMYBs in blueberry based on the genome data under drought stress, including phylogenetic relationship, identification of differentially expressed genes (DEGs), expression profiling, conserved motifs, expression correlation and protein-protein interaction prediction, etc. The results showed that 229 non-redundant MYB sequences were identified in the blueberry genome, and divided into 23 subgroups. A total of 102 MYB DEGs with a significant response to drought stress were identified, of which 72 in leaves and 69 in roots, and 8 differential expression genes with a > 20-fold change in the level of expression. 17 DEGs had a higher expression correlation with other MYB members. The interaction partners of the key VcMYB proteins were predicted by STRING analysis and in combination with physiological and morphological observation. 10 key VcMYB genes such as VcMYB8, VcMYB102 and VcMYB228 were predicted to be probably involved in reactive oxygen species (ROS) pathway, and 7 key VcMYB genes (VcMYB41, VcMYB88 and VcMYB100, etc..) probably participated in leaf regulation under drought treatment. Conclusions Our studies provide a new understanding of the regulation mechanism of VcMYB family in blueberry response to drought stress, and lay fundamental support for future studies on blueberry grown in regions with limited water supply for this crop. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07850-5.
Collapse
Affiliation(s)
- Aibin Wang
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, 35 QinghuaEast Road, 100083, Beijing, China
| | - Kehao Liang
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, 35 QinghuaEast Road, 100083, Beijing, China
| | - Shiwen Yang
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, 35 QinghuaEast Road, 100083, Beijing, China
| | - Yibo Cao
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, 35 QinghuaEast Road, 100083, Beijing, China
| | - Lei Wang
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, 35 QinghuaEast Road, 100083, Beijing, China
| | - Ming Zhang
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, 35 QinghuaEast Road, 100083, Beijing, China
| | - Jing Zhou
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, 35 QinghuaEast Road, 100083, Beijing, China
| | - Lingyun Zhang
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, 35 QinghuaEast Road, 100083, Beijing, China.
| |
Collapse
|
9
|
Wu C, Deng C, Hilario E, Albert NW, Lafferty D, Grierson ERP, Plunkett BJ, Elborough C, Saei A, Günther CS, Ireland H, Yocca A, Edger PP, Jaakola L, Karppinen K, Grande A, Kylli R, Lehtola VP, Allan AC, Espley RV, Chagné D. A chromosome-scale assembly of the bilberry genome identifies a complex locus controlling berry anthocyanin composition. Mol Ecol Resour 2021; 22:345-360. [PMID: 34260155 DOI: 10.1111/1755-0998.13467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022]
Abstract
Bilberry (Vaccinium myrtillus L.) belongs to the Vaccinium genus, which includes blueberries (Vaccinium spp.) and cranberry (V. macrocarpon). Unlike its cultivated relatives, bilberry remains largely undomesticated, with berry harvesting almost entirely from the wild. As such, it represents an ideal target for genomic analysis, providing comparisons with the domesticated Vaccinium species. Bilberry is prized for its taste and health properties and has provided essential nutrition for Northern European indigenous populations. It contains high concentrations of phytonutrients, with perhaps the most important being the purple colored anthocyanins, found in both skin and flesh. Here, we present the first bilberry genome assembly, comprising 12 pseudochromosomes assembled using Oxford Nanopore (ONT) and Hi-C Technologies. The pseudochromosomes represent 96.6% complete BUSCO genes with an assessed LAI score of 16.3, showing a high conservation of synteny against the blueberry genome. Kmer analysis showed an unusual third peak, indicating the sequenced samples may have been from two individuals. The alternate alleles were purged so that the final assembly represents only one haplotype. A total of 36,404 genes were annotated after nearly 48% of the assembly was masked to remove repeats. To illustrate the genome quality, we describe the complex MYBA locus, and identify the key regulating MYB genes that determine anthocyanin production. The new bilberry genome builds on the genomic resources and knowledge of Vaccinium species, to help understand the genetics underpinning some of the quality attributes that breeding programs aspire to improve. The high conservation of synteny between bilberry and blueberry genomes means that comparative genome mapping can be applied to transfer knowledge about marker-trait association between these two species, as the loci involved in key characters are orthologous.
Collapse
Affiliation(s)
- Chen Wu
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand.,Genomics Aotearoa, Dunedin, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand.,Genomics Aotearoa, Dunedin, New Zealand
| | - Elena Hilario
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand.,Genomics Aotearoa, Dunedin, New Zealand
| | | | - Declan Lafferty
- PFR, Palmerston North, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Blue J Plunkett
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Caitlin Elborough
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Ali Saei
- BioLumic Limited, Palmerston North, New Zealand
| | - Catrin S Günther
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Hilary Ireland
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Alan Yocca
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA.,Department of Horticultural Science, Michigan State University, East Lansing, Michigan, USA
| | - Patrick P Edger
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway.,NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Katja Karppinen
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
| | | | - Ritva Kylli
- History, Culture and Communication studies, University of Oulu, Oulu, Finland
| | | | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - David Chagné
- Genomics Aotearoa, Dunedin, New Zealand.,PFR, Palmerston North, New Zealand
| |
Collapse
|
10
|
Xie X, Yue S, Shi B, Li H, Cui Y, Wang J, Yang P, Li S, Li X, Bian S. Comprehensive Analysis of the SBP Family in Blueberry and Their Regulatory Mechanism Controlling Chlorophyll Accumulation. FRONTIERS IN PLANT SCIENCE 2021; 12:703994. [PMID: 34276754 PMCID: PMC8281205 DOI: 10.3389/fpls.2021.703994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
SQUAMOSA Promoter Binding Protein (SBP) family genes act as central players to regulate plant growth and development with functional redundancy and specificity. Addressing the diversity of the SBP family in crops is of great significance to precisely utilize them to improve agronomic traits. Blueberry is an important economic berry crop. However, the SBP family has not been described in blueberry. In the present study, twenty VcSBP genes were identified through data mining against blueberry transcriptome databases. These VcSBPs could be clustered into eight groups, and the gene structures and motif compositions are divergent among the groups and similar within each group. The VcSBPs were differentially expressed in various tissues. Intriguingly, 10 VcSBPs were highly expressed at green fruit stages and dramatically decreased at the onset of fruit ripening, implying that they are important regulators during early fruit development. Computational analysis showed that 10 VcSBPs were targeted by miR156, and four of them were further verified by degradome sequencing. Moreover, their functional diversity was studied in Arabidopsis. Noticeably, three VcSBPs significantly increased chlorophyll accumulation, and qRT-PCR analysis indicated that VcSBP13a in Arabidopsis enhanced the expression of chlorophyll biosynthetic genes such as AtDVR, AtPORA, AtPORB, AtPORC, and AtCAO. Finally, the targets of VcSBPs were computationally identified in blueberry, and the Y1H assay showed that VcSBP13a could physically bind to the promoter region of the chlorophyll-associated gene VcLHCB1. Our findings provided an overall framework for individually understanding the characteristics and functions of the SBP family in blueberry.
Collapse
Affiliation(s)
- Xin Xie
- College of Plant Science, Jilin University, Changchun, China
| | - Shaokang Yue
- College of Plant Science, Jilin University, Changchun, China
| | - Baosheng Shi
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Hongxue Li
- College of Plant Science, Jilin University, Changchun, China
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON Canada
- Department of Biology, Western University, London, ON, Canada
| | - Jingying Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Pengjie Yang
- College of Plant Science, Jilin University, Changchun, China
| | - Shuchun Li
- Department of Pain, Second Hospital of Jilin University, Changchun, China
| | - Xuyan Li
- College of Plant Science, Jilin University, Changchun, China
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
11
|
Callwood J, Melmaiee K, Kulkarni KP, Vennapusa AR, Aicha D, Moore M, Vorsa N, Natarajan P, Reddy UK, Elavarthi S. Differential Morpho-Physiological and Transcriptomic Responses to Heat Stress in Two Blueberry Species. Int J Mol Sci 2021; 22:ijms22052481. [PMID: 33804571 PMCID: PMC7957502 DOI: 10.3390/ijms22052481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/07/2023] Open
Abstract
Blueberries (Vaccinium spp.) are highly vulnerable to changing climatic conditions, especially increasing temperatures. To gain insight into mechanisms underpinning the response to heat stress, two blueberry species were subjected to heat stress for 6 and 9 h at 45 °C, and leaf samples were used to study the morpho-physiological and transcriptomic changes. As compared with Vaccinium corymbosum, Vaccinium darrowii exhibited thermal stress adaptation features such as small leaf size, parallel leaf orientation, waxy leaf coating, increased stomatal surface area, and stomatal closure. RNAseq analysis yielded ~135 million reads and identified 8305 differentially expressed genes (DEGs) during heat stress against the control samples. In V. corymbosum, 2861 and 4565 genes were differentially expressed at 6 and 9 h of heat stress, whereas in V. darrowii, 2516 and 3072 DEGs were differentially expressed at 6 and 9 h, respectively. Among the pathways, the protein processing in the endoplasmic reticulum (ER) was the highly enriched pathway in both the species: however, certain metabolic, fatty acid, photosynthesis-related, peroxisomal, and circadian rhythm pathways were enriched differently among the species. KEGG enrichment analysis of the DEGs revealed important biosynthesis and metabolic pathways crucial in response to heat stress. The GO terms enriched in both the species under heat stress were similar, but more DEGs were enriched for GO terms in V. darrowii than the V. corymbosum. Together, these results elucidate the differential response of morpho-physiological and molecular mechanisms used by both the blueberry species under heat stress, and help in understanding the complex mechanisms involved in heat stress tolerance.
Collapse
Affiliation(s)
- Jodi Callwood
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
| | - Kalpalatha Melmaiee
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
- Correspondence:
| | - Krishnanand P. Kulkarni
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
| | - Amaranatha R. Vennapusa
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
| | - Diarra Aicha
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
| | - Michael Moore
- Optical Science Center for Applied Research (OSCAR), Delaware State University, Dover, DE 19901, USA;
| | - Nicholi Vorsa
- Philip E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, Chatsworth, NJ 08019, USA;
| | - Purushothaman Natarajan
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (P.N.); (U.K.R.)
| | - Umesh K. Reddy
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (P.N.); (U.K.R.)
| | - Sathya Elavarthi
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
| |
Collapse
|
12
|
Li X, Hou Y, Xie X, Li H, Li X, Zhu Y, Zhai L, Zhang C, Bian S. A blueberry MIR156a-SPL12 module coordinates the accumulation of chlorophylls and anthocyanins during fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5976-5989. [PMID: 32686829 DOI: 10.1093/jxb/eraa327] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/14/2020] [Indexed: 05/24/2023]
Abstract
Color change is an important event during fruit maturation in blueberry, usually depending on chlorophyll degradation and anthocyanin accumulation. MicroRNA156 (miR156)-SPL modules are an important group of regulatory hubs involved in the regulation of anthocyanin biosynthesis. However, little is known regarding their roles in blueberry or in chlorophyll metabolism during color change. In this study, a MIR156 gene (VcMIR156a) was experimentally identified in blueberry (Vaccinium corymbosum). Overexpression of VcMIR156a in tomato (Solanum lycopersicum) enhanced anthocyanin biosynthesis and chlorophyll degradation in the stem by altering pigment-associated gene expression. Further investigation indicated that the VcSPL12 transcript could be targeted by miR156, and showed the reverse accumulation patterns during blueberry fruit development and maturation. Noticeably, VcSPL12 was highly expressed at green fruit stages, while VcMIR156a transcripts mainly accumulated at the white fruit stage when expression of VcSPL12 was dramatically decreased, implying that VcMIR156a-VcSPL12 is a key regulatory hub during fruit coloration. Moreover, VcSPL12 decreased the expression of several anthocyanin biosynthetic and regulatory genes, and a yeast two-hybrid assay indicated that VcSPL12 interacted with VcMYBPA1. Intriguingly, expression of VcSPL12 significantly enhanced chlorophyll accumulation and altered the expression of several chlorophyll-associated genes. Additionally, the chloroplast ultrastructure was altered by the expression of VcMIR156a and VcSPL12. These findings provide a novel insight into the functional roles of miR156-SPLs in plants, especially in blueberry fruit coloration.
Collapse
Affiliation(s)
- Xuyan Li
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Yanming Hou
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Xin Xie
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Hongxue Li
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Xiaodong Li
- Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Yan Zhu
- Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Lulu Zhai
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Chunyu Zhang
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
13
|
Characterization and Analysis of Anthocyanin-Related Genes in Wild-Type Blueberry and the Pink-Fruited Mutant Cultivar ‘Pink Lemonade’: New Insights into Anthocyanin Biosynthesis. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091296] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Blueberries are one of the richest sources of antioxidants, such as anthocyanins, among fruits and vegetables. Anthocyanin mutants, like the pink-fruited cultivar ‘Pink Lemonade’, are valuable resources for investigating anthocyanin biosynthesis in blueberries. In this study, we examined expression of flavonoid pathway genes during fruit development in wild-type, blue-fruited blueberries using quantitative real-time PCR. Expression was also compared between wild-type and the pink-fruited ‘Pink Lemonade’. This revealed significantly lower expression in ‘Pink Lemonade’ than in wild-type of nearly all the structural genes examined suggesting that a transcriptional regulator of the pathway was affected. Hence, we compared expression of three known regulatory genes and found that the gene encoding the transcription factor MYB1 was expressed at a significantly lower level in ‘Pink Lemonade’ than in the wild-type. To validate the capacity of this MYB1 to regulate the transcription of anthocyanin genes in blueberries, a transient expression assay was conducted. Results indicated MYB1 overexpression enhanced anthocyanin production. Comparative sequence analysis between wild-type and mutant MYB1 variants found differences in highly conserved features suggesting a mechanistic explanation for the mutant phenotype. Collectively, the results presented here contribute to a better understanding of mechanisms regulating anthocyanin biosynthesis in Vaccinium.
Collapse
|
14
|
Sultana N, Menzel G, Heitkam T, Kojima KK, Bao W, Serçe S. Bioinformatic and Molecular Analysis of Satellite Repeat Diversity in Vaccinium Genomes. Genes (Basel) 2020; 11:E527. [PMID: 32397417 PMCID: PMC7290377 DOI: 10.3390/genes11050527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Bioinformatic and molecular characterization of satellite repeats was performed to understand the impact of their diversification on Vaccinium genome evolution. Satellite repeat diversity was evaluated in four cultivated and wild species, including the diploid species Vaccinium myrtillus and Vaccinium uliginosum, as well as the tetraploid species Vaccinium corymbosum and Vaccinium arctostaphylos. We comparatively characterized six satellite repeat families using in total 76 clones with 180 monomers. We observed that the monomer units of VaccSat1, VaccSat2, VaccSat5, and VaccSat6 showed a higher order repeat (HOR) structure, likely originating from the organization of two adjacent subunits with differing similarity, length and size. Moreover, VaccSat1, VaccSat3, VaccSat6, and VaccSat7 were found to have sequence similarity to parts of transposable elements. We detected satellite-typical tandem organization for VaccSat1 and VaccSat2 in long arrays, while VaccSat5 and VaccSat6 distributed in multiple sites over all chromosomes of tetraploid V. corymbosum, presumably in long arrays. In contrast, very short arrays of VaccSat3 and VaccSat7 are dispersedly distributed over all chromosomes in the same species, likely as internal parts of transposable elements. We provide a comprehensive overview on satellite species specificity in Vaccinium, which are potentially useful as molecular markers to address the taxonomic complexity of the genus, and provide information for genome studies of this genus.
Collapse
Affiliation(s)
- Nusrat Sultana
- Faculty of Life and Earth Sciences, Jagannath University, Dhaka 1100, Bangladesh
- Faculty of Biology, Technische Universität Dresden, D-01062 Dresden, Germany; (G.M.); (T.H.)
| | - Gerhard Menzel
- Faculty of Biology, Technische Universität Dresden, D-01062 Dresden, Germany; (G.M.); (T.H.)
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, D-01062 Dresden, Germany; (G.M.); (T.H.)
| | - Kenji K. Kojima
- Genetic Information Research Institute, Cupertino, CA 95014, USA; (K.K.K.); (W.B.)
| | - Weidong Bao
- Genetic Information Research Institute, Cupertino, CA 95014, USA; (K.K.K.); (W.B.)
| | - Sedat Serçe
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, 51240 Niğde, Turkey;
| |
Collapse
|
15
|
Mengist MF, Grace MH, Xiong J, Kay CD, Bassil N, Hummer K, Ferruzzi MG, Lila MA, Iorizzo M. Diversity in Metabolites and Fruit Quality Traits in Blueberry Enables Ploidy and Species Differentiation and Establishes a Strategy for Future Genetic Studies. FRONTIERS IN PLANT SCIENCE 2020; 11:370. [PMID: 32318085 PMCID: PMC7147330 DOI: 10.3389/fpls.2020.00370] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/16/2020] [Indexed: 05/30/2023]
Abstract
Blueberry is well recognized as a rich source of health promoting phytochemicals such as flavonoids and phenolic acids. Multiple studies in blueberry and other crops indicated that flavonoids and phenolic acids function as bioactive compounds in the human body promoting multiple health effects. Despite their importance, information is limited about the levels of variation in bioactive compounds within and between ploidy level and species, and their association with fruit quality traits. Such information is crucial to define a strategy to study the genetic mechanisms controlling these traits and to select for these traits in blueberry breeding programs. Here we evaluated 33 health related phytochemicals belonging to four major groups of flavonoids and phenolic acids across 128 blueberry accessions over two years together with fruit quality traits, including fruit weight, titratable acidity, total soluble acids and pH. Highly significant variation between accessions, years, and accession by year interaction were identified for most of the traits. Cluster analysis grouped phytochemicals by their functional structure (e.g., anthocyanins, flavanols, flavonols, and phenolic acids). Multivariate analysis of the traits resulted in separation of diploid, tetraploid and hexaploid accessions. Broad sense heritability of the traits estimated in 100 tetraploid accessions, ranged from 20 to 90%, with most traits revealing moderate to high broad sense heritability (H2 > 40%), suggesting that strong genetic factors control these traits. Fruit size can be estimated as a proxy of fruit weight or volume and vice versa, and it was negatively correlated with content of most of phytochemicals evaluated here. However, size-independent variation for anthocyanin content and profile (e.g., acylated vs. non-acylated anthocyanin) exists in the tetraploid accessions and can be explored to identify other factors such as genes related to the biosynthetic pathway that control this trait. This result also suggests that metabolite concentrations and fruit size, to a certain degree can be improved simultaneously in breeding programs. Overall, the results of this study provide a framework to uncover the genetic basis of bioactive compounds and fruit quality traits and will be useful to advance blueberry-breeding programs focusing on integrating these traits.
Collapse
Affiliation(s)
- Molla F Mengist
- Plants for Human Health Institute, North Carolina State University, NCRC, Kannapolis, NC, United States
| | - Mary H Grace
- Plants for Human Health Institute, North Carolina State University, NCRC, Kannapolis, NC, United States
| | - Jia Xiong
- Plants for Human Health Institute, North Carolina State University, NCRC, Kannapolis, NC, United States
| | - Colin D Kay
- Plants for Human Health Institute, North Carolina State University, NCRC, Kannapolis, NC, United States
| | - Nahla Bassil
- USDA-ARS-National Clonal Germplasm Repository, Corvallis, OR, United States
| | - Kim Hummer
- USDA-ARS-National Clonal Germplasm Repository, Corvallis, OR, United States
| | - Mario G Ferruzzi
- Plants for Human Health Institute, North Carolina State University, NCRC, Kannapolis, NC, United States
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, NCRC, Kannapolis, NC, United States
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, NCRC, Kannapolis, NC, United States
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
16
|
Thole V, Bassard JE, Ramírez-González R, Trick M, Ghasemi Afshar B, Breitel D, Hill L, Foito A, Shepherd L, Freitag S, Nunes dos Santos C, Menezes R, Bañados P, Naesby M, Wang L, Sorokin A, Tikhonova O, Shelenga T, Stewart D, Vain P, Martin C. RNA-seq, de novo transcriptome assembly and flavonoid gene analysis in 13 wild and cultivated berry fruit species with high content of phenolics. BMC Genomics 2019; 20:995. [PMID: 31856735 PMCID: PMC6924045 DOI: 10.1186/s12864-019-6183-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Flavonoids are produced in all flowering plants in a wide range of tissues including in berry fruits. These compounds are of considerable interest for their biological activities, health benefits and potential pharmacological applications. However, transcriptomic and genomic resources for wild and cultivated berry fruit species are often limited, despite their value in underpinning the in-depth study of metabolic pathways, fruit ripening as well as in the identification of genotypes rich in bioactive compounds. RESULTS To access the genetic diversity of wild and cultivated berry fruit species that accumulate high levels of phenolic compounds in their fleshy berry(-like) fruits, we selected 13 species from Europe, South America and Asia representing eight genera, seven families and seven orders within three clades of the kingdom Plantae. RNA from either ripe fruits (ten species) or three ripening stages (two species) as well as leaf RNA (one species) were used to construct, assemble and analyse de novo transcriptomes. The transcriptome sequences are deposited in the BacHBerryGEN database (http://jicbio.nbi.ac.uk/berries) and were used, as a proof of concept, via its BLAST portal (http://jicbio.nbi.ac.uk/berries/blast.html) to identify candidate genes involved in the biosynthesis of phenylpropanoid compounds. Genes encoding regulatory proteins of the anthocyanin biosynthetic pathway (MYB and basic helix-loop-helix (bHLH) transcription factors and WD40 repeat proteins) were isolated using the transcriptomic resources of wild blackberry (Rubus genevieri) and cultivated red raspberry (Rubus idaeus cv. Prestige) and were shown to activate anthocyanin synthesis in Nicotiana benthamiana. Expression patterns of candidate flavonoid gene transcripts were also studied across three fruit developmental stages via the BacHBerryEXP gene expression browser (http://www.bachberryexp.com) in R. genevieri and R. idaeus cv. Prestige. CONCLUSIONS We report a transcriptome resource that includes data for a wide range of berry(-like) fruit species that has been developed for gene identification and functional analysis to assist in berry fruit improvement. These resources will enable investigations of metabolic processes in berries beyond the phenylpropanoid biosynthetic pathway analysed in this study. The RNA-seq data will be useful for studies of berry fruit development and to select wild plant species useful for plant breeding purposes.
Collapse
Affiliation(s)
- Vera Thole
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Jean-Etienne Bassard
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg, Denmark
- Present address: Institute of Plant Molecular Biology, CNRS, University of Strasbourg, 12 Rue General Zimmer, 67084 Strasbourg, France
| | | | - Martin Trick
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Bijan Ghasemi Afshar
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Dario Breitel
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
- Present address: Tropic Biosciences UK LTD, Norwich Research Park, Norwich, NR4 7UG UK
| | - Lionel Hill
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | | | | | - Sabine Freitag
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
| | - Cláudia Nunes dos Santos
- Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, 2780-157 Oeiras, Portugal
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Rua Câmara Pestana 6, 1150-082 Lisbon, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Regina Menezes
- Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, 2780-157 Oeiras, Portugal
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Rua Câmara Pestana 6, 1150-082 Lisbon, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Pilar Bañados
- Facultad De Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna Ote, 4860 Macul, Chile
| | | | - Liangsheng Wang
- Institute of Botany, The Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093 China
| | - Artem Sorokin
- Fruit Crops Genetic Resources Department, N. I. Vavilov Research Institute of Plant Industry, B. Morskaya Street 42-44, St. Petersburg, 190000 Russia
| | - Olga Tikhonova
- Fruit Crops Genetic Resources Department, N. I. Vavilov Research Institute of Plant Industry, B. Morskaya Street 42-44, St. Petersburg, 190000 Russia
| | - Tatiana Shelenga
- Fruit Crops Genetic Resources Department, N. I. Vavilov Research Institute of Plant Industry, B. Morskaya Street 42-44, St. Petersburg, 190000 Russia
| | - Derek Stewart
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| | - Philippe Vain
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Cathie Martin
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| |
Collapse
|
17
|
Qi X, Ogden EL, Die JV, Ehlenfeldt MK, Polashock JJ, Darwish O, Alkharouf N, Rowland LJ. Transcriptome analysis identifies genes related to the waxy coating on blueberry fruit in two northern-adapted rabbiteye breeding populations. BMC PLANT BIOLOGY 2019; 19:460. [PMID: 31711416 PMCID: PMC6844065 DOI: 10.1186/s12870-019-2073-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/14/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Blueberry is of high economic value. Most blueberry varieties selected for the fresh market have an appealing light blue coating or "bloom" on the fruit due to the presence of a visible heavy epicuticular wax layer. This waxy layer also serves as natural defense against fruit desiccation and deterioration. RESULTS In this study, we attempted to identify gene(s) whose expression is related to the protective waxy coating on blueberry fruit utilizing two unique germplasm populations that segregate for the waxy layer. We bulked RNA from waxy and non-waxy blueberry progenies from the two northern-adapted rabbiteye hybrid breeding populations ('Nocturne' x T 300 and 'Nocturne' x US 1212), and generated 316.85 million RNA-seq reads. We de novo assembled this data set integrated with other publicly available RNA-seq data and trimmed the assembly into a 91,861 blueberry unigene collection. All unigenes were functionally annotated, resulting in 79 genes potentially related to wax accumulation. We compared the expression pattern of waxy and non-waxy progenies using edgeR and identified overall 1125 genes in the T 300 population and 2864 genes in the US 1212 population with at least a two-fold expression difference. After validating differential expression of several genes by RT-qPCR experiments, a candidate gene, FatB, which encodes acyl-[acyl-carrier-protein] hydrolase, emerged whose expression was closely linked to the segregation of the waxy coating in our populations. This gene was expressed at more than a five-fold higher level in waxy than non-waxy plants of both populations. We amplified and sequenced the cDNA for this gene from three waxy plants of each population, but were unable to amplify the cDNA from three non-waxy plants that were tested from each population. We aligned the Vaccinium deduced FATB protein sequence to FATB protein sequences from other plant species. Within the PF01643 domain, which gives FATB its catalytic function, 80.08% of the amino acids were identical or had conservative replacements between the blueberry and the Cucumis melo sequence (XP_008467164). We then amplified and sequenced a large portion of the FatB gene itself from waxy and non-waxy individuals of both populations. Alignment of the cDNA and gDNA sequences revealed that the blueberry FatB gene consists of six exons and five introns. Although we did not sequence through two very large introns, a comparison of the exon sequences found no significant sequence differences between the waxy and non-waxy plants. This suggests that another gene, which regulates or somehow affects FatB expression, must be segregating in the populations. CONCLUSIONS This study is helping to achieve a greater understanding of epicuticular wax biosynthesis in blueberry. In addition, the blueberry unigene collection should facilitate functional annotation of the coming chromosomal level blueberry genome.
Collapse
Affiliation(s)
- Xinpeng Qi
- USDA-ARS, BARC-West, Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville, MD 20705 USA
| | - Elizabeth L. Ogden
- USDA-ARS, BARC-West, Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville, MD 20705 USA
| | - Jose V. Die
- Departmento de Genetica, University of Córdoba Campus Rabanales, Blg. C5, 14071 Córdoba, Spain
| | - Mark K. Ehlenfeldt
- USDA-ARS, Genetic Improvement of Fruits and Vegetables Laboratory, at Rutgers University P.E. Marucci Center for Blueberry and Cranberry Research and Extension, Chatsworth, NJ 08019 USA
| | - James J. Polashock
- USDA-ARS, Genetic Improvement of Fruits and Vegetables Laboratory, at Rutgers University P.E. Marucci Center for Blueberry and Cranberry Research and Extension, Chatsworth, NJ 08019 USA
| | - Omar Darwish
- Department of Mathematics and Computer Science, Texas Woman’s University, Denton, TX 76204 USA
| | - Nadim Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD 21252 USA
| | - L. Jeannine Rowland
- USDA-ARS, BARC-West, Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville, MD 20705 USA
| |
Collapse
|
18
|
Transcriptional regulation of abscisic acid biosynthesis and signal transduction, and anthocyanin biosynthesis in 'Bluecrop' highbush blueberry fruit during ripening. PLoS One 2019; 14:e0220015. [PMID: 31318958 PMCID: PMC6638965 DOI: 10.1371/journal.pone.0220015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/05/2019] [Indexed: 11/19/2022] Open
Abstract
Highbush blueberry (Vaccinium corymbosum) fruit accumulate high levels of anthocyanins during ripening, which might be controlled by abscisic acid (ABA), a signal molecule in non-climacteric fruits. For an integrated view of the ripening process from ABA to anthocyanin biosynthesis, we analyzed the transcriptomes of ‘Bluecrop’ highbush blueberry fruit using RNA-Seq at three ripening stages, categorized based on fruit skin coloration: pale green at ca. 30 days after full bloom (DAFB), reddish purple at ca. 40 DAFB, and dark purple at ca. 50 DAFB. Mapping the trimmed reads against the reference sequences yielded 25,766 transcripts. Of these, 143 transcripts were annotated to encode five ABA biosynthesis enzymes, four ABA signal transduction regulators, four ABA-responsive transcription factors, and 12 anthocyanin biosynthesis enzymes. The analysis of differentially expressed genes between the ripening stages revealed that 11 transcripts, including those encoding nine-cis-epoxycarotenoid dioxygenase, SQUAMOSA-class MADS box transcription factor, and flavonoid 3′,5′-hydroxylase, were significantly up-regulated throughout the entire ripening stages. In fruit treated with 1 g L−1 ABA, at least nine transcripts of these 11 transcripts as well as one transcript encoding flavonoid 3′-hydroxylase were up-regulated, presumably promoting anthocyanin accumulation and fruit skin coloration. These results will provide fundamental information demonstrating that ABA biosynthesis and signal transduction, and anthocyanin biosynthesis are closely associated with anthocyanin accumulation and skin coloration in highbush blueberry fruit during ripening.
Collapse
|
19
|
Identification and Characterization of MYB-bHLH-WD40 Regulatory Complex Members Controlling Anthocyanidin Biosynthesis in Blueberry Fruits Development. Genes (Basel) 2019; 10:genes10070496. [PMID: 31261791 PMCID: PMC6678982 DOI: 10.3390/genes10070496] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins is the main representative of flavonoids in blueberry fruits. The anthocyanins biosynthetic pathway has been extensively studied in numerous model plants and fruit crops at biochemical, genetic, and molecular levels. However, the mechanisms by which the MYB transcription factor/basic helix-loop-helix (bHLH) domain protein/WD-repeat (MYB-bHLH-WD40) complexes regulate anthocyanin biosynthesis in blueberry is still limited. In the present study, we identified 11 MYB, 7 bHLH, and 6 WD40 genes in blueberry fruits, using amino acid sequences of homologous MYB-bHLH-WD40 complexes in Arabidopsis, apple, grape, and strawberry. To understand these mechanisms, the expression patterns of MYB-bHLH-WD40 genes were examined and validated using differentially expressed gene (DEG) analysis and quantitative real-time reverse transcription PCR (qRT-PCR), respectively. The expression patterns of MYB-bHLH-WD40 genes positively correlated with anthocyanin accumulation and color development in blueberry fruits. Consistent with the effects of other transcriptional regulators, the VcMYBL1::GFP, VcbHLH1::GFP, and VcWDL2::GFP fusion proteins were only observed in the nucleus. The protein-protein interactions (PPIs) and bimolecular fluorescence complementation (BiFC) assay suggested a possible link between VcbHLHL1 and VcMYBL1. Finally, a model was proposed and discussed for how the expression of the MYB-bHLH-WD40 complexes can promote anthocyanin biosynthesis in blueberry fruits. To our knowledge, this study was the first to evaluate MYB-bHLH-WD40 complexes in blueberry fruits, and it provides a foundation to dissect the function of the mechanism.
Collapse
|
20
|
Genome Survey Sequencing of Acer truncatum Bunge to Identify Genomic Information, Simple Sequence Repeat (SSR) Markers and Complete Chloroplast Genome. FORESTS 2019. [DOI: 10.3390/f10020087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Acer truncatum Bunge is a particular forest tree species found in the north of China. Due to the recent discovery that its seeds contain a considerable amount of nervonic acid, this species has received more and more attention. However, there have been no reports of the genome in this species. In this study, we report on the Acer truncatum genome sequence produced by genome survey sequencing. In total, we obtained 61.90 Gbp of high-quality data, representing approximately 116x coverage of the Acer truncatum genome. The genomic characteristics of Acer truncatum include a genome size of 529.88 Mbp, a heterozygosis rate of 1.06% and a repeat rate of 48.8%. A total of 392,961 high-quality genomic SSR markers were developed and a graphical map of the annotated circular chloroplast genome was generated. Thus far, this is the first report of de novo whole genome sequencing and assembly of Acer truncatum. We believe that this genome sequence dataset may provide a new resource for future genomic analysis and molecular breeding studies of Acer truncatum.
Collapse
|
21
|
Chang P, Zhu L, Zhao M, Li C, Zhang Y, Li L. The first transcriptome sequencing and analysis of the endangered plant species Picea neoveitchii Mast. and potential EST-SSR markers development. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1632739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Pan Chang
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
- Shaanxi Province Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, PR China
| | - Ling Zhu
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
| | - Mengran Zhao
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
- Shaanxi Province Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, PR China
| | - Chao Li
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
| | - Yi Zhang
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
| | - Lingli Li
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
- Shaanxi Province Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, PR China
| |
Collapse
|
22
|
Zhang H, Cui X, Guo Y, Luo C, Zhang L. Picea wilsonii transcription factor NAC2 enhanced plant tolerance to abiotic stress and participated in RFCP1-regulated flowering time. PLANT MOLECULAR BIOLOGY 2018; 98:471-493. [PMID: 30406468 DOI: 10.1007/s11103-018-0792-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/14/2018] [Indexed: 05/25/2023]
Abstract
Picea wilsonii transcription factor PwNAC2 enhanced plant tolerance to salt and drought stress through multiple signaling pathway and interacted with PwRFCP1 to participate in flowering regulation. NAC is one of the largest transcription factor families in plants, however, its role is not yet fully understood. Here, we identified a transcription factor PwNAC2 in Picea wilsonii, which localized in nucleus with transcriptional activity in C-terminal region and can form homodimer by itself. Expression analysis by real-time PCR showed that PwNAC2 was induced by multiple abiotic stresses and phytohormones stimuli. PwRFCP1 (Resemble-FCA-contain-PAT1 domain), an interaction protein of PwNAC2 was screened via yeast two hybrid. Luciferase complementation assay confirmed the interaction in vivo and bimolecular fluorescence complementation assay showed the interaction in nucleus. PwNAC2 overexpression retarded Arabidopsis hypocotyls growth which is closely related to light, whereas promotion of hypocotyls growth by PwRFCP1 is independent on light. Under drought or salt treatment, overexpression of PwNAC2 in Arabidopsis showed more vigorous seed germination and significant tolerance for seedlings by ROS scavenging, reducing of membrane damage, slower water loss and increased stomatal closure. ABA or CBF-pathway marker genes were substantially higher in PwNAC2 transgenic Arabidopsis. Overexpression of PwRFCP1 promotes flowering in transgenic Arabidopsis, whereas PwNAC2 delayed flowering by altering the expression of FT, SOC1 and FLC. In addtioin, PwRFCP1 overexpression plants showed no higher tolerance to stress treatment than Col-0. Collectively, our results indicate that PwNAC2 enhanced plant tolerance to abiotic stress through multiple signaling pathways and participated in PwRFCP1-regulated flowering time.
Collapse
Affiliation(s)
- Hehua Zhang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xiaoyue Cui
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yuxiao Guo
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Chaobing Luo
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Lingyun Zhang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
23
|
Yang J, Li B, Shi W, Gong Z, Chen L, Hou Z. Transcriptional Activation of Anthocyanin Biosynthesis in Developing Fruit of Blueberries ( Vaccinium corymbosum L.) by Preharvest and Postharvest UV Irradiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10931-10942. [PMID: 30269498 DOI: 10.1021/acs.jafc.8b03081] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The effect and mechanism of preharvest and postharvest ultraviolet (UV) irradiation on anthocyanin biosynthesis during blueberry development were investigated. The results showed that preharvest UV-B,C and postharvest UV-A,B,C irradiation significantly promoted anthocyanin biosynthesis and the transcripts of late biosynthetic genes (LBG) VcDFR, VcANS, VcUFGT, and VcMYB transcription factor as well as DFR and UFGT activities in anthocyanin pathway in a UV wavelength- and developmental stage-dependent manner. VcMYB expression was positively correlated with that of VcANS and VcUFGT and coincided with anthocyanin biosynthesis responding to the UV radiation. Sugar decreased during postharvest but increased during preharvest UV radiation in mature fruit. Our results indicate that UV-responsive production of anthocyanins is mainly caused by the activation of anthocyanin downstream pathway genes, which could be upregulated by VcMYB. Furthermore, different potential response mechanisms may exist between preharvest and postharvest UV radiation in blueberries, involving a systemic response in living plants and a nonsystemic response in postharvest fruit.
Collapse
Affiliation(s)
- Junfeng Yang
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research & Development Center of Blueberry , Beijing Forestry University , Beijing 100083 , China
- The Key Laboratory of Plant Resources/Beijing Botanical Garden , Institute of Botany, The Chinese Academy of Sciences , Beijing 100093 , China
- The Chinese Academy of Sciences , Beijing 100049 , China
| | - Binbin Li
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research & Development Center of Blueberry , Beijing Forestry University , Beijing 100083 , China
| | - Wenjun Shi
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research & Development Center of Blueberry , Beijing Forestry University , Beijing 100083 , China
| | - Zhongzhi Gong
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research & Development Center of Blueberry , Beijing Forestry University , Beijing 100083 , China
| | - Lu Chen
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research & Development Center of Blueberry , Beijing Forestry University , Beijing 100083 , China
| | - Zhixia Hou
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research & Development Center of Blueberry , Beijing Forestry University , Beijing 100083 , China
| |
Collapse
|
24
|
Wang R, Liu P, Fan J, Li L. Comparative transcriptome analysis two genotypes of Acer truncatum Bunge seeds reveals candidate genes that influences seed VLCFAs accumulation. Sci Rep 2018; 8:15504. [PMID: 30341360 PMCID: PMC6195533 DOI: 10.1038/s41598-018-33999-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/06/2018] [Indexed: 12/30/2022] Open
Abstract
The Acer truncatum Bunge is a particular widespread forest tree species in northern China. VLCFAs are important to eukaryotes survival and play diverse roles throughout the development. So far, there are reports that the Acer truncatum seeds fatty acid (FA) rich in VLCFAs, but little is known about the physiological mechanism responsible for the biosynthesis. A total of approximately 37.07 Gbp was generated, it was comprehensive enough to determine the majority of the regulation VLCFAs biosynthesis genes. The 97,053 different unigenes were assembled and identified, and large numbers of EST-SSRs were determined. The expression profiles of crucial genes (KCS, KCR, HCD and ECR) involved in VLCFAs elongation of fatty acids were also studied. To our knowledge, the present study provides the first comprehensive of the transcriptome of Acer truncatum seeds. This transcriptome dataset have been made publicly available NCBI, we believe that it may provide new resource for future high-throughput gene expression of Acer truncatum seeds growth and development and will provide theoretical basic information for improving the yield of VLCFAs, especially nervonic acid.
Collapse
Affiliation(s)
- Rongkai Wang
- College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Pei Liu
- College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Jinshuan Fan
- College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Lingli Li
- College of Forestry, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
25
|
Plunkett BJ, Espley RV, Dare AP, Warren BAW, Grierson ERP, Cordiner S, Turner JL, Allan AC, Albert NW, Davies KM, Schwinn KE. MYBA From Blueberry ( Vaccinium Section Cyanococcus) Is a Subgroup 6 Type R2R3MYB Transcription Factor That Activates Anthocyanin Production. FRONTIERS IN PLANT SCIENCE 2018; 9:1300. [PMID: 30254656 PMCID: PMC6141686 DOI: 10.3389/fpls.2018.01300] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/17/2018] [Indexed: 05/09/2023]
Abstract
The Vaccinium genus in the family Ericaceae comprises many species, including the fruit-bearing blueberry, bilberry, cranberry, huckleberry, and lingonberry. Commercially, the most important are the blueberries (Vaccinium section Cyanococcus), such as Vaccinium corymbosum (northern highbush blueberry), Vaccinium virgatum (rabbiteye blueberry), and Vaccinium angustifolium (lowbush blueberry). The rising popularity of blueberries can partly be attributed to their "superfood" status, with an increasing body of evidence around human health benefits resulting from the fruit metabolites, particularly products of the phenylpropanoid pathway such as anthocyanins. Activation of anthocyanin production by R2R3-MYB transcription factors (TFs) has been characterized in many species, but despite recent studies on blueberry, cranberry, and bilberry, no MYB anthocyanin regulators have been reported for Vaccinium. Indeed, there has been conjecture that at least in bilberry, MYB TFs divergent to the usual type are involved. We report identification of MYBA from blueberry, and show through sequence analysis and functional studies that it is homologous to known anthocyanin-promoting R2R3-MYBs of subgroup 6 of the MYB superfamily. In transient assays, MYBA complemented an anthocyanin MYB mutant of Antirrhinum majus and, together with a heterologous bHLH anthocyanin regulator, activated anthocyanin production in Nicotiana benthamiana. Furthermore anthocyanin accumulation and anthocyanin structural gene expression (assayed by qPCR and RNA-seq analyses) correlated with MYBA expression, and MYBA was able to transactivate the DFR promoter from blueberry and other species. The RNA-seq data also revealed a range of other candidate genes involved in the regulation of anthocyanin production in blueberry fruit. The identification of MYBA will help to resolve the regulatory mechanism for anthocyanin pigmentation in the Vaccinium genus. The sequence information should also prove useful in developing tools for the accelerated breeding of new Vaccinium cultivars.
Collapse
Affiliation(s)
- Blue J. Plunkett
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Andrew P. Dare
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Ben A. W. Warren
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Ella R. P. Grierson
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Sarah Cordiner
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Janice L. Turner
- The New Zealand Institute for Plant and Food Research Limited, Motueka, New Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Kevin M. Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Kathy E. Schwinn
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
26
|
Recognition of candidate transcription factors related to bilberry fruit ripening by de novo transcriptome and qRT-PCR analyses. Sci Rep 2018; 8:9943. [PMID: 29967355 PMCID: PMC6028583 DOI: 10.1038/s41598-018-28158-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 06/18/2018] [Indexed: 12/26/2022] Open
Abstract
Bilberry (Vaccinium myrtillus L.) fruits are an excellent natural resource for human diet because of their special flavor, taste and nutritional value as well as medical properties. Bilberries are recognized for their high anthocyanin content and many of the genes involved in the anthocyanin biosynthesis have been characterized. So far, neither genomic nor RNA-seq data have been available for the species. In the present study, we de novo sequenced two bilberry fruit developmental stages, unripe green (G) and ripening (R). A total of 57,919 unigenes were assembled of which 80.2% were annotated against six public protein databases. The transcriptome served as exploratory data to identify putative transcription factors related to fruit ripening. Differentially expressed genes (DEGs) between G and R stages were prominently upregulated in R stage with the functional annotation indicating their main roles in active metabolism and catalysis. The unigenes encoding putative ripening-related regulatory genes, including members of NAC, WRKY, LOB, ERF, ARF and ABI families, were analysed by qRT-PCR at five bilberry developmental stages. Our de novo transcriptome database contributes to the understanding of the regulatory network associated with the fruit ripening in bilberry and provides the first dataset for wild Vaccinium species acquired by NGS technology.
Collapse
|
27
|
Lin Y, Wang Y, Li B, Tan H, Li D, Li L, Liu X, Han J, Meng X. Comparative transcriptome analysis of genes involved in anthocyanin synthesis in blueberry. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:561-572. [PMID: 29727860 DOI: 10.1016/j.plaphy.2018.04.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/10/2018] [Accepted: 04/25/2018] [Indexed: 05/09/2023]
Abstract
Blueberry (Vaccinium, family Ericaceae) is well known for its strong antioxidant properties and abundant active ingredients including anthocyanins, flavonols, and proanthocyanidins. In this study, variations in anthocyanin and phenolic compounds content in Bluecrop and Northblue blueberry cultivar fruits were studied, and comparative transcriptome analysis was performed to analyze differences in the molecular mechanisms of anthocyanin biosynthesis. A total of 13 799 unique genes were identified by differential expression analysis, and further subjected to GO classification and pathway enrichment. Nine differentially expressed genes (DEGs), including CHI, DFR, F3'H, FLS, CHS, OMT, UGT, ANS and F3H, were selected to validate the differential expression data using quantitative real-time PCR. The obtained qRT-PCR expression results were consistent with the RNA-Seq results. The expression levels of 9 candidate genes involved in flavonoid biosynthesis and metabolism were concurrent with the anthocyanin content. The developmental stage appeared to affect the expression of genes related to flavonoid biosynthesis to a greater extent than the tissue or cultivar type. This study provides an abundant data resource that will further our understanding of the molecular mechanisms of anthocyanin biosynthesis in blueberries.
Collapse
Affiliation(s)
- Yang Lin
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hui Tan
- Faculty of Health Sciences, Hokkaido Universty, Sapporo, Japan
| | - Dongnan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Li Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xuan Liu
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai, China
| | - Jichen Han
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai, China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China.
| |
Collapse
|
28
|
Joseph JT, Poolakkalody NJ, Shah JM. Plant reference genes for development and stress response studies. J Biosci 2018; 43:173-187. [PMID: 29485125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Many reference genes are used by different laboratories for gene expression analyses to indicate the relative amount of input RNA/DNA in the experiment. These reference genes are supposed to show least variation among the treatments and with the control sets in a given experiment. However, expression of reference genes varies significantly from one set of experiment to the other. Thus, selection of reference genes depends on the experimental conditions. Sometimes the average expression of two or three reference genes is taken as standard. This review consolidated the details of about 120 genes attempted for normalization during comparative expression analysis in 16 different plants. Plant species included in this review are Arabidopsis thaliana, cotton (Gossypium hirsutum), tobacco (Nicotiana benthamiana and N. tabacum), soybean (Glycine max), rice (Oryza sativa), blueberry (Vaccinium corymbosum), tomato (Solanum lycopersicum), wheat (Triticum aestivum), potato (Solanum tuberosum), sugar cane (Saccharum sp.), carrot (Daucus carota), coffee (Coffea arabica), cucumber (Cucumis sativus), kiwi (Actinidia deliciosa) and grape (Vitis vinifera). The list includes model and cultivated crop plants from both monocot and dicot classes. We have categorized plant-wise the reference genes that have been used for expression analyses in any or all of the four different conditions such as biotic stress, abiotic stress, developmental stages and various organs and tissues, reported till date. This review serves as a guide during the reference gene hunt for gene expression analysis studies.
Collapse
Affiliation(s)
- Joyous T Joseph
- Department of Plant Science, Central University of Kerala, Padannakkad, Kasaragod 671 314, India
| | | | | |
Collapse
|
29
|
Hou Y, Zhai L, Li X, Xue Y, Wang J, Yang P, Cao C, Li H, Cui Y, Bian S. Comparative Analysis of Fruit Ripening-Related miRNAs and Their Targets in Blueberry Using Small RNA and Degradome Sequencing. Int J Mol Sci 2017; 18:ijms18122767. [PMID: 29257112 PMCID: PMC5751366 DOI: 10.3390/ijms18122767] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) play vital roles in the regulation of fruit development and ripening. Blueberry is an important small berry fruit crop with economical and nutritional value. However, nothing is known about the miRNAs and their targets involved in blueberry fruit ripening. In this study, using high-throughput sequencing of small RNAs, 84 known miRNAs belonging to 28 families and 16 novel miRNAs were identified in white fruit (WF) and blue fruit (BF) libraries, which represent fruit ripening onset and in progress, respectively. Among them, 41 miRNAs were shown to be differentially expressed during fruit maturation, and 16 miRNAs representing 16 families were further chosen to validate the sRNA sequencing data by stem-loop qRT-PCR. Meanwhile, 178 targets were identified for 41 known and 7 novel miRNAs in WF and BF libraries using degradome sequencing, and targets of miR160 were validated using RLM-RACE (RNA Ligase-Mediated (RLM)-Rapid Amplification of cDNA Ends) approach. Moreover, the expression patterns of 6 miRNAs and their targets were examined during fruit development and ripening. Finally, integrative analysis of miRNAs and their targets revealed a complex miRNA-mRNA regulatory network involving a wide variety of biological processes. The findings will facilitate future investigations of the miRNA-mediated mechanisms that regulate fruit development and ripening in blueberry.
Collapse
Affiliation(s)
- Yanming Hou
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Lulu Zhai
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Xuyan Li
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Yu Xue
- College of Life Sciences, Jilin University, Changchun 130012, China.
| | - Jingjing Wang
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Pengjie Yang
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Chunmei Cao
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Hongxue Li
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Yuhai Cui
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3, Canada.
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun 130062, China.
| |
Collapse
|